xref: /openbmc/linux/kernel/fork.c (revision d3402925)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 struct vm_stack {
197 	struct rcu_head rcu;
198 	struct vm_struct *stack_vm_area;
199 };
200 
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < NR_CACHED_STACKS; i++) {
206 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 			continue;
208 		return true;
209 	}
210 	return false;
211 }
212 
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216 
217 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 		return;
219 
220 	vfree(vm_stack);
221 }
222 
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225 	struct vm_stack *vm_stack = tsk->stack;
226 
227 	vm_stack->stack_vm_area = tsk->stack_vm_area;
228 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230 
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 	int i;
235 
236 	for (i = 0; i < NR_CACHED_STACKS; i++) {
237 		struct vm_struct *vm_stack = cached_vm_stacks[i];
238 
239 		if (!vm_stack)
240 			continue;
241 
242 		vfree(vm_stack->addr);
243 		cached_vm_stacks[i] = NULL;
244 	}
245 
246 	return 0;
247 }
248 
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251 	int i;
252 	int ret;
253 
254 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256 
257 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 		if (ret)
260 			goto err;
261 	}
262 	return 0;
263 err:
264 	/*
265 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 	 * ignore this page.
268 	 */
269 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 		memcg_kmem_uncharge_page(vm->pages[i], 0);
271 	return ret;
272 }
273 
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276 	struct vm_struct *vm;
277 	void *stack;
278 	int i;
279 
280 	for (i = 0; i < NR_CACHED_STACKS; i++) {
281 		struct vm_struct *s;
282 
283 		s = this_cpu_xchg(cached_stacks[i], NULL);
284 
285 		if (!s)
286 			continue;
287 
288 		/* Reset stack metadata. */
289 		kasan_unpoison_range(s->addr, THREAD_SIZE);
290 
291 		stack = kasan_reset_tag(s->addr);
292 
293 		/* Clear stale pointers from reused stack. */
294 		memset(stack, 0, THREAD_SIZE);
295 
296 		if (memcg_charge_kernel_stack(s)) {
297 			vfree(s->addr);
298 			return -ENOMEM;
299 		}
300 
301 		tsk->stack_vm_area = s;
302 		tsk->stack = stack;
303 		return 0;
304 	}
305 
306 	/*
307 	 * Allocated stacks are cached and later reused by new threads,
308 	 * so memcg accounting is performed manually on assigning/releasing
309 	 * stacks to tasks. Drop __GFP_ACCOUNT.
310 	 */
311 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312 				     VMALLOC_START, VMALLOC_END,
313 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
314 				     PAGE_KERNEL,
315 				     0, node, __builtin_return_address(0));
316 	if (!stack)
317 		return -ENOMEM;
318 
319 	vm = find_vm_area(stack);
320 	if (memcg_charge_kernel_stack(vm)) {
321 		vfree(stack);
322 		return -ENOMEM;
323 	}
324 	/*
325 	 * We can't call find_vm_area() in interrupt context, and
326 	 * free_thread_stack() can be called in interrupt context,
327 	 * so cache the vm_struct.
328 	 */
329 	tsk->stack_vm_area = vm;
330 	stack = kasan_reset_tag(stack);
331 	tsk->stack = stack;
332 	return 0;
333 }
334 
335 static void free_thread_stack(struct task_struct *tsk)
336 {
337 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 		thread_stack_delayed_free(tsk);
339 
340 	tsk->stack = NULL;
341 	tsk->stack_vm_area = NULL;
342 }
343 
344 #  else /* !CONFIG_VMAP_STACK */
345 
346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350 
351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353 	struct rcu_head *rh = tsk->stack;
354 
355 	call_rcu(rh, thread_stack_free_rcu);
356 }
357 
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 					     THREAD_SIZE_ORDER);
362 
363 	if (likely(page)) {
364 		tsk->stack = kasan_reset_tag(page_address(page));
365 		return 0;
366 	}
367 	return -ENOMEM;
368 }
369 
370 static void free_thread_stack(struct task_struct *tsk)
371 {
372 	thread_stack_delayed_free(tsk);
373 	tsk->stack = NULL;
374 }
375 
376 #  endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378 
379 static struct kmem_cache *thread_stack_cache;
380 
381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383 	kmem_cache_free(thread_stack_cache, rh);
384 }
385 
386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388 	struct rcu_head *rh = tsk->stack;
389 
390 	call_rcu(rh, thread_stack_free_rcu);
391 }
392 
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395 	unsigned long *stack;
396 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397 	stack = kasan_reset_tag(stack);
398 	tsk->stack = stack;
399 	return stack ? 0 : -ENOMEM;
400 }
401 
402 static void free_thread_stack(struct task_struct *tsk)
403 {
404 	thread_stack_delayed_free(tsk);
405 	tsk->stack = NULL;
406 }
407 
408 void thread_stack_cache_init(void)
409 {
410 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 					THREAD_SIZE, THREAD_SIZE, 0, 0,
412 					THREAD_SIZE, NULL);
413 	BUG_ON(thread_stack_cache == NULL);
414 }
415 
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418 
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421 	unsigned long *stack;
422 
423 	stack = arch_alloc_thread_stack_node(tsk, node);
424 	tsk->stack = stack;
425 	return stack ? 0 : -ENOMEM;
426 }
427 
428 static void free_thread_stack(struct task_struct *tsk)
429 {
430 	arch_free_thread_stack(tsk);
431 	tsk->stack = NULL;
432 }
433 
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435 
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438 
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441 
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444 
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447 
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450 
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453 
454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
455 {
456 	struct vm_area_struct *vma;
457 
458 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 	if (vma)
460 		vma_init(vma, mm);
461 	return vma;
462 }
463 
464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465 {
466 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467 
468 	if (new) {
469 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 		/*
472 		 * orig->shared.rb may be modified concurrently, but the clone
473 		 * will be reinitialized.
474 		 */
475 		data_race(memcpy(new, orig, sizeof(*new)));
476 		INIT_LIST_HEAD(&new->anon_vma_chain);
477 		dup_anon_vma_name(orig, new);
478 	}
479 	return new;
480 }
481 
482 void vm_area_free(struct vm_area_struct *vma)
483 {
484 	free_anon_vma_name(vma);
485 	kmem_cache_free(vm_area_cachep, vma);
486 }
487 
488 static void account_kernel_stack(struct task_struct *tsk, int account)
489 {
490 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 		struct vm_struct *vm = task_stack_vm_area(tsk);
492 		int i;
493 
494 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 					      account * (PAGE_SIZE / 1024));
497 	} else {
498 		void *stack = task_stack_page(tsk);
499 
500 		/* All stack pages are in the same node. */
501 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502 				      account * (THREAD_SIZE / 1024));
503 	}
504 }
505 
506 void exit_task_stack_account(struct task_struct *tsk)
507 {
508 	account_kernel_stack(tsk, -1);
509 
510 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 		struct vm_struct *vm;
512 		int i;
513 
514 		vm = task_stack_vm_area(tsk);
515 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 			memcg_kmem_uncharge_page(vm->pages[i], 0);
517 	}
518 }
519 
520 static void release_task_stack(struct task_struct *tsk)
521 {
522 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523 		return;  /* Better to leak the stack than to free prematurely */
524 
525 	free_thread_stack(tsk);
526 }
527 
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
529 void put_task_stack(struct task_struct *tsk)
530 {
531 	if (refcount_dec_and_test(&tsk->stack_refcount))
532 		release_task_stack(tsk);
533 }
534 #endif
535 
536 void free_task(struct task_struct *tsk)
537 {
538 #ifdef CONFIG_SECCOMP
539 	WARN_ON_ONCE(tsk->seccomp.filter);
540 #endif
541 	release_user_cpus_ptr(tsk);
542 	scs_release(tsk);
543 
544 #ifndef CONFIG_THREAD_INFO_IN_TASK
545 	/*
546 	 * The task is finally done with both the stack and thread_info,
547 	 * so free both.
548 	 */
549 	release_task_stack(tsk);
550 #else
551 	/*
552 	 * If the task had a separate stack allocation, it should be gone
553 	 * by now.
554 	 */
555 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
556 #endif
557 	rt_mutex_debug_task_free(tsk);
558 	ftrace_graph_exit_task(tsk);
559 	arch_release_task_struct(tsk);
560 	if (tsk->flags & PF_KTHREAD)
561 		free_kthread_struct(tsk);
562 	free_task_struct(tsk);
563 }
564 EXPORT_SYMBOL(free_task);
565 
566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567 {
568 	struct file *exe_file;
569 
570 	exe_file = get_mm_exe_file(oldmm);
571 	RCU_INIT_POINTER(mm->exe_file, exe_file);
572 	/*
573 	 * We depend on the oldmm having properly denied write access to the
574 	 * exe_file already.
575 	 */
576 	if (exe_file && deny_write_access(exe_file))
577 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
578 }
579 
580 #ifdef CONFIG_MMU
581 static __latent_entropy int dup_mmap(struct mm_struct *mm,
582 					struct mm_struct *oldmm)
583 {
584 	struct vm_area_struct *mpnt, *tmp;
585 	int retval;
586 	unsigned long charge = 0;
587 	LIST_HEAD(uf);
588 	VMA_ITERATOR(old_vmi, oldmm, 0);
589 	VMA_ITERATOR(vmi, mm, 0);
590 
591 	uprobe_start_dup_mmap();
592 	if (mmap_write_lock_killable(oldmm)) {
593 		retval = -EINTR;
594 		goto fail_uprobe_end;
595 	}
596 	flush_cache_dup_mm(oldmm);
597 	uprobe_dup_mmap(oldmm, mm);
598 	/*
599 	 * Not linked in yet - no deadlock potential:
600 	 */
601 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
602 
603 	/* No ordering required: file already has been exposed. */
604 	dup_mm_exe_file(mm, oldmm);
605 
606 	mm->total_vm = oldmm->total_vm;
607 	mm->data_vm = oldmm->data_vm;
608 	mm->exec_vm = oldmm->exec_vm;
609 	mm->stack_vm = oldmm->stack_vm;
610 
611 	retval = ksm_fork(mm, oldmm);
612 	if (retval)
613 		goto out;
614 	khugepaged_fork(mm, oldmm);
615 
616 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
617 	if (retval)
618 		goto out;
619 
620 	for_each_vma(old_vmi, mpnt) {
621 		struct file *file;
622 
623 		if (mpnt->vm_flags & VM_DONTCOPY) {
624 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
625 			continue;
626 		}
627 		charge = 0;
628 		/*
629 		 * Don't duplicate many vmas if we've been oom-killed (for
630 		 * example)
631 		 */
632 		if (fatal_signal_pending(current)) {
633 			retval = -EINTR;
634 			goto loop_out;
635 		}
636 		if (mpnt->vm_flags & VM_ACCOUNT) {
637 			unsigned long len = vma_pages(mpnt);
638 
639 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
640 				goto fail_nomem;
641 			charge = len;
642 		}
643 		tmp = vm_area_dup(mpnt);
644 		if (!tmp)
645 			goto fail_nomem;
646 		retval = vma_dup_policy(mpnt, tmp);
647 		if (retval)
648 			goto fail_nomem_policy;
649 		tmp->vm_mm = mm;
650 		retval = dup_userfaultfd(tmp, &uf);
651 		if (retval)
652 			goto fail_nomem_anon_vma_fork;
653 		if (tmp->vm_flags & VM_WIPEONFORK) {
654 			/*
655 			 * VM_WIPEONFORK gets a clean slate in the child.
656 			 * Don't prepare anon_vma until fault since we don't
657 			 * copy page for current vma.
658 			 */
659 			tmp->anon_vma = NULL;
660 		} else if (anon_vma_fork(tmp, mpnt))
661 			goto fail_nomem_anon_vma_fork;
662 		vm_flags_clear(tmp, VM_LOCKED_MASK);
663 		file = tmp->vm_file;
664 		if (file) {
665 			struct address_space *mapping = file->f_mapping;
666 
667 			get_file(file);
668 			i_mmap_lock_write(mapping);
669 			if (tmp->vm_flags & VM_SHARED)
670 				mapping_allow_writable(mapping);
671 			flush_dcache_mmap_lock(mapping);
672 			/* insert tmp into the share list, just after mpnt */
673 			vma_interval_tree_insert_after(tmp, mpnt,
674 					&mapping->i_mmap);
675 			flush_dcache_mmap_unlock(mapping);
676 			i_mmap_unlock_write(mapping);
677 		}
678 
679 		/*
680 		 * Copy/update hugetlb private vma information.
681 		 */
682 		if (is_vm_hugetlb_page(tmp))
683 			hugetlb_dup_vma_private(tmp);
684 
685 		/* Link the vma into the MT */
686 		if (vma_iter_bulk_store(&vmi, tmp))
687 			goto fail_nomem_vmi_store;
688 
689 		mm->map_count++;
690 		if (!(tmp->vm_flags & VM_WIPEONFORK))
691 			retval = copy_page_range(tmp, mpnt);
692 
693 		if (tmp->vm_ops && tmp->vm_ops->open)
694 			tmp->vm_ops->open(tmp);
695 
696 		if (retval)
697 			goto loop_out;
698 	}
699 	/* a new mm has just been created */
700 	retval = arch_dup_mmap(oldmm, mm);
701 loop_out:
702 	vma_iter_free(&vmi);
703 out:
704 	mmap_write_unlock(mm);
705 	flush_tlb_mm(oldmm);
706 	mmap_write_unlock(oldmm);
707 	dup_userfaultfd_complete(&uf);
708 fail_uprobe_end:
709 	uprobe_end_dup_mmap();
710 	return retval;
711 
712 fail_nomem_vmi_store:
713 	unlink_anon_vmas(tmp);
714 fail_nomem_anon_vma_fork:
715 	mpol_put(vma_policy(tmp));
716 fail_nomem_policy:
717 	vm_area_free(tmp);
718 fail_nomem:
719 	retval = -ENOMEM;
720 	vm_unacct_memory(charge);
721 	goto loop_out;
722 }
723 
724 static inline int mm_alloc_pgd(struct mm_struct *mm)
725 {
726 	mm->pgd = pgd_alloc(mm);
727 	if (unlikely(!mm->pgd))
728 		return -ENOMEM;
729 	return 0;
730 }
731 
732 static inline void mm_free_pgd(struct mm_struct *mm)
733 {
734 	pgd_free(mm, mm->pgd);
735 }
736 #else
737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
738 {
739 	mmap_write_lock(oldmm);
740 	dup_mm_exe_file(mm, oldmm);
741 	mmap_write_unlock(oldmm);
742 	return 0;
743 }
744 #define mm_alloc_pgd(mm)	(0)
745 #define mm_free_pgd(mm)
746 #endif /* CONFIG_MMU */
747 
748 static void check_mm(struct mm_struct *mm)
749 {
750 	int i;
751 
752 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
753 			 "Please make sure 'struct resident_page_types[]' is updated as well");
754 
755 	for (i = 0; i < NR_MM_COUNTERS; i++) {
756 		long x = percpu_counter_sum(&mm->rss_stat[i]);
757 
758 		if (unlikely(x))
759 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
760 				 mm, resident_page_types[i], x);
761 	}
762 
763 	if (mm_pgtables_bytes(mm))
764 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
765 				mm_pgtables_bytes(mm));
766 
767 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
768 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
769 #endif
770 }
771 
772 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
773 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
774 
775 static void do_check_lazy_tlb(void *arg)
776 {
777 	struct mm_struct *mm = arg;
778 
779 	WARN_ON_ONCE(current->active_mm == mm);
780 }
781 
782 static void do_shoot_lazy_tlb(void *arg)
783 {
784 	struct mm_struct *mm = arg;
785 
786 	if (current->active_mm == mm) {
787 		WARN_ON_ONCE(current->mm);
788 		current->active_mm = &init_mm;
789 		switch_mm(mm, &init_mm, current);
790 	}
791 }
792 
793 static void cleanup_lazy_tlbs(struct mm_struct *mm)
794 {
795 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
796 		/*
797 		 * In this case, lazy tlb mms are refounted and would not reach
798 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
799 		 */
800 		return;
801 	}
802 
803 	/*
804 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
805 	 * requires lazy mm users to switch to another mm when the refcount
806 	 * drops to zero, before the mm is freed. This requires IPIs here to
807 	 * switch kernel threads to init_mm.
808 	 *
809 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
810 	 * switch with the final userspace teardown TLB flush which leaves the
811 	 * mm lazy on this CPU but no others, reducing the need for additional
812 	 * IPIs here. There are cases where a final IPI is still required here,
813 	 * such as the final mmdrop being performed on a different CPU than the
814 	 * one exiting, or kernel threads using the mm when userspace exits.
815 	 *
816 	 * IPI overheads have not found to be expensive, but they could be
817 	 * reduced in a number of possible ways, for example (roughly
818 	 * increasing order of complexity):
819 	 * - The last lazy reference created by exit_mm() could instead switch
820 	 *   to init_mm, however it's probable this will run on the same CPU
821 	 *   immediately afterwards, so this may not reduce IPIs much.
822 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
823 	 * - CPUs store active_mm where it can be remotely checked without a
824 	 *   lock, to filter out false-positives in the cpumask.
825 	 * - After mm_users or mm_count reaches zero, switching away from the
826 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
827 	 *   with some batching or delaying of the final IPIs.
828 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
829 	 *   switching to avoid IPIs completely.
830 	 */
831 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
832 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
833 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
834 }
835 
836 /*
837  * Called when the last reference to the mm
838  * is dropped: either by a lazy thread or by
839  * mmput. Free the page directory and the mm.
840  */
841 void __mmdrop(struct mm_struct *mm)
842 {
843 	int i;
844 
845 	BUG_ON(mm == &init_mm);
846 	WARN_ON_ONCE(mm == current->mm);
847 
848 	/* Ensure no CPUs are using this as their lazy tlb mm */
849 	cleanup_lazy_tlbs(mm);
850 
851 	WARN_ON_ONCE(mm == current->active_mm);
852 	mm_free_pgd(mm);
853 	destroy_context(mm);
854 	mmu_notifier_subscriptions_destroy(mm);
855 	check_mm(mm);
856 	put_user_ns(mm->user_ns);
857 	mm_pasid_drop(mm);
858 
859 	for (i = 0; i < NR_MM_COUNTERS; i++)
860 		percpu_counter_destroy(&mm->rss_stat[i]);
861 	free_mm(mm);
862 }
863 EXPORT_SYMBOL_GPL(__mmdrop);
864 
865 static void mmdrop_async_fn(struct work_struct *work)
866 {
867 	struct mm_struct *mm;
868 
869 	mm = container_of(work, struct mm_struct, async_put_work);
870 	__mmdrop(mm);
871 }
872 
873 static void mmdrop_async(struct mm_struct *mm)
874 {
875 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
876 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
877 		schedule_work(&mm->async_put_work);
878 	}
879 }
880 
881 static inline void free_signal_struct(struct signal_struct *sig)
882 {
883 	taskstats_tgid_free(sig);
884 	sched_autogroup_exit(sig);
885 	/*
886 	 * __mmdrop is not safe to call from softirq context on x86 due to
887 	 * pgd_dtor so postpone it to the async context
888 	 */
889 	if (sig->oom_mm)
890 		mmdrop_async(sig->oom_mm);
891 	kmem_cache_free(signal_cachep, sig);
892 }
893 
894 static inline void put_signal_struct(struct signal_struct *sig)
895 {
896 	if (refcount_dec_and_test(&sig->sigcnt))
897 		free_signal_struct(sig);
898 }
899 
900 void __put_task_struct(struct task_struct *tsk)
901 {
902 	WARN_ON(!tsk->exit_state);
903 	WARN_ON(refcount_read(&tsk->usage));
904 	WARN_ON(tsk == current);
905 
906 	io_uring_free(tsk);
907 	cgroup_free(tsk);
908 	task_numa_free(tsk, true);
909 	security_task_free(tsk);
910 	bpf_task_storage_free(tsk);
911 	exit_creds(tsk);
912 	delayacct_tsk_free(tsk);
913 	put_signal_struct(tsk->signal);
914 	sched_core_free(tsk);
915 	free_task(tsk);
916 }
917 EXPORT_SYMBOL_GPL(__put_task_struct);
918 
919 void __init __weak arch_task_cache_init(void) { }
920 
921 /*
922  * set_max_threads
923  */
924 static void set_max_threads(unsigned int max_threads_suggested)
925 {
926 	u64 threads;
927 	unsigned long nr_pages = totalram_pages();
928 
929 	/*
930 	 * The number of threads shall be limited such that the thread
931 	 * structures may only consume a small part of the available memory.
932 	 */
933 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
934 		threads = MAX_THREADS;
935 	else
936 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
937 				    (u64) THREAD_SIZE * 8UL);
938 
939 	if (threads > max_threads_suggested)
940 		threads = max_threads_suggested;
941 
942 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
943 }
944 
945 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
946 /* Initialized by the architecture: */
947 int arch_task_struct_size __read_mostly;
948 #endif
949 
950 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
951 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
952 {
953 	/* Fetch thread_struct whitelist for the architecture. */
954 	arch_thread_struct_whitelist(offset, size);
955 
956 	/*
957 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
958 	 * adjust offset to position of thread_struct in task_struct.
959 	 */
960 	if (unlikely(*size == 0))
961 		*offset = 0;
962 	else
963 		*offset += offsetof(struct task_struct, thread);
964 }
965 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
966 
967 void __init fork_init(void)
968 {
969 	int i;
970 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
971 #ifndef ARCH_MIN_TASKALIGN
972 #define ARCH_MIN_TASKALIGN	0
973 #endif
974 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
975 	unsigned long useroffset, usersize;
976 
977 	/* create a slab on which task_structs can be allocated */
978 	task_struct_whitelist(&useroffset, &usersize);
979 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
980 			arch_task_struct_size, align,
981 			SLAB_PANIC|SLAB_ACCOUNT,
982 			useroffset, usersize, NULL);
983 #endif
984 
985 	/* do the arch specific task caches init */
986 	arch_task_cache_init();
987 
988 	set_max_threads(MAX_THREADS);
989 
990 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
991 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
992 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
993 		init_task.signal->rlim[RLIMIT_NPROC];
994 
995 	for (i = 0; i < UCOUNT_COUNTS; i++)
996 		init_user_ns.ucount_max[i] = max_threads/2;
997 
998 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
999 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1000 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1001 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1002 
1003 #ifdef CONFIG_VMAP_STACK
1004 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1005 			  NULL, free_vm_stack_cache);
1006 #endif
1007 
1008 	scs_init();
1009 
1010 	lockdep_init_task(&init_task);
1011 	uprobes_init();
1012 }
1013 
1014 int __weak arch_dup_task_struct(struct task_struct *dst,
1015 					       struct task_struct *src)
1016 {
1017 	*dst = *src;
1018 	return 0;
1019 }
1020 
1021 void set_task_stack_end_magic(struct task_struct *tsk)
1022 {
1023 	unsigned long *stackend;
1024 
1025 	stackend = end_of_stack(tsk);
1026 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1027 }
1028 
1029 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1030 {
1031 	struct task_struct *tsk;
1032 	int err;
1033 
1034 	if (node == NUMA_NO_NODE)
1035 		node = tsk_fork_get_node(orig);
1036 	tsk = alloc_task_struct_node(node);
1037 	if (!tsk)
1038 		return NULL;
1039 
1040 	err = arch_dup_task_struct(tsk, orig);
1041 	if (err)
1042 		goto free_tsk;
1043 
1044 	err = alloc_thread_stack_node(tsk, node);
1045 	if (err)
1046 		goto free_tsk;
1047 
1048 #ifdef CONFIG_THREAD_INFO_IN_TASK
1049 	refcount_set(&tsk->stack_refcount, 1);
1050 #endif
1051 	account_kernel_stack(tsk, 1);
1052 
1053 	err = scs_prepare(tsk, node);
1054 	if (err)
1055 		goto free_stack;
1056 
1057 #ifdef CONFIG_SECCOMP
1058 	/*
1059 	 * We must handle setting up seccomp filters once we're under
1060 	 * the sighand lock in case orig has changed between now and
1061 	 * then. Until then, filter must be NULL to avoid messing up
1062 	 * the usage counts on the error path calling free_task.
1063 	 */
1064 	tsk->seccomp.filter = NULL;
1065 #endif
1066 
1067 	setup_thread_stack(tsk, orig);
1068 	clear_user_return_notifier(tsk);
1069 	clear_tsk_need_resched(tsk);
1070 	set_task_stack_end_magic(tsk);
1071 	clear_syscall_work_syscall_user_dispatch(tsk);
1072 
1073 #ifdef CONFIG_STACKPROTECTOR
1074 	tsk->stack_canary = get_random_canary();
1075 #endif
1076 	if (orig->cpus_ptr == &orig->cpus_mask)
1077 		tsk->cpus_ptr = &tsk->cpus_mask;
1078 	dup_user_cpus_ptr(tsk, orig, node);
1079 
1080 	/*
1081 	 * One for the user space visible state that goes away when reaped.
1082 	 * One for the scheduler.
1083 	 */
1084 	refcount_set(&tsk->rcu_users, 2);
1085 	/* One for the rcu users */
1086 	refcount_set(&tsk->usage, 1);
1087 #ifdef CONFIG_BLK_DEV_IO_TRACE
1088 	tsk->btrace_seq = 0;
1089 #endif
1090 	tsk->splice_pipe = NULL;
1091 	tsk->task_frag.page = NULL;
1092 	tsk->wake_q.next = NULL;
1093 	tsk->worker_private = NULL;
1094 
1095 	kcov_task_init(tsk);
1096 	kmsan_task_create(tsk);
1097 	kmap_local_fork(tsk);
1098 
1099 #ifdef CONFIG_FAULT_INJECTION
1100 	tsk->fail_nth = 0;
1101 #endif
1102 
1103 #ifdef CONFIG_BLK_CGROUP
1104 	tsk->throttle_disk = NULL;
1105 	tsk->use_memdelay = 0;
1106 #endif
1107 
1108 #ifdef CONFIG_IOMMU_SVA
1109 	tsk->pasid_activated = 0;
1110 #endif
1111 
1112 #ifdef CONFIG_MEMCG
1113 	tsk->active_memcg = NULL;
1114 #endif
1115 
1116 #ifdef CONFIG_CPU_SUP_INTEL
1117 	tsk->reported_split_lock = 0;
1118 #endif
1119 
1120 #ifdef CONFIG_SCHED_MM_CID
1121 	tsk->mm_cid = -1;
1122 	tsk->mm_cid_active = 0;
1123 #endif
1124 	return tsk;
1125 
1126 free_stack:
1127 	exit_task_stack_account(tsk);
1128 	free_thread_stack(tsk);
1129 free_tsk:
1130 	free_task_struct(tsk);
1131 	return NULL;
1132 }
1133 
1134 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1135 
1136 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1137 
1138 static int __init coredump_filter_setup(char *s)
1139 {
1140 	default_dump_filter =
1141 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1142 		MMF_DUMP_FILTER_MASK;
1143 	return 1;
1144 }
1145 
1146 __setup("coredump_filter=", coredump_filter_setup);
1147 
1148 #include <linux/init_task.h>
1149 
1150 static void mm_init_aio(struct mm_struct *mm)
1151 {
1152 #ifdef CONFIG_AIO
1153 	spin_lock_init(&mm->ioctx_lock);
1154 	mm->ioctx_table = NULL;
1155 #endif
1156 }
1157 
1158 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1159 					   struct task_struct *p)
1160 {
1161 #ifdef CONFIG_MEMCG
1162 	if (mm->owner == p)
1163 		WRITE_ONCE(mm->owner, NULL);
1164 #endif
1165 }
1166 
1167 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1168 {
1169 #ifdef CONFIG_MEMCG
1170 	mm->owner = p;
1171 #endif
1172 }
1173 
1174 static void mm_init_uprobes_state(struct mm_struct *mm)
1175 {
1176 #ifdef CONFIG_UPROBES
1177 	mm->uprobes_state.xol_area = NULL;
1178 #endif
1179 }
1180 
1181 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1182 	struct user_namespace *user_ns)
1183 {
1184 	int i;
1185 
1186 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1187 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1188 	atomic_set(&mm->mm_users, 1);
1189 	atomic_set(&mm->mm_count, 1);
1190 	seqcount_init(&mm->write_protect_seq);
1191 	mmap_init_lock(mm);
1192 	INIT_LIST_HEAD(&mm->mmlist);
1193 	mm_pgtables_bytes_init(mm);
1194 	mm->map_count = 0;
1195 	mm->locked_vm = 0;
1196 	atomic64_set(&mm->pinned_vm, 0);
1197 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1198 	spin_lock_init(&mm->page_table_lock);
1199 	spin_lock_init(&mm->arg_lock);
1200 	mm_init_cpumask(mm);
1201 	mm_init_aio(mm);
1202 	mm_init_owner(mm, p);
1203 	mm_pasid_init(mm);
1204 	RCU_INIT_POINTER(mm->exe_file, NULL);
1205 	mmu_notifier_subscriptions_init(mm);
1206 	init_tlb_flush_pending(mm);
1207 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1208 	mm->pmd_huge_pte = NULL;
1209 #endif
1210 	mm_init_uprobes_state(mm);
1211 	hugetlb_count_init(mm);
1212 
1213 	if (current->mm) {
1214 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1215 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1216 	} else {
1217 		mm->flags = default_dump_filter;
1218 		mm->def_flags = 0;
1219 	}
1220 
1221 	if (mm_alloc_pgd(mm))
1222 		goto fail_nopgd;
1223 
1224 	if (init_new_context(p, mm))
1225 		goto fail_nocontext;
1226 
1227 	for (i = 0; i < NR_MM_COUNTERS; i++)
1228 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1229 			goto fail_pcpu;
1230 
1231 	mm->user_ns = get_user_ns(user_ns);
1232 	lru_gen_init_mm(mm);
1233 	mm_init_cid(mm);
1234 	return mm;
1235 
1236 fail_pcpu:
1237 	while (i > 0)
1238 		percpu_counter_destroy(&mm->rss_stat[--i]);
1239 fail_nocontext:
1240 	mm_free_pgd(mm);
1241 fail_nopgd:
1242 	free_mm(mm);
1243 	return NULL;
1244 }
1245 
1246 /*
1247  * Allocate and initialize an mm_struct.
1248  */
1249 struct mm_struct *mm_alloc(void)
1250 {
1251 	struct mm_struct *mm;
1252 
1253 	mm = allocate_mm();
1254 	if (!mm)
1255 		return NULL;
1256 
1257 	memset(mm, 0, sizeof(*mm));
1258 	return mm_init(mm, current, current_user_ns());
1259 }
1260 
1261 static inline void __mmput(struct mm_struct *mm)
1262 {
1263 	VM_BUG_ON(atomic_read(&mm->mm_users));
1264 
1265 	uprobe_clear_state(mm);
1266 	exit_aio(mm);
1267 	ksm_exit(mm);
1268 	khugepaged_exit(mm); /* must run before exit_mmap */
1269 	exit_mmap(mm);
1270 	mm_put_huge_zero_page(mm);
1271 	set_mm_exe_file(mm, NULL);
1272 	if (!list_empty(&mm->mmlist)) {
1273 		spin_lock(&mmlist_lock);
1274 		list_del(&mm->mmlist);
1275 		spin_unlock(&mmlist_lock);
1276 	}
1277 	if (mm->binfmt)
1278 		module_put(mm->binfmt->module);
1279 	lru_gen_del_mm(mm);
1280 	mmdrop(mm);
1281 }
1282 
1283 /*
1284  * Decrement the use count and release all resources for an mm.
1285  */
1286 void mmput(struct mm_struct *mm)
1287 {
1288 	might_sleep();
1289 
1290 	if (atomic_dec_and_test(&mm->mm_users))
1291 		__mmput(mm);
1292 }
1293 EXPORT_SYMBOL_GPL(mmput);
1294 
1295 #ifdef CONFIG_MMU
1296 static void mmput_async_fn(struct work_struct *work)
1297 {
1298 	struct mm_struct *mm = container_of(work, struct mm_struct,
1299 					    async_put_work);
1300 
1301 	__mmput(mm);
1302 }
1303 
1304 void mmput_async(struct mm_struct *mm)
1305 {
1306 	if (atomic_dec_and_test(&mm->mm_users)) {
1307 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1308 		schedule_work(&mm->async_put_work);
1309 	}
1310 }
1311 EXPORT_SYMBOL_GPL(mmput_async);
1312 #endif
1313 
1314 /**
1315  * set_mm_exe_file - change a reference to the mm's executable file
1316  *
1317  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1318  *
1319  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1320  * invocations: in mmput() nobody alive left, in execve task is single
1321  * threaded.
1322  *
1323  * Can only fail if new_exe_file != NULL.
1324  */
1325 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1326 {
1327 	struct file *old_exe_file;
1328 
1329 	/*
1330 	 * It is safe to dereference the exe_file without RCU as
1331 	 * this function is only called if nobody else can access
1332 	 * this mm -- see comment above for justification.
1333 	 */
1334 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1335 
1336 	if (new_exe_file) {
1337 		/*
1338 		 * We expect the caller (i.e., sys_execve) to already denied
1339 		 * write access, so this is unlikely to fail.
1340 		 */
1341 		if (unlikely(deny_write_access(new_exe_file)))
1342 			return -EACCES;
1343 		get_file(new_exe_file);
1344 	}
1345 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1346 	if (old_exe_file) {
1347 		allow_write_access(old_exe_file);
1348 		fput(old_exe_file);
1349 	}
1350 	return 0;
1351 }
1352 
1353 /**
1354  * replace_mm_exe_file - replace a reference to the mm's executable file
1355  *
1356  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1357  * dealing with concurrent invocation and without grabbing the mmap lock in
1358  * write mode.
1359  *
1360  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1361  */
1362 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1363 {
1364 	struct vm_area_struct *vma;
1365 	struct file *old_exe_file;
1366 	int ret = 0;
1367 
1368 	/* Forbid mm->exe_file change if old file still mapped. */
1369 	old_exe_file = get_mm_exe_file(mm);
1370 	if (old_exe_file) {
1371 		VMA_ITERATOR(vmi, mm, 0);
1372 		mmap_read_lock(mm);
1373 		for_each_vma(vmi, vma) {
1374 			if (!vma->vm_file)
1375 				continue;
1376 			if (path_equal(&vma->vm_file->f_path,
1377 				       &old_exe_file->f_path)) {
1378 				ret = -EBUSY;
1379 				break;
1380 			}
1381 		}
1382 		mmap_read_unlock(mm);
1383 		fput(old_exe_file);
1384 		if (ret)
1385 			return ret;
1386 	}
1387 
1388 	/* set the new file, lockless */
1389 	ret = deny_write_access(new_exe_file);
1390 	if (ret)
1391 		return -EACCES;
1392 	get_file(new_exe_file);
1393 
1394 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1395 	if (old_exe_file) {
1396 		/*
1397 		 * Don't race with dup_mmap() getting the file and disallowing
1398 		 * write access while someone might open the file writable.
1399 		 */
1400 		mmap_read_lock(mm);
1401 		allow_write_access(old_exe_file);
1402 		fput(old_exe_file);
1403 		mmap_read_unlock(mm);
1404 	}
1405 	return 0;
1406 }
1407 
1408 /**
1409  * get_mm_exe_file - acquire a reference to the mm's executable file
1410  *
1411  * Returns %NULL if mm has no associated executable file.
1412  * User must release file via fput().
1413  */
1414 struct file *get_mm_exe_file(struct mm_struct *mm)
1415 {
1416 	struct file *exe_file;
1417 
1418 	rcu_read_lock();
1419 	exe_file = rcu_dereference(mm->exe_file);
1420 	if (exe_file && !get_file_rcu(exe_file))
1421 		exe_file = NULL;
1422 	rcu_read_unlock();
1423 	return exe_file;
1424 }
1425 
1426 /**
1427  * get_task_exe_file - acquire a reference to the task's executable file
1428  *
1429  * Returns %NULL if task's mm (if any) has no associated executable file or
1430  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1431  * User must release file via fput().
1432  */
1433 struct file *get_task_exe_file(struct task_struct *task)
1434 {
1435 	struct file *exe_file = NULL;
1436 	struct mm_struct *mm;
1437 
1438 	task_lock(task);
1439 	mm = task->mm;
1440 	if (mm) {
1441 		if (!(task->flags & PF_KTHREAD))
1442 			exe_file = get_mm_exe_file(mm);
1443 	}
1444 	task_unlock(task);
1445 	return exe_file;
1446 }
1447 
1448 /**
1449  * get_task_mm - acquire a reference to the task's mm
1450  *
1451  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1452  * this kernel workthread has transiently adopted a user mm with use_mm,
1453  * to do its AIO) is not set and if so returns a reference to it, after
1454  * bumping up the use count.  User must release the mm via mmput()
1455  * after use.  Typically used by /proc and ptrace.
1456  */
1457 struct mm_struct *get_task_mm(struct task_struct *task)
1458 {
1459 	struct mm_struct *mm;
1460 
1461 	task_lock(task);
1462 	mm = task->mm;
1463 	if (mm) {
1464 		if (task->flags & PF_KTHREAD)
1465 			mm = NULL;
1466 		else
1467 			mmget(mm);
1468 	}
1469 	task_unlock(task);
1470 	return mm;
1471 }
1472 EXPORT_SYMBOL_GPL(get_task_mm);
1473 
1474 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1475 {
1476 	struct mm_struct *mm;
1477 	int err;
1478 
1479 	err =  down_read_killable(&task->signal->exec_update_lock);
1480 	if (err)
1481 		return ERR_PTR(err);
1482 
1483 	mm = get_task_mm(task);
1484 	if (mm && mm != current->mm &&
1485 			!ptrace_may_access(task, mode)) {
1486 		mmput(mm);
1487 		mm = ERR_PTR(-EACCES);
1488 	}
1489 	up_read(&task->signal->exec_update_lock);
1490 
1491 	return mm;
1492 }
1493 
1494 static void complete_vfork_done(struct task_struct *tsk)
1495 {
1496 	struct completion *vfork;
1497 
1498 	task_lock(tsk);
1499 	vfork = tsk->vfork_done;
1500 	if (likely(vfork)) {
1501 		tsk->vfork_done = NULL;
1502 		complete(vfork);
1503 	}
1504 	task_unlock(tsk);
1505 }
1506 
1507 static int wait_for_vfork_done(struct task_struct *child,
1508 				struct completion *vfork)
1509 {
1510 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1511 	int killed;
1512 
1513 	cgroup_enter_frozen();
1514 	killed = wait_for_completion_state(vfork, state);
1515 	cgroup_leave_frozen(false);
1516 
1517 	if (killed) {
1518 		task_lock(child);
1519 		child->vfork_done = NULL;
1520 		task_unlock(child);
1521 	}
1522 
1523 	put_task_struct(child);
1524 	return killed;
1525 }
1526 
1527 /* Please note the differences between mmput and mm_release.
1528  * mmput is called whenever we stop holding onto a mm_struct,
1529  * error success whatever.
1530  *
1531  * mm_release is called after a mm_struct has been removed
1532  * from the current process.
1533  *
1534  * This difference is important for error handling, when we
1535  * only half set up a mm_struct for a new process and need to restore
1536  * the old one.  Because we mmput the new mm_struct before
1537  * restoring the old one. . .
1538  * Eric Biederman 10 January 1998
1539  */
1540 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1541 {
1542 	uprobe_free_utask(tsk);
1543 
1544 	/* Get rid of any cached register state */
1545 	deactivate_mm(tsk, mm);
1546 
1547 	/*
1548 	 * Signal userspace if we're not exiting with a core dump
1549 	 * because we want to leave the value intact for debugging
1550 	 * purposes.
1551 	 */
1552 	if (tsk->clear_child_tid) {
1553 		if (atomic_read(&mm->mm_users) > 1) {
1554 			/*
1555 			 * We don't check the error code - if userspace has
1556 			 * not set up a proper pointer then tough luck.
1557 			 */
1558 			put_user(0, tsk->clear_child_tid);
1559 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1560 					1, NULL, NULL, 0, 0);
1561 		}
1562 		tsk->clear_child_tid = NULL;
1563 	}
1564 
1565 	/*
1566 	 * All done, finally we can wake up parent and return this mm to him.
1567 	 * Also kthread_stop() uses this completion for synchronization.
1568 	 */
1569 	if (tsk->vfork_done)
1570 		complete_vfork_done(tsk);
1571 }
1572 
1573 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1574 {
1575 	futex_exit_release(tsk);
1576 	mm_release(tsk, mm);
1577 }
1578 
1579 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1580 {
1581 	futex_exec_release(tsk);
1582 	mm_release(tsk, mm);
1583 }
1584 
1585 /**
1586  * dup_mm() - duplicates an existing mm structure
1587  * @tsk: the task_struct with which the new mm will be associated.
1588  * @oldmm: the mm to duplicate.
1589  *
1590  * Allocates a new mm structure and duplicates the provided @oldmm structure
1591  * content into it.
1592  *
1593  * Return: the duplicated mm or NULL on failure.
1594  */
1595 static struct mm_struct *dup_mm(struct task_struct *tsk,
1596 				struct mm_struct *oldmm)
1597 {
1598 	struct mm_struct *mm;
1599 	int err;
1600 
1601 	mm = allocate_mm();
1602 	if (!mm)
1603 		goto fail_nomem;
1604 
1605 	memcpy(mm, oldmm, sizeof(*mm));
1606 
1607 	if (!mm_init(mm, tsk, mm->user_ns))
1608 		goto fail_nomem;
1609 
1610 	err = dup_mmap(mm, oldmm);
1611 	if (err)
1612 		goto free_pt;
1613 
1614 	mm->hiwater_rss = get_mm_rss(mm);
1615 	mm->hiwater_vm = mm->total_vm;
1616 
1617 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1618 		goto free_pt;
1619 
1620 	return mm;
1621 
1622 free_pt:
1623 	/* don't put binfmt in mmput, we haven't got module yet */
1624 	mm->binfmt = NULL;
1625 	mm_init_owner(mm, NULL);
1626 	mmput(mm);
1627 
1628 fail_nomem:
1629 	return NULL;
1630 }
1631 
1632 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1633 {
1634 	struct mm_struct *mm, *oldmm;
1635 
1636 	tsk->min_flt = tsk->maj_flt = 0;
1637 	tsk->nvcsw = tsk->nivcsw = 0;
1638 #ifdef CONFIG_DETECT_HUNG_TASK
1639 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1640 	tsk->last_switch_time = 0;
1641 #endif
1642 
1643 	tsk->mm = NULL;
1644 	tsk->active_mm = NULL;
1645 
1646 	/*
1647 	 * Are we cloning a kernel thread?
1648 	 *
1649 	 * We need to steal a active VM for that..
1650 	 */
1651 	oldmm = current->mm;
1652 	if (!oldmm)
1653 		return 0;
1654 
1655 	if (clone_flags & CLONE_VM) {
1656 		mmget(oldmm);
1657 		mm = oldmm;
1658 	} else {
1659 		mm = dup_mm(tsk, current->mm);
1660 		if (!mm)
1661 			return -ENOMEM;
1662 	}
1663 
1664 	tsk->mm = mm;
1665 	tsk->active_mm = mm;
1666 	sched_mm_cid_fork(tsk);
1667 	return 0;
1668 }
1669 
1670 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1671 {
1672 	struct fs_struct *fs = current->fs;
1673 	if (clone_flags & CLONE_FS) {
1674 		/* tsk->fs is already what we want */
1675 		spin_lock(&fs->lock);
1676 		if (fs->in_exec) {
1677 			spin_unlock(&fs->lock);
1678 			return -EAGAIN;
1679 		}
1680 		fs->users++;
1681 		spin_unlock(&fs->lock);
1682 		return 0;
1683 	}
1684 	tsk->fs = copy_fs_struct(fs);
1685 	if (!tsk->fs)
1686 		return -ENOMEM;
1687 	return 0;
1688 }
1689 
1690 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1691 {
1692 	struct files_struct *oldf, *newf;
1693 	int error = 0;
1694 
1695 	/*
1696 	 * A background process may not have any files ...
1697 	 */
1698 	oldf = current->files;
1699 	if (!oldf)
1700 		goto out;
1701 
1702 	if (clone_flags & CLONE_FILES) {
1703 		atomic_inc(&oldf->count);
1704 		goto out;
1705 	}
1706 
1707 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1708 	if (!newf)
1709 		goto out;
1710 
1711 	tsk->files = newf;
1712 	error = 0;
1713 out:
1714 	return error;
1715 }
1716 
1717 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1718 {
1719 	struct sighand_struct *sig;
1720 
1721 	if (clone_flags & CLONE_SIGHAND) {
1722 		refcount_inc(&current->sighand->count);
1723 		return 0;
1724 	}
1725 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1726 	RCU_INIT_POINTER(tsk->sighand, sig);
1727 	if (!sig)
1728 		return -ENOMEM;
1729 
1730 	refcount_set(&sig->count, 1);
1731 	spin_lock_irq(&current->sighand->siglock);
1732 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1733 	spin_unlock_irq(&current->sighand->siglock);
1734 
1735 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1736 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1737 		flush_signal_handlers(tsk, 0);
1738 
1739 	return 0;
1740 }
1741 
1742 void __cleanup_sighand(struct sighand_struct *sighand)
1743 {
1744 	if (refcount_dec_and_test(&sighand->count)) {
1745 		signalfd_cleanup(sighand);
1746 		/*
1747 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1748 		 * without an RCU grace period, see __lock_task_sighand().
1749 		 */
1750 		kmem_cache_free(sighand_cachep, sighand);
1751 	}
1752 }
1753 
1754 /*
1755  * Initialize POSIX timer handling for a thread group.
1756  */
1757 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1758 {
1759 	struct posix_cputimers *pct = &sig->posix_cputimers;
1760 	unsigned long cpu_limit;
1761 
1762 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1763 	posix_cputimers_group_init(pct, cpu_limit);
1764 }
1765 
1766 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1767 {
1768 	struct signal_struct *sig;
1769 
1770 	if (clone_flags & CLONE_THREAD)
1771 		return 0;
1772 
1773 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1774 	tsk->signal = sig;
1775 	if (!sig)
1776 		return -ENOMEM;
1777 
1778 	sig->nr_threads = 1;
1779 	sig->quick_threads = 1;
1780 	atomic_set(&sig->live, 1);
1781 	refcount_set(&sig->sigcnt, 1);
1782 
1783 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1784 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1785 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1786 
1787 	init_waitqueue_head(&sig->wait_chldexit);
1788 	sig->curr_target = tsk;
1789 	init_sigpending(&sig->shared_pending);
1790 	INIT_HLIST_HEAD(&sig->multiprocess);
1791 	seqlock_init(&sig->stats_lock);
1792 	prev_cputime_init(&sig->prev_cputime);
1793 
1794 #ifdef CONFIG_POSIX_TIMERS
1795 	INIT_LIST_HEAD(&sig->posix_timers);
1796 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1797 	sig->real_timer.function = it_real_fn;
1798 #endif
1799 
1800 	task_lock(current->group_leader);
1801 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1802 	task_unlock(current->group_leader);
1803 
1804 	posix_cpu_timers_init_group(sig);
1805 
1806 	tty_audit_fork(sig);
1807 	sched_autogroup_fork(sig);
1808 
1809 	sig->oom_score_adj = current->signal->oom_score_adj;
1810 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1811 
1812 	mutex_init(&sig->cred_guard_mutex);
1813 	init_rwsem(&sig->exec_update_lock);
1814 
1815 	return 0;
1816 }
1817 
1818 static void copy_seccomp(struct task_struct *p)
1819 {
1820 #ifdef CONFIG_SECCOMP
1821 	/*
1822 	 * Must be called with sighand->lock held, which is common to
1823 	 * all threads in the group. Holding cred_guard_mutex is not
1824 	 * needed because this new task is not yet running and cannot
1825 	 * be racing exec.
1826 	 */
1827 	assert_spin_locked(&current->sighand->siglock);
1828 
1829 	/* Ref-count the new filter user, and assign it. */
1830 	get_seccomp_filter(current);
1831 	p->seccomp = current->seccomp;
1832 
1833 	/*
1834 	 * Explicitly enable no_new_privs here in case it got set
1835 	 * between the task_struct being duplicated and holding the
1836 	 * sighand lock. The seccomp state and nnp must be in sync.
1837 	 */
1838 	if (task_no_new_privs(current))
1839 		task_set_no_new_privs(p);
1840 
1841 	/*
1842 	 * If the parent gained a seccomp mode after copying thread
1843 	 * flags and between before we held the sighand lock, we have
1844 	 * to manually enable the seccomp thread flag here.
1845 	 */
1846 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1847 		set_task_syscall_work(p, SECCOMP);
1848 #endif
1849 }
1850 
1851 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1852 {
1853 	current->clear_child_tid = tidptr;
1854 
1855 	return task_pid_vnr(current);
1856 }
1857 
1858 static void rt_mutex_init_task(struct task_struct *p)
1859 {
1860 	raw_spin_lock_init(&p->pi_lock);
1861 #ifdef CONFIG_RT_MUTEXES
1862 	p->pi_waiters = RB_ROOT_CACHED;
1863 	p->pi_top_task = NULL;
1864 	p->pi_blocked_on = NULL;
1865 #endif
1866 }
1867 
1868 static inline void init_task_pid_links(struct task_struct *task)
1869 {
1870 	enum pid_type type;
1871 
1872 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1873 		INIT_HLIST_NODE(&task->pid_links[type]);
1874 }
1875 
1876 static inline void
1877 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1878 {
1879 	if (type == PIDTYPE_PID)
1880 		task->thread_pid = pid;
1881 	else
1882 		task->signal->pids[type] = pid;
1883 }
1884 
1885 static inline void rcu_copy_process(struct task_struct *p)
1886 {
1887 #ifdef CONFIG_PREEMPT_RCU
1888 	p->rcu_read_lock_nesting = 0;
1889 	p->rcu_read_unlock_special.s = 0;
1890 	p->rcu_blocked_node = NULL;
1891 	INIT_LIST_HEAD(&p->rcu_node_entry);
1892 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1893 #ifdef CONFIG_TASKS_RCU
1894 	p->rcu_tasks_holdout = false;
1895 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1896 	p->rcu_tasks_idle_cpu = -1;
1897 #endif /* #ifdef CONFIG_TASKS_RCU */
1898 #ifdef CONFIG_TASKS_TRACE_RCU
1899 	p->trc_reader_nesting = 0;
1900 	p->trc_reader_special.s = 0;
1901 	INIT_LIST_HEAD(&p->trc_holdout_list);
1902 	INIT_LIST_HEAD(&p->trc_blkd_node);
1903 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1904 }
1905 
1906 struct pid *pidfd_pid(const struct file *file)
1907 {
1908 	if (file->f_op == &pidfd_fops)
1909 		return file->private_data;
1910 
1911 	return ERR_PTR(-EBADF);
1912 }
1913 
1914 static int pidfd_release(struct inode *inode, struct file *file)
1915 {
1916 	struct pid *pid = file->private_data;
1917 
1918 	file->private_data = NULL;
1919 	put_pid(pid);
1920 	return 0;
1921 }
1922 
1923 #ifdef CONFIG_PROC_FS
1924 /**
1925  * pidfd_show_fdinfo - print information about a pidfd
1926  * @m: proc fdinfo file
1927  * @f: file referencing a pidfd
1928  *
1929  * Pid:
1930  * This function will print the pid that a given pidfd refers to in the
1931  * pid namespace of the procfs instance.
1932  * If the pid namespace of the process is not a descendant of the pid
1933  * namespace of the procfs instance 0 will be shown as its pid. This is
1934  * similar to calling getppid() on a process whose parent is outside of
1935  * its pid namespace.
1936  *
1937  * NSpid:
1938  * If pid namespaces are supported then this function will also print
1939  * the pid of a given pidfd refers to for all descendant pid namespaces
1940  * starting from the current pid namespace of the instance, i.e. the
1941  * Pid field and the first entry in the NSpid field will be identical.
1942  * If the pid namespace of the process is not a descendant of the pid
1943  * namespace of the procfs instance 0 will be shown as its first NSpid
1944  * entry and no others will be shown.
1945  * Note that this differs from the Pid and NSpid fields in
1946  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1947  * the  pid namespace of the procfs instance. The difference becomes
1948  * obvious when sending around a pidfd between pid namespaces from a
1949  * different branch of the tree, i.e. where no ancestral relation is
1950  * present between the pid namespaces:
1951  * - create two new pid namespaces ns1 and ns2 in the initial pid
1952  *   namespace (also take care to create new mount namespaces in the
1953  *   new pid namespace and mount procfs)
1954  * - create a process with a pidfd in ns1
1955  * - send pidfd from ns1 to ns2
1956  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1957  *   have exactly one entry, which is 0
1958  */
1959 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1960 {
1961 	struct pid *pid = f->private_data;
1962 	struct pid_namespace *ns;
1963 	pid_t nr = -1;
1964 
1965 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1966 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1967 		nr = pid_nr_ns(pid, ns);
1968 	}
1969 
1970 	seq_put_decimal_ll(m, "Pid:\t", nr);
1971 
1972 #ifdef CONFIG_PID_NS
1973 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1974 	if (nr > 0) {
1975 		int i;
1976 
1977 		/* If nr is non-zero it means that 'pid' is valid and that
1978 		 * ns, i.e. the pid namespace associated with the procfs
1979 		 * instance, is in the pid namespace hierarchy of pid.
1980 		 * Start at one below the already printed level.
1981 		 */
1982 		for (i = ns->level + 1; i <= pid->level; i++)
1983 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1984 	}
1985 #endif
1986 	seq_putc(m, '\n');
1987 }
1988 #endif
1989 
1990 /*
1991  * Poll support for process exit notification.
1992  */
1993 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1994 {
1995 	struct pid *pid = file->private_data;
1996 	__poll_t poll_flags = 0;
1997 
1998 	poll_wait(file, &pid->wait_pidfd, pts);
1999 
2000 	/*
2001 	 * Inform pollers only when the whole thread group exits.
2002 	 * If the thread group leader exits before all other threads in the
2003 	 * group, then poll(2) should block, similar to the wait(2) family.
2004 	 */
2005 	if (thread_group_exited(pid))
2006 		poll_flags = EPOLLIN | EPOLLRDNORM;
2007 
2008 	return poll_flags;
2009 }
2010 
2011 const struct file_operations pidfd_fops = {
2012 	.release = pidfd_release,
2013 	.poll = pidfd_poll,
2014 #ifdef CONFIG_PROC_FS
2015 	.show_fdinfo = pidfd_show_fdinfo,
2016 #endif
2017 };
2018 
2019 static void __delayed_free_task(struct rcu_head *rhp)
2020 {
2021 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2022 
2023 	free_task(tsk);
2024 }
2025 
2026 static __always_inline void delayed_free_task(struct task_struct *tsk)
2027 {
2028 	if (IS_ENABLED(CONFIG_MEMCG))
2029 		call_rcu(&tsk->rcu, __delayed_free_task);
2030 	else
2031 		free_task(tsk);
2032 }
2033 
2034 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2035 {
2036 	/* Skip if kernel thread */
2037 	if (!tsk->mm)
2038 		return;
2039 
2040 	/* Skip if spawning a thread or using vfork */
2041 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2042 		return;
2043 
2044 	/* We need to synchronize with __set_oom_adj */
2045 	mutex_lock(&oom_adj_mutex);
2046 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2047 	/* Update the values in case they were changed after copy_signal */
2048 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2049 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2050 	mutex_unlock(&oom_adj_mutex);
2051 }
2052 
2053 #ifdef CONFIG_RV
2054 static void rv_task_fork(struct task_struct *p)
2055 {
2056 	int i;
2057 
2058 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2059 		p->rv[i].da_mon.monitoring = false;
2060 }
2061 #else
2062 #define rv_task_fork(p) do {} while (0)
2063 #endif
2064 
2065 /*
2066  * This creates a new process as a copy of the old one,
2067  * but does not actually start it yet.
2068  *
2069  * It copies the registers, and all the appropriate
2070  * parts of the process environment (as per the clone
2071  * flags). The actual kick-off is left to the caller.
2072  */
2073 static __latent_entropy struct task_struct *copy_process(
2074 					struct pid *pid,
2075 					int trace,
2076 					int node,
2077 					struct kernel_clone_args *args)
2078 {
2079 	int pidfd = -1, retval;
2080 	struct task_struct *p;
2081 	struct multiprocess_signals delayed;
2082 	struct file *pidfile = NULL;
2083 	const u64 clone_flags = args->flags;
2084 	struct nsproxy *nsp = current->nsproxy;
2085 
2086 	/*
2087 	 * Don't allow sharing the root directory with processes in a different
2088 	 * namespace
2089 	 */
2090 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2091 		return ERR_PTR(-EINVAL);
2092 
2093 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2094 		return ERR_PTR(-EINVAL);
2095 
2096 	/*
2097 	 * Thread groups must share signals as well, and detached threads
2098 	 * can only be started up within the thread group.
2099 	 */
2100 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2101 		return ERR_PTR(-EINVAL);
2102 
2103 	/*
2104 	 * Shared signal handlers imply shared VM. By way of the above,
2105 	 * thread groups also imply shared VM. Blocking this case allows
2106 	 * for various simplifications in other code.
2107 	 */
2108 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2109 		return ERR_PTR(-EINVAL);
2110 
2111 	/*
2112 	 * Siblings of global init remain as zombies on exit since they are
2113 	 * not reaped by their parent (swapper). To solve this and to avoid
2114 	 * multi-rooted process trees, prevent global and container-inits
2115 	 * from creating siblings.
2116 	 */
2117 	if ((clone_flags & CLONE_PARENT) &&
2118 				current->signal->flags & SIGNAL_UNKILLABLE)
2119 		return ERR_PTR(-EINVAL);
2120 
2121 	/*
2122 	 * If the new process will be in a different pid or user namespace
2123 	 * do not allow it to share a thread group with the forking task.
2124 	 */
2125 	if (clone_flags & CLONE_THREAD) {
2126 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2127 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2128 			return ERR_PTR(-EINVAL);
2129 	}
2130 
2131 	if (clone_flags & CLONE_PIDFD) {
2132 		/*
2133 		 * - CLONE_DETACHED is blocked so that we can potentially
2134 		 *   reuse it later for CLONE_PIDFD.
2135 		 * - CLONE_THREAD is blocked until someone really needs it.
2136 		 */
2137 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2138 			return ERR_PTR(-EINVAL);
2139 	}
2140 
2141 	/*
2142 	 * Force any signals received before this point to be delivered
2143 	 * before the fork happens.  Collect up signals sent to multiple
2144 	 * processes that happen during the fork and delay them so that
2145 	 * they appear to happen after the fork.
2146 	 */
2147 	sigemptyset(&delayed.signal);
2148 	INIT_HLIST_NODE(&delayed.node);
2149 
2150 	spin_lock_irq(&current->sighand->siglock);
2151 	if (!(clone_flags & CLONE_THREAD))
2152 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2153 	recalc_sigpending();
2154 	spin_unlock_irq(&current->sighand->siglock);
2155 	retval = -ERESTARTNOINTR;
2156 	if (task_sigpending(current))
2157 		goto fork_out;
2158 
2159 	retval = -ENOMEM;
2160 	p = dup_task_struct(current, node);
2161 	if (!p)
2162 		goto fork_out;
2163 	p->flags &= ~PF_KTHREAD;
2164 	if (args->kthread)
2165 		p->flags |= PF_KTHREAD;
2166 	if (args->io_thread) {
2167 		/*
2168 		 * Mark us an IO worker, and block any signal that isn't
2169 		 * fatal or STOP
2170 		 */
2171 		p->flags |= PF_IO_WORKER;
2172 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2173 	}
2174 
2175 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2176 	/*
2177 	 * Clear TID on mm_release()?
2178 	 */
2179 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2180 
2181 	ftrace_graph_init_task(p);
2182 
2183 	rt_mutex_init_task(p);
2184 
2185 	lockdep_assert_irqs_enabled();
2186 #ifdef CONFIG_PROVE_LOCKING
2187 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2188 #endif
2189 	retval = copy_creds(p, clone_flags);
2190 	if (retval < 0)
2191 		goto bad_fork_free;
2192 
2193 	retval = -EAGAIN;
2194 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2195 		if (p->real_cred->user != INIT_USER &&
2196 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2197 			goto bad_fork_cleanup_count;
2198 	}
2199 	current->flags &= ~PF_NPROC_EXCEEDED;
2200 
2201 	/*
2202 	 * If multiple threads are within copy_process(), then this check
2203 	 * triggers too late. This doesn't hurt, the check is only there
2204 	 * to stop root fork bombs.
2205 	 */
2206 	retval = -EAGAIN;
2207 	if (data_race(nr_threads >= max_threads))
2208 		goto bad_fork_cleanup_count;
2209 
2210 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2211 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2212 	p->flags |= PF_FORKNOEXEC;
2213 	INIT_LIST_HEAD(&p->children);
2214 	INIT_LIST_HEAD(&p->sibling);
2215 	rcu_copy_process(p);
2216 	p->vfork_done = NULL;
2217 	spin_lock_init(&p->alloc_lock);
2218 
2219 	init_sigpending(&p->pending);
2220 
2221 	p->utime = p->stime = p->gtime = 0;
2222 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2223 	p->utimescaled = p->stimescaled = 0;
2224 #endif
2225 	prev_cputime_init(&p->prev_cputime);
2226 
2227 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2228 	seqcount_init(&p->vtime.seqcount);
2229 	p->vtime.starttime = 0;
2230 	p->vtime.state = VTIME_INACTIVE;
2231 #endif
2232 
2233 #ifdef CONFIG_IO_URING
2234 	p->io_uring = NULL;
2235 #endif
2236 
2237 #if defined(SPLIT_RSS_COUNTING)
2238 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2239 #endif
2240 
2241 	p->default_timer_slack_ns = current->timer_slack_ns;
2242 
2243 #ifdef CONFIG_PSI
2244 	p->psi_flags = 0;
2245 #endif
2246 
2247 	task_io_accounting_init(&p->ioac);
2248 	acct_clear_integrals(p);
2249 
2250 	posix_cputimers_init(&p->posix_cputimers);
2251 
2252 	p->io_context = NULL;
2253 	audit_set_context(p, NULL);
2254 	cgroup_fork(p);
2255 	if (args->kthread) {
2256 		if (!set_kthread_struct(p))
2257 			goto bad_fork_cleanup_delayacct;
2258 	}
2259 #ifdef CONFIG_NUMA
2260 	p->mempolicy = mpol_dup(p->mempolicy);
2261 	if (IS_ERR(p->mempolicy)) {
2262 		retval = PTR_ERR(p->mempolicy);
2263 		p->mempolicy = NULL;
2264 		goto bad_fork_cleanup_delayacct;
2265 	}
2266 #endif
2267 #ifdef CONFIG_CPUSETS
2268 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2269 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2270 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2271 #endif
2272 #ifdef CONFIG_TRACE_IRQFLAGS
2273 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2274 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2275 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2276 	p->softirqs_enabled		= 1;
2277 	p->softirq_context		= 0;
2278 #endif
2279 
2280 	p->pagefault_disabled = 0;
2281 
2282 #ifdef CONFIG_LOCKDEP
2283 	lockdep_init_task(p);
2284 #endif
2285 
2286 #ifdef CONFIG_DEBUG_MUTEXES
2287 	p->blocked_on = NULL; /* not blocked yet */
2288 #endif
2289 #ifdef CONFIG_BCACHE
2290 	p->sequential_io	= 0;
2291 	p->sequential_io_avg	= 0;
2292 #endif
2293 #ifdef CONFIG_BPF_SYSCALL
2294 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2295 	p->bpf_ctx = NULL;
2296 #endif
2297 
2298 	/* Perform scheduler related setup. Assign this task to a CPU. */
2299 	retval = sched_fork(clone_flags, p);
2300 	if (retval)
2301 		goto bad_fork_cleanup_policy;
2302 
2303 	retval = perf_event_init_task(p, clone_flags);
2304 	if (retval)
2305 		goto bad_fork_cleanup_policy;
2306 	retval = audit_alloc(p);
2307 	if (retval)
2308 		goto bad_fork_cleanup_perf;
2309 	/* copy all the process information */
2310 	shm_init_task(p);
2311 	retval = security_task_alloc(p, clone_flags);
2312 	if (retval)
2313 		goto bad_fork_cleanup_audit;
2314 	retval = copy_semundo(clone_flags, p);
2315 	if (retval)
2316 		goto bad_fork_cleanup_security;
2317 	retval = copy_files(clone_flags, p);
2318 	if (retval)
2319 		goto bad_fork_cleanup_semundo;
2320 	retval = copy_fs(clone_flags, p);
2321 	if (retval)
2322 		goto bad_fork_cleanup_files;
2323 	retval = copy_sighand(clone_flags, p);
2324 	if (retval)
2325 		goto bad_fork_cleanup_fs;
2326 	retval = copy_signal(clone_flags, p);
2327 	if (retval)
2328 		goto bad_fork_cleanup_sighand;
2329 	retval = copy_mm(clone_flags, p);
2330 	if (retval)
2331 		goto bad_fork_cleanup_signal;
2332 	retval = copy_namespaces(clone_flags, p);
2333 	if (retval)
2334 		goto bad_fork_cleanup_mm;
2335 	retval = copy_io(clone_flags, p);
2336 	if (retval)
2337 		goto bad_fork_cleanup_namespaces;
2338 	retval = copy_thread(p, args);
2339 	if (retval)
2340 		goto bad_fork_cleanup_io;
2341 
2342 	stackleak_task_init(p);
2343 
2344 	if (pid != &init_struct_pid) {
2345 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2346 				args->set_tid_size);
2347 		if (IS_ERR(pid)) {
2348 			retval = PTR_ERR(pid);
2349 			goto bad_fork_cleanup_thread;
2350 		}
2351 	}
2352 
2353 	/*
2354 	 * This has to happen after we've potentially unshared the file
2355 	 * descriptor table (so that the pidfd doesn't leak into the child
2356 	 * if the fd table isn't shared).
2357 	 */
2358 	if (clone_flags & CLONE_PIDFD) {
2359 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2360 		if (retval < 0)
2361 			goto bad_fork_free_pid;
2362 
2363 		pidfd = retval;
2364 
2365 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2366 					      O_RDWR | O_CLOEXEC);
2367 		if (IS_ERR(pidfile)) {
2368 			put_unused_fd(pidfd);
2369 			retval = PTR_ERR(pidfile);
2370 			goto bad_fork_free_pid;
2371 		}
2372 		get_pid(pid);	/* held by pidfile now */
2373 
2374 		retval = put_user(pidfd, args->pidfd);
2375 		if (retval)
2376 			goto bad_fork_put_pidfd;
2377 	}
2378 
2379 #ifdef CONFIG_BLOCK
2380 	p->plug = NULL;
2381 #endif
2382 	futex_init_task(p);
2383 
2384 	/*
2385 	 * sigaltstack should be cleared when sharing the same VM
2386 	 */
2387 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2388 		sas_ss_reset(p);
2389 
2390 	/*
2391 	 * Syscall tracing and stepping should be turned off in the
2392 	 * child regardless of CLONE_PTRACE.
2393 	 */
2394 	user_disable_single_step(p);
2395 	clear_task_syscall_work(p, SYSCALL_TRACE);
2396 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2397 	clear_task_syscall_work(p, SYSCALL_EMU);
2398 #endif
2399 	clear_tsk_latency_tracing(p);
2400 
2401 	/* ok, now we should be set up.. */
2402 	p->pid = pid_nr(pid);
2403 	if (clone_flags & CLONE_THREAD) {
2404 		p->group_leader = current->group_leader;
2405 		p->tgid = current->tgid;
2406 	} else {
2407 		p->group_leader = p;
2408 		p->tgid = p->pid;
2409 	}
2410 
2411 	p->nr_dirtied = 0;
2412 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2413 	p->dirty_paused_when = 0;
2414 
2415 	p->pdeath_signal = 0;
2416 	INIT_LIST_HEAD(&p->thread_group);
2417 	p->task_works = NULL;
2418 	clear_posix_cputimers_work(p);
2419 
2420 #ifdef CONFIG_KRETPROBES
2421 	p->kretprobe_instances.first = NULL;
2422 #endif
2423 #ifdef CONFIG_RETHOOK
2424 	p->rethooks.first = NULL;
2425 #endif
2426 
2427 	/*
2428 	 * Ensure that the cgroup subsystem policies allow the new process to be
2429 	 * forked. It should be noted that the new process's css_set can be changed
2430 	 * between here and cgroup_post_fork() if an organisation operation is in
2431 	 * progress.
2432 	 */
2433 	retval = cgroup_can_fork(p, args);
2434 	if (retval)
2435 		goto bad_fork_put_pidfd;
2436 
2437 	/*
2438 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2439 	 * the new task on the correct runqueue. All this *before* the task
2440 	 * becomes visible.
2441 	 *
2442 	 * This isn't part of ->can_fork() because while the re-cloning is
2443 	 * cgroup specific, it unconditionally needs to place the task on a
2444 	 * runqueue.
2445 	 */
2446 	sched_cgroup_fork(p, args);
2447 
2448 	/*
2449 	 * From this point on we must avoid any synchronous user-space
2450 	 * communication until we take the tasklist-lock. In particular, we do
2451 	 * not want user-space to be able to predict the process start-time by
2452 	 * stalling fork(2) after we recorded the start_time but before it is
2453 	 * visible to the system.
2454 	 */
2455 
2456 	p->start_time = ktime_get_ns();
2457 	p->start_boottime = ktime_get_boottime_ns();
2458 
2459 	/*
2460 	 * Make it visible to the rest of the system, but dont wake it up yet.
2461 	 * Need tasklist lock for parent etc handling!
2462 	 */
2463 	write_lock_irq(&tasklist_lock);
2464 
2465 	/* CLONE_PARENT re-uses the old parent */
2466 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2467 		p->real_parent = current->real_parent;
2468 		p->parent_exec_id = current->parent_exec_id;
2469 		if (clone_flags & CLONE_THREAD)
2470 			p->exit_signal = -1;
2471 		else
2472 			p->exit_signal = current->group_leader->exit_signal;
2473 	} else {
2474 		p->real_parent = current;
2475 		p->parent_exec_id = current->self_exec_id;
2476 		p->exit_signal = args->exit_signal;
2477 	}
2478 
2479 	klp_copy_process(p);
2480 
2481 	sched_core_fork(p);
2482 
2483 	spin_lock(&current->sighand->siglock);
2484 
2485 	rv_task_fork(p);
2486 
2487 	rseq_fork(p, clone_flags);
2488 
2489 	/* Don't start children in a dying pid namespace */
2490 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2491 		retval = -ENOMEM;
2492 		goto bad_fork_cancel_cgroup;
2493 	}
2494 
2495 	/* Let kill terminate clone/fork in the middle */
2496 	if (fatal_signal_pending(current)) {
2497 		retval = -EINTR;
2498 		goto bad_fork_cancel_cgroup;
2499 	}
2500 
2501 	/* No more failure paths after this point. */
2502 
2503 	/*
2504 	 * Copy seccomp details explicitly here, in case they were changed
2505 	 * before holding sighand lock.
2506 	 */
2507 	copy_seccomp(p);
2508 
2509 	init_task_pid_links(p);
2510 	if (likely(p->pid)) {
2511 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2512 
2513 		init_task_pid(p, PIDTYPE_PID, pid);
2514 		if (thread_group_leader(p)) {
2515 			init_task_pid(p, PIDTYPE_TGID, pid);
2516 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2517 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2518 
2519 			if (is_child_reaper(pid)) {
2520 				ns_of_pid(pid)->child_reaper = p;
2521 				p->signal->flags |= SIGNAL_UNKILLABLE;
2522 			}
2523 			p->signal->shared_pending.signal = delayed.signal;
2524 			p->signal->tty = tty_kref_get(current->signal->tty);
2525 			/*
2526 			 * Inherit has_child_subreaper flag under the same
2527 			 * tasklist_lock with adding child to the process tree
2528 			 * for propagate_has_child_subreaper optimization.
2529 			 */
2530 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2531 							 p->real_parent->signal->is_child_subreaper;
2532 			list_add_tail(&p->sibling, &p->real_parent->children);
2533 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2534 			attach_pid(p, PIDTYPE_TGID);
2535 			attach_pid(p, PIDTYPE_PGID);
2536 			attach_pid(p, PIDTYPE_SID);
2537 			__this_cpu_inc(process_counts);
2538 		} else {
2539 			current->signal->nr_threads++;
2540 			current->signal->quick_threads++;
2541 			atomic_inc(&current->signal->live);
2542 			refcount_inc(&current->signal->sigcnt);
2543 			task_join_group_stop(p);
2544 			list_add_tail_rcu(&p->thread_group,
2545 					  &p->group_leader->thread_group);
2546 			list_add_tail_rcu(&p->thread_node,
2547 					  &p->signal->thread_head);
2548 		}
2549 		attach_pid(p, PIDTYPE_PID);
2550 		nr_threads++;
2551 	}
2552 	total_forks++;
2553 	hlist_del_init(&delayed.node);
2554 	spin_unlock(&current->sighand->siglock);
2555 	syscall_tracepoint_update(p);
2556 	write_unlock_irq(&tasklist_lock);
2557 
2558 	if (pidfile)
2559 		fd_install(pidfd, pidfile);
2560 
2561 	proc_fork_connector(p);
2562 	sched_post_fork(p);
2563 	cgroup_post_fork(p, args);
2564 	perf_event_fork(p);
2565 
2566 	trace_task_newtask(p, clone_flags);
2567 	uprobe_copy_process(p, clone_flags);
2568 
2569 	copy_oom_score_adj(clone_flags, p);
2570 
2571 	return p;
2572 
2573 bad_fork_cancel_cgroup:
2574 	sched_core_free(p);
2575 	spin_unlock(&current->sighand->siglock);
2576 	write_unlock_irq(&tasklist_lock);
2577 	cgroup_cancel_fork(p, args);
2578 bad_fork_put_pidfd:
2579 	if (clone_flags & CLONE_PIDFD) {
2580 		fput(pidfile);
2581 		put_unused_fd(pidfd);
2582 	}
2583 bad_fork_free_pid:
2584 	if (pid != &init_struct_pid)
2585 		free_pid(pid);
2586 bad_fork_cleanup_thread:
2587 	exit_thread(p);
2588 bad_fork_cleanup_io:
2589 	if (p->io_context)
2590 		exit_io_context(p);
2591 bad_fork_cleanup_namespaces:
2592 	exit_task_namespaces(p);
2593 bad_fork_cleanup_mm:
2594 	if (p->mm) {
2595 		mm_clear_owner(p->mm, p);
2596 		mmput(p->mm);
2597 	}
2598 bad_fork_cleanup_signal:
2599 	if (!(clone_flags & CLONE_THREAD))
2600 		free_signal_struct(p->signal);
2601 bad_fork_cleanup_sighand:
2602 	__cleanup_sighand(p->sighand);
2603 bad_fork_cleanup_fs:
2604 	exit_fs(p); /* blocking */
2605 bad_fork_cleanup_files:
2606 	exit_files(p); /* blocking */
2607 bad_fork_cleanup_semundo:
2608 	exit_sem(p);
2609 bad_fork_cleanup_security:
2610 	security_task_free(p);
2611 bad_fork_cleanup_audit:
2612 	audit_free(p);
2613 bad_fork_cleanup_perf:
2614 	perf_event_free_task(p);
2615 bad_fork_cleanup_policy:
2616 	lockdep_free_task(p);
2617 #ifdef CONFIG_NUMA
2618 	mpol_put(p->mempolicy);
2619 #endif
2620 bad_fork_cleanup_delayacct:
2621 	delayacct_tsk_free(p);
2622 bad_fork_cleanup_count:
2623 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2624 	exit_creds(p);
2625 bad_fork_free:
2626 	WRITE_ONCE(p->__state, TASK_DEAD);
2627 	exit_task_stack_account(p);
2628 	put_task_stack(p);
2629 	delayed_free_task(p);
2630 fork_out:
2631 	spin_lock_irq(&current->sighand->siglock);
2632 	hlist_del_init(&delayed.node);
2633 	spin_unlock_irq(&current->sighand->siglock);
2634 	return ERR_PTR(retval);
2635 }
2636 
2637 static inline void init_idle_pids(struct task_struct *idle)
2638 {
2639 	enum pid_type type;
2640 
2641 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2642 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2643 		init_task_pid(idle, type, &init_struct_pid);
2644 	}
2645 }
2646 
2647 static int idle_dummy(void *dummy)
2648 {
2649 	/* This function is never called */
2650 	return 0;
2651 }
2652 
2653 struct task_struct * __init fork_idle(int cpu)
2654 {
2655 	struct task_struct *task;
2656 	struct kernel_clone_args args = {
2657 		.flags		= CLONE_VM,
2658 		.fn		= &idle_dummy,
2659 		.fn_arg		= NULL,
2660 		.kthread	= 1,
2661 		.idle		= 1,
2662 	};
2663 
2664 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2665 	if (!IS_ERR(task)) {
2666 		init_idle_pids(task);
2667 		init_idle(task, cpu);
2668 	}
2669 
2670 	return task;
2671 }
2672 
2673 /*
2674  * This is like kernel_clone(), but shaved down and tailored to just
2675  * creating io_uring workers. It returns a created task, or an error pointer.
2676  * The returned task is inactive, and the caller must fire it up through
2677  * wake_up_new_task(p). All signals are blocked in the created task.
2678  */
2679 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2680 {
2681 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2682 				CLONE_IO;
2683 	struct kernel_clone_args args = {
2684 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2685 				    CLONE_UNTRACED) & ~CSIGNAL),
2686 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2687 		.fn		= fn,
2688 		.fn_arg		= arg,
2689 		.io_thread	= 1,
2690 	};
2691 
2692 	return copy_process(NULL, 0, node, &args);
2693 }
2694 
2695 /*
2696  *  Ok, this is the main fork-routine.
2697  *
2698  * It copies the process, and if successful kick-starts
2699  * it and waits for it to finish using the VM if required.
2700  *
2701  * args->exit_signal is expected to be checked for sanity by the caller.
2702  */
2703 pid_t kernel_clone(struct kernel_clone_args *args)
2704 {
2705 	u64 clone_flags = args->flags;
2706 	struct completion vfork;
2707 	struct pid *pid;
2708 	struct task_struct *p;
2709 	int trace = 0;
2710 	pid_t nr;
2711 
2712 	/*
2713 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2714 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2715 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2716 	 * field in struct clone_args and it still doesn't make sense to have
2717 	 * them both point at the same memory location. Performing this check
2718 	 * here has the advantage that we don't need to have a separate helper
2719 	 * to check for legacy clone().
2720 	 */
2721 	if ((args->flags & CLONE_PIDFD) &&
2722 	    (args->flags & CLONE_PARENT_SETTID) &&
2723 	    (args->pidfd == args->parent_tid))
2724 		return -EINVAL;
2725 
2726 	/*
2727 	 * Determine whether and which event to report to ptracer.  When
2728 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2729 	 * requested, no event is reported; otherwise, report if the event
2730 	 * for the type of forking is enabled.
2731 	 */
2732 	if (!(clone_flags & CLONE_UNTRACED)) {
2733 		if (clone_flags & CLONE_VFORK)
2734 			trace = PTRACE_EVENT_VFORK;
2735 		else if (args->exit_signal != SIGCHLD)
2736 			trace = PTRACE_EVENT_CLONE;
2737 		else
2738 			trace = PTRACE_EVENT_FORK;
2739 
2740 		if (likely(!ptrace_event_enabled(current, trace)))
2741 			trace = 0;
2742 	}
2743 
2744 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2745 	add_latent_entropy();
2746 
2747 	if (IS_ERR(p))
2748 		return PTR_ERR(p);
2749 
2750 	/*
2751 	 * Do this prior waking up the new thread - the thread pointer
2752 	 * might get invalid after that point, if the thread exits quickly.
2753 	 */
2754 	trace_sched_process_fork(current, p);
2755 
2756 	pid = get_task_pid(p, PIDTYPE_PID);
2757 	nr = pid_vnr(pid);
2758 
2759 	if (clone_flags & CLONE_PARENT_SETTID)
2760 		put_user(nr, args->parent_tid);
2761 
2762 	if (clone_flags & CLONE_VFORK) {
2763 		p->vfork_done = &vfork;
2764 		init_completion(&vfork);
2765 		get_task_struct(p);
2766 	}
2767 
2768 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2769 		/* lock the task to synchronize with memcg migration */
2770 		task_lock(p);
2771 		lru_gen_add_mm(p->mm);
2772 		task_unlock(p);
2773 	}
2774 
2775 	wake_up_new_task(p);
2776 
2777 	/* forking complete and child started to run, tell ptracer */
2778 	if (unlikely(trace))
2779 		ptrace_event_pid(trace, pid);
2780 
2781 	if (clone_flags & CLONE_VFORK) {
2782 		if (!wait_for_vfork_done(p, &vfork))
2783 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2784 	}
2785 
2786 	put_pid(pid);
2787 	return nr;
2788 }
2789 
2790 /*
2791  * Create a kernel thread.
2792  */
2793 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2794 {
2795 	struct kernel_clone_args args = {
2796 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2797 				    CLONE_UNTRACED) & ~CSIGNAL),
2798 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2799 		.fn		= fn,
2800 		.fn_arg		= arg,
2801 		.kthread	= 1,
2802 	};
2803 
2804 	return kernel_clone(&args);
2805 }
2806 
2807 /*
2808  * Create a user mode thread.
2809  */
2810 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2811 {
2812 	struct kernel_clone_args args = {
2813 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2814 				    CLONE_UNTRACED) & ~CSIGNAL),
2815 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2816 		.fn		= fn,
2817 		.fn_arg		= arg,
2818 	};
2819 
2820 	return kernel_clone(&args);
2821 }
2822 
2823 #ifdef __ARCH_WANT_SYS_FORK
2824 SYSCALL_DEFINE0(fork)
2825 {
2826 #ifdef CONFIG_MMU
2827 	struct kernel_clone_args args = {
2828 		.exit_signal = SIGCHLD,
2829 	};
2830 
2831 	return kernel_clone(&args);
2832 #else
2833 	/* can not support in nommu mode */
2834 	return -EINVAL;
2835 #endif
2836 }
2837 #endif
2838 
2839 #ifdef __ARCH_WANT_SYS_VFORK
2840 SYSCALL_DEFINE0(vfork)
2841 {
2842 	struct kernel_clone_args args = {
2843 		.flags		= CLONE_VFORK | CLONE_VM,
2844 		.exit_signal	= SIGCHLD,
2845 	};
2846 
2847 	return kernel_clone(&args);
2848 }
2849 #endif
2850 
2851 #ifdef __ARCH_WANT_SYS_CLONE
2852 #ifdef CONFIG_CLONE_BACKWARDS
2853 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2854 		 int __user *, parent_tidptr,
2855 		 unsigned long, tls,
2856 		 int __user *, child_tidptr)
2857 #elif defined(CONFIG_CLONE_BACKWARDS2)
2858 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2859 		 int __user *, parent_tidptr,
2860 		 int __user *, child_tidptr,
2861 		 unsigned long, tls)
2862 #elif defined(CONFIG_CLONE_BACKWARDS3)
2863 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2864 		int, stack_size,
2865 		int __user *, parent_tidptr,
2866 		int __user *, child_tidptr,
2867 		unsigned long, tls)
2868 #else
2869 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2870 		 int __user *, parent_tidptr,
2871 		 int __user *, child_tidptr,
2872 		 unsigned long, tls)
2873 #endif
2874 {
2875 	struct kernel_clone_args args = {
2876 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2877 		.pidfd		= parent_tidptr,
2878 		.child_tid	= child_tidptr,
2879 		.parent_tid	= parent_tidptr,
2880 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2881 		.stack		= newsp,
2882 		.tls		= tls,
2883 	};
2884 
2885 	return kernel_clone(&args);
2886 }
2887 #endif
2888 
2889 #ifdef __ARCH_WANT_SYS_CLONE3
2890 
2891 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2892 					      struct clone_args __user *uargs,
2893 					      size_t usize)
2894 {
2895 	int err;
2896 	struct clone_args args;
2897 	pid_t *kset_tid = kargs->set_tid;
2898 
2899 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2900 		     CLONE_ARGS_SIZE_VER0);
2901 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2902 		     CLONE_ARGS_SIZE_VER1);
2903 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2904 		     CLONE_ARGS_SIZE_VER2);
2905 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2906 
2907 	if (unlikely(usize > PAGE_SIZE))
2908 		return -E2BIG;
2909 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2910 		return -EINVAL;
2911 
2912 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2913 	if (err)
2914 		return err;
2915 
2916 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2917 		return -EINVAL;
2918 
2919 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2920 		return -EINVAL;
2921 
2922 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2923 		return -EINVAL;
2924 
2925 	/*
2926 	 * Verify that higher 32bits of exit_signal are unset and that
2927 	 * it is a valid signal
2928 	 */
2929 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2930 		     !valid_signal(args.exit_signal)))
2931 		return -EINVAL;
2932 
2933 	if ((args.flags & CLONE_INTO_CGROUP) &&
2934 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2935 		return -EINVAL;
2936 
2937 	*kargs = (struct kernel_clone_args){
2938 		.flags		= args.flags,
2939 		.pidfd		= u64_to_user_ptr(args.pidfd),
2940 		.child_tid	= u64_to_user_ptr(args.child_tid),
2941 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2942 		.exit_signal	= args.exit_signal,
2943 		.stack		= args.stack,
2944 		.stack_size	= args.stack_size,
2945 		.tls		= args.tls,
2946 		.set_tid_size	= args.set_tid_size,
2947 		.cgroup		= args.cgroup,
2948 	};
2949 
2950 	if (args.set_tid &&
2951 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2952 			(kargs->set_tid_size * sizeof(pid_t))))
2953 		return -EFAULT;
2954 
2955 	kargs->set_tid = kset_tid;
2956 
2957 	return 0;
2958 }
2959 
2960 /**
2961  * clone3_stack_valid - check and prepare stack
2962  * @kargs: kernel clone args
2963  *
2964  * Verify that the stack arguments userspace gave us are sane.
2965  * In addition, set the stack direction for userspace since it's easy for us to
2966  * determine.
2967  */
2968 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2969 {
2970 	if (kargs->stack == 0) {
2971 		if (kargs->stack_size > 0)
2972 			return false;
2973 	} else {
2974 		if (kargs->stack_size == 0)
2975 			return false;
2976 
2977 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2978 			return false;
2979 
2980 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2981 		kargs->stack += kargs->stack_size;
2982 #endif
2983 	}
2984 
2985 	return true;
2986 }
2987 
2988 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2989 {
2990 	/* Verify that no unknown flags are passed along. */
2991 	if (kargs->flags &
2992 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2993 		return false;
2994 
2995 	/*
2996 	 * - make the CLONE_DETACHED bit reusable for clone3
2997 	 * - make the CSIGNAL bits reusable for clone3
2998 	 */
2999 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3000 		return false;
3001 
3002 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3003 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3004 		return false;
3005 
3006 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3007 	    kargs->exit_signal)
3008 		return false;
3009 
3010 	if (!clone3_stack_valid(kargs))
3011 		return false;
3012 
3013 	return true;
3014 }
3015 
3016 /**
3017  * clone3 - create a new process with specific properties
3018  * @uargs: argument structure
3019  * @size:  size of @uargs
3020  *
3021  * clone3() is the extensible successor to clone()/clone2().
3022  * It takes a struct as argument that is versioned by its size.
3023  *
3024  * Return: On success, a positive PID for the child process.
3025  *         On error, a negative errno number.
3026  */
3027 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3028 {
3029 	int err;
3030 
3031 	struct kernel_clone_args kargs;
3032 	pid_t set_tid[MAX_PID_NS_LEVEL];
3033 
3034 	kargs.set_tid = set_tid;
3035 
3036 	err = copy_clone_args_from_user(&kargs, uargs, size);
3037 	if (err)
3038 		return err;
3039 
3040 	if (!clone3_args_valid(&kargs))
3041 		return -EINVAL;
3042 
3043 	return kernel_clone(&kargs);
3044 }
3045 #endif
3046 
3047 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3048 {
3049 	struct task_struct *leader, *parent, *child;
3050 	int res;
3051 
3052 	read_lock(&tasklist_lock);
3053 	leader = top = top->group_leader;
3054 down:
3055 	for_each_thread(leader, parent) {
3056 		list_for_each_entry(child, &parent->children, sibling) {
3057 			res = visitor(child, data);
3058 			if (res) {
3059 				if (res < 0)
3060 					goto out;
3061 				leader = child;
3062 				goto down;
3063 			}
3064 up:
3065 			;
3066 		}
3067 	}
3068 
3069 	if (leader != top) {
3070 		child = leader;
3071 		parent = child->real_parent;
3072 		leader = parent->group_leader;
3073 		goto up;
3074 	}
3075 out:
3076 	read_unlock(&tasklist_lock);
3077 }
3078 
3079 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3080 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3081 #endif
3082 
3083 static void sighand_ctor(void *data)
3084 {
3085 	struct sighand_struct *sighand = data;
3086 
3087 	spin_lock_init(&sighand->siglock);
3088 	init_waitqueue_head(&sighand->signalfd_wqh);
3089 }
3090 
3091 void __init mm_cache_init(void)
3092 {
3093 	unsigned int mm_size;
3094 
3095 	/*
3096 	 * The mm_cpumask is located at the end of mm_struct, and is
3097 	 * dynamically sized based on the maximum CPU number this system
3098 	 * can have, taking hotplug into account (nr_cpu_ids).
3099 	 */
3100 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3101 
3102 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3103 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3104 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3105 			offsetof(struct mm_struct, saved_auxv),
3106 			sizeof_field(struct mm_struct, saved_auxv),
3107 			NULL);
3108 }
3109 
3110 void __init proc_caches_init(void)
3111 {
3112 	sighand_cachep = kmem_cache_create("sighand_cache",
3113 			sizeof(struct sighand_struct), 0,
3114 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3115 			SLAB_ACCOUNT, sighand_ctor);
3116 	signal_cachep = kmem_cache_create("signal_cache",
3117 			sizeof(struct signal_struct), 0,
3118 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3119 			NULL);
3120 	files_cachep = kmem_cache_create("files_cache",
3121 			sizeof(struct files_struct), 0,
3122 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3123 			NULL);
3124 	fs_cachep = kmem_cache_create("fs_cache",
3125 			sizeof(struct fs_struct), 0,
3126 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3127 			NULL);
3128 
3129 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3130 	mmap_init();
3131 	nsproxy_cache_init();
3132 }
3133 
3134 /*
3135  * Check constraints on flags passed to the unshare system call.
3136  */
3137 static int check_unshare_flags(unsigned long unshare_flags)
3138 {
3139 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3140 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3141 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3142 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3143 				CLONE_NEWTIME))
3144 		return -EINVAL;
3145 	/*
3146 	 * Not implemented, but pretend it works if there is nothing
3147 	 * to unshare.  Note that unsharing the address space or the
3148 	 * signal handlers also need to unshare the signal queues (aka
3149 	 * CLONE_THREAD).
3150 	 */
3151 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3152 		if (!thread_group_empty(current))
3153 			return -EINVAL;
3154 	}
3155 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3156 		if (refcount_read(&current->sighand->count) > 1)
3157 			return -EINVAL;
3158 	}
3159 	if (unshare_flags & CLONE_VM) {
3160 		if (!current_is_single_threaded())
3161 			return -EINVAL;
3162 	}
3163 
3164 	return 0;
3165 }
3166 
3167 /*
3168  * Unshare the filesystem structure if it is being shared
3169  */
3170 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3171 {
3172 	struct fs_struct *fs = current->fs;
3173 
3174 	if (!(unshare_flags & CLONE_FS) || !fs)
3175 		return 0;
3176 
3177 	/* don't need lock here; in the worst case we'll do useless copy */
3178 	if (fs->users == 1)
3179 		return 0;
3180 
3181 	*new_fsp = copy_fs_struct(fs);
3182 	if (!*new_fsp)
3183 		return -ENOMEM;
3184 
3185 	return 0;
3186 }
3187 
3188 /*
3189  * Unshare file descriptor table if it is being shared
3190  */
3191 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3192 	       struct files_struct **new_fdp)
3193 {
3194 	struct files_struct *fd = current->files;
3195 	int error = 0;
3196 
3197 	if ((unshare_flags & CLONE_FILES) &&
3198 	    (fd && atomic_read(&fd->count) > 1)) {
3199 		*new_fdp = dup_fd(fd, max_fds, &error);
3200 		if (!*new_fdp)
3201 			return error;
3202 	}
3203 
3204 	return 0;
3205 }
3206 
3207 /*
3208  * unshare allows a process to 'unshare' part of the process
3209  * context which was originally shared using clone.  copy_*
3210  * functions used by kernel_clone() cannot be used here directly
3211  * because they modify an inactive task_struct that is being
3212  * constructed. Here we are modifying the current, active,
3213  * task_struct.
3214  */
3215 int ksys_unshare(unsigned long unshare_flags)
3216 {
3217 	struct fs_struct *fs, *new_fs = NULL;
3218 	struct files_struct *new_fd = NULL;
3219 	struct cred *new_cred = NULL;
3220 	struct nsproxy *new_nsproxy = NULL;
3221 	int do_sysvsem = 0;
3222 	int err;
3223 
3224 	/*
3225 	 * If unsharing a user namespace must also unshare the thread group
3226 	 * and unshare the filesystem root and working directories.
3227 	 */
3228 	if (unshare_flags & CLONE_NEWUSER)
3229 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3230 	/*
3231 	 * If unsharing vm, must also unshare signal handlers.
3232 	 */
3233 	if (unshare_flags & CLONE_VM)
3234 		unshare_flags |= CLONE_SIGHAND;
3235 	/*
3236 	 * If unsharing a signal handlers, must also unshare the signal queues.
3237 	 */
3238 	if (unshare_flags & CLONE_SIGHAND)
3239 		unshare_flags |= CLONE_THREAD;
3240 	/*
3241 	 * If unsharing namespace, must also unshare filesystem information.
3242 	 */
3243 	if (unshare_flags & CLONE_NEWNS)
3244 		unshare_flags |= CLONE_FS;
3245 
3246 	err = check_unshare_flags(unshare_flags);
3247 	if (err)
3248 		goto bad_unshare_out;
3249 	/*
3250 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3251 	 * to a new ipc namespace, the semaphore arrays from the old
3252 	 * namespace are unreachable.
3253 	 */
3254 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3255 		do_sysvsem = 1;
3256 	err = unshare_fs(unshare_flags, &new_fs);
3257 	if (err)
3258 		goto bad_unshare_out;
3259 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3260 	if (err)
3261 		goto bad_unshare_cleanup_fs;
3262 	err = unshare_userns(unshare_flags, &new_cred);
3263 	if (err)
3264 		goto bad_unshare_cleanup_fd;
3265 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3266 					 new_cred, new_fs);
3267 	if (err)
3268 		goto bad_unshare_cleanup_cred;
3269 
3270 	if (new_cred) {
3271 		err = set_cred_ucounts(new_cred);
3272 		if (err)
3273 			goto bad_unshare_cleanup_cred;
3274 	}
3275 
3276 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3277 		if (do_sysvsem) {
3278 			/*
3279 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3280 			 */
3281 			exit_sem(current);
3282 		}
3283 		if (unshare_flags & CLONE_NEWIPC) {
3284 			/* Orphan segments in old ns (see sem above). */
3285 			exit_shm(current);
3286 			shm_init_task(current);
3287 		}
3288 
3289 		if (new_nsproxy)
3290 			switch_task_namespaces(current, new_nsproxy);
3291 
3292 		task_lock(current);
3293 
3294 		if (new_fs) {
3295 			fs = current->fs;
3296 			spin_lock(&fs->lock);
3297 			current->fs = new_fs;
3298 			if (--fs->users)
3299 				new_fs = NULL;
3300 			else
3301 				new_fs = fs;
3302 			spin_unlock(&fs->lock);
3303 		}
3304 
3305 		if (new_fd)
3306 			swap(current->files, new_fd);
3307 
3308 		task_unlock(current);
3309 
3310 		if (new_cred) {
3311 			/* Install the new user namespace */
3312 			commit_creds(new_cred);
3313 			new_cred = NULL;
3314 		}
3315 	}
3316 
3317 	perf_event_namespaces(current);
3318 
3319 bad_unshare_cleanup_cred:
3320 	if (new_cred)
3321 		put_cred(new_cred);
3322 bad_unshare_cleanup_fd:
3323 	if (new_fd)
3324 		put_files_struct(new_fd);
3325 
3326 bad_unshare_cleanup_fs:
3327 	if (new_fs)
3328 		free_fs_struct(new_fs);
3329 
3330 bad_unshare_out:
3331 	return err;
3332 }
3333 
3334 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3335 {
3336 	return ksys_unshare(unshare_flags);
3337 }
3338 
3339 /*
3340  *	Helper to unshare the files of the current task.
3341  *	We don't want to expose copy_files internals to
3342  *	the exec layer of the kernel.
3343  */
3344 
3345 int unshare_files(void)
3346 {
3347 	struct task_struct *task = current;
3348 	struct files_struct *old, *copy = NULL;
3349 	int error;
3350 
3351 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3352 	if (error || !copy)
3353 		return error;
3354 
3355 	old = task->files;
3356 	task_lock(task);
3357 	task->files = copy;
3358 	task_unlock(task);
3359 	put_files_struct(old);
3360 	return 0;
3361 }
3362 
3363 int sysctl_max_threads(struct ctl_table *table, int write,
3364 		       void *buffer, size_t *lenp, loff_t *ppos)
3365 {
3366 	struct ctl_table t;
3367 	int ret;
3368 	int threads = max_threads;
3369 	int min = 1;
3370 	int max = MAX_THREADS;
3371 
3372 	t = *table;
3373 	t.data = &threads;
3374 	t.extra1 = &min;
3375 	t.extra2 = &max;
3376 
3377 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3378 	if (ret || !write)
3379 		return ret;
3380 
3381 	max_threads = threads;
3382 
3383 	return 0;
3384 }
3385