xref: /openbmc/linux/kernel/fork.c (revision d21077fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 struct vm_stack {
197 	struct rcu_head rcu;
198 	struct vm_struct *stack_vm_area;
199 };
200 
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < NR_CACHED_STACKS; i++) {
206 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 			continue;
208 		return true;
209 	}
210 	return false;
211 }
212 
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216 
217 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 		return;
219 
220 	vfree(vm_stack);
221 }
222 
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225 	struct vm_stack *vm_stack = tsk->stack;
226 
227 	vm_stack->stack_vm_area = tsk->stack_vm_area;
228 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230 
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 	int i;
235 
236 	for (i = 0; i < NR_CACHED_STACKS; i++) {
237 		struct vm_struct *vm_stack = cached_vm_stacks[i];
238 
239 		if (!vm_stack)
240 			continue;
241 
242 		vfree(vm_stack->addr);
243 		cached_vm_stacks[i] = NULL;
244 	}
245 
246 	return 0;
247 }
248 
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251 	int i;
252 	int ret;
253 
254 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256 
257 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 		if (ret)
260 			goto err;
261 	}
262 	return 0;
263 err:
264 	/*
265 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 	 * ignore this page.
268 	 */
269 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 		memcg_kmem_uncharge_page(vm->pages[i], 0);
271 	return ret;
272 }
273 
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276 	struct vm_struct *vm;
277 	void *stack;
278 	int i;
279 
280 	for (i = 0; i < NR_CACHED_STACKS; i++) {
281 		struct vm_struct *s;
282 
283 		s = this_cpu_xchg(cached_stacks[i], NULL);
284 
285 		if (!s)
286 			continue;
287 
288 		/* Reset stack metadata. */
289 		kasan_unpoison_range(s->addr, THREAD_SIZE);
290 
291 		stack = kasan_reset_tag(s->addr);
292 
293 		/* Clear stale pointers from reused stack. */
294 		memset(stack, 0, THREAD_SIZE);
295 
296 		if (memcg_charge_kernel_stack(s)) {
297 			vfree(s->addr);
298 			return -ENOMEM;
299 		}
300 
301 		tsk->stack_vm_area = s;
302 		tsk->stack = stack;
303 		return 0;
304 	}
305 
306 	/*
307 	 * Allocated stacks are cached and later reused by new threads,
308 	 * so memcg accounting is performed manually on assigning/releasing
309 	 * stacks to tasks. Drop __GFP_ACCOUNT.
310 	 */
311 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312 				     VMALLOC_START, VMALLOC_END,
313 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
314 				     PAGE_KERNEL,
315 				     0, node, __builtin_return_address(0));
316 	if (!stack)
317 		return -ENOMEM;
318 
319 	vm = find_vm_area(stack);
320 	if (memcg_charge_kernel_stack(vm)) {
321 		vfree(stack);
322 		return -ENOMEM;
323 	}
324 	/*
325 	 * We can't call find_vm_area() in interrupt context, and
326 	 * free_thread_stack() can be called in interrupt context,
327 	 * so cache the vm_struct.
328 	 */
329 	tsk->stack_vm_area = vm;
330 	stack = kasan_reset_tag(stack);
331 	tsk->stack = stack;
332 	return 0;
333 }
334 
335 static void free_thread_stack(struct task_struct *tsk)
336 {
337 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 		thread_stack_delayed_free(tsk);
339 
340 	tsk->stack = NULL;
341 	tsk->stack_vm_area = NULL;
342 }
343 
344 #  else /* !CONFIG_VMAP_STACK */
345 
346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350 
351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353 	struct rcu_head *rh = tsk->stack;
354 
355 	call_rcu(rh, thread_stack_free_rcu);
356 }
357 
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 					     THREAD_SIZE_ORDER);
362 
363 	if (likely(page)) {
364 		tsk->stack = kasan_reset_tag(page_address(page));
365 		return 0;
366 	}
367 	return -ENOMEM;
368 }
369 
370 static void free_thread_stack(struct task_struct *tsk)
371 {
372 	thread_stack_delayed_free(tsk);
373 	tsk->stack = NULL;
374 }
375 
376 #  endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378 
379 static struct kmem_cache *thread_stack_cache;
380 
381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383 	kmem_cache_free(thread_stack_cache, rh);
384 }
385 
386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388 	struct rcu_head *rh = tsk->stack;
389 
390 	call_rcu(rh, thread_stack_free_rcu);
391 }
392 
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395 	unsigned long *stack;
396 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397 	stack = kasan_reset_tag(stack);
398 	tsk->stack = stack;
399 	return stack ? 0 : -ENOMEM;
400 }
401 
402 static void free_thread_stack(struct task_struct *tsk)
403 {
404 	thread_stack_delayed_free(tsk);
405 	tsk->stack = NULL;
406 }
407 
408 void thread_stack_cache_init(void)
409 {
410 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 					THREAD_SIZE, THREAD_SIZE, 0, 0,
412 					THREAD_SIZE, NULL);
413 	BUG_ON(thread_stack_cache == NULL);
414 }
415 
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418 
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421 	unsigned long *stack;
422 
423 	stack = arch_alloc_thread_stack_node(tsk, node);
424 	tsk->stack = stack;
425 	return stack ? 0 : -ENOMEM;
426 }
427 
428 static void free_thread_stack(struct task_struct *tsk)
429 {
430 	arch_free_thread_stack(tsk);
431 	tsk->stack = NULL;
432 }
433 
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435 
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438 
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441 
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444 
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447 
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450 
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453 
454 #ifdef CONFIG_PER_VMA_LOCK
455 
456 /* SLAB cache for vm_area_struct.lock */
457 static struct kmem_cache *vma_lock_cachep;
458 
459 static bool vma_lock_alloc(struct vm_area_struct *vma)
460 {
461 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
462 	if (!vma->vm_lock)
463 		return false;
464 
465 	init_rwsem(&vma->vm_lock->lock);
466 	vma->vm_lock_seq = -1;
467 
468 	return true;
469 }
470 
471 static inline void vma_lock_free(struct vm_area_struct *vma)
472 {
473 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
474 }
475 
476 #else /* CONFIG_PER_VMA_LOCK */
477 
478 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
479 static inline void vma_lock_free(struct vm_area_struct *vma) {}
480 
481 #endif /* CONFIG_PER_VMA_LOCK */
482 
483 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
484 {
485 	struct vm_area_struct *vma;
486 
487 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
488 	if (!vma)
489 		return NULL;
490 
491 	vma_init(vma, mm);
492 	if (!vma_lock_alloc(vma)) {
493 		kmem_cache_free(vm_area_cachep, vma);
494 		return NULL;
495 	}
496 
497 	return vma;
498 }
499 
500 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
501 {
502 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
503 
504 	if (!new)
505 		return NULL;
506 
507 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
508 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
509 	/*
510 	 * orig->shared.rb may be modified concurrently, but the clone
511 	 * will be reinitialized.
512 	 */
513 	data_race(memcpy(new, orig, sizeof(*new)));
514 	if (!vma_lock_alloc(new)) {
515 		kmem_cache_free(vm_area_cachep, new);
516 		return NULL;
517 	}
518 	INIT_LIST_HEAD(&new->anon_vma_chain);
519 	vma_numab_state_init(new);
520 	dup_anon_vma_name(orig, new);
521 
522 	return new;
523 }
524 
525 void __vm_area_free(struct vm_area_struct *vma)
526 {
527 	vma_numab_state_free(vma);
528 	free_anon_vma_name(vma);
529 	vma_lock_free(vma);
530 	kmem_cache_free(vm_area_cachep, vma);
531 }
532 
533 #ifdef CONFIG_PER_VMA_LOCK
534 static void vm_area_free_rcu_cb(struct rcu_head *head)
535 {
536 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
537 						  vm_rcu);
538 
539 	/* The vma should not be locked while being destroyed. */
540 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
541 	__vm_area_free(vma);
542 }
543 #endif
544 
545 void vm_area_free(struct vm_area_struct *vma)
546 {
547 #ifdef CONFIG_PER_VMA_LOCK
548 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
549 #else
550 	__vm_area_free(vma);
551 #endif
552 }
553 
554 static void account_kernel_stack(struct task_struct *tsk, int account)
555 {
556 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
557 		struct vm_struct *vm = task_stack_vm_area(tsk);
558 		int i;
559 
560 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
561 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
562 					      account * (PAGE_SIZE / 1024));
563 	} else {
564 		void *stack = task_stack_page(tsk);
565 
566 		/* All stack pages are in the same node. */
567 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
568 				      account * (THREAD_SIZE / 1024));
569 	}
570 }
571 
572 void exit_task_stack_account(struct task_struct *tsk)
573 {
574 	account_kernel_stack(tsk, -1);
575 
576 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
577 		struct vm_struct *vm;
578 		int i;
579 
580 		vm = task_stack_vm_area(tsk);
581 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
582 			memcg_kmem_uncharge_page(vm->pages[i], 0);
583 	}
584 }
585 
586 static void release_task_stack(struct task_struct *tsk)
587 {
588 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
589 		return;  /* Better to leak the stack than to free prematurely */
590 
591 	free_thread_stack(tsk);
592 }
593 
594 #ifdef CONFIG_THREAD_INFO_IN_TASK
595 void put_task_stack(struct task_struct *tsk)
596 {
597 	if (refcount_dec_and_test(&tsk->stack_refcount))
598 		release_task_stack(tsk);
599 }
600 #endif
601 
602 void free_task(struct task_struct *tsk)
603 {
604 #ifdef CONFIG_SECCOMP
605 	WARN_ON_ONCE(tsk->seccomp.filter);
606 #endif
607 	release_user_cpus_ptr(tsk);
608 	scs_release(tsk);
609 
610 #ifndef CONFIG_THREAD_INFO_IN_TASK
611 	/*
612 	 * The task is finally done with both the stack and thread_info,
613 	 * so free both.
614 	 */
615 	release_task_stack(tsk);
616 #else
617 	/*
618 	 * If the task had a separate stack allocation, it should be gone
619 	 * by now.
620 	 */
621 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
622 #endif
623 	rt_mutex_debug_task_free(tsk);
624 	ftrace_graph_exit_task(tsk);
625 	arch_release_task_struct(tsk);
626 	if (tsk->flags & PF_KTHREAD)
627 		free_kthread_struct(tsk);
628 	free_task_struct(tsk);
629 }
630 EXPORT_SYMBOL(free_task);
631 
632 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
633 {
634 	struct file *exe_file;
635 
636 	exe_file = get_mm_exe_file(oldmm);
637 	RCU_INIT_POINTER(mm->exe_file, exe_file);
638 	/*
639 	 * We depend on the oldmm having properly denied write access to the
640 	 * exe_file already.
641 	 */
642 	if (exe_file && deny_write_access(exe_file))
643 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
644 }
645 
646 #ifdef CONFIG_MMU
647 static __latent_entropy int dup_mmap(struct mm_struct *mm,
648 					struct mm_struct *oldmm)
649 {
650 	struct vm_area_struct *mpnt, *tmp;
651 	int retval;
652 	unsigned long charge = 0;
653 	LIST_HEAD(uf);
654 	VMA_ITERATOR(old_vmi, oldmm, 0);
655 	VMA_ITERATOR(vmi, mm, 0);
656 
657 	uprobe_start_dup_mmap();
658 	if (mmap_write_lock_killable(oldmm)) {
659 		retval = -EINTR;
660 		goto fail_uprobe_end;
661 	}
662 	flush_cache_dup_mm(oldmm);
663 	uprobe_dup_mmap(oldmm, mm);
664 	/*
665 	 * Not linked in yet - no deadlock potential:
666 	 */
667 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
668 
669 	/* No ordering required: file already has been exposed. */
670 	dup_mm_exe_file(mm, oldmm);
671 
672 	mm->total_vm = oldmm->total_vm;
673 	mm->data_vm = oldmm->data_vm;
674 	mm->exec_vm = oldmm->exec_vm;
675 	mm->stack_vm = oldmm->stack_vm;
676 
677 	retval = ksm_fork(mm, oldmm);
678 	if (retval)
679 		goto out;
680 	khugepaged_fork(mm, oldmm);
681 
682 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
683 	if (retval)
684 		goto out;
685 
686 	mt_clear_in_rcu(vmi.mas.tree);
687 	for_each_vma(old_vmi, mpnt) {
688 		struct file *file;
689 
690 		if (mpnt->vm_flags & VM_DONTCOPY) {
691 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
692 			continue;
693 		}
694 		charge = 0;
695 		/*
696 		 * Don't duplicate many vmas if we've been oom-killed (for
697 		 * example)
698 		 */
699 		if (fatal_signal_pending(current)) {
700 			retval = -EINTR;
701 			goto loop_out;
702 		}
703 		if (mpnt->vm_flags & VM_ACCOUNT) {
704 			unsigned long len = vma_pages(mpnt);
705 
706 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
707 				goto fail_nomem;
708 			charge = len;
709 		}
710 		tmp = vm_area_dup(mpnt);
711 		if (!tmp)
712 			goto fail_nomem;
713 		retval = vma_dup_policy(mpnt, tmp);
714 		if (retval)
715 			goto fail_nomem_policy;
716 		tmp->vm_mm = mm;
717 		retval = dup_userfaultfd(tmp, &uf);
718 		if (retval)
719 			goto fail_nomem_anon_vma_fork;
720 		if (tmp->vm_flags & VM_WIPEONFORK) {
721 			/*
722 			 * VM_WIPEONFORK gets a clean slate in the child.
723 			 * Don't prepare anon_vma until fault since we don't
724 			 * copy page for current vma.
725 			 */
726 			tmp->anon_vma = NULL;
727 		} else if (anon_vma_fork(tmp, mpnt))
728 			goto fail_nomem_anon_vma_fork;
729 		vm_flags_clear(tmp, VM_LOCKED_MASK);
730 		file = tmp->vm_file;
731 		if (file) {
732 			struct address_space *mapping = file->f_mapping;
733 
734 			get_file(file);
735 			i_mmap_lock_write(mapping);
736 			if (tmp->vm_flags & VM_SHARED)
737 				mapping_allow_writable(mapping);
738 			flush_dcache_mmap_lock(mapping);
739 			/* insert tmp into the share list, just after mpnt */
740 			vma_interval_tree_insert_after(tmp, mpnt,
741 					&mapping->i_mmap);
742 			flush_dcache_mmap_unlock(mapping);
743 			i_mmap_unlock_write(mapping);
744 		}
745 
746 		/*
747 		 * Copy/update hugetlb private vma information.
748 		 */
749 		if (is_vm_hugetlb_page(tmp))
750 			hugetlb_dup_vma_private(tmp);
751 
752 		/* Link the vma into the MT */
753 		if (vma_iter_bulk_store(&vmi, tmp))
754 			goto fail_nomem_vmi_store;
755 
756 		mm->map_count++;
757 		if (!(tmp->vm_flags & VM_WIPEONFORK))
758 			retval = copy_page_range(tmp, mpnt);
759 
760 		if (tmp->vm_ops && tmp->vm_ops->open)
761 			tmp->vm_ops->open(tmp);
762 
763 		if (retval)
764 			goto loop_out;
765 	}
766 	/* a new mm has just been created */
767 	retval = arch_dup_mmap(oldmm, mm);
768 loop_out:
769 	vma_iter_free(&vmi);
770 	if (!retval)
771 		mt_set_in_rcu(vmi.mas.tree);
772 out:
773 	mmap_write_unlock(mm);
774 	flush_tlb_mm(oldmm);
775 	mmap_write_unlock(oldmm);
776 	dup_userfaultfd_complete(&uf);
777 fail_uprobe_end:
778 	uprobe_end_dup_mmap();
779 	return retval;
780 
781 fail_nomem_vmi_store:
782 	unlink_anon_vmas(tmp);
783 fail_nomem_anon_vma_fork:
784 	mpol_put(vma_policy(tmp));
785 fail_nomem_policy:
786 	vm_area_free(tmp);
787 fail_nomem:
788 	retval = -ENOMEM;
789 	vm_unacct_memory(charge);
790 	goto loop_out;
791 }
792 
793 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 {
795 	mm->pgd = pgd_alloc(mm);
796 	if (unlikely(!mm->pgd))
797 		return -ENOMEM;
798 	return 0;
799 }
800 
801 static inline void mm_free_pgd(struct mm_struct *mm)
802 {
803 	pgd_free(mm, mm->pgd);
804 }
805 #else
806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 {
808 	mmap_write_lock(oldmm);
809 	dup_mm_exe_file(mm, oldmm);
810 	mmap_write_unlock(oldmm);
811 	return 0;
812 }
813 #define mm_alloc_pgd(mm)	(0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
816 
817 static void check_mm(struct mm_struct *mm)
818 {
819 	int i;
820 
821 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 			 "Please make sure 'struct resident_page_types[]' is updated as well");
823 
824 	for (i = 0; i < NR_MM_COUNTERS; i++) {
825 		long x = percpu_counter_sum(&mm->rss_stat[i]);
826 
827 		if (unlikely(x))
828 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 				 mm, resident_page_types[i], x);
830 	}
831 
832 	if (mm_pgtables_bytes(mm))
833 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 				mm_pgtables_bytes(mm));
835 
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840 
841 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
843 
844 static void do_check_lazy_tlb(void *arg)
845 {
846 	struct mm_struct *mm = arg;
847 
848 	WARN_ON_ONCE(current->active_mm == mm);
849 }
850 
851 static void do_shoot_lazy_tlb(void *arg)
852 {
853 	struct mm_struct *mm = arg;
854 
855 	if (current->active_mm == mm) {
856 		WARN_ON_ONCE(current->mm);
857 		current->active_mm = &init_mm;
858 		switch_mm(mm, &init_mm, current);
859 	}
860 }
861 
862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 {
864 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 		/*
866 		 * In this case, lazy tlb mms are refounted and would not reach
867 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 		 */
869 		return;
870 	}
871 
872 	/*
873 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 	 * requires lazy mm users to switch to another mm when the refcount
875 	 * drops to zero, before the mm is freed. This requires IPIs here to
876 	 * switch kernel threads to init_mm.
877 	 *
878 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 	 * switch with the final userspace teardown TLB flush which leaves the
880 	 * mm lazy on this CPU but no others, reducing the need for additional
881 	 * IPIs here. There are cases where a final IPI is still required here,
882 	 * such as the final mmdrop being performed on a different CPU than the
883 	 * one exiting, or kernel threads using the mm when userspace exits.
884 	 *
885 	 * IPI overheads have not found to be expensive, but they could be
886 	 * reduced in a number of possible ways, for example (roughly
887 	 * increasing order of complexity):
888 	 * - The last lazy reference created by exit_mm() could instead switch
889 	 *   to init_mm, however it's probable this will run on the same CPU
890 	 *   immediately afterwards, so this may not reduce IPIs much.
891 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 	 * - CPUs store active_mm where it can be remotely checked without a
893 	 *   lock, to filter out false-positives in the cpumask.
894 	 * - After mm_users or mm_count reaches zero, switching away from the
895 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 	 *   with some batching or delaying of the final IPIs.
897 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 	 *   switching to avoid IPIs completely.
899 	 */
900 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 }
904 
905 /*
906  * Called when the last reference to the mm
907  * is dropped: either by a lazy thread or by
908  * mmput. Free the page directory and the mm.
909  */
910 void __mmdrop(struct mm_struct *mm)
911 {
912 	int i;
913 
914 	BUG_ON(mm == &init_mm);
915 	WARN_ON_ONCE(mm == current->mm);
916 
917 	/* Ensure no CPUs are using this as their lazy tlb mm */
918 	cleanup_lazy_tlbs(mm);
919 
920 	WARN_ON_ONCE(mm == current->active_mm);
921 	mm_free_pgd(mm);
922 	destroy_context(mm);
923 	mmu_notifier_subscriptions_destroy(mm);
924 	check_mm(mm);
925 	put_user_ns(mm->user_ns);
926 	mm_pasid_drop(mm);
927 
928 	for (i = 0; i < NR_MM_COUNTERS; i++)
929 		percpu_counter_destroy(&mm->rss_stat[i]);
930 	free_mm(mm);
931 }
932 EXPORT_SYMBOL_GPL(__mmdrop);
933 
934 static void mmdrop_async_fn(struct work_struct *work)
935 {
936 	struct mm_struct *mm;
937 
938 	mm = container_of(work, struct mm_struct, async_put_work);
939 	__mmdrop(mm);
940 }
941 
942 static void mmdrop_async(struct mm_struct *mm)
943 {
944 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
945 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
946 		schedule_work(&mm->async_put_work);
947 	}
948 }
949 
950 static inline void free_signal_struct(struct signal_struct *sig)
951 {
952 	taskstats_tgid_free(sig);
953 	sched_autogroup_exit(sig);
954 	/*
955 	 * __mmdrop is not safe to call from softirq context on x86 due to
956 	 * pgd_dtor so postpone it to the async context
957 	 */
958 	if (sig->oom_mm)
959 		mmdrop_async(sig->oom_mm);
960 	kmem_cache_free(signal_cachep, sig);
961 }
962 
963 static inline void put_signal_struct(struct signal_struct *sig)
964 {
965 	if (refcount_dec_and_test(&sig->sigcnt))
966 		free_signal_struct(sig);
967 }
968 
969 void __put_task_struct(struct task_struct *tsk)
970 {
971 	WARN_ON(!tsk->exit_state);
972 	WARN_ON(refcount_read(&tsk->usage));
973 	WARN_ON(tsk == current);
974 
975 	io_uring_free(tsk);
976 	cgroup_free(tsk);
977 	task_numa_free(tsk, true);
978 	security_task_free(tsk);
979 	bpf_task_storage_free(tsk);
980 	exit_creds(tsk);
981 	delayacct_tsk_free(tsk);
982 	put_signal_struct(tsk->signal);
983 	sched_core_free(tsk);
984 	free_task(tsk);
985 }
986 EXPORT_SYMBOL_GPL(__put_task_struct);
987 
988 void __init __weak arch_task_cache_init(void) { }
989 
990 /*
991  * set_max_threads
992  */
993 static void set_max_threads(unsigned int max_threads_suggested)
994 {
995 	u64 threads;
996 	unsigned long nr_pages = totalram_pages();
997 
998 	/*
999 	 * The number of threads shall be limited such that the thread
1000 	 * structures may only consume a small part of the available memory.
1001 	 */
1002 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1003 		threads = MAX_THREADS;
1004 	else
1005 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1006 				    (u64) THREAD_SIZE * 8UL);
1007 
1008 	if (threads > max_threads_suggested)
1009 		threads = max_threads_suggested;
1010 
1011 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1012 }
1013 
1014 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1015 /* Initialized by the architecture: */
1016 int arch_task_struct_size __read_mostly;
1017 #endif
1018 
1019 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1020 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1021 {
1022 	/* Fetch thread_struct whitelist for the architecture. */
1023 	arch_thread_struct_whitelist(offset, size);
1024 
1025 	/*
1026 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1027 	 * adjust offset to position of thread_struct in task_struct.
1028 	 */
1029 	if (unlikely(*size == 0))
1030 		*offset = 0;
1031 	else
1032 		*offset += offsetof(struct task_struct, thread);
1033 }
1034 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1035 
1036 void __init fork_init(void)
1037 {
1038 	int i;
1039 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1040 #ifndef ARCH_MIN_TASKALIGN
1041 #define ARCH_MIN_TASKALIGN	0
1042 #endif
1043 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1044 	unsigned long useroffset, usersize;
1045 
1046 	/* create a slab on which task_structs can be allocated */
1047 	task_struct_whitelist(&useroffset, &usersize);
1048 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1049 			arch_task_struct_size, align,
1050 			SLAB_PANIC|SLAB_ACCOUNT,
1051 			useroffset, usersize, NULL);
1052 #endif
1053 
1054 	/* do the arch specific task caches init */
1055 	arch_task_cache_init();
1056 
1057 	set_max_threads(MAX_THREADS);
1058 
1059 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1060 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1061 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1062 		init_task.signal->rlim[RLIMIT_NPROC];
1063 
1064 	for (i = 0; i < UCOUNT_COUNTS; i++)
1065 		init_user_ns.ucount_max[i] = max_threads/2;
1066 
1067 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1068 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1069 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1070 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1071 
1072 #ifdef CONFIG_VMAP_STACK
1073 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1074 			  NULL, free_vm_stack_cache);
1075 #endif
1076 
1077 	scs_init();
1078 
1079 	lockdep_init_task(&init_task);
1080 	uprobes_init();
1081 }
1082 
1083 int __weak arch_dup_task_struct(struct task_struct *dst,
1084 					       struct task_struct *src)
1085 {
1086 	*dst = *src;
1087 	return 0;
1088 }
1089 
1090 void set_task_stack_end_magic(struct task_struct *tsk)
1091 {
1092 	unsigned long *stackend;
1093 
1094 	stackend = end_of_stack(tsk);
1095 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1096 }
1097 
1098 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1099 {
1100 	struct task_struct *tsk;
1101 	int err;
1102 
1103 	if (node == NUMA_NO_NODE)
1104 		node = tsk_fork_get_node(orig);
1105 	tsk = alloc_task_struct_node(node);
1106 	if (!tsk)
1107 		return NULL;
1108 
1109 	err = arch_dup_task_struct(tsk, orig);
1110 	if (err)
1111 		goto free_tsk;
1112 
1113 	err = alloc_thread_stack_node(tsk, node);
1114 	if (err)
1115 		goto free_tsk;
1116 
1117 #ifdef CONFIG_THREAD_INFO_IN_TASK
1118 	refcount_set(&tsk->stack_refcount, 1);
1119 #endif
1120 	account_kernel_stack(tsk, 1);
1121 
1122 	err = scs_prepare(tsk, node);
1123 	if (err)
1124 		goto free_stack;
1125 
1126 #ifdef CONFIG_SECCOMP
1127 	/*
1128 	 * We must handle setting up seccomp filters once we're under
1129 	 * the sighand lock in case orig has changed between now and
1130 	 * then. Until then, filter must be NULL to avoid messing up
1131 	 * the usage counts on the error path calling free_task.
1132 	 */
1133 	tsk->seccomp.filter = NULL;
1134 #endif
1135 
1136 	setup_thread_stack(tsk, orig);
1137 	clear_user_return_notifier(tsk);
1138 	clear_tsk_need_resched(tsk);
1139 	set_task_stack_end_magic(tsk);
1140 	clear_syscall_work_syscall_user_dispatch(tsk);
1141 
1142 #ifdef CONFIG_STACKPROTECTOR
1143 	tsk->stack_canary = get_random_canary();
1144 #endif
1145 	if (orig->cpus_ptr == &orig->cpus_mask)
1146 		tsk->cpus_ptr = &tsk->cpus_mask;
1147 	dup_user_cpus_ptr(tsk, orig, node);
1148 
1149 	/*
1150 	 * One for the user space visible state that goes away when reaped.
1151 	 * One for the scheduler.
1152 	 */
1153 	refcount_set(&tsk->rcu_users, 2);
1154 	/* One for the rcu users */
1155 	refcount_set(&tsk->usage, 1);
1156 #ifdef CONFIG_BLK_DEV_IO_TRACE
1157 	tsk->btrace_seq = 0;
1158 #endif
1159 	tsk->splice_pipe = NULL;
1160 	tsk->task_frag.page = NULL;
1161 	tsk->wake_q.next = NULL;
1162 	tsk->worker_private = NULL;
1163 
1164 	kcov_task_init(tsk);
1165 	kmsan_task_create(tsk);
1166 	kmap_local_fork(tsk);
1167 
1168 #ifdef CONFIG_FAULT_INJECTION
1169 	tsk->fail_nth = 0;
1170 #endif
1171 
1172 #ifdef CONFIG_BLK_CGROUP
1173 	tsk->throttle_disk = NULL;
1174 	tsk->use_memdelay = 0;
1175 #endif
1176 
1177 #ifdef CONFIG_IOMMU_SVA
1178 	tsk->pasid_activated = 0;
1179 #endif
1180 
1181 #ifdef CONFIG_MEMCG
1182 	tsk->active_memcg = NULL;
1183 #endif
1184 
1185 #ifdef CONFIG_CPU_SUP_INTEL
1186 	tsk->reported_split_lock = 0;
1187 #endif
1188 
1189 #ifdef CONFIG_SCHED_MM_CID
1190 	tsk->mm_cid = -1;
1191 	tsk->mm_cid_active = 0;
1192 #endif
1193 	return tsk;
1194 
1195 free_stack:
1196 	exit_task_stack_account(tsk);
1197 	free_thread_stack(tsk);
1198 free_tsk:
1199 	free_task_struct(tsk);
1200 	return NULL;
1201 }
1202 
1203 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1204 
1205 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1206 
1207 static int __init coredump_filter_setup(char *s)
1208 {
1209 	default_dump_filter =
1210 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1211 		MMF_DUMP_FILTER_MASK;
1212 	return 1;
1213 }
1214 
1215 __setup("coredump_filter=", coredump_filter_setup);
1216 
1217 #include <linux/init_task.h>
1218 
1219 static void mm_init_aio(struct mm_struct *mm)
1220 {
1221 #ifdef CONFIG_AIO
1222 	spin_lock_init(&mm->ioctx_lock);
1223 	mm->ioctx_table = NULL;
1224 #endif
1225 }
1226 
1227 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1228 					   struct task_struct *p)
1229 {
1230 #ifdef CONFIG_MEMCG
1231 	if (mm->owner == p)
1232 		WRITE_ONCE(mm->owner, NULL);
1233 #endif
1234 }
1235 
1236 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1237 {
1238 #ifdef CONFIG_MEMCG
1239 	mm->owner = p;
1240 #endif
1241 }
1242 
1243 static void mm_init_uprobes_state(struct mm_struct *mm)
1244 {
1245 #ifdef CONFIG_UPROBES
1246 	mm->uprobes_state.xol_area = NULL;
1247 #endif
1248 }
1249 
1250 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1251 	struct user_namespace *user_ns)
1252 {
1253 	int i;
1254 
1255 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1256 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1257 	atomic_set(&mm->mm_users, 1);
1258 	atomic_set(&mm->mm_count, 1);
1259 	seqcount_init(&mm->write_protect_seq);
1260 	mmap_init_lock(mm);
1261 	INIT_LIST_HEAD(&mm->mmlist);
1262 #ifdef CONFIG_PER_VMA_LOCK
1263 	mm->mm_lock_seq = 0;
1264 #endif
1265 	mm_pgtables_bytes_init(mm);
1266 	mm->map_count = 0;
1267 	mm->locked_vm = 0;
1268 	atomic64_set(&mm->pinned_vm, 0);
1269 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1270 	spin_lock_init(&mm->page_table_lock);
1271 	spin_lock_init(&mm->arg_lock);
1272 	mm_init_cpumask(mm);
1273 	mm_init_aio(mm);
1274 	mm_init_owner(mm, p);
1275 	mm_pasid_init(mm);
1276 	RCU_INIT_POINTER(mm->exe_file, NULL);
1277 	mmu_notifier_subscriptions_init(mm);
1278 	init_tlb_flush_pending(mm);
1279 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1280 	mm->pmd_huge_pte = NULL;
1281 #endif
1282 	mm_init_uprobes_state(mm);
1283 	hugetlb_count_init(mm);
1284 
1285 	if (current->mm) {
1286 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1287 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1288 	} else {
1289 		mm->flags = default_dump_filter;
1290 		mm->def_flags = 0;
1291 	}
1292 
1293 	if (mm_alloc_pgd(mm))
1294 		goto fail_nopgd;
1295 
1296 	if (init_new_context(p, mm))
1297 		goto fail_nocontext;
1298 
1299 	for (i = 0; i < NR_MM_COUNTERS; i++)
1300 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1301 			goto fail_pcpu;
1302 
1303 	mm->user_ns = get_user_ns(user_ns);
1304 	lru_gen_init_mm(mm);
1305 	mm_init_cid(mm);
1306 	return mm;
1307 
1308 fail_pcpu:
1309 	while (i > 0)
1310 		percpu_counter_destroy(&mm->rss_stat[--i]);
1311 	destroy_context(mm);
1312 fail_nocontext:
1313 	mm_free_pgd(mm);
1314 fail_nopgd:
1315 	free_mm(mm);
1316 	return NULL;
1317 }
1318 
1319 /*
1320  * Allocate and initialize an mm_struct.
1321  */
1322 struct mm_struct *mm_alloc(void)
1323 {
1324 	struct mm_struct *mm;
1325 
1326 	mm = allocate_mm();
1327 	if (!mm)
1328 		return NULL;
1329 
1330 	memset(mm, 0, sizeof(*mm));
1331 	return mm_init(mm, current, current_user_ns());
1332 }
1333 
1334 static inline void __mmput(struct mm_struct *mm)
1335 {
1336 	VM_BUG_ON(atomic_read(&mm->mm_users));
1337 
1338 	uprobe_clear_state(mm);
1339 	exit_aio(mm);
1340 	ksm_exit(mm);
1341 	khugepaged_exit(mm); /* must run before exit_mmap */
1342 	exit_mmap(mm);
1343 	mm_put_huge_zero_page(mm);
1344 	set_mm_exe_file(mm, NULL);
1345 	if (!list_empty(&mm->mmlist)) {
1346 		spin_lock(&mmlist_lock);
1347 		list_del(&mm->mmlist);
1348 		spin_unlock(&mmlist_lock);
1349 	}
1350 	if (mm->binfmt)
1351 		module_put(mm->binfmt->module);
1352 	lru_gen_del_mm(mm);
1353 	mmdrop(mm);
1354 }
1355 
1356 /*
1357  * Decrement the use count and release all resources for an mm.
1358  */
1359 void mmput(struct mm_struct *mm)
1360 {
1361 	might_sleep();
1362 
1363 	if (atomic_dec_and_test(&mm->mm_users))
1364 		__mmput(mm);
1365 }
1366 EXPORT_SYMBOL_GPL(mmput);
1367 
1368 #ifdef CONFIG_MMU
1369 static void mmput_async_fn(struct work_struct *work)
1370 {
1371 	struct mm_struct *mm = container_of(work, struct mm_struct,
1372 					    async_put_work);
1373 
1374 	__mmput(mm);
1375 }
1376 
1377 void mmput_async(struct mm_struct *mm)
1378 {
1379 	if (atomic_dec_and_test(&mm->mm_users)) {
1380 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1381 		schedule_work(&mm->async_put_work);
1382 	}
1383 }
1384 EXPORT_SYMBOL_GPL(mmput_async);
1385 #endif
1386 
1387 /**
1388  * set_mm_exe_file - change a reference to the mm's executable file
1389  *
1390  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1391  *
1392  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1393  * invocations: in mmput() nobody alive left, in execve task is single
1394  * threaded.
1395  *
1396  * Can only fail if new_exe_file != NULL.
1397  */
1398 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1399 {
1400 	struct file *old_exe_file;
1401 
1402 	/*
1403 	 * It is safe to dereference the exe_file without RCU as
1404 	 * this function is only called if nobody else can access
1405 	 * this mm -- see comment above for justification.
1406 	 */
1407 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1408 
1409 	if (new_exe_file) {
1410 		/*
1411 		 * We expect the caller (i.e., sys_execve) to already denied
1412 		 * write access, so this is unlikely to fail.
1413 		 */
1414 		if (unlikely(deny_write_access(new_exe_file)))
1415 			return -EACCES;
1416 		get_file(new_exe_file);
1417 	}
1418 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1419 	if (old_exe_file) {
1420 		allow_write_access(old_exe_file);
1421 		fput(old_exe_file);
1422 	}
1423 	return 0;
1424 }
1425 
1426 /**
1427  * replace_mm_exe_file - replace a reference to the mm's executable file
1428  *
1429  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1430  * dealing with concurrent invocation and without grabbing the mmap lock in
1431  * write mode.
1432  *
1433  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1434  */
1435 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1436 {
1437 	struct vm_area_struct *vma;
1438 	struct file *old_exe_file;
1439 	int ret = 0;
1440 
1441 	/* Forbid mm->exe_file change if old file still mapped. */
1442 	old_exe_file = get_mm_exe_file(mm);
1443 	if (old_exe_file) {
1444 		VMA_ITERATOR(vmi, mm, 0);
1445 		mmap_read_lock(mm);
1446 		for_each_vma(vmi, vma) {
1447 			if (!vma->vm_file)
1448 				continue;
1449 			if (path_equal(&vma->vm_file->f_path,
1450 				       &old_exe_file->f_path)) {
1451 				ret = -EBUSY;
1452 				break;
1453 			}
1454 		}
1455 		mmap_read_unlock(mm);
1456 		fput(old_exe_file);
1457 		if (ret)
1458 			return ret;
1459 	}
1460 
1461 	/* set the new file, lockless */
1462 	ret = deny_write_access(new_exe_file);
1463 	if (ret)
1464 		return -EACCES;
1465 	get_file(new_exe_file);
1466 
1467 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1468 	if (old_exe_file) {
1469 		/*
1470 		 * Don't race with dup_mmap() getting the file and disallowing
1471 		 * write access while someone might open the file writable.
1472 		 */
1473 		mmap_read_lock(mm);
1474 		allow_write_access(old_exe_file);
1475 		fput(old_exe_file);
1476 		mmap_read_unlock(mm);
1477 	}
1478 	return 0;
1479 }
1480 
1481 /**
1482  * get_mm_exe_file - acquire a reference to the mm's executable file
1483  *
1484  * Returns %NULL if mm has no associated executable file.
1485  * User must release file via fput().
1486  */
1487 struct file *get_mm_exe_file(struct mm_struct *mm)
1488 {
1489 	struct file *exe_file;
1490 
1491 	rcu_read_lock();
1492 	exe_file = rcu_dereference(mm->exe_file);
1493 	if (exe_file && !get_file_rcu(exe_file))
1494 		exe_file = NULL;
1495 	rcu_read_unlock();
1496 	return exe_file;
1497 }
1498 
1499 /**
1500  * get_task_exe_file - acquire a reference to the task's executable file
1501  *
1502  * Returns %NULL if task's mm (if any) has no associated executable file or
1503  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1504  * User must release file via fput().
1505  */
1506 struct file *get_task_exe_file(struct task_struct *task)
1507 {
1508 	struct file *exe_file = NULL;
1509 	struct mm_struct *mm;
1510 
1511 	task_lock(task);
1512 	mm = task->mm;
1513 	if (mm) {
1514 		if (!(task->flags & PF_KTHREAD))
1515 			exe_file = get_mm_exe_file(mm);
1516 	}
1517 	task_unlock(task);
1518 	return exe_file;
1519 }
1520 
1521 /**
1522  * get_task_mm - acquire a reference to the task's mm
1523  *
1524  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1525  * this kernel workthread has transiently adopted a user mm with use_mm,
1526  * to do its AIO) is not set and if so returns a reference to it, after
1527  * bumping up the use count.  User must release the mm via mmput()
1528  * after use.  Typically used by /proc and ptrace.
1529  */
1530 struct mm_struct *get_task_mm(struct task_struct *task)
1531 {
1532 	struct mm_struct *mm;
1533 
1534 	task_lock(task);
1535 	mm = task->mm;
1536 	if (mm) {
1537 		if (task->flags & PF_KTHREAD)
1538 			mm = NULL;
1539 		else
1540 			mmget(mm);
1541 	}
1542 	task_unlock(task);
1543 	return mm;
1544 }
1545 EXPORT_SYMBOL_GPL(get_task_mm);
1546 
1547 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1548 {
1549 	struct mm_struct *mm;
1550 	int err;
1551 
1552 	err =  down_read_killable(&task->signal->exec_update_lock);
1553 	if (err)
1554 		return ERR_PTR(err);
1555 
1556 	mm = get_task_mm(task);
1557 	if (mm && mm != current->mm &&
1558 			!ptrace_may_access(task, mode)) {
1559 		mmput(mm);
1560 		mm = ERR_PTR(-EACCES);
1561 	}
1562 	up_read(&task->signal->exec_update_lock);
1563 
1564 	return mm;
1565 }
1566 
1567 static void complete_vfork_done(struct task_struct *tsk)
1568 {
1569 	struct completion *vfork;
1570 
1571 	task_lock(tsk);
1572 	vfork = tsk->vfork_done;
1573 	if (likely(vfork)) {
1574 		tsk->vfork_done = NULL;
1575 		complete(vfork);
1576 	}
1577 	task_unlock(tsk);
1578 }
1579 
1580 static int wait_for_vfork_done(struct task_struct *child,
1581 				struct completion *vfork)
1582 {
1583 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1584 	int killed;
1585 
1586 	cgroup_enter_frozen();
1587 	killed = wait_for_completion_state(vfork, state);
1588 	cgroup_leave_frozen(false);
1589 
1590 	if (killed) {
1591 		task_lock(child);
1592 		child->vfork_done = NULL;
1593 		task_unlock(child);
1594 	}
1595 
1596 	put_task_struct(child);
1597 	return killed;
1598 }
1599 
1600 /* Please note the differences between mmput and mm_release.
1601  * mmput is called whenever we stop holding onto a mm_struct,
1602  * error success whatever.
1603  *
1604  * mm_release is called after a mm_struct has been removed
1605  * from the current process.
1606  *
1607  * This difference is important for error handling, when we
1608  * only half set up a mm_struct for a new process and need to restore
1609  * the old one.  Because we mmput the new mm_struct before
1610  * restoring the old one. . .
1611  * Eric Biederman 10 January 1998
1612  */
1613 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1614 {
1615 	uprobe_free_utask(tsk);
1616 
1617 	/* Get rid of any cached register state */
1618 	deactivate_mm(tsk, mm);
1619 
1620 	/*
1621 	 * Signal userspace if we're not exiting with a core dump
1622 	 * because we want to leave the value intact for debugging
1623 	 * purposes.
1624 	 */
1625 	if (tsk->clear_child_tid) {
1626 		if (atomic_read(&mm->mm_users) > 1) {
1627 			/*
1628 			 * We don't check the error code - if userspace has
1629 			 * not set up a proper pointer then tough luck.
1630 			 */
1631 			put_user(0, tsk->clear_child_tid);
1632 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1633 					1, NULL, NULL, 0, 0);
1634 		}
1635 		tsk->clear_child_tid = NULL;
1636 	}
1637 
1638 	/*
1639 	 * All done, finally we can wake up parent and return this mm to him.
1640 	 * Also kthread_stop() uses this completion for synchronization.
1641 	 */
1642 	if (tsk->vfork_done)
1643 		complete_vfork_done(tsk);
1644 }
1645 
1646 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1647 {
1648 	futex_exit_release(tsk);
1649 	mm_release(tsk, mm);
1650 }
1651 
1652 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1653 {
1654 	futex_exec_release(tsk);
1655 	mm_release(tsk, mm);
1656 }
1657 
1658 /**
1659  * dup_mm() - duplicates an existing mm structure
1660  * @tsk: the task_struct with which the new mm will be associated.
1661  * @oldmm: the mm to duplicate.
1662  *
1663  * Allocates a new mm structure and duplicates the provided @oldmm structure
1664  * content into it.
1665  *
1666  * Return: the duplicated mm or NULL on failure.
1667  */
1668 static struct mm_struct *dup_mm(struct task_struct *tsk,
1669 				struct mm_struct *oldmm)
1670 {
1671 	struct mm_struct *mm;
1672 	int err;
1673 
1674 	mm = allocate_mm();
1675 	if (!mm)
1676 		goto fail_nomem;
1677 
1678 	memcpy(mm, oldmm, sizeof(*mm));
1679 
1680 	if (!mm_init(mm, tsk, mm->user_ns))
1681 		goto fail_nomem;
1682 
1683 	err = dup_mmap(mm, oldmm);
1684 	if (err)
1685 		goto free_pt;
1686 
1687 	mm->hiwater_rss = get_mm_rss(mm);
1688 	mm->hiwater_vm = mm->total_vm;
1689 
1690 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1691 		goto free_pt;
1692 
1693 	return mm;
1694 
1695 free_pt:
1696 	/* don't put binfmt in mmput, we haven't got module yet */
1697 	mm->binfmt = NULL;
1698 	mm_init_owner(mm, NULL);
1699 	mmput(mm);
1700 
1701 fail_nomem:
1702 	return NULL;
1703 }
1704 
1705 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1706 {
1707 	struct mm_struct *mm, *oldmm;
1708 
1709 	tsk->min_flt = tsk->maj_flt = 0;
1710 	tsk->nvcsw = tsk->nivcsw = 0;
1711 #ifdef CONFIG_DETECT_HUNG_TASK
1712 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1713 	tsk->last_switch_time = 0;
1714 #endif
1715 
1716 	tsk->mm = NULL;
1717 	tsk->active_mm = NULL;
1718 
1719 	/*
1720 	 * Are we cloning a kernel thread?
1721 	 *
1722 	 * We need to steal a active VM for that..
1723 	 */
1724 	oldmm = current->mm;
1725 	if (!oldmm)
1726 		return 0;
1727 
1728 	if (clone_flags & CLONE_VM) {
1729 		mmget(oldmm);
1730 		mm = oldmm;
1731 	} else {
1732 		mm = dup_mm(tsk, current->mm);
1733 		if (!mm)
1734 			return -ENOMEM;
1735 	}
1736 
1737 	tsk->mm = mm;
1738 	tsk->active_mm = mm;
1739 	sched_mm_cid_fork(tsk);
1740 	return 0;
1741 }
1742 
1743 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1744 {
1745 	struct fs_struct *fs = current->fs;
1746 	if (clone_flags & CLONE_FS) {
1747 		/* tsk->fs is already what we want */
1748 		spin_lock(&fs->lock);
1749 		if (fs->in_exec) {
1750 			spin_unlock(&fs->lock);
1751 			return -EAGAIN;
1752 		}
1753 		fs->users++;
1754 		spin_unlock(&fs->lock);
1755 		return 0;
1756 	}
1757 	tsk->fs = copy_fs_struct(fs);
1758 	if (!tsk->fs)
1759 		return -ENOMEM;
1760 	return 0;
1761 }
1762 
1763 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1764 {
1765 	struct files_struct *oldf, *newf;
1766 	int error = 0;
1767 
1768 	/*
1769 	 * A background process may not have any files ...
1770 	 */
1771 	oldf = current->files;
1772 	if (!oldf)
1773 		goto out;
1774 
1775 	if (clone_flags & CLONE_FILES) {
1776 		atomic_inc(&oldf->count);
1777 		goto out;
1778 	}
1779 
1780 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1781 	if (!newf)
1782 		goto out;
1783 
1784 	tsk->files = newf;
1785 	error = 0;
1786 out:
1787 	return error;
1788 }
1789 
1790 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1791 {
1792 	struct sighand_struct *sig;
1793 
1794 	if (clone_flags & CLONE_SIGHAND) {
1795 		refcount_inc(&current->sighand->count);
1796 		return 0;
1797 	}
1798 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1799 	RCU_INIT_POINTER(tsk->sighand, sig);
1800 	if (!sig)
1801 		return -ENOMEM;
1802 
1803 	refcount_set(&sig->count, 1);
1804 	spin_lock_irq(&current->sighand->siglock);
1805 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1806 	spin_unlock_irq(&current->sighand->siglock);
1807 
1808 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1809 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1810 		flush_signal_handlers(tsk, 0);
1811 
1812 	return 0;
1813 }
1814 
1815 void __cleanup_sighand(struct sighand_struct *sighand)
1816 {
1817 	if (refcount_dec_and_test(&sighand->count)) {
1818 		signalfd_cleanup(sighand);
1819 		/*
1820 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1821 		 * without an RCU grace period, see __lock_task_sighand().
1822 		 */
1823 		kmem_cache_free(sighand_cachep, sighand);
1824 	}
1825 }
1826 
1827 /*
1828  * Initialize POSIX timer handling for a thread group.
1829  */
1830 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1831 {
1832 	struct posix_cputimers *pct = &sig->posix_cputimers;
1833 	unsigned long cpu_limit;
1834 
1835 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1836 	posix_cputimers_group_init(pct, cpu_limit);
1837 }
1838 
1839 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1840 {
1841 	struct signal_struct *sig;
1842 
1843 	if (clone_flags & CLONE_THREAD)
1844 		return 0;
1845 
1846 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1847 	tsk->signal = sig;
1848 	if (!sig)
1849 		return -ENOMEM;
1850 
1851 	sig->nr_threads = 1;
1852 	sig->quick_threads = 1;
1853 	atomic_set(&sig->live, 1);
1854 	refcount_set(&sig->sigcnt, 1);
1855 
1856 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1857 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1858 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1859 
1860 	init_waitqueue_head(&sig->wait_chldexit);
1861 	sig->curr_target = tsk;
1862 	init_sigpending(&sig->shared_pending);
1863 	INIT_HLIST_HEAD(&sig->multiprocess);
1864 	seqlock_init(&sig->stats_lock);
1865 	prev_cputime_init(&sig->prev_cputime);
1866 
1867 #ifdef CONFIG_POSIX_TIMERS
1868 	INIT_LIST_HEAD(&sig->posix_timers);
1869 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1870 	sig->real_timer.function = it_real_fn;
1871 #endif
1872 
1873 	task_lock(current->group_leader);
1874 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1875 	task_unlock(current->group_leader);
1876 
1877 	posix_cpu_timers_init_group(sig);
1878 
1879 	tty_audit_fork(sig);
1880 	sched_autogroup_fork(sig);
1881 
1882 	sig->oom_score_adj = current->signal->oom_score_adj;
1883 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1884 
1885 	mutex_init(&sig->cred_guard_mutex);
1886 	init_rwsem(&sig->exec_update_lock);
1887 
1888 	return 0;
1889 }
1890 
1891 static void copy_seccomp(struct task_struct *p)
1892 {
1893 #ifdef CONFIG_SECCOMP
1894 	/*
1895 	 * Must be called with sighand->lock held, which is common to
1896 	 * all threads in the group. Holding cred_guard_mutex is not
1897 	 * needed because this new task is not yet running and cannot
1898 	 * be racing exec.
1899 	 */
1900 	assert_spin_locked(&current->sighand->siglock);
1901 
1902 	/* Ref-count the new filter user, and assign it. */
1903 	get_seccomp_filter(current);
1904 	p->seccomp = current->seccomp;
1905 
1906 	/*
1907 	 * Explicitly enable no_new_privs here in case it got set
1908 	 * between the task_struct being duplicated and holding the
1909 	 * sighand lock. The seccomp state and nnp must be in sync.
1910 	 */
1911 	if (task_no_new_privs(current))
1912 		task_set_no_new_privs(p);
1913 
1914 	/*
1915 	 * If the parent gained a seccomp mode after copying thread
1916 	 * flags and between before we held the sighand lock, we have
1917 	 * to manually enable the seccomp thread flag here.
1918 	 */
1919 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1920 		set_task_syscall_work(p, SECCOMP);
1921 #endif
1922 }
1923 
1924 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1925 {
1926 	current->clear_child_tid = tidptr;
1927 
1928 	return task_pid_vnr(current);
1929 }
1930 
1931 static void rt_mutex_init_task(struct task_struct *p)
1932 {
1933 	raw_spin_lock_init(&p->pi_lock);
1934 #ifdef CONFIG_RT_MUTEXES
1935 	p->pi_waiters = RB_ROOT_CACHED;
1936 	p->pi_top_task = NULL;
1937 	p->pi_blocked_on = NULL;
1938 #endif
1939 }
1940 
1941 static inline void init_task_pid_links(struct task_struct *task)
1942 {
1943 	enum pid_type type;
1944 
1945 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1946 		INIT_HLIST_NODE(&task->pid_links[type]);
1947 }
1948 
1949 static inline void
1950 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1951 {
1952 	if (type == PIDTYPE_PID)
1953 		task->thread_pid = pid;
1954 	else
1955 		task->signal->pids[type] = pid;
1956 }
1957 
1958 static inline void rcu_copy_process(struct task_struct *p)
1959 {
1960 #ifdef CONFIG_PREEMPT_RCU
1961 	p->rcu_read_lock_nesting = 0;
1962 	p->rcu_read_unlock_special.s = 0;
1963 	p->rcu_blocked_node = NULL;
1964 	INIT_LIST_HEAD(&p->rcu_node_entry);
1965 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1966 #ifdef CONFIG_TASKS_RCU
1967 	p->rcu_tasks_holdout = false;
1968 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1969 	p->rcu_tasks_idle_cpu = -1;
1970 #endif /* #ifdef CONFIG_TASKS_RCU */
1971 #ifdef CONFIG_TASKS_TRACE_RCU
1972 	p->trc_reader_nesting = 0;
1973 	p->trc_reader_special.s = 0;
1974 	INIT_LIST_HEAD(&p->trc_holdout_list);
1975 	INIT_LIST_HEAD(&p->trc_blkd_node);
1976 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1977 }
1978 
1979 struct pid *pidfd_pid(const struct file *file)
1980 {
1981 	if (file->f_op == &pidfd_fops)
1982 		return file->private_data;
1983 
1984 	return ERR_PTR(-EBADF);
1985 }
1986 
1987 static int pidfd_release(struct inode *inode, struct file *file)
1988 {
1989 	struct pid *pid = file->private_data;
1990 
1991 	file->private_data = NULL;
1992 	put_pid(pid);
1993 	return 0;
1994 }
1995 
1996 #ifdef CONFIG_PROC_FS
1997 /**
1998  * pidfd_show_fdinfo - print information about a pidfd
1999  * @m: proc fdinfo file
2000  * @f: file referencing a pidfd
2001  *
2002  * Pid:
2003  * This function will print the pid that a given pidfd refers to in the
2004  * pid namespace of the procfs instance.
2005  * If the pid namespace of the process is not a descendant of the pid
2006  * namespace of the procfs instance 0 will be shown as its pid. This is
2007  * similar to calling getppid() on a process whose parent is outside of
2008  * its pid namespace.
2009  *
2010  * NSpid:
2011  * If pid namespaces are supported then this function will also print
2012  * the pid of a given pidfd refers to for all descendant pid namespaces
2013  * starting from the current pid namespace of the instance, i.e. the
2014  * Pid field and the first entry in the NSpid field will be identical.
2015  * If the pid namespace of the process is not a descendant of the pid
2016  * namespace of the procfs instance 0 will be shown as its first NSpid
2017  * entry and no others will be shown.
2018  * Note that this differs from the Pid and NSpid fields in
2019  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2020  * the  pid namespace of the procfs instance. The difference becomes
2021  * obvious when sending around a pidfd between pid namespaces from a
2022  * different branch of the tree, i.e. where no ancestral relation is
2023  * present between the pid namespaces:
2024  * - create two new pid namespaces ns1 and ns2 in the initial pid
2025  *   namespace (also take care to create new mount namespaces in the
2026  *   new pid namespace and mount procfs)
2027  * - create a process with a pidfd in ns1
2028  * - send pidfd from ns1 to ns2
2029  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2030  *   have exactly one entry, which is 0
2031  */
2032 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2033 {
2034 	struct pid *pid = f->private_data;
2035 	struct pid_namespace *ns;
2036 	pid_t nr = -1;
2037 
2038 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2039 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2040 		nr = pid_nr_ns(pid, ns);
2041 	}
2042 
2043 	seq_put_decimal_ll(m, "Pid:\t", nr);
2044 
2045 #ifdef CONFIG_PID_NS
2046 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2047 	if (nr > 0) {
2048 		int i;
2049 
2050 		/* If nr is non-zero it means that 'pid' is valid and that
2051 		 * ns, i.e. the pid namespace associated with the procfs
2052 		 * instance, is in the pid namespace hierarchy of pid.
2053 		 * Start at one below the already printed level.
2054 		 */
2055 		for (i = ns->level + 1; i <= pid->level; i++)
2056 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2057 	}
2058 #endif
2059 	seq_putc(m, '\n');
2060 }
2061 #endif
2062 
2063 /*
2064  * Poll support for process exit notification.
2065  */
2066 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2067 {
2068 	struct pid *pid = file->private_data;
2069 	__poll_t poll_flags = 0;
2070 
2071 	poll_wait(file, &pid->wait_pidfd, pts);
2072 
2073 	/*
2074 	 * Inform pollers only when the whole thread group exits.
2075 	 * If the thread group leader exits before all other threads in the
2076 	 * group, then poll(2) should block, similar to the wait(2) family.
2077 	 */
2078 	if (thread_group_exited(pid))
2079 		poll_flags = EPOLLIN | EPOLLRDNORM;
2080 
2081 	return poll_flags;
2082 }
2083 
2084 const struct file_operations pidfd_fops = {
2085 	.release = pidfd_release,
2086 	.poll = pidfd_poll,
2087 #ifdef CONFIG_PROC_FS
2088 	.show_fdinfo = pidfd_show_fdinfo,
2089 #endif
2090 };
2091 
2092 static void __delayed_free_task(struct rcu_head *rhp)
2093 {
2094 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2095 
2096 	free_task(tsk);
2097 }
2098 
2099 static __always_inline void delayed_free_task(struct task_struct *tsk)
2100 {
2101 	if (IS_ENABLED(CONFIG_MEMCG))
2102 		call_rcu(&tsk->rcu, __delayed_free_task);
2103 	else
2104 		free_task(tsk);
2105 }
2106 
2107 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2108 {
2109 	/* Skip if kernel thread */
2110 	if (!tsk->mm)
2111 		return;
2112 
2113 	/* Skip if spawning a thread or using vfork */
2114 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2115 		return;
2116 
2117 	/* We need to synchronize with __set_oom_adj */
2118 	mutex_lock(&oom_adj_mutex);
2119 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2120 	/* Update the values in case they were changed after copy_signal */
2121 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2122 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2123 	mutex_unlock(&oom_adj_mutex);
2124 }
2125 
2126 #ifdef CONFIG_RV
2127 static void rv_task_fork(struct task_struct *p)
2128 {
2129 	int i;
2130 
2131 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2132 		p->rv[i].da_mon.monitoring = false;
2133 }
2134 #else
2135 #define rv_task_fork(p) do {} while (0)
2136 #endif
2137 
2138 /*
2139  * This creates a new process as a copy of the old one,
2140  * but does not actually start it yet.
2141  *
2142  * It copies the registers, and all the appropriate
2143  * parts of the process environment (as per the clone
2144  * flags). The actual kick-off is left to the caller.
2145  */
2146 static __latent_entropy struct task_struct *copy_process(
2147 					struct pid *pid,
2148 					int trace,
2149 					int node,
2150 					struct kernel_clone_args *args)
2151 {
2152 	int pidfd = -1, retval;
2153 	struct task_struct *p;
2154 	struct multiprocess_signals delayed;
2155 	struct file *pidfile = NULL;
2156 	const u64 clone_flags = args->flags;
2157 	struct nsproxy *nsp = current->nsproxy;
2158 
2159 	/*
2160 	 * Don't allow sharing the root directory with processes in a different
2161 	 * namespace
2162 	 */
2163 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2164 		return ERR_PTR(-EINVAL);
2165 
2166 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2167 		return ERR_PTR(-EINVAL);
2168 
2169 	/*
2170 	 * Thread groups must share signals as well, and detached threads
2171 	 * can only be started up within the thread group.
2172 	 */
2173 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2174 		return ERR_PTR(-EINVAL);
2175 
2176 	/*
2177 	 * Shared signal handlers imply shared VM. By way of the above,
2178 	 * thread groups also imply shared VM. Blocking this case allows
2179 	 * for various simplifications in other code.
2180 	 */
2181 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2182 		return ERR_PTR(-EINVAL);
2183 
2184 	/*
2185 	 * Siblings of global init remain as zombies on exit since they are
2186 	 * not reaped by their parent (swapper). To solve this and to avoid
2187 	 * multi-rooted process trees, prevent global and container-inits
2188 	 * from creating siblings.
2189 	 */
2190 	if ((clone_flags & CLONE_PARENT) &&
2191 				current->signal->flags & SIGNAL_UNKILLABLE)
2192 		return ERR_PTR(-EINVAL);
2193 
2194 	/*
2195 	 * If the new process will be in a different pid or user namespace
2196 	 * do not allow it to share a thread group with the forking task.
2197 	 */
2198 	if (clone_flags & CLONE_THREAD) {
2199 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2200 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2201 			return ERR_PTR(-EINVAL);
2202 	}
2203 
2204 	if (clone_flags & CLONE_PIDFD) {
2205 		/*
2206 		 * - CLONE_DETACHED is blocked so that we can potentially
2207 		 *   reuse it later for CLONE_PIDFD.
2208 		 * - CLONE_THREAD is blocked until someone really needs it.
2209 		 */
2210 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2211 			return ERR_PTR(-EINVAL);
2212 	}
2213 
2214 	/*
2215 	 * Force any signals received before this point to be delivered
2216 	 * before the fork happens.  Collect up signals sent to multiple
2217 	 * processes that happen during the fork and delay them so that
2218 	 * they appear to happen after the fork.
2219 	 */
2220 	sigemptyset(&delayed.signal);
2221 	INIT_HLIST_NODE(&delayed.node);
2222 
2223 	spin_lock_irq(&current->sighand->siglock);
2224 	if (!(clone_flags & CLONE_THREAD))
2225 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2226 	recalc_sigpending();
2227 	spin_unlock_irq(&current->sighand->siglock);
2228 	retval = -ERESTARTNOINTR;
2229 	if (task_sigpending(current))
2230 		goto fork_out;
2231 
2232 	retval = -ENOMEM;
2233 	p = dup_task_struct(current, node);
2234 	if (!p)
2235 		goto fork_out;
2236 	p->flags &= ~PF_KTHREAD;
2237 	if (args->kthread)
2238 		p->flags |= PF_KTHREAD;
2239 	if (args->io_thread) {
2240 		/*
2241 		 * Mark us an IO worker, and block any signal that isn't
2242 		 * fatal or STOP
2243 		 */
2244 		p->flags |= PF_IO_WORKER;
2245 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2246 	}
2247 
2248 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2249 	/*
2250 	 * Clear TID on mm_release()?
2251 	 */
2252 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2253 
2254 	ftrace_graph_init_task(p);
2255 
2256 	rt_mutex_init_task(p);
2257 
2258 	lockdep_assert_irqs_enabled();
2259 #ifdef CONFIG_PROVE_LOCKING
2260 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2261 #endif
2262 	retval = copy_creds(p, clone_flags);
2263 	if (retval < 0)
2264 		goto bad_fork_free;
2265 
2266 	retval = -EAGAIN;
2267 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2268 		if (p->real_cred->user != INIT_USER &&
2269 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2270 			goto bad_fork_cleanup_count;
2271 	}
2272 	current->flags &= ~PF_NPROC_EXCEEDED;
2273 
2274 	/*
2275 	 * If multiple threads are within copy_process(), then this check
2276 	 * triggers too late. This doesn't hurt, the check is only there
2277 	 * to stop root fork bombs.
2278 	 */
2279 	retval = -EAGAIN;
2280 	if (data_race(nr_threads >= max_threads))
2281 		goto bad_fork_cleanup_count;
2282 
2283 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2284 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2285 	p->flags |= PF_FORKNOEXEC;
2286 	INIT_LIST_HEAD(&p->children);
2287 	INIT_LIST_HEAD(&p->sibling);
2288 	rcu_copy_process(p);
2289 	p->vfork_done = NULL;
2290 	spin_lock_init(&p->alloc_lock);
2291 
2292 	init_sigpending(&p->pending);
2293 
2294 	p->utime = p->stime = p->gtime = 0;
2295 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2296 	p->utimescaled = p->stimescaled = 0;
2297 #endif
2298 	prev_cputime_init(&p->prev_cputime);
2299 
2300 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2301 	seqcount_init(&p->vtime.seqcount);
2302 	p->vtime.starttime = 0;
2303 	p->vtime.state = VTIME_INACTIVE;
2304 #endif
2305 
2306 #ifdef CONFIG_IO_URING
2307 	p->io_uring = NULL;
2308 #endif
2309 
2310 #if defined(SPLIT_RSS_COUNTING)
2311 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2312 #endif
2313 
2314 	p->default_timer_slack_ns = current->timer_slack_ns;
2315 
2316 #ifdef CONFIG_PSI
2317 	p->psi_flags = 0;
2318 #endif
2319 
2320 	task_io_accounting_init(&p->ioac);
2321 	acct_clear_integrals(p);
2322 
2323 	posix_cputimers_init(&p->posix_cputimers);
2324 
2325 	p->io_context = NULL;
2326 	audit_set_context(p, NULL);
2327 	cgroup_fork(p);
2328 	if (args->kthread) {
2329 		if (!set_kthread_struct(p))
2330 			goto bad_fork_cleanup_delayacct;
2331 	}
2332 #ifdef CONFIG_NUMA
2333 	p->mempolicy = mpol_dup(p->mempolicy);
2334 	if (IS_ERR(p->mempolicy)) {
2335 		retval = PTR_ERR(p->mempolicy);
2336 		p->mempolicy = NULL;
2337 		goto bad_fork_cleanup_delayacct;
2338 	}
2339 #endif
2340 #ifdef CONFIG_CPUSETS
2341 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2342 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2343 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2344 #endif
2345 #ifdef CONFIG_TRACE_IRQFLAGS
2346 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2347 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2348 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2349 	p->softirqs_enabled		= 1;
2350 	p->softirq_context		= 0;
2351 #endif
2352 
2353 	p->pagefault_disabled = 0;
2354 
2355 #ifdef CONFIG_LOCKDEP
2356 	lockdep_init_task(p);
2357 #endif
2358 
2359 #ifdef CONFIG_DEBUG_MUTEXES
2360 	p->blocked_on = NULL; /* not blocked yet */
2361 #endif
2362 #ifdef CONFIG_BCACHE
2363 	p->sequential_io	= 0;
2364 	p->sequential_io_avg	= 0;
2365 #endif
2366 #ifdef CONFIG_BPF_SYSCALL
2367 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2368 	p->bpf_ctx = NULL;
2369 #endif
2370 
2371 	/* Perform scheduler related setup. Assign this task to a CPU. */
2372 	retval = sched_fork(clone_flags, p);
2373 	if (retval)
2374 		goto bad_fork_cleanup_policy;
2375 
2376 	retval = perf_event_init_task(p, clone_flags);
2377 	if (retval)
2378 		goto bad_fork_cleanup_policy;
2379 	retval = audit_alloc(p);
2380 	if (retval)
2381 		goto bad_fork_cleanup_perf;
2382 	/* copy all the process information */
2383 	shm_init_task(p);
2384 	retval = security_task_alloc(p, clone_flags);
2385 	if (retval)
2386 		goto bad_fork_cleanup_audit;
2387 	retval = copy_semundo(clone_flags, p);
2388 	if (retval)
2389 		goto bad_fork_cleanup_security;
2390 	retval = copy_files(clone_flags, p);
2391 	if (retval)
2392 		goto bad_fork_cleanup_semundo;
2393 	retval = copy_fs(clone_flags, p);
2394 	if (retval)
2395 		goto bad_fork_cleanup_files;
2396 	retval = copy_sighand(clone_flags, p);
2397 	if (retval)
2398 		goto bad_fork_cleanup_fs;
2399 	retval = copy_signal(clone_flags, p);
2400 	if (retval)
2401 		goto bad_fork_cleanup_sighand;
2402 	retval = copy_mm(clone_flags, p);
2403 	if (retval)
2404 		goto bad_fork_cleanup_signal;
2405 	retval = copy_namespaces(clone_flags, p);
2406 	if (retval)
2407 		goto bad_fork_cleanup_mm;
2408 	retval = copy_io(clone_flags, p);
2409 	if (retval)
2410 		goto bad_fork_cleanup_namespaces;
2411 	retval = copy_thread(p, args);
2412 	if (retval)
2413 		goto bad_fork_cleanup_io;
2414 
2415 	stackleak_task_init(p);
2416 
2417 	if (pid != &init_struct_pid) {
2418 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2419 				args->set_tid_size);
2420 		if (IS_ERR(pid)) {
2421 			retval = PTR_ERR(pid);
2422 			goto bad_fork_cleanup_thread;
2423 		}
2424 	}
2425 
2426 	/*
2427 	 * This has to happen after we've potentially unshared the file
2428 	 * descriptor table (so that the pidfd doesn't leak into the child
2429 	 * if the fd table isn't shared).
2430 	 */
2431 	if (clone_flags & CLONE_PIDFD) {
2432 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2433 		if (retval < 0)
2434 			goto bad_fork_free_pid;
2435 
2436 		pidfd = retval;
2437 
2438 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2439 					      O_RDWR | O_CLOEXEC);
2440 		if (IS_ERR(pidfile)) {
2441 			put_unused_fd(pidfd);
2442 			retval = PTR_ERR(pidfile);
2443 			goto bad_fork_free_pid;
2444 		}
2445 		get_pid(pid);	/* held by pidfile now */
2446 
2447 		retval = put_user(pidfd, args->pidfd);
2448 		if (retval)
2449 			goto bad_fork_put_pidfd;
2450 	}
2451 
2452 #ifdef CONFIG_BLOCK
2453 	p->plug = NULL;
2454 #endif
2455 	futex_init_task(p);
2456 
2457 	/*
2458 	 * sigaltstack should be cleared when sharing the same VM
2459 	 */
2460 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2461 		sas_ss_reset(p);
2462 
2463 	/*
2464 	 * Syscall tracing and stepping should be turned off in the
2465 	 * child regardless of CLONE_PTRACE.
2466 	 */
2467 	user_disable_single_step(p);
2468 	clear_task_syscall_work(p, SYSCALL_TRACE);
2469 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2470 	clear_task_syscall_work(p, SYSCALL_EMU);
2471 #endif
2472 	clear_tsk_latency_tracing(p);
2473 
2474 	/* ok, now we should be set up.. */
2475 	p->pid = pid_nr(pid);
2476 	if (clone_flags & CLONE_THREAD) {
2477 		p->group_leader = current->group_leader;
2478 		p->tgid = current->tgid;
2479 	} else {
2480 		p->group_leader = p;
2481 		p->tgid = p->pid;
2482 	}
2483 
2484 	p->nr_dirtied = 0;
2485 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2486 	p->dirty_paused_when = 0;
2487 
2488 	p->pdeath_signal = 0;
2489 	INIT_LIST_HEAD(&p->thread_group);
2490 	p->task_works = NULL;
2491 	clear_posix_cputimers_work(p);
2492 
2493 #ifdef CONFIG_KRETPROBES
2494 	p->kretprobe_instances.first = NULL;
2495 #endif
2496 #ifdef CONFIG_RETHOOK
2497 	p->rethooks.first = NULL;
2498 #endif
2499 
2500 	/*
2501 	 * Ensure that the cgroup subsystem policies allow the new process to be
2502 	 * forked. It should be noted that the new process's css_set can be changed
2503 	 * between here and cgroup_post_fork() if an organisation operation is in
2504 	 * progress.
2505 	 */
2506 	retval = cgroup_can_fork(p, args);
2507 	if (retval)
2508 		goto bad_fork_put_pidfd;
2509 
2510 	/*
2511 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2512 	 * the new task on the correct runqueue. All this *before* the task
2513 	 * becomes visible.
2514 	 *
2515 	 * This isn't part of ->can_fork() because while the re-cloning is
2516 	 * cgroup specific, it unconditionally needs to place the task on a
2517 	 * runqueue.
2518 	 */
2519 	sched_cgroup_fork(p, args);
2520 
2521 	/*
2522 	 * From this point on we must avoid any synchronous user-space
2523 	 * communication until we take the tasklist-lock. In particular, we do
2524 	 * not want user-space to be able to predict the process start-time by
2525 	 * stalling fork(2) after we recorded the start_time but before it is
2526 	 * visible to the system.
2527 	 */
2528 
2529 	p->start_time = ktime_get_ns();
2530 	p->start_boottime = ktime_get_boottime_ns();
2531 
2532 	/*
2533 	 * Make it visible to the rest of the system, but dont wake it up yet.
2534 	 * Need tasklist lock for parent etc handling!
2535 	 */
2536 	write_lock_irq(&tasklist_lock);
2537 
2538 	/* CLONE_PARENT re-uses the old parent */
2539 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2540 		p->real_parent = current->real_parent;
2541 		p->parent_exec_id = current->parent_exec_id;
2542 		if (clone_flags & CLONE_THREAD)
2543 			p->exit_signal = -1;
2544 		else
2545 			p->exit_signal = current->group_leader->exit_signal;
2546 	} else {
2547 		p->real_parent = current;
2548 		p->parent_exec_id = current->self_exec_id;
2549 		p->exit_signal = args->exit_signal;
2550 	}
2551 
2552 	klp_copy_process(p);
2553 
2554 	sched_core_fork(p);
2555 
2556 	spin_lock(&current->sighand->siglock);
2557 
2558 	rv_task_fork(p);
2559 
2560 	rseq_fork(p, clone_flags);
2561 
2562 	/* Don't start children in a dying pid namespace */
2563 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2564 		retval = -ENOMEM;
2565 		goto bad_fork_cancel_cgroup;
2566 	}
2567 
2568 	/* Let kill terminate clone/fork in the middle */
2569 	if (fatal_signal_pending(current)) {
2570 		retval = -EINTR;
2571 		goto bad_fork_cancel_cgroup;
2572 	}
2573 
2574 	/* No more failure paths after this point. */
2575 
2576 	/*
2577 	 * Copy seccomp details explicitly here, in case they were changed
2578 	 * before holding sighand lock.
2579 	 */
2580 	copy_seccomp(p);
2581 
2582 	init_task_pid_links(p);
2583 	if (likely(p->pid)) {
2584 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2585 
2586 		init_task_pid(p, PIDTYPE_PID, pid);
2587 		if (thread_group_leader(p)) {
2588 			init_task_pid(p, PIDTYPE_TGID, pid);
2589 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2590 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2591 
2592 			if (is_child_reaper(pid)) {
2593 				ns_of_pid(pid)->child_reaper = p;
2594 				p->signal->flags |= SIGNAL_UNKILLABLE;
2595 			}
2596 			p->signal->shared_pending.signal = delayed.signal;
2597 			p->signal->tty = tty_kref_get(current->signal->tty);
2598 			/*
2599 			 * Inherit has_child_subreaper flag under the same
2600 			 * tasklist_lock with adding child to the process tree
2601 			 * for propagate_has_child_subreaper optimization.
2602 			 */
2603 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2604 							 p->real_parent->signal->is_child_subreaper;
2605 			list_add_tail(&p->sibling, &p->real_parent->children);
2606 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2607 			attach_pid(p, PIDTYPE_TGID);
2608 			attach_pid(p, PIDTYPE_PGID);
2609 			attach_pid(p, PIDTYPE_SID);
2610 			__this_cpu_inc(process_counts);
2611 		} else {
2612 			current->signal->nr_threads++;
2613 			current->signal->quick_threads++;
2614 			atomic_inc(&current->signal->live);
2615 			refcount_inc(&current->signal->sigcnt);
2616 			task_join_group_stop(p);
2617 			list_add_tail_rcu(&p->thread_group,
2618 					  &p->group_leader->thread_group);
2619 			list_add_tail_rcu(&p->thread_node,
2620 					  &p->signal->thread_head);
2621 		}
2622 		attach_pid(p, PIDTYPE_PID);
2623 		nr_threads++;
2624 	}
2625 	total_forks++;
2626 	hlist_del_init(&delayed.node);
2627 	spin_unlock(&current->sighand->siglock);
2628 	syscall_tracepoint_update(p);
2629 	write_unlock_irq(&tasklist_lock);
2630 
2631 	if (pidfile)
2632 		fd_install(pidfd, pidfile);
2633 
2634 	proc_fork_connector(p);
2635 	sched_post_fork(p);
2636 	cgroup_post_fork(p, args);
2637 	perf_event_fork(p);
2638 
2639 	trace_task_newtask(p, clone_flags);
2640 	uprobe_copy_process(p, clone_flags);
2641 
2642 	copy_oom_score_adj(clone_flags, p);
2643 
2644 	return p;
2645 
2646 bad_fork_cancel_cgroup:
2647 	sched_core_free(p);
2648 	spin_unlock(&current->sighand->siglock);
2649 	write_unlock_irq(&tasklist_lock);
2650 	cgroup_cancel_fork(p, args);
2651 bad_fork_put_pidfd:
2652 	if (clone_flags & CLONE_PIDFD) {
2653 		fput(pidfile);
2654 		put_unused_fd(pidfd);
2655 	}
2656 bad_fork_free_pid:
2657 	if (pid != &init_struct_pid)
2658 		free_pid(pid);
2659 bad_fork_cleanup_thread:
2660 	exit_thread(p);
2661 bad_fork_cleanup_io:
2662 	if (p->io_context)
2663 		exit_io_context(p);
2664 bad_fork_cleanup_namespaces:
2665 	exit_task_namespaces(p);
2666 bad_fork_cleanup_mm:
2667 	if (p->mm) {
2668 		mm_clear_owner(p->mm, p);
2669 		mmput(p->mm);
2670 	}
2671 bad_fork_cleanup_signal:
2672 	if (!(clone_flags & CLONE_THREAD))
2673 		free_signal_struct(p->signal);
2674 bad_fork_cleanup_sighand:
2675 	__cleanup_sighand(p->sighand);
2676 bad_fork_cleanup_fs:
2677 	exit_fs(p); /* blocking */
2678 bad_fork_cleanup_files:
2679 	exit_files(p); /* blocking */
2680 bad_fork_cleanup_semundo:
2681 	exit_sem(p);
2682 bad_fork_cleanup_security:
2683 	security_task_free(p);
2684 bad_fork_cleanup_audit:
2685 	audit_free(p);
2686 bad_fork_cleanup_perf:
2687 	perf_event_free_task(p);
2688 bad_fork_cleanup_policy:
2689 	lockdep_free_task(p);
2690 #ifdef CONFIG_NUMA
2691 	mpol_put(p->mempolicy);
2692 #endif
2693 bad_fork_cleanup_delayacct:
2694 	delayacct_tsk_free(p);
2695 bad_fork_cleanup_count:
2696 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2697 	exit_creds(p);
2698 bad_fork_free:
2699 	WRITE_ONCE(p->__state, TASK_DEAD);
2700 	exit_task_stack_account(p);
2701 	put_task_stack(p);
2702 	delayed_free_task(p);
2703 fork_out:
2704 	spin_lock_irq(&current->sighand->siglock);
2705 	hlist_del_init(&delayed.node);
2706 	spin_unlock_irq(&current->sighand->siglock);
2707 	return ERR_PTR(retval);
2708 }
2709 
2710 static inline void init_idle_pids(struct task_struct *idle)
2711 {
2712 	enum pid_type type;
2713 
2714 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2715 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2716 		init_task_pid(idle, type, &init_struct_pid);
2717 	}
2718 }
2719 
2720 static int idle_dummy(void *dummy)
2721 {
2722 	/* This function is never called */
2723 	return 0;
2724 }
2725 
2726 struct task_struct * __init fork_idle(int cpu)
2727 {
2728 	struct task_struct *task;
2729 	struct kernel_clone_args args = {
2730 		.flags		= CLONE_VM,
2731 		.fn		= &idle_dummy,
2732 		.fn_arg		= NULL,
2733 		.kthread	= 1,
2734 		.idle		= 1,
2735 	};
2736 
2737 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2738 	if (!IS_ERR(task)) {
2739 		init_idle_pids(task);
2740 		init_idle(task, cpu);
2741 	}
2742 
2743 	return task;
2744 }
2745 
2746 /*
2747  * This is like kernel_clone(), but shaved down and tailored to just
2748  * creating io_uring workers. It returns a created task, or an error pointer.
2749  * The returned task is inactive, and the caller must fire it up through
2750  * wake_up_new_task(p). All signals are blocked in the created task.
2751  */
2752 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2753 {
2754 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2755 				CLONE_IO;
2756 	struct kernel_clone_args args = {
2757 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2758 				    CLONE_UNTRACED) & ~CSIGNAL),
2759 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2760 		.fn		= fn,
2761 		.fn_arg		= arg,
2762 		.io_thread	= 1,
2763 	};
2764 
2765 	return copy_process(NULL, 0, node, &args);
2766 }
2767 
2768 /*
2769  *  Ok, this is the main fork-routine.
2770  *
2771  * It copies the process, and if successful kick-starts
2772  * it and waits for it to finish using the VM if required.
2773  *
2774  * args->exit_signal is expected to be checked for sanity by the caller.
2775  */
2776 pid_t kernel_clone(struct kernel_clone_args *args)
2777 {
2778 	u64 clone_flags = args->flags;
2779 	struct completion vfork;
2780 	struct pid *pid;
2781 	struct task_struct *p;
2782 	int trace = 0;
2783 	pid_t nr;
2784 
2785 	/*
2786 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2787 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2788 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2789 	 * field in struct clone_args and it still doesn't make sense to have
2790 	 * them both point at the same memory location. Performing this check
2791 	 * here has the advantage that we don't need to have a separate helper
2792 	 * to check for legacy clone().
2793 	 */
2794 	if ((args->flags & CLONE_PIDFD) &&
2795 	    (args->flags & CLONE_PARENT_SETTID) &&
2796 	    (args->pidfd == args->parent_tid))
2797 		return -EINVAL;
2798 
2799 	/*
2800 	 * Determine whether and which event to report to ptracer.  When
2801 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2802 	 * requested, no event is reported; otherwise, report if the event
2803 	 * for the type of forking is enabled.
2804 	 */
2805 	if (!(clone_flags & CLONE_UNTRACED)) {
2806 		if (clone_flags & CLONE_VFORK)
2807 			trace = PTRACE_EVENT_VFORK;
2808 		else if (args->exit_signal != SIGCHLD)
2809 			trace = PTRACE_EVENT_CLONE;
2810 		else
2811 			trace = PTRACE_EVENT_FORK;
2812 
2813 		if (likely(!ptrace_event_enabled(current, trace)))
2814 			trace = 0;
2815 	}
2816 
2817 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2818 	add_latent_entropy();
2819 
2820 	if (IS_ERR(p))
2821 		return PTR_ERR(p);
2822 
2823 	/*
2824 	 * Do this prior waking up the new thread - the thread pointer
2825 	 * might get invalid after that point, if the thread exits quickly.
2826 	 */
2827 	trace_sched_process_fork(current, p);
2828 
2829 	pid = get_task_pid(p, PIDTYPE_PID);
2830 	nr = pid_vnr(pid);
2831 
2832 	if (clone_flags & CLONE_PARENT_SETTID)
2833 		put_user(nr, args->parent_tid);
2834 
2835 	if (clone_flags & CLONE_VFORK) {
2836 		p->vfork_done = &vfork;
2837 		init_completion(&vfork);
2838 		get_task_struct(p);
2839 	}
2840 
2841 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2842 		/* lock the task to synchronize with memcg migration */
2843 		task_lock(p);
2844 		lru_gen_add_mm(p->mm);
2845 		task_unlock(p);
2846 	}
2847 
2848 	wake_up_new_task(p);
2849 
2850 	/* forking complete and child started to run, tell ptracer */
2851 	if (unlikely(trace))
2852 		ptrace_event_pid(trace, pid);
2853 
2854 	if (clone_flags & CLONE_VFORK) {
2855 		if (!wait_for_vfork_done(p, &vfork))
2856 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2857 	}
2858 
2859 	put_pid(pid);
2860 	return nr;
2861 }
2862 
2863 /*
2864  * Create a kernel thread.
2865  */
2866 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2867 {
2868 	struct kernel_clone_args args = {
2869 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2870 				    CLONE_UNTRACED) & ~CSIGNAL),
2871 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2872 		.fn		= fn,
2873 		.fn_arg		= arg,
2874 		.kthread	= 1,
2875 	};
2876 
2877 	return kernel_clone(&args);
2878 }
2879 
2880 /*
2881  * Create a user mode thread.
2882  */
2883 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2884 {
2885 	struct kernel_clone_args args = {
2886 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2887 				    CLONE_UNTRACED) & ~CSIGNAL),
2888 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2889 		.fn		= fn,
2890 		.fn_arg		= arg,
2891 	};
2892 
2893 	return kernel_clone(&args);
2894 }
2895 
2896 #ifdef __ARCH_WANT_SYS_FORK
2897 SYSCALL_DEFINE0(fork)
2898 {
2899 #ifdef CONFIG_MMU
2900 	struct kernel_clone_args args = {
2901 		.exit_signal = SIGCHLD,
2902 	};
2903 
2904 	return kernel_clone(&args);
2905 #else
2906 	/* can not support in nommu mode */
2907 	return -EINVAL;
2908 #endif
2909 }
2910 #endif
2911 
2912 #ifdef __ARCH_WANT_SYS_VFORK
2913 SYSCALL_DEFINE0(vfork)
2914 {
2915 	struct kernel_clone_args args = {
2916 		.flags		= CLONE_VFORK | CLONE_VM,
2917 		.exit_signal	= SIGCHLD,
2918 	};
2919 
2920 	return kernel_clone(&args);
2921 }
2922 #endif
2923 
2924 #ifdef __ARCH_WANT_SYS_CLONE
2925 #ifdef CONFIG_CLONE_BACKWARDS
2926 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2927 		 int __user *, parent_tidptr,
2928 		 unsigned long, tls,
2929 		 int __user *, child_tidptr)
2930 #elif defined(CONFIG_CLONE_BACKWARDS2)
2931 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2932 		 int __user *, parent_tidptr,
2933 		 int __user *, child_tidptr,
2934 		 unsigned long, tls)
2935 #elif defined(CONFIG_CLONE_BACKWARDS3)
2936 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2937 		int, stack_size,
2938 		int __user *, parent_tidptr,
2939 		int __user *, child_tidptr,
2940 		unsigned long, tls)
2941 #else
2942 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2943 		 int __user *, parent_tidptr,
2944 		 int __user *, child_tidptr,
2945 		 unsigned long, tls)
2946 #endif
2947 {
2948 	struct kernel_clone_args args = {
2949 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2950 		.pidfd		= parent_tidptr,
2951 		.child_tid	= child_tidptr,
2952 		.parent_tid	= parent_tidptr,
2953 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2954 		.stack		= newsp,
2955 		.tls		= tls,
2956 	};
2957 
2958 	return kernel_clone(&args);
2959 }
2960 #endif
2961 
2962 #ifdef __ARCH_WANT_SYS_CLONE3
2963 
2964 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2965 					      struct clone_args __user *uargs,
2966 					      size_t usize)
2967 {
2968 	int err;
2969 	struct clone_args args;
2970 	pid_t *kset_tid = kargs->set_tid;
2971 
2972 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2973 		     CLONE_ARGS_SIZE_VER0);
2974 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2975 		     CLONE_ARGS_SIZE_VER1);
2976 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2977 		     CLONE_ARGS_SIZE_VER2);
2978 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2979 
2980 	if (unlikely(usize > PAGE_SIZE))
2981 		return -E2BIG;
2982 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2983 		return -EINVAL;
2984 
2985 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2986 	if (err)
2987 		return err;
2988 
2989 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2990 		return -EINVAL;
2991 
2992 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2993 		return -EINVAL;
2994 
2995 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2996 		return -EINVAL;
2997 
2998 	/*
2999 	 * Verify that higher 32bits of exit_signal are unset and that
3000 	 * it is a valid signal
3001 	 */
3002 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3003 		     !valid_signal(args.exit_signal)))
3004 		return -EINVAL;
3005 
3006 	if ((args.flags & CLONE_INTO_CGROUP) &&
3007 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3008 		return -EINVAL;
3009 
3010 	*kargs = (struct kernel_clone_args){
3011 		.flags		= args.flags,
3012 		.pidfd		= u64_to_user_ptr(args.pidfd),
3013 		.child_tid	= u64_to_user_ptr(args.child_tid),
3014 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3015 		.exit_signal	= args.exit_signal,
3016 		.stack		= args.stack,
3017 		.stack_size	= args.stack_size,
3018 		.tls		= args.tls,
3019 		.set_tid_size	= args.set_tid_size,
3020 		.cgroup		= args.cgroup,
3021 	};
3022 
3023 	if (args.set_tid &&
3024 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3025 			(kargs->set_tid_size * sizeof(pid_t))))
3026 		return -EFAULT;
3027 
3028 	kargs->set_tid = kset_tid;
3029 
3030 	return 0;
3031 }
3032 
3033 /**
3034  * clone3_stack_valid - check and prepare stack
3035  * @kargs: kernel clone args
3036  *
3037  * Verify that the stack arguments userspace gave us are sane.
3038  * In addition, set the stack direction for userspace since it's easy for us to
3039  * determine.
3040  */
3041 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3042 {
3043 	if (kargs->stack == 0) {
3044 		if (kargs->stack_size > 0)
3045 			return false;
3046 	} else {
3047 		if (kargs->stack_size == 0)
3048 			return false;
3049 
3050 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3051 			return false;
3052 
3053 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3054 		kargs->stack += kargs->stack_size;
3055 #endif
3056 	}
3057 
3058 	return true;
3059 }
3060 
3061 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3062 {
3063 	/* Verify that no unknown flags are passed along. */
3064 	if (kargs->flags &
3065 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3066 		return false;
3067 
3068 	/*
3069 	 * - make the CLONE_DETACHED bit reusable for clone3
3070 	 * - make the CSIGNAL bits reusable for clone3
3071 	 */
3072 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3073 		return false;
3074 
3075 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3076 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3077 		return false;
3078 
3079 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3080 	    kargs->exit_signal)
3081 		return false;
3082 
3083 	if (!clone3_stack_valid(kargs))
3084 		return false;
3085 
3086 	return true;
3087 }
3088 
3089 /**
3090  * clone3 - create a new process with specific properties
3091  * @uargs: argument structure
3092  * @size:  size of @uargs
3093  *
3094  * clone3() is the extensible successor to clone()/clone2().
3095  * It takes a struct as argument that is versioned by its size.
3096  *
3097  * Return: On success, a positive PID for the child process.
3098  *         On error, a negative errno number.
3099  */
3100 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3101 {
3102 	int err;
3103 
3104 	struct kernel_clone_args kargs;
3105 	pid_t set_tid[MAX_PID_NS_LEVEL];
3106 
3107 	kargs.set_tid = set_tid;
3108 
3109 	err = copy_clone_args_from_user(&kargs, uargs, size);
3110 	if (err)
3111 		return err;
3112 
3113 	if (!clone3_args_valid(&kargs))
3114 		return -EINVAL;
3115 
3116 	return kernel_clone(&kargs);
3117 }
3118 #endif
3119 
3120 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3121 {
3122 	struct task_struct *leader, *parent, *child;
3123 	int res;
3124 
3125 	read_lock(&tasklist_lock);
3126 	leader = top = top->group_leader;
3127 down:
3128 	for_each_thread(leader, parent) {
3129 		list_for_each_entry(child, &parent->children, sibling) {
3130 			res = visitor(child, data);
3131 			if (res) {
3132 				if (res < 0)
3133 					goto out;
3134 				leader = child;
3135 				goto down;
3136 			}
3137 up:
3138 			;
3139 		}
3140 	}
3141 
3142 	if (leader != top) {
3143 		child = leader;
3144 		parent = child->real_parent;
3145 		leader = parent->group_leader;
3146 		goto up;
3147 	}
3148 out:
3149 	read_unlock(&tasklist_lock);
3150 }
3151 
3152 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3153 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3154 #endif
3155 
3156 static void sighand_ctor(void *data)
3157 {
3158 	struct sighand_struct *sighand = data;
3159 
3160 	spin_lock_init(&sighand->siglock);
3161 	init_waitqueue_head(&sighand->signalfd_wqh);
3162 }
3163 
3164 void __init mm_cache_init(void)
3165 {
3166 	unsigned int mm_size;
3167 
3168 	/*
3169 	 * The mm_cpumask is located at the end of mm_struct, and is
3170 	 * dynamically sized based on the maximum CPU number this system
3171 	 * can have, taking hotplug into account (nr_cpu_ids).
3172 	 */
3173 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3174 
3175 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3176 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3177 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3178 			offsetof(struct mm_struct, saved_auxv),
3179 			sizeof_field(struct mm_struct, saved_auxv),
3180 			NULL);
3181 }
3182 
3183 void __init proc_caches_init(void)
3184 {
3185 	sighand_cachep = kmem_cache_create("sighand_cache",
3186 			sizeof(struct sighand_struct), 0,
3187 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3188 			SLAB_ACCOUNT, sighand_ctor);
3189 	signal_cachep = kmem_cache_create("signal_cache",
3190 			sizeof(struct signal_struct), 0,
3191 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3192 			NULL);
3193 	files_cachep = kmem_cache_create("files_cache",
3194 			sizeof(struct files_struct), 0,
3195 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3196 			NULL);
3197 	fs_cachep = kmem_cache_create("fs_cache",
3198 			sizeof(struct fs_struct), 0,
3199 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3200 			NULL);
3201 
3202 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3203 #ifdef CONFIG_PER_VMA_LOCK
3204 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3205 #endif
3206 	mmap_init();
3207 	nsproxy_cache_init();
3208 }
3209 
3210 /*
3211  * Check constraints on flags passed to the unshare system call.
3212  */
3213 static int check_unshare_flags(unsigned long unshare_flags)
3214 {
3215 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3216 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3217 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3218 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3219 				CLONE_NEWTIME))
3220 		return -EINVAL;
3221 	/*
3222 	 * Not implemented, but pretend it works if there is nothing
3223 	 * to unshare.  Note that unsharing the address space or the
3224 	 * signal handlers also need to unshare the signal queues (aka
3225 	 * CLONE_THREAD).
3226 	 */
3227 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3228 		if (!thread_group_empty(current))
3229 			return -EINVAL;
3230 	}
3231 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3232 		if (refcount_read(&current->sighand->count) > 1)
3233 			return -EINVAL;
3234 	}
3235 	if (unshare_flags & CLONE_VM) {
3236 		if (!current_is_single_threaded())
3237 			return -EINVAL;
3238 	}
3239 
3240 	return 0;
3241 }
3242 
3243 /*
3244  * Unshare the filesystem structure if it is being shared
3245  */
3246 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3247 {
3248 	struct fs_struct *fs = current->fs;
3249 
3250 	if (!(unshare_flags & CLONE_FS) || !fs)
3251 		return 0;
3252 
3253 	/* don't need lock here; in the worst case we'll do useless copy */
3254 	if (fs->users == 1)
3255 		return 0;
3256 
3257 	*new_fsp = copy_fs_struct(fs);
3258 	if (!*new_fsp)
3259 		return -ENOMEM;
3260 
3261 	return 0;
3262 }
3263 
3264 /*
3265  * Unshare file descriptor table if it is being shared
3266  */
3267 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3268 	       struct files_struct **new_fdp)
3269 {
3270 	struct files_struct *fd = current->files;
3271 	int error = 0;
3272 
3273 	if ((unshare_flags & CLONE_FILES) &&
3274 	    (fd && atomic_read(&fd->count) > 1)) {
3275 		*new_fdp = dup_fd(fd, max_fds, &error);
3276 		if (!*new_fdp)
3277 			return error;
3278 	}
3279 
3280 	return 0;
3281 }
3282 
3283 /*
3284  * unshare allows a process to 'unshare' part of the process
3285  * context which was originally shared using clone.  copy_*
3286  * functions used by kernel_clone() cannot be used here directly
3287  * because they modify an inactive task_struct that is being
3288  * constructed. Here we are modifying the current, active,
3289  * task_struct.
3290  */
3291 int ksys_unshare(unsigned long unshare_flags)
3292 {
3293 	struct fs_struct *fs, *new_fs = NULL;
3294 	struct files_struct *new_fd = NULL;
3295 	struct cred *new_cred = NULL;
3296 	struct nsproxy *new_nsproxy = NULL;
3297 	int do_sysvsem = 0;
3298 	int err;
3299 
3300 	/*
3301 	 * If unsharing a user namespace must also unshare the thread group
3302 	 * and unshare the filesystem root and working directories.
3303 	 */
3304 	if (unshare_flags & CLONE_NEWUSER)
3305 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3306 	/*
3307 	 * If unsharing vm, must also unshare signal handlers.
3308 	 */
3309 	if (unshare_flags & CLONE_VM)
3310 		unshare_flags |= CLONE_SIGHAND;
3311 	/*
3312 	 * If unsharing a signal handlers, must also unshare the signal queues.
3313 	 */
3314 	if (unshare_flags & CLONE_SIGHAND)
3315 		unshare_flags |= CLONE_THREAD;
3316 	/*
3317 	 * If unsharing namespace, must also unshare filesystem information.
3318 	 */
3319 	if (unshare_flags & CLONE_NEWNS)
3320 		unshare_flags |= CLONE_FS;
3321 
3322 	err = check_unshare_flags(unshare_flags);
3323 	if (err)
3324 		goto bad_unshare_out;
3325 	/*
3326 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3327 	 * to a new ipc namespace, the semaphore arrays from the old
3328 	 * namespace are unreachable.
3329 	 */
3330 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3331 		do_sysvsem = 1;
3332 	err = unshare_fs(unshare_flags, &new_fs);
3333 	if (err)
3334 		goto bad_unshare_out;
3335 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3336 	if (err)
3337 		goto bad_unshare_cleanup_fs;
3338 	err = unshare_userns(unshare_flags, &new_cred);
3339 	if (err)
3340 		goto bad_unshare_cleanup_fd;
3341 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3342 					 new_cred, new_fs);
3343 	if (err)
3344 		goto bad_unshare_cleanup_cred;
3345 
3346 	if (new_cred) {
3347 		err = set_cred_ucounts(new_cred);
3348 		if (err)
3349 			goto bad_unshare_cleanup_cred;
3350 	}
3351 
3352 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3353 		if (do_sysvsem) {
3354 			/*
3355 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3356 			 */
3357 			exit_sem(current);
3358 		}
3359 		if (unshare_flags & CLONE_NEWIPC) {
3360 			/* Orphan segments in old ns (see sem above). */
3361 			exit_shm(current);
3362 			shm_init_task(current);
3363 		}
3364 
3365 		if (new_nsproxy)
3366 			switch_task_namespaces(current, new_nsproxy);
3367 
3368 		task_lock(current);
3369 
3370 		if (new_fs) {
3371 			fs = current->fs;
3372 			spin_lock(&fs->lock);
3373 			current->fs = new_fs;
3374 			if (--fs->users)
3375 				new_fs = NULL;
3376 			else
3377 				new_fs = fs;
3378 			spin_unlock(&fs->lock);
3379 		}
3380 
3381 		if (new_fd)
3382 			swap(current->files, new_fd);
3383 
3384 		task_unlock(current);
3385 
3386 		if (new_cred) {
3387 			/* Install the new user namespace */
3388 			commit_creds(new_cred);
3389 			new_cred = NULL;
3390 		}
3391 	}
3392 
3393 	perf_event_namespaces(current);
3394 
3395 bad_unshare_cleanup_cred:
3396 	if (new_cred)
3397 		put_cred(new_cred);
3398 bad_unshare_cleanup_fd:
3399 	if (new_fd)
3400 		put_files_struct(new_fd);
3401 
3402 bad_unshare_cleanup_fs:
3403 	if (new_fs)
3404 		free_fs_struct(new_fs);
3405 
3406 bad_unshare_out:
3407 	return err;
3408 }
3409 
3410 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3411 {
3412 	return ksys_unshare(unshare_flags);
3413 }
3414 
3415 /*
3416  *	Helper to unshare the files of the current task.
3417  *	We don't want to expose copy_files internals to
3418  *	the exec layer of the kernel.
3419  */
3420 
3421 int unshare_files(void)
3422 {
3423 	struct task_struct *task = current;
3424 	struct files_struct *old, *copy = NULL;
3425 	int error;
3426 
3427 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3428 	if (error || !copy)
3429 		return error;
3430 
3431 	old = task->files;
3432 	task_lock(task);
3433 	task->files = copy;
3434 	task_unlock(task);
3435 	put_files_struct(old);
3436 	return 0;
3437 }
3438 
3439 int sysctl_max_threads(struct ctl_table *table, int write,
3440 		       void *buffer, size_t *lenp, loff_t *ppos)
3441 {
3442 	struct ctl_table t;
3443 	int ret;
3444 	int threads = max_threads;
3445 	int min = 1;
3446 	int max = MAX_THREADS;
3447 
3448 	t = *table;
3449 	t.data = &threads;
3450 	t.extra1 = &min;
3451 	t.extra2 = &max;
3452 
3453 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3454 	if (ret || !write)
3455 		return ret;
3456 
3457 	max_threads = threads;
3458 
3459 	return 0;
3460 }
3461