xref: /openbmc/linux/kernel/fork.c (revision d2ba09c1)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169 
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 	int i;
190 
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *vm_stack = cached_vm_stacks[i];
193 
194 		if (!vm_stack)
195 			continue;
196 
197 		vfree(vm_stack->addr);
198 		cached_vm_stacks[i] = NULL;
199 	}
200 
201 	return 0;
202 }
203 #endif
204 
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 	void *stack;
209 	int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *s;
213 
214 		s = this_cpu_xchg(cached_stacks[i], NULL);
215 
216 		if (!s)
217 			continue;
218 
219 		/* Clear stale pointers from reused stack. */
220 		memset(s->addr, 0, THREAD_SIZE);
221 
222 		tsk->stack_vm_area = s;
223 		return s->addr;
224 	}
225 
226 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 				     VMALLOC_START, VMALLOC_END,
228 				     THREADINFO_GFP,
229 				     PAGE_KERNEL,
230 				     0, node, __builtin_return_address(0));
231 
232 	/*
233 	 * We can't call find_vm_area() in interrupt context, and
234 	 * free_thread_stack() can be called in interrupt context,
235 	 * so cache the vm_struct.
236 	 */
237 	if (stack)
238 		tsk->stack_vm_area = find_vm_area(stack);
239 	return stack;
240 #else
241 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 					     THREAD_SIZE_ORDER);
243 
244 	return page ? page_address(page) : NULL;
245 #endif
246 }
247 
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 	if (task_stack_vm_area(tsk)) {
252 		int i;
253 
254 		for (i = 0; i < NR_CACHED_STACKS; i++) {
255 			if (this_cpu_cmpxchg(cached_stacks[i],
256 					NULL, tsk->stack_vm_area) != NULL)
257 				continue;
258 
259 			return;
260 		}
261 
262 		vfree_atomic(tsk->stack);
263 		return;
264 	}
265 #endif
266 
267 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271 
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 						  int node)
274 {
275 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277 
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 	kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282 
283 void thread_stack_cache_init(void)
284 {
285 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286 					THREAD_SIZE, THREAD_SIZE, 0, 0,
287 					THREAD_SIZE, NULL);
288 	BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292 
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295 
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298 
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301 
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304 
305 /* SLAB cache for vm_area_struct structures */
306 struct kmem_cache *vm_area_cachep;
307 
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310 
311 static void account_kernel_stack(struct task_struct *tsk, int account)
312 {
313 	void *stack = task_stack_page(tsk);
314 	struct vm_struct *vm = task_stack_vm_area(tsk);
315 
316 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
317 
318 	if (vm) {
319 		int i;
320 
321 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
322 
323 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
324 			mod_zone_page_state(page_zone(vm->pages[i]),
325 					    NR_KERNEL_STACK_KB,
326 					    PAGE_SIZE / 1024 * account);
327 		}
328 
329 		/* All stack pages belong to the same memcg. */
330 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
331 				     account * (THREAD_SIZE / 1024));
332 	} else {
333 		/*
334 		 * All stack pages are in the same zone and belong to the
335 		 * same memcg.
336 		 */
337 		struct page *first_page = virt_to_page(stack);
338 
339 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
340 				    THREAD_SIZE / 1024 * account);
341 
342 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
343 				     account * (THREAD_SIZE / 1024));
344 	}
345 }
346 
347 static void release_task_stack(struct task_struct *tsk)
348 {
349 	if (WARN_ON(tsk->state != TASK_DEAD))
350 		return;  /* Better to leak the stack than to free prematurely */
351 
352 	account_kernel_stack(tsk, -1);
353 	arch_release_thread_stack(tsk->stack);
354 	free_thread_stack(tsk);
355 	tsk->stack = NULL;
356 #ifdef CONFIG_VMAP_STACK
357 	tsk->stack_vm_area = NULL;
358 #endif
359 }
360 
361 #ifdef CONFIG_THREAD_INFO_IN_TASK
362 void put_task_stack(struct task_struct *tsk)
363 {
364 	if (atomic_dec_and_test(&tsk->stack_refcount))
365 		release_task_stack(tsk);
366 }
367 #endif
368 
369 void free_task(struct task_struct *tsk)
370 {
371 #ifndef CONFIG_THREAD_INFO_IN_TASK
372 	/*
373 	 * The task is finally done with both the stack and thread_info,
374 	 * so free both.
375 	 */
376 	release_task_stack(tsk);
377 #else
378 	/*
379 	 * If the task had a separate stack allocation, it should be gone
380 	 * by now.
381 	 */
382 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
383 #endif
384 	rt_mutex_debug_task_free(tsk);
385 	ftrace_graph_exit_task(tsk);
386 	put_seccomp_filter(tsk);
387 	arch_release_task_struct(tsk);
388 	if (tsk->flags & PF_KTHREAD)
389 		free_kthread_struct(tsk);
390 	free_task_struct(tsk);
391 }
392 EXPORT_SYMBOL(free_task);
393 
394 #ifdef CONFIG_MMU
395 static __latent_entropy int dup_mmap(struct mm_struct *mm,
396 					struct mm_struct *oldmm)
397 {
398 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
399 	struct rb_node **rb_link, *rb_parent;
400 	int retval;
401 	unsigned long charge;
402 	LIST_HEAD(uf);
403 
404 	uprobe_start_dup_mmap();
405 	if (down_write_killable(&oldmm->mmap_sem)) {
406 		retval = -EINTR;
407 		goto fail_uprobe_end;
408 	}
409 	flush_cache_dup_mm(oldmm);
410 	uprobe_dup_mmap(oldmm, mm);
411 	/*
412 	 * Not linked in yet - no deadlock potential:
413 	 */
414 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
415 
416 	/* No ordering required: file already has been exposed. */
417 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
418 
419 	mm->total_vm = oldmm->total_vm;
420 	mm->data_vm = oldmm->data_vm;
421 	mm->exec_vm = oldmm->exec_vm;
422 	mm->stack_vm = oldmm->stack_vm;
423 
424 	rb_link = &mm->mm_rb.rb_node;
425 	rb_parent = NULL;
426 	pprev = &mm->mmap;
427 	retval = ksm_fork(mm, oldmm);
428 	if (retval)
429 		goto out;
430 	retval = khugepaged_fork(mm, oldmm);
431 	if (retval)
432 		goto out;
433 
434 	prev = NULL;
435 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
436 		struct file *file;
437 
438 		if (mpnt->vm_flags & VM_DONTCOPY) {
439 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
440 			continue;
441 		}
442 		charge = 0;
443 		if (mpnt->vm_flags & VM_ACCOUNT) {
444 			unsigned long len = vma_pages(mpnt);
445 
446 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
447 				goto fail_nomem;
448 			charge = len;
449 		}
450 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
451 		if (!tmp)
452 			goto fail_nomem;
453 		*tmp = *mpnt;
454 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
455 		retval = vma_dup_policy(mpnt, tmp);
456 		if (retval)
457 			goto fail_nomem_policy;
458 		tmp->vm_mm = mm;
459 		retval = dup_userfaultfd(tmp, &uf);
460 		if (retval)
461 			goto fail_nomem_anon_vma_fork;
462 		if (tmp->vm_flags & VM_WIPEONFORK) {
463 			/* VM_WIPEONFORK gets a clean slate in the child. */
464 			tmp->anon_vma = NULL;
465 			if (anon_vma_prepare(tmp))
466 				goto fail_nomem_anon_vma_fork;
467 		} else if (anon_vma_fork(tmp, mpnt))
468 			goto fail_nomem_anon_vma_fork;
469 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
470 		tmp->vm_next = tmp->vm_prev = NULL;
471 		file = tmp->vm_file;
472 		if (file) {
473 			struct inode *inode = file_inode(file);
474 			struct address_space *mapping = file->f_mapping;
475 
476 			get_file(file);
477 			if (tmp->vm_flags & VM_DENYWRITE)
478 				atomic_dec(&inode->i_writecount);
479 			i_mmap_lock_write(mapping);
480 			if (tmp->vm_flags & VM_SHARED)
481 				atomic_inc(&mapping->i_mmap_writable);
482 			flush_dcache_mmap_lock(mapping);
483 			/* insert tmp into the share list, just after mpnt */
484 			vma_interval_tree_insert_after(tmp, mpnt,
485 					&mapping->i_mmap);
486 			flush_dcache_mmap_unlock(mapping);
487 			i_mmap_unlock_write(mapping);
488 		}
489 
490 		/*
491 		 * Clear hugetlb-related page reserves for children. This only
492 		 * affects MAP_PRIVATE mappings. Faults generated by the child
493 		 * are not guaranteed to succeed, even if read-only
494 		 */
495 		if (is_vm_hugetlb_page(tmp))
496 			reset_vma_resv_huge_pages(tmp);
497 
498 		/*
499 		 * Link in the new vma and copy the page table entries.
500 		 */
501 		*pprev = tmp;
502 		pprev = &tmp->vm_next;
503 		tmp->vm_prev = prev;
504 		prev = tmp;
505 
506 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
507 		rb_link = &tmp->vm_rb.rb_right;
508 		rb_parent = &tmp->vm_rb;
509 
510 		mm->map_count++;
511 		if (!(tmp->vm_flags & VM_WIPEONFORK))
512 			retval = copy_page_range(mm, oldmm, mpnt);
513 
514 		if (tmp->vm_ops && tmp->vm_ops->open)
515 			tmp->vm_ops->open(tmp);
516 
517 		if (retval)
518 			goto out;
519 	}
520 	/* a new mm has just been created */
521 	arch_dup_mmap(oldmm, mm);
522 	retval = 0;
523 out:
524 	up_write(&mm->mmap_sem);
525 	flush_tlb_mm(oldmm);
526 	up_write(&oldmm->mmap_sem);
527 	dup_userfaultfd_complete(&uf);
528 fail_uprobe_end:
529 	uprobe_end_dup_mmap();
530 	return retval;
531 fail_nomem_anon_vma_fork:
532 	mpol_put(vma_policy(tmp));
533 fail_nomem_policy:
534 	kmem_cache_free(vm_area_cachep, tmp);
535 fail_nomem:
536 	retval = -ENOMEM;
537 	vm_unacct_memory(charge);
538 	goto out;
539 }
540 
541 static inline int mm_alloc_pgd(struct mm_struct *mm)
542 {
543 	mm->pgd = pgd_alloc(mm);
544 	if (unlikely(!mm->pgd))
545 		return -ENOMEM;
546 	return 0;
547 }
548 
549 static inline void mm_free_pgd(struct mm_struct *mm)
550 {
551 	pgd_free(mm, mm->pgd);
552 }
553 #else
554 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
555 {
556 	down_write(&oldmm->mmap_sem);
557 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
558 	up_write(&oldmm->mmap_sem);
559 	return 0;
560 }
561 #define mm_alloc_pgd(mm)	(0)
562 #define mm_free_pgd(mm)
563 #endif /* CONFIG_MMU */
564 
565 static void check_mm(struct mm_struct *mm)
566 {
567 	int i;
568 
569 	for (i = 0; i < NR_MM_COUNTERS; i++) {
570 		long x = atomic_long_read(&mm->rss_stat.count[i]);
571 
572 		if (unlikely(x))
573 			printk(KERN_ALERT "BUG: Bad rss-counter state "
574 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
575 	}
576 
577 	if (mm_pgtables_bytes(mm))
578 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
579 				mm_pgtables_bytes(mm));
580 
581 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
582 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
583 #endif
584 }
585 
586 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
587 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
588 
589 /*
590  * Called when the last reference to the mm
591  * is dropped: either by a lazy thread or by
592  * mmput. Free the page directory and the mm.
593  */
594 void __mmdrop(struct mm_struct *mm)
595 {
596 	BUG_ON(mm == &init_mm);
597 	WARN_ON_ONCE(mm == current->mm);
598 	WARN_ON_ONCE(mm == current->active_mm);
599 	mm_free_pgd(mm);
600 	destroy_context(mm);
601 	hmm_mm_destroy(mm);
602 	mmu_notifier_mm_destroy(mm);
603 	check_mm(mm);
604 	put_user_ns(mm->user_ns);
605 	free_mm(mm);
606 }
607 EXPORT_SYMBOL_GPL(__mmdrop);
608 
609 static void mmdrop_async_fn(struct work_struct *work)
610 {
611 	struct mm_struct *mm;
612 
613 	mm = container_of(work, struct mm_struct, async_put_work);
614 	__mmdrop(mm);
615 }
616 
617 static void mmdrop_async(struct mm_struct *mm)
618 {
619 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
620 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
621 		schedule_work(&mm->async_put_work);
622 	}
623 }
624 
625 static inline void free_signal_struct(struct signal_struct *sig)
626 {
627 	taskstats_tgid_free(sig);
628 	sched_autogroup_exit(sig);
629 	/*
630 	 * __mmdrop is not safe to call from softirq context on x86 due to
631 	 * pgd_dtor so postpone it to the async context
632 	 */
633 	if (sig->oom_mm)
634 		mmdrop_async(sig->oom_mm);
635 	kmem_cache_free(signal_cachep, sig);
636 }
637 
638 static inline void put_signal_struct(struct signal_struct *sig)
639 {
640 	if (atomic_dec_and_test(&sig->sigcnt))
641 		free_signal_struct(sig);
642 }
643 
644 void __put_task_struct(struct task_struct *tsk)
645 {
646 	WARN_ON(!tsk->exit_state);
647 	WARN_ON(atomic_read(&tsk->usage));
648 	WARN_ON(tsk == current);
649 
650 	cgroup_free(tsk);
651 	task_numa_free(tsk);
652 	security_task_free(tsk);
653 	exit_creds(tsk);
654 	delayacct_tsk_free(tsk);
655 	put_signal_struct(tsk->signal);
656 
657 	if (!profile_handoff_task(tsk))
658 		free_task(tsk);
659 }
660 EXPORT_SYMBOL_GPL(__put_task_struct);
661 
662 void __init __weak arch_task_cache_init(void) { }
663 
664 /*
665  * set_max_threads
666  */
667 static void set_max_threads(unsigned int max_threads_suggested)
668 {
669 	u64 threads;
670 
671 	/*
672 	 * The number of threads shall be limited such that the thread
673 	 * structures may only consume a small part of the available memory.
674 	 */
675 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
676 		threads = MAX_THREADS;
677 	else
678 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
679 				    (u64) THREAD_SIZE * 8UL);
680 
681 	if (threads > max_threads_suggested)
682 		threads = max_threads_suggested;
683 
684 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
685 }
686 
687 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
688 /* Initialized by the architecture: */
689 int arch_task_struct_size __read_mostly;
690 #endif
691 
692 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
693 {
694 	/* Fetch thread_struct whitelist for the architecture. */
695 	arch_thread_struct_whitelist(offset, size);
696 
697 	/*
698 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
699 	 * adjust offset to position of thread_struct in task_struct.
700 	 */
701 	if (unlikely(*size == 0))
702 		*offset = 0;
703 	else
704 		*offset += offsetof(struct task_struct, thread);
705 }
706 
707 void __init fork_init(void)
708 {
709 	int i;
710 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
711 #ifndef ARCH_MIN_TASKALIGN
712 #define ARCH_MIN_TASKALIGN	0
713 #endif
714 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
715 	unsigned long useroffset, usersize;
716 
717 	/* create a slab on which task_structs can be allocated */
718 	task_struct_whitelist(&useroffset, &usersize);
719 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
720 			arch_task_struct_size, align,
721 			SLAB_PANIC|SLAB_ACCOUNT,
722 			useroffset, usersize, NULL);
723 #endif
724 
725 	/* do the arch specific task caches init */
726 	arch_task_cache_init();
727 
728 	set_max_threads(MAX_THREADS);
729 
730 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
731 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
732 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
733 		init_task.signal->rlim[RLIMIT_NPROC];
734 
735 	for (i = 0; i < UCOUNT_COUNTS; i++) {
736 		init_user_ns.ucount_max[i] = max_threads/2;
737 	}
738 
739 #ifdef CONFIG_VMAP_STACK
740 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
741 			  NULL, free_vm_stack_cache);
742 #endif
743 
744 	lockdep_init_task(&init_task);
745 }
746 
747 int __weak arch_dup_task_struct(struct task_struct *dst,
748 					       struct task_struct *src)
749 {
750 	*dst = *src;
751 	return 0;
752 }
753 
754 void set_task_stack_end_magic(struct task_struct *tsk)
755 {
756 	unsigned long *stackend;
757 
758 	stackend = end_of_stack(tsk);
759 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
760 }
761 
762 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
763 {
764 	struct task_struct *tsk;
765 	unsigned long *stack;
766 	struct vm_struct *stack_vm_area;
767 	int err;
768 
769 	if (node == NUMA_NO_NODE)
770 		node = tsk_fork_get_node(orig);
771 	tsk = alloc_task_struct_node(node);
772 	if (!tsk)
773 		return NULL;
774 
775 	stack = alloc_thread_stack_node(tsk, node);
776 	if (!stack)
777 		goto free_tsk;
778 
779 	stack_vm_area = task_stack_vm_area(tsk);
780 
781 	err = arch_dup_task_struct(tsk, orig);
782 
783 	/*
784 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
785 	 * sure they're properly initialized before using any stack-related
786 	 * functions again.
787 	 */
788 	tsk->stack = stack;
789 #ifdef CONFIG_VMAP_STACK
790 	tsk->stack_vm_area = stack_vm_area;
791 #endif
792 #ifdef CONFIG_THREAD_INFO_IN_TASK
793 	atomic_set(&tsk->stack_refcount, 1);
794 #endif
795 
796 	if (err)
797 		goto free_stack;
798 
799 #ifdef CONFIG_SECCOMP
800 	/*
801 	 * We must handle setting up seccomp filters once we're under
802 	 * the sighand lock in case orig has changed between now and
803 	 * then. Until then, filter must be NULL to avoid messing up
804 	 * the usage counts on the error path calling free_task.
805 	 */
806 	tsk->seccomp.filter = NULL;
807 #endif
808 
809 	setup_thread_stack(tsk, orig);
810 	clear_user_return_notifier(tsk);
811 	clear_tsk_need_resched(tsk);
812 	set_task_stack_end_magic(tsk);
813 
814 #ifdef CONFIG_CC_STACKPROTECTOR
815 	tsk->stack_canary = get_random_canary();
816 #endif
817 
818 	/*
819 	 * One for us, one for whoever does the "release_task()" (usually
820 	 * parent)
821 	 */
822 	atomic_set(&tsk->usage, 2);
823 #ifdef CONFIG_BLK_DEV_IO_TRACE
824 	tsk->btrace_seq = 0;
825 #endif
826 	tsk->splice_pipe = NULL;
827 	tsk->task_frag.page = NULL;
828 	tsk->wake_q.next = NULL;
829 
830 	account_kernel_stack(tsk, 1);
831 
832 	kcov_task_init(tsk);
833 
834 #ifdef CONFIG_FAULT_INJECTION
835 	tsk->fail_nth = 0;
836 #endif
837 
838 	return tsk;
839 
840 free_stack:
841 	free_thread_stack(tsk);
842 free_tsk:
843 	free_task_struct(tsk);
844 	return NULL;
845 }
846 
847 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
848 
849 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
850 
851 static int __init coredump_filter_setup(char *s)
852 {
853 	default_dump_filter =
854 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
855 		MMF_DUMP_FILTER_MASK;
856 	return 1;
857 }
858 
859 __setup("coredump_filter=", coredump_filter_setup);
860 
861 #include <linux/init_task.h>
862 
863 static void mm_init_aio(struct mm_struct *mm)
864 {
865 #ifdef CONFIG_AIO
866 	spin_lock_init(&mm->ioctx_lock);
867 	mm->ioctx_table = NULL;
868 #endif
869 }
870 
871 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
872 {
873 #ifdef CONFIG_MEMCG
874 	mm->owner = p;
875 #endif
876 }
877 
878 static void mm_init_uprobes_state(struct mm_struct *mm)
879 {
880 #ifdef CONFIG_UPROBES
881 	mm->uprobes_state.xol_area = NULL;
882 #endif
883 }
884 
885 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
886 	struct user_namespace *user_ns)
887 {
888 	mm->mmap = NULL;
889 	mm->mm_rb = RB_ROOT;
890 	mm->vmacache_seqnum = 0;
891 	atomic_set(&mm->mm_users, 1);
892 	atomic_set(&mm->mm_count, 1);
893 	init_rwsem(&mm->mmap_sem);
894 	INIT_LIST_HEAD(&mm->mmlist);
895 	mm->core_state = NULL;
896 	mm_pgtables_bytes_init(mm);
897 	mm->map_count = 0;
898 	mm->locked_vm = 0;
899 	mm->pinned_vm = 0;
900 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
901 	spin_lock_init(&mm->page_table_lock);
902 	mm_init_cpumask(mm);
903 	mm_init_aio(mm);
904 	mm_init_owner(mm, p);
905 	RCU_INIT_POINTER(mm->exe_file, NULL);
906 	mmu_notifier_mm_init(mm);
907 	hmm_mm_init(mm);
908 	init_tlb_flush_pending(mm);
909 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
910 	mm->pmd_huge_pte = NULL;
911 #endif
912 	mm_init_uprobes_state(mm);
913 
914 	if (current->mm) {
915 		mm->flags = current->mm->flags & MMF_INIT_MASK;
916 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
917 	} else {
918 		mm->flags = default_dump_filter;
919 		mm->def_flags = 0;
920 	}
921 
922 	if (mm_alloc_pgd(mm))
923 		goto fail_nopgd;
924 
925 	if (init_new_context(p, mm))
926 		goto fail_nocontext;
927 
928 	mm->user_ns = get_user_ns(user_ns);
929 	return mm;
930 
931 fail_nocontext:
932 	mm_free_pgd(mm);
933 fail_nopgd:
934 	free_mm(mm);
935 	return NULL;
936 }
937 
938 /*
939  * Allocate and initialize an mm_struct.
940  */
941 struct mm_struct *mm_alloc(void)
942 {
943 	struct mm_struct *mm;
944 
945 	mm = allocate_mm();
946 	if (!mm)
947 		return NULL;
948 
949 	memset(mm, 0, sizeof(*mm));
950 	return mm_init(mm, current, current_user_ns());
951 }
952 
953 static inline void __mmput(struct mm_struct *mm)
954 {
955 	VM_BUG_ON(atomic_read(&mm->mm_users));
956 
957 	uprobe_clear_state(mm);
958 	exit_aio(mm);
959 	ksm_exit(mm);
960 	khugepaged_exit(mm); /* must run before exit_mmap */
961 	exit_mmap(mm);
962 	mm_put_huge_zero_page(mm);
963 	set_mm_exe_file(mm, NULL);
964 	if (!list_empty(&mm->mmlist)) {
965 		spin_lock(&mmlist_lock);
966 		list_del(&mm->mmlist);
967 		spin_unlock(&mmlist_lock);
968 	}
969 	if (mm->binfmt)
970 		module_put(mm->binfmt->module);
971 	mmdrop(mm);
972 }
973 
974 /*
975  * Decrement the use count and release all resources for an mm.
976  */
977 void mmput(struct mm_struct *mm)
978 {
979 	might_sleep();
980 
981 	if (atomic_dec_and_test(&mm->mm_users))
982 		__mmput(mm);
983 }
984 EXPORT_SYMBOL_GPL(mmput);
985 
986 #ifdef CONFIG_MMU
987 static void mmput_async_fn(struct work_struct *work)
988 {
989 	struct mm_struct *mm = container_of(work, struct mm_struct,
990 					    async_put_work);
991 
992 	__mmput(mm);
993 }
994 
995 void mmput_async(struct mm_struct *mm)
996 {
997 	if (atomic_dec_and_test(&mm->mm_users)) {
998 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
999 		schedule_work(&mm->async_put_work);
1000 	}
1001 }
1002 #endif
1003 
1004 /**
1005  * set_mm_exe_file - change a reference to the mm's executable file
1006  *
1007  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1008  *
1009  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1010  * invocations: in mmput() nobody alive left, in execve task is single
1011  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1012  * mm->exe_file, but does so without using set_mm_exe_file() in order
1013  * to do avoid the need for any locks.
1014  */
1015 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1016 {
1017 	struct file *old_exe_file;
1018 
1019 	/*
1020 	 * It is safe to dereference the exe_file without RCU as
1021 	 * this function is only called if nobody else can access
1022 	 * this mm -- see comment above for justification.
1023 	 */
1024 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1025 
1026 	if (new_exe_file)
1027 		get_file(new_exe_file);
1028 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1029 	if (old_exe_file)
1030 		fput(old_exe_file);
1031 }
1032 
1033 /**
1034  * get_mm_exe_file - acquire a reference to the mm's executable file
1035  *
1036  * Returns %NULL if mm has no associated executable file.
1037  * User must release file via fput().
1038  */
1039 struct file *get_mm_exe_file(struct mm_struct *mm)
1040 {
1041 	struct file *exe_file;
1042 
1043 	rcu_read_lock();
1044 	exe_file = rcu_dereference(mm->exe_file);
1045 	if (exe_file && !get_file_rcu(exe_file))
1046 		exe_file = NULL;
1047 	rcu_read_unlock();
1048 	return exe_file;
1049 }
1050 EXPORT_SYMBOL(get_mm_exe_file);
1051 
1052 /**
1053  * get_task_exe_file - acquire a reference to the task's executable file
1054  *
1055  * Returns %NULL if task's mm (if any) has no associated executable file or
1056  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1057  * User must release file via fput().
1058  */
1059 struct file *get_task_exe_file(struct task_struct *task)
1060 {
1061 	struct file *exe_file = NULL;
1062 	struct mm_struct *mm;
1063 
1064 	task_lock(task);
1065 	mm = task->mm;
1066 	if (mm) {
1067 		if (!(task->flags & PF_KTHREAD))
1068 			exe_file = get_mm_exe_file(mm);
1069 	}
1070 	task_unlock(task);
1071 	return exe_file;
1072 }
1073 EXPORT_SYMBOL(get_task_exe_file);
1074 
1075 /**
1076  * get_task_mm - acquire a reference to the task's mm
1077  *
1078  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1079  * this kernel workthread has transiently adopted a user mm with use_mm,
1080  * to do its AIO) is not set and if so returns a reference to it, after
1081  * bumping up the use count.  User must release the mm via mmput()
1082  * after use.  Typically used by /proc and ptrace.
1083  */
1084 struct mm_struct *get_task_mm(struct task_struct *task)
1085 {
1086 	struct mm_struct *mm;
1087 
1088 	task_lock(task);
1089 	mm = task->mm;
1090 	if (mm) {
1091 		if (task->flags & PF_KTHREAD)
1092 			mm = NULL;
1093 		else
1094 			mmget(mm);
1095 	}
1096 	task_unlock(task);
1097 	return mm;
1098 }
1099 EXPORT_SYMBOL_GPL(get_task_mm);
1100 
1101 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1102 {
1103 	struct mm_struct *mm;
1104 	int err;
1105 
1106 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1107 	if (err)
1108 		return ERR_PTR(err);
1109 
1110 	mm = get_task_mm(task);
1111 	if (mm && mm != current->mm &&
1112 			!ptrace_may_access(task, mode)) {
1113 		mmput(mm);
1114 		mm = ERR_PTR(-EACCES);
1115 	}
1116 	mutex_unlock(&task->signal->cred_guard_mutex);
1117 
1118 	return mm;
1119 }
1120 
1121 static void complete_vfork_done(struct task_struct *tsk)
1122 {
1123 	struct completion *vfork;
1124 
1125 	task_lock(tsk);
1126 	vfork = tsk->vfork_done;
1127 	if (likely(vfork)) {
1128 		tsk->vfork_done = NULL;
1129 		complete(vfork);
1130 	}
1131 	task_unlock(tsk);
1132 }
1133 
1134 static int wait_for_vfork_done(struct task_struct *child,
1135 				struct completion *vfork)
1136 {
1137 	int killed;
1138 
1139 	freezer_do_not_count();
1140 	killed = wait_for_completion_killable(vfork);
1141 	freezer_count();
1142 
1143 	if (killed) {
1144 		task_lock(child);
1145 		child->vfork_done = NULL;
1146 		task_unlock(child);
1147 	}
1148 
1149 	put_task_struct(child);
1150 	return killed;
1151 }
1152 
1153 /* Please note the differences between mmput and mm_release.
1154  * mmput is called whenever we stop holding onto a mm_struct,
1155  * error success whatever.
1156  *
1157  * mm_release is called after a mm_struct has been removed
1158  * from the current process.
1159  *
1160  * This difference is important for error handling, when we
1161  * only half set up a mm_struct for a new process and need to restore
1162  * the old one.  Because we mmput the new mm_struct before
1163  * restoring the old one. . .
1164  * Eric Biederman 10 January 1998
1165  */
1166 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1167 {
1168 	/* Get rid of any futexes when releasing the mm */
1169 #ifdef CONFIG_FUTEX
1170 	if (unlikely(tsk->robust_list)) {
1171 		exit_robust_list(tsk);
1172 		tsk->robust_list = NULL;
1173 	}
1174 #ifdef CONFIG_COMPAT
1175 	if (unlikely(tsk->compat_robust_list)) {
1176 		compat_exit_robust_list(tsk);
1177 		tsk->compat_robust_list = NULL;
1178 	}
1179 #endif
1180 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1181 		exit_pi_state_list(tsk);
1182 #endif
1183 
1184 	uprobe_free_utask(tsk);
1185 
1186 	/* Get rid of any cached register state */
1187 	deactivate_mm(tsk, mm);
1188 
1189 	/*
1190 	 * Signal userspace if we're not exiting with a core dump
1191 	 * because we want to leave the value intact for debugging
1192 	 * purposes.
1193 	 */
1194 	if (tsk->clear_child_tid) {
1195 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1196 		    atomic_read(&mm->mm_users) > 1) {
1197 			/*
1198 			 * We don't check the error code - if userspace has
1199 			 * not set up a proper pointer then tough luck.
1200 			 */
1201 			put_user(0, tsk->clear_child_tid);
1202 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1203 					1, NULL, NULL, 0, 0);
1204 		}
1205 		tsk->clear_child_tid = NULL;
1206 	}
1207 
1208 	/*
1209 	 * All done, finally we can wake up parent and return this mm to him.
1210 	 * Also kthread_stop() uses this completion for synchronization.
1211 	 */
1212 	if (tsk->vfork_done)
1213 		complete_vfork_done(tsk);
1214 }
1215 
1216 /*
1217  * Allocate a new mm structure and copy contents from the
1218  * mm structure of the passed in task structure.
1219  */
1220 static struct mm_struct *dup_mm(struct task_struct *tsk)
1221 {
1222 	struct mm_struct *mm, *oldmm = current->mm;
1223 	int err;
1224 
1225 	mm = allocate_mm();
1226 	if (!mm)
1227 		goto fail_nomem;
1228 
1229 	memcpy(mm, oldmm, sizeof(*mm));
1230 
1231 	if (!mm_init(mm, tsk, mm->user_ns))
1232 		goto fail_nomem;
1233 
1234 	err = dup_mmap(mm, oldmm);
1235 	if (err)
1236 		goto free_pt;
1237 
1238 	mm->hiwater_rss = get_mm_rss(mm);
1239 	mm->hiwater_vm = mm->total_vm;
1240 
1241 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1242 		goto free_pt;
1243 
1244 	return mm;
1245 
1246 free_pt:
1247 	/* don't put binfmt in mmput, we haven't got module yet */
1248 	mm->binfmt = NULL;
1249 	mmput(mm);
1250 
1251 fail_nomem:
1252 	return NULL;
1253 }
1254 
1255 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1256 {
1257 	struct mm_struct *mm, *oldmm;
1258 	int retval;
1259 
1260 	tsk->min_flt = tsk->maj_flt = 0;
1261 	tsk->nvcsw = tsk->nivcsw = 0;
1262 #ifdef CONFIG_DETECT_HUNG_TASK
1263 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1264 #endif
1265 
1266 	tsk->mm = NULL;
1267 	tsk->active_mm = NULL;
1268 
1269 	/*
1270 	 * Are we cloning a kernel thread?
1271 	 *
1272 	 * We need to steal a active VM for that..
1273 	 */
1274 	oldmm = current->mm;
1275 	if (!oldmm)
1276 		return 0;
1277 
1278 	/* initialize the new vmacache entries */
1279 	vmacache_flush(tsk);
1280 
1281 	if (clone_flags & CLONE_VM) {
1282 		mmget(oldmm);
1283 		mm = oldmm;
1284 		goto good_mm;
1285 	}
1286 
1287 	retval = -ENOMEM;
1288 	mm = dup_mm(tsk);
1289 	if (!mm)
1290 		goto fail_nomem;
1291 
1292 good_mm:
1293 	tsk->mm = mm;
1294 	tsk->active_mm = mm;
1295 	return 0;
1296 
1297 fail_nomem:
1298 	return retval;
1299 }
1300 
1301 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1302 {
1303 	struct fs_struct *fs = current->fs;
1304 	if (clone_flags & CLONE_FS) {
1305 		/* tsk->fs is already what we want */
1306 		spin_lock(&fs->lock);
1307 		if (fs->in_exec) {
1308 			spin_unlock(&fs->lock);
1309 			return -EAGAIN;
1310 		}
1311 		fs->users++;
1312 		spin_unlock(&fs->lock);
1313 		return 0;
1314 	}
1315 	tsk->fs = copy_fs_struct(fs);
1316 	if (!tsk->fs)
1317 		return -ENOMEM;
1318 	return 0;
1319 }
1320 
1321 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1322 {
1323 	struct files_struct *oldf, *newf;
1324 	int error = 0;
1325 
1326 	/*
1327 	 * A background process may not have any files ...
1328 	 */
1329 	oldf = current->files;
1330 	if (!oldf)
1331 		goto out;
1332 
1333 	if (clone_flags & CLONE_FILES) {
1334 		atomic_inc(&oldf->count);
1335 		goto out;
1336 	}
1337 
1338 	newf = dup_fd(oldf, &error);
1339 	if (!newf)
1340 		goto out;
1341 
1342 	tsk->files = newf;
1343 	error = 0;
1344 out:
1345 	return error;
1346 }
1347 
1348 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1349 {
1350 #ifdef CONFIG_BLOCK
1351 	struct io_context *ioc = current->io_context;
1352 	struct io_context *new_ioc;
1353 
1354 	if (!ioc)
1355 		return 0;
1356 	/*
1357 	 * Share io context with parent, if CLONE_IO is set
1358 	 */
1359 	if (clone_flags & CLONE_IO) {
1360 		ioc_task_link(ioc);
1361 		tsk->io_context = ioc;
1362 	} else if (ioprio_valid(ioc->ioprio)) {
1363 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1364 		if (unlikely(!new_ioc))
1365 			return -ENOMEM;
1366 
1367 		new_ioc->ioprio = ioc->ioprio;
1368 		put_io_context(new_ioc);
1369 	}
1370 #endif
1371 	return 0;
1372 }
1373 
1374 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1375 {
1376 	struct sighand_struct *sig;
1377 
1378 	if (clone_flags & CLONE_SIGHAND) {
1379 		atomic_inc(&current->sighand->count);
1380 		return 0;
1381 	}
1382 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1383 	rcu_assign_pointer(tsk->sighand, sig);
1384 	if (!sig)
1385 		return -ENOMEM;
1386 
1387 	atomic_set(&sig->count, 1);
1388 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1389 	return 0;
1390 }
1391 
1392 void __cleanup_sighand(struct sighand_struct *sighand)
1393 {
1394 	if (atomic_dec_and_test(&sighand->count)) {
1395 		signalfd_cleanup(sighand);
1396 		/*
1397 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1398 		 * without an RCU grace period, see __lock_task_sighand().
1399 		 */
1400 		kmem_cache_free(sighand_cachep, sighand);
1401 	}
1402 }
1403 
1404 #ifdef CONFIG_POSIX_TIMERS
1405 /*
1406  * Initialize POSIX timer handling for a thread group.
1407  */
1408 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1409 {
1410 	unsigned long cpu_limit;
1411 
1412 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1413 	if (cpu_limit != RLIM_INFINITY) {
1414 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1415 		sig->cputimer.running = true;
1416 	}
1417 
1418 	/* The timer lists. */
1419 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1420 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1421 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1422 }
1423 #else
1424 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1425 #endif
1426 
1427 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1428 {
1429 	struct signal_struct *sig;
1430 
1431 	if (clone_flags & CLONE_THREAD)
1432 		return 0;
1433 
1434 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1435 	tsk->signal = sig;
1436 	if (!sig)
1437 		return -ENOMEM;
1438 
1439 	sig->nr_threads = 1;
1440 	atomic_set(&sig->live, 1);
1441 	atomic_set(&sig->sigcnt, 1);
1442 
1443 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1444 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1445 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1446 
1447 	init_waitqueue_head(&sig->wait_chldexit);
1448 	sig->curr_target = tsk;
1449 	init_sigpending(&sig->shared_pending);
1450 	seqlock_init(&sig->stats_lock);
1451 	prev_cputime_init(&sig->prev_cputime);
1452 
1453 #ifdef CONFIG_POSIX_TIMERS
1454 	INIT_LIST_HEAD(&sig->posix_timers);
1455 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1456 	sig->real_timer.function = it_real_fn;
1457 #endif
1458 
1459 	task_lock(current->group_leader);
1460 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1461 	task_unlock(current->group_leader);
1462 
1463 	posix_cpu_timers_init_group(sig);
1464 
1465 	tty_audit_fork(sig);
1466 	sched_autogroup_fork(sig);
1467 
1468 	sig->oom_score_adj = current->signal->oom_score_adj;
1469 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1470 
1471 	mutex_init(&sig->cred_guard_mutex);
1472 
1473 	return 0;
1474 }
1475 
1476 static void copy_seccomp(struct task_struct *p)
1477 {
1478 #ifdef CONFIG_SECCOMP
1479 	/*
1480 	 * Must be called with sighand->lock held, which is common to
1481 	 * all threads in the group. Holding cred_guard_mutex is not
1482 	 * needed because this new task is not yet running and cannot
1483 	 * be racing exec.
1484 	 */
1485 	assert_spin_locked(&current->sighand->siglock);
1486 
1487 	/* Ref-count the new filter user, and assign it. */
1488 	get_seccomp_filter(current);
1489 	p->seccomp = current->seccomp;
1490 
1491 	/*
1492 	 * Explicitly enable no_new_privs here in case it got set
1493 	 * between the task_struct being duplicated and holding the
1494 	 * sighand lock. The seccomp state and nnp must be in sync.
1495 	 */
1496 	if (task_no_new_privs(current))
1497 		task_set_no_new_privs(p);
1498 
1499 	/*
1500 	 * If the parent gained a seccomp mode after copying thread
1501 	 * flags and between before we held the sighand lock, we have
1502 	 * to manually enable the seccomp thread flag here.
1503 	 */
1504 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1505 		set_tsk_thread_flag(p, TIF_SECCOMP);
1506 #endif
1507 }
1508 
1509 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1510 {
1511 	current->clear_child_tid = tidptr;
1512 
1513 	return task_pid_vnr(current);
1514 }
1515 
1516 static void rt_mutex_init_task(struct task_struct *p)
1517 {
1518 	raw_spin_lock_init(&p->pi_lock);
1519 #ifdef CONFIG_RT_MUTEXES
1520 	p->pi_waiters = RB_ROOT_CACHED;
1521 	p->pi_top_task = NULL;
1522 	p->pi_blocked_on = NULL;
1523 #endif
1524 }
1525 
1526 #ifdef CONFIG_POSIX_TIMERS
1527 /*
1528  * Initialize POSIX timer handling for a single task.
1529  */
1530 static void posix_cpu_timers_init(struct task_struct *tsk)
1531 {
1532 	tsk->cputime_expires.prof_exp = 0;
1533 	tsk->cputime_expires.virt_exp = 0;
1534 	tsk->cputime_expires.sched_exp = 0;
1535 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1536 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1537 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1538 }
1539 #else
1540 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1541 #endif
1542 
1543 static inline void
1544 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1545 {
1546 	 task->pids[type].pid = pid;
1547 }
1548 
1549 static inline void rcu_copy_process(struct task_struct *p)
1550 {
1551 #ifdef CONFIG_PREEMPT_RCU
1552 	p->rcu_read_lock_nesting = 0;
1553 	p->rcu_read_unlock_special.s = 0;
1554 	p->rcu_blocked_node = NULL;
1555 	INIT_LIST_HEAD(&p->rcu_node_entry);
1556 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1557 #ifdef CONFIG_TASKS_RCU
1558 	p->rcu_tasks_holdout = false;
1559 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1560 	p->rcu_tasks_idle_cpu = -1;
1561 #endif /* #ifdef CONFIG_TASKS_RCU */
1562 }
1563 
1564 /*
1565  * This creates a new process as a copy of the old one,
1566  * but does not actually start it yet.
1567  *
1568  * It copies the registers, and all the appropriate
1569  * parts of the process environment (as per the clone
1570  * flags). The actual kick-off is left to the caller.
1571  */
1572 static __latent_entropy struct task_struct *copy_process(
1573 					unsigned long clone_flags,
1574 					unsigned long stack_start,
1575 					unsigned long stack_size,
1576 					int __user *child_tidptr,
1577 					struct pid *pid,
1578 					int trace,
1579 					unsigned long tls,
1580 					int node)
1581 {
1582 	int retval;
1583 	struct task_struct *p;
1584 
1585 	/*
1586 	 * Don't allow sharing the root directory with processes in a different
1587 	 * namespace
1588 	 */
1589 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1590 		return ERR_PTR(-EINVAL);
1591 
1592 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1593 		return ERR_PTR(-EINVAL);
1594 
1595 	/*
1596 	 * Thread groups must share signals as well, and detached threads
1597 	 * can only be started up within the thread group.
1598 	 */
1599 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1600 		return ERR_PTR(-EINVAL);
1601 
1602 	/*
1603 	 * Shared signal handlers imply shared VM. By way of the above,
1604 	 * thread groups also imply shared VM. Blocking this case allows
1605 	 * for various simplifications in other code.
1606 	 */
1607 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1608 		return ERR_PTR(-EINVAL);
1609 
1610 	/*
1611 	 * Siblings of global init remain as zombies on exit since they are
1612 	 * not reaped by their parent (swapper). To solve this and to avoid
1613 	 * multi-rooted process trees, prevent global and container-inits
1614 	 * from creating siblings.
1615 	 */
1616 	if ((clone_flags & CLONE_PARENT) &&
1617 				current->signal->flags & SIGNAL_UNKILLABLE)
1618 		return ERR_PTR(-EINVAL);
1619 
1620 	/*
1621 	 * If the new process will be in a different pid or user namespace
1622 	 * do not allow it to share a thread group with the forking task.
1623 	 */
1624 	if (clone_flags & CLONE_THREAD) {
1625 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1626 		    (task_active_pid_ns(current) !=
1627 				current->nsproxy->pid_ns_for_children))
1628 			return ERR_PTR(-EINVAL);
1629 	}
1630 
1631 	retval = -ENOMEM;
1632 	p = dup_task_struct(current, node);
1633 	if (!p)
1634 		goto fork_out;
1635 
1636 	/*
1637 	 * This _must_ happen before we call free_task(), i.e. before we jump
1638 	 * to any of the bad_fork_* labels. This is to avoid freeing
1639 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1640 	 * kernel threads (PF_KTHREAD).
1641 	 */
1642 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1643 	/*
1644 	 * Clear TID on mm_release()?
1645 	 */
1646 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1647 
1648 	ftrace_graph_init_task(p);
1649 
1650 	rt_mutex_init_task(p);
1651 
1652 #ifdef CONFIG_PROVE_LOCKING
1653 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1654 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1655 #endif
1656 	retval = -EAGAIN;
1657 	if (atomic_read(&p->real_cred->user->processes) >=
1658 			task_rlimit(p, RLIMIT_NPROC)) {
1659 		if (p->real_cred->user != INIT_USER &&
1660 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1661 			goto bad_fork_free;
1662 	}
1663 	current->flags &= ~PF_NPROC_EXCEEDED;
1664 
1665 	retval = copy_creds(p, clone_flags);
1666 	if (retval < 0)
1667 		goto bad_fork_free;
1668 
1669 	/*
1670 	 * If multiple threads are within copy_process(), then this check
1671 	 * triggers too late. This doesn't hurt, the check is only there
1672 	 * to stop root fork bombs.
1673 	 */
1674 	retval = -EAGAIN;
1675 	if (nr_threads >= max_threads)
1676 		goto bad_fork_cleanup_count;
1677 
1678 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1679 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1680 	p->flags |= PF_FORKNOEXEC;
1681 	INIT_LIST_HEAD(&p->children);
1682 	INIT_LIST_HEAD(&p->sibling);
1683 	rcu_copy_process(p);
1684 	p->vfork_done = NULL;
1685 	spin_lock_init(&p->alloc_lock);
1686 
1687 	init_sigpending(&p->pending);
1688 
1689 	p->utime = p->stime = p->gtime = 0;
1690 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1691 	p->utimescaled = p->stimescaled = 0;
1692 #endif
1693 	prev_cputime_init(&p->prev_cputime);
1694 
1695 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1696 	seqcount_init(&p->vtime.seqcount);
1697 	p->vtime.starttime = 0;
1698 	p->vtime.state = VTIME_INACTIVE;
1699 #endif
1700 
1701 #if defined(SPLIT_RSS_COUNTING)
1702 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1703 #endif
1704 
1705 	p->default_timer_slack_ns = current->timer_slack_ns;
1706 
1707 	task_io_accounting_init(&p->ioac);
1708 	acct_clear_integrals(p);
1709 
1710 	posix_cpu_timers_init(p);
1711 
1712 	p->start_time = ktime_get_ns();
1713 	p->real_start_time = ktime_get_boot_ns();
1714 	p->io_context = NULL;
1715 	p->audit_context = NULL;
1716 	cgroup_fork(p);
1717 #ifdef CONFIG_NUMA
1718 	p->mempolicy = mpol_dup(p->mempolicy);
1719 	if (IS_ERR(p->mempolicy)) {
1720 		retval = PTR_ERR(p->mempolicy);
1721 		p->mempolicy = NULL;
1722 		goto bad_fork_cleanup_threadgroup_lock;
1723 	}
1724 #endif
1725 #ifdef CONFIG_CPUSETS
1726 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1727 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1728 	seqcount_init(&p->mems_allowed_seq);
1729 #endif
1730 #ifdef CONFIG_TRACE_IRQFLAGS
1731 	p->irq_events = 0;
1732 	p->hardirqs_enabled = 0;
1733 	p->hardirq_enable_ip = 0;
1734 	p->hardirq_enable_event = 0;
1735 	p->hardirq_disable_ip = _THIS_IP_;
1736 	p->hardirq_disable_event = 0;
1737 	p->softirqs_enabled = 1;
1738 	p->softirq_enable_ip = _THIS_IP_;
1739 	p->softirq_enable_event = 0;
1740 	p->softirq_disable_ip = 0;
1741 	p->softirq_disable_event = 0;
1742 	p->hardirq_context = 0;
1743 	p->softirq_context = 0;
1744 #endif
1745 
1746 	p->pagefault_disabled = 0;
1747 
1748 #ifdef CONFIG_LOCKDEP
1749 	p->lockdep_depth = 0; /* no locks held yet */
1750 	p->curr_chain_key = 0;
1751 	p->lockdep_recursion = 0;
1752 	lockdep_init_task(p);
1753 #endif
1754 
1755 #ifdef CONFIG_DEBUG_MUTEXES
1756 	p->blocked_on = NULL; /* not blocked yet */
1757 #endif
1758 #ifdef CONFIG_BCACHE
1759 	p->sequential_io	= 0;
1760 	p->sequential_io_avg	= 0;
1761 #endif
1762 
1763 	/* Perform scheduler related setup. Assign this task to a CPU. */
1764 	retval = sched_fork(clone_flags, p);
1765 	if (retval)
1766 		goto bad_fork_cleanup_policy;
1767 
1768 	retval = perf_event_init_task(p);
1769 	if (retval)
1770 		goto bad_fork_cleanup_policy;
1771 	retval = audit_alloc(p);
1772 	if (retval)
1773 		goto bad_fork_cleanup_perf;
1774 	/* copy all the process information */
1775 	shm_init_task(p);
1776 	retval = security_task_alloc(p, clone_flags);
1777 	if (retval)
1778 		goto bad_fork_cleanup_audit;
1779 	retval = copy_semundo(clone_flags, p);
1780 	if (retval)
1781 		goto bad_fork_cleanup_security;
1782 	retval = copy_files(clone_flags, p);
1783 	if (retval)
1784 		goto bad_fork_cleanup_semundo;
1785 	retval = copy_fs(clone_flags, p);
1786 	if (retval)
1787 		goto bad_fork_cleanup_files;
1788 	retval = copy_sighand(clone_flags, p);
1789 	if (retval)
1790 		goto bad_fork_cleanup_fs;
1791 	retval = copy_signal(clone_flags, p);
1792 	if (retval)
1793 		goto bad_fork_cleanup_sighand;
1794 	retval = copy_mm(clone_flags, p);
1795 	if (retval)
1796 		goto bad_fork_cleanup_signal;
1797 	retval = copy_namespaces(clone_flags, p);
1798 	if (retval)
1799 		goto bad_fork_cleanup_mm;
1800 	retval = copy_io(clone_flags, p);
1801 	if (retval)
1802 		goto bad_fork_cleanup_namespaces;
1803 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1804 	if (retval)
1805 		goto bad_fork_cleanup_io;
1806 
1807 	if (pid != &init_struct_pid) {
1808 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1809 		if (IS_ERR(pid)) {
1810 			retval = PTR_ERR(pid);
1811 			goto bad_fork_cleanup_thread;
1812 		}
1813 	}
1814 
1815 #ifdef CONFIG_BLOCK
1816 	p->plug = NULL;
1817 #endif
1818 #ifdef CONFIG_FUTEX
1819 	p->robust_list = NULL;
1820 #ifdef CONFIG_COMPAT
1821 	p->compat_robust_list = NULL;
1822 #endif
1823 	INIT_LIST_HEAD(&p->pi_state_list);
1824 	p->pi_state_cache = NULL;
1825 #endif
1826 	/*
1827 	 * sigaltstack should be cleared when sharing the same VM
1828 	 */
1829 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1830 		sas_ss_reset(p);
1831 
1832 	/*
1833 	 * Syscall tracing and stepping should be turned off in the
1834 	 * child regardless of CLONE_PTRACE.
1835 	 */
1836 	user_disable_single_step(p);
1837 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1838 #ifdef TIF_SYSCALL_EMU
1839 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1840 #endif
1841 	clear_all_latency_tracing(p);
1842 
1843 	/* ok, now we should be set up.. */
1844 	p->pid = pid_nr(pid);
1845 	if (clone_flags & CLONE_THREAD) {
1846 		p->exit_signal = -1;
1847 		p->group_leader = current->group_leader;
1848 		p->tgid = current->tgid;
1849 	} else {
1850 		if (clone_flags & CLONE_PARENT)
1851 			p->exit_signal = current->group_leader->exit_signal;
1852 		else
1853 			p->exit_signal = (clone_flags & CSIGNAL);
1854 		p->group_leader = p;
1855 		p->tgid = p->pid;
1856 	}
1857 
1858 	p->nr_dirtied = 0;
1859 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1860 	p->dirty_paused_when = 0;
1861 
1862 	p->pdeath_signal = 0;
1863 	INIT_LIST_HEAD(&p->thread_group);
1864 	p->task_works = NULL;
1865 
1866 	cgroup_threadgroup_change_begin(current);
1867 	/*
1868 	 * Ensure that the cgroup subsystem policies allow the new process to be
1869 	 * forked. It should be noted the the new process's css_set can be changed
1870 	 * between here and cgroup_post_fork() if an organisation operation is in
1871 	 * progress.
1872 	 */
1873 	retval = cgroup_can_fork(p);
1874 	if (retval)
1875 		goto bad_fork_free_pid;
1876 
1877 	/*
1878 	 * Make it visible to the rest of the system, but dont wake it up yet.
1879 	 * Need tasklist lock for parent etc handling!
1880 	 */
1881 	write_lock_irq(&tasklist_lock);
1882 
1883 	/* CLONE_PARENT re-uses the old parent */
1884 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1885 		p->real_parent = current->real_parent;
1886 		p->parent_exec_id = current->parent_exec_id;
1887 	} else {
1888 		p->real_parent = current;
1889 		p->parent_exec_id = current->self_exec_id;
1890 	}
1891 
1892 	klp_copy_process(p);
1893 
1894 	spin_lock(&current->sighand->siglock);
1895 
1896 	/*
1897 	 * Copy seccomp details explicitly here, in case they were changed
1898 	 * before holding sighand lock.
1899 	 */
1900 	copy_seccomp(p);
1901 
1902 	/*
1903 	 * Process group and session signals need to be delivered to just the
1904 	 * parent before the fork or both the parent and the child after the
1905 	 * fork. Restart if a signal comes in before we add the new process to
1906 	 * it's process group.
1907 	 * A fatal signal pending means that current will exit, so the new
1908 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1909 	*/
1910 	recalc_sigpending();
1911 	if (signal_pending(current)) {
1912 		retval = -ERESTARTNOINTR;
1913 		goto bad_fork_cancel_cgroup;
1914 	}
1915 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1916 		retval = -ENOMEM;
1917 		goto bad_fork_cancel_cgroup;
1918 	}
1919 
1920 	if (likely(p->pid)) {
1921 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1922 
1923 		init_task_pid(p, PIDTYPE_PID, pid);
1924 		if (thread_group_leader(p)) {
1925 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1926 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1927 
1928 			if (is_child_reaper(pid)) {
1929 				ns_of_pid(pid)->child_reaper = p;
1930 				p->signal->flags |= SIGNAL_UNKILLABLE;
1931 			}
1932 
1933 			p->signal->leader_pid = pid;
1934 			p->signal->tty = tty_kref_get(current->signal->tty);
1935 			/*
1936 			 * Inherit has_child_subreaper flag under the same
1937 			 * tasklist_lock with adding child to the process tree
1938 			 * for propagate_has_child_subreaper optimization.
1939 			 */
1940 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1941 							 p->real_parent->signal->is_child_subreaper;
1942 			list_add_tail(&p->sibling, &p->real_parent->children);
1943 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1944 			attach_pid(p, PIDTYPE_PGID);
1945 			attach_pid(p, PIDTYPE_SID);
1946 			__this_cpu_inc(process_counts);
1947 		} else {
1948 			current->signal->nr_threads++;
1949 			atomic_inc(&current->signal->live);
1950 			atomic_inc(&current->signal->sigcnt);
1951 			list_add_tail_rcu(&p->thread_group,
1952 					  &p->group_leader->thread_group);
1953 			list_add_tail_rcu(&p->thread_node,
1954 					  &p->signal->thread_head);
1955 		}
1956 		attach_pid(p, PIDTYPE_PID);
1957 		nr_threads++;
1958 	}
1959 
1960 	total_forks++;
1961 	spin_unlock(&current->sighand->siglock);
1962 	syscall_tracepoint_update(p);
1963 	write_unlock_irq(&tasklist_lock);
1964 
1965 	proc_fork_connector(p);
1966 	cgroup_post_fork(p);
1967 	cgroup_threadgroup_change_end(current);
1968 	perf_event_fork(p);
1969 
1970 	trace_task_newtask(p, clone_flags);
1971 	uprobe_copy_process(p, clone_flags);
1972 
1973 	return p;
1974 
1975 bad_fork_cancel_cgroup:
1976 	spin_unlock(&current->sighand->siglock);
1977 	write_unlock_irq(&tasklist_lock);
1978 	cgroup_cancel_fork(p);
1979 bad_fork_free_pid:
1980 	cgroup_threadgroup_change_end(current);
1981 	if (pid != &init_struct_pid)
1982 		free_pid(pid);
1983 bad_fork_cleanup_thread:
1984 	exit_thread(p);
1985 bad_fork_cleanup_io:
1986 	if (p->io_context)
1987 		exit_io_context(p);
1988 bad_fork_cleanup_namespaces:
1989 	exit_task_namespaces(p);
1990 bad_fork_cleanup_mm:
1991 	if (p->mm)
1992 		mmput(p->mm);
1993 bad_fork_cleanup_signal:
1994 	if (!(clone_flags & CLONE_THREAD))
1995 		free_signal_struct(p->signal);
1996 bad_fork_cleanup_sighand:
1997 	__cleanup_sighand(p->sighand);
1998 bad_fork_cleanup_fs:
1999 	exit_fs(p); /* blocking */
2000 bad_fork_cleanup_files:
2001 	exit_files(p); /* blocking */
2002 bad_fork_cleanup_semundo:
2003 	exit_sem(p);
2004 bad_fork_cleanup_security:
2005 	security_task_free(p);
2006 bad_fork_cleanup_audit:
2007 	audit_free(p);
2008 bad_fork_cleanup_perf:
2009 	perf_event_free_task(p);
2010 bad_fork_cleanup_policy:
2011 	lockdep_free_task(p);
2012 #ifdef CONFIG_NUMA
2013 	mpol_put(p->mempolicy);
2014 bad_fork_cleanup_threadgroup_lock:
2015 #endif
2016 	delayacct_tsk_free(p);
2017 bad_fork_cleanup_count:
2018 	atomic_dec(&p->cred->user->processes);
2019 	exit_creds(p);
2020 bad_fork_free:
2021 	p->state = TASK_DEAD;
2022 	put_task_stack(p);
2023 	free_task(p);
2024 fork_out:
2025 	return ERR_PTR(retval);
2026 }
2027 
2028 static inline void init_idle_pids(struct pid_link *links)
2029 {
2030 	enum pid_type type;
2031 
2032 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2033 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
2034 		links[type].pid = &init_struct_pid;
2035 	}
2036 }
2037 
2038 struct task_struct *fork_idle(int cpu)
2039 {
2040 	struct task_struct *task;
2041 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2042 			    cpu_to_node(cpu));
2043 	if (!IS_ERR(task)) {
2044 		init_idle_pids(task->pids);
2045 		init_idle(task, cpu);
2046 	}
2047 
2048 	return task;
2049 }
2050 
2051 /*
2052  *  Ok, this is the main fork-routine.
2053  *
2054  * It copies the process, and if successful kick-starts
2055  * it and waits for it to finish using the VM if required.
2056  */
2057 long _do_fork(unsigned long clone_flags,
2058 	      unsigned long stack_start,
2059 	      unsigned long stack_size,
2060 	      int __user *parent_tidptr,
2061 	      int __user *child_tidptr,
2062 	      unsigned long tls)
2063 {
2064 	struct completion vfork;
2065 	struct pid *pid;
2066 	struct task_struct *p;
2067 	int trace = 0;
2068 	long nr;
2069 
2070 	/*
2071 	 * Determine whether and which event to report to ptracer.  When
2072 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2073 	 * requested, no event is reported; otherwise, report if the event
2074 	 * for the type of forking is enabled.
2075 	 */
2076 	if (!(clone_flags & CLONE_UNTRACED)) {
2077 		if (clone_flags & CLONE_VFORK)
2078 			trace = PTRACE_EVENT_VFORK;
2079 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2080 			trace = PTRACE_EVENT_CLONE;
2081 		else
2082 			trace = PTRACE_EVENT_FORK;
2083 
2084 		if (likely(!ptrace_event_enabled(current, trace)))
2085 			trace = 0;
2086 	}
2087 
2088 	p = copy_process(clone_flags, stack_start, stack_size,
2089 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2090 	add_latent_entropy();
2091 
2092 	if (IS_ERR(p))
2093 		return PTR_ERR(p);
2094 
2095 	/*
2096 	 * Do this prior waking up the new thread - the thread pointer
2097 	 * might get invalid after that point, if the thread exits quickly.
2098 	 */
2099 	trace_sched_process_fork(current, p);
2100 
2101 	pid = get_task_pid(p, PIDTYPE_PID);
2102 	nr = pid_vnr(pid);
2103 
2104 	if (clone_flags & CLONE_PARENT_SETTID)
2105 		put_user(nr, parent_tidptr);
2106 
2107 	if (clone_flags & CLONE_VFORK) {
2108 		p->vfork_done = &vfork;
2109 		init_completion(&vfork);
2110 		get_task_struct(p);
2111 	}
2112 
2113 	wake_up_new_task(p);
2114 
2115 	/* forking complete and child started to run, tell ptracer */
2116 	if (unlikely(trace))
2117 		ptrace_event_pid(trace, pid);
2118 
2119 	if (clone_flags & CLONE_VFORK) {
2120 		if (!wait_for_vfork_done(p, &vfork))
2121 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2122 	}
2123 
2124 	put_pid(pid);
2125 	return nr;
2126 }
2127 
2128 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2129 /* For compatibility with architectures that call do_fork directly rather than
2130  * using the syscall entry points below. */
2131 long do_fork(unsigned long clone_flags,
2132 	      unsigned long stack_start,
2133 	      unsigned long stack_size,
2134 	      int __user *parent_tidptr,
2135 	      int __user *child_tidptr)
2136 {
2137 	return _do_fork(clone_flags, stack_start, stack_size,
2138 			parent_tidptr, child_tidptr, 0);
2139 }
2140 #endif
2141 
2142 /*
2143  * Create a kernel thread.
2144  */
2145 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2146 {
2147 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2148 		(unsigned long)arg, NULL, NULL, 0);
2149 }
2150 
2151 #ifdef __ARCH_WANT_SYS_FORK
2152 SYSCALL_DEFINE0(fork)
2153 {
2154 #ifdef CONFIG_MMU
2155 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2156 #else
2157 	/* can not support in nommu mode */
2158 	return -EINVAL;
2159 #endif
2160 }
2161 #endif
2162 
2163 #ifdef __ARCH_WANT_SYS_VFORK
2164 SYSCALL_DEFINE0(vfork)
2165 {
2166 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2167 			0, NULL, NULL, 0);
2168 }
2169 #endif
2170 
2171 #ifdef __ARCH_WANT_SYS_CLONE
2172 #ifdef CONFIG_CLONE_BACKWARDS
2173 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2174 		 int __user *, parent_tidptr,
2175 		 unsigned long, tls,
2176 		 int __user *, child_tidptr)
2177 #elif defined(CONFIG_CLONE_BACKWARDS2)
2178 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2179 		 int __user *, parent_tidptr,
2180 		 int __user *, child_tidptr,
2181 		 unsigned long, tls)
2182 #elif defined(CONFIG_CLONE_BACKWARDS3)
2183 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2184 		int, stack_size,
2185 		int __user *, parent_tidptr,
2186 		int __user *, child_tidptr,
2187 		unsigned long, tls)
2188 #else
2189 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2190 		 int __user *, parent_tidptr,
2191 		 int __user *, child_tidptr,
2192 		 unsigned long, tls)
2193 #endif
2194 {
2195 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2196 }
2197 #endif
2198 
2199 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2200 {
2201 	struct task_struct *leader, *parent, *child;
2202 	int res;
2203 
2204 	read_lock(&tasklist_lock);
2205 	leader = top = top->group_leader;
2206 down:
2207 	for_each_thread(leader, parent) {
2208 		list_for_each_entry(child, &parent->children, sibling) {
2209 			res = visitor(child, data);
2210 			if (res) {
2211 				if (res < 0)
2212 					goto out;
2213 				leader = child;
2214 				goto down;
2215 			}
2216 up:
2217 			;
2218 		}
2219 	}
2220 
2221 	if (leader != top) {
2222 		child = leader;
2223 		parent = child->real_parent;
2224 		leader = parent->group_leader;
2225 		goto up;
2226 	}
2227 out:
2228 	read_unlock(&tasklist_lock);
2229 }
2230 
2231 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2232 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2233 #endif
2234 
2235 static void sighand_ctor(void *data)
2236 {
2237 	struct sighand_struct *sighand = data;
2238 
2239 	spin_lock_init(&sighand->siglock);
2240 	init_waitqueue_head(&sighand->signalfd_wqh);
2241 }
2242 
2243 void __init proc_caches_init(void)
2244 {
2245 	sighand_cachep = kmem_cache_create("sighand_cache",
2246 			sizeof(struct sighand_struct), 0,
2247 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2248 			SLAB_ACCOUNT, sighand_ctor);
2249 	signal_cachep = kmem_cache_create("signal_cache",
2250 			sizeof(struct signal_struct), 0,
2251 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2252 			NULL);
2253 	files_cachep = kmem_cache_create("files_cache",
2254 			sizeof(struct files_struct), 0,
2255 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2256 			NULL);
2257 	fs_cachep = kmem_cache_create("fs_cache",
2258 			sizeof(struct fs_struct), 0,
2259 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2260 			NULL);
2261 	/*
2262 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2263 	 * whole struct cpumask for the OFFSTACK case. We could change
2264 	 * this to *only* allocate as much of it as required by the
2265 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2266 	 * is at the end of the structure, exactly for that reason.
2267 	 */
2268 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2269 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2270 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2271 			offsetof(struct mm_struct, saved_auxv),
2272 			sizeof_field(struct mm_struct, saved_auxv),
2273 			NULL);
2274 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2275 	mmap_init();
2276 	nsproxy_cache_init();
2277 }
2278 
2279 /*
2280  * Check constraints on flags passed to the unshare system call.
2281  */
2282 static int check_unshare_flags(unsigned long unshare_flags)
2283 {
2284 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2285 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2286 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2287 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2288 		return -EINVAL;
2289 	/*
2290 	 * Not implemented, but pretend it works if there is nothing
2291 	 * to unshare.  Note that unsharing the address space or the
2292 	 * signal handlers also need to unshare the signal queues (aka
2293 	 * CLONE_THREAD).
2294 	 */
2295 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2296 		if (!thread_group_empty(current))
2297 			return -EINVAL;
2298 	}
2299 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2300 		if (atomic_read(&current->sighand->count) > 1)
2301 			return -EINVAL;
2302 	}
2303 	if (unshare_flags & CLONE_VM) {
2304 		if (!current_is_single_threaded())
2305 			return -EINVAL;
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 /*
2312  * Unshare the filesystem structure if it is being shared
2313  */
2314 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2315 {
2316 	struct fs_struct *fs = current->fs;
2317 
2318 	if (!(unshare_flags & CLONE_FS) || !fs)
2319 		return 0;
2320 
2321 	/* don't need lock here; in the worst case we'll do useless copy */
2322 	if (fs->users == 1)
2323 		return 0;
2324 
2325 	*new_fsp = copy_fs_struct(fs);
2326 	if (!*new_fsp)
2327 		return -ENOMEM;
2328 
2329 	return 0;
2330 }
2331 
2332 /*
2333  * Unshare file descriptor table if it is being shared
2334  */
2335 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2336 {
2337 	struct files_struct *fd = current->files;
2338 	int error = 0;
2339 
2340 	if ((unshare_flags & CLONE_FILES) &&
2341 	    (fd && atomic_read(&fd->count) > 1)) {
2342 		*new_fdp = dup_fd(fd, &error);
2343 		if (!*new_fdp)
2344 			return error;
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 /*
2351  * unshare allows a process to 'unshare' part of the process
2352  * context which was originally shared using clone.  copy_*
2353  * functions used by do_fork() cannot be used here directly
2354  * because they modify an inactive task_struct that is being
2355  * constructed. Here we are modifying the current, active,
2356  * task_struct.
2357  */
2358 int ksys_unshare(unsigned long unshare_flags)
2359 {
2360 	struct fs_struct *fs, *new_fs = NULL;
2361 	struct files_struct *fd, *new_fd = NULL;
2362 	struct cred *new_cred = NULL;
2363 	struct nsproxy *new_nsproxy = NULL;
2364 	int do_sysvsem = 0;
2365 	int err;
2366 
2367 	/*
2368 	 * If unsharing a user namespace must also unshare the thread group
2369 	 * and unshare the filesystem root and working directories.
2370 	 */
2371 	if (unshare_flags & CLONE_NEWUSER)
2372 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2373 	/*
2374 	 * If unsharing vm, must also unshare signal handlers.
2375 	 */
2376 	if (unshare_flags & CLONE_VM)
2377 		unshare_flags |= CLONE_SIGHAND;
2378 	/*
2379 	 * If unsharing a signal handlers, must also unshare the signal queues.
2380 	 */
2381 	if (unshare_flags & CLONE_SIGHAND)
2382 		unshare_flags |= CLONE_THREAD;
2383 	/*
2384 	 * If unsharing namespace, must also unshare filesystem information.
2385 	 */
2386 	if (unshare_flags & CLONE_NEWNS)
2387 		unshare_flags |= CLONE_FS;
2388 
2389 	err = check_unshare_flags(unshare_flags);
2390 	if (err)
2391 		goto bad_unshare_out;
2392 	/*
2393 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2394 	 * to a new ipc namespace, the semaphore arrays from the old
2395 	 * namespace are unreachable.
2396 	 */
2397 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2398 		do_sysvsem = 1;
2399 	err = unshare_fs(unshare_flags, &new_fs);
2400 	if (err)
2401 		goto bad_unshare_out;
2402 	err = unshare_fd(unshare_flags, &new_fd);
2403 	if (err)
2404 		goto bad_unshare_cleanup_fs;
2405 	err = unshare_userns(unshare_flags, &new_cred);
2406 	if (err)
2407 		goto bad_unshare_cleanup_fd;
2408 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2409 					 new_cred, new_fs);
2410 	if (err)
2411 		goto bad_unshare_cleanup_cred;
2412 
2413 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2414 		if (do_sysvsem) {
2415 			/*
2416 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2417 			 */
2418 			exit_sem(current);
2419 		}
2420 		if (unshare_flags & CLONE_NEWIPC) {
2421 			/* Orphan segments in old ns (see sem above). */
2422 			exit_shm(current);
2423 			shm_init_task(current);
2424 		}
2425 
2426 		if (new_nsproxy)
2427 			switch_task_namespaces(current, new_nsproxy);
2428 
2429 		task_lock(current);
2430 
2431 		if (new_fs) {
2432 			fs = current->fs;
2433 			spin_lock(&fs->lock);
2434 			current->fs = new_fs;
2435 			if (--fs->users)
2436 				new_fs = NULL;
2437 			else
2438 				new_fs = fs;
2439 			spin_unlock(&fs->lock);
2440 		}
2441 
2442 		if (new_fd) {
2443 			fd = current->files;
2444 			current->files = new_fd;
2445 			new_fd = fd;
2446 		}
2447 
2448 		task_unlock(current);
2449 
2450 		if (new_cred) {
2451 			/* Install the new user namespace */
2452 			commit_creds(new_cred);
2453 			new_cred = NULL;
2454 		}
2455 	}
2456 
2457 	perf_event_namespaces(current);
2458 
2459 bad_unshare_cleanup_cred:
2460 	if (new_cred)
2461 		put_cred(new_cred);
2462 bad_unshare_cleanup_fd:
2463 	if (new_fd)
2464 		put_files_struct(new_fd);
2465 
2466 bad_unshare_cleanup_fs:
2467 	if (new_fs)
2468 		free_fs_struct(new_fs);
2469 
2470 bad_unshare_out:
2471 	return err;
2472 }
2473 
2474 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2475 {
2476 	return ksys_unshare(unshare_flags);
2477 }
2478 
2479 /*
2480  *	Helper to unshare the files of the current task.
2481  *	We don't want to expose copy_files internals to
2482  *	the exec layer of the kernel.
2483  */
2484 
2485 int unshare_files(struct files_struct **displaced)
2486 {
2487 	struct task_struct *task = current;
2488 	struct files_struct *copy = NULL;
2489 	int error;
2490 
2491 	error = unshare_fd(CLONE_FILES, &copy);
2492 	if (error || !copy) {
2493 		*displaced = NULL;
2494 		return error;
2495 	}
2496 	*displaced = task->files;
2497 	task_lock(task);
2498 	task->files = copy;
2499 	task_unlock(task);
2500 	return 0;
2501 }
2502 
2503 int sysctl_max_threads(struct ctl_table *table, int write,
2504 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2505 {
2506 	struct ctl_table t;
2507 	int ret;
2508 	int threads = max_threads;
2509 	int min = MIN_THREADS;
2510 	int max = MAX_THREADS;
2511 
2512 	t = *table;
2513 	t.data = &threads;
2514 	t.extra1 = &min;
2515 	t.extra2 = &max;
2516 
2517 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2518 	if (ret || !write)
2519 		return ret;
2520 
2521 	set_max_threads(threads);
2522 
2523 	return 0;
2524 }
2525