xref: /openbmc/linux/kernel/fork.c (revision d28bcd53)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
90 #include <linux/livepatch.h>
91 
92 #include <asm/pgtable.h>
93 #include <asm/pgalloc.h>
94 #include <linux/uaccess.h>
95 #include <asm/mmu_context.h>
96 #include <asm/cacheflush.h>
97 #include <asm/tlbflush.h>
98 
99 #include <trace/events/sched.h>
100 
101 #define CREATE_TRACE_POINTS
102 #include <trace/events/task.h>
103 
104 /*
105  * Minimum number of threads to boot the kernel
106  */
107 #define MIN_THREADS 20
108 
109 /*
110  * Maximum number of threads
111  */
112 #define MAX_THREADS FUTEX_TID_MASK
113 
114 /*
115  * Protected counters by write_lock_irq(&tasklist_lock)
116  */
117 unsigned long total_forks;	/* Handle normal Linux uptimes. */
118 int nr_threads;			/* The idle threads do not count.. */
119 
120 int max_threads;		/* tunable limit on nr_threads */
121 
122 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
123 
124 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
125 
126 #ifdef CONFIG_PROVE_RCU
127 int lockdep_tasklist_lock_is_held(void)
128 {
129 	return lockdep_is_held(&tasklist_lock);
130 }
131 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
132 #endif /* #ifdef CONFIG_PROVE_RCU */
133 
134 int nr_processes(void)
135 {
136 	int cpu;
137 	int total = 0;
138 
139 	for_each_possible_cpu(cpu)
140 		total += per_cpu(process_counts, cpu);
141 
142 	return total;
143 }
144 
145 void __weak arch_release_task_struct(struct task_struct *tsk)
146 {
147 }
148 
149 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
150 static struct kmem_cache *task_struct_cachep;
151 
152 static inline struct task_struct *alloc_task_struct_node(int node)
153 {
154 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
155 }
156 
157 static inline void free_task_struct(struct task_struct *tsk)
158 {
159 	kmem_cache_free(task_struct_cachep, tsk);
160 }
161 #endif
162 
163 void __weak arch_release_thread_stack(unsigned long *stack)
164 {
165 }
166 
167 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
168 
169 /*
170  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
171  * kmemcache based allocator.
172  */
173 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
174 
175 #ifdef CONFIG_VMAP_STACK
176 /*
177  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
178  * flush.  Try to minimize the number of calls by caching stacks.
179  */
180 #define NR_CACHED_STACKS 2
181 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
182 
183 static int free_vm_stack_cache(unsigned int cpu)
184 {
185 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
186 	int i;
187 
188 	for (i = 0; i < NR_CACHED_STACKS; i++) {
189 		struct vm_struct *vm_stack = cached_vm_stacks[i];
190 
191 		if (!vm_stack)
192 			continue;
193 
194 		vfree(vm_stack->addr);
195 		cached_vm_stacks[i] = NULL;
196 	}
197 
198 	return 0;
199 }
200 #endif
201 
202 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
203 {
204 #ifdef CONFIG_VMAP_STACK
205 	void *stack;
206 	int i;
207 
208 	local_irq_disable();
209 	for (i = 0; i < NR_CACHED_STACKS; i++) {
210 		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
211 
212 		if (!s)
213 			continue;
214 		this_cpu_write(cached_stacks[i], NULL);
215 
216 		tsk->stack_vm_area = s;
217 		local_irq_enable();
218 		return s->addr;
219 	}
220 	local_irq_enable();
221 
222 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
223 				     VMALLOC_START, VMALLOC_END,
224 				     THREADINFO_GFP,
225 				     PAGE_KERNEL,
226 				     0, node, __builtin_return_address(0));
227 
228 	/*
229 	 * We can't call find_vm_area() in interrupt context, and
230 	 * free_thread_stack() can be called in interrupt context,
231 	 * so cache the vm_struct.
232 	 */
233 	if (stack)
234 		tsk->stack_vm_area = find_vm_area(stack);
235 	return stack;
236 #else
237 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
238 					     THREAD_SIZE_ORDER);
239 
240 	return page ? page_address(page) : NULL;
241 #endif
242 }
243 
244 static inline void free_thread_stack(struct task_struct *tsk)
245 {
246 #ifdef CONFIG_VMAP_STACK
247 	if (task_stack_vm_area(tsk)) {
248 		unsigned long flags;
249 		int i;
250 
251 		local_irq_save(flags);
252 		for (i = 0; i < NR_CACHED_STACKS; i++) {
253 			if (this_cpu_read(cached_stacks[i]))
254 				continue;
255 
256 			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
257 			local_irq_restore(flags);
258 			return;
259 		}
260 		local_irq_restore(flags);
261 
262 		vfree_atomic(tsk->stack);
263 		return;
264 	}
265 #endif
266 
267 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271 
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 						  int node)
274 {
275 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277 
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 	kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282 
283 void thread_stack_cache_init(void)
284 {
285 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
286 					      THREAD_SIZE, 0, NULL);
287 	BUG_ON(thread_stack_cache == NULL);
288 }
289 # endif
290 #endif
291 
292 /* SLAB cache for signal_struct structures (tsk->signal) */
293 static struct kmem_cache *signal_cachep;
294 
295 /* SLAB cache for sighand_struct structures (tsk->sighand) */
296 struct kmem_cache *sighand_cachep;
297 
298 /* SLAB cache for files_struct structures (tsk->files) */
299 struct kmem_cache *files_cachep;
300 
301 /* SLAB cache for fs_struct structures (tsk->fs) */
302 struct kmem_cache *fs_cachep;
303 
304 /* SLAB cache for vm_area_struct structures */
305 struct kmem_cache *vm_area_cachep;
306 
307 /* SLAB cache for mm_struct structures (tsk->mm) */
308 static struct kmem_cache *mm_cachep;
309 
310 static void account_kernel_stack(struct task_struct *tsk, int account)
311 {
312 	void *stack = task_stack_page(tsk);
313 	struct vm_struct *vm = task_stack_vm_area(tsk);
314 
315 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
316 
317 	if (vm) {
318 		int i;
319 
320 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
321 
322 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
323 			mod_zone_page_state(page_zone(vm->pages[i]),
324 					    NR_KERNEL_STACK_KB,
325 					    PAGE_SIZE / 1024 * account);
326 		}
327 
328 		/* All stack pages belong to the same memcg. */
329 		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
330 					    account * (THREAD_SIZE / 1024));
331 	} else {
332 		/*
333 		 * All stack pages are in the same zone and belong to the
334 		 * same memcg.
335 		 */
336 		struct page *first_page = virt_to_page(stack);
337 
338 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
339 				    THREAD_SIZE / 1024 * account);
340 
341 		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
342 					    account * (THREAD_SIZE / 1024));
343 	}
344 }
345 
346 static void release_task_stack(struct task_struct *tsk)
347 {
348 	if (WARN_ON(tsk->state != TASK_DEAD))
349 		return;  /* Better to leak the stack than to free prematurely */
350 
351 	account_kernel_stack(tsk, -1);
352 	arch_release_thread_stack(tsk->stack);
353 	free_thread_stack(tsk);
354 	tsk->stack = NULL;
355 #ifdef CONFIG_VMAP_STACK
356 	tsk->stack_vm_area = NULL;
357 #endif
358 }
359 
360 #ifdef CONFIG_THREAD_INFO_IN_TASK
361 void put_task_stack(struct task_struct *tsk)
362 {
363 	if (atomic_dec_and_test(&tsk->stack_refcount))
364 		release_task_stack(tsk);
365 }
366 #endif
367 
368 void free_task(struct task_struct *tsk)
369 {
370 #ifndef CONFIG_THREAD_INFO_IN_TASK
371 	/*
372 	 * The task is finally done with both the stack and thread_info,
373 	 * so free both.
374 	 */
375 	release_task_stack(tsk);
376 #else
377 	/*
378 	 * If the task had a separate stack allocation, it should be gone
379 	 * by now.
380 	 */
381 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
382 #endif
383 	rt_mutex_debug_task_free(tsk);
384 	ftrace_graph_exit_task(tsk);
385 	put_seccomp_filter(tsk);
386 	arch_release_task_struct(tsk);
387 	if (tsk->flags & PF_KTHREAD)
388 		free_kthread_struct(tsk);
389 	free_task_struct(tsk);
390 }
391 EXPORT_SYMBOL(free_task);
392 
393 static inline void free_signal_struct(struct signal_struct *sig)
394 {
395 	taskstats_tgid_free(sig);
396 	sched_autogroup_exit(sig);
397 	/*
398 	 * __mmdrop is not safe to call from softirq context on x86 due to
399 	 * pgd_dtor so postpone it to the async context
400 	 */
401 	if (sig->oom_mm)
402 		mmdrop_async(sig->oom_mm);
403 	kmem_cache_free(signal_cachep, sig);
404 }
405 
406 static inline void put_signal_struct(struct signal_struct *sig)
407 {
408 	if (atomic_dec_and_test(&sig->sigcnt))
409 		free_signal_struct(sig);
410 }
411 
412 void __put_task_struct(struct task_struct *tsk)
413 {
414 	WARN_ON(!tsk->exit_state);
415 	WARN_ON(atomic_read(&tsk->usage));
416 	WARN_ON(tsk == current);
417 
418 	cgroup_free(tsk);
419 	task_numa_free(tsk);
420 	security_task_free(tsk);
421 	exit_creds(tsk);
422 	delayacct_tsk_free(tsk);
423 	put_signal_struct(tsk->signal);
424 
425 	if (!profile_handoff_task(tsk))
426 		free_task(tsk);
427 }
428 EXPORT_SYMBOL_GPL(__put_task_struct);
429 
430 void __init __weak arch_task_cache_init(void) { }
431 
432 /*
433  * set_max_threads
434  */
435 static void set_max_threads(unsigned int max_threads_suggested)
436 {
437 	u64 threads;
438 
439 	/*
440 	 * The number of threads shall be limited such that the thread
441 	 * structures may only consume a small part of the available memory.
442 	 */
443 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
444 		threads = MAX_THREADS;
445 	else
446 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
447 				    (u64) THREAD_SIZE * 8UL);
448 
449 	if (threads > max_threads_suggested)
450 		threads = max_threads_suggested;
451 
452 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
453 }
454 
455 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
456 /* Initialized by the architecture: */
457 int arch_task_struct_size __read_mostly;
458 #endif
459 
460 void __init fork_init(void)
461 {
462 	int i;
463 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
464 #ifndef ARCH_MIN_TASKALIGN
465 #define ARCH_MIN_TASKALIGN	0
466 #endif
467 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
468 
469 	/* create a slab on which task_structs can be allocated */
470 	task_struct_cachep = kmem_cache_create("task_struct",
471 			arch_task_struct_size, align,
472 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
473 #endif
474 
475 	/* do the arch specific task caches init */
476 	arch_task_cache_init();
477 
478 	set_max_threads(MAX_THREADS);
479 
480 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
481 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
482 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
483 		init_task.signal->rlim[RLIMIT_NPROC];
484 
485 	for (i = 0; i < UCOUNT_COUNTS; i++) {
486 		init_user_ns.ucount_max[i] = max_threads/2;
487 	}
488 
489 #ifdef CONFIG_VMAP_STACK
490 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
491 			  NULL, free_vm_stack_cache);
492 #endif
493 }
494 
495 int __weak arch_dup_task_struct(struct task_struct *dst,
496 					       struct task_struct *src)
497 {
498 	*dst = *src;
499 	return 0;
500 }
501 
502 void set_task_stack_end_magic(struct task_struct *tsk)
503 {
504 	unsigned long *stackend;
505 
506 	stackend = end_of_stack(tsk);
507 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
508 }
509 
510 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
511 {
512 	struct task_struct *tsk;
513 	unsigned long *stack;
514 	struct vm_struct *stack_vm_area;
515 	int err;
516 
517 	if (node == NUMA_NO_NODE)
518 		node = tsk_fork_get_node(orig);
519 	tsk = alloc_task_struct_node(node);
520 	if (!tsk)
521 		return NULL;
522 
523 	stack = alloc_thread_stack_node(tsk, node);
524 	if (!stack)
525 		goto free_tsk;
526 
527 	stack_vm_area = task_stack_vm_area(tsk);
528 
529 	err = arch_dup_task_struct(tsk, orig);
530 
531 	/*
532 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
533 	 * sure they're properly initialized before using any stack-related
534 	 * functions again.
535 	 */
536 	tsk->stack = stack;
537 #ifdef CONFIG_VMAP_STACK
538 	tsk->stack_vm_area = stack_vm_area;
539 #endif
540 #ifdef CONFIG_THREAD_INFO_IN_TASK
541 	atomic_set(&tsk->stack_refcount, 1);
542 #endif
543 
544 	if (err)
545 		goto free_stack;
546 
547 #ifdef CONFIG_SECCOMP
548 	/*
549 	 * We must handle setting up seccomp filters once we're under
550 	 * the sighand lock in case orig has changed between now and
551 	 * then. Until then, filter must be NULL to avoid messing up
552 	 * the usage counts on the error path calling free_task.
553 	 */
554 	tsk->seccomp.filter = NULL;
555 #endif
556 
557 	setup_thread_stack(tsk, orig);
558 	clear_user_return_notifier(tsk);
559 	clear_tsk_need_resched(tsk);
560 	set_task_stack_end_magic(tsk);
561 
562 #ifdef CONFIG_CC_STACKPROTECTOR
563 	tsk->stack_canary = get_random_long();
564 #endif
565 
566 	/*
567 	 * One for us, one for whoever does the "release_task()" (usually
568 	 * parent)
569 	 */
570 	atomic_set(&tsk->usage, 2);
571 #ifdef CONFIG_BLK_DEV_IO_TRACE
572 	tsk->btrace_seq = 0;
573 #endif
574 	tsk->splice_pipe = NULL;
575 	tsk->task_frag.page = NULL;
576 	tsk->wake_q.next = NULL;
577 
578 	account_kernel_stack(tsk, 1);
579 
580 	kcov_task_init(tsk);
581 
582 	return tsk;
583 
584 free_stack:
585 	free_thread_stack(tsk);
586 free_tsk:
587 	free_task_struct(tsk);
588 	return NULL;
589 }
590 
591 #ifdef CONFIG_MMU
592 static __latent_entropy int dup_mmap(struct mm_struct *mm,
593 					struct mm_struct *oldmm)
594 {
595 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
596 	struct rb_node **rb_link, *rb_parent;
597 	int retval;
598 	unsigned long charge;
599 	LIST_HEAD(uf);
600 
601 	uprobe_start_dup_mmap();
602 	if (down_write_killable(&oldmm->mmap_sem)) {
603 		retval = -EINTR;
604 		goto fail_uprobe_end;
605 	}
606 	flush_cache_dup_mm(oldmm);
607 	uprobe_dup_mmap(oldmm, mm);
608 	/*
609 	 * Not linked in yet - no deadlock potential:
610 	 */
611 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
612 
613 	/* No ordering required: file already has been exposed. */
614 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
615 
616 	mm->total_vm = oldmm->total_vm;
617 	mm->data_vm = oldmm->data_vm;
618 	mm->exec_vm = oldmm->exec_vm;
619 	mm->stack_vm = oldmm->stack_vm;
620 
621 	rb_link = &mm->mm_rb.rb_node;
622 	rb_parent = NULL;
623 	pprev = &mm->mmap;
624 	retval = ksm_fork(mm, oldmm);
625 	if (retval)
626 		goto out;
627 	retval = khugepaged_fork(mm, oldmm);
628 	if (retval)
629 		goto out;
630 
631 	prev = NULL;
632 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
633 		struct file *file;
634 
635 		if (mpnt->vm_flags & VM_DONTCOPY) {
636 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
637 			continue;
638 		}
639 		charge = 0;
640 		if (mpnt->vm_flags & VM_ACCOUNT) {
641 			unsigned long len = vma_pages(mpnt);
642 
643 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
644 				goto fail_nomem;
645 			charge = len;
646 		}
647 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
648 		if (!tmp)
649 			goto fail_nomem;
650 		*tmp = *mpnt;
651 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
652 		retval = vma_dup_policy(mpnt, tmp);
653 		if (retval)
654 			goto fail_nomem_policy;
655 		tmp->vm_mm = mm;
656 		retval = dup_userfaultfd(tmp, &uf);
657 		if (retval)
658 			goto fail_nomem_anon_vma_fork;
659 		if (anon_vma_fork(tmp, mpnt))
660 			goto fail_nomem_anon_vma_fork;
661 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
662 		tmp->vm_next = tmp->vm_prev = NULL;
663 		file = tmp->vm_file;
664 		if (file) {
665 			struct inode *inode = file_inode(file);
666 			struct address_space *mapping = file->f_mapping;
667 
668 			get_file(file);
669 			if (tmp->vm_flags & VM_DENYWRITE)
670 				atomic_dec(&inode->i_writecount);
671 			i_mmap_lock_write(mapping);
672 			if (tmp->vm_flags & VM_SHARED)
673 				atomic_inc(&mapping->i_mmap_writable);
674 			flush_dcache_mmap_lock(mapping);
675 			/* insert tmp into the share list, just after mpnt */
676 			vma_interval_tree_insert_after(tmp, mpnt,
677 					&mapping->i_mmap);
678 			flush_dcache_mmap_unlock(mapping);
679 			i_mmap_unlock_write(mapping);
680 		}
681 
682 		/*
683 		 * Clear hugetlb-related page reserves for children. This only
684 		 * affects MAP_PRIVATE mappings. Faults generated by the child
685 		 * are not guaranteed to succeed, even if read-only
686 		 */
687 		if (is_vm_hugetlb_page(tmp))
688 			reset_vma_resv_huge_pages(tmp);
689 
690 		/*
691 		 * Link in the new vma and copy the page table entries.
692 		 */
693 		*pprev = tmp;
694 		pprev = &tmp->vm_next;
695 		tmp->vm_prev = prev;
696 		prev = tmp;
697 
698 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
699 		rb_link = &tmp->vm_rb.rb_right;
700 		rb_parent = &tmp->vm_rb;
701 
702 		mm->map_count++;
703 		retval = copy_page_range(mm, oldmm, mpnt);
704 
705 		if (tmp->vm_ops && tmp->vm_ops->open)
706 			tmp->vm_ops->open(tmp);
707 
708 		if (retval)
709 			goto out;
710 	}
711 	/* a new mm has just been created */
712 	arch_dup_mmap(oldmm, mm);
713 	retval = 0;
714 out:
715 	up_write(&mm->mmap_sem);
716 	flush_tlb_mm(oldmm);
717 	up_write(&oldmm->mmap_sem);
718 	dup_userfaultfd_complete(&uf);
719 fail_uprobe_end:
720 	uprobe_end_dup_mmap();
721 	return retval;
722 fail_nomem_anon_vma_fork:
723 	mpol_put(vma_policy(tmp));
724 fail_nomem_policy:
725 	kmem_cache_free(vm_area_cachep, tmp);
726 fail_nomem:
727 	retval = -ENOMEM;
728 	vm_unacct_memory(charge);
729 	goto out;
730 }
731 
732 static inline int mm_alloc_pgd(struct mm_struct *mm)
733 {
734 	mm->pgd = pgd_alloc(mm);
735 	if (unlikely(!mm->pgd))
736 		return -ENOMEM;
737 	return 0;
738 }
739 
740 static inline void mm_free_pgd(struct mm_struct *mm)
741 {
742 	pgd_free(mm, mm->pgd);
743 }
744 #else
745 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
746 {
747 	down_write(&oldmm->mmap_sem);
748 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
749 	up_write(&oldmm->mmap_sem);
750 	return 0;
751 }
752 #define mm_alloc_pgd(mm)	(0)
753 #define mm_free_pgd(mm)
754 #endif /* CONFIG_MMU */
755 
756 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
757 
758 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
759 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
760 
761 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
762 
763 static int __init coredump_filter_setup(char *s)
764 {
765 	default_dump_filter =
766 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
767 		MMF_DUMP_FILTER_MASK;
768 	return 1;
769 }
770 
771 __setup("coredump_filter=", coredump_filter_setup);
772 
773 #include <linux/init_task.h>
774 
775 static void mm_init_aio(struct mm_struct *mm)
776 {
777 #ifdef CONFIG_AIO
778 	spin_lock_init(&mm->ioctx_lock);
779 	mm->ioctx_table = NULL;
780 #endif
781 }
782 
783 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
784 {
785 #ifdef CONFIG_MEMCG
786 	mm->owner = p;
787 #endif
788 }
789 
790 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
791 	struct user_namespace *user_ns)
792 {
793 	mm->mmap = NULL;
794 	mm->mm_rb = RB_ROOT;
795 	mm->vmacache_seqnum = 0;
796 	atomic_set(&mm->mm_users, 1);
797 	atomic_set(&mm->mm_count, 1);
798 	init_rwsem(&mm->mmap_sem);
799 	INIT_LIST_HEAD(&mm->mmlist);
800 	mm->core_state = NULL;
801 	atomic_long_set(&mm->nr_ptes, 0);
802 	mm_nr_pmds_init(mm);
803 	mm->map_count = 0;
804 	mm->locked_vm = 0;
805 	mm->pinned_vm = 0;
806 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
807 	spin_lock_init(&mm->page_table_lock);
808 	mm_init_cpumask(mm);
809 	mm_init_aio(mm);
810 	mm_init_owner(mm, p);
811 	mmu_notifier_mm_init(mm);
812 	clear_tlb_flush_pending(mm);
813 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
814 	mm->pmd_huge_pte = NULL;
815 #endif
816 
817 	if (current->mm) {
818 		mm->flags = current->mm->flags & MMF_INIT_MASK;
819 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
820 	} else {
821 		mm->flags = default_dump_filter;
822 		mm->def_flags = 0;
823 	}
824 
825 	if (mm_alloc_pgd(mm))
826 		goto fail_nopgd;
827 
828 	if (init_new_context(p, mm))
829 		goto fail_nocontext;
830 
831 	mm->user_ns = get_user_ns(user_ns);
832 	return mm;
833 
834 fail_nocontext:
835 	mm_free_pgd(mm);
836 fail_nopgd:
837 	free_mm(mm);
838 	return NULL;
839 }
840 
841 static void check_mm(struct mm_struct *mm)
842 {
843 	int i;
844 
845 	for (i = 0; i < NR_MM_COUNTERS; i++) {
846 		long x = atomic_long_read(&mm->rss_stat.count[i]);
847 
848 		if (unlikely(x))
849 			printk(KERN_ALERT "BUG: Bad rss-counter state "
850 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
851 	}
852 
853 	if (atomic_long_read(&mm->nr_ptes))
854 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
855 				atomic_long_read(&mm->nr_ptes));
856 	if (mm_nr_pmds(mm))
857 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
858 				mm_nr_pmds(mm));
859 
860 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
861 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
862 #endif
863 }
864 
865 /*
866  * Allocate and initialize an mm_struct.
867  */
868 struct mm_struct *mm_alloc(void)
869 {
870 	struct mm_struct *mm;
871 
872 	mm = allocate_mm();
873 	if (!mm)
874 		return NULL;
875 
876 	memset(mm, 0, sizeof(*mm));
877 	return mm_init(mm, current, current_user_ns());
878 }
879 
880 /*
881  * Called when the last reference to the mm
882  * is dropped: either by a lazy thread or by
883  * mmput. Free the page directory and the mm.
884  */
885 void __mmdrop(struct mm_struct *mm)
886 {
887 	BUG_ON(mm == &init_mm);
888 	mm_free_pgd(mm);
889 	destroy_context(mm);
890 	mmu_notifier_mm_destroy(mm);
891 	check_mm(mm);
892 	put_user_ns(mm->user_ns);
893 	free_mm(mm);
894 }
895 EXPORT_SYMBOL_GPL(__mmdrop);
896 
897 static inline void __mmput(struct mm_struct *mm)
898 {
899 	VM_BUG_ON(atomic_read(&mm->mm_users));
900 
901 	uprobe_clear_state(mm);
902 	exit_aio(mm);
903 	ksm_exit(mm);
904 	khugepaged_exit(mm); /* must run before exit_mmap */
905 	exit_mmap(mm);
906 	mm_put_huge_zero_page(mm);
907 	set_mm_exe_file(mm, NULL);
908 	if (!list_empty(&mm->mmlist)) {
909 		spin_lock(&mmlist_lock);
910 		list_del(&mm->mmlist);
911 		spin_unlock(&mmlist_lock);
912 	}
913 	if (mm->binfmt)
914 		module_put(mm->binfmt->module);
915 	set_bit(MMF_OOM_SKIP, &mm->flags);
916 	mmdrop(mm);
917 }
918 
919 /*
920  * Decrement the use count and release all resources for an mm.
921  */
922 void mmput(struct mm_struct *mm)
923 {
924 	might_sleep();
925 
926 	if (atomic_dec_and_test(&mm->mm_users))
927 		__mmput(mm);
928 }
929 EXPORT_SYMBOL_GPL(mmput);
930 
931 #ifdef CONFIG_MMU
932 static void mmput_async_fn(struct work_struct *work)
933 {
934 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
935 	__mmput(mm);
936 }
937 
938 void mmput_async(struct mm_struct *mm)
939 {
940 	if (atomic_dec_and_test(&mm->mm_users)) {
941 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
942 		schedule_work(&mm->async_put_work);
943 	}
944 }
945 #endif
946 
947 /**
948  * set_mm_exe_file - change a reference to the mm's executable file
949  *
950  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
951  *
952  * Main users are mmput() and sys_execve(). Callers prevent concurrent
953  * invocations: in mmput() nobody alive left, in execve task is single
954  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
955  * mm->exe_file, but does so without using set_mm_exe_file() in order
956  * to do avoid the need for any locks.
957  */
958 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
959 {
960 	struct file *old_exe_file;
961 
962 	/*
963 	 * It is safe to dereference the exe_file without RCU as
964 	 * this function is only called if nobody else can access
965 	 * this mm -- see comment above for justification.
966 	 */
967 	old_exe_file = rcu_dereference_raw(mm->exe_file);
968 
969 	if (new_exe_file)
970 		get_file(new_exe_file);
971 	rcu_assign_pointer(mm->exe_file, new_exe_file);
972 	if (old_exe_file)
973 		fput(old_exe_file);
974 }
975 
976 /**
977  * get_mm_exe_file - acquire a reference to the mm's executable file
978  *
979  * Returns %NULL if mm has no associated executable file.
980  * User must release file via fput().
981  */
982 struct file *get_mm_exe_file(struct mm_struct *mm)
983 {
984 	struct file *exe_file;
985 
986 	rcu_read_lock();
987 	exe_file = rcu_dereference(mm->exe_file);
988 	if (exe_file && !get_file_rcu(exe_file))
989 		exe_file = NULL;
990 	rcu_read_unlock();
991 	return exe_file;
992 }
993 EXPORT_SYMBOL(get_mm_exe_file);
994 
995 /**
996  * get_task_exe_file - acquire a reference to the task's executable file
997  *
998  * Returns %NULL if task's mm (if any) has no associated executable file or
999  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1000  * User must release file via fput().
1001  */
1002 struct file *get_task_exe_file(struct task_struct *task)
1003 {
1004 	struct file *exe_file = NULL;
1005 	struct mm_struct *mm;
1006 
1007 	task_lock(task);
1008 	mm = task->mm;
1009 	if (mm) {
1010 		if (!(task->flags & PF_KTHREAD))
1011 			exe_file = get_mm_exe_file(mm);
1012 	}
1013 	task_unlock(task);
1014 	return exe_file;
1015 }
1016 EXPORT_SYMBOL(get_task_exe_file);
1017 
1018 /**
1019  * get_task_mm - acquire a reference to the task's mm
1020  *
1021  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1022  * this kernel workthread has transiently adopted a user mm with use_mm,
1023  * to do its AIO) is not set and if so returns a reference to it, after
1024  * bumping up the use count.  User must release the mm via mmput()
1025  * after use.  Typically used by /proc and ptrace.
1026  */
1027 struct mm_struct *get_task_mm(struct task_struct *task)
1028 {
1029 	struct mm_struct *mm;
1030 
1031 	task_lock(task);
1032 	mm = task->mm;
1033 	if (mm) {
1034 		if (task->flags & PF_KTHREAD)
1035 			mm = NULL;
1036 		else
1037 			mmget(mm);
1038 	}
1039 	task_unlock(task);
1040 	return mm;
1041 }
1042 EXPORT_SYMBOL_GPL(get_task_mm);
1043 
1044 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1045 {
1046 	struct mm_struct *mm;
1047 	int err;
1048 
1049 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1050 	if (err)
1051 		return ERR_PTR(err);
1052 
1053 	mm = get_task_mm(task);
1054 	if (mm && mm != current->mm &&
1055 			!ptrace_may_access(task, mode)) {
1056 		mmput(mm);
1057 		mm = ERR_PTR(-EACCES);
1058 	}
1059 	mutex_unlock(&task->signal->cred_guard_mutex);
1060 
1061 	return mm;
1062 }
1063 
1064 static void complete_vfork_done(struct task_struct *tsk)
1065 {
1066 	struct completion *vfork;
1067 
1068 	task_lock(tsk);
1069 	vfork = tsk->vfork_done;
1070 	if (likely(vfork)) {
1071 		tsk->vfork_done = NULL;
1072 		complete(vfork);
1073 	}
1074 	task_unlock(tsk);
1075 }
1076 
1077 static int wait_for_vfork_done(struct task_struct *child,
1078 				struct completion *vfork)
1079 {
1080 	int killed;
1081 
1082 	freezer_do_not_count();
1083 	killed = wait_for_completion_killable(vfork);
1084 	freezer_count();
1085 
1086 	if (killed) {
1087 		task_lock(child);
1088 		child->vfork_done = NULL;
1089 		task_unlock(child);
1090 	}
1091 
1092 	put_task_struct(child);
1093 	return killed;
1094 }
1095 
1096 /* Please note the differences between mmput and mm_release.
1097  * mmput is called whenever we stop holding onto a mm_struct,
1098  * error success whatever.
1099  *
1100  * mm_release is called after a mm_struct has been removed
1101  * from the current process.
1102  *
1103  * This difference is important for error handling, when we
1104  * only half set up a mm_struct for a new process and need to restore
1105  * the old one.  Because we mmput the new mm_struct before
1106  * restoring the old one. . .
1107  * Eric Biederman 10 January 1998
1108  */
1109 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1110 {
1111 	/* Get rid of any futexes when releasing the mm */
1112 #ifdef CONFIG_FUTEX
1113 	if (unlikely(tsk->robust_list)) {
1114 		exit_robust_list(tsk);
1115 		tsk->robust_list = NULL;
1116 	}
1117 #ifdef CONFIG_COMPAT
1118 	if (unlikely(tsk->compat_robust_list)) {
1119 		compat_exit_robust_list(tsk);
1120 		tsk->compat_robust_list = NULL;
1121 	}
1122 #endif
1123 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1124 		exit_pi_state_list(tsk);
1125 #endif
1126 
1127 	uprobe_free_utask(tsk);
1128 
1129 	/* Get rid of any cached register state */
1130 	deactivate_mm(tsk, mm);
1131 
1132 	/*
1133 	 * Signal userspace if we're not exiting with a core dump
1134 	 * because we want to leave the value intact for debugging
1135 	 * purposes.
1136 	 */
1137 	if (tsk->clear_child_tid) {
1138 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1139 		    atomic_read(&mm->mm_users) > 1) {
1140 			/*
1141 			 * We don't check the error code - if userspace has
1142 			 * not set up a proper pointer then tough luck.
1143 			 */
1144 			put_user(0, tsk->clear_child_tid);
1145 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1146 					1, NULL, NULL, 0);
1147 		}
1148 		tsk->clear_child_tid = NULL;
1149 	}
1150 
1151 	/*
1152 	 * All done, finally we can wake up parent and return this mm to him.
1153 	 * Also kthread_stop() uses this completion for synchronization.
1154 	 */
1155 	if (tsk->vfork_done)
1156 		complete_vfork_done(tsk);
1157 }
1158 
1159 /*
1160  * Allocate a new mm structure and copy contents from the
1161  * mm structure of the passed in task structure.
1162  */
1163 static struct mm_struct *dup_mm(struct task_struct *tsk)
1164 {
1165 	struct mm_struct *mm, *oldmm = current->mm;
1166 	int err;
1167 
1168 	mm = allocate_mm();
1169 	if (!mm)
1170 		goto fail_nomem;
1171 
1172 	memcpy(mm, oldmm, sizeof(*mm));
1173 
1174 	if (!mm_init(mm, tsk, mm->user_ns))
1175 		goto fail_nomem;
1176 
1177 	err = dup_mmap(mm, oldmm);
1178 	if (err)
1179 		goto free_pt;
1180 
1181 	mm->hiwater_rss = get_mm_rss(mm);
1182 	mm->hiwater_vm = mm->total_vm;
1183 
1184 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1185 		goto free_pt;
1186 
1187 	return mm;
1188 
1189 free_pt:
1190 	/* don't put binfmt in mmput, we haven't got module yet */
1191 	mm->binfmt = NULL;
1192 	mmput(mm);
1193 
1194 fail_nomem:
1195 	return NULL;
1196 }
1197 
1198 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1199 {
1200 	struct mm_struct *mm, *oldmm;
1201 	int retval;
1202 
1203 	tsk->min_flt = tsk->maj_flt = 0;
1204 	tsk->nvcsw = tsk->nivcsw = 0;
1205 #ifdef CONFIG_DETECT_HUNG_TASK
1206 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1207 #endif
1208 
1209 	tsk->mm = NULL;
1210 	tsk->active_mm = NULL;
1211 
1212 	/*
1213 	 * Are we cloning a kernel thread?
1214 	 *
1215 	 * We need to steal a active VM for that..
1216 	 */
1217 	oldmm = current->mm;
1218 	if (!oldmm)
1219 		return 0;
1220 
1221 	/* initialize the new vmacache entries */
1222 	vmacache_flush(tsk);
1223 
1224 	if (clone_flags & CLONE_VM) {
1225 		mmget(oldmm);
1226 		mm = oldmm;
1227 		goto good_mm;
1228 	}
1229 
1230 	retval = -ENOMEM;
1231 	mm = dup_mm(tsk);
1232 	if (!mm)
1233 		goto fail_nomem;
1234 
1235 good_mm:
1236 	tsk->mm = mm;
1237 	tsk->active_mm = mm;
1238 	return 0;
1239 
1240 fail_nomem:
1241 	return retval;
1242 }
1243 
1244 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1245 {
1246 	struct fs_struct *fs = current->fs;
1247 	if (clone_flags & CLONE_FS) {
1248 		/* tsk->fs is already what we want */
1249 		spin_lock(&fs->lock);
1250 		if (fs->in_exec) {
1251 			spin_unlock(&fs->lock);
1252 			return -EAGAIN;
1253 		}
1254 		fs->users++;
1255 		spin_unlock(&fs->lock);
1256 		return 0;
1257 	}
1258 	tsk->fs = copy_fs_struct(fs);
1259 	if (!tsk->fs)
1260 		return -ENOMEM;
1261 	return 0;
1262 }
1263 
1264 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1265 {
1266 	struct files_struct *oldf, *newf;
1267 	int error = 0;
1268 
1269 	/*
1270 	 * A background process may not have any files ...
1271 	 */
1272 	oldf = current->files;
1273 	if (!oldf)
1274 		goto out;
1275 
1276 	if (clone_flags & CLONE_FILES) {
1277 		atomic_inc(&oldf->count);
1278 		goto out;
1279 	}
1280 
1281 	newf = dup_fd(oldf, &error);
1282 	if (!newf)
1283 		goto out;
1284 
1285 	tsk->files = newf;
1286 	error = 0;
1287 out:
1288 	return error;
1289 }
1290 
1291 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1292 {
1293 #ifdef CONFIG_BLOCK
1294 	struct io_context *ioc = current->io_context;
1295 	struct io_context *new_ioc;
1296 
1297 	if (!ioc)
1298 		return 0;
1299 	/*
1300 	 * Share io context with parent, if CLONE_IO is set
1301 	 */
1302 	if (clone_flags & CLONE_IO) {
1303 		ioc_task_link(ioc);
1304 		tsk->io_context = ioc;
1305 	} else if (ioprio_valid(ioc->ioprio)) {
1306 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1307 		if (unlikely(!new_ioc))
1308 			return -ENOMEM;
1309 
1310 		new_ioc->ioprio = ioc->ioprio;
1311 		put_io_context(new_ioc);
1312 	}
1313 #endif
1314 	return 0;
1315 }
1316 
1317 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1318 {
1319 	struct sighand_struct *sig;
1320 
1321 	if (clone_flags & CLONE_SIGHAND) {
1322 		atomic_inc(&current->sighand->count);
1323 		return 0;
1324 	}
1325 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1326 	rcu_assign_pointer(tsk->sighand, sig);
1327 	if (!sig)
1328 		return -ENOMEM;
1329 
1330 	atomic_set(&sig->count, 1);
1331 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1332 	return 0;
1333 }
1334 
1335 void __cleanup_sighand(struct sighand_struct *sighand)
1336 {
1337 	if (atomic_dec_and_test(&sighand->count)) {
1338 		signalfd_cleanup(sighand);
1339 		/*
1340 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1341 		 * without an RCU grace period, see __lock_task_sighand().
1342 		 */
1343 		kmem_cache_free(sighand_cachep, sighand);
1344 	}
1345 }
1346 
1347 #ifdef CONFIG_POSIX_TIMERS
1348 /*
1349  * Initialize POSIX timer handling for a thread group.
1350  */
1351 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1352 {
1353 	unsigned long cpu_limit;
1354 
1355 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1356 	if (cpu_limit != RLIM_INFINITY) {
1357 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1358 		sig->cputimer.running = true;
1359 	}
1360 
1361 	/* The timer lists. */
1362 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1363 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1364 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1365 }
1366 #else
1367 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1368 #endif
1369 
1370 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1371 {
1372 	struct signal_struct *sig;
1373 
1374 	if (clone_flags & CLONE_THREAD)
1375 		return 0;
1376 
1377 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1378 	tsk->signal = sig;
1379 	if (!sig)
1380 		return -ENOMEM;
1381 
1382 	sig->nr_threads = 1;
1383 	atomic_set(&sig->live, 1);
1384 	atomic_set(&sig->sigcnt, 1);
1385 
1386 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1387 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1388 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1389 
1390 	init_waitqueue_head(&sig->wait_chldexit);
1391 	sig->curr_target = tsk;
1392 	init_sigpending(&sig->shared_pending);
1393 	seqlock_init(&sig->stats_lock);
1394 	prev_cputime_init(&sig->prev_cputime);
1395 
1396 #ifdef CONFIG_POSIX_TIMERS
1397 	INIT_LIST_HEAD(&sig->posix_timers);
1398 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1399 	sig->real_timer.function = it_real_fn;
1400 #endif
1401 
1402 	task_lock(current->group_leader);
1403 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1404 	task_unlock(current->group_leader);
1405 
1406 	posix_cpu_timers_init_group(sig);
1407 
1408 	tty_audit_fork(sig);
1409 	sched_autogroup_fork(sig);
1410 
1411 	sig->oom_score_adj = current->signal->oom_score_adj;
1412 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1413 
1414 	mutex_init(&sig->cred_guard_mutex);
1415 
1416 	return 0;
1417 }
1418 
1419 static void copy_seccomp(struct task_struct *p)
1420 {
1421 #ifdef CONFIG_SECCOMP
1422 	/*
1423 	 * Must be called with sighand->lock held, which is common to
1424 	 * all threads in the group. Holding cred_guard_mutex is not
1425 	 * needed because this new task is not yet running and cannot
1426 	 * be racing exec.
1427 	 */
1428 	assert_spin_locked(&current->sighand->siglock);
1429 
1430 	/* Ref-count the new filter user, and assign it. */
1431 	get_seccomp_filter(current);
1432 	p->seccomp = current->seccomp;
1433 
1434 	/*
1435 	 * Explicitly enable no_new_privs here in case it got set
1436 	 * between the task_struct being duplicated and holding the
1437 	 * sighand lock. The seccomp state and nnp must be in sync.
1438 	 */
1439 	if (task_no_new_privs(current))
1440 		task_set_no_new_privs(p);
1441 
1442 	/*
1443 	 * If the parent gained a seccomp mode after copying thread
1444 	 * flags and between before we held the sighand lock, we have
1445 	 * to manually enable the seccomp thread flag here.
1446 	 */
1447 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1448 		set_tsk_thread_flag(p, TIF_SECCOMP);
1449 #endif
1450 }
1451 
1452 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1453 {
1454 	current->clear_child_tid = tidptr;
1455 
1456 	return task_pid_vnr(current);
1457 }
1458 
1459 static void rt_mutex_init_task(struct task_struct *p)
1460 {
1461 	raw_spin_lock_init(&p->pi_lock);
1462 #ifdef CONFIG_RT_MUTEXES
1463 	p->pi_waiters = RB_ROOT;
1464 	p->pi_waiters_leftmost = NULL;
1465 	p->pi_top_task = NULL;
1466 	p->pi_blocked_on = NULL;
1467 #endif
1468 }
1469 
1470 #ifdef CONFIG_POSIX_TIMERS
1471 /*
1472  * Initialize POSIX timer handling for a single task.
1473  */
1474 static void posix_cpu_timers_init(struct task_struct *tsk)
1475 {
1476 	tsk->cputime_expires.prof_exp = 0;
1477 	tsk->cputime_expires.virt_exp = 0;
1478 	tsk->cputime_expires.sched_exp = 0;
1479 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1480 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1481 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1482 }
1483 #else
1484 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1485 #endif
1486 
1487 static inline void
1488 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1489 {
1490 	 task->pids[type].pid = pid;
1491 }
1492 
1493 static inline void rcu_copy_process(struct task_struct *p)
1494 {
1495 #ifdef CONFIG_PREEMPT_RCU
1496 	p->rcu_read_lock_nesting = 0;
1497 	p->rcu_read_unlock_special.s = 0;
1498 	p->rcu_blocked_node = NULL;
1499 	INIT_LIST_HEAD(&p->rcu_node_entry);
1500 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1501 #ifdef CONFIG_TASKS_RCU
1502 	p->rcu_tasks_holdout = false;
1503 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1504 	p->rcu_tasks_idle_cpu = -1;
1505 #endif /* #ifdef CONFIG_TASKS_RCU */
1506 }
1507 
1508 /*
1509  * This creates a new process as a copy of the old one,
1510  * but does not actually start it yet.
1511  *
1512  * It copies the registers, and all the appropriate
1513  * parts of the process environment (as per the clone
1514  * flags). The actual kick-off is left to the caller.
1515  */
1516 static __latent_entropy struct task_struct *copy_process(
1517 					unsigned long clone_flags,
1518 					unsigned long stack_start,
1519 					unsigned long stack_size,
1520 					int __user *child_tidptr,
1521 					struct pid *pid,
1522 					int trace,
1523 					unsigned long tls,
1524 					int node)
1525 {
1526 	int retval;
1527 	struct task_struct *p;
1528 
1529 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1530 		return ERR_PTR(-EINVAL);
1531 
1532 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1533 		return ERR_PTR(-EINVAL);
1534 
1535 	/*
1536 	 * Thread groups must share signals as well, and detached threads
1537 	 * can only be started up within the thread group.
1538 	 */
1539 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1540 		return ERR_PTR(-EINVAL);
1541 
1542 	/*
1543 	 * Shared signal handlers imply shared VM. By way of the above,
1544 	 * thread groups also imply shared VM. Blocking this case allows
1545 	 * for various simplifications in other code.
1546 	 */
1547 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1548 		return ERR_PTR(-EINVAL);
1549 
1550 	/*
1551 	 * Siblings of global init remain as zombies on exit since they are
1552 	 * not reaped by their parent (swapper). To solve this and to avoid
1553 	 * multi-rooted process trees, prevent global and container-inits
1554 	 * from creating siblings.
1555 	 */
1556 	if ((clone_flags & CLONE_PARENT) &&
1557 				current->signal->flags & SIGNAL_UNKILLABLE)
1558 		return ERR_PTR(-EINVAL);
1559 
1560 	/*
1561 	 * If the new process will be in a different pid or user namespace
1562 	 * do not allow it to share a thread group with the forking task.
1563 	 */
1564 	if (clone_flags & CLONE_THREAD) {
1565 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1566 		    (task_active_pid_ns(current) !=
1567 				current->nsproxy->pid_ns_for_children))
1568 			return ERR_PTR(-EINVAL);
1569 	}
1570 
1571 	retval = security_task_create(clone_flags);
1572 	if (retval)
1573 		goto fork_out;
1574 
1575 	retval = -ENOMEM;
1576 	p = dup_task_struct(current, node);
1577 	if (!p)
1578 		goto fork_out;
1579 
1580 	/*
1581 	 * This _must_ happen before we call free_task(), i.e. before we jump
1582 	 * to any of the bad_fork_* labels. This is to avoid freeing
1583 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1584 	 * kernel threads (PF_KTHREAD).
1585 	 */
1586 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1587 	/*
1588 	 * Clear TID on mm_release()?
1589 	 */
1590 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1591 
1592 	ftrace_graph_init_task(p);
1593 
1594 	rt_mutex_init_task(p);
1595 
1596 #ifdef CONFIG_PROVE_LOCKING
1597 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1598 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1599 #endif
1600 	retval = -EAGAIN;
1601 	if (atomic_read(&p->real_cred->user->processes) >=
1602 			task_rlimit(p, RLIMIT_NPROC)) {
1603 		if (p->real_cred->user != INIT_USER &&
1604 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1605 			goto bad_fork_free;
1606 	}
1607 	current->flags &= ~PF_NPROC_EXCEEDED;
1608 
1609 	retval = copy_creds(p, clone_flags);
1610 	if (retval < 0)
1611 		goto bad_fork_free;
1612 
1613 	/*
1614 	 * If multiple threads are within copy_process(), then this check
1615 	 * triggers too late. This doesn't hurt, the check is only there
1616 	 * to stop root fork bombs.
1617 	 */
1618 	retval = -EAGAIN;
1619 	if (nr_threads >= max_threads)
1620 		goto bad_fork_cleanup_count;
1621 
1622 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1623 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1624 	p->flags |= PF_FORKNOEXEC;
1625 	INIT_LIST_HEAD(&p->children);
1626 	INIT_LIST_HEAD(&p->sibling);
1627 	rcu_copy_process(p);
1628 	p->vfork_done = NULL;
1629 	spin_lock_init(&p->alloc_lock);
1630 
1631 	init_sigpending(&p->pending);
1632 
1633 	p->utime = p->stime = p->gtime = 0;
1634 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1635 	p->utimescaled = p->stimescaled = 0;
1636 #endif
1637 	prev_cputime_init(&p->prev_cputime);
1638 
1639 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1640 	seqcount_init(&p->vtime_seqcount);
1641 	p->vtime_snap = 0;
1642 	p->vtime_snap_whence = VTIME_INACTIVE;
1643 #endif
1644 
1645 #if defined(SPLIT_RSS_COUNTING)
1646 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1647 #endif
1648 
1649 	p->default_timer_slack_ns = current->timer_slack_ns;
1650 
1651 	task_io_accounting_init(&p->ioac);
1652 	acct_clear_integrals(p);
1653 
1654 	posix_cpu_timers_init(p);
1655 
1656 	p->start_time = ktime_get_ns();
1657 	p->real_start_time = ktime_get_boot_ns();
1658 	p->io_context = NULL;
1659 	p->audit_context = NULL;
1660 	cgroup_fork(p);
1661 #ifdef CONFIG_NUMA
1662 	p->mempolicy = mpol_dup(p->mempolicy);
1663 	if (IS_ERR(p->mempolicy)) {
1664 		retval = PTR_ERR(p->mempolicy);
1665 		p->mempolicy = NULL;
1666 		goto bad_fork_cleanup_threadgroup_lock;
1667 	}
1668 #endif
1669 #ifdef CONFIG_CPUSETS
1670 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1671 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1672 	seqcount_init(&p->mems_allowed_seq);
1673 #endif
1674 #ifdef CONFIG_TRACE_IRQFLAGS
1675 	p->irq_events = 0;
1676 	p->hardirqs_enabled = 0;
1677 	p->hardirq_enable_ip = 0;
1678 	p->hardirq_enable_event = 0;
1679 	p->hardirq_disable_ip = _THIS_IP_;
1680 	p->hardirq_disable_event = 0;
1681 	p->softirqs_enabled = 1;
1682 	p->softirq_enable_ip = _THIS_IP_;
1683 	p->softirq_enable_event = 0;
1684 	p->softirq_disable_ip = 0;
1685 	p->softirq_disable_event = 0;
1686 	p->hardirq_context = 0;
1687 	p->softirq_context = 0;
1688 #endif
1689 
1690 	p->pagefault_disabled = 0;
1691 
1692 #ifdef CONFIG_LOCKDEP
1693 	p->lockdep_depth = 0; /* no locks held yet */
1694 	p->curr_chain_key = 0;
1695 	p->lockdep_recursion = 0;
1696 #endif
1697 
1698 #ifdef CONFIG_DEBUG_MUTEXES
1699 	p->blocked_on = NULL; /* not blocked yet */
1700 #endif
1701 #ifdef CONFIG_BCACHE
1702 	p->sequential_io	= 0;
1703 	p->sequential_io_avg	= 0;
1704 #endif
1705 
1706 	/* Perform scheduler related setup. Assign this task to a CPU. */
1707 	retval = sched_fork(clone_flags, p);
1708 	if (retval)
1709 		goto bad_fork_cleanup_policy;
1710 
1711 	retval = perf_event_init_task(p);
1712 	if (retval)
1713 		goto bad_fork_cleanup_policy;
1714 	retval = audit_alloc(p);
1715 	if (retval)
1716 		goto bad_fork_cleanup_perf;
1717 	/* copy all the process information */
1718 	shm_init_task(p);
1719 	retval = security_task_alloc(p, clone_flags);
1720 	if (retval)
1721 		goto bad_fork_cleanup_audit;
1722 	retval = copy_semundo(clone_flags, p);
1723 	if (retval)
1724 		goto bad_fork_cleanup_security;
1725 	retval = copy_files(clone_flags, p);
1726 	if (retval)
1727 		goto bad_fork_cleanup_semundo;
1728 	retval = copy_fs(clone_flags, p);
1729 	if (retval)
1730 		goto bad_fork_cleanup_files;
1731 	retval = copy_sighand(clone_flags, p);
1732 	if (retval)
1733 		goto bad_fork_cleanup_fs;
1734 	retval = copy_signal(clone_flags, p);
1735 	if (retval)
1736 		goto bad_fork_cleanup_sighand;
1737 	retval = copy_mm(clone_flags, p);
1738 	if (retval)
1739 		goto bad_fork_cleanup_signal;
1740 	retval = copy_namespaces(clone_flags, p);
1741 	if (retval)
1742 		goto bad_fork_cleanup_mm;
1743 	retval = copy_io(clone_flags, p);
1744 	if (retval)
1745 		goto bad_fork_cleanup_namespaces;
1746 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1747 	if (retval)
1748 		goto bad_fork_cleanup_io;
1749 
1750 	if (pid != &init_struct_pid) {
1751 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1752 		if (IS_ERR(pid)) {
1753 			retval = PTR_ERR(pid);
1754 			goto bad_fork_cleanup_thread;
1755 		}
1756 	}
1757 
1758 #ifdef CONFIG_BLOCK
1759 	p->plug = NULL;
1760 #endif
1761 #ifdef CONFIG_FUTEX
1762 	p->robust_list = NULL;
1763 #ifdef CONFIG_COMPAT
1764 	p->compat_robust_list = NULL;
1765 #endif
1766 	INIT_LIST_HEAD(&p->pi_state_list);
1767 	p->pi_state_cache = NULL;
1768 #endif
1769 	/*
1770 	 * sigaltstack should be cleared when sharing the same VM
1771 	 */
1772 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1773 		sas_ss_reset(p);
1774 
1775 	/*
1776 	 * Syscall tracing and stepping should be turned off in the
1777 	 * child regardless of CLONE_PTRACE.
1778 	 */
1779 	user_disable_single_step(p);
1780 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1781 #ifdef TIF_SYSCALL_EMU
1782 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1783 #endif
1784 	clear_all_latency_tracing(p);
1785 
1786 	/* ok, now we should be set up.. */
1787 	p->pid = pid_nr(pid);
1788 	if (clone_flags & CLONE_THREAD) {
1789 		p->exit_signal = -1;
1790 		p->group_leader = current->group_leader;
1791 		p->tgid = current->tgid;
1792 	} else {
1793 		if (clone_flags & CLONE_PARENT)
1794 			p->exit_signal = current->group_leader->exit_signal;
1795 		else
1796 			p->exit_signal = (clone_flags & CSIGNAL);
1797 		p->group_leader = p;
1798 		p->tgid = p->pid;
1799 	}
1800 
1801 	p->nr_dirtied = 0;
1802 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1803 	p->dirty_paused_when = 0;
1804 
1805 	p->pdeath_signal = 0;
1806 	INIT_LIST_HEAD(&p->thread_group);
1807 	p->task_works = NULL;
1808 
1809 	cgroup_threadgroup_change_begin(current);
1810 	/*
1811 	 * Ensure that the cgroup subsystem policies allow the new process to be
1812 	 * forked. It should be noted the the new process's css_set can be changed
1813 	 * between here and cgroup_post_fork() if an organisation operation is in
1814 	 * progress.
1815 	 */
1816 	retval = cgroup_can_fork(p);
1817 	if (retval)
1818 		goto bad_fork_free_pid;
1819 
1820 	/*
1821 	 * Make it visible to the rest of the system, but dont wake it up yet.
1822 	 * Need tasklist lock for parent etc handling!
1823 	 */
1824 	write_lock_irq(&tasklist_lock);
1825 
1826 	/* CLONE_PARENT re-uses the old parent */
1827 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1828 		p->real_parent = current->real_parent;
1829 		p->parent_exec_id = current->parent_exec_id;
1830 	} else {
1831 		p->real_parent = current;
1832 		p->parent_exec_id = current->self_exec_id;
1833 	}
1834 
1835 	klp_copy_process(p);
1836 
1837 	spin_lock(&current->sighand->siglock);
1838 
1839 	/*
1840 	 * Copy seccomp details explicitly here, in case they were changed
1841 	 * before holding sighand lock.
1842 	 */
1843 	copy_seccomp(p);
1844 
1845 	/*
1846 	 * Process group and session signals need to be delivered to just the
1847 	 * parent before the fork or both the parent and the child after the
1848 	 * fork. Restart if a signal comes in before we add the new process to
1849 	 * it's process group.
1850 	 * A fatal signal pending means that current will exit, so the new
1851 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1852 	*/
1853 	recalc_sigpending();
1854 	if (signal_pending(current)) {
1855 		retval = -ERESTARTNOINTR;
1856 		goto bad_fork_cancel_cgroup;
1857 	}
1858 	if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1859 		retval = -ENOMEM;
1860 		goto bad_fork_cancel_cgroup;
1861 	}
1862 
1863 	if (likely(p->pid)) {
1864 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1865 
1866 		init_task_pid(p, PIDTYPE_PID, pid);
1867 		if (thread_group_leader(p)) {
1868 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1869 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1870 
1871 			if (is_child_reaper(pid)) {
1872 				ns_of_pid(pid)->child_reaper = p;
1873 				p->signal->flags |= SIGNAL_UNKILLABLE;
1874 			}
1875 
1876 			p->signal->leader_pid = pid;
1877 			p->signal->tty = tty_kref_get(current->signal->tty);
1878 			/*
1879 			 * Inherit has_child_subreaper flag under the same
1880 			 * tasklist_lock with adding child to the process tree
1881 			 * for propagate_has_child_subreaper optimization.
1882 			 */
1883 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1884 							 p->real_parent->signal->is_child_subreaper;
1885 			list_add_tail(&p->sibling, &p->real_parent->children);
1886 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1887 			attach_pid(p, PIDTYPE_PGID);
1888 			attach_pid(p, PIDTYPE_SID);
1889 			__this_cpu_inc(process_counts);
1890 		} else {
1891 			current->signal->nr_threads++;
1892 			atomic_inc(&current->signal->live);
1893 			atomic_inc(&current->signal->sigcnt);
1894 			list_add_tail_rcu(&p->thread_group,
1895 					  &p->group_leader->thread_group);
1896 			list_add_tail_rcu(&p->thread_node,
1897 					  &p->signal->thread_head);
1898 		}
1899 		attach_pid(p, PIDTYPE_PID);
1900 		nr_threads++;
1901 	}
1902 
1903 	total_forks++;
1904 	spin_unlock(&current->sighand->siglock);
1905 	syscall_tracepoint_update(p);
1906 	write_unlock_irq(&tasklist_lock);
1907 
1908 	proc_fork_connector(p);
1909 	cgroup_post_fork(p);
1910 	cgroup_threadgroup_change_end(current);
1911 	perf_event_fork(p);
1912 
1913 	trace_task_newtask(p, clone_flags);
1914 	uprobe_copy_process(p, clone_flags);
1915 
1916 	return p;
1917 
1918 bad_fork_cancel_cgroup:
1919 	spin_unlock(&current->sighand->siglock);
1920 	write_unlock_irq(&tasklist_lock);
1921 	cgroup_cancel_fork(p);
1922 bad_fork_free_pid:
1923 	cgroup_threadgroup_change_end(current);
1924 	if (pid != &init_struct_pid)
1925 		free_pid(pid);
1926 bad_fork_cleanup_thread:
1927 	exit_thread(p);
1928 bad_fork_cleanup_io:
1929 	if (p->io_context)
1930 		exit_io_context(p);
1931 bad_fork_cleanup_namespaces:
1932 	exit_task_namespaces(p);
1933 bad_fork_cleanup_mm:
1934 	if (p->mm)
1935 		mmput(p->mm);
1936 bad_fork_cleanup_signal:
1937 	if (!(clone_flags & CLONE_THREAD))
1938 		free_signal_struct(p->signal);
1939 bad_fork_cleanup_sighand:
1940 	__cleanup_sighand(p->sighand);
1941 bad_fork_cleanup_fs:
1942 	exit_fs(p); /* blocking */
1943 bad_fork_cleanup_files:
1944 	exit_files(p); /* blocking */
1945 bad_fork_cleanup_semundo:
1946 	exit_sem(p);
1947 bad_fork_cleanup_security:
1948 	security_task_free(p);
1949 bad_fork_cleanup_audit:
1950 	audit_free(p);
1951 bad_fork_cleanup_perf:
1952 	perf_event_free_task(p);
1953 bad_fork_cleanup_policy:
1954 #ifdef CONFIG_NUMA
1955 	mpol_put(p->mempolicy);
1956 bad_fork_cleanup_threadgroup_lock:
1957 #endif
1958 	delayacct_tsk_free(p);
1959 bad_fork_cleanup_count:
1960 	atomic_dec(&p->cred->user->processes);
1961 	exit_creds(p);
1962 bad_fork_free:
1963 	p->state = TASK_DEAD;
1964 	put_task_stack(p);
1965 	free_task(p);
1966 fork_out:
1967 	return ERR_PTR(retval);
1968 }
1969 
1970 static inline void init_idle_pids(struct pid_link *links)
1971 {
1972 	enum pid_type type;
1973 
1974 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1975 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1976 		links[type].pid = &init_struct_pid;
1977 	}
1978 }
1979 
1980 struct task_struct *fork_idle(int cpu)
1981 {
1982 	struct task_struct *task;
1983 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1984 			    cpu_to_node(cpu));
1985 	if (!IS_ERR(task)) {
1986 		init_idle_pids(task->pids);
1987 		init_idle(task, cpu);
1988 	}
1989 
1990 	return task;
1991 }
1992 
1993 /*
1994  *  Ok, this is the main fork-routine.
1995  *
1996  * It copies the process, and if successful kick-starts
1997  * it and waits for it to finish using the VM if required.
1998  */
1999 long _do_fork(unsigned long clone_flags,
2000 	      unsigned long stack_start,
2001 	      unsigned long stack_size,
2002 	      int __user *parent_tidptr,
2003 	      int __user *child_tidptr,
2004 	      unsigned long tls)
2005 {
2006 	struct task_struct *p;
2007 	int trace = 0;
2008 	long nr;
2009 
2010 	/*
2011 	 * Determine whether and which event to report to ptracer.  When
2012 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2013 	 * requested, no event is reported; otherwise, report if the event
2014 	 * for the type of forking is enabled.
2015 	 */
2016 	if (!(clone_flags & CLONE_UNTRACED)) {
2017 		if (clone_flags & CLONE_VFORK)
2018 			trace = PTRACE_EVENT_VFORK;
2019 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2020 			trace = PTRACE_EVENT_CLONE;
2021 		else
2022 			trace = PTRACE_EVENT_FORK;
2023 
2024 		if (likely(!ptrace_event_enabled(current, trace)))
2025 			trace = 0;
2026 	}
2027 
2028 	p = copy_process(clone_flags, stack_start, stack_size,
2029 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2030 	add_latent_entropy();
2031 	/*
2032 	 * Do this prior waking up the new thread - the thread pointer
2033 	 * might get invalid after that point, if the thread exits quickly.
2034 	 */
2035 	if (!IS_ERR(p)) {
2036 		struct completion vfork;
2037 		struct pid *pid;
2038 
2039 		trace_sched_process_fork(current, p);
2040 
2041 		pid = get_task_pid(p, PIDTYPE_PID);
2042 		nr = pid_vnr(pid);
2043 
2044 		if (clone_flags & CLONE_PARENT_SETTID)
2045 			put_user(nr, parent_tidptr);
2046 
2047 		if (clone_flags & CLONE_VFORK) {
2048 			p->vfork_done = &vfork;
2049 			init_completion(&vfork);
2050 			get_task_struct(p);
2051 		}
2052 
2053 		wake_up_new_task(p);
2054 
2055 		/* forking complete and child started to run, tell ptracer */
2056 		if (unlikely(trace))
2057 			ptrace_event_pid(trace, pid);
2058 
2059 		if (clone_flags & CLONE_VFORK) {
2060 			if (!wait_for_vfork_done(p, &vfork))
2061 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2062 		}
2063 
2064 		put_pid(pid);
2065 	} else {
2066 		nr = PTR_ERR(p);
2067 	}
2068 	return nr;
2069 }
2070 
2071 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2072 /* For compatibility with architectures that call do_fork directly rather than
2073  * using the syscall entry points below. */
2074 long do_fork(unsigned long clone_flags,
2075 	      unsigned long stack_start,
2076 	      unsigned long stack_size,
2077 	      int __user *parent_tidptr,
2078 	      int __user *child_tidptr)
2079 {
2080 	return _do_fork(clone_flags, stack_start, stack_size,
2081 			parent_tidptr, child_tidptr, 0);
2082 }
2083 #endif
2084 
2085 /*
2086  * Create a kernel thread.
2087  */
2088 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2089 {
2090 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2091 		(unsigned long)arg, NULL, NULL, 0);
2092 }
2093 
2094 #ifdef __ARCH_WANT_SYS_FORK
2095 SYSCALL_DEFINE0(fork)
2096 {
2097 #ifdef CONFIG_MMU
2098 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2099 #else
2100 	/* can not support in nommu mode */
2101 	return -EINVAL;
2102 #endif
2103 }
2104 #endif
2105 
2106 #ifdef __ARCH_WANT_SYS_VFORK
2107 SYSCALL_DEFINE0(vfork)
2108 {
2109 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2110 			0, NULL, NULL, 0);
2111 }
2112 #endif
2113 
2114 #ifdef __ARCH_WANT_SYS_CLONE
2115 #ifdef CONFIG_CLONE_BACKWARDS
2116 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2117 		 int __user *, parent_tidptr,
2118 		 unsigned long, tls,
2119 		 int __user *, child_tidptr)
2120 #elif defined(CONFIG_CLONE_BACKWARDS2)
2121 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2122 		 int __user *, parent_tidptr,
2123 		 int __user *, child_tidptr,
2124 		 unsigned long, tls)
2125 #elif defined(CONFIG_CLONE_BACKWARDS3)
2126 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2127 		int, stack_size,
2128 		int __user *, parent_tidptr,
2129 		int __user *, child_tidptr,
2130 		unsigned long, tls)
2131 #else
2132 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2133 		 int __user *, parent_tidptr,
2134 		 int __user *, child_tidptr,
2135 		 unsigned long, tls)
2136 #endif
2137 {
2138 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2139 }
2140 #endif
2141 
2142 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2143 {
2144 	struct task_struct *leader, *parent, *child;
2145 	int res;
2146 
2147 	read_lock(&tasklist_lock);
2148 	leader = top = top->group_leader;
2149 down:
2150 	for_each_thread(leader, parent) {
2151 		list_for_each_entry(child, &parent->children, sibling) {
2152 			res = visitor(child, data);
2153 			if (res) {
2154 				if (res < 0)
2155 					goto out;
2156 				leader = child;
2157 				goto down;
2158 			}
2159 up:
2160 			;
2161 		}
2162 	}
2163 
2164 	if (leader != top) {
2165 		child = leader;
2166 		parent = child->real_parent;
2167 		leader = parent->group_leader;
2168 		goto up;
2169 	}
2170 out:
2171 	read_unlock(&tasklist_lock);
2172 }
2173 
2174 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2175 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2176 #endif
2177 
2178 static void sighand_ctor(void *data)
2179 {
2180 	struct sighand_struct *sighand = data;
2181 
2182 	spin_lock_init(&sighand->siglock);
2183 	init_waitqueue_head(&sighand->signalfd_wqh);
2184 }
2185 
2186 void __init proc_caches_init(void)
2187 {
2188 	sighand_cachep = kmem_cache_create("sighand_cache",
2189 			sizeof(struct sighand_struct), 0,
2190 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2191 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2192 	signal_cachep = kmem_cache_create("signal_cache",
2193 			sizeof(struct signal_struct), 0,
2194 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2195 			NULL);
2196 	files_cachep = kmem_cache_create("files_cache",
2197 			sizeof(struct files_struct), 0,
2198 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2199 			NULL);
2200 	fs_cachep = kmem_cache_create("fs_cache",
2201 			sizeof(struct fs_struct), 0,
2202 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2203 			NULL);
2204 	/*
2205 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2206 	 * whole struct cpumask for the OFFSTACK case. We could change
2207 	 * this to *only* allocate as much of it as required by the
2208 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2209 	 * is at the end of the structure, exactly for that reason.
2210 	 */
2211 	mm_cachep = kmem_cache_create("mm_struct",
2212 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2213 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2214 			NULL);
2215 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2216 	mmap_init();
2217 	nsproxy_cache_init();
2218 }
2219 
2220 /*
2221  * Check constraints on flags passed to the unshare system call.
2222  */
2223 static int check_unshare_flags(unsigned long unshare_flags)
2224 {
2225 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2226 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2227 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2228 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2229 		return -EINVAL;
2230 	/*
2231 	 * Not implemented, but pretend it works if there is nothing
2232 	 * to unshare.  Note that unsharing the address space or the
2233 	 * signal handlers also need to unshare the signal queues (aka
2234 	 * CLONE_THREAD).
2235 	 */
2236 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2237 		if (!thread_group_empty(current))
2238 			return -EINVAL;
2239 	}
2240 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2241 		if (atomic_read(&current->sighand->count) > 1)
2242 			return -EINVAL;
2243 	}
2244 	if (unshare_flags & CLONE_VM) {
2245 		if (!current_is_single_threaded())
2246 			return -EINVAL;
2247 	}
2248 
2249 	return 0;
2250 }
2251 
2252 /*
2253  * Unshare the filesystem structure if it is being shared
2254  */
2255 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2256 {
2257 	struct fs_struct *fs = current->fs;
2258 
2259 	if (!(unshare_flags & CLONE_FS) || !fs)
2260 		return 0;
2261 
2262 	/* don't need lock here; in the worst case we'll do useless copy */
2263 	if (fs->users == 1)
2264 		return 0;
2265 
2266 	*new_fsp = copy_fs_struct(fs);
2267 	if (!*new_fsp)
2268 		return -ENOMEM;
2269 
2270 	return 0;
2271 }
2272 
2273 /*
2274  * Unshare file descriptor table if it is being shared
2275  */
2276 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2277 {
2278 	struct files_struct *fd = current->files;
2279 	int error = 0;
2280 
2281 	if ((unshare_flags & CLONE_FILES) &&
2282 	    (fd && atomic_read(&fd->count) > 1)) {
2283 		*new_fdp = dup_fd(fd, &error);
2284 		if (!*new_fdp)
2285 			return error;
2286 	}
2287 
2288 	return 0;
2289 }
2290 
2291 /*
2292  * unshare allows a process to 'unshare' part of the process
2293  * context which was originally shared using clone.  copy_*
2294  * functions used by do_fork() cannot be used here directly
2295  * because they modify an inactive task_struct that is being
2296  * constructed. Here we are modifying the current, active,
2297  * task_struct.
2298  */
2299 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2300 {
2301 	struct fs_struct *fs, *new_fs = NULL;
2302 	struct files_struct *fd, *new_fd = NULL;
2303 	struct cred *new_cred = NULL;
2304 	struct nsproxy *new_nsproxy = NULL;
2305 	int do_sysvsem = 0;
2306 	int err;
2307 
2308 	/*
2309 	 * If unsharing a user namespace must also unshare the thread group
2310 	 * and unshare the filesystem root and working directories.
2311 	 */
2312 	if (unshare_flags & CLONE_NEWUSER)
2313 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2314 	/*
2315 	 * If unsharing vm, must also unshare signal handlers.
2316 	 */
2317 	if (unshare_flags & CLONE_VM)
2318 		unshare_flags |= CLONE_SIGHAND;
2319 	/*
2320 	 * If unsharing a signal handlers, must also unshare the signal queues.
2321 	 */
2322 	if (unshare_flags & CLONE_SIGHAND)
2323 		unshare_flags |= CLONE_THREAD;
2324 	/*
2325 	 * If unsharing namespace, must also unshare filesystem information.
2326 	 */
2327 	if (unshare_flags & CLONE_NEWNS)
2328 		unshare_flags |= CLONE_FS;
2329 
2330 	err = check_unshare_flags(unshare_flags);
2331 	if (err)
2332 		goto bad_unshare_out;
2333 	/*
2334 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2335 	 * to a new ipc namespace, the semaphore arrays from the old
2336 	 * namespace are unreachable.
2337 	 */
2338 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2339 		do_sysvsem = 1;
2340 	err = unshare_fs(unshare_flags, &new_fs);
2341 	if (err)
2342 		goto bad_unshare_out;
2343 	err = unshare_fd(unshare_flags, &new_fd);
2344 	if (err)
2345 		goto bad_unshare_cleanup_fs;
2346 	err = unshare_userns(unshare_flags, &new_cred);
2347 	if (err)
2348 		goto bad_unshare_cleanup_fd;
2349 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2350 					 new_cred, new_fs);
2351 	if (err)
2352 		goto bad_unshare_cleanup_cred;
2353 
2354 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2355 		if (do_sysvsem) {
2356 			/*
2357 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2358 			 */
2359 			exit_sem(current);
2360 		}
2361 		if (unshare_flags & CLONE_NEWIPC) {
2362 			/* Orphan segments in old ns (see sem above). */
2363 			exit_shm(current);
2364 			shm_init_task(current);
2365 		}
2366 
2367 		if (new_nsproxy)
2368 			switch_task_namespaces(current, new_nsproxy);
2369 
2370 		task_lock(current);
2371 
2372 		if (new_fs) {
2373 			fs = current->fs;
2374 			spin_lock(&fs->lock);
2375 			current->fs = new_fs;
2376 			if (--fs->users)
2377 				new_fs = NULL;
2378 			else
2379 				new_fs = fs;
2380 			spin_unlock(&fs->lock);
2381 		}
2382 
2383 		if (new_fd) {
2384 			fd = current->files;
2385 			current->files = new_fd;
2386 			new_fd = fd;
2387 		}
2388 
2389 		task_unlock(current);
2390 
2391 		if (new_cred) {
2392 			/* Install the new user namespace */
2393 			commit_creds(new_cred);
2394 			new_cred = NULL;
2395 		}
2396 	}
2397 
2398 	perf_event_namespaces(current);
2399 
2400 bad_unshare_cleanup_cred:
2401 	if (new_cred)
2402 		put_cred(new_cred);
2403 bad_unshare_cleanup_fd:
2404 	if (new_fd)
2405 		put_files_struct(new_fd);
2406 
2407 bad_unshare_cleanup_fs:
2408 	if (new_fs)
2409 		free_fs_struct(new_fs);
2410 
2411 bad_unshare_out:
2412 	return err;
2413 }
2414 
2415 /*
2416  *	Helper to unshare the files of the current task.
2417  *	We don't want to expose copy_files internals to
2418  *	the exec layer of the kernel.
2419  */
2420 
2421 int unshare_files(struct files_struct **displaced)
2422 {
2423 	struct task_struct *task = current;
2424 	struct files_struct *copy = NULL;
2425 	int error;
2426 
2427 	error = unshare_fd(CLONE_FILES, &copy);
2428 	if (error || !copy) {
2429 		*displaced = NULL;
2430 		return error;
2431 	}
2432 	*displaced = task->files;
2433 	task_lock(task);
2434 	task->files = copy;
2435 	task_unlock(task);
2436 	return 0;
2437 }
2438 
2439 int sysctl_max_threads(struct ctl_table *table, int write,
2440 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2441 {
2442 	struct ctl_table t;
2443 	int ret;
2444 	int threads = max_threads;
2445 	int min = MIN_THREADS;
2446 	int max = MAX_THREADS;
2447 
2448 	t = *table;
2449 	t.data = &threads;
2450 	t.extra1 = &min;
2451 	t.extra2 = &max;
2452 
2453 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2454 	if (ret || !write)
2455 		return ret;
2456 
2457 	set_max_threads(threads);
2458 
2459 	return 0;
2460 }
2461