xref: /openbmc/linux/kernel/fork.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/proc_fs.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
70 #include <linux/signalfd.h>
71 
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
78 
79 #include <trace/events/sched.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/task.h>
83 
84 /*
85  * Protected counters by write_lock_irq(&tasklist_lock)
86  */
87 unsigned long total_forks;	/* Handle normal Linux uptimes. */
88 int nr_threads;			/* The idle threads do not count.. */
89 
90 int max_threads;		/* tunable limit on nr_threads */
91 
92 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
93 
94 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
95 
96 #ifdef CONFIG_PROVE_RCU
97 int lockdep_tasklist_lock_is_held(void)
98 {
99 	return lockdep_is_held(&tasklist_lock);
100 }
101 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
102 #endif /* #ifdef CONFIG_PROVE_RCU */
103 
104 int nr_processes(void)
105 {
106 	int cpu;
107 	int total = 0;
108 
109 	for_each_possible_cpu(cpu)
110 		total += per_cpu(process_counts, cpu);
111 
112 	return total;
113 }
114 
115 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
116 # define alloc_task_struct_node(node)		\
117 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
118 # define free_task_struct(tsk)			\
119 		kmem_cache_free(task_struct_cachep, (tsk))
120 static struct kmem_cache *task_struct_cachep;
121 #endif
122 
123 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
124 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
125 						  int node)
126 {
127 #ifdef CONFIG_DEBUG_STACK_USAGE
128 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
129 #else
130 	gfp_t mask = GFP_KERNEL;
131 #endif
132 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
133 
134 	return page ? page_address(page) : NULL;
135 }
136 
137 static inline void free_thread_info(struct thread_info *ti)
138 {
139 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
140 }
141 #endif
142 
143 /* SLAB cache for signal_struct structures (tsk->signal) */
144 static struct kmem_cache *signal_cachep;
145 
146 /* SLAB cache for sighand_struct structures (tsk->sighand) */
147 struct kmem_cache *sighand_cachep;
148 
149 /* SLAB cache for files_struct structures (tsk->files) */
150 struct kmem_cache *files_cachep;
151 
152 /* SLAB cache for fs_struct structures (tsk->fs) */
153 struct kmem_cache *fs_cachep;
154 
155 /* SLAB cache for vm_area_struct structures */
156 struct kmem_cache *vm_area_cachep;
157 
158 /* SLAB cache for mm_struct structures (tsk->mm) */
159 static struct kmem_cache *mm_cachep;
160 
161 static void account_kernel_stack(struct thread_info *ti, int account)
162 {
163 	struct zone *zone = page_zone(virt_to_page(ti));
164 
165 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
166 }
167 
168 void free_task(struct task_struct *tsk)
169 {
170 	account_kernel_stack(tsk->stack, -1);
171 	free_thread_info(tsk->stack);
172 	rt_mutex_debug_task_free(tsk);
173 	ftrace_graph_exit_task(tsk);
174 	free_task_struct(tsk);
175 }
176 EXPORT_SYMBOL(free_task);
177 
178 static inline void free_signal_struct(struct signal_struct *sig)
179 {
180 	taskstats_tgid_free(sig);
181 	sched_autogroup_exit(sig);
182 	kmem_cache_free(signal_cachep, sig);
183 }
184 
185 static inline void put_signal_struct(struct signal_struct *sig)
186 {
187 	if (atomic_dec_and_test(&sig->sigcnt))
188 		free_signal_struct(sig);
189 }
190 
191 void __put_task_struct(struct task_struct *tsk)
192 {
193 	WARN_ON(!tsk->exit_state);
194 	WARN_ON(atomic_read(&tsk->usage));
195 	WARN_ON(tsk == current);
196 
197 	security_task_free(tsk);
198 	exit_creds(tsk);
199 	delayacct_tsk_free(tsk);
200 	put_signal_struct(tsk->signal);
201 
202 	if (!profile_handoff_task(tsk))
203 		free_task(tsk);
204 }
205 EXPORT_SYMBOL_GPL(__put_task_struct);
206 
207 /*
208  * macro override instead of weak attribute alias, to workaround
209  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
210  */
211 #ifndef arch_task_cache_init
212 #define arch_task_cache_init()
213 #endif
214 
215 void __init fork_init(unsigned long mempages)
216 {
217 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
218 #ifndef ARCH_MIN_TASKALIGN
219 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
220 #endif
221 	/* create a slab on which task_structs can be allocated */
222 	task_struct_cachep =
223 		kmem_cache_create("task_struct", sizeof(struct task_struct),
224 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
225 #endif
226 
227 	/* do the arch specific task caches init */
228 	arch_task_cache_init();
229 
230 	/*
231 	 * The default maximum number of threads is set to a safe
232 	 * value: the thread structures can take up at most half
233 	 * of memory.
234 	 */
235 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
236 
237 	/*
238 	 * we need to allow at least 20 threads to boot a system
239 	 */
240 	if (max_threads < 20)
241 		max_threads = 20;
242 
243 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
244 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
245 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
246 		init_task.signal->rlim[RLIMIT_NPROC];
247 }
248 
249 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
250 					       struct task_struct *src)
251 {
252 	*dst = *src;
253 	return 0;
254 }
255 
256 static struct task_struct *dup_task_struct(struct task_struct *orig)
257 {
258 	struct task_struct *tsk;
259 	struct thread_info *ti;
260 	unsigned long *stackend;
261 	int node = tsk_fork_get_node(orig);
262 	int err;
263 
264 	prepare_to_copy(orig);
265 
266 	tsk = alloc_task_struct_node(node);
267 	if (!tsk)
268 		return NULL;
269 
270 	ti = alloc_thread_info_node(tsk, node);
271 	if (!ti) {
272 		free_task_struct(tsk);
273 		return NULL;
274 	}
275 
276 	err = arch_dup_task_struct(tsk, orig);
277 	if (err)
278 		goto out;
279 
280 	tsk->stack = ti;
281 
282 	setup_thread_stack(tsk, orig);
283 	clear_user_return_notifier(tsk);
284 	clear_tsk_need_resched(tsk);
285 	stackend = end_of_stack(tsk);
286 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
287 
288 #ifdef CONFIG_CC_STACKPROTECTOR
289 	tsk->stack_canary = get_random_int();
290 #endif
291 
292 	/*
293 	 * One for us, one for whoever does the "release_task()" (usually
294 	 * parent)
295 	 */
296 	atomic_set(&tsk->usage, 2);
297 #ifdef CONFIG_BLK_DEV_IO_TRACE
298 	tsk->btrace_seq = 0;
299 #endif
300 	tsk->splice_pipe = NULL;
301 
302 	account_kernel_stack(ti, 1);
303 
304 	return tsk;
305 
306 out:
307 	free_thread_info(ti);
308 	free_task_struct(tsk);
309 	return NULL;
310 }
311 
312 #ifdef CONFIG_MMU
313 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
314 {
315 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
316 	struct rb_node **rb_link, *rb_parent;
317 	int retval;
318 	unsigned long charge;
319 	struct mempolicy *pol;
320 
321 	down_write(&oldmm->mmap_sem);
322 	flush_cache_dup_mm(oldmm);
323 	/*
324 	 * Not linked in yet - no deadlock potential:
325 	 */
326 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
327 
328 	mm->locked_vm = 0;
329 	mm->mmap = NULL;
330 	mm->mmap_cache = NULL;
331 	mm->free_area_cache = oldmm->mmap_base;
332 	mm->cached_hole_size = ~0UL;
333 	mm->map_count = 0;
334 	cpumask_clear(mm_cpumask(mm));
335 	mm->mm_rb = RB_ROOT;
336 	rb_link = &mm->mm_rb.rb_node;
337 	rb_parent = NULL;
338 	pprev = &mm->mmap;
339 	retval = ksm_fork(mm, oldmm);
340 	if (retval)
341 		goto out;
342 	retval = khugepaged_fork(mm, oldmm);
343 	if (retval)
344 		goto out;
345 
346 	prev = NULL;
347 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
348 		struct file *file;
349 
350 		if (mpnt->vm_flags & VM_DONTCOPY) {
351 			long pages = vma_pages(mpnt);
352 			mm->total_vm -= pages;
353 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
354 								-pages);
355 			continue;
356 		}
357 		charge = 0;
358 		if (mpnt->vm_flags & VM_ACCOUNT) {
359 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
360 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
361 				goto fail_nomem;
362 			charge = len;
363 		}
364 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
365 		if (!tmp)
366 			goto fail_nomem;
367 		*tmp = *mpnt;
368 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
369 		pol = mpol_dup(vma_policy(mpnt));
370 		retval = PTR_ERR(pol);
371 		if (IS_ERR(pol))
372 			goto fail_nomem_policy;
373 		vma_set_policy(tmp, pol);
374 		tmp->vm_mm = mm;
375 		if (anon_vma_fork(tmp, mpnt))
376 			goto fail_nomem_anon_vma_fork;
377 		tmp->vm_flags &= ~VM_LOCKED;
378 		tmp->vm_next = tmp->vm_prev = NULL;
379 		file = tmp->vm_file;
380 		if (file) {
381 			struct inode *inode = file->f_path.dentry->d_inode;
382 			struct address_space *mapping = file->f_mapping;
383 
384 			get_file(file);
385 			if (tmp->vm_flags & VM_DENYWRITE)
386 				atomic_dec(&inode->i_writecount);
387 			mutex_lock(&mapping->i_mmap_mutex);
388 			if (tmp->vm_flags & VM_SHARED)
389 				mapping->i_mmap_writable++;
390 			flush_dcache_mmap_lock(mapping);
391 			/* insert tmp into the share list, just after mpnt */
392 			vma_prio_tree_add(tmp, mpnt);
393 			flush_dcache_mmap_unlock(mapping);
394 			mutex_unlock(&mapping->i_mmap_mutex);
395 		}
396 
397 		/*
398 		 * Clear hugetlb-related page reserves for children. This only
399 		 * affects MAP_PRIVATE mappings. Faults generated by the child
400 		 * are not guaranteed to succeed, even if read-only
401 		 */
402 		if (is_vm_hugetlb_page(tmp))
403 			reset_vma_resv_huge_pages(tmp);
404 
405 		/*
406 		 * Link in the new vma and copy the page table entries.
407 		 */
408 		*pprev = tmp;
409 		pprev = &tmp->vm_next;
410 		tmp->vm_prev = prev;
411 		prev = tmp;
412 
413 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
414 		rb_link = &tmp->vm_rb.rb_right;
415 		rb_parent = &tmp->vm_rb;
416 
417 		mm->map_count++;
418 		retval = copy_page_range(mm, oldmm, mpnt);
419 
420 		if (tmp->vm_ops && tmp->vm_ops->open)
421 			tmp->vm_ops->open(tmp);
422 
423 		if (retval)
424 			goto out;
425 	}
426 	/* a new mm has just been created */
427 	arch_dup_mmap(oldmm, mm);
428 	retval = 0;
429 out:
430 	up_write(&mm->mmap_sem);
431 	flush_tlb_mm(oldmm);
432 	up_write(&oldmm->mmap_sem);
433 	return retval;
434 fail_nomem_anon_vma_fork:
435 	mpol_put(pol);
436 fail_nomem_policy:
437 	kmem_cache_free(vm_area_cachep, tmp);
438 fail_nomem:
439 	retval = -ENOMEM;
440 	vm_unacct_memory(charge);
441 	goto out;
442 }
443 
444 static inline int mm_alloc_pgd(struct mm_struct *mm)
445 {
446 	mm->pgd = pgd_alloc(mm);
447 	if (unlikely(!mm->pgd))
448 		return -ENOMEM;
449 	return 0;
450 }
451 
452 static inline void mm_free_pgd(struct mm_struct *mm)
453 {
454 	pgd_free(mm, mm->pgd);
455 }
456 #else
457 #define dup_mmap(mm, oldmm)	(0)
458 #define mm_alloc_pgd(mm)	(0)
459 #define mm_free_pgd(mm)
460 #endif /* CONFIG_MMU */
461 
462 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
463 
464 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
465 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
466 
467 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
468 
469 static int __init coredump_filter_setup(char *s)
470 {
471 	default_dump_filter =
472 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
473 		MMF_DUMP_FILTER_MASK;
474 	return 1;
475 }
476 
477 __setup("coredump_filter=", coredump_filter_setup);
478 
479 #include <linux/init_task.h>
480 
481 static void mm_init_aio(struct mm_struct *mm)
482 {
483 #ifdef CONFIG_AIO
484 	spin_lock_init(&mm->ioctx_lock);
485 	INIT_HLIST_HEAD(&mm->ioctx_list);
486 #endif
487 }
488 
489 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
490 {
491 	atomic_set(&mm->mm_users, 1);
492 	atomic_set(&mm->mm_count, 1);
493 	init_rwsem(&mm->mmap_sem);
494 	INIT_LIST_HEAD(&mm->mmlist);
495 	mm->flags = (current->mm) ?
496 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
497 	mm->core_state = NULL;
498 	mm->nr_ptes = 0;
499 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
500 	spin_lock_init(&mm->page_table_lock);
501 	mm->free_area_cache = TASK_UNMAPPED_BASE;
502 	mm->cached_hole_size = ~0UL;
503 	mm_init_aio(mm);
504 	mm_init_owner(mm, p);
505 
506 	if (likely(!mm_alloc_pgd(mm))) {
507 		mm->def_flags = 0;
508 		mmu_notifier_mm_init(mm);
509 		return mm;
510 	}
511 
512 	free_mm(mm);
513 	return NULL;
514 }
515 
516 static void check_mm(struct mm_struct *mm)
517 {
518 	int i;
519 
520 	for (i = 0; i < NR_MM_COUNTERS; i++) {
521 		long x = atomic_long_read(&mm->rss_stat.count[i]);
522 
523 		if (unlikely(x))
524 			printk(KERN_ALERT "BUG: Bad rss-counter state "
525 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
526 	}
527 
528 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
529 	VM_BUG_ON(mm->pmd_huge_pte);
530 #endif
531 }
532 
533 /*
534  * Allocate and initialize an mm_struct.
535  */
536 struct mm_struct *mm_alloc(void)
537 {
538 	struct mm_struct *mm;
539 
540 	mm = allocate_mm();
541 	if (!mm)
542 		return NULL;
543 
544 	memset(mm, 0, sizeof(*mm));
545 	mm_init_cpumask(mm);
546 	return mm_init(mm, current);
547 }
548 
549 /*
550  * Called when the last reference to the mm
551  * is dropped: either by a lazy thread or by
552  * mmput. Free the page directory and the mm.
553  */
554 void __mmdrop(struct mm_struct *mm)
555 {
556 	BUG_ON(mm == &init_mm);
557 	mm_free_pgd(mm);
558 	destroy_context(mm);
559 	mmu_notifier_mm_destroy(mm);
560 	check_mm(mm);
561 	free_mm(mm);
562 }
563 EXPORT_SYMBOL_GPL(__mmdrop);
564 
565 /*
566  * Decrement the use count and release all resources for an mm.
567  */
568 void mmput(struct mm_struct *mm)
569 {
570 	might_sleep();
571 
572 	if (atomic_dec_and_test(&mm->mm_users)) {
573 		exit_aio(mm);
574 		ksm_exit(mm);
575 		khugepaged_exit(mm); /* must run before exit_mmap */
576 		exit_mmap(mm);
577 		set_mm_exe_file(mm, NULL);
578 		if (!list_empty(&mm->mmlist)) {
579 			spin_lock(&mmlist_lock);
580 			list_del(&mm->mmlist);
581 			spin_unlock(&mmlist_lock);
582 		}
583 		put_swap_token(mm);
584 		if (mm->binfmt)
585 			module_put(mm->binfmt->module);
586 		mmdrop(mm);
587 	}
588 }
589 EXPORT_SYMBOL_GPL(mmput);
590 
591 /*
592  * We added or removed a vma mapping the executable. The vmas are only mapped
593  * during exec and are not mapped with the mmap system call.
594  * Callers must hold down_write() on the mm's mmap_sem for these
595  */
596 void added_exe_file_vma(struct mm_struct *mm)
597 {
598 	mm->num_exe_file_vmas++;
599 }
600 
601 void removed_exe_file_vma(struct mm_struct *mm)
602 {
603 	mm->num_exe_file_vmas--;
604 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
605 		fput(mm->exe_file);
606 		mm->exe_file = NULL;
607 	}
608 
609 }
610 
611 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
612 {
613 	if (new_exe_file)
614 		get_file(new_exe_file);
615 	if (mm->exe_file)
616 		fput(mm->exe_file);
617 	mm->exe_file = new_exe_file;
618 	mm->num_exe_file_vmas = 0;
619 }
620 
621 struct file *get_mm_exe_file(struct mm_struct *mm)
622 {
623 	struct file *exe_file;
624 
625 	/* We need mmap_sem to protect against races with removal of
626 	 * VM_EXECUTABLE vmas */
627 	down_read(&mm->mmap_sem);
628 	exe_file = mm->exe_file;
629 	if (exe_file)
630 		get_file(exe_file);
631 	up_read(&mm->mmap_sem);
632 	return exe_file;
633 }
634 
635 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
636 {
637 	/* It's safe to write the exe_file pointer without exe_file_lock because
638 	 * this is called during fork when the task is not yet in /proc */
639 	newmm->exe_file = get_mm_exe_file(oldmm);
640 }
641 
642 /**
643  * get_task_mm - acquire a reference to the task's mm
644  *
645  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
646  * this kernel workthread has transiently adopted a user mm with use_mm,
647  * to do its AIO) is not set and if so returns a reference to it, after
648  * bumping up the use count.  User must release the mm via mmput()
649  * after use.  Typically used by /proc and ptrace.
650  */
651 struct mm_struct *get_task_mm(struct task_struct *task)
652 {
653 	struct mm_struct *mm;
654 
655 	task_lock(task);
656 	mm = task->mm;
657 	if (mm) {
658 		if (task->flags & PF_KTHREAD)
659 			mm = NULL;
660 		else
661 			atomic_inc(&mm->mm_users);
662 	}
663 	task_unlock(task);
664 	return mm;
665 }
666 EXPORT_SYMBOL_GPL(get_task_mm);
667 
668 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
669 {
670 	struct mm_struct *mm;
671 	int err;
672 
673 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
674 	if (err)
675 		return ERR_PTR(err);
676 
677 	mm = get_task_mm(task);
678 	if (mm && mm != current->mm &&
679 			!ptrace_may_access(task, mode)) {
680 		mmput(mm);
681 		mm = ERR_PTR(-EACCES);
682 	}
683 	mutex_unlock(&task->signal->cred_guard_mutex);
684 
685 	return mm;
686 }
687 
688 static void complete_vfork_done(struct task_struct *tsk)
689 {
690 	struct completion *vfork;
691 
692 	task_lock(tsk);
693 	vfork = tsk->vfork_done;
694 	if (likely(vfork)) {
695 		tsk->vfork_done = NULL;
696 		complete(vfork);
697 	}
698 	task_unlock(tsk);
699 }
700 
701 static int wait_for_vfork_done(struct task_struct *child,
702 				struct completion *vfork)
703 {
704 	int killed;
705 
706 	freezer_do_not_count();
707 	killed = wait_for_completion_killable(vfork);
708 	freezer_count();
709 
710 	if (killed) {
711 		task_lock(child);
712 		child->vfork_done = NULL;
713 		task_unlock(child);
714 	}
715 
716 	put_task_struct(child);
717 	return killed;
718 }
719 
720 /* Please note the differences between mmput and mm_release.
721  * mmput is called whenever we stop holding onto a mm_struct,
722  * error success whatever.
723  *
724  * mm_release is called after a mm_struct has been removed
725  * from the current process.
726  *
727  * This difference is important for error handling, when we
728  * only half set up a mm_struct for a new process and need to restore
729  * the old one.  Because we mmput the new mm_struct before
730  * restoring the old one. . .
731  * Eric Biederman 10 January 1998
732  */
733 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
734 {
735 	/* Get rid of any futexes when releasing the mm */
736 #ifdef CONFIG_FUTEX
737 	if (unlikely(tsk->robust_list)) {
738 		exit_robust_list(tsk);
739 		tsk->robust_list = NULL;
740 	}
741 #ifdef CONFIG_COMPAT
742 	if (unlikely(tsk->compat_robust_list)) {
743 		compat_exit_robust_list(tsk);
744 		tsk->compat_robust_list = NULL;
745 	}
746 #endif
747 	if (unlikely(!list_empty(&tsk->pi_state_list)))
748 		exit_pi_state_list(tsk);
749 #endif
750 
751 	/* Get rid of any cached register state */
752 	deactivate_mm(tsk, mm);
753 
754 	if (tsk->vfork_done)
755 		complete_vfork_done(tsk);
756 
757 	/*
758 	 * If we're exiting normally, clear a user-space tid field if
759 	 * requested.  We leave this alone when dying by signal, to leave
760 	 * the value intact in a core dump, and to save the unnecessary
761 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
762 	 * Userland only wants this done for a sys_exit.
763 	 */
764 	if (tsk->clear_child_tid) {
765 		if (!(tsk->flags & PF_SIGNALED) &&
766 		    atomic_read(&mm->mm_users) > 1) {
767 			/*
768 			 * We don't check the error code - if userspace has
769 			 * not set up a proper pointer then tough luck.
770 			 */
771 			put_user(0, tsk->clear_child_tid);
772 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
773 					1, NULL, NULL, 0);
774 		}
775 		tsk->clear_child_tid = NULL;
776 	}
777 }
778 
779 /*
780  * Allocate a new mm structure and copy contents from the
781  * mm structure of the passed in task structure.
782  */
783 struct mm_struct *dup_mm(struct task_struct *tsk)
784 {
785 	struct mm_struct *mm, *oldmm = current->mm;
786 	int err;
787 
788 	if (!oldmm)
789 		return NULL;
790 
791 	mm = allocate_mm();
792 	if (!mm)
793 		goto fail_nomem;
794 
795 	memcpy(mm, oldmm, sizeof(*mm));
796 	mm_init_cpumask(mm);
797 
798 	/* Initializing for Swap token stuff */
799 	mm->token_priority = 0;
800 	mm->last_interval = 0;
801 
802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
803 	mm->pmd_huge_pte = NULL;
804 #endif
805 
806 	if (!mm_init(mm, tsk))
807 		goto fail_nomem;
808 
809 	if (init_new_context(tsk, mm))
810 		goto fail_nocontext;
811 
812 	dup_mm_exe_file(oldmm, mm);
813 
814 	err = dup_mmap(mm, oldmm);
815 	if (err)
816 		goto free_pt;
817 
818 	mm->hiwater_rss = get_mm_rss(mm);
819 	mm->hiwater_vm = mm->total_vm;
820 
821 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
822 		goto free_pt;
823 
824 	return mm;
825 
826 free_pt:
827 	/* don't put binfmt in mmput, we haven't got module yet */
828 	mm->binfmt = NULL;
829 	mmput(mm);
830 
831 fail_nomem:
832 	return NULL;
833 
834 fail_nocontext:
835 	/*
836 	 * If init_new_context() failed, we cannot use mmput() to free the mm
837 	 * because it calls destroy_context()
838 	 */
839 	mm_free_pgd(mm);
840 	free_mm(mm);
841 	return NULL;
842 }
843 
844 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
845 {
846 	struct mm_struct *mm, *oldmm;
847 	int retval;
848 
849 	tsk->min_flt = tsk->maj_flt = 0;
850 	tsk->nvcsw = tsk->nivcsw = 0;
851 #ifdef CONFIG_DETECT_HUNG_TASK
852 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
853 #endif
854 
855 	tsk->mm = NULL;
856 	tsk->active_mm = NULL;
857 
858 	/*
859 	 * Are we cloning a kernel thread?
860 	 *
861 	 * We need to steal a active VM for that..
862 	 */
863 	oldmm = current->mm;
864 	if (!oldmm)
865 		return 0;
866 
867 	if (clone_flags & CLONE_VM) {
868 		atomic_inc(&oldmm->mm_users);
869 		mm = oldmm;
870 		goto good_mm;
871 	}
872 
873 	retval = -ENOMEM;
874 	mm = dup_mm(tsk);
875 	if (!mm)
876 		goto fail_nomem;
877 
878 good_mm:
879 	/* Initializing for Swap token stuff */
880 	mm->token_priority = 0;
881 	mm->last_interval = 0;
882 
883 	tsk->mm = mm;
884 	tsk->active_mm = mm;
885 	return 0;
886 
887 fail_nomem:
888 	return retval;
889 }
890 
891 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
892 {
893 	struct fs_struct *fs = current->fs;
894 	if (clone_flags & CLONE_FS) {
895 		/* tsk->fs is already what we want */
896 		spin_lock(&fs->lock);
897 		if (fs->in_exec) {
898 			spin_unlock(&fs->lock);
899 			return -EAGAIN;
900 		}
901 		fs->users++;
902 		spin_unlock(&fs->lock);
903 		return 0;
904 	}
905 	tsk->fs = copy_fs_struct(fs);
906 	if (!tsk->fs)
907 		return -ENOMEM;
908 	return 0;
909 }
910 
911 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
912 {
913 	struct files_struct *oldf, *newf;
914 	int error = 0;
915 
916 	/*
917 	 * A background process may not have any files ...
918 	 */
919 	oldf = current->files;
920 	if (!oldf)
921 		goto out;
922 
923 	if (clone_flags & CLONE_FILES) {
924 		atomic_inc(&oldf->count);
925 		goto out;
926 	}
927 
928 	newf = dup_fd(oldf, &error);
929 	if (!newf)
930 		goto out;
931 
932 	tsk->files = newf;
933 	error = 0;
934 out:
935 	return error;
936 }
937 
938 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
939 {
940 #ifdef CONFIG_BLOCK
941 	struct io_context *ioc = current->io_context;
942 	struct io_context *new_ioc;
943 
944 	if (!ioc)
945 		return 0;
946 	/*
947 	 * Share io context with parent, if CLONE_IO is set
948 	 */
949 	if (clone_flags & CLONE_IO) {
950 		tsk->io_context = ioc_task_link(ioc);
951 		if (unlikely(!tsk->io_context))
952 			return -ENOMEM;
953 	} else if (ioprio_valid(ioc->ioprio)) {
954 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
955 		if (unlikely(!new_ioc))
956 			return -ENOMEM;
957 
958 		new_ioc->ioprio = ioc->ioprio;
959 		put_io_context(new_ioc);
960 	}
961 #endif
962 	return 0;
963 }
964 
965 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
966 {
967 	struct sighand_struct *sig;
968 
969 	if (clone_flags & CLONE_SIGHAND) {
970 		atomic_inc(&current->sighand->count);
971 		return 0;
972 	}
973 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
974 	rcu_assign_pointer(tsk->sighand, sig);
975 	if (!sig)
976 		return -ENOMEM;
977 	atomic_set(&sig->count, 1);
978 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
979 	return 0;
980 }
981 
982 void __cleanup_sighand(struct sighand_struct *sighand)
983 {
984 	if (atomic_dec_and_test(&sighand->count)) {
985 		signalfd_cleanup(sighand);
986 		kmem_cache_free(sighand_cachep, sighand);
987 	}
988 }
989 
990 
991 /*
992  * Initialize POSIX timer handling for a thread group.
993  */
994 static void posix_cpu_timers_init_group(struct signal_struct *sig)
995 {
996 	unsigned long cpu_limit;
997 
998 	/* Thread group counters. */
999 	thread_group_cputime_init(sig);
1000 
1001 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1002 	if (cpu_limit != RLIM_INFINITY) {
1003 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1004 		sig->cputimer.running = 1;
1005 	}
1006 
1007 	/* The timer lists. */
1008 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1009 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1010 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1011 }
1012 
1013 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1014 {
1015 	struct signal_struct *sig;
1016 
1017 	if (clone_flags & CLONE_THREAD)
1018 		return 0;
1019 
1020 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1021 	tsk->signal = sig;
1022 	if (!sig)
1023 		return -ENOMEM;
1024 
1025 	sig->nr_threads = 1;
1026 	atomic_set(&sig->live, 1);
1027 	atomic_set(&sig->sigcnt, 1);
1028 	init_waitqueue_head(&sig->wait_chldexit);
1029 	if (clone_flags & CLONE_NEWPID)
1030 		sig->flags |= SIGNAL_UNKILLABLE;
1031 	sig->curr_target = tsk;
1032 	init_sigpending(&sig->shared_pending);
1033 	INIT_LIST_HEAD(&sig->posix_timers);
1034 
1035 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1036 	sig->real_timer.function = it_real_fn;
1037 
1038 	task_lock(current->group_leader);
1039 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1040 	task_unlock(current->group_leader);
1041 
1042 	posix_cpu_timers_init_group(sig);
1043 
1044 	tty_audit_fork(sig);
1045 	sched_autogroup_fork(sig);
1046 
1047 #ifdef CONFIG_CGROUPS
1048 	init_rwsem(&sig->group_rwsem);
1049 #endif
1050 
1051 	sig->oom_adj = current->signal->oom_adj;
1052 	sig->oom_score_adj = current->signal->oom_score_adj;
1053 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1054 
1055 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1056 				   current->signal->is_child_subreaper;
1057 
1058 	mutex_init(&sig->cred_guard_mutex);
1059 
1060 	return 0;
1061 }
1062 
1063 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1064 {
1065 	unsigned long new_flags = p->flags;
1066 
1067 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1068 	new_flags |= PF_FORKNOEXEC;
1069 	p->flags = new_flags;
1070 }
1071 
1072 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1073 {
1074 	current->clear_child_tid = tidptr;
1075 
1076 	return task_pid_vnr(current);
1077 }
1078 
1079 static void rt_mutex_init_task(struct task_struct *p)
1080 {
1081 	raw_spin_lock_init(&p->pi_lock);
1082 #ifdef CONFIG_RT_MUTEXES
1083 	plist_head_init(&p->pi_waiters);
1084 	p->pi_blocked_on = NULL;
1085 #endif
1086 }
1087 
1088 #ifdef CONFIG_MM_OWNER
1089 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1090 {
1091 	mm->owner = p;
1092 }
1093 #endif /* CONFIG_MM_OWNER */
1094 
1095 /*
1096  * Initialize POSIX timer handling for a single task.
1097  */
1098 static void posix_cpu_timers_init(struct task_struct *tsk)
1099 {
1100 	tsk->cputime_expires.prof_exp = 0;
1101 	tsk->cputime_expires.virt_exp = 0;
1102 	tsk->cputime_expires.sched_exp = 0;
1103 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1104 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1105 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1106 }
1107 
1108 /*
1109  * This creates a new process as a copy of the old one,
1110  * but does not actually start it yet.
1111  *
1112  * It copies the registers, and all the appropriate
1113  * parts of the process environment (as per the clone
1114  * flags). The actual kick-off is left to the caller.
1115  */
1116 static struct task_struct *copy_process(unsigned long clone_flags,
1117 					unsigned long stack_start,
1118 					struct pt_regs *regs,
1119 					unsigned long stack_size,
1120 					int __user *child_tidptr,
1121 					struct pid *pid,
1122 					int trace)
1123 {
1124 	int retval;
1125 	struct task_struct *p;
1126 	int cgroup_callbacks_done = 0;
1127 
1128 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1129 		return ERR_PTR(-EINVAL);
1130 
1131 	/*
1132 	 * Thread groups must share signals as well, and detached threads
1133 	 * can only be started up within the thread group.
1134 	 */
1135 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1136 		return ERR_PTR(-EINVAL);
1137 
1138 	/*
1139 	 * Shared signal handlers imply shared VM. By way of the above,
1140 	 * thread groups also imply shared VM. Blocking this case allows
1141 	 * for various simplifications in other code.
1142 	 */
1143 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1144 		return ERR_PTR(-EINVAL);
1145 
1146 	/*
1147 	 * Siblings of global init remain as zombies on exit since they are
1148 	 * not reaped by their parent (swapper). To solve this and to avoid
1149 	 * multi-rooted process trees, prevent global and container-inits
1150 	 * from creating siblings.
1151 	 */
1152 	if ((clone_flags & CLONE_PARENT) &&
1153 				current->signal->flags & SIGNAL_UNKILLABLE)
1154 		return ERR_PTR(-EINVAL);
1155 
1156 	retval = security_task_create(clone_flags);
1157 	if (retval)
1158 		goto fork_out;
1159 
1160 	retval = -ENOMEM;
1161 	p = dup_task_struct(current);
1162 	if (!p)
1163 		goto fork_out;
1164 
1165 	ftrace_graph_init_task(p);
1166 
1167 	rt_mutex_init_task(p);
1168 
1169 #ifdef CONFIG_PROVE_LOCKING
1170 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1171 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1172 #endif
1173 	retval = -EAGAIN;
1174 	if (atomic_read(&p->real_cred->user->processes) >=
1175 			task_rlimit(p, RLIMIT_NPROC)) {
1176 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1177 		    p->real_cred->user != INIT_USER)
1178 			goto bad_fork_free;
1179 	}
1180 	current->flags &= ~PF_NPROC_EXCEEDED;
1181 
1182 	retval = copy_creds(p, clone_flags);
1183 	if (retval < 0)
1184 		goto bad_fork_free;
1185 
1186 	/*
1187 	 * If multiple threads are within copy_process(), then this check
1188 	 * triggers too late. This doesn't hurt, the check is only there
1189 	 * to stop root fork bombs.
1190 	 */
1191 	retval = -EAGAIN;
1192 	if (nr_threads >= max_threads)
1193 		goto bad_fork_cleanup_count;
1194 
1195 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1196 		goto bad_fork_cleanup_count;
1197 
1198 	p->did_exec = 0;
1199 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1200 	copy_flags(clone_flags, p);
1201 	INIT_LIST_HEAD(&p->children);
1202 	INIT_LIST_HEAD(&p->sibling);
1203 	rcu_copy_process(p);
1204 	p->vfork_done = NULL;
1205 	spin_lock_init(&p->alloc_lock);
1206 
1207 	init_sigpending(&p->pending);
1208 
1209 	p->utime = p->stime = p->gtime = 0;
1210 	p->utimescaled = p->stimescaled = 0;
1211 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1212 	p->prev_utime = p->prev_stime = 0;
1213 #endif
1214 #if defined(SPLIT_RSS_COUNTING)
1215 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1216 #endif
1217 
1218 	p->default_timer_slack_ns = current->timer_slack_ns;
1219 
1220 	task_io_accounting_init(&p->ioac);
1221 	acct_clear_integrals(p);
1222 
1223 	posix_cpu_timers_init(p);
1224 
1225 	do_posix_clock_monotonic_gettime(&p->start_time);
1226 	p->real_start_time = p->start_time;
1227 	monotonic_to_bootbased(&p->real_start_time);
1228 	p->io_context = NULL;
1229 	p->audit_context = NULL;
1230 	if (clone_flags & CLONE_THREAD)
1231 		threadgroup_change_begin(current);
1232 	cgroup_fork(p);
1233 #ifdef CONFIG_NUMA
1234 	p->mempolicy = mpol_dup(p->mempolicy);
1235 	if (IS_ERR(p->mempolicy)) {
1236 		retval = PTR_ERR(p->mempolicy);
1237 		p->mempolicy = NULL;
1238 		goto bad_fork_cleanup_cgroup;
1239 	}
1240 	mpol_fix_fork_child_flag(p);
1241 #endif
1242 #ifdef CONFIG_CPUSETS
1243 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1244 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1245 	seqcount_init(&p->mems_allowed_seq);
1246 #endif
1247 #ifdef CONFIG_TRACE_IRQFLAGS
1248 	p->irq_events = 0;
1249 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1250 	p->hardirqs_enabled = 1;
1251 #else
1252 	p->hardirqs_enabled = 0;
1253 #endif
1254 	p->hardirq_enable_ip = 0;
1255 	p->hardirq_enable_event = 0;
1256 	p->hardirq_disable_ip = _THIS_IP_;
1257 	p->hardirq_disable_event = 0;
1258 	p->softirqs_enabled = 1;
1259 	p->softirq_enable_ip = _THIS_IP_;
1260 	p->softirq_enable_event = 0;
1261 	p->softirq_disable_ip = 0;
1262 	p->softirq_disable_event = 0;
1263 	p->hardirq_context = 0;
1264 	p->softirq_context = 0;
1265 #endif
1266 #ifdef CONFIG_LOCKDEP
1267 	p->lockdep_depth = 0; /* no locks held yet */
1268 	p->curr_chain_key = 0;
1269 	p->lockdep_recursion = 0;
1270 #endif
1271 
1272 #ifdef CONFIG_DEBUG_MUTEXES
1273 	p->blocked_on = NULL; /* not blocked yet */
1274 #endif
1275 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1276 	p->memcg_batch.do_batch = 0;
1277 	p->memcg_batch.memcg = NULL;
1278 #endif
1279 
1280 	/* Perform scheduler related setup. Assign this task to a CPU. */
1281 	sched_fork(p);
1282 
1283 	retval = perf_event_init_task(p);
1284 	if (retval)
1285 		goto bad_fork_cleanup_policy;
1286 	retval = audit_alloc(p);
1287 	if (retval)
1288 		goto bad_fork_cleanup_policy;
1289 	/* copy all the process information */
1290 	retval = copy_semundo(clone_flags, p);
1291 	if (retval)
1292 		goto bad_fork_cleanup_audit;
1293 	retval = copy_files(clone_flags, p);
1294 	if (retval)
1295 		goto bad_fork_cleanup_semundo;
1296 	retval = copy_fs(clone_flags, p);
1297 	if (retval)
1298 		goto bad_fork_cleanup_files;
1299 	retval = copy_sighand(clone_flags, p);
1300 	if (retval)
1301 		goto bad_fork_cleanup_fs;
1302 	retval = copy_signal(clone_flags, p);
1303 	if (retval)
1304 		goto bad_fork_cleanup_sighand;
1305 	retval = copy_mm(clone_flags, p);
1306 	if (retval)
1307 		goto bad_fork_cleanup_signal;
1308 	retval = copy_namespaces(clone_flags, p);
1309 	if (retval)
1310 		goto bad_fork_cleanup_mm;
1311 	retval = copy_io(clone_flags, p);
1312 	if (retval)
1313 		goto bad_fork_cleanup_namespaces;
1314 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1315 	if (retval)
1316 		goto bad_fork_cleanup_io;
1317 
1318 	if (pid != &init_struct_pid) {
1319 		retval = -ENOMEM;
1320 		pid = alloc_pid(p->nsproxy->pid_ns);
1321 		if (!pid)
1322 			goto bad_fork_cleanup_io;
1323 	}
1324 
1325 	p->pid = pid_nr(pid);
1326 	p->tgid = p->pid;
1327 	if (clone_flags & CLONE_THREAD)
1328 		p->tgid = current->tgid;
1329 
1330 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1331 	/*
1332 	 * Clear TID on mm_release()?
1333 	 */
1334 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1335 #ifdef CONFIG_BLOCK
1336 	p->plug = NULL;
1337 #endif
1338 #ifdef CONFIG_FUTEX
1339 	p->robust_list = NULL;
1340 #ifdef CONFIG_COMPAT
1341 	p->compat_robust_list = NULL;
1342 #endif
1343 	INIT_LIST_HEAD(&p->pi_state_list);
1344 	p->pi_state_cache = NULL;
1345 #endif
1346 	/*
1347 	 * sigaltstack should be cleared when sharing the same VM
1348 	 */
1349 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1350 		p->sas_ss_sp = p->sas_ss_size = 0;
1351 
1352 	/*
1353 	 * Syscall tracing and stepping should be turned off in the
1354 	 * child regardless of CLONE_PTRACE.
1355 	 */
1356 	user_disable_single_step(p);
1357 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1358 #ifdef TIF_SYSCALL_EMU
1359 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1360 #endif
1361 	clear_all_latency_tracing(p);
1362 
1363 	/* ok, now we should be set up.. */
1364 	if (clone_flags & CLONE_THREAD)
1365 		p->exit_signal = -1;
1366 	else if (clone_flags & CLONE_PARENT)
1367 		p->exit_signal = current->group_leader->exit_signal;
1368 	else
1369 		p->exit_signal = (clone_flags & CSIGNAL);
1370 
1371 	p->pdeath_signal = 0;
1372 	p->exit_state = 0;
1373 
1374 	p->nr_dirtied = 0;
1375 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1376 	p->dirty_paused_when = 0;
1377 
1378 	/*
1379 	 * Ok, make it visible to the rest of the system.
1380 	 * We dont wake it up yet.
1381 	 */
1382 	p->group_leader = p;
1383 	INIT_LIST_HEAD(&p->thread_group);
1384 
1385 	/* Now that the task is set up, run cgroup callbacks if
1386 	 * necessary. We need to run them before the task is visible
1387 	 * on the tasklist. */
1388 	cgroup_fork_callbacks(p);
1389 	cgroup_callbacks_done = 1;
1390 
1391 	/* Need tasklist lock for parent etc handling! */
1392 	write_lock_irq(&tasklist_lock);
1393 
1394 	/* CLONE_PARENT re-uses the old parent */
1395 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1396 		p->real_parent = current->real_parent;
1397 		p->parent_exec_id = current->parent_exec_id;
1398 	} else {
1399 		p->real_parent = current;
1400 		p->parent_exec_id = current->self_exec_id;
1401 	}
1402 
1403 	spin_lock(&current->sighand->siglock);
1404 
1405 	/*
1406 	 * Process group and session signals need to be delivered to just the
1407 	 * parent before the fork or both the parent and the child after the
1408 	 * fork. Restart if a signal comes in before we add the new process to
1409 	 * it's process group.
1410 	 * A fatal signal pending means that current will exit, so the new
1411 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1412 	*/
1413 	recalc_sigpending();
1414 	if (signal_pending(current)) {
1415 		spin_unlock(&current->sighand->siglock);
1416 		write_unlock_irq(&tasklist_lock);
1417 		retval = -ERESTARTNOINTR;
1418 		goto bad_fork_free_pid;
1419 	}
1420 
1421 	if (clone_flags & CLONE_THREAD) {
1422 		current->signal->nr_threads++;
1423 		atomic_inc(&current->signal->live);
1424 		atomic_inc(&current->signal->sigcnt);
1425 		p->group_leader = current->group_leader;
1426 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1427 	}
1428 
1429 	if (likely(p->pid)) {
1430 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1431 
1432 		if (thread_group_leader(p)) {
1433 			if (is_child_reaper(pid))
1434 				p->nsproxy->pid_ns->child_reaper = p;
1435 
1436 			p->signal->leader_pid = pid;
1437 			p->signal->tty = tty_kref_get(current->signal->tty);
1438 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1439 			attach_pid(p, PIDTYPE_SID, task_session(current));
1440 			list_add_tail(&p->sibling, &p->real_parent->children);
1441 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1442 			__this_cpu_inc(process_counts);
1443 		}
1444 		attach_pid(p, PIDTYPE_PID, pid);
1445 		nr_threads++;
1446 	}
1447 
1448 	total_forks++;
1449 	spin_unlock(&current->sighand->siglock);
1450 	write_unlock_irq(&tasklist_lock);
1451 	proc_fork_connector(p);
1452 	cgroup_post_fork(p);
1453 	if (clone_flags & CLONE_THREAD)
1454 		threadgroup_change_end(current);
1455 	perf_event_fork(p);
1456 
1457 	trace_task_newtask(p, clone_flags);
1458 
1459 	return p;
1460 
1461 bad_fork_free_pid:
1462 	if (pid != &init_struct_pid)
1463 		free_pid(pid);
1464 bad_fork_cleanup_io:
1465 	if (p->io_context)
1466 		exit_io_context(p);
1467 bad_fork_cleanup_namespaces:
1468 	if (unlikely(clone_flags & CLONE_NEWPID))
1469 		pid_ns_release_proc(p->nsproxy->pid_ns);
1470 	exit_task_namespaces(p);
1471 bad_fork_cleanup_mm:
1472 	if (p->mm)
1473 		mmput(p->mm);
1474 bad_fork_cleanup_signal:
1475 	if (!(clone_flags & CLONE_THREAD))
1476 		free_signal_struct(p->signal);
1477 bad_fork_cleanup_sighand:
1478 	__cleanup_sighand(p->sighand);
1479 bad_fork_cleanup_fs:
1480 	exit_fs(p); /* blocking */
1481 bad_fork_cleanup_files:
1482 	exit_files(p); /* blocking */
1483 bad_fork_cleanup_semundo:
1484 	exit_sem(p);
1485 bad_fork_cleanup_audit:
1486 	audit_free(p);
1487 bad_fork_cleanup_policy:
1488 	perf_event_free_task(p);
1489 #ifdef CONFIG_NUMA
1490 	mpol_put(p->mempolicy);
1491 bad_fork_cleanup_cgroup:
1492 #endif
1493 	if (clone_flags & CLONE_THREAD)
1494 		threadgroup_change_end(current);
1495 	cgroup_exit(p, cgroup_callbacks_done);
1496 	delayacct_tsk_free(p);
1497 	module_put(task_thread_info(p)->exec_domain->module);
1498 bad_fork_cleanup_count:
1499 	atomic_dec(&p->cred->user->processes);
1500 	exit_creds(p);
1501 bad_fork_free:
1502 	free_task(p);
1503 fork_out:
1504 	return ERR_PTR(retval);
1505 }
1506 
1507 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1508 {
1509 	memset(regs, 0, sizeof(struct pt_regs));
1510 	return regs;
1511 }
1512 
1513 static inline void init_idle_pids(struct pid_link *links)
1514 {
1515 	enum pid_type type;
1516 
1517 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1518 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1519 		links[type].pid = &init_struct_pid;
1520 	}
1521 }
1522 
1523 struct task_struct * __cpuinit fork_idle(int cpu)
1524 {
1525 	struct task_struct *task;
1526 	struct pt_regs regs;
1527 
1528 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1529 			    &init_struct_pid, 0);
1530 	if (!IS_ERR(task)) {
1531 		init_idle_pids(task->pids);
1532 		init_idle(task, cpu);
1533 	}
1534 
1535 	return task;
1536 }
1537 
1538 /*
1539  *  Ok, this is the main fork-routine.
1540  *
1541  * It copies the process, and if successful kick-starts
1542  * it and waits for it to finish using the VM if required.
1543  */
1544 long do_fork(unsigned long clone_flags,
1545 	      unsigned long stack_start,
1546 	      struct pt_regs *regs,
1547 	      unsigned long stack_size,
1548 	      int __user *parent_tidptr,
1549 	      int __user *child_tidptr)
1550 {
1551 	struct task_struct *p;
1552 	int trace = 0;
1553 	long nr;
1554 
1555 	/*
1556 	 * Do some preliminary argument and permissions checking before we
1557 	 * actually start allocating stuff
1558 	 */
1559 	if (clone_flags & CLONE_NEWUSER) {
1560 		if (clone_flags & CLONE_THREAD)
1561 			return -EINVAL;
1562 		/* hopefully this check will go away when userns support is
1563 		 * complete
1564 		 */
1565 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1566 				!capable(CAP_SETGID))
1567 			return -EPERM;
1568 	}
1569 
1570 	/*
1571 	 * Determine whether and which event to report to ptracer.  When
1572 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1573 	 * requested, no event is reported; otherwise, report if the event
1574 	 * for the type of forking is enabled.
1575 	 */
1576 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1577 		if (clone_flags & CLONE_VFORK)
1578 			trace = PTRACE_EVENT_VFORK;
1579 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1580 			trace = PTRACE_EVENT_CLONE;
1581 		else
1582 			trace = PTRACE_EVENT_FORK;
1583 
1584 		if (likely(!ptrace_event_enabled(current, trace)))
1585 			trace = 0;
1586 	}
1587 
1588 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1589 			 child_tidptr, NULL, trace);
1590 	/*
1591 	 * Do this prior waking up the new thread - the thread pointer
1592 	 * might get invalid after that point, if the thread exits quickly.
1593 	 */
1594 	if (!IS_ERR(p)) {
1595 		struct completion vfork;
1596 
1597 		trace_sched_process_fork(current, p);
1598 
1599 		nr = task_pid_vnr(p);
1600 
1601 		if (clone_flags & CLONE_PARENT_SETTID)
1602 			put_user(nr, parent_tidptr);
1603 
1604 		if (clone_flags & CLONE_VFORK) {
1605 			p->vfork_done = &vfork;
1606 			init_completion(&vfork);
1607 			get_task_struct(p);
1608 		}
1609 
1610 		wake_up_new_task(p);
1611 
1612 		/* forking complete and child started to run, tell ptracer */
1613 		if (unlikely(trace))
1614 			ptrace_event(trace, nr);
1615 
1616 		if (clone_flags & CLONE_VFORK) {
1617 			if (!wait_for_vfork_done(p, &vfork))
1618 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1619 		}
1620 	} else {
1621 		nr = PTR_ERR(p);
1622 	}
1623 	return nr;
1624 }
1625 
1626 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1627 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1628 #endif
1629 
1630 static void sighand_ctor(void *data)
1631 {
1632 	struct sighand_struct *sighand = data;
1633 
1634 	spin_lock_init(&sighand->siglock);
1635 	init_waitqueue_head(&sighand->signalfd_wqh);
1636 }
1637 
1638 void __init proc_caches_init(void)
1639 {
1640 	sighand_cachep = kmem_cache_create("sighand_cache",
1641 			sizeof(struct sighand_struct), 0,
1642 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1643 			SLAB_NOTRACK, sighand_ctor);
1644 	signal_cachep = kmem_cache_create("signal_cache",
1645 			sizeof(struct signal_struct), 0,
1646 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1647 	files_cachep = kmem_cache_create("files_cache",
1648 			sizeof(struct files_struct), 0,
1649 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1650 	fs_cachep = kmem_cache_create("fs_cache",
1651 			sizeof(struct fs_struct), 0,
1652 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1653 	/*
1654 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1655 	 * whole struct cpumask for the OFFSTACK case. We could change
1656 	 * this to *only* allocate as much of it as required by the
1657 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1658 	 * is at the end of the structure, exactly for that reason.
1659 	 */
1660 	mm_cachep = kmem_cache_create("mm_struct",
1661 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1662 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1663 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1664 	mmap_init();
1665 	nsproxy_cache_init();
1666 }
1667 
1668 /*
1669  * Check constraints on flags passed to the unshare system call.
1670  */
1671 static int check_unshare_flags(unsigned long unshare_flags)
1672 {
1673 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1674 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1675 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1676 		return -EINVAL;
1677 	/*
1678 	 * Not implemented, but pretend it works if there is nothing to
1679 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1680 	 * needs to unshare vm.
1681 	 */
1682 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1683 		/* FIXME: get_task_mm() increments ->mm_users */
1684 		if (atomic_read(&current->mm->mm_users) > 1)
1685 			return -EINVAL;
1686 	}
1687 
1688 	return 0;
1689 }
1690 
1691 /*
1692  * Unshare the filesystem structure if it is being shared
1693  */
1694 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1695 {
1696 	struct fs_struct *fs = current->fs;
1697 
1698 	if (!(unshare_flags & CLONE_FS) || !fs)
1699 		return 0;
1700 
1701 	/* don't need lock here; in the worst case we'll do useless copy */
1702 	if (fs->users == 1)
1703 		return 0;
1704 
1705 	*new_fsp = copy_fs_struct(fs);
1706 	if (!*new_fsp)
1707 		return -ENOMEM;
1708 
1709 	return 0;
1710 }
1711 
1712 /*
1713  * Unshare file descriptor table if it is being shared
1714  */
1715 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1716 {
1717 	struct files_struct *fd = current->files;
1718 	int error = 0;
1719 
1720 	if ((unshare_flags & CLONE_FILES) &&
1721 	    (fd && atomic_read(&fd->count) > 1)) {
1722 		*new_fdp = dup_fd(fd, &error);
1723 		if (!*new_fdp)
1724 			return error;
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 /*
1731  * unshare allows a process to 'unshare' part of the process
1732  * context which was originally shared using clone.  copy_*
1733  * functions used by do_fork() cannot be used here directly
1734  * because they modify an inactive task_struct that is being
1735  * constructed. Here we are modifying the current, active,
1736  * task_struct.
1737  */
1738 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1739 {
1740 	struct fs_struct *fs, *new_fs = NULL;
1741 	struct files_struct *fd, *new_fd = NULL;
1742 	struct nsproxy *new_nsproxy = NULL;
1743 	int do_sysvsem = 0;
1744 	int err;
1745 
1746 	err = check_unshare_flags(unshare_flags);
1747 	if (err)
1748 		goto bad_unshare_out;
1749 
1750 	/*
1751 	 * If unsharing namespace, must also unshare filesystem information.
1752 	 */
1753 	if (unshare_flags & CLONE_NEWNS)
1754 		unshare_flags |= CLONE_FS;
1755 	/*
1756 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1757 	 * to a new ipc namespace, the semaphore arrays from the old
1758 	 * namespace are unreachable.
1759 	 */
1760 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1761 		do_sysvsem = 1;
1762 	err = unshare_fs(unshare_flags, &new_fs);
1763 	if (err)
1764 		goto bad_unshare_out;
1765 	err = unshare_fd(unshare_flags, &new_fd);
1766 	if (err)
1767 		goto bad_unshare_cleanup_fs;
1768 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1769 	if (err)
1770 		goto bad_unshare_cleanup_fd;
1771 
1772 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1773 		if (do_sysvsem) {
1774 			/*
1775 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1776 			 */
1777 			exit_sem(current);
1778 		}
1779 
1780 		if (new_nsproxy) {
1781 			switch_task_namespaces(current, new_nsproxy);
1782 			new_nsproxy = NULL;
1783 		}
1784 
1785 		task_lock(current);
1786 
1787 		if (new_fs) {
1788 			fs = current->fs;
1789 			spin_lock(&fs->lock);
1790 			current->fs = new_fs;
1791 			if (--fs->users)
1792 				new_fs = NULL;
1793 			else
1794 				new_fs = fs;
1795 			spin_unlock(&fs->lock);
1796 		}
1797 
1798 		if (new_fd) {
1799 			fd = current->files;
1800 			current->files = new_fd;
1801 			new_fd = fd;
1802 		}
1803 
1804 		task_unlock(current);
1805 	}
1806 
1807 	if (new_nsproxy)
1808 		put_nsproxy(new_nsproxy);
1809 
1810 bad_unshare_cleanup_fd:
1811 	if (new_fd)
1812 		put_files_struct(new_fd);
1813 
1814 bad_unshare_cleanup_fs:
1815 	if (new_fs)
1816 		free_fs_struct(new_fs);
1817 
1818 bad_unshare_out:
1819 	return err;
1820 }
1821 
1822 /*
1823  *	Helper to unshare the files of the current task.
1824  *	We don't want to expose copy_files internals to
1825  *	the exec layer of the kernel.
1826  */
1827 
1828 int unshare_files(struct files_struct **displaced)
1829 {
1830 	struct task_struct *task = current;
1831 	struct files_struct *copy = NULL;
1832 	int error;
1833 
1834 	error = unshare_fd(CLONE_FILES, &copy);
1835 	if (error || !copy) {
1836 		*displaced = NULL;
1837 		return error;
1838 	}
1839 	*displaced = task->files;
1840 	task_lock(task);
1841 	task->files = copy;
1842 	task_unlock(task);
1843 	return 0;
1844 }
1845