1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 #ifdef CONFIG_PER_VMA_LOCK 455 456 /* SLAB cache for vm_area_struct.lock */ 457 static struct kmem_cache *vma_lock_cachep; 458 459 static bool vma_lock_alloc(struct vm_area_struct *vma) 460 { 461 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 462 if (!vma->vm_lock) 463 return false; 464 465 init_rwsem(&vma->vm_lock->lock); 466 vma->vm_lock_seq = -1; 467 468 return true; 469 } 470 471 static inline void vma_lock_free(struct vm_area_struct *vma) 472 { 473 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 474 } 475 476 #else /* CONFIG_PER_VMA_LOCK */ 477 478 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 479 static inline void vma_lock_free(struct vm_area_struct *vma) {} 480 481 #endif /* CONFIG_PER_VMA_LOCK */ 482 483 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 484 { 485 struct vm_area_struct *vma; 486 487 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 488 if (!vma) 489 return NULL; 490 491 vma_init(vma, mm); 492 if (!vma_lock_alloc(vma)) { 493 kmem_cache_free(vm_area_cachep, vma); 494 return NULL; 495 } 496 497 return vma; 498 } 499 500 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 501 { 502 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 503 504 if (!new) 505 return NULL; 506 507 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 508 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 509 /* 510 * orig->shared.rb may be modified concurrently, but the clone 511 * will be reinitialized. 512 */ 513 data_race(memcpy(new, orig, sizeof(*new))); 514 if (!vma_lock_alloc(new)) { 515 kmem_cache_free(vm_area_cachep, new); 516 return NULL; 517 } 518 INIT_LIST_HEAD(&new->anon_vma_chain); 519 vma_numab_state_init(new); 520 dup_anon_vma_name(orig, new); 521 522 return new; 523 } 524 525 void __vm_area_free(struct vm_area_struct *vma) 526 { 527 vma_numab_state_free(vma); 528 free_anon_vma_name(vma); 529 vma_lock_free(vma); 530 kmem_cache_free(vm_area_cachep, vma); 531 } 532 533 #ifdef CONFIG_PER_VMA_LOCK 534 static void vm_area_free_rcu_cb(struct rcu_head *head) 535 { 536 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 537 vm_rcu); 538 539 /* The vma should not be locked while being destroyed. */ 540 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 541 __vm_area_free(vma); 542 } 543 #endif 544 545 void vm_area_free(struct vm_area_struct *vma) 546 { 547 #ifdef CONFIG_PER_VMA_LOCK 548 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 549 #else 550 __vm_area_free(vma); 551 #endif 552 } 553 554 static void account_kernel_stack(struct task_struct *tsk, int account) 555 { 556 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 557 struct vm_struct *vm = task_stack_vm_area(tsk); 558 int i; 559 560 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 561 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 562 account * (PAGE_SIZE / 1024)); 563 } else { 564 void *stack = task_stack_page(tsk); 565 566 /* All stack pages are in the same node. */ 567 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 568 account * (THREAD_SIZE / 1024)); 569 } 570 } 571 572 void exit_task_stack_account(struct task_struct *tsk) 573 { 574 account_kernel_stack(tsk, -1); 575 576 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 577 struct vm_struct *vm; 578 int i; 579 580 vm = task_stack_vm_area(tsk); 581 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 582 memcg_kmem_uncharge_page(vm->pages[i], 0); 583 } 584 } 585 586 static void release_task_stack(struct task_struct *tsk) 587 { 588 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 589 return; /* Better to leak the stack than to free prematurely */ 590 591 free_thread_stack(tsk); 592 } 593 594 #ifdef CONFIG_THREAD_INFO_IN_TASK 595 void put_task_stack(struct task_struct *tsk) 596 { 597 if (refcount_dec_and_test(&tsk->stack_refcount)) 598 release_task_stack(tsk); 599 } 600 #endif 601 602 void free_task(struct task_struct *tsk) 603 { 604 #ifdef CONFIG_SECCOMP 605 WARN_ON_ONCE(tsk->seccomp.filter); 606 #endif 607 release_user_cpus_ptr(tsk); 608 scs_release(tsk); 609 610 #ifndef CONFIG_THREAD_INFO_IN_TASK 611 /* 612 * The task is finally done with both the stack and thread_info, 613 * so free both. 614 */ 615 release_task_stack(tsk); 616 #else 617 /* 618 * If the task had a separate stack allocation, it should be gone 619 * by now. 620 */ 621 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 622 #endif 623 rt_mutex_debug_task_free(tsk); 624 ftrace_graph_exit_task(tsk); 625 arch_release_task_struct(tsk); 626 if (tsk->flags & PF_KTHREAD) 627 free_kthread_struct(tsk); 628 free_task_struct(tsk); 629 } 630 EXPORT_SYMBOL(free_task); 631 632 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 633 { 634 struct file *exe_file; 635 636 exe_file = get_mm_exe_file(oldmm); 637 RCU_INIT_POINTER(mm->exe_file, exe_file); 638 /* 639 * We depend on the oldmm having properly denied write access to the 640 * exe_file already. 641 */ 642 if (exe_file && deny_write_access(exe_file)) 643 pr_warn_once("deny_write_access() failed in %s\n", __func__); 644 } 645 646 #ifdef CONFIG_MMU 647 static __latent_entropy int dup_mmap(struct mm_struct *mm, 648 struct mm_struct *oldmm) 649 { 650 struct vm_area_struct *mpnt, *tmp; 651 int retval; 652 unsigned long charge = 0; 653 LIST_HEAD(uf); 654 VMA_ITERATOR(old_vmi, oldmm, 0); 655 VMA_ITERATOR(vmi, mm, 0); 656 657 uprobe_start_dup_mmap(); 658 if (mmap_write_lock_killable(oldmm)) { 659 retval = -EINTR; 660 goto fail_uprobe_end; 661 } 662 flush_cache_dup_mm(oldmm); 663 uprobe_dup_mmap(oldmm, mm); 664 /* 665 * Not linked in yet - no deadlock potential: 666 */ 667 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 668 669 /* No ordering required: file already has been exposed. */ 670 dup_mm_exe_file(mm, oldmm); 671 672 mm->total_vm = oldmm->total_vm; 673 mm->data_vm = oldmm->data_vm; 674 mm->exec_vm = oldmm->exec_vm; 675 mm->stack_vm = oldmm->stack_vm; 676 677 retval = ksm_fork(mm, oldmm); 678 if (retval) 679 goto out; 680 khugepaged_fork(mm, oldmm); 681 682 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 683 if (retval) 684 goto out; 685 686 mt_clear_in_rcu(vmi.mas.tree); 687 for_each_vma(old_vmi, mpnt) { 688 struct file *file; 689 690 if (mpnt->vm_flags & VM_DONTCOPY) { 691 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 692 continue; 693 } 694 charge = 0; 695 /* 696 * Don't duplicate many vmas if we've been oom-killed (for 697 * example) 698 */ 699 if (fatal_signal_pending(current)) { 700 retval = -EINTR; 701 goto loop_out; 702 } 703 if (mpnt->vm_flags & VM_ACCOUNT) { 704 unsigned long len = vma_pages(mpnt); 705 706 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 707 goto fail_nomem; 708 charge = len; 709 } 710 tmp = vm_area_dup(mpnt); 711 if (!tmp) 712 goto fail_nomem; 713 retval = vma_dup_policy(mpnt, tmp); 714 if (retval) 715 goto fail_nomem_policy; 716 tmp->vm_mm = mm; 717 retval = dup_userfaultfd(tmp, &uf); 718 if (retval) 719 goto fail_nomem_anon_vma_fork; 720 if (tmp->vm_flags & VM_WIPEONFORK) { 721 /* 722 * VM_WIPEONFORK gets a clean slate in the child. 723 * Don't prepare anon_vma until fault since we don't 724 * copy page for current vma. 725 */ 726 tmp->anon_vma = NULL; 727 } else if (anon_vma_fork(tmp, mpnt)) 728 goto fail_nomem_anon_vma_fork; 729 vm_flags_clear(tmp, VM_LOCKED_MASK); 730 file = tmp->vm_file; 731 if (file) { 732 struct address_space *mapping = file->f_mapping; 733 734 get_file(file); 735 i_mmap_lock_write(mapping); 736 if (tmp->vm_flags & VM_SHARED) 737 mapping_allow_writable(mapping); 738 flush_dcache_mmap_lock(mapping); 739 /* insert tmp into the share list, just after mpnt */ 740 vma_interval_tree_insert_after(tmp, mpnt, 741 &mapping->i_mmap); 742 flush_dcache_mmap_unlock(mapping); 743 i_mmap_unlock_write(mapping); 744 } 745 746 /* 747 * Copy/update hugetlb private vma information. 748 */ 749 if (is_vm_hugetlb_page(tmp)) 750 hugetlb_dup_vma_private(tmp); 751 752 /* Link the vma into the MT */ 753 if (vma_iter_bulk_store(&vmi, tmp)) 754 goto fail_nomem_vmi_store; 755 756 mm->map_count++; 757 if (!(tmp->vm_flags & VM_WIPEONFORK)) 758 retval = copy_page_range(tmp, mpnt); 759 760 if (tmp->vm_ops && tmp->vm_ops->open) 761 tmp->vm_ops->open(tmp); 762 763 if (retval) 764 goto loop_out; 765 } 766 /* a new mm has just been created */ 767 retval = arch_dup_mmap(oldmm, mm); 768 loop_out: 769 vma_iter_free(&vmi); 770 if (!retval) 771 mt_set_in_rcu(vmi.mas.tree); 772 out: 773 mmap_write_unlock(mm); 774 flush_tlb_mm(oldmm); 775 mmap_write_unlock(oldmm); 776 dup_userfaultfd_complete(&uf); 777 fail_uprobe_end: 778 uprobe_end_dup_mmap(); 779 return retval; 780 781 fail_nomem_vmi_store: 782 unlink_anon_vmas(tmp); 783 fail_nomem_anon_vma_fork: 784 mpol_put(vma_policy(tmp)); 785 fail_nomem_policy: 786 vm_area_free(tmp); 787 fail_nomem: 788 retval = -ENOMEM; 789 vm_unacct_memory(charge); 790 goto loop_out; 791 } 792 793 static inline int mm_alloc_pgd(struct mm_struct *mm) 794 { 795 mm->pgd = pgd_alloc(mm); 796 if (unlikely(!mm->pgd)) 797 return -ENOMEM; 798 return 0; 799 } 800 801 static inline void mm_free_pgd(struct mm_struct *mm) 802 { 803 pgd_free(mm, mm->pgd); 804 } 805 #else 806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 807 { 808 mmap_write_lock(oldmm); 809 dup_mm_exe_file(mm, oldmm); 810 mmap_write_unlock(oldmm); 811 return 0; 812 } 813 #define mm_alloc_pgd(mm) (0) 814 #define mm_free_pgd(mm) 815 #endif /* CONFIG_MMU */ 816 817 static void check_mm(struct mm_struct *mm) 818 { 819 int i; 820 821 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 822 "Please make sure 'struct resident_page_types[]' is updated as well"); 823 824 for (i = 0; i < NR_MM_COUNTERS; i++) { 825 long x = percpu_counter_sum(&mm->rss_stat[i]); 826 827 if (unlikely(x)) 828 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 829 mm, resident_page_types[i], x); 830 } 831 832 if (mm_pgtables_bytes(mm)) 833 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 834 mm_pgtables_bytes(mm)); 835 836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 837 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 838 #endif 839 } 840 841 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 842 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 843 844 static void do_check_lazy_tlb(void *arg) 845 { 846 struct mm_struct *mm = arg; 847 848 WARN_ON_ONCE(current->active_mm == mm); 849 } 850 851 static void do_shoot_lazy_tlb(void *arg) 852 { 853 struct mm_struct *mm = arg; 854 855 if (current->active_mm == mm) { 856 WARN_ON_ONCE(current->mm); 857 current->active_mm = &init_mm; 858 switch_mm(mm, &init_mm, current); 859 } 860 } 861 862 static void cleanup_lazy_tlbs(struct mm_struct *mm) 863 { 864 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 865 /* 866 * In this case, lazy tlb mms are refounted and would not reach 867 * __mmdrop until all CPUs have switched away and mmdrop()ed. 868 */ 869 return; 870 } 871 872 /* 873 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 874 * requires lazy mm users to switch to another mm when the refcount 875 * drops to zero, before the mm is freed. This requires IPIs here to 876 * switch kernel threads to init_mm. 877 * 878 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 879 * switch with the final userspace teardown TLB flush which leaves the 880 * mm lazy on this CPU but no others, reducing the need for additional 881 * IPIs here. There are cases where a final IPI is still required here, 882 * such as the final mmdrop being performed on a different CPU than the 883 * one exiting, or kernel threads using the mm when userspace exits. 884 * 885 * IPI overheads have not found to be expensive, but they could be 886 * reduced in a number of possible ways, for example (roughly 887 * increasing order of complexity): 888 * - The last lazy reference created by exit_mm() could instead switch 889 * to init_mm, however it's probable this will run on the same CPU 890 * immediately afterwards, so this may not reduce IPIs much. 891 * - A batch of mms requiring IPIs could be gathered and freed at once. 892 * - CPUs store active_mm where it can be remotely checked without a 893 * lock, to filter out false-positives in the cpumask. 894 * - After mm_users or mm_count reaches zero, switching away from the 895 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 896 * with some batching or delaying of the final IPIs. 897 * - A delayed freeing and RCU-like quiescing sequence based on mm 898 * switching to avoid IPIs completely. 899 */ 900 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 901 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 902 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 903 } 904 905 /* 906 * Called when the last reference to the mm 907 * is dropped: either by a lazy thread or by 908 * mmput. Free the page directory and the mm. 909 */ 910 void __mmdrop(struct mm_struct *mm) 911 { 912 int i; 913 914 BUG_ON(mm == &init_mm); 915 WARN_ON_ONCE(mm == current->mm); 916 917 /* Ensure no CPUs are using this as their lazy tlb mm */ 918 cleanup_lazy_tlbs(mm); 919 920 WARN_ON_ONCE(mm == current->active_mm); 921 mm_free_pgd(mm); 922 destroy_context(mm); 923 mmu_notifier_subscriptions_destroy(mm); 924 check_mm(mm); 925 put_user_ns(mm->user_ns); 926 mm_pasid_drop(mm); 927 928 for (i = 0; i < NR_MM_COUNTERS; i++) 929 percpu_counter_destroy(&mm->rss_stat[i]); 930 free_mm(mm); 931 } 932 EXPORT_SYMBOL_GPL(__mmdrop); 933 934 static void mmdrop_async_fn(struct work_struct *work) 935 { 936 struct mm_struct *mm; 937 938 mm = container_of(work, struct mm_struct, async_put_work); 939 __mmdrop(mm); 940 } 941 942 static void mmdrop_async(struct mm_struct *mm) 943 { 944 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 945 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 946 schedule_work(&mm->async_put_work); 947 } 948 } 949 950 static inline void free_signal_struct(struct signal_struct *sig) 951 { 952 taskstats_tgid_free(sig); 953 sched_autogroup_exit(sig); 954 /* 955 * __mmdrop is not safe to call from softirq context on x86 due to 956 * pgd_dtor so postpone it to the async context 957 */ 958 if (sig->oom_mm) 959 mmdrop_async(sig->oom_mm); 960 kmem_cache_free(signal_cachep, sig); 961 } 962 963 static inline void put_signal_struct(struct signal_struct *sig) 964 { 965 if (refcount_dec_and_test(&sig->sigcnt)) 966 free_signal_struct(sig); 967 } 968 969 void __put_task_struct(struct task_struct *tsk) 970 { 971 WARN_ON(!tsk->exit_state); 972 WARN_ON(refcount_read(&tsk->usage)); 973 WARN_ON(tsk == current); 974 975 io_uring_free(tsk); 976 cgroup_free(tsk); 977 task_numa_free(tsk, true); 978 security_task_free(tsk); 979 bpf_task_storage_free(tsk); 980 exit_creds(tsk); 981 delayacct_tsk_free(tsk); 982 put_signal_struct(tsk->signal); 983 sched_core_free(tsk); 984 free_task(tsk); 985 } 986 EXPORT_SYMBOL_GPL(__put_task_struct); 987 988 void __init __weak arch_task_cache_init(void) { } 989 990 /* 991 * set_max_threads 992 */ 993 static void set_max_threads(unsigned int max_threads_suggested) 994 { 995 u64 threads; 996 unsigned long nr_pages = totalram_pages(); 997 998 /* 999 * The number of threads shall be limited such that the thread 1000 * structures may only consume a small part of the available memory. 1001 */ 1002 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1003 threads = MAX_THREADS; 1004 else 1005 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1006 (u64) THREAD_SIZE * 8UL); 1007 1008 if (threads > max_threads_suggested) 1009 threads = max_threads_suggested; 1010 1011 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1012 } 1013 1014 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1015 /* Initialized by the architecture: */ 1016 int arch_task_struct_size __read_mostly; 1017 #endif 1018 1019 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1020 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1021 { 1022 /* Fetch thread_struct whitelist for the architecture. */ 1023 arch_thread_struct_whitelist(offset, size); 1024 1025 /* 1026 * Handle zero-sized whitelist or empty thread_struct, otherwise 1027 * adjust offset to position of thread_struct in task_struct. 1028 */ 1029 if (unlikely(*size == 0)) 1030 *offset = 0; 1031 else 1032 *offset += offsetof(struct task_struct, thread); 1033 } 1034 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 1035 1036 void __init fork_init(void) 1037 { 1038 int i; 1039 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1040 #ifndef ARCH_MIN_TASKALIGN 1041 #define ARCH_MIN_TASKALIGN 0 1042 #endif 1043 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1044 unsigned long useroffset, usersize; 1045 1046 /* create a slab on which task_structs can be allocated */ 1047 task_struct_whitelist(&useroffset, &usersize); 1048 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1049 arch_task_struct_size, align, 1050 SLAB_PANIC|SLAB_ACCOUNT, 1051 useroffset, usersize, NULL); 1052 #endif 1053 1054 /* do the arch specific task caches init */ 1055 arch_task_cache_init(); 1056 1057 set_max_threads(MAX_THREADS); 1058 1059 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1060 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1061 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1062 init_task.signal->rlim[RLIMIT_NPROC]; 1063 1064 for (i = 0; i < UCOUNT_COUNTS; i++) 1065 init_user_ns.ucount_max[i] = max_threads/2; 1066 1067 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1068 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1071 1072 #ifdef CONFIG_VMAP_STACK 1073 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1074 NULL, free_vm_stack_cache); 1075 #endif 1076 1077 scs_init(); 1078 1079 lockdep_init_task(&init_task); 1080 uprobes_init(); 1081 } 1082 1083 int __weak arch_dup_task_struct(struct task_struct *dst, 1084 struct task_struct *src) 1085 { 1086 *dst = *src; 1087 return 0; 1088 } 1089 1090 void set_task_stack_end_magic(struct task_struct *tsk) 1091 { 1092 unsigned long *stackend; 1093 1094 stackend = end_of_stack(tsk); 1095 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1096 } 1097 1098 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1099 { 1100 struct task_struct *tsk; 1101 int err; 1102 1103 if (node == NUMA_NO_NODE) 1104 node = tsk_fork_get_node(orig); 1105 tsk = alloc_task_struct_node(node); 1106 if (!tsk) 1107 return NULL; 1108 1109 err = arch_dup_task_struct(tsk, orig); 1110 if (err) 1111 goto free_tsk; 1112 1113 err = alloc_thread_stack_node(tsk, node); 1114 if (err) 1115 goto free_tsk; 1116 1117 #ifdef CONFIG_THREAD_INFO_IN_TASK 1118 refcount_set(&tsk->stack_refcount, 1); 1119 #endif 1120 account_kernel_stack(tsk, 1); 1121 1122 err = scs_prepare(tsk, node); 1123 if (err) 1124 goto free_stack; 1125 1126 #ifdef CONFIG_SECCOMP 1127 /* 1128 * We must handle setting up seccomp filters once we're under 1129 * the sighand lock in case orig has changed between now and 1130 * then. Until then, filter must be NULL to avoid messing up 1131 * the usage counts on the error path calling free_task. 1132 */ 1133 tsk->seccomp.filter = NULL; 1134 #endif 1135 1136 setup_thread_stack(tsk, orig); 1137 clear_user_return_notifier(tsk); 1138 clear_tsk_need_resched(tsk); 1139 set_task_stack_end_magic(tsk); 1140 clear_syscall_work_syscall_user_dispatch(tsk); 1141 1142 #ifdef CONFIG_STACKPROTECTOR 1143 tsk->stack_canary = get_random_canary(); 1144 #endif 1145 if (orig->cpus_ptr == &orig->cpus_mask) 1146 tsk->cpus_ptr = &tsk->cpus_mask; 1147 dup_user_cpus_ptr(tsk, orig, node); 1148 1149 /* 1150 * One for the user space visible state that goes away when reaped. 1151 * One for the scheduler. 1152 */ 1153 refcount_set(&tsk->rcu_users, 2); 1154 /* One for the rcu users */ 1155 refcount_set(&tsk->usage, 1); 1156 #ifdef CONFIG_BLK_DEV_IO_TRACE 1157 tsk->btrace_seq = 0; 1158 #endif 1159 tsk->splice_pipe = NULL; 1160 tsk->task_frag.page = NULL; 1161 tsk->wake_q.next = NULL; 1162 tsk->worker_private = NULL; 1163 1164 kcov_task_init(tsk); 1165 kmsan_task_create(tsk); 1166 kmap_local_fork(tsk); 1167 1168 #ifdef CONFIG_FAULT_INJECTION 1169 tsk->fail_nth = 0; 1170 #endif 1171 1172 #ifdef CONFIG_BLK_CGROUP 1173 tsk->throttle_disk = NULL; 1174 tsk->use_memdelay = 0; 1175 #endif 1176 1177 #ifdef CONFIG_IOMMU_SVA 1178 tsk->pasid_activated = 0; 1179 #endif 1180 1181 #ifdef CONFIG_MEMCG 1182 tsk->active_memcg = NULL; 1183 #endif 1184 1185 #ifdef CONFIG_CPU_SUP_INTEL 1186 tsk->reported_split_lock = 0; 1187 #endif 1188 1189 #ifdef CONFIG_SCHED_MM_CID 1190 tsk->mm_cid = -1; 1191 tsk->mm_cid_active = 0; 1192 #endif 1193 return tsk; 1194 1195 free_stack: 1196 exit_task_stack_account(tsk); 1197 free_thread_stack(tsk); 1198 free_tsk: 1199 free_task_struct(tsk); 1200 return NULL; 1201 } 1202 1203 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1204 1205 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1206 1207 static int __init coredump_filter_setup(char *s) 1208 { 1209 default_dump_filter = 1210 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1211 MMF_DUMP_FILTER_MASK; 1212 return 1; 1213 } 1214 1215 __setup("coredump_filter=", coredump_filter_setup); 1216 1217 #include <linux/init_task.h> 1218 1219 static void mm_init_aio(struct mm_struct *mm) 1220 { 1221 #ifdef CONFIG_AIO 1222 spin_lock_init(&mm->ioctx_lock); 1223 mm->ioctx_table = NULL; 1224 #endif 1225 } 1226 1227 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1228 struct task_struct *p) 1229 { 1230 #ifdef CONFIG_MEMCG 1231 if (mm->owner == p) 1232 WRITE_ONCE(mm->owner, NULL); 1233 #endif 1234 } 1235 1236 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1237 { 1238 #ifdef CONFIG_MEMCG 1239 mm->owner = p; 1240 #endif 1241 } 1242 1243 static void mm_init_uprobes_state(struct mm_struct *mm) 1244 { 1245 #ifdef CONFIG_UPROBES 1246 mm->uprobes_state.xol_area = NULL; 1247 #endif 1248 } 1249 1250 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1251 struct user_namespace *user_ns) 1252 { 1253 int i; 1254 1255 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1256 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1257 atomic_set(&mm->mm_users, 1); 1258 atomic_set(&mm->mm_count, 1); 1259 seqcount_init(&mm->write_protect_seq); 1260 mmap_init_lock(mm); 1261 INIT_LIST_HEAD(&mm->mmlist); 1262 #ifdef CONFIG_PER_VMA_LOCK 1263 mm->mm_lock_seq = 0; 1264 #endif 1265 mm_pgtables_bytes_init(mm); 1266 mm->map_count = 0; 1267 mm->locked_vm = 0; 1268 atomic64_set(&mm->pinned_vm, 0); 1269 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1270 spin_lock_init(&mm->page_table_lock); 1271 spin_lock_init(&mm->arg_lock); 1272 mm_init_cpumask(mm); 1273 mm_init_aio(mm); 1274 mm_init_owner(mm, p); 1275 mm_pasid_init(mm); 1276 RCU_INIT_POINTER(mm->exe_file, NULL); 1277 mmu_notifier_subscriptions_init(mm); 1278 init_tlb_flush_pending(mm); 1279 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1280 mm->pmd_huge_pte = NULL; 1281 #endif 1282 mm_init_uprobes_state(mm); 1283 hugetlb_count_init(mm); 1284 1285 if (current->mm) { 1286 mm->flags = current->mm->flags & MMF_INIT_MASK; 1287 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1288 } else { 1289 mm->flags = default_dump_filter; 1290 mm->def_flags = 0; 1291 } 1292 1293 if (mm_alloc_pgd(mm)) 1294 goto fail_nopgd; 1295 1296 if (init_new_context(p, mm)) 1297 goto fail_nocontext; 1298 1299 for (i = 0; i < NR_MM_COUNTERS; i++) 1300 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1301 goto fail_pcpu; 1302 1303 mm->user_ns = get_user_ns(user_ns); 1304 lru_gen_init_mm(mm); 1305 mm_init_cid(mm); 1306 return mm; 1307 1308 fail_pcpu: 1309 while (i > 0) 1310 percpu_counter_destroy(&mm->rss_stat[--i]); 1311 destroy_context(mm); 1312 fail_nocontext: 1313 mm_free_pgd(mm); 1314 fail_nopgd: 1315 free_mm(mm); 1316 return NULL; 1317 } 1318 1319 /* 1320 * Allocate and initialize an mm_struct. 1321 */ 1322 struct mm_struct *mm_alloc(void) 1323 { 1324 struct mm_struct *mm; 1325 1326 mm = allocate_mm(); 1327 if (!mm) 1328 return NULL; 1329 1330 memset(mm, 0, sizeof(*mm)); 1331 return mm_init(mm, current, current_user_ns()); 1332 } 1333 1334 static inline void __mmput(struct mm_struct *mm) 1335 { 1336 VM_BUG_ON(atomic_read(&mm->mm_users)); 1337 1338 uprobe_clear_state(mm); 1339 exit_aio(mm); 1340 ksm_exit(mm); 1341 khugepaged_exit(mm); /* must run before exit_mmap */ 1342 exit_mmap(mm); 1343 mm_put_huge_zero_page(mm); 1344 set_mm_exe_file(mm, NULL); 1345 if (!list_empty(&mm->mmlist)) { 1346 spin_lock(&mmlist_lock); 1347 list_del(&mm->mmlist); 1348 spin_unlock(&mmlist_lock); 1349 } 1350 if (mm->binfmt) 1351 module_put(mm->binfmt->module); 1352 lru_gen_del_mm(mm); 1353 mmdrop(mm); 1354 } 1355 1356 /* 1357 * Decrement the use count and release all resources for an mm. 1358 */ 1359 void mmput(struct mm_struct *mm) 1360 { 1361 might_sleep(); 1362 1363 if (atomic_dec_and_test(&mm->mm_users)) 1364 __mmput(mm); 1365 } 1366 EXPORT_SYMBOL_GPL(mmput); 1367 1368 #ifdef CONFIG_MMU 1369 static void mmput_async_fn(struct work_struct *work) 1370 { 1371 struct mm_struct *mm = container_of(work, struct mm_struct, 1372 async_put_work); 1373 1374 __mmput(mm); 1375 } 1376 1377 void mmput_async(struct mm_struct *mm) 1378 { 1379 if (atomic_dec_and_test(&mm->mm_users)) { 1380 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1381 schedule_work(&mm->async_put_work); 1382 } 1383 } 1384 EXPORT_SYMBOL_GPL(mmput_async); 1385 #endif 1386 1387 /** 1388 * set_mm_exe_file - change a reference to the mm's executable file 1389 * 1390 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1391 * 1392 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1393 * invocations: in mmput() nobody alive left, in execve task is single 1394 * threaded. 1395 * 1396 * Can only fail if new_exe_file != NULL. 1397 */ 1398 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1399 { 1400 struct file *old_exe_file; 1401 1402 /* 1403 * It is safe to dereference the exe_file without RCU as 1404 * this function is only called if nobody else can access 1405 * this mm -- see comment above for justification. 1406 */ 1407 old_exe_file = rcu_dereference_raw(mm->exe_file); 1408 1409 if (new_exe_file) { 1410 /* 1411 * We expect the caller (i.e., sys_execve) to already denied 1412 * write access, so this is unlikely to fail. 1413 */ 1414 if (unlikely(deny_write_access(new_exe_file))) 1415 return -EACCES; 1416 get_file(new_exe_file); 1417 } 1418 rcu_assign_pointer(mm->exe_file, new_exe_file); 1419 if (old_exe_file) { 1420 allow_write_access(old_exe_file); 1421 fput(old_exe_file); 1422 } 1423 return 0; 1424 } 1425 1426 /** 1427 * replace_mm_exe_file - replace a reference to the mm's executable file 1428 * 1429 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1430 * dealing with concurrent invocation and without grabbing the mmap lock in 1431 * write mode. 1432 * 1433 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1434 */ 1435 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1436 { 1437 struct vm_area_struct *vma; 1438 struct file *old_exe_file; 1439 int ret = 0; 1440 1441 /* Forbid mm->exe_file change if old file still mapped. */ 1442 old_exe_file = get_mm_exe_file(mm); 1443 if (old_exe_file) { 1444 VMA_ITERATOR(vmi, mm, 0); 1445 mmap_read_lock(mm); 1446 for_each_vma(vmi, vma) { 1447 if (!vma->vm_file) 1448 continue; 1449 if (path_equal(&vma->vm_file->f_path, 1450 &old_exe_file->f_path)) { 1451 ret = -EBUSY; 1452 break; 1453 } 1454 } 1455 mmap_read_unlock(mm); 1456 fput(old_exe_file); 1457 if (ret) 1458 return ret; 1459 } 1460 1461 /* set the new file, lockless */ 1462 ret = deny_write_access(new_exe_file); 1463 if (ret) 1464 return -EACCES; 1465 get_file(new_exe_file); 1466 1467 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1468 if (old_exe_file) { 1469 /* 1470 * Don't race with dup_mmap() getting the file and disallowing 1471 * write access while someone might open the file writable. 1472 */ 1473 mmap_read_lock(mm); 1474 allow_write_access(old_exe_file); 1475 fput(old_exe_file); 1476 mmap_read_unlock(mm); 1477 } 1478 return 0; 1479 } 1480 1481 /** 1482 * get_mm_exe_file - acquire a reference to the mm's executable file 1483 * 1484 * Returns %NULL if mm has no associated executable file. 1485 * User must release file via fput(). 1486 */ 1487 struct file *get_mm_exe_file(struct mm_struct *mm) 1488 { 1489 struct file *exe_file; 1490 1491 rcu_read_lock(); 1492 exe_file = rcu_dereference(mm->exe_file); 1493 if (exe_file && !get_file_rcu(exe_file)) 1494 exe_file = NULL; 1495 rcu_read_unlock(); 1496 return exe_file; 1497 } 1498 1499 /** 1500 * get_task_exe_file - acquire a reference to the task's executable file 1501 * 1502 * Returns %NULL if task's mm (if any) has no associated executable file or 1503 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1504 * User must release file via fput(). 1505 */ 1506 struct file *get_task_exe_file(struct task_struct *task) 1507 { 1508 struct file *exe_file = NULL; 1509 struct mm_struct *mm; 1510 1511 task_lock(task); 1512 mm = task->mm; 1513 if (mm) { 1514 if (!(task->flags & PF_KTHREAD)) 1515 exe_file = get_mm_exe_file(mm); 1516 } 1517 task_unlock(task); 1518 return exe_file; 1519 } 1520 1521 /** 1522 * get_task_mm - acquire a reference to the task's mm 1523 * 1524 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1525 * this kernel workthread has transiently adopted a user mm with use_mm, 1526 * to do its AIO) is not set and if so returns a reference to it, after 1527 * bumping up the use count. User must release the mm via mmput() 1528 * after use. Typically used by /proc and ptrace. 1529 */ 1530 struct mm_struct *get_task_mm(struct task_struct *task) 1531 { 1532 struct mm_struct *mm; 1533 1534 task_lock(task); 1535 mm = task->mm; 1536 if (mm) { 1537 if (task->flags & PF_KTHREAD) 1538 mm = NULL; 1539 else 1540 mmget(mm); 1541 } 1542 task_unlock(task); 1543 return mm; 1544 } 1545 EXPORT_SYMBOL_GPL(get_task_mm); 1546 1547 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1548 { 1549 struct mm_struct *mm; 1550 int err; 1551 1552 err = down_read_killable(&task->signal->exec_update_lock); 1553 if (err) 1554 return ERR_PTR(err); 1555 1556 mm = get_task_mm(task); 1557 if (mm && mm != current->mm && 1558 !ptrace_may_access(task, mode)) { 1559 mmput(mm); 1560 mm = ERR_PTR(-EACCES); 1561 } 1562 up_read(&task->signal->exec_update_lock); 1563 1564 return mm; 1565 } 1566 1567 static void complete_vfork_done(struct task_struct *tsk) 1568 { 1569 struct completion *vfork; 1570 1571 task_lock(tsk); 1572 vfork = tsk->vfork_done; 1573 if (likely(vfork)) { 1574 tsk->vfork_done = NULL; 1575 complete(vfork); 1576 } 1577 task_unlock(tsk); 1578 } 1579 1580 static int wait_for_vfork_done(struct task_struct *child, 1581 struct completion *vfork) 1582 { 1583 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1584 int killed; 1585 1586 cgroup_enter_frozen(); 1587 killed = wait_for_completion_state(vfork, state); 1588 cgroup_leave_frozen(false); 1589 1590 if (killed) { 1591 task_lock(child); 1592 child->vfork_done = NULL; 1593 task_unlock(child); 1594 } 1595 1596 put_task_struct(child); 1597 return killed; 1598 } 1599 1600 /* Please note the differences between mmput and mm_release. 1601 * mmput is called whenever we stop holding onto a mm_struct, 1602 * error success whatever. 1603 * 1604 * mm_release is called after a mm_struct has been removed 1605 * from the current process. 1606 * 1607 * This difference is important for error handling, when we 1608 * only half set up a mm_struct for a new process and need to restore 1609 * the old one. Because we mmput the new mm_struct before 1610 * restoring the old one. . . 1611 * Eric Biederman 10 January 1998 1612 */ 1613 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1614 { 1615 uprobe_free_utask(tsk); 1616 1617 /* Get rid of any cached register state */ 1618 deactivate_mm(tsk, mm); 1619 1620 /* 1621 * Signal userspace if we're not exiting with a core dump 1622 * because we want to leave the value intact for debugging 1623 * purposes. 1624 */ 1625 if (tsk->clear_child_tid) { 1626 if (atomic_read(&mm->mm_users) > 1) { 1627 /* 1628 * We don't check the error code - if userspace has 1629 * not set up a proper pointer then tough luck. 1630 */ 1631 put_user(0, tsk->clear_child_tid); 1632 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1633 1, NULL, NULL, 0, 0); 1634 } 1635 tsk->clear_child_tid = NULL; 1636 } 1637 1638 /* 1639 * All done, finally we can wake up parent and return this mm to him. 1640 * Also kthread_stop() uses this completion for synchronization. 1641 */ 1642 if (tsk->vfork_done) 1643 complete_vfork_done(tsk); 1644 } 1645 1646 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1647 { 1648 futex_exit_release(tsk); 1649 mm_release(tsk, mm); 1650 } 1651 1652 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1653 { 1654 futex_exec_release(tsk); 1655 mm_release(tsk, mm); 1656 } 1657 1658 /** 1659 * dup_mm() - duplicates an existing mm structure 1660 * @tsk: the task_struct with which the new mm will be associated. 1661 * @oldmm: the mm to duplicate. 1662 * 1663 * Allocates a new mm structure and duplicates the provided @oldmm structure 1664 * content into it. 1665 * 1666 * Return: the duplicated mm or NULL on failure. 1667 */ 1668 static struct mm_struct *dup_mm(struct task_struct *tsk, 1669 struct mm_struct *oldmm) 1670 { 1671 struct mm_struct *mm; 1672 int err; 1673 1674 mm = allocate_mm(); 1675 if (!mm) 1676 goto fail_nomem; 1677 1678 memcpy(mm, oldmm, sizeof(*mm)); 1679 1680 if (!mm_init(mm, tsk, mm->user_ns)) 1681 goto fail_nomem; 1682 1683 err = dup_mmap(mm, oldmm); 1684 if (err) 1685 goto free_pt; 1686 1687 mm->hiwater_rss = get_mm_rss(mm); 1688 mm->hiwater_vm = mm->total_vm; 1689 1690 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1691 goto free_pt; 1692 1693 return mm; 1694 1695 free_pt: 1696 /* don't put binfmt in mmput, we haven't got module yet */ 1697 mm->binfmt = NULL; 1698 mm_init_owner(mm, NULL); 1699 mmput(mm); 1700 1701 fail_nomem: 1702 return NULL; 1703 } 1704 1705 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1706 { 1707 struct mm_struct *mm, *oldmm; 1708 1709 tsk->min_flt = tsk->maj_flt = 0; 1710 tsk->nvcsw = tsk->nivcsw = 0; 1711 #ifdef CONFIG_DETECT_HUNG_TASK 1712 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1713 tsk->last_switch_time = 0; 1714 #endif 1715 1716 tsk->mm = NULL; 1717 tsk->active_mm = NULL; 1718 1719 /* 1720 * Are we cloning a kernel thread? 1721 * 1722 * We need to steal a active VM for that.. 1723 */ 1724 oldmm = current->mm; 1725 if (!oldmm) 1726 return 0; 1727 1728 if (clone_flags & CLONE_VM) { 1729 mmget(oldmm); 1730 mm = oldmm; 1731 } else { 1732 mm = dup_mm(tsk, current->mm); 1733 if (!mm) 1734 return -ENOMEM; 1735 } 1736 1737 tsk->mm = mm; 1738 tsk->active_mm = mm; 1739 sched_mm_cid_fork(tsk); 1740 return 0; 1741 } 1742 1743 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1744 { 1745 struct fs_struct *fs = current->fs; 1746 if (clone_flags & CLONE_FS) { 1747 /* tsk->fs is already what we want */ 1748 spin_lock(&fs->lock); 1749 if (fs->in_exec) { 1750 spin_unlock(&fs->lock); 1751 return -EAGAIN; 1752 } 1753 fs->users++; 1754 spin_unlock(&fs->lock); 1755 return 0; 1756 } 1757 tsk->fs = copy_fs_struct(fs); 1758 if (!tsk->fs) 1759 return -ENOMEM; 1760 return 0; 1761 } 1762 1763 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1764 { 1765 struct files_struct *oldf, *newf; 1766 int error = 0; 1767 1768 /* 1769 * A background process may not have any files ... 1770 */ 1771 oldf = current->files; 1772 if (!oldf) 1773 goto out; 1774 1775 if (clone_flags & CLONE_FILES) { 1776 atomic_inc(&oldf->count); 1777 goto out; 1778 } 1779 1780 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1781 if (!newf) 1782 goto out; 1783 1784 tsk->files = newf; 1785 error = 0; 1786 out: 1787 return error; 1788 } 1789 1790 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1791 { 1792 struct sighand_struct *sig; 1793 1794 if (clone_flags & CLONE_SIGHAND) { 1795 refcount_inc(¤t->sighand->count); 1796 return 0; 1797 } 1798 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1799 RCU_INIT_POINTER(tsk->sighand, sig); 1800 if (!sig) 1801 return -ENOMEM; 1802 1803 refcount_set(&sig->count, 1); 1804 spin_lock_irq(¤t->sighand->siglock); 1805 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1806 spin_unlock_irq(¤t->sighand->siglock); 1807 1808 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1809 if (clone_flags & CLONE_CLEAR_SIGHAND) 1810 flush_signal_handlers(tsk, 0); 1811 1812 return 0; 1813 } 1814 1815 void __cleanup_sighand(struct sighand_struct *sighand) 1816 { 1817 if (refcount_dec_and_test(&sighand->count)) { 1818 signalfd_cleanup(sighand); 1819 /* 1820 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1821 * without an RCU grace period, see __lock_task_sighand(). 1822 */ 1823 kmem_cache_free(sighand_cachep, sighand); 1824 } 1825 } 1826 1827 /* 1828 * Initialize POSIX timer handling for a thread group. 1829 */ 1830 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1831 { 1832 struct posix_cputimers *pct = &sig->posix_cputimers; 1833 unsigned long cpu_limit; 1834 1835 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1836 posix_cputimers_group_init(pct, cpu_limit); 1837 } 1838 1839 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1840 { 1841 struct signal_struct *sig; 1842 1843 if (clone_flags & CLONE_THREAD) 1844 return 0; 1845 1846 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1847 tsk->signal = sig; 1848 if (!sig) 1849 return -ENOMEM; 1850 1851 sig->nr_threads = 1; 1852 sig->quick_threads = 1; 1853 atomic_set(&sig->live, 1); 1854 refcount_set(&sig->sigcnt, 1); 1855 1856 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1857 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1858 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1859 1860 init_waitqueue_head(&sig->wait_chldexit); 1861 sig->curr_target = tsk; 1862 init_sigpending(&sig->shared_pending); 1863 INIT_HLIST_HEAD(&sig->multiprocess); 1864 seqlock_init(&sig->stats_lock); 1865 prev_cputime_init(&sig->prev_cputime); 1866 1867 #ifdef CONFIG_POSIX_TIMERS 1868 INIT_LIST_HEAD(&sig->posix_timers); 1869 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1870 sig->real_timer.function = it_real_fn; 1871 #endif 1872 1873 task_lock(current->group_leader); 1874 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1875 task_unlock(current->group_leader); 1876 1877 posix_cpu_timers_init_group(sig); 1878 1879 tty_audit_fork(sig); 1880 sched_autogroup_fork(sig); 1881 1882 sig->oom_score_adj = current->signal->oom_score_adj; 1883 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1884 1885 mutex_init(&sig->cred_guard_mutex); 1886 init_rwsem(&sig->exec_update_lock); 1887 1888 return 0; 1889 } 1890 1891 static void copy_seccomp(struct task_struct *p) 1892 { 1893 #ifdef CONFIG_SECCOMP 1894 /* 1895 * Must be called with sighand->lock held, which is common to 1896 * all threads in the group. Holding cred_guard_mutex is not 1897 * needed because this new task is not yet running and cannot 1898 * be racing exec. 1899 */ 1900 assert_spin_locked(¤t->sighand->siglock); 1901 1902 /* Ref-count the new filter user, and assign it. */ 1903 get_seccomp_filter(current); 1904 p->seccomp = current->seccomp; 1905 1906 /* 1907 * Explicitly enable no_new_privs here in case it got set 1908 * between the task_struct being duplicated and holding the 1909 * sighand lock. The seccomp state and nnp must be in sync. 1910 */ 1911 if (task_no_new_privs(current)) 1912 task_set_no_new_privs(p); 1913 1914 /* 1915 * If the parent gained a seccomp mode after copying thread 1916 * flags and between before we held the sighand lock, we have 1917 * to manually enable the seccomp thread flag here. 1918 */ 1919 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1920 set_task_syscall_work(p, SECCOMP); 1921 #endif 1922 } 1923 1924 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1925 { 1926 current->clear_child_tid = tidptr; 1927 1928 return task_pid_vnr(current); 1929 } 1930 1931 static void rt_mutex_init_task(struct task_struct *p) 1932 { 1933 raw_spin_lock_init(&p->pi_lock); 1934 #ifdef CONFIG_RT_MUTEXES 1935 p->pi_waiters = RB_ROOT_CACHED; 1936 p->pi_top_task = NULL; 1937 p->pi_blocked_on = NULL; 1938 #endif 1939 } 1940 1941 static inline void init_task_pid_links(struct task_struct *task) 1942 { 1943 enum pid_type type; 1944 1945 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1946 INIT_HLIST_NODE(&task->pid_links[type]); 1947 } 1948 1949 static inline void 1950 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1951 { 1952 if (type == PIDTYPE_PID) 1953 task->thread_pid = pid; 1954 else 1955 task->signal->pids[type] = pid; 1956 } 1957 1958 static inline void rcu_copy_process(struct task_struct *p) 1959 { 1960 #ifdef CONFIG_PREEMPT_RCU 1961 p->rcu_read_lock_nesting = 0; 1962 p->rcu_read_unlock_special.s = 0; 1963 p->rcu_blocked_node = NULL; 1964 INIT_LIST_HEAD(&p->rcu_node_entry); 1965 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1966 #ifdef CONFIG_TASKS_RCU 1967 p->rcu_tasks_holdout = false; 1968 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1969 p->rcu_tasks_idle_cpu = -1; 1970 #endif /* #ifdef CONFIG_TASKS_RCU */ 1971 #ifdef CONFIG_TASKS_TRACE_RCU 1972 p->trc_reader_nesting = 0; 1973 p->trc_reader_special.s = 0; 1974 INIT_LIST_HEAD(&p->trc_holdout_list); 1975 INIT_LIST_HEAD(&p->trc_blkd_node); 1976 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1977 } 1978 1979 struct pid *pidfd_pid(const struct file *file) 1980 { 1981 if (file->f_op == &pidfd_fops) 1982 return file->private_data; 1983 1984 return ERR_PTR(-EBADF); 1985 } 1986 1987 static int pidfd_release(struct inode *inode, struct file *file) 1988 { 1989 struct pid *pid = file->private_data; 1990 1991 file->private_data = NULL; 1992 put_pid(pid); 1993 return 0; 1994 } 1995 1996 #ifdef CONFIG_PROC_FS 1997 /** 1998 * pidfd_show_fdinfo - print information about a pidfd 1999 * @m: proc fdinfo file 2000 * @f: file referencing a pidfd 2001 * 2002 * Pid: 2003 * This function will print the pid that a given pidfd refers to in the 2004 * pid namespace of the procfs instance. 2005 * If the pid namespace of the process is not a descendant of the pid 2006 * namespace of the procfs instance 0 will be shown as its pid. This is 2007 * similar to calling getppid() on a process whose parent is outside of 2008 * its pid namespace. 2009 * 2010 * NSpid: 2011 * If pid namespaces are supported then this function will also print 2012 * the pid of a given pidfd refers to for all descendant pid namespaces 2013 * starting from the current pid namespace of the instance, i.e. the 2014 * Pid field and the first entry in the NSpid field will be identical. 2015 * If the pid namespace of the process is not a descendant of the pid 2016 * namespace of the procfs instance 0 will be shown as its first NSpid 2017 * entry and no others will be shown. 2018 * Note that this differs from the Pid and NSpid fields in 2019 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2020 * the pid namespace of the procfs instance. The difference becomes 2021 * obvious when sending around a pidfd between pid namespaces from a 2022 * different branch of the tree, i.e. where no ancestral relation is 2023 * present between the pid namespaces: 2024 * - create two new pid namespaces ns1 and ns2 in the initial pid 2025 * namespace (also take care to create new mount namespaces in the 2026 * new pid namespace and mount procfs) 2027 * - create a process with a pidfd in ns1 2028 * - send pidfd from ns1 to ns2 2029 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2030 * have exactly one entry, which is 0 2031 */ 2032 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2033 { 2034 struct pid *pid = f->private_data; 2035 struct pid_namespace *ns; 2036 pid_t nr = -1; 2037 2038 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2039 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2040 nr = pid_nr_ns(pid, ns); 2041 } 2042 2043 seq_put_decimal_ll(m, "Pid:\t", nr); 2044 2045 #ifdef CONFIG_PID_NS 2046 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2047 if (nr > 0) { 2048 int i; 2049 2050 /* If nr is non-zero it means that 'pid' is valid and that 2051 * ns, i.e. the pid namespace associated with the procfs 2052 * instance, is in the pid namespace hierarchy of pid. 2053 * Start at one below the already printed level. 2054 */ 2055 for (i = ns->level + 1; i <= pid->level; i++) 2056 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2057 } 2058 #endif 2059 seq_putc(m, '\n'); 2060 } 2061 #endif 2062 2063 /* 2064 * Poll support for process exit notification. 2065 */ 2066 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2067 { 2068 struct pid *pid = file->private_data; 2069 __poll_t poll_flags = 0; 2070 2071 poll_wait(file, &pid->wait_pidfd, pts); 2072 2073 /* 2074 * Inform pollers only when the whole thread group exits. 2075 * If the thread group leader exits before all other threads in the 2076 * group, then poll(2) should block, similar to the wait(2) family. 2077 */ 2078 if (thread_group_exited(pid)) 2079 poll_flags = EPOLLIN | EPOLLRDNORM; 2080 2081 return poll_flags; 2082 } 2083 2084 const struct file_operations pidfd_fops = { 2085 .release = pidfd_release, 2086 .poll = pidfd_poll, 2087 #ifdef CONFIG_PROC_FS 2088 .show_fdinfo = pidfd_show_fdinfo, 2089 #endif 2090 }; 2091 2092 static void __delayed_free_task(struct rcu_head *rhp) 2093 { 2094 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2095 2096 free_task(tsk); 2097 } 2098 2099 static __always_inline void delayed_free_task(struct task_struct *tsk) 2100 { 2101 if (IS_ENABLED(CONFIG_MEMCG)) 2102 call_rcu(&tsk->rcu, __delayed_free_task); 2103 else 2104 free_task(tsk); 2105 } 2106 2107 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2108 { 2109 /* Skip if kernel thread */ 2110 if (!tsk->mm) 2111 return; 2112 2113 /* Skip if spawning a thread or using vfork */ 2114 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2115 return; 2116 2117 /* We need to synchronize with __set_oom_adj */ 2118 mutex_lock(&oom_adj_mutex); 2119 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2120 /* Update the values in case they were changed after copy_signal */ 2121 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2122 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2123 mutex_unlock(&oom_adj_mutex); 2124 } 2125 2126 #ifdef CONFIG_RV 2127 static void rv_task_fork(struct task_struct *p) 2128 { 2129 int i; 2130 2131 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2132 p->rv[i].da_mon.monitoring = false; 2133 } 2134 #else 2135 #define rv_task_fork(p) do {} while (0) 2136 #endif 2137 2138 /* 2139 * This creates a new process as a copy of the old one, 2140 * but does not actually start it yet. 2141 * 2142 * It copies the registers, and all the appropriate 2143 * parts of the process environment (as per the clone 2144 * flags). The actual kick-off is left to the caller. 2145 */ 2146 static __latent_entropy struct task_struct *copy_process( 2147 struct pid *pid, 2148 int trace, 2149 int node, 2150 struct kernel_clone_args *args) 2151 { 2152 int pidfd = -1, retval; 2153 struct task_struct *p; 2154 struct multiprocess_signals delayed; 2155 struct file *pidfile = NULL; 2156 const u64 clone_flags = args->flags; 2157 struct nsproxy *nsp = current->nsproxy; 2158 2159 /* 2160 * Don't allow sharing the root directory with processes in a different 2161 * namespace 2162 */ 2163 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2164 return ERR_PTR(-EINVAL); 2165 2166 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2167 return ERR_PTR(-EINVAL); 2168 2169 /* 2170 * Thread groups must share signals as well, and detached threads 2171 * can only be started up within the thread group. 2172 */ 2173 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2174 return ERR_PTR(-EINVAL); 2175 2176 /* 2177 * Shared signal handlers imply shared VM. By way of the above, 2178 * thread groups also imply shared VM. Blocking this case allows 2179 * for various simplifications in other code. 2180 */ 2181 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2182 return ERR_PTR(-EINVAL); 2183 2184 /* 2185 * Siblings of global init remain as zombies on exit since they are 2186 * not reaped by their parent (swapper). To solve this and to avoid 2187 * multi-rooted process trees, prevent global and container-inits 2188 * from creating siblings. 2189 */ 2190 if ((clone_flags & CLONE_PARENT) && 2191 current->signal->flags & SIGNAL_UNKILLABLE) 2192 return ERR_PTR(-EINVAL); 2193 2194 /* 2195 * If the new process will be in a different pid or user namespace 2196 * do not allow it to share a thread group with the forking task. 2197 */ 2198 if (clone_flags & CLONE_THREAD) { 2199 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2200 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2201 return ERR_PTR(-EINVAL); 2202 } 2203 2204 if (clone_flags & CLONE_PIDFD) { 2205 /* 2206 * - CLONE_DETACHED is blocked so that we can potentially 2207 * reuse it later for CLONE_PIDFD. 2208 * - CLONE_THREAD is blocked until someone really needs it. 2209 */ 2210 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2211 return ERR_PTR(-EINVAL); 2212 } 2213 2214 /* 2215 * Force any signals received before this point to be delivered 2216 * before the fork happens. Collect up signals sent to multiple 2217 * processes that happen during the fork and delay them so that 2218 * they appear to happen after the fork. 2219 */ 2220 sigemptyset(&delayed.signal); 2221 INIT_HLIST_NODE(&delayed.node); 2222 2223 spin_lock_irq(¤t->sighand->siglock); 2224 if (!(clone_flags & CLONE_THREAD)) 2225 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2226 recalc_sigpending(); 2227 spin_unlock_irq(¤t->sighand->siglock); 2228 retval = -ERESTARTNOINTR; 2229 if (task_sigpending(current)) 2230 goto fork_out; 2231 2232 retval = -ENOMEM; 2233 p = dup_task_struct(current, node); 2234 if (!p) 2235 goto fork_out; 2236 p->flags &= ~PF_KTHREAD; 2237 if (args->kthread) 2238 p->flags |= PF_KTHREAD; 2239 if (args->io_thread) { 2240 /* 2241 * Mark us an IO worker, and block any signal that isn't 2242 * fatal or STOP 2243 */ 2244 p->flags |= PF_IO_WORKER; 2245 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2246 } 2247 2248 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2249 /* 2250 * Clear TID on mm_release()? 2251 */ 2252 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2253 2254 ftrace_graph_init_task(p); 2255 2256 rt_mutex_init_task(p); 2257 2258 lockdep_assert_irqs_enabled(); 2259 #ifdef CONFIG_PROVE_LOCKING 2260 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2261 #endif 2262 retval = copy_creds(p, clone_flags); 2263 if (retval < 0) 2264 goto bad_fork_free; 2265 2266 retval = -EAGAIN; 2267 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2268 if (p->real_cred->user != INIT_USER && 2269 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2270 goto bad_fork_cleanup_count; 2271 } 2272 current->flags &= ~PF_NPROC_EXCEEDED; 2273 2274 /* 2275 * If multiple threads are within copy_process(), then this check 2276 * triggers too late. This doesn't hurt, the check is only there 2277 * to stop root fork bombs. 2278 */ 2279 retval = -EAGAIN; 2280 if (data_race(nr_threads >= max_threads)) 2281 goto bad_fork_cleanup_count; 2282 2283 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2284 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2285 p->flags |= PF_FORKNOEXEC; 2286 INIT_LIST_HEAD(&p->children); 2287 INIT_LIST_HEAD(&p->sibling); 2288 rcu_copy_process(p); 2289 p->vfork_done = NULL; 2290 spin_lock_init(&p->alloc_lock); 2291 2292 init_sigpending(&p->pending); 2293 2294 p->utime = p->stime = p->gtime = 0; 2295 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2296 p->utimescaled = p->stimescaled = 0; 2297 #endif 2298 prev_cputime_init(&p->prev_cputime); 2299 2300 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2301 seqcount_init(&p->vtime.seqcount); 2302 p->vtime.starttime = 0; 2303 p->vtime.state = VTIME_INACTIVE; 2304 #endif 2305 2306 #ifdef CONFIG_IO_URING 2307 p->io_uring = NULL; 2308 #endif 2309 2310 #if defined(SPLIT_RSS_COUNTING) 2311 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2312 #endif 2313 2314 p->default_timer_slack_ns = current->timer_slack_ns; 2315 2316 #ifdef CONFIG_PSI 2317 p->psi_flags = 0; 2318 #endif 2319 2320 task_io_accounting_init(&p->ioac); 2321 acct_clear_integrals(p); 2322 2323 posix_cputimers_init(&p->posix_cputimers); 2324 2325 p->io_context = NULL; 2326 audit_set_context(p, NULL); 2327 cgroup_fork(p); 2328 if (args->kthread) { 2329 if (!set_kthread_struct(p)) 2330 goto bad_fork_cleanup_delayacct; 2331 } 2332 #ifdef CONFIG_NUMA 2333 p->mempolicy = mpol_dup(p->mempolicy); 2334 if (IS_ERR(p->mempolicy)) { 2335 retval = PTR_ERR(p->mempolicy); 2336 p->mempolicy = NULL; 2337 goto bad_fork_cleanup_delayacct; 2338 } 2339 #endif 2340 #ifdef CONFIG_CPUSETS 2341 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2342 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2343 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2344 #endif 2345 #ifdef CONFIG_TRACE_IRQFLAGS 2346 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2347 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2348 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2349 p->softirqs_enabled = 1; 2350 p->softirq_context = 0; 2351 #endif 2352 2353 p->pagefault_disabled = 0; 2354 2355 #ifdef CONFIG_LOCKDEP 2356 lockdep_init_task(p); 2357 #endif 2358 2359 #ifdef CONFIG_DEBUG_MUTEXES 2360 p->blocked_on = NULL; /* not blocked yet */ 2361 #endif 2362 #ifdef CONFIG_BCACHE 2363 p->sequential_io = 0; 2364 p->sequential_io_avg = 0; 2365 #endif 2366 #ifdef CONFIG_BPF_SYSCALL 2367 RCU_INIT_POINTER(p->bpf_storage, NULL); 2368 p->bpf_ctx = NULL; 2369 #endif 2370 2371 /* Perform scheduler related setup. Assign this task to a CPU. */ 2372 retval = sched_fork(clone_flags, p); 2373 if (retval) 2374 goto bad_fork_cleanup_policy; 2375 2376 retval = perf_event_init_task(p, clone_flags); 2377 if (retval) 2378 goto bad_fork_cleanup_policy; 2379 retval = audit_alloc(p); 2380 if (retval) 2381 goto bad_fork_cleanup_perf; 2382 /* copy all the process information */ 2383 shm_init_task(p); 2384 retval = security_task_alloc(p, clone_flags); 2385 if (retval) 2386 goto bad_fork_cleanup_audit; 2387 retval = copy_semundo(clone_flags, p); 2388 if (retval) 2389 goto bad_fork_cleanup_security; 2390 retval = copy_files(clone_flags, p); 2391 if (retval) 2392 goto bad_fork_cleanup_semundo; 2393 retval = copy_fs(clone_flags, p); 2394 if (retval) 2395 goto bad_fork_cleanup_files; 2396 retval = copy_sighand(clone_flags, p); 2397 if (retval) 2398 goto bad_fork_cleanup_fs; 2399 retval = copy_signal(clone_flags, p); 2400 if (retval) 2401 goto bad_fork_cleanup_sighand; 2402 retval = copy_mm(clone_flags, p); 2403 if (retval) 2404 goto bad_fork_cleanup_signal; 2405 retval = copy_namespaces(clone_flags, p); 2406 if (retval) 2407 goto bad_fork_cleanup_mm; 2408 retval = copy_io(clone_flags, p); 2409 if (retval) 2410 goto bad_fork_cleanup_namespaces; 2411 retval = copy_thread(p, args); 2412 if (retval) 2413 goto bad_fork_cleanup_io; 2414 2415 stackleak_task_init(p); 2416 2417 if (pid != &init_struct_pid) { 2418 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2419 args->set_tid_size); 2420 if (IS_ERR(pid)) { 2421 retval = PTR_ERR(pid); 2422 goto bad_fork_cleanup_thread; 2423 } 2424 } 2425 2426 /* 2427 * This has to happen after we've potentially unshared the file 2428 * descriptor table (so that the pidfd doesn't leak into the child 2429 * if the fd table isn't shared). 2430 */ 2431 if (clone_flags & CLONE_PIDFD) { 2432 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2433 if (retval < 0) 2434 goto bad_fork_free_pid; 2435 2436 pidfd = retval; 2437 2438 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2439 O_RDWR | O_CLOEXEC); 2440 if (IS_ERR(pidfile)) { 2441 put_unused_fd(pidfd); 2442 retval = PTR_ERR(pidfile); 2443 goto bad_fork_free_pid; 2444 } 2445 get_pid(pid); /* held by pidfile now */ 2446 2447 retval = put_user(pidfd, args->pidfd); 2448 if (retval) 2449 goto bad_fork_put_pidfd; 2450 } 2451 2452 #ifdef CONFIG_BLOCK 2453 p->plug = NULL; 2454 #endif 2455 futex_init_task(p); 2456 2457 /* 2458 * sigaltstack should be cleared when sharing the same VM 2459 */ 2460 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2461 sas_ss_reset(p); 2462 2463 /* 2464 * Syscall tracing and stepping should be turned off in the 2465 * child regardless of CLONE_PTRACE. 2466 */ 2467 user_disable_single_step(p); 2468 clear_task_syscall_work(p, SYSCALL_TRACE); 2469 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2470 clear_task_syscall_work(p, SYSCALL_EMU); 2471 #endif 2472 clear_tsk_latency_tracing(p); 2473 2474 /* ok, now we should be set up.. */ 2475 p->pid = pid_nr(pid); 2476 if (clone_flags & CLONE_THREAD) { 2477 p->group_leader = current->group_leader; 2478 p->tgid = current->tgid; 2479 } else { 2480 p->group_leader = p; 2481 p->tgid = p->pid; 2482 } 2483 2484 p->nr_dirtied = 0; 2485 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2486 p->dirty_paused_when = 0; 2487 2488 p->pdeath_signal = 0; 2489 INIT_LIST_HEAD(&p->thread_group); 2490 p->task_works = NULL; 2491 clear_posix_cputimers_work(p); 2492 2493 #ifdef CONFIG_KRETPROBES 2494 p->kretprobe_instances.first = NULL; 2495 #endif 2496 #ifdef CONFIG_RETHOOK 2497 p->rethooks.first = NULL; 2498 #endif 2499 2500 /* 2501 * Ensure that the cgroup subsystem policies allow the new process to be 2502 * forked. It should be noted that the new process's css_set can be changed 2503 * between here and cgroup_post_fork() if an organisation operation is in 2504 * progress. 2505 */ 2506 retval = cgroup_can_fork(p, args); 2507 if (retval) 2508 goto bad_fork_put_pidfd; 2509 2510 /* 2511 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2512 * the new task on the correct runqueue. All this *before* the task 2513 * becomes visible. 2514 * 2515 * This isn't part of ->can_fork() because while the re-cloning is 2516 * cgroup specific, it unconditionally needs to place the task on a 2517 * runqueue. 2518 */ 2519 sched_cgroup_fork(p, args); 2520 2521 /* 2522 * From this point on we must avoid any synchronous user-space 2523 * communication until we take the tasklist-lock. In particular, we do 2524 * not want user-space to be able to predict the process start-time by 2525 * stalling fork(2) after we recorded the start_time but before it is 2526 * visible to the system. 2527 */ 2528 2529 p->start_time = ktime_get_ns(); 2530 p->start_boottime = ktime_get_boottime_ns(); 2531 2532 /* 2533 * Make it visible to the rest of the system, but dont wake it up yet. 2534 * Need tasklist lock for parent etc handling! 2535 */ 2536 write_lock_irq(&tasklist_lock); 2537 2538 /* CLONE_PARENT re-uses the old parent */ 2539 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2540 p->real_parent = current->real_parent; 2541 p->parent_exec_id = current->parent_exec_id; 2542 if (clone_flags & CLONE_THREAD) 2543 p->exit_signal = -1; 2544 else 2545 p->exit_signal = current->group_leader->exit_signal; 2546 } else { 2547 p->real_parent = current; 2548 p->parent_exec_id = current->self_exec_id; 2549 p->exit_signal = args->exit_signal; 2550 } 2551 2552 klp_copy_process(p); 2553 2554 sched_core_fork(p); 2555 2556 spin_lock(¤t->sighand->siglock); 2557 2558 rv_task_fork(p); 2559 2560 rseq_fork(p, clone_flags); 2561 2562 /* Don't start children in a dying pid namespace */ 2563 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2564 retval = -ENOMEM; 2565 goto bad_fork_cancel_cgroup; 2566 } 2567 2568 /* Let kill terminate clone/fork in the middle */ 2569 if (fatal_signal_pending(current)) { 2570 retval = -EINTR; 2571 goto bad_fork_cancel_cgroup; 2572 } 2573 2574 /* No more failure paths after this point. */ 2575 2576 /* 2577 * Copy seccomp details explicitly here, in case they were changed 2578 * before holding sighand lock. 2579 */ 2580 copy_seccomp(p); 2581 2582 init_task_pid_links(p); 2583 if (likely(p->pid)) { 2584 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2585 2586 init_task_pid(p, PIDTYPE_PID, pid); 2587 if (thread_group_leader(p)) { 2588 init_task_pid(p, PIDTYPE_TGID, pid); 2589 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2590 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2591 2592 if (is_child_reaper(pid)) { 2593 ns_of_pid(pid)->child_reaper = p; 2594 p->signal->flags |= SIGNAL_UNKILLABLE; 2595 } 2596 p->signal->shared_pending.signal = delayed.signal; 2597 p->signal->tty = tty_kref_get(current->signal->tty); 2598 /* 2599 * Inherit has_child_subreaper flag under the same 2600 * tasklist_lock with adding child to the process tree 2601 * for propagate_has_child_subreaper optimization. 2602 */ 2603 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2604 p->real_parent->signal->is_child_subreaper; 2605 list_add_tail(&p->sibling, &p->real_parent->children); 2606 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2607 attach_pid(p, PIDTYPE_TGID); 2608 attach_pid(p, PIDTYPE_PGID); 2609 attach_pid(p, PIDTYPE_SID); 2610 __this_cpu_inc(process_counts); 2611 } else { 2612 current->signal->nr_threads++; 2613 current->signal->quick_threads++; 2614 atomic_inc(¤t->signal->live); 2615 refcount_inc(¤t->signal->sigcnt); 2616 task_join_group_stop(p); 2617 list_add_tail_rcu(&p->thread_group, 2618 &p->group_leader->thread_group); 2619 list_add_tail_rcu(&p->thread_node, 2620 &p->signal->thread_head); 2621 } 2622 attach_pid(p, PIDTYPE_PID); 2623 nr_threads++; 2624 } 2625 total_forks++; 2626 hlist_del_init(&delayed.node); 2627 spin_unlock(¤t->sighand->siglock); 2628 syscall_tracepoint_update(p); 2629 write_unlock_irq(&tasklist_lock); 2630 2631 if (pidfile) 2632 fd_install(pidfd, pidfile); 2633 2634 proc_fork_connector(p); 2635 sched_post_fork(p); 2636 cgroup_post_fork(p, args); 2637 perf_event_fork(p); 2638 2639 trace_task_newtask(p, clone_flags); 2640 uprobe_copy_process(p, clone_flags); 2641 2642 copy_oom_score_adj(clone_flags, p); 2643 2644 return p; 2645 2646 bad_fork_cancel_cgroup: 2647 sched_core_free(p); 2648 spin_unlock(¤t->sighand->siglock); 2649 write_unlock_irq(&tasklist_lock); 2650 cgroup_cancel_fork(p, args); 2651 bad_fork_put_pidfd: 2652 if (clone_flags & CLONE_PIDFD) { 2653 fput(pidfile); 2654 put_unused_fd(pidfd); 2655 } 2656 bad_fork_free_pid: 2657 if (pid != &init_struct_pid) 2658 free_pid(pid); 2659 bad_fork_cleanup_thread: 2660 exit_thread(p); 2661 bad_fork_cleanup_io: 2662 if (p->io_context) 2663 exit_io_context(p); 2664 bad_fork_cleanup_namespaces: 2665 exit_task_namespaces(p); 2666 bad_fork_cleanup_mm: 2667 if (p->mm) { 2668 mm_clear_owner(p->mm, p); 2669 mmput(p->mm); 2670 } 2671 bad_fork_cleanup_signal: 2672 if (!(clone_flags & CLONE_THREAD)) 2673 free_signal_struct(p->signal); 2674 bad_fork_cleanup_sighand: 2675 __cleanup_sighand(p->sighand); 2676 bad_fork_cleanup_fs: 2677 exit_fs(p); /* blocking */ 2678 bad_fork_cleanup_files: 2679 exit_files(p); /* blocking */ 2680 bad_fork_cleanup_semundo: 2681 exit_sem(p); 2682 bad_fork_cleanup_security: 2683 security_task_free(p); 2684 bad_fork_cleanup_audit: 2685 audit_free(p); 2686 bad_fork_cleanup_perf: 2687 perf_event_free_task(p); 2688 bad_fork_cleanup_policy: 2689 lockdep_free_task(p); 2690 #ifdef CONFIG_NUMA 2691 mpol_put(p->mempolicy); 2692 #endif 2693 bad_fork_cleanup_delayacct: 2694 delayacct_tsk_free(p); 2695 bad_fork_cleanup_count: 2696 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2697 exit_creds(p); 2698 bad_fork_free: 2699 WRITE_ONCE(p->__state, TASK_DEAD); 2700 exit_task_stack_account(p); 2701 put_task_stack(p); 2702 delayed_free_task(p); 2703 fork_out: 2704 spin_lock_irq(¤t->sighand->siglock); 2705 hlist_del_init(&delayed.node); 2706 spin_unlock_irq(¤t->sighand->siglock); 2707 return ERR_PTR(retval); 2708 } 2709 2710 static inline void init_idle_pids(struct task_struct *idle) 2711 { 2712 enum pid_type type; 2713 2714 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2715 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2716 init_task_pid(idle, type, &init_struct_pid); 2717 } 2718 } 2719 2720 static int idle_dummy(void *dummy) 2721 { 2722 /* This function is never called */ 2723 return 0; 2724 } 2725 2726 struct task_struct * __init fork_idle(int cpu) 2727 { 2728 struct task_struct *task; 2729 struct kernel_clone_args args = { 2730 .flags = CLONE_VM, 2731 .fn = &idle_dummy, 2732 .fn_arg = NULL, 2733 .kthread = 1, 2734 .idle = 1, 2735 }; 2736 2737 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2738 if (!IS_ERR(task)) { 2739 init_idle_pids(task); 2740 init_idle(task, cpu); 2741 } 2742 2743 return task; 2744 } 2745 2746 /* 2747 * This is like kernel_clone(), but shaved down and tailored to just 2748 * creating io_uring workers. It returns a created task, or an error pointer. 2749 * The returned task is inactive, and the caller must fire it up through 2750 * wake_up_new_task(p). All signals are blocked in the created task. 2751 */ 2752 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2753 { 2754 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2755 CLONE_IO; 2756 struct kernel_clone_args args = { 2757 .flags = ((lower_32_bits(flags) | CLONE_VM | 2758 CLONE_UNTRACED) & ~CSIGNAL), 2759 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2760 .fn = fn, 2761 .fn_arg = arg, 2762 .io_thread = 1, 2763 }; 2764 2765 return copy_process(NULL, 0, node, &args); 2766 } 2767 2768 /* 2769 * Ok, this is the main fork-routine. 2770 * 2771 * It copies the process, and if successful kick-starts 2772 * it and waits for it to finish using the VM if required. 2773 * 2774 * args->exit_signal is expected to be checked for sanity by the caller. 2775 */ 2776 pid_t kernel_clone(struct kernel_clone_args *args) 2777 { 2778 u64 clone_flags = args->flags; 2779 struct completion vfork; 2780 struct pid *pid; 2781 struct task_struct *p; 2782 int trace = 0; 2783 pid_t nr; 2784 2785 /* 2786 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2787 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2788 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2789 * field in struct clone_args and it still doesn't make sense to have 2790 * them both point at the same memory location. Performing this check 2791 * here has the advantage that we don't need to have a separate helper 2792 * to check for legacy clone(). 2793 */ 2794 if ((args->flags & CLONE_PIDFD) && 2795 (args->flags & CLONE_PARENT_SETTID) && 2796 (args->pidfd == args->parent_tid)) 2797 return -EINVAL; 2798 2799 /* 2800 * Determine whether and which event to report to ptracer. When 2801 * called from kernel_thread or CLONE_UNTRACED is explicitly 2802 * requested, no event is reported; otherwise, report if the event 2803 * for the type of forking is enabled. 2804 */ 2805 if (!(clone_flags & CLONE_UNTRACED)) { 2806 if (clone_flags & CLONE_VFORK) 2807 trace = PTRACE_EVENT_VFORK; 2808 else if (args->exit_signal != SIGCHLD) 2809 trace = PTRACE_EVENT_CLONE; 2810 else 2811 trace = PTRACE_EVENT_FORK; 2812 2813 if (likely(!ptrace_event_enabled(current, trace))) 2814 trace = 0; 2815 } 2816 2817 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2818 add_latent_entropy(); 2819 2820 if (IS_ERR(p)) 2821 return PTR_ERR(p); 2822 2823 /* 2824 * Do this prior waking up the new thread - the thread pointer 2825 * might get invalid after that point, if the thread exits quickly. 2826 */ 2827 trace_sched_process_fork(current, p); 2828 2829 pid = get_task_pid(p, PIDTYPE_PID); 2830 nr = pid_vnr(pid); 2831 2832 if (clone_flags & CLONE_PARENT_SETTID) 2833 put_user(nr, args->parent_tid); 2834 2835 if (clone_flags & CLONE_VFORK) { 2836 p->vfork_done = &vfork; 2837 init_completion(&vfork); 2838 get_task_struct(p); 2839 } 2840 2841 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2842 /* lock the task to synchronize with memcg migration */ 2843 task_lock(p); 2844 lru_gen_add_mm(p->mm); 2845 task_unlock(p); 2846 } 2847 2848 wake_up_new_task(p); 2849 2850 /* forking complete and child started to run, tell ptracer */ 2851 if (unlikely(trace)) 2852 ptrace_event_pid(trace, pid); 2853 2854 if (clone_flags & CLONE_VFORK) { 2855 if (!wait_for_vfork_done(p, &vfork)) 2856 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2857 } 2858 2859 put_pid(pid); 2860 return nr; 2861 } 2862 2863 /* 2864 * Create a kernel thread. 2865 */ 2866 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2867 { 2868 struct kernel_clone_args args = { 2869 .flags = ((lower_32_bits(flags) | CLONE_VM | 2870 CLONE_UNTRACED) & ~CSIGNAL), 2871 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2872 .fn = fn, 2873 .fn_arg = arg, 2874 .kthread = 1, 2875 }; 2876 2877 return kernel_clone(&args); 2878 } 2879 2880 /* 2881 * Create a user mode thread. 2882 */ 2883 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2884 { 2885 struct kernel_clone_args args = { 2886 .flags = ((lower_32_bits(flags) | CLONE_VM | 2887 CLONE_UNTRACED) & ~CSIGNAL), 2888 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2889 .fn = fn, 2890 .fn_arg = arg, 2891 }; 2892 2893 return kernel_clone(&args); 2894 } 2895 2896 #ifdef __ARCH_WANT_SYS_FORK 2897 SYSCALL_DEFINE0(fork) 2898 { 2899 #ifdef CONFIG_MMU 2900 struct kernel_clone_args args = { 2901 .exit_signal = SIGCHLD, 2902 }; 2903 2904 return kernel_clone(&args); 2905 #else 2906 /* can not support in nommu mode */ 2907 return -EINVAL; 2908 #endif 2909 } 2910 #endif 2911 2912 #ifdef __ARCH_WANT_SYS_VFORK 2913 SYSCALL_DEFINE0(vfork) 2914 { 2915 struct kernel_clone_args args = { 2916 .flags = CLONE_VFORK | CLONE_VM, 2917 .exit_signal = SIGCHLD, 2918 }; 2919 2920 return kernel_clone(&args); 2921 } 2922 #endif 2923 2924 #ifdef __ARCH_WANT_SYS_CLONE 2925 #ifdef CONFIG_CLONE_BACKWARDS 2926 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2927 int __user *, parent_tidptr, 2928 unsigned long, tls, 2929 int __user *, child_tidptr) 2930 #elif defined(CONFIG_CLONE_BACKWARDS2) 2931 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2932 int __user *, parent_tidptr, 2933 int __user *, child_tidptr, 2934 unsigned long, tls) 2935 #elif defined(CONFIG_CLONE_BACKWARDS3) 2936 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2937 int, stack_size, 2938 int __user *, parent_tidptr, 2939 int __user *, child_tidptr, 2940 unsigned long, tls) 2941 #else 2942 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2943 int __user *, parent_tidptr, 2944 int __user *, child_tidptr, 2945 unsigned long, tls) 2946 #endif 2947 { 2948 struct kernel_clone_args args = { 2949 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2950 .pidfd = parent_tidptr, 2951 .child_tid = child_tidptr, 2952 .parent_tid = parent_tidptr, 2953 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2954 .stack = newsp, 2955 .tls = tls, 2956 }; 2957 2958 return kernel_clone(&args); 2959 } 2960 #endif 2961 2962 #ifdef __ARCH_WANT_SYS_CLONE3 2963 2964 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2965 struct clone_args __user *uargs, 2966 size_t usize) 2967 { 2968 int err; 2969 struct clone_args args; 2970 pid_t *kset_tid = kargs->set_tid; 2971 2972 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2973 CLONE_ARGS_SIZE_VER0); 2974 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2975 CLONE_ARGS_SIZE_VER1); 2976 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2977 CLONE_ARGS_SIZE_VER2); 2978 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2979 2980 if (unlikely(usize > PAGE_SIZE)) 2981 return -E2BIG; 2982 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2983 return -EINVAL; 2984 2985 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2986 if (err) 2987 return err; 2988 2989 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2990 return -EINVAL; 2991 2992 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2993 return -EINVAL; 2994 2995 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2996 return -EINVAL; 2997 2998 /* 2999 * Verify that higher 32bits of exit_signal are unset and that 3000 * it is a valid signal 3001 */ 3002 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3003 !valid_signal(args.exit_signal))) 3004 return -EINVAL; 3005 3006 if ((args.flags & CLONE_INTO_CGROUP) && 3007 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3008 return -EINVAL; 3009 3010 *kargs = (struct kernel_clone_args){ 3011 .flags = args.flags, 3012 .pidfd = u64_to_user_ptr(args.pidfd), 3013 .child_tid = u64_to_user_ptr(args.child_tid), 3014 .parent_tid = u64_to_user_ptr(args.parent_tid), 3015 .exit_signal = args.exit_signal, 3016 .stack = args.stack, 3017 .stack_size = args.stack_size, 3018 .tls = args.tls, 3019 .set_tid_size = args.set_tid_size, 3020 .cgroup = args.cgroup, 3021 }; 3022 3023 if (args.set_tid && 3024 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3025 (kargs->set_tid_size * sizeof(pid_t)))) 3026 return -EFAULT; 3027 3028 kargs->set_tid = kset_tid; 3029 3030 return 0; 3031 } 3032 3033 /** 3034 * clone3_stack_valid - check and prepare stack 3035 * @kargs: kernel clone args 3036 * 3037 * Verify that the stack arguments userspace gave us are sane. 3038 * In addition, set the stack direction for userspace since it's easy for us to 3039 * determine. 3040 */ 3041 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3042 { 3043 if (kargs->stack == 0) { 3044 if (kargs->stack_size > 0) 3045 return false; 3046 } else { 3047 if (kargs->stack_size == 0) 3048 return false; 3049 3050 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3051 return false; 3052 3053 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 3054 kargs->stack += kargs->stack_size; 3055 #endif 3056 } 3057 3058 return true; 3059 } 3060 3061 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3062 { 3063 /* Verify that no unknown flags are passed along. */ 3064 if (kargs->flags & 3065 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3066 return false; 3067 3068 /* 3069 * - make the CLONE_DETACHED bit reusable for clone3 3070 * - make the CSIGNAL bits reusable for clone3 3071 */ 3072 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3073 return false; 3074 3075 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3076 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3077 return false; 3078 3079 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3080 kargs->exit_signal) 3081 return false; 3082 3083 if (!clone3_stack_valid(kargs)) 3084 return false; 3085 3086 return true; 3087 } 3088 3089 /** 3090 * clone3 - create a new process with specific properties 3091 * @uargs: argument structure 3092 * @size: size of @uargs 3093 * 3094 * clone3() is the extensible successor to clone()/clone2(). 3095 * It takes a struct as argument that is versioned by its size. 3096 * 3097 * Return: On success, a positive PID for the child process. 3098 * On error, a negative errno number. 3099 */ 3100 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3101 { 3102 int err; 3103 3104 struct kernel_clone_args kargs; 3105 pid_t set_tid[MAX_PID_NS_LEVEL]; 3106 3107 kargs.set_tid = set_tid; 3108 3109 err = copy_clone_args_from_user(&kargs, uargs, size); 3110 if (err) 3111 return err; 3112 3113 if (!clone3_args_valid(&kargs)) 3114 return -EINVAL; 3115 3116 return kernel_clone(&kargs); 3117 } 3118 #endif 3119 3120 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3121 { 3122 struct task_struct *leader, *parent, *child; 3123 int res; 3124 3125 read_lock(&tasklist_lock); 3126 leader = top = top->group_leader; 3127 down: 3128 for_each_thread(leader, parent) { 3129 list_for_each_entry(child, &parent->children, sibling) { 3130 res = visitor(child, data); 3131 if (res) { 3132 if (res < 0) 3133 goto out; 3134 leader = child; 3135 goto down; 3136 } 3137 up: 3138 ; 3139 } 3140 } 3141 3142 if (leader != top) { 3143 child = leader; 3144 parent = child->real_parent; 3145 leader = parent->group_leader; 3146 goto up; 3147 } 3148 out: 3149 read_unlock(&tasklist_lock); 3150 } 3151 3152 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3153 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3154 #endif 3155 3156 static void sighand_ctor(void *data) 3157 { 3158 struct sighand_struct *sighand = data; 3159 3160 spin_lock_init(&sighand->siglock); 3161 init_waitqueue_head(&sighand->signalfd_wqh); 3162 } 3163 3164 void __init mm_cache_init(void) 3165 { 3166 unsigned int mm_size; 3167 3168 /* 3169 * The mm_cpumask is located at the end of mm_struct, and is 3170 * dynamically sized based on the maximum CPU number this system 3171 * can have, taking hotplug into account (nr_cpu_ids). 3172 */ 3173 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3174 3175 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3176 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3177 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3178 offsetof(struct mm_struct, saved_auxv), 3179 sizeof_field(struct mm_struct, saved_auxv), 3180 NULL); 3181 } 3182 3183 void __init proc_caches_init(void) 3184 { 3185 sighand_cachep = kmem_cache_create("sighand_cache", 3186 sizeof(struct sighand_struct), 0, 3187 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3188 SLAB_ACCOUNT, sighand_ctor); 3189 signal_cachep = kmem_cache_create("signal_cache", 3190 sizeof(struct signal_struct), 0, 3191 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3192 NULL); 3193 files_cachep = kmem_cache_create("files_cache", 3194 sizeof(struct files_struct), 0, 3195 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3196 NULL); 3197 fs_cachep = kmem_cache_create("fs_cache", 3198 sizeof(struct fs_struct), 0, 3199 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3200 NULL); 3201 3202 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3203 #ifdef CONFIG_PER_VMA_LOCK 3204 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3205 #endif 3206 mmap_init(); 3207 nsproxy_cache_init(); 3208 } 3209 3210 /* 3211 * Check constraints on flags passed to the unshare system call. 3212 */ 3213 static int check_unshare_flags(unsigned long unshare_flags) 3214 { 3215 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3216 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3217 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3218 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3219 CLONE_NEWTIME)) 3220 return -EINVAL; 3221 /* 3222 * Not implemented, but pretend it works if there is nothing 3223 * to unshare. Note that unsharing the address space or the 3224 * signal handlers also need to unshare the signal queues (aka 3225 * CLONE_THREAD). 3226 */ 3227 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3228 if (!thread_group_empty(current)) 3229 return -EINVAL; 3230 } 3231 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3232 if (refcount_read(¤t->sighand->count) > 1) 3233 return -EINVAL; 3234 } 3235 if (unshare_flags & CLONE_VM) { 3236 if (!current_is_single_threaded()) 3237 return -EINVAL; 3238 } 3239 3240 return 0; 3241 } 3242 3243 /* 3244 * Unshare the filesystem structure if it is being shared 3245 */ 3246 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3247 { 3248 struct fs_struct *fs = current->fs; 3249 3250 if (!(unshare_flags & CLONE_FS) || !fs) 3251 return 0; 3252 3253 /* don't need lock here; in the worst case we'll do useless copy */ 3254 if (fs->users == 1) 3255 return 0; 3256 3257 *new_fsp = copy_fs_struct(fs); 3258 if (!*new_fsp) 3259 return -ENOMEM; 3260 3261 return 0; 3262 } 3263 3264 /* 3265 * Unshare file descriptor table if it is being shared 3266 */ 3267 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3268 struct files_struct **new_fdp) 3269 { 3270 struct files_struct *fd = current->files; 3271 int error = 0; 3272 3273 if ((unshare_flags & CLONE_FILES) && 3274 (fd && atomic_read(&fd->count) > 1)) { 3275 *new_fdp = dup_fd(fd, max_fds, &error); 3276 if (!*new_fdp) 3277 return error; 3278 } 3279 3280 return 0; 3281 } 3282 3283 /* 3284 * unshare allows a process to 'unshare' part of the process 3285 * context which was originally shared using clone. copy_* 3286 * functions used by kernel_clone() cannot be used here directly 3287 * because they modify an inactive task_struct that is being 3288 * constructed. Here we are modifying the current, active, 3289 * task_struct. 3290 */ 3291 int ksys_unshare(unsigned long unshare_flags) 3292 { 3293 struct fs_struct *fs, *new_fs = NULL; 3294 struct files_struct *new_fd = NULL; 3295 struct cred *new_cred = NULL; 3296 struct nsproxy *new_nsproxy = NULL; 3297 int do_sysvsem = 0; 3298 int err; 3299 3300 /* 3301 * If unsharing a user namespace must also unshare the thread group 3302 * and unshare the filesystem root and working directories. 3303 */ 3304 if (unshare_flags & CLONE_NEWUSER) 3305 unshare_flags |= CLONE_THREAD | CLONE_FS; 3306 /* 3307 * If unsharing vm, must also unshare signal handlers. 3308 */ 3309 if (unshare_flags & CLONE_VM) 3310 unshare_flags |= CLONE_SIGHAND; 3311 /* 3312 * If unsharing a signal handlers, must also unshare the signal queues. 3313 */ 3314 if (unshare_flags & CLONE_SIGHAND) 3315 unshare_flags |= CLONE_THREAD; 3316 /* 3317 * If unsharing namespace, must also unshare filesystem information. 3318 */ 3319 if (unshare_flags & CLONE_NEWNS) 3320 unshare_flags |= CLONE_FS; 3321 3322 err = check_unshare_flags(unshare_flags); 3323 if (err) 3324 goto bad_unshare_out; 3325 /* 3326 * CLONE_NEWIPC must also detach from the undolist: after switching 3327 * to a new ipc namespace, the semaphore arrays from the old 3328 * namespace are unreachable. 3329 */ 3330 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3331 do_sysvsem = 1; 3332 err = unshare_fs(unshare_flags, &new_fs); 3333 if (err) 3334 goto bad_unshare_out; 3335 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3336 if (err) 3337 goto bad_unshare_cleanup_fs; 3338 err = unshare_userns(unshare_flags, &new_cred); 3339 if (err) 3340 goto bad_unshare_cleanup_fd; 3341 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3342 new_cred, new_fs); 3343 if (err) 3344 goto bad_unshare_cleanup_cred; 3345 3346 if (new_cred) { 3347 err = set_cred_ucounts(new_cred); 3348 if (err) 3349 goto bad_unshare_cleanup_cred; 3350 } 3351 3352 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3353 if (do_sysvsem) { 3354 /* 3355 * CLONE_SYSVSEM is equivalent to sys_exit(). 3356 */ 3357 exit_sem(current); 3358 } 3359 if (unshare_flags & CLONE_NEWIPC) { 3360 /* Orphan segments in old ns (see sem above). */ 3361 exit_shm(current); 3362 shm_init_task(current); 3363 } 3364 3365 if (new_nsproxy) 3366 switch_task_namespaces(current, new_nsproxy); 3367 3368 task_lock(current); 3369 3370 if (new_fs) { 3371 fs = current->fs; 3372 spin_lock(&fs->lock); 3373 current->fs = new_fs; 3374 if (--fs->users) 3375 new_fs = NULL; 3376 else 3377 new_fs = fs; 3378 spin_unlock(&fs->lock); 3379 } 3380 3381 if (new_fd) 3382 swap(current->files, new_fd); 3383 3384 task_unlock(current); 3385 3386 if (new_cred) { 3387 /* Install the new user namespace */ 3388 commit_creds(new_cred); 3389 new_cred = NULL; 3390 } 3391 } 3392 3393 perf_event_namespaces(current); 3394 3395 bad_unshare_cleanup_cred: 3396 if (new_cred) 3397 put_cred(new_cred); 3398 bad_unshare_cleanup_fd: 3399 if (new_fd) 3400 put_files_struct(new_fd); 3401 3402 bad_unshare_cleanup_fs: 3403 if (new_fs) 3404 free_fs_struct(new_fs); 3405 3406 bad_unshare_out: 3407 return err; 3408 } 3409 3410 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3411 { 3412 return ksys_unshare(unshare_flags); 3413 } 3414 3415 /* 3416 * Helper to unshare the files of the current task. 3417 * We don't want to expose copy_files internals to 3418 * the exec layer of the kernel. 3419 */ 3420 3421 int unshare_files(void) 3422 { 3423 struct task_struct *task = current; 3424 struct files_struct *old, *copy = NULL; 3425 int error; 3426 3427 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3428 if (error || !copy) 3429 return error; 3430 3431 old = task->files; 3432 task_lock(task); 3433 task->files = copy; 3434 task_unlock(task); 3435 put_files_struct(old); 3436 return 0; 3437 } 3438 3439 int sysctl_max_threads(struct ctl_table *table, int write, 3440 void *buffer, size_t *lenp, loff_t *ppos) 3441 { 3442 struct ctl_table t; 3443 int ret; 3444 int threads = max_threads; 3445 int min = 1; 3446 int max = MAX_THREADS; 3447 3448 t = *table; 3449 t.data = &threads; 3450 t.extra1 = &min; 3451 t.extra2 = &max; 3452 3453 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3454 if (ret || !write) 3455 return ret; 3456 3457 max_threads = threads; 3458 3459 return 0; 3460 } 3461