xref: /openbmc/linux/kernel/fork.c (revision cd354f1a)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/mnt_namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/rcupdate.h>
41 #include <linux/ptrace.h>
42 #include <linux/mount.h>
43 #include <linux/audit.h>
44 #include <linux/profile.h>
45 #include <linux/rmap.h>
46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 
53 #include <asm/pgtable.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/cacheflush.h>
58 #include <asm/tlbflush.h>
59 
60 /*
61  * Protected counters by write_lock_irq(&tasklist_lock)
62  */
63 unsigned long total_forks;	/* Handle normal Linux uptimes. */
64 int nr_threads; 		/* The idle threads do not count.. */
65 
66 int max_threads;		/* tunable limit on nr_threads */
67 
68 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
69 
70 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
71 
72 int nr_processes(void)
73 {
74 	int cpu;
75 	int total = 0;
76 
77 	for_each_online_cpu(cpu)
78 		total += per_cpu(process_counts, cpu);
79 
80 	return total;
81 }
82 
83 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
84 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
85 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
86 static struct kmem_cache *task_struct_cachep;
87 #endif
88 
89 /* SLAB cache for signal_struct structures (tsk->signal) */
90 static struct kmem_cache *signal_cachep;
91 
92 /* SLAB cache for sighand_struct structures (tsk->sighand) */
93 struct kmem_cache *sighand_cachep;
94 
95 /* SLAB cache for files_struct structures (tsk->files) */
96 struct kmem_cache *files_cachep;
97 
98 /* SLAB cache for fs_struct structures (tsk->fs) */
99 struct kmem_cache *fs_cachep;
100 
101 /* SLAB cache for vm_area_struct structures */
102 struct kmem_cache *vm_area_cachep;
103 
104 /* SLAB cache for mm_struct structures (tsk->mm) */
105 static struct kmem_cache *mm_cachep;
106 
107 void free_task(struct task_struct *tsk)
108 {
109 	free_thread_info(tsk->thread_info);
110 	rt_mutex_debug_task_free(tsk);
111 	free_task_struct(tsk);
112 }
113 EXPORT_SYMBOL(free_task);
114 
115 void __put_task_struct(struct task_struct *tsk)
116 {
117 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
118 	WARN_ON(atomic_read(&tsk->usage));
119 	WARN_ON(tsk == current);
120 
121 	security_task_free(tsk);
122 	free_uid(tsk->user);
123 	put_group_info(tsk->group_info);
124 	delayacct_tsk_free(tsk);
125 
126 	if (!profile_handoff_task(tsk))
127 		free_task(tsk);
128 }
129 
130 void __init fork_init(unsigned long mempages)
131 {
132 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
133 #ifndef ARCH_MIN_TASKALIGN
134 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
135 #endif
136 	/* create a slab on which task_structs can be allocated */
137 	task_struct_cachep =
138 		kmem_cache_create("task_struct", sizeof(struct task_struct),
139 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
140 #endif
141 
142 	/*
143 	 * The default maximum number of threads is set to a safe
144 	 * value: the thread structures can take up at most half
145 	 * of memory.
146 	 */
147 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
148 
149 	/*
150 	 * we need to allow at least 20 threads to boot a system
151 	 */
152 	if(max_threads < 20)
153 		max_threads = 20;
154 
155 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
156 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
157 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
158 		init_task.signal->rlim[RLIMIT_NPROC];
159 }
160 
161 static struct task_struct *dup_task_struct(struct task_struct *orig)
162 {
163 	struct task_struct *tsk;
164 	struct thread_info *ti;
165 
166 	prepare_to_copy(orig);
167 
168 	tsk = alloc_task_struct();
169 	if (!tsk)
170 		return NULL;
171 
172 	ti = alloc_thread_info(tsk);
173 	if (!ti) {
174 		free_task_struct(tsk);
175 		return NULL;
176 	}
177 
178 	*tsk = *orig;
179 	tsk->thread_info = ti;
180 	setup_thread_stack(tsk, orig);
181 
182 #ifdef CONFIG_CC_STACKPROTECTOR
183 	tsk->stack_canary = get_random_int();
184 #endif
185 
186 	/* One for us, one for whoever does the "release_task()" (usually parent) */
187 	atomic_set(&tsk->usage,2);
188 	atomic_set(&tsk->fs_excl, 0);
189 #ifdef CONFIG_BLK_DEV_IO_TRACE
190 	tsk->btrace_seq = 0;
191 #endif
192 	tsk->splice_pipe = NULL;
193 	return tsk;
194 }
195 
196 #ifdef CONFIG_MMU
197 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
198 {
199 	struct vm_area_struct *mpnt, *tmp, **pprev;
200 	struct rb_node **rb_link, *rb_parent;
201 	int retval;
202 	unsigned long charge;
203 	struct mempolicy *pol;
204 
205 	down_write(&oldmm->mmap_sem);
206 	flush_cache_dup_mm(oldmm);
207 	/*
208 	 * Not linked in yet - no deadlock potential:
209 	 */
210 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
211 
212 	mm->locked_vm = 0;
213 	mm->mmap = NULL;
214 	mm->mmap_cache = NULL;
215 	mm->free_area_cache = oldmm->mmap_base;
216 	mm->cached_hole_size = ~0UL;
217 	mm->map_count = 0;
218 	cpus_clear(mm->cpu_vm_mask);
219 	mm->mm_rb = RB_ROOT;
220 	rb_link = &mm->mm_rb.rb_node;
221 	rb_parent = NULL;
222 	pprev = &mm->mmap;
223 
224 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
225 		struct file *file;
226 
227 		if (mpnt->vm_flags & VM_DONTCOPY) {
228 			long pages = vma_pages(mpnt);
229 			mm->total_vm -= pages;
230 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
231 								-pages);
232 			continue;
233 		}
234 		charge = 0;
235 		if (mpnt->vm_flags & VM_ACCOUNT) {
236 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
237 			if (security_vm_enough_memory(len))
238 				goto fail_nomem;
239 			charge = len;
240 		}
241 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
242 		if (!tmp)
243 			goto fail_nomem;
244 		*tmp = *mpnt;
245 		pol = mpol_copy(vma_policy(mpnt));
246 		retval = PTR_ERR(pol);
247 		if (IS_ERR(pol))
248 			goto fail_nomem_policy;
249 		vma_set_policy(tmp, pol);
250 		tmp->vm_flags &= ~VM_LOCKED;
251 		tmp->vm_mm = mm;
252 		tmp->vm_next = NULL;
253 		anon_vma_link(tmp);
254 		file = tmp->vm_file;
255 		if (file) {
256 			struct inode *inode = file->f_path.dentry->d_inode;
257 			get_file(file);
258 			if (tmp->vm_flags & VM_DENYWRITE)
259 				atomic_dec(&inode->i_writecount);
260 
261 			/* insert tmp into the share list, just after mpnt */
262 			spin_lock(&file->f_mapping->i_mmap_lock);
263 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
264 			flush_dcache_mmap_lock(file->f_mapping);
265 			vma_prio_tree_add(tmp, mpnt);
266 			flush_dcache_mmap_unlock(file->f_mapping);
267 			spin_unlock(&file->f_mapping->i_mmap_lock);
268 		}
269 
270 		/*
271 		 * Link in the new vma and copy the page table entries.
272 		 */
273 		*pprev = tmp;
274 		pprev = &tmp->vm_next;
275 
276 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
277 		rb_link = &tmp->vm_rb.rb_right;
278 		rb_parent = &tmp->vm_rb;
279 
280 		mm->map_count++;
281 		retval = copy_page_range(mm, oldmm, mpnt);
282 
283 		if (tmp->vm_ops && tmp->vm_ops->open)
284 			tmp->vm_ops->open(tmp);
285 
286 		if (retval)
287 			goto out;
288 	}
289 	retval = 0;
290 out:
291 	up_write(&mm->mmap_sem);
292 	flush_tlb_mm(oldmm);
293 	up_write(&oldmm->mmap_sem);
294 	return retval;
295 fail_nomem_policy:
296 	kmem_cache_free(vm_area_cachep, tmp);
297 fail_nomem:
298 	retval = -ENOMEM;
299 	vm_unacct_memory(charge);
300 	goto out;
301 }
302 
303 static inline int mm_alloc_pgd(struct mm_struct * mm)
304 {
305 	mm->pgd = pgd_alloc(mm);
306 	if (unlikely(!mm->pgd))
307 		return -ENOMEM;
308 	return 0;
309 }
310 
311 static inline void mm_free_pgd(struct mm_struct * mm)
312 {
313 	pgd_free(mm->pgd);
314 }
315 #else
316 #define dup_mmap(mm, oldmm)	(0)
317 #define mm_alloc_pgd(mm)	(0)
318 #define mm_free_pgd(mm)
319 #endif /* CONFIG_MMU */
320 
321  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
322 
323 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
324 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
325 
326 #include <linux/init_task.h>
327 
328 static struct mm_struct * mm_init(struct mm_struct * mm)
329 {
330 	atomic_set(&mm->mm_users, 1);
331 	atomic_set(&mm->mm_count, 1);
332 	init_rwsem(&mm->mmap_sem);
333 	INIT_LIST_HEAD(&mm->mmlist);
334 	mm->core_waiters = 0;
335 	mm->nr_ptes = 0;
336 	set_mm_counter(mm, file_rss, 0);
337 	set_mm_counter(mm, anon_rss, 0);
338 	spin_lock_init(&mm->page_table_lock);
339 	rwlock_init(&mm->ioctx_list_lock);
340 	mm->ioctx_list = NULL;
341 	mm->free_area_cache = TASK_UNMAPPED_BASE;
342 	mm->cached_hole_size = ~0UL;
343 
344 	if (likely(!mm_alloc_pgd(mm))) {
345 		mm->def_flags = 0;
346 		return mm;
347 	}
348 	free_mm(mm);
349 	return NULL;
350 }
351 
352 /*
353  * Allocate and initialize an mm_struct.
354  */
355 struct mm_struct * mm_alloc(void)
356 {
357 	struct mm_struct * mm;
358 
359 	mm = allocate_mm();
360 	if (mm) {
361 		memset(mm, 0, sizeof(*mm));
362 		mm = mm_init(mm);
363 	}
364 	return mm;
365 }
366 
367 /*
368  * Called when the last reference to the mm
369  * is dropped: either by a lazy thread or by
370  * mmput. Free the page directory and the mm.
371  */
372 void fastcall __mmdrop(struct mm_struct *mm)
373 {
374 	BUG_ON(mm == &init_mm);
375 	mm_free_pgd(mm);
376 	destroy_context(mm);
377 	free_mm(mm);
378 }
379 
380 /*
381  * Decrement the use count and release all resources for an mm.
382  */
383 void mmput(struct mm_struct *mm)
384 {
385 	might_sleep();
386 
387 	if (atomic_dec_and_test(&mm->mm_users)) {
388 		exit_aio(mm);
389 		exit_mmap(mm);
390 		if (!list_empty(&mm->mmlist)) {
391 			spin_lock(&mmlist_lock);
392 			list_del(&mm->mmlist);
393 			spin_unlock(&mmlist_lock);
394 		}
395 		put_swap_token(mm);
396 		mmdrop(mm);
397 	}
398 }
399 EXPORT_SYMBOL_GPL(mmput);
400 
401 /**
402  * get_task_mm - acquire a reference to the task's mm
403  *
404  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
405  * this kernel workthread has transiently adopted a user mm with use_mm,
406  * to do its AIO) is not set and if so returns a reference to it, after
407  * bumping up the use count.  User must release the mm via mmput()
408  * after use.  Typically used by /proc and ptrace.
409  */
410 struct mm_struct *get_task_mm(struct task_struct *task)
411 {
412 	struct mm_struct *mm;
413 
414 	task_lock(task);
415 	mm = task->mm;
416 	if (mm) {
417 		if (task->flags & PF_BORROWED_MM)
418 			mm = NULL;
419 		else
420 			atomic_inc(&mm->mm_users);
421 	}
422 	task_unlock(task);
423 	return mm;
424 }
425 EXPORT_SYMBOL_GPL(get_task_mm);
426 
427 /* Please note the differences between mmput and mm_release.
428  * mmput is called whenever we stop holding onto a mm_struct,
429  * error success whatever.
430  *
431  * mm_release is called after a mm_struct has been removed
432  * from the current process.
433  *
434  * This difference is important for error handling, when we
435  * only half set up a mm_struct for a new process and need to restore
436  * the old one.  Because we mmput the new mm_struct before
437  * restoring the old one. . .
438  * Eric Biederman 10 January 1998
439  */
440 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
441 {
442 	struct completion *vfork_done = tsk->vfork_done;
443 
444 	/* Get rid of any cached register state */
445 	deactivate_mm(tsk, mm);
446 
447 	/* notify parent sleeping on vfork() */
448 	if (vfork_done) {
449 		tsk->vfork_done = NULL;
450 		complete(vfork_done);
451 	}
452 
453 	/*
454 	 * If we're exiting normally, clear a user-space tid field if
455 	 * requested.  We leave this alone when dying by signal, to leave
456 	 * the value intact in a core dump, and to save the unnecessary
457 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
458 	 */
459 	if (tsk->clear_child_tid
460 	    && !(tsk->flags & PF_SIGNALED)
461 	    && atomic_read(&mm->mm_users) > 1) {
462 		u32 __user * tidptr = tsk->clear_child_tid;
463 		tsk->clear_child_tid = NULL;
464 
465 		/*
466 		 * We don't check the error code - if userspace has
467 		 * not set up a proper pointer then tough luck.
468 		 */
469 		put_user(0, tidptr);
470 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
471 	}
472 }
473 
474 /*
475  * Allocate a new mm structure and copy contents from the
476  * mm structure of the passed in task structure.
477  */
478 static struct mm_struct *dup_mm(struct task_struct *tsk)
479 {
480 	struct mm_struct *mm, *oldmm = current->mm;
481 	int err;
482 
483 	if (!oldmm)
484 		return NULL;
485 
486 	mm = allocate_mm();
487 	if (!mm)
488 		goto fail_nomem;
489 
490 	memcpy(mm, oldmm, sizeof(*mm));
491 
492 	/* Initializing for Swap token stuff */
493 	mm->token_priority = 0;
494 	mm->last_interval = 0;
495 
496 	if (!mm_init(mm))
497 		goto fail_nomem;
498 
499 	if (init_new_context(tsk, mm))
500 		goto fail_nocontext;
501 
502 	err = dup_mmap(mm, oldmm);
503 	if (err)
504 		goto free_pt;
505 
506 	mm->hiwater_rss = get_mm_rss(mm);
507 	mm->hiwater_vm = mm->total_vm;
508 
509 	return mm;
510 
511 free_pt:
512 	mmput(mm);
513 
514 fail_nomem:
515 	return NULL;
516 
517 fail_nocontext:
518 	/*
519 	 * If init_new_context() failed, we cannot use mmput() to free the mm
520 	 * because it calls destroy_context()
521 	 */
522 	mm_free_pgd(mm);
523 	free_mm(mm);
524 	return NULL;
525 }
526 
527 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
528 {
529 	struct mm_struct * mm, *oldmm;
530 	int retval;
531 
532 	tsk->min_flt = tsk->maj_flt = 0;
533 	tsk->nvcsw = tsk->nivcsw = 0;
534 
535 	tsk->mm = NULL;
536 	tsk->active_mm = NULL;
537 
538 	/*
539 	 * Are we cloning a kernel thread?
540 	 *
541 	 * We need to steal a active VM for that..
542 	 */
543 	oldmm = current->mm;
544 	if (!oldmm)
545 		return 0;
546 
547 	if (clone_flags & CLONE_VM) {
548 		atomic_inc(&oldmm->mm_users);
549 		mm = oldmm;
550 		goto good_mm;
551 	}
552 
553 	retval = -ENOMEM;
554 	mm = dup_mm(tsk);
555 	if (!mm)
556 		goto fail_nomem;
557 
558 good_mm:
559 	/* Initializing for Swap token stuff */
560 	mm->token_priority = 0;
561 	mm->last_interval = 0;
562 
563 	tsk->mm = mm;
564 	tsk->active_mm = mm;
565 	return 0;
566 
567 fail_nomem:
568 	return retval;
569 }
570 
571 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
572 {
573 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
574 	/* We don't need to lock fs - think why ;-) */
575 	if (fs) {
576 		atomic_set(&fs->count, 1);
577 		rwlock_init(&fs->lock);
578 		fs->umask = old->umask;
579 		read_lock(&old->lock);
580 		fs->rootmnt = mntget(old->rootmnt);
581 		fs->root = dget(old->root);
582 		fs->pwdmnt = mntget(old->pwdmnt);
583 		fs->pwd = dget(old->pwd);
584 		if (old->altroot) {
585 			fs->altrootmnt = mntget(old->altrootmnt);
586 			fs->altroot = dget(old->altroot);
587 		} else {
588 			fs->altrootmnt = NULL;
589 			fs->altroot = NULL;
590 		}
591 		read_unlock(&old->lock);
592 	}
593 	return fs;
594 }
595 
596 struct fs_struct *copy_fs_struct(struct fs_struct *old)
597 {
598 	return __copy_fs_struct(old);
599 }
600 
601 EXPORT_SYMBOL_GPL(copy_fs_struct);
602 
603 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
604 {
605 	if (clone_flags & CLONE_FS) {
606 		atomic_inc(&current->fs->count);
607 		return 0;
608 	}
609 	tsk->fs = __copy_fs_struct(current->fs);
610 	if (!tsk->fs)
611 		return -ENOMEM;
612 	return 0;
613 }
614 
615 static int count_open_files(struct fdtable *fdt)
616 {
617 	int size = fdt->max_fds;
618 	int i;
619 
620 	/* Find the last open fd */
621 	for (i = size/(8*sizeof(long)); i > 0; ) {
622 		if (fdt->open_fds->fds_bits[--i])
623 			break;
624 	}
625 	i = (i+1) * 8 * sizeof(long);
626 	return i;
627 }
628 
629 static struct files_struct *alloc_files(void)
630 {
631 	struct files_struct *newf;
632 	struct fdtable *fdt;
633 
634 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
635 	if (!newf)
636 		goto out;
637 
638 	atomic_set(&newf->count, 1);
639 
640 	spin_lock_init(&newf->file_lock);
641 	newf->next_fd = 0;
642 	fdt = &newf->fdtab;
643 	fdt->max_fds = NR_OPEN_DEFAULT;
644 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
645 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
646 	fdt->fd = &newf->fd_array[0];
647 	INIT_RCU_HEAD(&fdt->rcu);
648 	fdt->next = NULL;
649 	rcu_assign_pointer(newf->fdt, fdt);
650 out:
651 	return newf;
652 }
653 
654 /*
655  * Allocate a new files structure and copy contents from the
656  * passed in files structure.
657  * errorp will be valid only when the returned files_struct is NULL.
658  */
659 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
660 {
661 	struct files_struct *newf;
662 	struct file **old_fds, **new_fds;
663 	int open_files, size, i;
664 	struct fdtable *old_fdt, *new_fdt;
665 
666 	*errorp = -ENOMEM;
667 	newf = alloc_files();
668 	if (!newf)
669 		goto out;
670 
671 	spin_lock(&oldf->file_lock);
672 	old_fdt = files_fdtable(oldf);
673 	new_fdt = files_fdtable(newf);
674 	open_files = count_open_files(old_fdt);
675 
676 	/*
677 	 * Check whether we need to allocate a larger fd array and fd set.
678 	 * Note: we're not a clone task, so the open count won't change.
679 	 */
680 	if (open_files > new_fdt->max_fds) {
681 		new_fdt->max_fds = 0;
682 		spin_unlock(&oldf->file_lock);
683 		spin_lock(&newf->file_lock);
684 		*errorp = expand_files(newf, open_files-1);
685 		spin_unlock(&newf->file_lock);
686 		if (*errorp < 0)
687 			goto out_release;
688 		new_fdt = files_fdtable(newf);
689 		/*
690 		 * Reacquire the oldf lock and a pointer to its fd table
691 		 * who knows it may have a new bigger fd table. We need
692 		 * the latest pointer.
693 		 */
694 		spin_lock(&oldf->file_lock);
695 		old_fdt = files_fdtable(oldf);
696 	}
697 
698 	old_fds = old_fdt->fd;
699 	new_fds = new_fdt->fd;
700 
701 	memcpy(new_fdt->open_fds->fds_bits,
702 		old_fdt->open_fds->fds_bits, open_files/8);
703 	memcpy(new_fdt->close_on_exec->fds_bits,
704 		old_fdt->close_on_exec->fds_bits, open_files/8);
705 
706 	for (i = open_files; i != 0; i--) {
707 		struct file *f = *old_fds++;
708 		if (f) {
709 			get_file(f);
710 		} else {
711 			/*
712 			 * The fd may be claimed in the fd bitmap but not yet
713 			 * instantiated in the files array if a sibling thread
714 			 * is partway through open().  So make sure that this
715 			 * fd is available to the new process.
716 			 */
717 			FD_CLR(open_files - i, new_fdt->open_fds);
718 		}
719 		rcu_assign_pointer(*new_fds++, f);
720 	}
721 	spin_unlock(&oldf->file_lock);
722 
723 	/* compute the remainder to be cleared */
724 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
725 
726 	/* This is long word aligned thus could use a optimized version */
727 	memset(new_fds, 0, size);
728 
729 	if (new_fdt->max_fds > open_files) {
730 		int left = (new_fdt->max_fds-open_files)/8;
731 		int start = open_files / (8 * sizeof(unsigned long));
732 
733 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
734 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
735 	}
736 
737 	return newf;
738 
739 out_release:
740 	kmem_cache_free(files_cachep, newf);
741 out:
742 	return NULL;
743 }
744 
745 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
746 {
747 	struct files_struct *oldf, *newf;
748 	int error = 0;
749 
750 	/*
751 	 * A background process may not have any files ...
752 	 */
753 	oldf = current->files;
754 	if (!oldf)
755 		goto out;
756 
757 	if (clone_flags & CLONE_FILES) {
758 		atomic_inc(&oldf->count);
759 		goto out;
760 	}
761 
762 	/*
763 	 * Note: we may be using current for both targets (See exec.c)
764 	 * This works because we cache current->files (old) as oldf. Don't
765 	 * break this.
766 	 */
767 	tsk->files = NULL;
768 	newf = dup_fd(oldf, &error);
769 	if (!newf)
770 		goto out;
771 
772 	tsk->files = newf;
773 	error = 0;
774 out:
775 	return error;
776 }
777 
778 /*
779  *	Helper to unshare the files of the current task.
780  *	We don't want to expose copy_files internals to
781  *	the exec layer of the kernel.
782  */
783 
784 int unshare_files(void)
785 {
786 	struct files_struct *files  = current->files;
787 	int rc;
788 
789 	BUG_ON(!files);
790 
791 	/* This can race but the race causes us to copy when we don't
792 	   need to and drop the copy */
793 	if(atomic_read(&files->count) == 1)
794 	{
795 		atomic_inc(&files->count);
796 		return 0;
797 	}
798 	rc = copy_files(0, current);
799 	if(rc)
800 		current->files = files;
801 	return rc;
802 }
803 
804 EXPORT_SYMBOL(unshare_files);
805 
806 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
807 {
808 	struct sighand_struct *sig;
809 
810 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
811 		atomic_inc(&current->sighand->count);
812 		return 0;
813 	}
814 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
815 	rcu_assign_pointer(tsk->sighand, sig);
816 	if (!sig)
817 		return -ENOMEM;
818 	atomic_set(&sig->count, 1);
819 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
820 	return 0;
821 }
822 
823 void __cleanup_sighand(struct sighand_struct *sighand)
824 {
825 	if (atomic_dec_and_test(&sighand->count))
826 		kmem_cache_free(sighand_cachep, sighand);
827 }
828 
829 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
830 {
831 	struct signal_struct *sig;
832 	int ret;
833 
834 	if (clone_flags & CLONE_THREAD) {
835 		atomic_inc(&current->signal->count);
836 		atomic_inc(&current->signal->live);
837 		return 0;
838 	}
839 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
840 	tsk->signal = sig;
841 	if (!sig)
842 		return -ENOMEM;
843 
844 	ret = copy_thread_group_keys(tsk);
845 	if (ret < 0) {
846 		kmem_cache_free(signal_cachep, sig);
847 		return ret;
848 	}
849 
850 	atomic_set(&sig->count, 1);
851 	atomic_set(&sig->live, 1);
852 	init_waitqueue_head(&sig->wait_chldexit);
853 	sig->flags = 0;
854 	sig->group_exit_code = 0;
855 	sig->group_exit_task = NULL;
856 	sig->group_stop_count = 0;
857 	sig->curr_target = NULL;
858 	init_sigpending(&sig->shared_pending);
859 	INIT_LIST_HEAD(&sig->posix_timers);
860 
861 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
862 	sig->it_real_incr.tv64 = 0;
863 	sig->real_timer.function = it_real_fn;
864 	sig->tsk = tsk;
865 
866 	sig->it_virt_expires = cputime_zero;
867 	sig->it_virt_incr = cputime_zero;
868 	sig->it_prof_expires = cputime_zero;
869 	sig->it_prof_incr = cputime_zero;
870 
871 	sig->leader = 0;	/* session leadership doesn't inherit */
872 	sig->tty_old_pgrp = NULL;
873 
874 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
875 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
876 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
877 	sig->sched_time = 0;
878 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
879 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
880 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
881 	taskstats_tgid_init(sig);
882 
883 	task_lock(current->group_leader);
884 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
885 	task_unlock(current->group_leader);
886 
887 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
888 		/*
889 		 * New sole thread in the process gets an expiry time
890 		 * of the whole CPU time limit.
891 		 */
892 		tsk->it_prof_expires =
893 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
894 	}
895 	acct_init_pacct(&sig->pacct);
896 
897 	return 0;
898 }
899 
900 void __cleanup_signal(struct signal_struct *sig)
901 {
902 	exit_thread_group_keys(sig);
903 	kmem_cache_free(signal_cachep, sig);
904 }
905 
906 static inline void cleanup_signal(struct task_struct *tsk)
907 {
908 	struct signal_struct *sig = tsk->signal;
909 
910 	atomic_dec(&sig->live);
911 
912 	if (atomic_dec_and_test(&sig->count))
913 		__cleanup_signal(sig);
914 }
915 
916 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
917 {
918 	unsigned long new_flags = p->flags;
919 
920 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
921 	new_flags |= PF_FORKNOEXEC;
922 	if (!(clone_flags & CLONE_PTRACE))
923 		p->ptrace = 0;
924 	p->flags = new_flags;
925 }
926 
927 asmlinkage long sys_set_tid_address(int __user *tidptr)
928 {
929 	current->clear_child_tid = tidptr;
930 
931 	return current->pid;
932 }
933 
934 static inline void rt_mutex_init_task(struct task_struct *p)
935 {
936 #ifdef CONFIG_RT_MUTEXES
937 	spin_lock_init(&p->pi_lock);
938 	plist_head_init(&p->pi_waiters, &p->pi_lock);
939 	p->pi_blocked_on = NULL;
940 #endif
941 }
942 
943 /*
944  * This creates a new process as a copy of the old one,
945  * but does not actually start it yet.
946  *
947  * It copies the registers, and all the appropriate
948  * parts of the process environment (as per the clone
949  * flags). The actual kick-off is left to the caller.
950  */
951 static struct task_struct *copy_process(unsigned long clone_flags,
952 					unsigned long stack_start,
953 					struct pt_regs *regs,
954 					unsigned long stack_size,
955 					int __user *parent_tidptr,
956 					int __user *child_tidptr,
957 					int pid)
958 {
959 	int retval;
960 	struct task_struct *p = NULL;
961 
962 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
963 		return ERR_PTR(-EINVAL);
964 
965 	/*
966 	 * Thread groups must share signals as well, and detached threads
967 	 * can only be started up within the thread group.
968 	 */
969 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
970 		return ERR_PTR(-EINVAL);
971 
972 	/*
973 	 * Shared signal handlers imply shared VM. By way of the above,
974 	 * thread groups also imply shared VM. Blocking this case allows
975 	 * for various simplifications in other code.
976 	 */
977 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
978 		return ERR_PTR(-EINVAL);
979 
980 	retval = security_task_create(clone_flags);
981 	if (retval)
982 		goto fork_out;
983 
984 	retval = -ENOMEM;
985 	p = dup_task_struct(current);
986 	if (!p)
987 		goto fork_out;
988 
989 	rt_mutex_init_task(p);
990 
991 #ifdef CONFIG_TRACE_IRQFLAGS
992 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
993 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
994 #endif
995 	retval = -EAGAIN;
996 	if (atomic_read(&p->user->processes) >=
997 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
998 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
999 				p->user != &root_user)
1000 			goto bad_fork_free;
1001 	}
1002 
1003 	atomic_inc(&p->user->__count);
1004 	atomic_inc(&p->user->processes);
1005 	get_group_info(p->group_info);
1006 
1007 	/*
1008 	 * If multiple threads are within copy_process(), then this check
1009 	 * triggers too late. This doesn't hurt, the check is only there
1010 	 * to stop root fork bombs.
1011 	 */
1012 	if (nr_threads >= max_threads)
1013 		goto bad_fork_cleanup_count;
1014 
1015 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1016 		goto bad_fork_cleanup_count;
1017 
1018 	if (p->binfmt && !try_module_get(p->binfmt->module))
1019 		goto bad_fork_cleanup_put_domain;
1020 
1021 	p->did_exec = 0;
1022 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1023 	copy_flags(clone_flags, p);
1024 	p->pid = pid;
1025 	retval = -EFAULT;
1026 	if (clone_flags & CLONE_PARENT_SETTID)
1027 		if (put_user(p->pid, parent_tidptr))
1028 			goto bad_fork_cleanup_delays_binfmt;
1029 
1030 	INIT_LIST_HEAD(&p->children);
1031 	INIT_LIST_HEAD(&p->sibling);
1032 	p->vfork_done = NULL;
1033 	spin_lock_init(&p->alloc_lock);
1034 
1035 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1036 	init_sigpending(&p->pending);
1037 
1038 	p->utime = cputime_zero;
1039 	p->stime = cputime_zero;
1040  	p->sched_time = 0;
1041 #ifdef CONFIG_TASK_XACCT
1042 	p->rchar = 0;		/* I/O counter: bytes read */
1043 	p->wchar = 0;		/* I/O counter: bytes written */
1044 	p->syscr = 0;		/* I/O counter: read syscalls */
1045 	p->syscw = 0;		/* I/O counter: write syscalls */
1046 #endif
1047 	task_io_accounting_init(p);
1048 	acct_clear_integrals(p);
1049 
1050  	p->it_virt_expires = cputime_zero;
1051 	p->it_prof_expires = cputime_zero;
1052  	p->it_sched_expires = 0;
1053  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1054  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1055  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1056 
1057 	p->lock_depth = -1;		/* -1 = no lock */
1058 	do_posix_clock_monotonic_gettime(&p->start_time);
1059 	p->security = NULL;
1060 	p->io_context = NULL;
1061 	p->io_wait = NULL;
1062 	p->audit_context = NULL;
1063 	cpuset_fork(p);
1064 #ifdef CONFIG_NUMA
1065  	p->mempolicy = mpol_copy(p->mempolicy);
1066  	if (IS_ERR(p->mempolicy)) {
1067  		retval = PTR_ERR(p->mempolicy);
1068  		p->mempolicy = NULL;
1069  		goto bad_fork_cleanup_cpuset;
1070  	}
1071 	mpol_fix_fork_child_flag(p);
1072 #endif
1073 #ifdef CONFIG_TRACE_IRQFLAGS
1074 	p->irq_events = 0;
1075 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1076 	p->hardirqs_enabled = 1;
1077 #else
1078 	p->hardirqs_enabled = 0;
1079 #endif
1080 	p->hardirq_enable_ip = 0;
1081 	p->hardirq_enable_event = 0;
1082 	p->hardirq_disable_ip = _THIS_IP_;
1083 	p->hardirq_disable_event = 0;
1084 	p->softirqs_enabled = 1;
1085 	p->softirq_enable_ip = _THIS_IP_;
1086 	p->softirq_enable_event = 0;
1087 	p->softirq_disable_ip = 0;
1088 	p->softirq_disable_event = 0;
1089 	p->hardirq_context = 0;
1090 	p->softirq_context = 0;
1091 #endif
1092 #ifdef CONFIG_LOCKDEP
1093 	p->lockdep_depth = 0; /* no locks held yet */
1094 	p->curr_chain_key = 0;
1095 	p->lockdep_recursion = 0;
1096 #endif
1097 
1098 #ifdef CONFIG_DEBUG_MUTEXES
1099 	p->blocked_on = NULL; /* not blocked yet */
1100 #endif
1101 
1102 	p->tgid = p->pid;
1103 	if (clone_flags & CLONE_THREAD)
1104 		p->tgid = current->tgid;
1105 
1106 	if ((retval = security_task_alloc(p)))
1107 		goto bad_fork_cleanup_policy;
1108 	if ((retval = audit_alloc(p)))
1109 		goto bad_fork_cleanup_security;
1110 	/* copy all the process information */
1111 	if ((retval = copy_semundo(clone_flags, p)))
1112 		goto bad_fork_cleanup_audit;
1113 	if ((retval = copy_files(clone_flags, p)))
1114 		goto bad_fork_cleanup_semundo;
1115 	if ((retval = copy_fs(clone_flags, p)))
1116 		goto bad_fork_cleanup_files;
1117 	if ((retval = copy_sighand(clone_flags, p)))
1118 		goto bad_fork_cleanup_fs;
1119 	if ((retval = copy_signal(clone_flags, p)))
1120 		goto bad_fork_cleanup_sighand;
1121 	if ((retval = copy_mm(clone_flags, p)))
1122 		goto bad_fork_cleanup_signal;
1123 	if ((retval = copy_keys(clone_flags, p)))
1124 		goto bad_fork_cleanup_mm;
1125 	if ((retval = copy_namespaces(clone_flags, p)))
1126 		goto bad_fork_cleanup_keys;
1127 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1128 	if (retval)
1129 		goto bad_fork_cleanup_namespaces;
1130 
1131 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1132 	/*
1133 	 * Clear TID on mm_release()?
1134 	 */
1135 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1136 	p->robust_list = NULL;
1137 #ifdef CONFIG_COMPAT
1138 	p->compat_robust_list = NULL;
1139 #endif
1140 	INIT_LIST_HEAD(&p->pi_state_list);
1141 	p->pi_state_cache = NULL;
1142 
1143 	/*
1144 	 * sigaltstack should be cleared when sharing the same VM
1145 	 */
1146 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1147 		p->sas_ss_sp = p->sas_ss_size = 0;
1148 
1149 	/*
1150 	 * Syscall tracing should be turned off in the child regardless
1151 	 * of CLONE_PTRACE.
1152 	 */
1153 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1154 #ifdef TIF_SYSCALL_EMU
1155 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1156 #endif
1157 
1158 	/* Our parent execution domain becomes current domain
1159 	   These must match for thread signalling to apply */
1160 	p->parent_exec_id = p->self_exec_id;
1161 
1162 	/* ok, now we should be set up.. */
1163 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1164 	p->pdeath_signal = 0;
1165 	p->exit_state = 0;
1166 
1167 	/*
1168 	 * Ok, make it visible to the rest of the system.
1169 	 * We dont wake it up yet.
1170 	 */
1171 	p->group_leader = p;
1172 	INIT_LIST_HEAD(&p->thread_group);
1173 	INIT_LIST_HEAD(&p->ptrace_children);
1174 	INIT_LIST_HEAD(&p->ptrace_list);
1175 
1176 	/* Perform scheduler related setup. Assign this task to a CPU. */
1177 	sched_fork(p, clone_flags);
1178 
1179 	/* Need tasklist lock for parent etc handling! */
1180 	write_lock_irq(&tasklist_lock);
1181 
1182 	/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1183 	p->ioprio = current->ioprio;
1184 
1185 	/*
1186 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1187 	 * not be changed, nor will its assigned CPU.
1188 	 *
1189 	 * The cpus_allowed mask of the parent may have changed after it was
1190 	 * copied first time - so re-copy it here, then check the child's CPU
1191 	 * to ensure it is on a valid CPU (and if not, just force it back to
1192 	 * parent's CPU). This avoids alot of nasty races.
1193 	 */
1194 	p->cpus_allowed = current->cpus_allowed;
1195 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1196 			!cpu_online(task_cpu(p))))
1197 		set_task_cpu(p, smp_processor_id());
1198 
1199 	/* CLONE_PARENT re-uses the old parent */
1200 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1201 		p->real_parent = current->real_parent;
1202 	else
1203 		p->real_parent = current;
1204 	p->parent = p->real_parent;
1205 
1206 	spin_lock(&current->sighand->siglock);
1207 
1208 	/*
1209 	 * Process group and session signals need to be delivered to just the
1210 	 * parent before the fork or both the parent and the child after the
1211 	 * fork. Restart if a signal comes in before we add the new process to
1212 	 * it's process group.
1213 	 * A fatal signal pending means that current will exit, so the new
1214 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1215  	 */
1216  	recalc_sigpending();
1217 	if (signal_pending(current)) {
1218 		spin_unlock(&current->sighand->siglock);
1219 		write_unlock_irq(&tasklist_lock);
1220 		retval = -ERESTARTNOINTR;
1221 		goto bad_fork_cleanup_namespaces;
1222 	}
1223 
1224 	if (clone_flags & CLONE_THREAD) {
1225 		p->group_leader = current->group_leader;
1226 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1227 
1228 		if (!cputime_eq(current->signal->it_virt_expires,
1229 				cputime_zero) ||
1230 		    !cputime_eq(current->signal->it_prof_expires,
1231 				cputime_zero) ||
1232 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1233 		    !list_empty(&current->signal->cpu_timers[0]) ||
1234 		    !list_empty(&current->signal->cpu_timers[1]) ||
1235 		    !list_empty(&current->signal->cpu_timers[2])) {
1236 			/*
1237 			 * Have child wake up on its first tick to check
1238 			 * for process CPU timers.
1239 			 */
1240 			p->it_prof_expires = jiffies_to_cputime(1);
1241 		}
1242 	}
1243 
1244 	if (likely(p->pid)) {
1245 		add_parent(p);
1246 		if (unlikely(p->ptrace & PT_PTRACED))
1247 			__ptrace_link(p, current->parent);
1248 
1249 		if (thread_group_leader(p)) {
1250 			p->signal->tty = current->signal->tty;
1251 			p->signal->pgrp = process_group(current);
1252 			set_signal_session(p->signal, process_session(current));
1253 			attach_pid(p, PIDTYPE_PGID, process_group(p));
1254 			attach_pid(p, PIDTYPE_SID, process_session(p));
1255 
1256 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1257 			__get_cpu_var(process_counts)++;
1258 		}
1259 		attach_pid(p, PIDTYPE_PID, p->pid);
1260 		nr_threads++;
1261 	}
1262 
1263 	total_forks++;
1264 	spin_unlock(&current->sighand->siglock);
1265 	write_unlock_irq(&tasklist_lock);
1266 	proc_fork_connector(p);
1267 	return p;
1268 
1269 bad_fork_cleanup_namespaces:
1270 	exit_task_namespaces(p);
1271 bad_fork_cleanup_keys:
1272 	exit_keys(p);
1273 bad_fork_cleanup_mm:
1274 	if (p->mm)
1275 		mmput(p->mm);
1276 bad_fork_cleanup_signal:
1277 	cleanup_signal(p);
1278 bad_fork_cleanup_sighand:
1279 	__cleanup_sighand(p->sighand);
1280 bad_fork_cleanup_fs:
1281 	exit_fs(p); /* blocking */
1282 bad_fork_cleanup_files:
1283 	exit_files(p); /* blocking */
1284 bad_fork_cleanup_semundo:
1285 	exit_sem(p);
1286 bad_fork_cleanup_audit:
1287 	audit_free(p);
1288 bad_fork_cleanup_security:
1289 	security_task_free(p);
1290 bad_fork_cleanup_policy:
1291 #ifdef CONFIG_NUMA
1292 	mpol_free(p->mempolicy);
1293 bad_fork_cleanup_cpuset:
1294 #endif
1295 	cpuset_exit(p);
1296 bad_fork_cleanup_delays_binfmt:
1297 	delayacct_tsk_free(p);
1298 	if (p->binfmt)
1299 		module_put(p->binfmt->module);
1300 bad_fork_cleanup_put_domain:
1301 	module_put(task_thread_info(p)->exec_domain->module);
1302 bad_fork_cleanup_count:
1303 	put_group_info(p->group_info);
1304 	atomic_dec(&p->user->processes);
1305 	free_uid(p->user);
1306 bad_fork_free:
1307 	free_task(p);
1308 fork_out:
1309 	return ERR_PTR(retval);
1310 }
1311 
1312 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1313 {
1314 	memset(regs, 0, sizeof(struct pt_regs));
1315 	return regs;
1316 }
1317 
1318 struct task_struct * __cpuinit fork_idle(int cpu)
1319 {
1320 	struct task_struct *task;
1321 	struct pt_regs regs;
1322 
1323 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1324 	if (!IS_ERR(task))
1325 		init_idle(task, cpu);
1326 
1327 	return task;
1328 }
1329 
1330 static inline int fork_traceflag (unsigned clone_flags)
1331 {
1332 	if (clone_flags & CLONE_UNTRACED)
1333 		return 0;
1334 	else if (clone_flags & CLONE_VFORK) {
1335 		if (current->ptrace & PT_TRACE_VFORK)
1336 			return PTRACE_EVENT_VFORK;
1337 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1338 		if (current->ptrace & PT_TRACE_CLONE)
1339 			return PTRACE_EVENT_CLONE;
1340 	} else if (current->ptrace & PT_TRACE_FORK)
1341 		return PTRACE_EVENT_FORK;
1342 
1343 	return 0;
1344 }
1345 
1346 /*
1347  *  Ok, this is the main fork-routine.
1348  *
1349  * It copies the process, and if successful kick-starts
1350  * it and waits for it to finish using the VM if required.
1351  */
1352 long do_fork(unsigned long clone_flags,
1353 	      unsigned long stack_start,
1354 	      struct pt_regs *regs,
1355 	      unsigned long stack_size,
1356 	      int __user *parent_tidptr,
1357 	      int __user *child_tidptr)
1358 {
1359 	struct task_struct *p;
1360 	int trace = 0;
1361 	struct pid *pid = alloc_pid();
1362 	long nr;
1363 
1364 	if (!pid)
1365 		return -EAGAIN;
1366 	nr = pid->nr;
1367 	if (unlikely(current->ptrace)) {
1368 		trace = fork_traceflag (clone_flags);
1369 		if (trace)
1370 			clone_flags |= CLONE_PTRACE;
1371 	}
1372 
1373 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1374 	/*
1375 	 * Do this prior waking up the new thread - the thread pointer
1376 	 * might get invalid after that point, if the thread exits quickly.
1377 	 */
1378 	if (!IS_ERR(p)) {
1379 		struct completion vfork;
1380 
1381 		if (clone_flags & CLONE_VFORK) {
1382 			p->vfork_done = &vfork;
1383 			init_completion(&vfork);
1384 		}
1385 
1386 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1387 			/*
1388 			 * We'll start up with an immediate SIGSTOP.
1389 			 */
1390 			sigaddset(&p->pending.signal, SIGSTOP);
1391 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1392 		}
1393 
1394 		if (!(clone_flags & CLONE_STOPPED))
1395 			wake_up_new_task(p, clone_flags);
1396 		else
1397 			p->state = TASK_STOPPED;
1398 
1399 		if (unlikely (trace)) {
1400 			current->ptrace_message = nr;
1401 			ptrace_notify ((trace << 8) | SIGTRAP);
1402 		}
1403 
1404 		if (clone_flags & CLONE_VFORK) {
1405 			wait_for_completion(&vfork);
1406 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1407 				current->ptrace_message = nr;
1408 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1409 			}
1410 		}
1411 	} else {
1412 		free_pid(pid);
1413 		nr = PTR_ERR(p);
1414 	}
1415 	return nr;
1416 }
1417 
1418 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1419 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1420 #endif
1421 
1422 static void sighand_ctor(void *data, struct kmem_cache *cachep, unsigned long flags)
1423 {
1424 	struct sighand_struct *sighand = data;
1425 
1426 	if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1427 					SLAB_CTOR_CONSTRUCTOR)
1428 		spin_lock_init(&sighand->siglock);
1429 }
1430 
1431 void __init proc_caches_init(void)
1432 {
1433 	sighand_cachep = kmem_cache_create("sighand_cache",
1434 			sizeof(struct sighand_struct), 0,
1435 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1436 			sighand_ctor, NULL);
1437 	signal_cachep = kmem_cache_create("signal_cache",
1438 			sizeof(struct signal_struct), 0,
1439 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1440 	files_cachep = kmem_cache_create("files_cache",
1441 			sizeof(struct files_struct), 0,
1442 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1443 	fs_cachep = kmem_cache_create("fs_cache",
1444 			sizeof(struct fs_struct), 0,
1445 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1446 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1447 			sizeof(struct vm_area_struct), 0,
1448 			SLAB_PANIC, NULL, NULL);
1449 	mm_cachep = kmem_cache_create("mm_struct",
1450 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1451 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1452 }
1453 
1454 
1455 /*
1456  * Check constraints on flags passed to the unshare system call and
1457  * force unsharing of additional process context as appropriate.
1458  */
1459 static inline void check_unshare_flags(unsigned long *flags_ptr)
1460 {
1461 	/*
1462 	 * If unsharing a thread from a thread group, must also
1463 	 * unshare vm.
1464 	 */
1465 	if (*flags_ptr & CLONE_THREAD)
1466 		*flags_ptr |= CLONE_VM;
1467 
1468 	/*
1469 	 * If unsharing vm, must also unshare signal handlers.
1470 	 */
1471 	if (*flags_ptr & CLONE_VM)
1472 		*flags_ptr |= CLONE_SIGHAND;
1473 
1474 	/*
1475 	 * If unsharing signal handlers and the task was created
1476 	 * using CLONE_THREAD, then must unshare the thread
1477 	 */
1478 	if ((*flags_ptr & CLONE_SIGHAND) &&
1479 	    (atomic_read(&current->signal->count) > 1))
1480 		*flags_ptr |= CLONE_THREAD;
1481 
1482 	/*
1483 	 * If unsharing namespace, must also unshare filesystem information.
1484 	 */
1485 	if (*flags_ptr & CLONE_NEWNS)
1486 		*flags_ptr |= CLONE_FS;
1487 }
1488 
1489 /*
1490  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1491  */
1492 static int unshare_thread(unsigned long unshare_flags)
1493 {
1494 	if (unshare_flags & CLONE_THREAD)
1495 		return -EINVAL;
1496 
1497 	return 0;
1498 }
1499 
1500 /*
1501  * Unshare the filesystem structure if it is being shared
1502  */
1503 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1504 {
1505 	struct fs_struct *fs = current->fs;
1506 
1507 	if ((unshare_flags & CLONE_FS) &&
1508 	    (fs && atomic_read(&fs->count) > 1)) {
1509 		*new_fsp = __copy_fs_struct(current->fs);
1510 		if (!*new_fsp)
1511 			return -ENOMEM;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 /*
1518  * Unshare the mnt_namespace structure if it is being shared
1519  */
1520 static int unshare_mnt_namespace(unsigned long unshare_flags,
1521 		struct mnt_namespace **new_nsp, struct fs_struct *new_fs)
1522 {
1523 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
1524 
1525 	if ((unshare_flags & CLONE_NEWNS) && ns) {
1526 		if (!capable(CAP_SYS_ADMIN))
1527 			return -EPERM;
1528 
1529 		*new_nsp = dup_mnt_ns(current, new_fs ? new_fs : current->fs);
1530 		if (!*new_nsp)
1531 			return -ENOMEM;
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 /*
1538  * Unsharing of sighand is not supported yet
1539  */
1540 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1541 {
1542 	struct sighand_struct *sigh = current->sighand;
1543 
1544 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1545 		return -EINVAL;
1546 	else
1547 		return 0;
1548 }
1549 
1550 /*
1551  * Unshare vm if it is being shared
1552  */
1553 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1554 {
1555 	struct mm_struct *mm = current->mm;
1556 
1557 	if ((unshare_flags & CLONE_VM) &&
1558 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1559 		return -EINVAL;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Unshare file descriptor table if it is being shared
1567  */
1568 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1569 {
1570 	struct files_struct *fd = current->files;
1571 	int error = 0;
1572 
1573 	if ((unshare_flags & CLONE_FILES) &&
1574 	    (fd && atomic_read(&fd->count) > 1)) {
1575 		*new_fdp = dup_fd(fd, &error);
1576 		if (!*new_fdp)
1577 			return error;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 /*
1584  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1585  * supported yet
1586  */
1587 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1588 {
1589 	if (unshare_flags & CLONE_SYSVSEM)
1590 		return -EINVAL;
1591 
1592 	return 0;
1593 }
1594 
1595 #ifndef CONFIG_IPC_NS
1596 static inline int unshare_ipcs(unsigned long flags, struct ipc_namespace **ns)
1597 {
1598 	if (flags & CLONE_NEWIPC)
1599 		return -EINVAL;
1600 
1601 	return 0;
1602 }
1603 #endif
1604 
1605 /*
1606  * unshare allows a process to 'unshare' part of the process
1607  * context which was originally shared using clone.  copy_*
1608  * functions used by do_fork() cannot be used here directly
1609  * because they modify an inactive task_struct that is being
1610  * constructed. Here we are modifying the current, active,
1611  * task_struct.
1612  */
1613 asmlinkage long sys_unshare(unsigned long unshare_flags)
1614 {
1615 	int err = 0;
1616 	struct fs_struct *fs, *new_fs = NULL;
1617 	struct mnt_namespace *ns, *new_ns = NULL;
1618 	struct sighand_struct *new_sigh = NULL;
1619 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1620 	struct files_struct *fd, *new_fd = NULL;
1621 	struct sem_undo_list *new_ulist = NULL;
1622 	struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1623 	struct uts_namespace *uts, *new_uts = NULL;
1624 	struct ipc_namespace *ipc, *new_ipc = NULL;
1625 
1626 	check_unshare_flags(&unshare_flags);
1627 
1628 	/* Return -EINVAL for all unsupported flags */
1629 	err = -EINVAL;
1630 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1631 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1632 				CLONE_NEWUTS|CLONE_NEWIPC))
1633 		goto bad_unshare_out;
1634 
1635 	if ((err = unshare_thread(unshare_flags)))
1636 		goto bad_unshare_out;
1637 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1638 		goto bad_unshare_cleanup_thread;
1639 	if ((err = unshare_mnt_namespace(unshare_flags, &new_ns, new_fs)))
1640 		goto bad_unshare_cleanup_fs;
1641 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1642 		goto bad_unshare_cleanup_ns;
1643 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1644 		goto bad_unshare_cleanup_sigh;
1645 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1646 		goto bad_unshare_cleanup_vm;
1647 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1648 		goto bad_unshare_cleanup_fd;
1649 	if ((err = unshare_utsname(unshare_flags, &new_uts)))
1650 		goto bad_unshare_cleanup_semundo;
1651 	if ((err = unshare_ipcs(unshare_flags, &new_ipc)))
1652 		goto bad_unshare_cleanup_uts;
1653 
1654 	if (new_ns || new_uts || new_ipc) {
1655 		old_nsproxy = current->nsproxy;
1656 		new_nsproxy = dup_namespaces(old_nsproxy);
1657 		if (!new_nsproxy) {
1658 			err = -ENOMEM;
1659 			goto bad_unshare_cleanup_ipc;
1660 		}
1661 	}
1662 
1663 	if (new_fs || new_ns || new_mm || new_fd || new_ulist ||
1664 				new_uts || new_ipc) {
1665 
1666 		task_lock(current);
1667 
1668 		if (new_nsproxy) {
1669 			current->nsproxy = new_nsproxy;
1670 			new_nsproxy = old_nsproxy;
1671 		}
1672 
1673 		if (new_fs) {
1674 			fs = current->fs;
1675 			current->fs = new_fs;
1676 			new_fs = fs;
1677 		}
1678 
1679 		if (new_ns) {
1680 			ns = current->nsproxy->mnt_ns;
1681 			current->nsproxy->mnt_ns = new_ns;
1682 			new_ns = ns;
1683 		}
1684 
1685 		if (new_mm) {
1686 			mm = current->mm;
1687 			active_mm = current->active_mm;
1688 			current->mm = new_mm;
1689 			current->active_mm = new_mm;
1690 			activate_mm(active_mm, new_mm);
1691 			new_mm = mm;
1692 		}
1693 
1694 		if (new_fd) {
1695 			fd = current->files;
1696 			current->files = new_fd;
1697 			new_fd = fd;
1698 		}
1699 
1700 		if (new_uts) {
1701 			uts = current->nsproxy->uts_ns;
1702 			current->nsproxy->uts_ns = new_uts;
1703 			new_uts = uts;
1704 		}
1705 
1706 		if (new_ipc) {
1707 			ipc = current->nsproxy->ipc_ns;
1708 			current->nsproxy->ipc_ns = new_ipc;
1709 			new_ipc = ipc;
1710 		}
1711 
1712 		task_unlock(current);
1713 	}
1714 
1715 	if (new_nsproxy)
1716 		put_nsproxy(new_nsproxy);
1717 
1718 bad_unshare_cleanup_ipc:
1719 	if (new_ipc)
1720 		put_ipc_ns(new_ipc);
1721 
1722 bad_unshare_cleanup_uts:
1723 	if (new_uts)
1724 		put_uts_ns(new_uts);
1725 
1726 bad_unshare_cleanup_semundo:
1727 bad_unshare_cleanup_fd:
1728 	if (new_fd)
1729 		put_files_struct(new_fd);
1730 
1731 bad_unshare_cleanup_vm:
1732 	if (new_mm)
1733 		mmput(new_mm);
1734 
1735 bad_unshare_cleanup_sigh:
1736 	if (new_sigh)
1737 		if (atomic_dec_and_test(&new_sigh->count))
1738 			kmem_cache_free(sighand_cachep, new_sigh);
1739 
1740 bad_unshare_cleanup_ns:
1741 	if (new_ns)
1742 		put_mnt_ns(new_ns);
1743 
1744 bad_unshare_cleanup_fs:
1745 	if (new_fs)
1746 		put_fs_struct(new_fs);
1747 
1748 bad_unshare_cleanup_thread:
1749 bad_unshare_out:
1750 	return err;
1751 }
1752