1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 455 { 456 struct vm_area_struct *vma; 457 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 459 if (vma) 460 vma_init(vma, mm); 461 return vma; 462 } 463 464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 465 { 466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 467 468 if (new) { 469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 471 /* 472 * orig->shared.rb may be modified concurrently, but the clone 473 * will be reinitialized. 474 */ 475 data_race(memcpy(new, orig, sizeof(*new))); 476 INIT_LIST_HEAD(&new->anon_vma_chain); 477 dup_anon_vma_name(orig, new); 478 } 479 return new; 480 } 481 482 void vm_area_free(struct vm_area_struct *vma) 483 { 484 free_anon_vma_name(vma); 485 kmem_cache_free(vm_area_cachep, vma); 486 } 487 488 static void account_kernel_stack(struct task_struct *tsk, int account) 489 { 490 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 491 struct vm_struct *vm = task_stack_vm_area(tsk); 492 int i; 493 494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 496 account * (PAGE_SIZE / 1024)); 497 } else { 498 void *stack = task_stack_page(tsk); 499 500 /* All stack pages are in the same node. */ 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 502 account * (THREAD_SIZE / 1024)); 503 } 504 } 505 506 void exit_task_stack_account(struct task_struct *tsk) 507 { 508 account_kernel_stack(tsk, -1); 509 510 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 511 struct vm_struct *vm; 512 int i; 513 514 vm = task_stack_vm_area(tsk); 515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 516 memcg_kmem_uncharge_page(vm->pages[i], 0); 517 } 518 } 519 520 static void release_task_stack(struct task_struct *tsk) 521 { 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 523 return; /* Better to leak the stack than to free prematurely */ 524 525 free_thread_stack(tsk); 526 } 527 528 #ifdef CONFIG_THREAD_INFO_IN_TASK 529 void put_task_stack(struct task_struct *tsk) 530 { 531 if (refcount_dec_and_test(&tsk->stack_refcount)) 532 release_task_stack(tsk); 533 } 534 #endif 535 536 void free_task(struct task_struct *tsk) 537 { 538 #ifdef CONFIG_SECCOMP 539 WARN_ON_ONCE(tsk->seccomp.filter); 540 #endif 541 release_user_cpus_ptr(tsk); 542 scs_release(tsk); 543 544 #ifndef CONFIG_THREAD_INFO_IN_TASK 545 /* 546 * The task is finally done with both the stack and thread_info, 547 * so free both. 548 */ 549 release_task_stack(tsk); 550 #else 551 /* 552 * If the task had a separate stack allocation, it should be gone 553 * by now. 554 */ 555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 556 #endif 557 rt_mutex_debug_task_free(tsk); 558 ftrace_graph_exit_task(tsk); 559 arch_release_task_struct(tsk); 560 if (tsk->flags & PF_KTHREAD) 561 free_kthread_struct(tsk); 562 free_task_struct(tsk); 563 } 564 EXPORT_SYMBOL(free_task); 565 566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 567 { 568 struct file *exe_file; 569 570 exe_file = get_mm_exe_file(oldmm); 571 RCU_INIT_POINTER(mm->exe_file, exe_file); 572 /* 573 * We depend on the oldmm having properly denied write access to the 574 * exe_file already. 575 */ 576 if (exe_file && deny_write_access(exe_file)) 577 pr_warn_once("deny_write_access() failed in %s\n", __func__); 578 } 579 580 #ifdef CONFIG_MMU 581 static __latent_entropy int dup_mmap(struct mm_struct *mm, 582 struct mm_struct *oldmm) 583 { 584 struct vm_area_struct *mpnt, *tmp; 585 int retval; 586 unsigned long charge = 0; 587 LIST_HEAD(uf); 588 VMA_ITERATOR(old_vmi, oldmm, 0); 589 VMA_ITERATOR(vmi, mm, 0); 590 591 uprobe_start_dup_mmap(); 592 if (mmap_write_lock_killable(oldmm)) { 593 retval = -EINTR; 594 goto fail_uprobe_end; 595 } 596 flush_cache_dup_mm(oldmm); 597 uprobe_dup_mmap(oldmm, mm); 598 /* 599 * Not linked in yet - no deadlock potential: 600 */ 601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 602 603 /* No ordering required: file already has been exposed. */ 604 dup_mm_exe_file(mm, oldmm); 605 606 mm->total_vm = oldmm->total_vm; 607 mm->data_vm = oldmm->data_vm; 608 mm->exec_vm = oldmm->exec_vm; 609 mm->stack_vm = oldmm->stack_vm; 610 611 retval = ksm_fork(mm, oldmm); 612 if (retval) 613 goto out; 614 khugepaged_fork(mm, oldmm); 615 616 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 617 if (retval) 618 goto out; 619 620 for_each_vma(old_vmi, mpnt) { 621 struct file *file; 622 623 if (mpnt->vm_flags & VM_DONTCOPY) { 624 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 625 continue; 626 } 627 charge = 0; 628 /* 629 * Don't duplicate many vmas if we've been oom-killed (for 630 * example) 631 */ 632 if (fatal_signal_pending(current)) { 633 retval = -EINTR; 634 goto loop_out; 635 } 636 if (mpnt->vm_flags & VM_ACCOUNT) { 637 unsigned long len = vma_pages(mpnt); 638 639 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 640 goto fail_nomem; 641 charge = len; 642 } 643 tmp = vm_area_dup(mpnt); 644 if (!tmp) 645 goto fail_nomem; 646 retval = vma_dup_policy(mpnt, tmp); 647 if (retval) 648 goto fail_nomem_policy; 649 tmp->vm_mm = mm; 650 retval = dup_userfaultfd(tmp, &uf); 651 if (retval) 652 goto fail_nomem_anon_vma_fork; 653 if (tmp->vm_flags & VM_WIPEONFORK) { 654 /* 655 * VM_WIPEONFORK gets a clean slate in the child. 656 * Don't prepare anon_vma until fault since we don't 657 * copy page for current vma. 658 */ 659 tmp->anon_vma = NULL; 660 } else if (anon_vma_fork(tmp, mpnt)) 661 goto fail_nomem_anon_vma_fork; 662 vm_flags_clear(tmp, VM_LOCKED_MASK); 663 file = tmp->vm_file; 664 if (file) { 665 struct address_space *mapping = file->f_mapping; 666 667 get_file(file); 668 i_mmap_lock_write(mapping); 669 if (tmp->vm_flags & VM_SHARED) 670 mapping_allow_writable(mapping); 671 flush_dcache_mmap_lock(mapping); 672 /* insert tmp into the share list, just after mpnt */ 673 vma_interval_tree_insert_after(tmp, mpnt, 674 &mapping->i_mmap); 675 flush_dcache_mmap_unlock(mapping); 676 i_mmap_unlock_write(mapping); 677 } 678 679 /* 680 * Copy/update hugetlb private vma information. 681 */ 682 if (is_vm_hugetlb_page(tmp)) 683 hugetlb_dup_vma_private(tmp); 684 685 /* Link the vma into the MT */ 686 if (vma_iter_bulk_store(&vmi, tmp)) 687 goto fail_nomem_vmi_store; 688 689 mm->map_count++; 690 if (!(tmp->vm_flags & VM_WIPEONFORK)) 691 retval = copy_page_range(tmp, mpnt); 692 693 if (tmp->vm_ops && tmp->vm_ops->open) 694 tmp->vm_ops->open(tmp); 695 696 if (retval) 697 goto loop_out; 698 } 699 /* a new mm has just been created */ 700 retval = arch_dup_mmap(oldmm, mm); 701 loop_out: 702 vma_iter_free(&vmi); 703 out: 704 mmap_write_unlock(mm); 705 flush_tlb_mm(oldmm); 706 mmap_write_unlock(oldmm); 707 dup_userfaultfd_complete(&uf); 708 fail_uprobe_end: 709 uprobe_end_dup_mmap(); 710 return retval; 711 712 fail_nomem_vmi_store: 713 unlink_anon_vmas(tmp); 714 fail_nomem_anon_vma_fork: 715 mpol_put(vma_policy(tmp)); 716 fail_nomem_policy: 717 vm_area_free(tmp); 718 fail_nomem: 719 retval = -ENOMEM; 720 vm_unacct_memory(charge); 721 goto loop_out; 722 } 723 724 static inline int mm_alloc_pgd(struct mm_struct *mm) 725 { 726 mm->pgd = pgd_alloc(mm); 727 if (unlikely(!mm->pgd)) 728 return -ENOMEM; 729 return 0; 730 } 731 732 static inline void mm_free_pgd(struct mm_struct *mm) 733 { 734 pgd_free(mm, mm->pgd); 735 } 736 #else 737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 738 { 739 mmap_write_lock(oldmm); 740 dup_mm_exe_file(mm, oldmm); 741 mmap_write_unlock(oldmm); 742 return 0; 743 } 744 #define mm_alloc_pgd(mm) (0) 745 #define mm_free_pgd(mm) 746 #endif /* CONFIG_MMU */ 747 748 static void check_mm(struct mm_struct *mm) 749 { 750 int i; 751 752 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 753 "Please make sure 'struct resident_page_types[]' is updated as well"); 754 755 for (i = 0; i < NR_MM_COUNTERS; i++) { 756 long x = percpu_counter_sum(&mm->rss_stat[i]); 757 758 if (unlikely(x)) 759 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 760 mm, resident_page_types[i], x); 761 } 762 763 if (mm_pgtables_bytes(mm)) 764 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 765 mm_pgtables_bytes(mm)); 766 767 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 768 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 769 #endif 770 } 771 772 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 773 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 774 775 static void do_check_lazy_tlb(void *arg) 776 { 777 struct mm_struct *mm = arg; 778 779 WARN_ON_ONCE(current->active_mm == mm); 780 } 781 782 static void do_shoot_lazy_tlb(void *arg) 783 { 784 struct mm_struct *mm = arg; 785 786 if (current->active_mm == mm) { 787 WARN_ON_ONCE(current->mm); 788 current->active_mm = &init_mm; 789 switch_mm(mm, &init_mm, current); 790 } 791 } 792 793 static void cleanup_lazy_tlbs(struct mm_struct *mm) 794 { 795 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 796 /* 797 * In this case, lazy tlb mms are refounted and would not reach 798 * __mmdrop until all CPUs have switched away and mmdrop()ed. 799 */ 800 return; 801 } 802 803 /* 804 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 805 * requires lazy mm users to switch to another mm when the refcount 806 * drops to zero, before the mm is freed. This requires IPIs here to 807 * switch kernel threads to init_mm. 808 * 809 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 810 * switch with the final userspace teardown TLB flush which leaves the 811 * mm lazy on this CPU but no others, reducing the need for additional 812 * IPIs here. There are cases where a final IPI is still required here, 813 * such as the final mmdrop being performed on a different CPU than the 814 * one exiting, or kernel threads using the mm when userspace exits. 815 * 816 * IPI overheads have not found to be expensive, but they could be 817 * reduced in a number of possible ways, for example (roughly 818 * increasing order of complexity): 819 * - The last lazy reference created by exit_mm() could instead switch 820 * to init_mm, however it's probable this will run on the same CPU 821 * immediately afterwards, so this may not reduce IPIs much. 822 * - A batch of mms requiring IPIs could be gathered and freed at once. 823 * - CPUs store active_mm where it can be remotely checked without a 824 * lock, to filter out false-positives in the cpumask. 825 * - After mm_users or mm_count reaches zero, switching away from the 826 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 827 * with some batching or delaying of the final IPIs. 828 * - A delayed freeing and RCU-like quiescing sequence based on mm 829 * switching to avoid IPIs completely. 830 */ 831 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 832 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 833 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 834 } 835 836 /* 837 * Called when the last reference to the mm 838 * is dropped: either by a lazy thread or by 839 * mmput. Free the page directory and the mm. 840 */ 841 void __mmdrop(struct mm_struct *mm) 842 { 843 int i; 844 845 BUG_ON(mm == &init_mm); 846 WARN_ON_ONCE(mm == current->mm); 847 848 /* Ensure no CPUs are using this as their lazy tlb mm */ 849 cleanup_lazy_tlbs(mm); 850 851 WARN_ON_ONCE(mm == current->active_mm); 852 mm_free_pgd(mm); 853 destroy_context(mm); 854 mmu_notifier_subscriptions_destroy(mm); 855 check_mm(mm); 856 put_user_ns(mm->user_ns); 857 mm_pasid_drop(mm); 858 859 for (i = 0; i < NR_MM_COUNTERS; i++) 860 percpu_counter_destroy(&mm->rss_stat[i]); 861 free_mm(mm); 862 } 863 EXPORT_SYMBOL_GPL(__mmdrop); 864 865 static void mmdrop_async_fn(struct work_struct *work) 866 { 867 struct mm_struct *mm; 868 869 mm = container_of(work, struct mm_struct, async_put_work); 870 __mmdrop(mm); 871 } 872 873 static void mmdrop_async(struct mm_struct *mm) 874 { 875 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 876 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 877 schedule_work(&mm->async_put_work); 878 } 879 } 880 881 static inline void free_signal_struct(struct signal_struct *sig) 882 { 883 taskstats_tgid_free(sig); 884 sched_autogroup_exit(sig); 885 /* 886 * __mmdrop is not safe to call from softirq context on x86 due to 887 * pgd_dtor so postpone it to the async context 888 */ 889 if (sig->oom_mm) 890 mmdrop_async(sig->oom_mm); 891 kmem_cache_free(signal_cachep, sig); 892 } 893 894 static inline void put_signal_struct(struct signal_struct *sig) 895 { 896 if (refcount_dec_and_test(&sig->sigcnt)) 897 free_signal_struct(sig); 898 } 899 900 void __put_task_struct(struct task_struct *tsk) 901 { 902 WARN_ON(!tsk->exit_state); 903 WARN_ON(refcount_read(&tsk->usage)); 904 WARN_ON(tsk == current); 905 906 io_uring_free(tsk); 907 cgroup_free(tsk); 908 task_numa_free(tsk, true); 909 security_task_free(tsk); 910 bpf_task_storage_free(tsk); 911 exit_creds(tsk); 912 delayacct_tsk_free(tsk); 913 put_signal_struct(tsk->signal); 914 sched_core_free(tsk); 915 free_task(tsk); 916 } 917 EXPORT_SYMBOL_GPL(__put_task_struct); 918 919 void __init __weak arch_task_cache_init(void) { } 920 921 /* 922 * set_max_threads 923 */ 924 static void set_max_threads(unsigned int max_threads_suggested) 925 { 926 u64 threads; 927 unsigned long nr_pages = totalram_pages(); 928 929 /* 930 * The number of threads shall be limited such that the thread 931 * structures may only consume a small part of the available memory. 932 */ 933 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 934 threads = MAX_THREADS; 935 else 936 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 937 (u64) THREAD_SIZE * 8UL); 938 939 if (threads > max_threads_suggested) 940 threads = max_threads_suggested; 941 942 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 943 } 944 945 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 946 /* Initialized by the architecture: */ 947 int arch_task_struct_size __read_mostly; 948 #endif 949 950 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 951 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 952 { 953 /* Fetch thread_struct whitelist for the architecture. */ 954 arch_thread_struct_whitelist(offset, size); 955 956 /* 957 * Handle zero-sized whitelist or empty thread_struct, otherwise 958 * adjust offset to position of thread_struct in task_struct. 959 */ 960 if (unlikely(*size == 0)) 961 *offset = 0; 962 else 963 *offset += offsetof(struct task_struct, thread); 964 } 965 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 966 967 void __init fork_init(void) 968 { 969 int i; 970 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 971 #ifndef ARCH_MIN_TASKALIGN 972 #define ARCH_MIN_TASKALIGN 0 973 #endif 974 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 975 unsigned long useroffset, usersize; 976 977 /* create a slab on which task_structs can be allocated */ 978 task_struct_whitelist(&useroffset, &usersize); 979 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 980 arch_task_struct_size, align, 981 SLAB_PANIC|SLAB_ACCOUNT, 982 useroffset, usersize, NULL); 983 #endif 984 985 /* do the arch specific task caches init */ 986 arch_task_cache_init(); 987 988 set_max_threads(MAX_THREADS); 989 990 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 991 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 992 init_task.signal->rlim[RLIMIT_SIGPENDING] = 993 init_task.signal->rlim[RLIMIT_NPROC]; 994 995 for (i = 0; i < UCOUNT_COUNTS; i++) 996 init_user_ns.ucount_max[i] = max_threads/2; 997 998 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 999 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1000 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1001 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1002 1003 #ifdef CONFIG_VMAP_STACK 1004 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1005 NULL, free_vm_stack_cache); 1006 #endif 1007 1008 scs_init(); 1009 1010 lockdep_init_task(&init_task); 1011 uprobes_init(); 1012 } 1013 1014 int __weak arch_dup_task_struct(struct task_struct *dst, 1015 struct task_struct *src) 1016 { 1017 *dst = *src; 1018 return 0; 1019 } 1020 1021 void set_task_stack_end_magic(struct task_struct *tsk) 1022 { 1023 unsigned long *stackend; 1024 1025 stackend = end_of_stack(tsk); 1026 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1027 } 1028 1029 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1030 { 1031 struct task_struct *tsk; 1032 int err; 1033 1034 if (node == NUMA_NO_NODE) 1035 node = tsk_fork_get_node(orig); 1036 tsk = alloc_task_struct_node(node); 1037 if (!tsk) 1038 return NULL; 1039 1040 err = arch_dup_task_struct(tsk, orig); 1041 if (err) 1042 goto free_tsk; 1043 1044 err = alloc_thread_stack_node(tsk, node); 1045 if (err) 1046 goto free_tsk; 1047 1048 #ifdef CONFIG_THREAD_INFO_IN_TASK 1049 refcount_set(&tsk->stack_refcount, 1); 1050 #endif 1051 account_kernel_stack(tsk, 1); 1052 1053 err = scs_prepare(tsk, node); 1054 if (err) 1055 goto free_stack; 1056 1057 #ifdef CONFIG_SECCOMP 1058 /* 1059 * We must handle setting up seccomp filters once we're under 1060 * the sighand lock in case orig has changed between now and 1061 * then. Until then, filter must be NULL to avoid messing up 1062 * the usage counts on the error path calling free_task. 1063 */ 1064 tsk->seccomp.filter = NULL; 1065 #endif 1066 1067 setup_thread_stack(tsk, orig); 1068 clear_user_return_notifier(tsk); 1069 clear_tsk_need_resched(tsk); 1070 set_task_stack_end_magic(tsk); 1071 clear_syscall_work_syscall_user_dispatch(tsk); 1072 1073 #ifdef CONFIG_STACKPROTECTOR 1074 tsk->stack_canary = get_random_canary(); 1075 #endif 1076 if (orig->cpus_ptr == &orig->cpus_mask) 1077 tsk->cpus_ptr = &tsk->cpus_mask; 1078 dup_user_cpus_ptr(tsk, orig, node); 1079 1080 /* 1081 * One for the user space visible state that goes away when reaped. 1082 * One for the scheduler. 1083 */ 1084 refcount_set(&tsk->rcu_users, 2); 1085 /* One for the rcu users */ 1086 refcount_set(&tsk->usage, 1); 1087 #ifdef CONFIG_BLK_DEV_IO_TRACE 1088 tsk->btrace_seq = 0; 1089 #endif 1090 tsk->splice_pipe = NULL; 1091 tsk->task_frag.page = NULL; 1092 tsk->wake_q.next = NULL; 1093 tsk->worker_private = NULL; 1094 1095 kcov_task_init(tsk); 1096 kmsan_task_create(tsk); 1097 kmap_local_fork(tsk); 1098 1099 #ifdef CONFIG_FAULT_INJECTION 1100 tsk->fail_nth = 0; 1101 #endif 1102 1103 #ifdef CONFIG_BLK_CGROUP 1104 tsk->throttle_disk = NULL; 1105 tsk->use_memdelay = 0; 1106 #endif 1107 1108 #ifdef CONFIG_IOMMU_SVA 1109 tsk->pasid_activated = 0; 1110 #endif 1111 1112 #ifdef CONFIG_MEMCG 1113 tsk->active_memcg = NULL; 1114 #endif 1115 1116 #ifdef CONFIG_CPU_SUP_INTEL 1117 tsk->reported_split_lock = 0; 1118 #endif 1119 1120 #ifdef CONFIG_SCHED_MM_CID 1121 tsk->mm_cid = -1; 1122 tsk->mm_cid_active = 0; 1123 #endif 1124 return tsk; 1125 1126 free_stack: 1127 exit_task_stack_account(tsk); 1128 free_thread_stack(tsk); 1129 free_tsk: 1130 free_task_struct(tsk); 1131 return NULL; 1132 } 1133 1134 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1135 1136 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1137 1138 static int __init coredump_filter_setup(char *s) 1139 { 1140 default_dump_filter = 1141 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1142 MMF_DUMP_FILTER_MASK; 1143 return 1; 1144 } 1145 1146 __setup("coredump_filter=", coredump_filter_setup); 1147 1148 #include <linux/init_task.h> 1149 1150 static void mm_init_aio(struct mm_struct *mm) 1151 { 1152 #ifdef CONFIG_AIO 1153 spin_lock_init(&mm->ioctx_lock); 1154 mm->ioctx_table = NULL; 1155 #endif 1156 } 1157 1158 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1159 struct task_struct *p) 1160 { 1161 #ifdef CONFIG_MEMCG 1162 if (mm->owner == p) 1163 WRITE_ONCE(mm->owner, NULL); 1164 #endif 1165 } 1166 1167 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1168 { 1169 #ifdef CONFIG_MEMCG 1170 mm->owner = p; 1171 #endif 1172 } 1173 1174 static void mm_init_uprobes_state(struct mm_struct *mm) 1175 { 1176 #ifdef CONFIG_UPROBES 1177 mm->uprobes_state.xol_area = NULL; 1178 #endif 1179 } 1180 1181 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1182 struct user_namespace *user_ns) 1183 { 1184 int i; 1185 1186 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1187 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1188 atomic_set(&mm->mm_users, 1); 1189 atomic_set(&mm->mm_count, 1); 1190 seqcount_init(&mm->write_protect_seq); 1191 mmap_init_lock(mm); 1192 INIT_LIST_HEAD(&mm->mmlist); 1193 mm_pgtables_bytes_init(mm); 1194 mm->map_count = 0; 1195 mm->locked_vm = 0; 1196 atomic64_set(&mm->pinned_vm, 0); 1197 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1198 spin_lock_init(&mm->page_table_lock); 1199 spin_lock_init(&mm->arg_lock); 1200 mm_init_cpumask(mm); 1201 mm_init_aio(mm); 1202 mm_init_owner(mm, p); 1203 mm_pasid_init(mm); 1204 RCU_INIT_POINTER(mm->exe_file, NULL); 1205 mmu_notifier_subscriptions_init(mm); 1206 init_tlb_flush_pending(mm); 1207 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1208 mm->pmd_huge_pte = NULL; 1209 #endif 1210 mm_init_uprobes_state(mm); 1211 hugetlb_count_init(mm); 1212 1213 if (current->mm) { 1214 mm->flags = current->mm->flags & MMF_INIT_MASK; 1215 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1216 } else { 1217 mm->flags = default_dump_filter; 1218 mm->def_flags = 0; 1219 } 1220 1221 if (mm_alloc_pgd(mm)) 1222 goto fail_nopgd; 1223 1224 if (init_new_context(p, mm)) 1225 goto fail_nocontext; 1226 1227 for (i = 0; i < NR_MM_COUNTERS; i++) 1228 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1229 goto fail_pcpu; 1230 1231 mm->user_ns = get_user_ns(user_ns); 1232 lru_gen_init_mm(mm); 1233 mm_init_cid(mm); 1234 return mm; 1235 1236 fail_pcpu: 1237 while (i > 0) 1238 percpu_counter_destroy(&mm->rss_stat[--i]); 1239 fail_nocontext: 1240 mm_free_pgd(mm); 1241 fail_nopgd: 1242 free_mm(mm); 1243 return NULL; 1244 } 1245 1246 /* 1247 * Allocate and initialize an mm_struct. 1248 */ 1249 struct mm_struct *mm_alloc(void) 1250 { 1251 struct mm_struct *mm; 1252 1253 mm = allocate_mm(); 1254 if (!mm) 1255 return NULL; 1256 1257 memset(mm, 0, sizeof(*mm)); 1258 return mm_init(mm, current, current_user_ns()); 1259 } 1260 1261 static inline void __mmput(struct mm_struct *mm) 1262 { 1263 VM_BUG_ON(atomic_read(&mm->mm_users)); 1264 1265 uprobe_clear_state(mm); 1266 exit_aio(mm); 1267 ksm_exit(mm); 1268 khugepaged_exit(mm); /* must run before exit_mmap */ 1269 exit_mmap(mm); 1270 mm_put_huge_zero_page(mm); 1271 set_mm_exe_file(mm, NULL); 1272 if (!list_empty(&mm->mmlist)) { 1273 spin_lock(&mmlist_lock); 1274 list_del(&mm->mmlist); 1275 spin_unlock(&mmlist_lock); 1276 } 1277 if (mm->binfmt) 1278 module_put(mm->binfmt->module); 1279 lru_gen_del_mm(mm); 1280 mmdrop(mm); 1281 } 1282 1283 /* 1284 * Decrement the use count and release all resources for an mm. 1285 */ 1286 void mmput(struct mm_struct *mm) 1287 { 1288 might_sleep(); 1289 1290 if (atomic_dec_and_test(&mm->mm_users)) 1291 __mmput(mm); 1292 } 1293 EXPORT_SYMBOL_GPL(mmput); 1294 1295 #ifdef CONFIG_MMU 1296 static void mmput_async_fn(struct work_struct *work) 1297 { 1298 struct mm_struct *mm = container_of(work, struct mm_struct, 1299 async_put_work); 1300 1301 __mmput(mm); 1302 } 1303 1304 void mmput_async(struct mm_struct *mm) 1305 { 1306 if (atomic_dec_and_test(&mm->mm_users)) { 1307 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1308 schedule_work(&mm->async_put_work); 1309 } 1310 } 1311 EXPORT_SYMBOL_GPL(mmput_async); 1312 #endif 1313 1314 /** 1315 * set_mm_exe_file - change a reference to the mm's executable file 1316 * 1317 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1318 * 1319 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1320 * invocations: in mmput() nobody alive left, in execve task is single 1321 * threaded. 1322 * 1323 * Can only fail if new_exe_file != NULL. 1324 */ 1325 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1326 { 1327 struct file *old_exe_file; 1328 1329 /* 1330 * It is safe to dereference the exe_file without RCU as 1331 * this function is only called if nobody else can access 1332 * this mm -- see comment above for justification. 1333 */ 1334 old_exe_file = rcu_dereference_raw(mm->exe_file); 1335 1336 if (new_exe_file) { 1337 /* 1338 * We expect the caller (i.e., sys_execve) to already denied 1339 * write access, so this is unlikely to fail. 1340 */ 1341 if (unlikely(deny_write_access(new_exe_file))) 1342 return -EACCES; 1343 get_file(new_exe_file); 1344 } 1345 rcu_assign_pointer(mm->exe_file, new_exe_file); 1346 if (old_exe_file) { 1347 allow_write_access(old_exe_file); 1348 fput(old_exe_file); 1349 } 1350 return 0; 1351 } 1352 1353 /** 1354 * replace_mm_exe_file - replace a reference to the mm's executable file 1355 * 1356 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1357 * dealing with concurrent invocation and without grabbing the mmap lock in 1358 * write mode. 1359 * 1360 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1361 */ 1362 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1363 { 1364 struct vm_area_struct *vma; 1365 struct file *old_exe_file; 1366 int ret = 0; 1367 1368 /* Forbid mm->exe_file change if old file still mapped. */ 1369 old_exe_file = get_mm_exe_file(mm); 1370 if (old_exe_file) { 1371 VMA_ITERATOR(vmi, mm, 0); 1372 mmap_read_lock(mm); 1373 for_each_vma(vmi, vma) { 1374 if (!vma->vm_file) 1375 continue; 1376 if (path_equal(&vma->vm_file->f_path, 1377 &old_exe_file->f_path)) { 1378 ret = -EBUSY; 1379 break; 1380 } 1381 } 1382 mmap_read_unlock(mm); 1383 fput(old_exe_file); 1384 if (ret) 1385 return ret; 1386 } 1387 1388 /* set the new file, lockless */ 1389 ret = deny_write_access(new_exe_file); 1390 if (ret) 1391 return -EACCES; 1392 get_file(new_exe_file); 1393 1394 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1395 if (old_exe_file) { 1396 /* 1397 * Don't race with dup_mmap() getting the file and disallowing 1398 * write access while someone might open the file writable. 1399 */ 1400 mmap_read_lock(mm); 1401 allow_write_access(old_exe_file); 1402 fput(old_exe_file); 1403 mmap_read_unlock(mm); 1404 } 1405 return 0; 1406 } 1407 1408 /** 1409 * get_mm_exe_file - acquire a reference to the mm's executable file 1410 * 1411 * Returns %NULL if mm has no associated executable file. 1412 * User must release file via fput(). 1413 */ 1414 struct file *get_mm_exe_file(struct mm_struct *mm) 1415 { 1416 struct file *exe_file; 1417 1418 rcu_read_lock(); 1419 exe_file = rcu_dereference(mm->exe_file); 1420 if (exe_file && !get_file_rcu(exe_file)) 1421 exe_file = NULL; 1422 rcu_read_unlock(); 1423 return exe_file; 1424 } 1425 1426 /** 1427 * get_task_exe_file - acquire a reference to the task's executable file 1428 * 1429 * Returns %NULL if task's mm (if any) has no associated executable file or 1430 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1431 * User must release file via fput(). 1432 */ 1433 struct file *get_task_exe_file(struct task_struct *task) 1434 { 1435 struct file *exe_file = NULL; 1436 struct mm_struct *mm; 1437 1438 task_lock(task); 1439 mm = task->mm; 1440 if (mm) { 1441 if (!(task->flags & PF_KTHREAD)) 1442 exe_file = get_mm_exe_file(mm); 1443 } 1444 task_unlock(task); 1445 return exe_file; 1446 } 1447 1448 /** 1449 * get_task_mm - acquire a reference to the task's mm 1450 * 1451 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1452 * this kernel workthread has transiently adopted a user mm with use_mm, 1453 * to do its AIO) is not set and if so returns a reference to it, after 1454 * bumping up the use count. User must release the mm via mmput() 1455 * after use. Typically used by /proc and ptrace. 1456 */ 1457 struct mm_struct *get_task_mm(struct task_struct *task) 1458 { 1459 struct mm_struct *mm; 1460 1461 task_lock(task); 1462 mm = task->mm; 1463 if (mm) { 1464 if (task->flags & PF_KTHREAD) 1465 mm = NULL; 1466 else 1467 mmget(mm); 1468 } 1469 task_unlock(task); 1470 return mm; 1471 } 1472 EXPORT_SYMBOL_GPL(get_task_mm); 1473 1474 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1475 { 1476 struct mm_struct *mm; 1477 int err; 1478 1479 err = down_read_killable(&task->signal->exec_update_lock); 1480 if (err) 1481 return ERR_PTR(err); 1482 1483 mm = get_task_mm(task); 1484 if (mm && mm != current->mm && 1485 !ptrace_may_access(task, mode)) { 1486 mmput(mm); 1487 mm = ERR_PTR(-EACCES); 1488 } 1489 up_read(&task->signal->exec_update_lock); 1490 1491 return mm; 1492 } 1493 1494 static void complete_vfork_done(struct task_struct *tsk) 1495 { 1496 struct completion *vfork; 1497 1498 task_lock(tsk); 1499 vfork = tsk->vfork_done; 1500 if (likely(vfork)) { 1501 tsk->vfork_done = NULL; 1502 complete(vfork); 1503 } 1504 task_unlock(tsk); 1505 } 1506 1507 static int wait_for_vfork_done(struct task_struct *child, 1508 struct completion *vfork) 1509 { 1510 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1511 int killed; 1512 1513 cgroup_enter_frozen(); 1514 killed = wait_for_completion_state(vfork, state); 1515 cgroup_leave_frozen(false); 1516 1517 if (killed) { 1518 task_lock(child); 1519 child->vfork_done = NULL; 1520 task_unlock(child); 1521 } 1522 1523 put_task_struct(child); 1524 return killed; 1525 } 1526 1527 /* Please note the differences between mmput and mm_release. 1528 * mmput is called whenever we stop holding onto a mm_struct, 1529 * error success whatever. 1530 * 1531 * mm_release is called after a mm_struct has been removed 1532 * from the current process. 1533 * 1534 * This difference is important for error handling, when we 1535 * only half set up a mm_struct for a new process and need to restore 1536 * the old one. Because we mmput the new mm_struct before 1537 * restoring the old one. . . 1538 * Eric Biederman 10 January 1998 1539 */ 1540 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1541 { 1542 uprobe_free_utask(tsk); 1543 1544 /* Get rid of any cached register state */ 1545 deactivate_mm(tsk, mm); 1546 1547 /* 1548 * Signal userspace if we're not exiting with a core dump 1549 * because we want to leave the value intact for debugging 1550 * purposes. 1551 */ 1552 if (tsk->clear_child_tid) { 1553 if (atomic_read(&mm->mm_users) > 1) { 1554 /* 1555 * We don't check the error code - if userspace has 1556 * not set up a proper pointer then tough luck. 1557 */ 1558 put_user(0, tsk->clear_child_tid); 1559 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1560 1, NULL, NULL, 0, 0); 1561 } 1562 tsk->clear_child_tid = NULL; 1563 } 1564 1565 /* 1566 * All done, finally we can wake up parent and return this mm to him. 1567 * Also kthread_stop() uses this completion for synchronization. 1568 */ 1569 if (tsk->vfork_done) 1570 complete_vfork_done(tsk); 1571 } 1572 1573 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1574 { 1575 futex_exit_release(tsk); 1576 mm_release(tsk, mm); 1577 } 1578 1579 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1580 { 1581 futex_exec_release(tsk); 1582 mm_release(tsk, mm); 1583 } 1584 1585 /** 1586 * dup_mm() - duplicates an existing mm structure 1587 * @tsk: the task_struct with which the new mm will be associated. 1588 * @oldmm: the mm to duplicate. 1589 * 1590 * Allocates a new mm structure and duplicates the provided @oldmm structure 1591 * content into it. 1592 * 1593 * Return: the duplicated mm or NULL on failure. 1594 */ 1595 static struct mm_struct *dup_mm(struct task_struct *tsk, 1596 struct mm_struct *oldmm) 1597 { 1598 struct mm_struct *mm; 1599 int err; 1600 1601 mm = allocate_mm(); 1602 if (!mm) 1603 goto fail_nomem; 1604 1605 memcpy(mm, oldmm, sizeof(*mm)); 1606 1607 if (!mm_init(mm, tsk, mm->user_ns)) 1608 goto fail_nomem; 1609 1610 err = dup_mmap(mm, oldmm); 1611 if (err) 1612 goto free_pt; 1613 1614 mm->hiwater_rss = get_mm_rss(mm); 1615 mm->hiwater_vm = mm->total_vm; 1616 1617 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1618 goto free_pt; 1619 1620 return mm; 1621 1622 free_pt: 1623 /* don't put binfmt in mmput, we haven't got module yet */ 1624 mm->binfmt = NULL; 1625 mm_init_owner(mm, NULL); 1626 mmput(mm); 1627 1628 fail_nomem: 1629 return NULL; 1630 } 1631 1632 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1633 { 1634 struct mm_struct *mm, *oldmm; 1635 1636 tsk->min_flt = tsk->maj_flt = 0; 1637 tsk->nvcsw = tsk->nivcsw = 0; 1638 #ifdef CONFIG_DETECT_HUNG_TASK 1639 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1640 tsk->last_switch_time = 0; 1641 #endif 1642 1643 tsk->mm = NULL; 1644 tsk->active_mm = NULL; 1645 1646 /* 1647 * Are we cloning a kernel thread? 1648 * 1649 * We need to steal a active VM for that.. 1650 */ 1651 oldmm = current->mm; 1652 if (!oldmm) 1653 return 0; 1654 1655 if (clone_flags & CLONE_VM) { 1656 mmget(oldmm); 1657 mm = oldmm; 1658 } else { 1659 mm = dup_mm(tsk, current->mm); 1660 if (!mm) 1661 return -ENOMEM; 1662 } 1663 1664 tsk->mm = mm; 1665 tsk->active_mm = mm; 1666 sched_mm_cid_fork(tsk); 1667 return 0; 1668 } 1669 1670 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1671 { 1672 struct fs_struct *fs = current->fs; 1673 if (clone_flags & CLONE_FS) { 1674 /* tsk->fs is already what we want */ 1675 spin_lock(&fs->lock); 1676 if (fs->in_exec) { 1677 spin_unlock(&fs->lock); 1678 return -EAGAIN; 1679 } 1680 fs->users++; 1681 spin_unlock(&fs->lock); 1682 return 0; 1683 } 1684 tsk->fs = copy_fs_struct(fs); 1685 if (!tsk->fs) 1686 return -ENOMEM; 1687 return 0; 1688 } 1689 1690 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1691 { 1692 struct files_struct *oldf, *newf; 1693 int error = 0; 1694 1695 /* 1696 * A background process may not have any files ... 1697 */ 1698 oldf = current->files; 1699 if (!oldf) 1700 goto out; 1701 1702 if (clone_flags & CLONE_FILES) { 1703 atomic_inc(&oldf->count); 1704 goto out; 1705 } 1706 1707 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1708 if (!newf) 1709 goto out; 1710 1711 tsk->files = newf; 1712 error = 0; 1713 out: 1714 return error; 1715 } 1716 1717 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1718 { 1719 struct sighand_struct *sig; 1720 1721 if (clone_flags & CLONE_SIGHAND) { 1722 refcount_inc(¤t->sighand->count); 1723 return 0; 1724 } 1725 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1726 RCU_INIT_POINTER(tsk->sighand, sig); 1727 if (!sig) 1728 return -ENOMEM; 1729 1730 refcount_set(&sig->count, 1); 1731 spin_lock_irq(¤t->sighand->siglock); 1732 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1733 spin_unlock_irq(¤t->sighand->siglock); 1734 1735 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1736 if (clone_flags & CLONE_CLEAR_SIGHAND) 1737 flush_signal_handlers(tsk, 0); 1738 1739 return 0; 1740 } 1741 1742 void __cleanup_sighand(struct sighand_struct *sighand) 1743 { 1744 if (refcount_dec_and_test(&sighand->count)) { 1745 signalfd_cleanup(sighand); 1746 /* 1747 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1748 * without an RCU grace period, see __lock_task_sighand(). 1749 */ 1750 kmem_cache_free(sighand_cachep, sighand); 1751 } 1752 } 1753 1754 /* 1755 * Initialize POSIX timer handling for a thread group. 1756 */ 1757 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1758 { 1759 struct posix_cputimers *pct = &sig->posix_cputimers; 1760 unsigned long cpu_limit; 1761 1762 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1763 posix_cputimers_group_init(pct, cpu_limit); 1764 } 1765 1766 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1767 { 1768 struct signal_struct *sig; 1769 1770 if (clone_flags & CLONE_THREAD) 1771 return 0; 1772 1773 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1774 tsk->signal = sig; 1775 if (!sig) 1776 return -ENOMEM; 1777 1778 sig->nr_threads = 1; 1779 sig->quick_threads = 1; 1780 atomic_set(&sig->live, 1); 1781 refcount_set(&sig->sigcnt, 1); 1782 1783 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1784 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1785 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1786 1787 init_waitqueue_head(&sig->wait_chldexit); 1788 sig->curr_target = tsk; 1789 init_sigpending(&sig->shared_pending); 1790 INIT_HLIST_HEAD(&sig->multiprocess); 1791 seqlock_init(&sig->stats_lock); 1792 prev_cputime_init(&sig->prev_cputime); 1793 1794 #ifdef CONFIG_POSIX_TIMERS 1795 INIT_LIST_HEAD(&sig->posix_timers); 1796 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1797 sig->real_timer.function = it_real_fn; 1798 #endif 1799 1800 task_lock(current->group_leader); 1801 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1802 task_unlock(current->group_leader); 1803 1804 posix_cpu_timers_init_group(sig); 1805 1806 tty_audit_fork(sig); 1807 sched_autogroup_fork(sig); 1808 1809 sig->oom_score_adj = current->signal->oom_score_adj; 1810 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1811 1812 mutex_init(&sig->cred_guard_mutex); 1813 init_rwsem(&sig->exec_update_lock); 1814 1815 return 0; 1816 } 1817 1818 static void copy_seccomp(struct task_struct *p) 1819 { 1820 #ifdef CONFIG_SECCOMP 1821 /* 1822 * Must be called with sighand->lock held, which is common to 1823 * all threads in the group. Holding cred_guard_mutex is not 1824 * needed because this new task is not yet running and cannot 1825 * be racing exec. 1826 */ 1827 assert_spin_locked(¤t->sighand->siglock); 1828 1829 /* Ref-count the new filter user, and assign it. */ 1830 get_seccomp_filter(current); 1831 p->seccomp = current->seccomp; 1832 1833 /* 1834 * Explicitly enable no_new_privs here in case it got set 1835 * between the task_struct being duplicated and holding the 1836 * sighand lock. The seccomp state and nnp must be in sync. 1837 */ 1838 if (task_no_new_privs(current)) 1839 task_set_no_new_privs(p); 1840 1841 /* 1842 * If the parent gained a seccomp mode after copying thread 1843 * flags and between before we held the sighand lock, we have 1844 * to manually enable the seccomp thread flag here. 1845 */ 1846 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1847 set_task_syscall_work(p, SECCOMP); 1848 #endif 1849 } 1850 1851 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1852 { 1853 current->clear_child_tid = tidptr; 1854 1855 return task_pid_vnr(current); 1856 } 1857 1858 static void rt_mutex_init_task(struct task_struct *p) 1859 { 1860 raw_spin_lock_init(&p->pi_lock); 1861 #ifdef CONFIG_RT_MUTEXES 1862 p->pi_waiters = RB_ROOT_CACHED; 1863 p->pi_top_task = NULL; 1864 p->pi_blocked_on = NULL; 1865 #endif 1866 } 1867 1868 static inline void init_task_pid_links(struct task_struct *task) 1869 { 1870 enum pid_type type; 1871 1872 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1873 INIT_HLIST_NODE(&task->pid_links[type]); 1874 } 1875 1876 static inline void 1877 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1878 { 1879 if (type == PIDTYPE_PID) 1880 task->thread_pid = pid; 1881 else 1882 task->signal->pids[type] = pid; 1883 } 1884 1885 static inline void rcu_copy_process(struct task_struct *p) 1886 { 1887 #ifdef CONFIG_PREEMPT_RCU 1888 p->rcu_read_lock_nesting = 0; 1889 p->rcu_read_unlock_special.s = 0; 1890 p->rcu_blocked_node = NULL; 1891 INIT_LIST_HEAD(&p->rcu_node_entry); 1892 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1893 #ifdef CONFIG_TASKS_RCU 1894 p->rcu_tasks_holdout = false; 1895 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1896 p->rcu_tasks_idle_cpu = -1; 1897 #endif /* #ifdef CONFIG_TASKS_RCU */ 1898 #ifdef CONFIG_TASKS_TRACE_RCU 1899 p->trc_reader_nesting = 0; 1900 p->trc_reader_special.s = 0; 1901 INIT_LIST_HEAD(&p->trc_holdout_list); 1902 INIT_LIST_HEAD(&p->trc_blkd_node); 1903 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1904 } 1905 1906 struct pid *pidfd_pid(const struct file *file) 1907 { 1908 if (file->f_op == &pidfd_fops) 1909 return file->private_data; 1910 1911 return ERR_PTR(-EBADF); 1912 } 1913 1914 static int pidfd_release(struct inode *inode, struct file *file) 1915 { 1916 struct pid *pid = file->private_data; 1917 1918 file->private_data = NULL; 1919 put_pid(pid); 1920 return 0; 1921 } 1922 1923 #ifdef CONFIG_PROC_FS 1924 /** 1925 * pidfd_show_fdinfo - print information about a pidfd 1926 * @m: proc fdinfo file 1927 * @f: file referencing a pidfd 1928 * 1929 * Pid: 1930 * This function will print the pid that a given pidfd refers to in the 1931 * pid namespace of the procfs instance. 1932 * If the pid namespace of the process is not a descendant of the pid 1933 * namespace of the procfs instance 0 will be shown as its pid. This is 1934 * similar to calling getppid() on a process whose parent is outside of 1935 * its pid namespace. 1936 * 1937 * NSpid: 1938 * If pid namespaces are supported then this function will also print 1939 * the pid of a given pidfd refers to for all descendant pid namespaces 1940 * starting from the current pid namespace of the instance, i.e. the 1941 * Pid field and the first entry in the NSpid field will be identical. 1942 * If the pid namespace of the process is not a descendant of the pid 1943 * namespace of the procfs instance 0 will be shown as its first NSpid 1944 * entry and no others will be shown. 1945 * Note that this differs from the Pid and NSpid fields in 1946 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1947 * the pid namespace of the procfs instance. The difference becomes 1948 * obvious when sending around a pidfd between pid namespaces from a 1949 * different branch of the tree, i.e. where no ancestral relation is 1950 * present between the pid namespaces: 1951 * - create two new pid namespaces ns1 and ns2 in the initial pid 1952 * namespace (also take care to create new mount namespaces in the 1953 * new pid namespace and mount procfs) 1954 * - create a process with a pidfd in ns1 1955 * - send pidfd from ns1 to ns2 1956 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1957 * have exactly one entry, which is 0 1958 */ 1959 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1960 { 1961 struct pid *pid = f->private_data; 1962 struct pid_namespace *ns; 1963 pid_t nr = -1; 1964 1965 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1966 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1967 nr = pid_nr_ns(pid, ns); 1968 } 1969 1970 seq_put_decimal_ll(m, "Pid:\t", nr); 1971 1972 #ifdef CONFIG_PID_NS 1973 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1974 if (nr > 0) { 1975 int i; 1976 1977 /* If nr is non-zero it means that 'pid' is valid and that 1978 * ns, i.e. the pid namespace associated with the procfs 1979 * instance, is in the pid namespace hierarchy of pid. 1980 * Start at one below the already printed level. 1981 */ 1982 for (i = ns->level + 1; i <= pid->level; i++) 1983 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1984 } 1985 #endif 1986 seq_putc(m, '\n'); 1987 } 1988 #endif 1989 1990 /* 1991 * Poll support for process exit notification. 1992 */ 1993 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1994 { 1995 struct pid *pid = file->private_data; 1996 __poll_t poll_flags = 0; 1997 1998 poll_wait(file, &pid->wait_pidfd, pts); 1999 2000 /* 2001 * Inform pollers only when the whole thread group exits. 2002 * If the thread group leader exits before all other threads in the 2003 * group, then poll(2) should block, similar to the wait(2) family. 2004 */ 2005 if (thread_group_exited(pid)) 2006 poll_flags = EPOLLIN | EPOLLRDNORM; 2007 2008 return poll_flags; 2009 } 2010 2011 const struct file_operations pidfd_fops = { 2012 .release = pidfd_release, 2013 .poll = pidfd_poll, 2014 #ifdef CONFIG_PROC_FS 2015 .show_fdinfo = pidfd_show_fdinfo, 2016 #endif 2017 }; 2018 2019 static void __delayed_free_task(struct rcu_head *rhp) 2020 { 2021 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2022 2023 free_task(tsk); 2024 } 2025 2026 static __always_inline void delayed_free_task(struct task_struct *tsk) 2027 { 2028 if (IS_ENABLED(CONFIG_MEMCG)) 2029 call_rcu(&tsk->rcu, __delayed_free_task); 2030 else 2031 free_task(tsk); 2032 } 2033 2034 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2035 { 2036 /* Skip if kernel thread */ 2037 if (!tsk->mm) 2038 return; 2039 2040 /* Skip if spawning a thread or using vfork */ 2041 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2042 return; 2043 2044 /* We need to synchronize with __set_oom_adj */ 2045 mutex_lock(&oom_adj_mutex); 2046 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2047 /* Update the values in case they were changed after copy_signal */ 2048 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2049 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2050 mutex_unlock(&oom_adj_mutex); 2051 } 2052 2053 #ifdef CONFIG_RV 2054 static void rv_task_fork(struct task_struct *p) 2055 { 2056 int i; 2057 2058 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2059 p->rv[i].da_mon.monitoring = false; 2060 } 2061 #else 2062 #define rv_task_fork(p) do {} while (0) 2063 #endif 2064 2065 /* 2066 * This creates a new process as a copy of the old one, 2067 * but does not actually start it yet. 2068 * 2069 * It copies the registers, and all the appropriate 2070 * parts of the process environment (as per the clone 2071 * flags). The actual kick-off is left to the caller. 2072 */ 2073 static __latent_entropy struct task_struct *copy_process( 2074 struct pid *pid, 2075 int trace, 2076 int node, 2077 struct kernel_clone_args *args) 2078 { 2079 int pidfd = -1, retval; 2080 struct task_struct *p; 2081 struct multiprocess_signals delayed; 2082 struct file *pidfile = NULL; 2083 const u64 clone_flags = args->flags; 2084 struct nsproxy *nsp = current->nsproxy; 2085 2086 /* 2087 * Don't allow sharing the root directory with processes in a different 2088 * namespace 2089 */ 2090 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2091 return ERR_PTR(-EINVAL); 2092 2093 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2094 return ERR_PTR(-EINVAL); 2095 2096 /* 2097 * Thread groups must share signals as well, and detached threads 2098 * can only be started up within the thread group. 2099 */ 2100 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2101 return ERR_PTR(-EINVAL); 2102 2103 /* 2104 * Shared signal handlers imply shared VM. By way of the above, 2105 * thread groups also imply shared VM. Blocking this case allows 2106 * for various simplifications in other code. 2107 */ 2108 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2109 return ERR_PTR(-EINVAL); 2110 2111 /* 2112 * Siblings of global init remain as zombies on exit since they are 2113 * not reaped by their parent (swapper). To solve this and to avoid 2114 * multi-rooted process trees, prevent global and container-inits 2115 * from creating siblings. 2116 */ 2117 if ((clone_flags & CLONE_PARENT) && 2118 current->signal->flags & SIGNAL_UNKILLABLE) 2119 return ERR_PTR(-EINVAL); 2120 2121 /* 2122 * If the new process will be in a different pid or user namespace 2123 * do not allow it to share a thread group with the forking task. 2124 */ 2125 if (clone_flags & CLONE_THREAD) { 2126 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2127 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2128 return ERR_PTR(-EINVAL); 2129 } 2130 2131 if (clone_flags & CLONE_PIDFD) { 2132 /* 2133 * - CLONE_DETACHED is blocked so that we can potentially 2134 * reuse it later for CLONE_PIDFD. 2135 * - CLONE_THREAD is blocked until someone really needs it. 2136 */ 2137 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2138 return ERR_PTR(-EINVAL); 2139 } 2140 2141 /* 2142 * Force any signals received before this point to be delivered 2143 * before the fork happens. Collect up signals sent to multiple 2144 * processes that happen during the fork and delay them so that 2145 * they appear to happen after the fork. 2146 */ 2147 sigemptyset(&delayed.signal); 2148 INIT_HLIST_NODE(&delayed.node); 2149 2150 spin_lock_irq(¤t->sighand->siglock); 2151 if (!(clone_flags & CLONE_THREAD)) 2152 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2153 recalc_sigpending(); 2154 spin_unlock_irq(¤t->sighand->siglock); 2155 retval = -ERESTARTNOINTR; 2156 if (task_sigpending(current)) 2157 goto fork_out; 2158 2159 retval = -ENOMEM; 2160 p = dup_task_struct(current, node); 2161 if (!p) 2162 goto fork_out; 2163 p->flags &= ~PF_KTHREAD; 2164 if (args->kthread) 2165 p->flags |= PF_KTHREAD; 2166 if (args->io_thread) { 2167 /* 2168 * Mark us an IO worker, and block any signal that isn't 2169 * fatal or STOP 2170 */ 2171 p->flags |= PF_IO_WORKER; 2172 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2173 } 2174 2175 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2176 /* 2177 * Clear TID on mm_release()? 2178 */ 2179 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2180 2181 ftrace_graph_init_task(p); 2182 2183 rt_mutex_init_task(p); 2184 2185 lockdep_assert_irqs_enabled(); 2186 #ifdef CONFIG_PROVE_LOCKING 2187 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2188 #endif 2189 retval = copy_creds(p, clone_flags); 2190 if (retval < 0) 2191 goto bad_fork_free; 2192 2193 retval = -EAGAIN; 2194 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2195 if (p->real_cred->user != INIT_USER && 2196 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2197 goto bad_fork_cleanup_count; 2198 } 2199 current->flags &= ~PF_NPROC_EXCEEDED; 2200 2201 /* 2202 * If multiple threads are within copy_process(), then this check 2203 * triggers too late. This doesn't hurt, the check is only there 2204 * to stop root fork bombs. 2205 */ 2206 retval = -EAGAIN; 2207 if (data_race(nr_threads >= max_threads)) 2208 goto bad_fork_cleanup_count; 2209 2210 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2211 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2212 p->flags |= PF_FORKNOEXEC; 2213 INIT_LIST_HEAD(&p->children); 2214 INIT_LIST_HEAD(&p->sibling); 2215 rcu_copy_process(p); 2216 p->vfork_done = NULL; 2217 spin_lock_init(&p->alloc_lock); 2218 2219 init_sigpending(&p->pending); 2220 2221 p->utime = p->stime = p->gtime = 0; 2222 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2223 p->utimescaled = p->stimescaled = 0; 2224 #endif 2225 prev_cputime_init(&p->prev_cputime); 2226 2227 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2228 seqcount_init(&p->vtime.seqcount); 2229 p->vtime.starttime = 0; 2230 p->vtime.state = VTIME_INACTIVE; 2231 #endif 2232 2233 #ifdef CONFIG_IO_URING 2234 p->io_uring = NULL; 2235 #endif 2236 2237 #if defined(SPLIT_RSS_COUNTING) 2238 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2239 #endif 2240 2241 p->default_timer_slack_ns = current->timer_slack_ns; 2242 2243 #ifdef CONFIG_PSI 2244 p->psi_flags = 0; 2245 #endif 2246 2247 task_io_accounting_init(&p->ioac); 2248 acct_clear_integrals(p); 2249 2250 posix_cputimers_init(&p->posix_cputimers); 2251 2252 p->io_context = NULL; 2253 audit_set_context(p, NULL); 2254 cgroup_fork(p); 2255 if (args->kthread) { 2256 if (!set_kthread_struct(p)) 2257 goto bad_fork_cleanup_delayacct; 2258 } 2259 #ifdef CONFIG_NUMA 2260 p->mempolicy = mpol_dup(p->mempolicy); 2261 if (IS_ERR(p->mempolicy)) { 2262 retval = PTR_ERR(p->mempolicy); 2263 p->mempolicy = NULL; 2264 goto bad_fork_cleanup_delayacct; 2265 } 2266 #endif 2267 #ifdef CONFIG_CPUSETS 2268 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2269 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2270 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2271 #endif 2272 #ifdef CONFIG_TRACE_IRQFLAGS 2273 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2274 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2275 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2276 p->softirqs_enabled = 1; 2277 p->softirq_context = 0; 2278 #endif 2279 2280 p->pagefault_disabled = 0; 2281 2282 #ifdef CONFIG_LOCKDEP 2283 lockdep_init_task(p); 2284 #endif 2285 2286 #ifdef CONFIG_DEBUG_MUTEXES 2287 p->blocked_on = NULL; /* not blocked yet */ 2288 #endif 2289 #ifdef CONFIG_BCACHE 2290 p->sequential_io = 0; 2291 p->sequential_io_avg = 0; 2292 #endif 2293 #ifdef CONFIG_BPF_SYSCALL 2294 RCU_INIT_POINTER(p->bpf_storage, NULL); 2295 p->bpf_ctx = NULL; 2296 #endif 2297 2298 /* Perform scheduler related setup. Assign this task to a CPU. */ 2299 retval = sched_fork(clone_flags, p); 2300 if (retval) 2301 goto bad_fork_cleanup_policy; 2302 2303 retval = perf_event_init_task(p, clone_flags); 2304 if (retval) 2305 goto bad_fork_cleanup_policy; 2306 retval = audit_alloc(p); 2307 if (retval) 2308 goto bad_fork_cleanup_perf; 2309 /* copy all the process information */ 2310 shm_init_task(p); 2311 retval = security_task_alloc(p, clone_flags); 2312 if (retval) 2313 goto bad_fork_cleanup_audit; 2314 retval = copy_semundo(clone_flags, p); 2315 if (retval) 2316 goto bad_fork_cleanup_security; 2317 retval = copy_files(clone_flags, p); 2318 if (retval) 2319 goto bad_fork_cleanup_semundo; 2320 retval = copy_fs(clone_flags, p); 2321 if (retval) 2322 goto bad_fork_cleanup_files; 2323 retval = copy_sighand(clone_flags, p); 2324 if (retval) 2325 goto bad_fork_cleanup_fs; 2326 retval = copy_signal(clone_flags, p); 2327 if (retval) 2328 goto bad_fork_cleanup_sighand; 2329 retval = copy_mm(clone_flags, p); 2330 if (retval) 2331 goto bad_fork_cleanup_signal; 2332 retval = copy_namespaces(clone_flags, p); 2333 if (retval) 2334 goto bad_fork_cleanup_mm; 2335 retval = copy_io(clone_flags, p); 2336 if (retval) 2337 goto bad_fork_cleanup_namespaces; 2338 retval = copy_thread(p, args); 2339 if (retval) 2340 goto bad_fork_cleanup_io; 2341 2342 stackleak_task_init(p); 2343 2344 if (pid != &init_struct_pid) { 2345 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2346 args->set_tid_size); 2347 if (IS_ERR(pid)) { 2348 retval = PTR_ERR(pid); 2349 goto bad_fork_cleanup_thread; 2350 } 2351 } 2352 2353 /* 2354 * This has to happen after we've potentially unshared the file 2355 * descriptor table (so that the pidfd doesn't leak into the child 2356 * if the fd table isn't shared). 2357 */ 2358 if (clone_flags & CLONE_PIDFD) { 2359 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2360 if (retval < 0) 2361 goto bad_fork_free_pid; 2362 2363 pidfd = retval; 2364 2365 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2366 O_RDWR | O_CLOEXEC); 2367 if (IS_ERR(pidfile)) { 2368 put_unused_fd(pidfd); 2369 retval = PTR_ERR(pidfile); 2370 goto bad_fork_free_pid; 2371 } 2372 get_pid(pid); /* held by pidfile now */ 2373 2374 retval = put_user(pidfd, args->pidfd); 2375 if (retval) 2376 goto bad_fork_put_pidfd; 2377 } 2378 2379 #ifdef CONFIG_BLOCK 2380 p->plug = NULL; 2381 #endif 2382 futex_init_task(p); 2383 2384 /* 2385 * sigaltstack should be cleared when sharing the same VM 2386 */ 2387 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2388 sas_ss_reset(p); 2389 2390 /* 2391 * Syscall tracing and stepping should be turned off in the 2392 * child regardless of CLONE_PTRACE. 2393 */ 2394 user_disable_single_step(p); 2395 clear_task_syscall_work(p, SYSCALL_TRACE); 2396 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2397 clear_task_syscall_work(p, SYSCALL_EMU); 2398 #endif 2399 clear_tsk_latency_tracing(p); 2400 2401 /* ok, now we should be set up.. */ 2402 p->pid = pid_nr(pid); 2403 if (clone_flags & CLONE_THREAD) { 2404 p->group_leader = current->group_leader; 2405 p->tgid = current->tgid; 2406 } else { 2407 p->group_leader = p; 2408 p->tgid = p->pid; 2409 } 2410 2411 p->nr_dirtied = 0; 2412 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2413 p->dirty_paused_when = 0; 2414 2415 p->pdeath_signal = 0; 2416 INIT_LIST_HEAD(&p->thread_group); 2417 p->task_works = NULL; 2418 clear_posix_cputimers_work(p); 2419 2420 #ifdef CONFIG_KRETPROBES 2421 p->kretprobe_instances.first = NULL; 2422 #endif 2423 #ifdef CONFIG_RETHOOK 2424 p->rethooks.first = NULL; 2425 #endif 2426 2427 /* 2428 * Ensure that the cgroup subsystem policies allow the new process to be 2429 * forked. It should be noted that the new process's css_set can be changed 2430 * between here and cgroup_post_fork() if an organisation operation is in 2431 * progress. 2432 */ 2433 retval = cgroup_can_fork(p, args); 2434 if (retval) 2435 goto bad_fork_put_pidfd; 2436 2437 /* 2438 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2439 * the new task on the correct runqueue. All this *before* the task 2440 * becomes visible. 2441 * 2442 * This isn't part of ->can_fork() because while the re-cloning is 2443 * cgroup specific, it unconditionally needs to place the task on a 2444 * runqueue. 2445 */ 2446 sched_cgroup_fork(p, args); 2447 2448 /* 2449 * From this point on we must avoid any synchronous user-space 2450 * communication until we take the tasklist-lock. In particular, we do 2451 * not want user-space to be able to predict the process start-time by 2452 * stalling fork(2) after we recorded the start_time but before it is 2453 * visible to the system. 2454 */ 2455 2456 p->start_time = ktime_get_ns(); 2457 p->start_boottime = ktime_get_boottime_ns(); 2458 2459 /* 2460 * Make it visible to the rest of the system, but dont wake it up yet. 2461 * Need tasklist lock for parent etc handling! 2462 */ 2463 write_lock_irq(&tasklist_lock); 2464 2465 /* CLONE_PARENT re-uses the old parent */ 2466 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2467 p->real_parent = current->real_parent; 2468 p->parent_exec_id = current->parent_exec_id; 2469 if (clone_flags & CLONE_THREAD) 2470 p->exit_signal = -1; 2471 else 2472 p->exit_signal = current->group_leader->exit_signal; 2473 } else { 2474 p->real_parent = current; 2475 p->parent_exec_id = current->self_exec_id; 2476 p->exit_signal = args->exit_signal; 2477 } 2478 2479 klp_copy_process(p); 2480 2481 sched_core_fork(p); 2482 2483 spin_lock(¤t->sighand->siglock); 2484 2485 rv_task_fork(p); 2486 2487 rseq_fork(p, clone_flags); 2488 2489 /* Don't start children in a dying pid namespace */ 2490 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2491 retval = -ENOMEM; 2492 goto bad_fork_cancel_cgroup; 2493 } 2494 2495 /* Let kill terminate clone/fork in the middle */ 2496 if (fatal_signal_pending(current)) { 2497 retval = -EINTR; 2498 goto bad_fork_cancel_cgroup; 2499 } 2500 2501 /* No more failure paths after this point. */ 2502 2503 /* 2504 * Copy seccomp details explicitly here, in case they were changed 2505 * before holding sighand lock. 2506 */ 2507 copy_seccomp(p); 2508 2509 init_task_pid_links(p); 2510 if (likely(p->pid)) { 2511 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2512 2513 init_task_pid(p, PIDTYPE_PID, pid); 2514 if (thread_group_leader(p)) { 2515 init_task_pid(p, PIDTYPE_TGID, pid); 2516 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2517 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2518 2519 if (is_child_reaper(pid)) { 2520 ns_of_pid(pid)->child_reaper = p; 2521 p->signal->flags |= SIGNAL_UNKILLABLE; 2522 } 2523 p->signal->shared_pending.signal = delayed.signal; 2524 p->signal->tty = tty_kref_get(current->signal->tty); 2525 /* 2526 * Inherit has_child_subreaper flag under the same 2527 * tasklist_lock with adding child to the process tree 2528 * for propagate_has_child_subreaper optimization. 2529 */ 2530 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2531 p->real_parent->signal->is_child_subreaper; 2532 list_add_tail(&p->sibling, &p->real_parent->children); 2533 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2534 attach_pid(p, PIDTYPE_TGID); 2535 attach_pid(p, PIDTYPE_PGID); 2536 attach_pid(p, PIDTYPE_SID); 2537 __this_cpu_inc(process_counts); 2538 } else { 2539 current->signal->nr_threads++; 2540 current->signal->quick_threads++; 2541 atomic_inc(¤t->signal->live); 2542 refcount_inc(¤t->signal->sigcnt); 2543 task_join_group_stop(p); 2544 list_add_tail_rcu(&p->thread_group, 2545 &p->group_leader->thread_group); 2546 list_add_tail_rcu(&p->thread_node, 2547 &p->signal->thread_head); 2548 } 2549 attach_pid(p, PIDTYPE_PID); 2550 nr_threads++; 2551 } 2552 total_forks++; 2553 hlist_del_init(&delayed.node); 2554 spin_unlock(¤t->sighand->siglock); 2555 syscall_tracepoint_update(p); 2556 write_unlock_irq(&tasklist_lock); 2557 2558 if (pidfile) 2559 fd_install(pidfd, pidfile); 2560 2561 proc_fork_connector(p); 2562 sched_post_fork(p); 2563 cgroup_post_fork(p, args); 2564 perf_event_fork(p); 2565 2566 trace_task_newtask(p, clone_flags); 2567 uprobe_copy_process(p, clone_flags); 2568 2569 copy_oom_score_adj(clone_flags, p); 2570 2571 return p; 2572 2573 bad_fork_cancel_cgroup: 2574 sched_core_free(p); 2575 spin_unlock(¤t->sighand->siglock); 2576 write_unlock_irq(&tasklist_lock); 2577 cgroup_cancel_fork(p, args); 2578 bad_fork_put_pidfd: 2579 if (clone_flags & CLONE_PIDFD) { 2580 fput(pidfile); 2581 put_unused_fd(pidfd); 2582 } 2583 bad_fork_free_pid: 2584 if (pid != &init_struct_pid) 2585 free_pid(pid); 2586 bad_fork_cleanup_thread: 2587 exit_thread(p); 2588 bad_fork_cleanup_io: 2589 if (p->io_context) 2590 exit_io_context(p); 2591 bad_fork_cleanup_namespaces: 2592 exit_task_namespaces(p); 2593 bad_fork_cleanup_mm: 2594 if (p->mm) { 2595 mm_clear_owner(p->mm, p); 2596 mmput(p->mm); 2597 } 2598 bad_fork_cleanup_signal: 2599 if (!(clone_flags & CLONE_THREAD)) 2600 free_signal_struct(p->signal); 2601 bad_fork_cleanup_sighand: 2602 __cleanup_sighand(p->sighand); 2603 bad_fork_cleanup_fs: 2604 exit_fs(p); /* blocking */ 2605 bad_fork_cleanup_files: 2606 exit_files(p); /* blocking */ 2607 bad_fork_cleanup_semundo: 2608 exit_sem(p); 2609 bad_fork_cleanup_security: 2610 security_task_free(p); 2611 bad_fork_cleanup_audit: 2612 audit_free(p); 2613 bad_fork_cleanup_perf: 2614 perf_event_free_task(p); 2615 bad_fork_cleanup_policy: 2616 lockdep_free_task(p); 2617 #ifdef CONFIG_NUMA 2618 mpol_put(p->mempolicy); 2619 #endif 2620 bad_fork_cleanup_delayacct: 2621 delayacct_tsk_free(p); 2622 bad_fork_cleanup_count: 2623 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2624 exit_creds(p); 2625 bad_fork_free: 2626 WRITE_ONCE(p->__state, TASK_DEAD); 2627 exit_task_stack_account(p); 2628 put_task_stack(p); 2629 delayed_free_task(p); 2630 fork_out: 2631 spin_lock_irq(¤t->sighand->siglock); 2632 hlist_del_init(&delayed.node); 2633 spin_unlock_irq(¤t->sighand->siglock); 2634 return ERR_PTR(retval); 2635 } 2636 2637 static inline void init_idle_pids(struct task_struct *idle) 2638 { 2639 enum pid_type type; 2640 2641 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2642 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2643 init_task_pid(idle, type, &init_struct_pid); 2644 } 2645 } 2646 2647 static int idle_dummy(void *dummy) 2648 { 2649 /* This function is never called */ 2650 return 0; 2651 } 2652 2653 struct task_struct * __init fork_idle(int cpu) 2654 { 2655 struct task_struct *task; 2656 struct kernel_clone_args args = { 2657 .flags = CLONE_VM, 2658 .fn = &idle_dummy, 2659 .fn_arg = NULL, 2660 .kthread = 1, 2661 .idle = 1, 2662 }; 2663 2664 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2665 if (!IS_ERR(task)) { 2666 init_idle_pids(task); 2667 init_idle(task, cpu); 2668 } 2669 2670 return task; 2671 } 2672 2673 /* 2674 * This is like kernel_clone(), but shaved down and tailored to just 2675 * creating io_uring workers. It returns a created task, or an error pointer. 2676 * The returned task is inactive, and the caller must fire it up through 2677 * wake_up_new_task(p). All signals are blocked in the created task. 2678 */ 2679 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2680 { 2681 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2682 CLONE_IO; 2683 struct kernel_clone_args args = { 2684 .flags = ((lower_32_bits(flags) | CLONE_VM | 2685 CLONE_UNTRACED) & ~CSIGNAL), 2686 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2687 .fn = fn, 2688 .fn_arg = arg, 2689 .io_thread = 1, 2690 }; 2691 2692 return copy_process(NULL, 0, node, &args); 2693 } 2694 2695 /* 2696 * Ok, this is the main fork-routine. 2697 * 2698 * It copies the process, and if successful kick-starts 2699 * it and waits for it to finish using the VM if required. 2700 * 2701 * args->exit_signal is expected to be checked for sanity by the caller. 2702 */ 2703 pid_t kernel_clone(struct kernel_clone_args *args) 2704 { 2705 u64 clone_flags = args->flags; 2706 struct completion vfork; 2707 struct pid *pid; 2708 struct task_struct *p; 2709 int trace = 0; 2710 pid_t nr; 2711 2712 /* 2713 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2714 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2715 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2716 * field in struct clone_args and it still doesn't make sense to have 2717 * them both point at the same memory location. Performing this check 2718 * here has the advantage that we don't need to have a separate helper 2719 * to check for legacy clone(). 2720 */ 2721 if ((args->flags & CLONE_PIDFD) && 2722 (args->flags & CLONE_PARENT_SETTID) && 2723 (args->pidfd == args->parent_tid)) 2724 return -EINVAL; 2725 2726 /* 2727 * Determine whether and which event to report to ptracer. When 2728 * called from kernel_thread or CLONE_UNTRACED is explicitly 2729 * requested, no event is reported; otherwise, report if the event 2730 * for the type of forking is enabled. 2731 */ 2732 if (!(clone_flags & CLONE_UNTRACED)) { 2733 if (clone_flags & CLONE_VFORK) 2734 trace = PTRACE_EVENT_VFORK; 2735 else if (args->exit_signal != SIGCHLD) 2736 trace = PTRACE_EVENT_CLONE; 2737 else 2738 trace = PTRACE_EVENT_FORK; 2739 2740 if (likely(!ptrace_event_enabled(current, trace))) 2741 trace = 0; 2742 } 2743 2744 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2745 add_latent_entropy(); 2746 2747 if (IS_ERR(p)) 2748 return PTR_ERR(p); 2749 2750 /* 2751 * Do this prior waking up the new thread - the thread pointer 2752 * might get invalid after that point, if the thread exits quickly. 2753 */ 2754 trace_sched_process_fork(current, p); 2755 2756 pid = get_task_pid(p, PIDTYPE_PID); 2757 nr = pid_vnr(pid); 2758 2759 if (clone_flags & CLONE_PARENT_SETTID) 2760 put_user(nr, args->parent_tid); 2761 2762 if (clone_flags & CLONE_VFORK) { 2763 p->vfork_done = &vfork; 2764 init_completion(&vfork); 2765 get_task_struct(p); 2766 } 2767 2768 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2769 /* lock the task to synchronize with memcg migration */ 2770 task_lock(p); 2771 lru_gen_add_mm(p->mm); 2772 task_unlock(p); 2773 } 2774 2775 wake_up_new_task(p); 2776 2777 /* forking complete and child started to run, tell ptracer */ 2778 if (unlikely(trace)) 2779 ptrace_event_pid(trace, pid); 2780 2781 if (clone_flags & CLONE_VFORK) { 2782 if (!wait_for_vfork_done(p, &vfork)) 2783 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2784 } 2785 2786 put_pid(pid); 2787 return nr; 2788 } 2789 2790 /* 2791 * Create a kernel thread. 2792 */ 2793 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2794 { 2795 struct kernel_clone_args args = { 2796 .flags = ((lower_32_bits(flags) | CLONE_VM | 2797 CLONE_UNTRACED) & ~CSIGNAL), 2798 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2799 .fn = fn, 2800 .fn_arg = arg, 2801 .kthread = 1, 2802 }; 2803 2804 return kernel_clone(&args); 2805 } 2806 2807 /* 2808 * Create a user mode thread. 2809 */ 2810 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2811 { 2812 struct kernel_clone_args args = { 2813 .flags = ((lower_32_bits(flags) | CLONE_VM | 2814 CLONE_UNTRACED) & ~CSIGNAL), 2815 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2816 .fn = fn, 2817 .fn_arg = arg, 2818 }; 2819 2820 return kernel_clone(&args); 2821 } 2822 2823 #ifdef __ARCH_WANT_SYS_FORK 2824 SYSCALL_DEFINE0(fork) 2825 { 2826 #ifdef CONFIG_MMU 2827 struct kernel_clone_args args = { 2828 .exit_signal = SIGCHLD, 2829 }; 2830 2831 return kernel_clone(&args); 2832 #else 2833 /* can not support in nommu mode */ 2834 return -EINVAL; 2835 #endif 2836 } 2837 #endif 2838 2839 #ifdef __ARCH_WANT_SYS_VFORK 2840 SYSCALL_DEFINE0(vfork) 2841 { 2842 struct kernel_clone_args args = { 2843 .flags = CLONE_VFORK | CLONE_VM, 2844 .exit_signal = SIGCHLD, 2845 }; 2846 2847 return kernel_clone(&args); 2848 } 2849 #endif 2850 2851 #ifdef __ARCH_WANT_SYS_CLONE 2852 #ifdef CONFIG_CLONE_BACKWARDS 2853 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2854 int __user *, parent_tidptr, 2855 unsigned long, tls, 2856 int __user *, child_tidptr) 2857 #elif defined(CONFIG_CLONE_BACKWARDS2) 2858 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2859 int __user *, parent_tidptr, 2860 int __user *, child_tidptr, 2861 unsigned long, tls) 2862 #elif defined(CONFIG_CLONE_BACKWARDS3) 2863 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2864 int, stack_size, 2865 int __user *, parent_tidptr, 2866 int __user *, child_tidptr, 2867 unsigned long, tls) 2868 #else 2869 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2870 int __user *, parent_tidptr, 2871 int __user *, child_tidptr, 2872 unsigned long, tls) 2873 #endif 2874 { 2875 struct kernel_clone_args args = { 2876 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2877 .pidfd = parent_tidptr, 2878 .child_tid = child_tidptr, 2879 .parent_tid = parent_tidptr, 2880 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2881 .stack = newsp, 2882 .tls = tls, 2883 }; 2884 2885 return kernel_clone(&args); 2886 } 2887 #endif 2888 2889 #ifdef __ARCH_WANT_SYS_CLONE3 2890 2891 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2892 struct clone_args __user *uargs, 2893 size_t usize) 2894 { 2895 int err; 2896 struct clone_args args; 2897 pid_t *kset_tid = kargs->set_tid; 2898 2899 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2900 CLONE_ARGS_SIZE_VER0); 2901 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2902 CLONE_ARGS_SIZE_VER1); 2903 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2904 CLONE_ARGS_SIZE_VER2); 2905 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2906 2907 if (unlikely(usize > PAGE_SIZE)) 2908 return -E2BIG; 2909 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2910 return -EINVAL; 2911 2912 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2913 if (err) 2914 return err; 2915 2916 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2917 return -EINVAL; 2918 2919 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2920 return -EINVAL; 2921 2922 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2923 return -EINVAL; 2924 2925 /* 2926 * Verify that higher 32bits of exit_signal are unset and that 2927 * it is a valid signal 2928 */ 2929 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2930 !valid_signal(args.exit_signal))) 2931 return -EINVAL; 2932 2933 if ((args.flags & CLONE_INTO_CGROUP) && 2934 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2935 return -EINVAL; 2936 2937 *kargs = (struct kernel_clone_args){ 2938 .flags = args.flags, 2939 .pidfd = u64_to_user_ptr(args.pidfd), 2940 .child_tid = u64_to_user_ptr(args.child_tid), 2941 .parent_tid = u64_to_user_ptr(args.parent_tid), 2942 .exit_signal = args.exit_signal, 2943 .stack = args.stack, 2944 .stack_size = args.stack_size, 2945 .tls = args.tls, 2946 .set_tid_size = args.set_tid_size, 2947 .cgroup = args.cgroup, 2948 }; 2949 2950 if (args.set_tid && 2951 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2952 (kargs->set_tid_size * sizeof(pid_t)))) 2953 return -EFAULT; 2954 2955 kargs->set_tid = kset_tid; 2956 2957 return 0; 2958 } 2959 2960 /** 2961 * clone3_stack_valid - check and prepare stack 2962 * @kargs: kernel clone args 2963 * 2964 * Verify that the stack arguments userspace gave us are sane. 2965 * In addition, set the stack direction for userspace since it's easy for us to 2966 * determine. 2967 */ 2968 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2969 { 2970 if (kargs->stack == 0) { 2971 if (kargs->stack_size > 0) 2972 return false; 2973 } else { 2974 if (kargs->stack_size == 0) 2975 return false; 2976 2977 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2978 return false; 2979 2980 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2981 kargs->stack += kargs->stack_size; 2982 #endif 2983 } 2984 2985 return true; 2986 } 2987 2988 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2989 { 2990 /* Verify that no unknown flags are passed along. */ 2991 if (kargs->flags & 2992 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2993 return false; 2994 2995 /* 2996 * - make the CLONE_DETACHED bit reusable for clone3 2997 * - make the CSIGNAL bits reusable for clone3 2998 */ 2999 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3000 return false; 3001 3002 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3003 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3004 return false; 3005 3006 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3007 kargs->exit_signal) 3008 return false; 3009 3010 if (!clone3_stack_valid(kargs)) 3011 return false; 3012 3013 return true; 3014 } 3015 3016 /** 3017 * clone3 - create a new process with specific properties 3018 * @uargs: argument structure 3019 * @size: size of @uargs 3020 * 3021 * clone3() is the extensible successor to clone()/clone2(). 3022 * It takes a struct as argument that is versioned by its size. 3023 * 3024 * Return: On success, a positive PID for the child process. 3025 * On error, a negative errno number. 3026 */ 3027 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3028 { 3029 int err; 3030 3031 struct kernel_clone_args kargs; 3032 pid_t set_tid[MAX_PID_NS_LEVEL]; 3033 3034 kargs.set_tid = set_tid; 3035 3036 err = copy_clone_args_from_user(&kargs, uargs, size); 3037 if (err) 3038 return err; 3039 3040 if (!clone3_args_valid(&kargs)) 3041 return -EINVAL; 3042 3043 return kernel_clone(&kargs); 3044 } 3045 #endif 3046 3047 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3048 { 3049 struct task_struct *leader, *parent, *child; 3050 int res; 3051 3052 read_lock(&tasklist_lock); 3053 leader = top = top->group_leader; 3054 down: 3055 for_each_thread(leader, parent) { 3056 list_for_each_entry(child, &parent->children, sibling) { 3057 res = visitor(child, data); 3058 if (res) { 3059 if (res < 0) 3060 goto out; 3061 leader = child; 3062 goto down; 3063 } 3064 up: 3065 ; 3066 } 3067 } 3068 3069 if (leader != top) { 3070 child = leader; 3071 parent = child->real_parent; 3072 leader = parent->group_leader; 3073 goto up; 3074 } 3075 out: 3076 read_unlock(&tasklist_lock); 3077 } 3078 3079 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3080 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3081 #endif 3082 3083 static void sighand_ctor(void *data) 3084 { 3085 struct sighand_struct *sighand = data; 3086 3087 spin_lock_init(&sighand->siglock); 3088 init_waitqueue_head(&sighand->signalfd_wqh); 3089 } 3090 3091 void __init mm_cache_init(void) 3092 { 3093 unsigned int mm_size; 3094 3095 /* 3096 * The mm_cpumask is located at the end of mm_struct, and is 3097 * dynamically sized based on the maximum CPU number this system 3098 * can have, taking hotplug into account (nr_cpu_ids). 3099 */ 3100 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3101 3102 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3103 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3104 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3105 offsetof(struct mm_struct, saved_auxv), 3106 sizeof_field(struct mm_struct, saved_auxv), 3107 NULL); 3108 } 3109 3110 void __init proc_caches_init(void) 3111 { 3112 sighand_cachep = kmem_cache_create("sighand_cache", 3113 sizeof(struct sighand_struct), 0, 3114 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3115 SLAB_ACCOUNT, sighand_ctor); 3116 signal_cachep = kmem_cache_create("signal_cache", 3117 sizeof(struct signal_struct), 0, 3118 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3119 NULL); 3120 files_cachep = kmem_cache_create("files_cache", 3121 sizeof(struct files_struct), 0, 3122 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3123 NULL); 3124 fs_cachep = kmem_cache_create("fs_cache", 3125 sizeof(struct fs_struct), 0, 3126 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3127 NULL); 3128 3129 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3130 mmap_init(); 3131 nsproxy_cache_init(); 3132 } 3133 3134 /* 3135 * Check constraints on flags passed to the unshare system call. 3136 */ 3137 static int check_unshare_flags(unsigned long unshare_flags) 3138 { 3139 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3140 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3141 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3142 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3143 CLONE_NEWTIME)) 3144 return -EINVAL; 3145 /* 3146 * Not implemented, but pretend it works if there is nothing 3147 * to unshare. Note that unsharing the address space or the 3148 * signal handlers also need to unshare the signal queues (aka 3149 * CLONE_THREAD). 3150 */ 3151 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3152 if (!thread_group_empty(current)) 3153 return -EINVAL; 3154 } 3155 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3156 if (refcount_read(¤t->sighand->count) > 1) 3157 return -EINVAL; 3158 } 3159 if (unshare_flags & CLONE_VM) { 3160 if (!current_is_single_threaded()) 3161 return -EINVAL; 3162 } 3163 3164 return 0; 3165 } 3166 3167 /* 3168 * Unshare the filesystem structure if it is being shared 3169 */ 3170 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3171 { 3172 struct fs_struct *fs = current->fs; 3173 3174 if (!(unshare_flags & CLONE_FS) || !fs) 3175 return 0; 3176 3177 /* don't need lock here; in the worst case we'll do useless copy */ 3178 if (fs->users == 1) 3179 return 0; 3180 3181 *new_fsp = copy_fs_struct(fs); 3182 if (!*new_fsp) 3183 return -ENOMEM; 3184 3185 return 0; 3186 } 3187 3188 /* 3189 * Unshare file descriptor table if it is being shared 3190 */ 3191 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3192 struct files_struct **new_fdp) 3193 { 3194 struct files_struct *fd = current->files; 3195 int error = 0; 3196 3197 if ((unshare_flags & CLONE_FILES) && 3198 (fd && atomic_read(&fd->count) > 1)) { 3199 *new_fdp = dup_fd(fd, max_fds, &error); 3200 if (!*new_fdp) 3201 return error; 3202 } 3203 3204 return 0; 3205 } 3206 3207 /* 3208 * unshare allows a process to 'unshare' part of the process 3209 * context which was originally shared using clone. copy_* 3210 * functions used by kernel_clone() cannot be used here directly 3211 * because they modify an inactive task_struct that is being 3212 * constructed. Here we are modifying the current, active, 3213 * task_struct. 3214 */ 3215 int ksys_unshare(unsigned long unshare_flags) 3216 { 3217 struct fs_struct *fs, *new_fs = NULL; 3218 struct files_struct *new_fd = NULL; 3219 struct cred *new_cred = NULL; 3220 struct nsproxy *new_nsproxy = NULL; 3221 int do_sysvsem = 0; 3222 int err; 3223 3224 /* 3225 * If unsharing a user namespace must also unshare the thread group 3226 * and unshare the filesystem root and working directories. 3227 */ 3228 if (unshare_flags & CLONE_NEWUSER) 3229 unshare_flags |= CLONE_THREAD | CLONE_FS; 3230 /* 3231 * If unsharing vm, must also unshare signal handlers. 3232 */ 3233 if (unshare_flags & CLONE_VM) 3234 unshare_flags |= CLONE_SIGHAND; 3235 /* 3236 * If unsharing a signal handlers, must also unshare the signal queues. 3237 */ 3238 if (unshare_flags & CLONE_SIGHAND) 3239 unshare_flags |= CLONE_THREAD; 3240 /* 3241 * If unsharing namespace, must also unshare filesystem information. 3242 */ 3243 if (unshare_flags & CLONE_NEWNS) 3244 unshare_flags |= CLONE_FS; 3245 3246 err = check_unshare_flags(unshare_flags); 3247 if (err) 3248 goto bad_unshare_out; 3249 /* 3250 * CLONE_NEWIPC must also detach from the undolist: after switching 3251 * to a new ipc namespace, the semaphore arrays from the old 3252 * namespace are unreachable. 3253 */ 3254 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3255 do_sysvsem = 1; 3256 err = unshare_fs(unshare_flags, &new_fs); 3257 if (err) 3258 goto bad_unshare_out; 3259 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3260 if (err) 3261 goto bad_unshare_cleanup_fs; 3262 err = unshare_userns(unshare_flags, &new_cred); 3263 if (err) 3264 goto bad_unshare_cleanup_fd; 3265 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3266 new_cred, new_fs); 3267 if (err) 3268 goto bad_unshare_cleanup_cred; 3269 3270 if (new_cred) { 3271 err = set_cred_ucounts(new_cred); 3272 if (err) 3273 goto bad_unshare_cleanup_cred; 3274 } 3275 3276 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3277 if (do_sysvsem) { 3278 /* 3279 * CLONE_SYSVSEM is equivalent to sys_exit(). 3280 */ 3281 exit_sem(current); 3282 } 3283 if (unshare_flags & CLONE_NEWIPC) { 3284 /* Orphan segments in old ns (see sem above). */ 3285 exit_shm(current); 3286 shm_init_task(current); 3287 } 3288 3289 if (new_nsproxy) 3290 switch_task_namespaces(current, new_nsproxy); 3291 3292 task_lock(current); 3293 3294 if (new_fs) { 3295 fs = current->fs; 3296 spin_lock(&fs->lock); 3297 current->fs = new_fs; 3298 if (--fs->users) 3299 new_fs = NULL; 3300 else 3301 new_fs = fs; 3302 spin_unlock(&fs->lock); 3303 } 3304 3305 if (new_fd) 3306 swap(current->files, new_fd); 3307 3308 task_unlock(current); 3309 3310 if (new_cred) { 3311 /* Install the new user namespace */ 3312 commit_creds(new_cred); 3313 new_cred = NULL; 3314 } 3315 } 3316 3317 perf_event_namespaces(current); 3318 3319 bad_unshare_cleanup_cred: 3320 if (new_cred) 3321 put_cred(new_cred); 3322 bad_unshare_cleanup_fd: 3323 if (new_fd) 3324 put_files_struct(new_fd); 3325 3326 bad_unshare_cleanup_fs: 3327 if (new_fs) 3328 free_fs_struct(new_fs); 3329 3330 bad_unshare_out: 3331 return err; 3332 } 3333 3334 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3335 { 3336 return ksys_unshare(unshare_flags); 3337 } 3338 3339 /* 3340 * Helper to unshare the files of the current task. 3341 * We don't want to expose copy_files internals to 3342 * the exec layer of the kernel. 3343 */ 3344 3345 int unshare_files(void) 3346 { 3347 struct task_struct *task = current; 3348 struct files_struct *old, *copy = NULL; 3349 int error; 3350 3351 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3352 if (error || !copy) 3353 return error; 3354 3355 old = task->files; 3356 task_lock(task); 3357 task->files = copy; 3358 task_unlock(task); 3359 put_files_struct(old); 3360 return 0; 3361 } 3362 3363 int sysctl_max_threads(struct ctl_table *table, int write, 3364 void *buffer, size_t *lenp, loff_t *ppos) 3365 { 3366 struct ctl_table t; 3367 int ret; 3368 int threads = max_threads; 3369 int min = 1; 3370 int max = MAX_THREADS; 3371 3372 t = *table; 3373 t.data = &threads; 3374 t.extra1 = &min; 3375 t.extra2 = &max; 3376 3377 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3378 if (ret || !write) 3379 return ret; 3380 3381 max_threads = threads; 3382 3383 return 0; 3384 } 3385