1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/mnt_namespace.h> 21 #include <linux/personality.h> 22 #include <linux/mempolicy.h> 23 #include <linux/sem.h> 24 #include <linux/file.h> 25 #include <linux/key.h> 26 #include <linux/binfmts.h> 27 #include <linux/mman.h> 28 #include <linux/fs.h> 29 #include <linux/nsproxy.h> 30 #include <linux/capability.h> 31 #include <linux/cpu.h> 32 #include <linux/cpuset.h> 33 #include <linux/security.h> 34 #include <linux/swap.h> 35 #include <linux/syscalls.h> 36 #include <linux/jiffies.h> 37 #include <linux/futex.h> 38 #include <linux/task_io_accounting_ops.h> 39 #include <linux/rcupdate.h> 40 #include <linux/ptrace.h> 41 #include <linux/mount.h> 42 #include <linux/audit.h> 43 #include <linux/profile.h> 44 #include <linux/rmap.h> 45 #include <linux/acct.h> 46 #include <linux/tsacct_kern.h> 47 #include <linux/cn_proc.h> 48 #include <linux/freezer.h> 49 #include <linux/delayacct.h> 50 #include <linux/taskstats_kern.h> 51 #include <linux/random.h> 52 #include <linux/tty.h> 53 54 #include <asm/pgtable.h> 55 #include <asm/pgalloc.h> 56 #include <asm/uaccess.h> 57 #include <asm/mmu_context.h> 58 #include <asm/cacheflush.h> 59 #include <asm/tlbflush.h> 60 61 /* 62 * Protected counters by write_lock_irq(&tasklist_lock) 63 */ 64 unsigned long total_forks; /* Handle normal Linux uptimes. */ 65 int nr_threads; /* The idle threads do not count.. */ 66 67 int max_threads; /* tunable limit on nr_threads */ 68 69 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 70 71 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 72 73 int nr_processes(void) 74 { 75 int cpu; 76 int total = 0; 77 78 for_each_online_cpu(cpu) 79 total += per_cpu(process_counts, cpu); 80 81 return total; 82 } 83 84 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 85 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) 86 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) 87 static struct kmem_cache *task_struct_cachep; 88 #endif 89 90 /* SLAB cache for signal_struct structures (tsk->signal) */ 91 static struct kmem_cache *signal_cachep; 92 93 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 94 struct kmem_cache *sighand_cachep; 95 96 /* SLAB cache for files_struct structures (tsk->files) */ 97 struct kmem_cache *files_cachep; 98 99 /* SLAB cache for fs_struct structures (tsk->fs) */ 100 struct kmem_cache *fs_cachep; 101 102 /* SLAB cache for vm_area_struct structures */ 103 struct kmem_cache *vm_area_cachep; 104 105 /* SLAB cache for mm_struct structures (tsk->mm) */ 106 static struct kmem_cache *mm_cachep; 107 108 void free_task(struct task_struct *tsk) 109 { 110 free_thread_info(tsk->stack); 111 rt_mutex_debug_task_free(tsk); 112 free_task_struct(tsk); 113 } 114 EXPORT_SYMBOL(free_task); 115 116 void __put_task_struct(struct task_struct *tsk) 117 { 118 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE))); 119 WARN_ON(atomic_read(&tsk->usage)); 120 WARN_ON(tsk == current); 121 122 security_task_free(tsk); 123 free_uid(tsk->user); 124 put_group_info(tsk->group_info); 125 delayacct_tsk_free(tsk); 126 127 if (!profile_handoff_task(tsk)) 128 free_task(tsk); 129 } 130 131 void __init fork_init(unsigned long mempages) 132 { 133 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 134 #ifndef ARCH_MIN_TASKALIGN 135 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 136 #endif 137 /* create a slab on which task_structs can be allocated */ 138 task_struct_cachep = 139 kmem_cache_create("task_struct", sizeof(struct task_struct), 140 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL); 141 #endif 142 143 /* 144 * The default maximum number of threads is set to a safe 145 * value: the thread structures can take up at most half 146 * of memory. 147 */ 148 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 149 150 /* 151 * we need to allow at least 20 threads to boot a system 152 */ 153 if(max_threads < 20) 154 max_threads = 20; 155 156 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 157 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 158 init_task.signal->rlim[RLIMIT_SIGPENDING] = 159 init_task.signal->rlim[RLIMIT_NPROC]; 160 } 161 162 static struct task_struct *dup_task_struct(struct task_struct *orig) 163 { 164 struct task_struct *tsk; 165 struct thread_info *ti; 166 167 prepare_to_copy(orig); 168 169 tsk = alloc_task_struct(); 170 if (!tsk) 171 return NULL; 172 173 ti = alloc_thread_info(tsk); 174 if (!ti) { 175 free_task_struct(tsk); 176 return NULL; 177 } 178 179 *tsk = *orig; 180 tsk->stack = ti; 181 setup_thread_stack(tsk, orig); 182 183 #ifdef CONFIG_CC_STACKPROTECTOR 184 tsk->stack_canary = get_random_int(); 185 #endif 186 187 /* One for us, one for whoever does the "release_task()" (usually parent) */ 188 atomic_set(&tsk->usage,2); 189 atomic_set(&tsk->fs_excl, 0); 190 #ifdef CONFIG_BLK_DEV_IO_TRACE 191 tsk->btrace_seq = 0; 192 #endif 193 tsk->splice_pipe = NULL; 194 return tsk; 195 } 196 197 #ifdef CONFIG_MMU 198 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 199 { 200 struct vm_area_struct *mpnt, *tmp, **pprev; 201 struct rb_node **rb_link, *rb_parent; 202 int retval; 203 unsigned long charge; 204 struct mempolicy *pol; 205 206 down_write(&oldmm->mmap_sem); 207 flush_cache_dup_mm(oldmm); 208 /* 209 * Not linked in yet - no deadlock potential: 210 */ 211 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 212 213 mm->locked_vm = 0; 214 mm->mmap = NULL; 215 mm->mmap_cache = NULL; 216 mm->free_area_cache = oldmm->mmap_base; 217 mm->cached_hole_size = ~0UL; 218 mm->map_count = 0; 219 cpus_clear(mm->cpu_vm_mask); 220 mm->mm_rb = RB_ROOT; 221 rb_link = &mm->mm_rb.rb_node; 222 rb_parent = NULL; 223 pprev = &mm->mmap; 224 225 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 226 struct file *file; 227 228 if (mpnt->vm_flags & VM_DONTCOPY) { 229 long pages = vma_pages(mpnt); 230 mm->total_vm -= pages; 231 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 232 -pages); 233 continue; 234 } 235 charge = 0; 236 if (mpnt->vm_flags & VM_ACCOUNT) { 237 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 238 if (security_vm_enough_memory(len)) 239 goto fail_nomem; 240 charge = len; 241 } 242 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 243 if (!tmp) 244 goto fail_nomem; 245 *tmp = *mpnt; 246 pol = mpol_copy(vma_policy(mpnt)); 247 retval = PTR_ERR(pol); 248 if (IS_ERR(pol)) 249 goto fail_nomem_policy; 250 vma_set_policy(tmp, pol); 251 tmp->vm_flags &= ~VM_LOCKED; 252 tmp->vm_mm = mm; 253 tmp->vm_next = NULL; 254 anon_vma_link(tmp); 255 file = tmp->vm_file; 256 if (file) { 257 struct inode *inode = file->f_path.dentry->d_inode; 258 get_file(file); 259 if (tmp->vm_flags & VM_DENYWRITE) 260 atomic_dec(&inode->i_writecount); 261 262 /* insert tmp into the share list, just after mpnt */ 263 spin_lock(&file->f_mapping->i_mmap_lock); 264 tmp->vm_truncate_count = mpnt->vm_truncate_count; 265 flush_dcache_mmap_lock(file->f_mapping); 266 vma_prio_tree_add(tmp, mpnt); 267 flush_dcache_mmap_unlock(file->f_mapping); 268 spin_unlock(&file->f_mapping->i_mmap_lock); 269 } 270 271 /* 272 * Link in the new vma and copy the page table entries. 273 */ 274 *pprev = tmp; 275 pprev = &tmp->vm_next; 276 277 __vma_link_rb(mm, tmp, rb_link, rb_parent); 278 rb_link = &tmp->vm_rb.rb_right; 279 rb_parent = &tmp->vm_rb; 280 281 mm->map_count++; 282 retval = copy_page_range(mm, oldmm, mpnt); 283 284 if (tmp->vm_ops && tmp->vm_ops->open) 285 tmp->vm_ops->open(tmp); 286 287 if (retval) 288 goto out; 289 } 290 /* a new mm has just been created */ 291 arch_dup_mmap(oldmm, mm); 292 retval = 0; 293 out: 294 up_write(&mm->mmap_sem); 295 flush_tlb_mm(oldmm); 296 up_write(&oldmm->mmap_sem); 297 return retval; 298 fail_nomem_policy: 299 kmem_cache_free(vm_area_cachep, tmp); 300 fail_nomem: 301 retval = -ENOMEM; 302 vm_unacct_memory(charge); 303 goto out; 304 } 305 306 static inline int mm_alloc_pgd(struct mm_struct * mm) 307 { 308 mm->pgd = pgd_alloc(mm); 309 if (unlikely(!mm->pgd)) 310 return -ENOMEM; 311 return 0; 312 } 313 314 static inline void mm_free_pgd(struct mm_struct * mm) 315 { 316 pgd_free(mm->pgd); 317 } 318 #else 319 #define dup_mmap(mm, oldmm) (0) 320 #define mm_alloc_pgd(mm) (0) 321 #define mm_free_pgd(mm) 322 #endif /* CONFIG_MMU */ 323 324 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 325 326 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 327 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 328 329 #include <linux/init_task.h> 330 331 static struct mm_struct * mm_init(struct mm_struct * mm) 332 { 333 atomic_set(&mm->mm_users, 1); 334 atomic_set(&mm->mm_count, 1); 335 init_rwsem(&mm->mmap_sem); 336 INIT_LIST_HEAD(&mm->mmlist); 337 mm->flags = (current->mm) ? current->mm->flags 338 : MMF_DUMP_FILTER_DEFAULT; 339 mm->core_waiters = 0; 340 mm->nr_ptes = 0; 341 set_mm_counter(mm, file_rss, 0); 342 set_mm_counter(mm, anon_rss, 0); 343 spin_lock_init(&mm->page_table_lock); 344 rwlock_init(&mm->ioctx_list_lock); 345 mm->ioctx_list = NULL; 346 mm->free_area_cache = TASK_UNMAPPED_BASE; 347 mm->cached_hole_size = ~0UL; 348 349 if (likely(!mm_alloc_pgd(mm))) { 350 mm->def_flags = 0; 351 return mm; 352 } 353 free_mm(mm); 354 return NULL; 355 } 356 357 /* 358 * Allocate and initialize an mm_struct. 359 */ 360 struct mm_struct * mm_alloc(void) 361 { 362 struct mm_struct * mm; 363 364 mm = allocate_mm(); 365 if (mm) { 366 memset(mm, 0, sizeof(*mm)); 367 mm = mm_init(mm); 368 } 369 return mm; 370 } 371 372 /* 373 * Called when the last reference to the mm 374 * is dropped: either by a lazy thread or by 375 * mmput. Free the page directory and the mm. 376 */ 377 void fastcall __mmdrop(struct mm_struct *mm) 378 { 379 BUG_ON(mm == &init_mm); 380 mm_free_pgd(mm); 381 destroy_context(mm); 382 free_mm(mm); 383 } 384 385 /* 386 * Decrement the use count and release all resources for an mm. 387 */ 388 void mmput(struct mm_struct *mm) 389 { 390 might_sleep(); 391 392 if (atomic_dec_and_test(&mm->mm_users)) { 393 exit_aio(mm); 394 exit_mmap(mm); 395 if (!list_empty(&mm->mmlist)) { 396 spin_lock(&mmlist_lock); 397 list_del(&mm->mmlist); 398 spin_unlock(&mmlist_lock); 399 } 400 put_swap_token(mm); 401 mmdrop(mm); 402 } 403 } 404 EXPORT_SYMBOL_GPL(mmput); 405 406 /** 407 * get_task_mm - acquire a reference to the task's mm 408 * 409 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning 410 * this kernel workthread has transiently adopted a user mm with use_mm, 411 * to do its AIO) is not set and if so returns a reference to it, after 412 * bumping up the use count. User must release the mm via mmput() 413 * after use. Typically used by /proc and ptrace. 414 */ 415 struct mm_struct *get_task_mm(struct task_struct *task) 416 { 417 struct mm_struct *mm; 418 419 task_lock(task); 420 mm = task->mm; 421 if (mm) { 422 if (task->flags & PF_BORROWED_MM) 423 mm = NULL; 424 else 425 atomic_inc(&mm->mm_users); 426 } 427 task_unlock(task); 428 return mm; 429 } 430 EXPORT_SYMBOL_GPL(get_task_mm); 431 432 /* Please note the differences between mmput and mm_release. 433 * mmput is called whenever we stop holding onto a mm_struct, 434 * error success whatever. 435 * 436 * mm_release is called after a mm_struct has been removed 437 * from the current process. 438 * 439 * This difference is important for error handling, when we 440 * only half set up a mm_struct for a new process and need to restore 441 * the old one. Because we mmput the new mm_struct before 442 * restoring the old one. . . 443 * Eric Biederman 10 January 1998 444 */ 445 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 446 { 447 struct completion *vfork_done = tsk->vfork_done; 448 449 /* Get rid of any cached register state */ 450 deactivate_mm(tsk, mm); 451 452 /* notify parent sleeping on vfork() */ 453 if (vfork_done) { 454 tsk->vfork_done = NULL; 455 complete(vfork_done); 456 } 457 458 /* 459 * If we're exiting normally, clear a user-space tid field if 460 * requested. We leave this alone when dying by signal, to leave 461 * the value intact in a core dump, and to save the unnecessary 462 * trouble otherwise. Userland only wants this done for a sys_exit. 463 */ 464 if (tsk->clear_child_tid 465 && !(tsk->flags & PF_SIGNALED) 466 && atomic_read(&mm->mm_users) > 1) { 467 u32 __user * tidptr = tsk->clear_child_tid; 468 tsk->clear_child_tid = NULL; 469 470 /* 471 * We don't check the error code - if userspace has 472 * not set up a proper pointer then tough luck. 473 */ 474 put_user(0, tidptr); 475 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); 476 } 477 } 478 479 /* 480 * Allocate a new mm structure and copy contents from the 481 * mm structure of the passed in task structure. 482 */ 483 static struct mm_struct *dup_mm(struct task_struct *tsk) 484 { 485 struct mm_struct *mm, *oldmm = current->mm; 486 int err; 487 488 if (!oldmm) 489 return NULL; 490 491 mm = allocate_mm(); 492 if (!mm) 493 goto fail_nomem; 494 495 memcpy(mm, oldmm, sizeof(*mm)); 496 497 /* Initializing for Swap token stuff */ 498 mm->token_priority = 0; 499 mm->last_interval = 0; 500 501 if (!mm_init(mm)) 502 goto fail_nomem; 503 504 if (init_new_context(tsk, mm)) 505 goto fail_nocontext; 506 507 err = dup_mmap(mm, oldmm); 508 if (err) 509 goto free_pt; 510 511 mm->hiwater_rss = get_mm_rss(mm); 512 mm->hiwater_vm = mm->total_vm; 513 514 return mm; 515 516 free_pt: 517 mmput(mm); 518 519 fail_nomem: 520 return NULL; 521 522 fail_nocontext: 523 /* 524 * If init_new_context() failed, we cannot use mmput() to free the mm 525 * because it calls destroy_context() 526 */ 527 mm_free_pgd(mm); 528 free_mm(mm); 529 return NULL; 530 } 531 532 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) 533 { 534 struct mm_struct * mm, *oldmm; 535 int retval; 536 537 tsk->min_flt = tsk->maj_flt = 0; 538 tsk->nvcsw = tsk->nivcsw = 0; 539 540 tsk->mm = NULL; 541 tsk->active_mm = NULL; 542 543 /* 544 * Are we cloning a kernel thread? 545 * 546 * We need to steal a active VM for that.. 547 */ 548 oldmm = current->mm; 549 if (!oldmm) 550 return 0; 551 552 if (clone_flags & CLONE_VM) { 553 atomic_inc(&oldmm->mm_users); 554 mm = oldmm; 555 goto good_mm; 556 } 557 558 retval = -ENOMEM; 559 mm = dup_mm(tsk); 560 if (!mm) 561 goto fail_nomem; 562 563 good_mm: 564 /* Initializing for Swap token stuff */ 565 mm->token_priority = 0; 566 mm->last_interval = 0; 567 568 tsk->mm = mm; 569 tsk->active_mm = mm; 570 return 0; 571 572 fail_nomem: 573 return retval; 574 } 575 576 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old) 577 { 578 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); 579 /* We don't need to lock fs - think why ;-) */ 580 if (fs) { 581 atomic_set(&fs->count, 1); 582 rwlock_init(&fs->lock); 583 fs->umask = old->umask; 584 read_lock(&old->lock); 585 fs->rootmnt = mntget(old->rootmnt); 586 fs->root = dget(old->root); 587 fs->pwdmnt = mntget(old->pwdmnt); 588 fs->pwd = dget(old->pwd); 589 if (old->altroot) { 590 fs->altrootmnt = mntget(old->altrootmnt); 591 fs->altroot = dget(old->altroot); 592 } else { 593 fs->altrootmnt = NULL; 594 fs->altroot = NULL; 595 } 596 read_unlock(&old->lock); 597 } 598 return fs; 599 } 600 601 struct fs_struct *copy_fs_struct(struct fs_struct *old) 602 { 603 return __copy_fs_struct(old); 604 } 605 606 EXPORT_SYMBOL_GPL(copy_fs_struct); 607 608 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk) 609 { 610 if (clone_flags & CLONE_FS) { 611 atomic_inc(¤t->fs->count); 612 return 0; 613 } 614 tsk->fs = __copy_fs_struct(current->fs); 615 if (!tsk->fs) 616 return -ENOMEM; 617 return 0; 618 } 619 620 static int count_open_files(struct fdtable *fdt) 621 { 622 int size = fdt->max_fds; 623 int i; 624 625 /* Find the last open fd */ 626 for (i = size/(8*sizeof(long)); i > 0; ) { 627 if (fdt->open_fds->fds_bits[--i]) 628 break; 629 } 630 i = (i+1) * 8 * sizeof(long); 631 return i; 632 } 633 634 static struct files_struct *alloc_files(void) 635 { 636 struct files_struct *newf; 637 struct fdtable *fdt; 638 639 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 640 if (!newf) 641 goto out; 642 643 atomic_set(&newf->count, 1); 644 645 spin_lock_init(&newf->file_lock); 646 newf->next_fd = 0; 647 fdt = &newf->fdtab; 648 fdt->max_fds = NR_OPEN_DEFAULT; 649 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; 650 fdt->open_fds = (fd_set *)&newf->open_fds_init; 651 fdt->fd = &newf->fd_array[0]; 652 INIT_RCU_HEAD(&fdt->rcu); 653 fdt->next = NULL; 654 rcu_assign_pointer(newf->fdt, fdt); 655 out: 656 return newf; 657 } 658 659 /* 660 * Allocate a new files structure and copy contents from the 661 * passed in files structure. 662 * errorp will be valid only when the returned files_struct is NULL. 663 */ 664 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) 665 { 666 struct files_struct *newf; 667 struct file **old_fds, **new_fds; 668 int open_files, size, i; 669 struct fdtable *old_fdt, *new_fdt; 670 671 *errorp = -ENOMEM; 672 newf = alloc_files(); 673 if (!newf) 674 goto out; 675 676 spin_lock(&oldf->file_lock); 677 old_fdt = files_fdtable(oldf); 678 new_fdt = files_fdtable(newf); 679 open_files = count_open_files(old_fdt); 680 681 /* 682 * Check whether we need to allocate a larger fd array and fd set. 683 * Note: we're not a clone task, so the open count won't change. 684 */ 685 if (open_files > new_fdt->max_fds) { 686 new_fdt->max_fds = 0; 687 spin_unlock(&oldf->file_lock); 688 spin_lock(&newf->file_lock); 689 *errorp = expand_files(newf, open_files-1); 690 spin_unlock(&newf->file_lock); 691 if (*errorp < 0) 692 goto out_release; 693 new_fdt = files_fdtable(newf); 694 /* 695 * Reacquire the oldf lock and a pointer to its fd table 696 * who knows it may have a new bigger fd table. We need 697 * the latest pointer. 698 */ 699 spin_lock(&oldf->file_lock); 700 old_fdt = files_fdtable(oldf); 701 } 702 703 old_fds = old_fdt->fd; 704 new_fds = new_fdt->fd; 705 706 memcpy(new_fdt->open_fds->fds_bits, 707 old_fdt->open_fds->fds_bits, open_files/8); 708 memcpy(new_fdt->close_on_exec->fds_bits, 709 old_fdt->close_on_exec->fds_bits, open_files/8); 710 711 for (i = open_files; i != 0; i--) { 712 struct file *f = *old_fds++; 713 if (f) { 714 get_file(f); 715 } else { 716 /* 717 * The fd may be claimed in the fd bitmap but not yet 718 * instantiated in the files array if a sibling thread 719 * is partway through open(). So make sure that this 720 * fd is available to the new process. 721 */ 722 FD_CLR(open_files - i, new_fdt->open_fds); 723 } 724 rcu_assign_pointer(*new_fds++, f); 725 } 726 spin_unlock(&oldf->file_lock); 727 728 /* compute the remainder to be cleared */ 729 size = (new_fdt->max_fds - open_files) * sizeof(struct file *); 730 731 /* This is long word aligned thus could use a optimized version */ 732 memset(new_fds, 0, size); 733 734 if (new_fdt->max_fds > open_files) { 735 int left = (new_fdt->max_fds-open_files)/8; 736 int start = open_files / (8 * sizeof(unsigned long)); 737 738 memset(&new_fdt->open_fds->fds_bits[start], 0, left); 739 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); 740 } 741 742 return newf; 743 744 out_release: 745 kmem_cache_free(files_cachep, newf); 746 out: 747 return NULL; 748 } 749 750 static int copy_files(unsigned long clone_flags, struct task_struct * tsk) 751 { 752 struct files_struct *oldf, *newf; 753 int error = 0; 754 755 /* 756 * A background process may not have any files ... 757 */ 758 oldf = current->files; 759 if (!oldf) 760 goto out; 761 762 if (clone_flags & CLONE_FILES) { 763 atomic_inc(&oldf->count); 764 goto out; 765 } 766 767 /* 768 * Note: we may be using current for both targets (See exec.c) 769 * This works because we cache current->files (old) as oldf. Don't 770 * break this. 771 */ 772 tsk->files = NULL; 773 newf = dup_fd(oldf, &error); 774 if (!newf) 775 goto out; 776 777 tsk->files = newf; 778 error = 0; 779 out: 780 return error; 781 } 782 783 /* 784 * Helper to unshare the files of the current task. 785 * We don't want to expose copy_files internals to 786 * the exec layer of the kernel. 787 */ 788 789 int unshare_files(void) 790 { 791 struct files_struct *files = current->files; 792 int rc; 793 794 BUG_ON(!files); 795 796 /* This can race but the race causes us to copy when we don't 797 need to and drop the copy */ 798 if(atomic_read(&files->count) == 1) 799 { 800 atomic_inc(&files->count); 801 return 0; 802 } 803 rc = copy_files(0, current); 804 if(rc) 805 current->files = files; 806 return rc; 807 } 808 809 EXPORT_SYMBOL(unshare_files); 810 811 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) 812 { 813 struct sighand_struct *sig; 814 815 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { 816 atomic_inc(¤t->sighand->count); 817 return 0; 818 } 819 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 820 rcu_assign_pointer(tsk->sighand, sig); 821 if (!sig) 822 return -ENOMEM; 823 atomic_set(&sig->count, 1); 824 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 825 return 0; 826 } 827 828 void __cleanup_sighand(struct sighand_struct *sighand) 829 { 830 if (atomic_dec_and_test(&sighand->count)) 831 kmem_cache_free(sighand_cachep, sighand); 832 } 833 834 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk) 835 { 836 struct signal_struct *sig; 837 int ret; 838 839 if (clone_flags & CLONE_THREAD) { 840 atomic_inc(¤t->signal->count); 841 atomic_inc(¤t->signal->live); 842 return 0; 843 } 844 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); 845 tsk->signal = sig; 846 if (!sig) 847 return -ENOMEM; 848 849 ret = copy_thread_group_keys(tsk); 850 if (ret < 0) { 851 kmem_cache_free(signal_cachep, sig); 852 return ret; 853 } 854 855 atomic_set(&sig->count, 1); 856 atomic_set(&sig->live, 1); 857 init_waitqueue_head(&sig->wait_chldexit); 858 sig->flags = 0; 859 sig->group_exit_code = 0; 860 sig->group_exit_task = NULL; 861 sig->group_stop_count = 0; 862 sig->curr_target = NULL; 863 init_sigpending(&sig->shared_pending); 864 INIT_LIST_HEAD(&sig->posix_timers); 865 866 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 867 sig->it_real_incr.tv64 = 0; 868 sig->real_timer.function = it_real_fn; 869 sig->tsk = tsk; 870 871 sig->it_virt_expires = cputime_zero; 872 sig->it_virt_incr = cputime_zero; 873 sig->it_prof_expires = cputime_zero; 874 sig->it_prof_incr = cputime_zero; 875 876 sig->leader = 0; /* session leadership doesn't inherit */ 877 sig->tty_old_pgrp = NULL; 878 879 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; 880 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; 881 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; 882 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; 883 sig->sum_sched_runtime = 0; 884 INIT_LIST_HEAD(&sig->cpu_timers[0]); 885 INIT_LIST_HEAD(&sig->cpu_timers[1]); 886 INIT_LIST_HEAD(&sig->cpu_timers[2]); 887 taskstats_tgid_init(sig); 888 889 task_lock(current->group_leader); 890 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 891 task_unlock(current->group_leader); 892 893 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 894 /* 895 * New sole thread in the process gets an expiry time 896 * of the whole CPU time limit. 897 */ 898 tsk->it_prof_expires = 899 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); 900 } 901 acct_init_pacct(&sig->pacct); 902 903 tty_audit_fork(sig); 904 905 return 0; 906 } 907 908 void __cleanup_signal(struct signal_struct *sig) 909 { 910 exit_thread_group_keys(sig); 911 kmem_cache_free(signal_cachep, sig); 912 } 913 914 static inline void cleanup_signal(struct task_struct *tsk) 915 { 916 struct signal_struct *sig = tsk->signal; 917 918 atomic_dec(&sig->live); 919 920 if (atomic_dec_and_test(&sig->count)) 921 __cleanup_signal(sig); 922 } 923 924 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) 925 { 926 unsigned long new_flags = p->flags; 927 928 new_flags &= ~PF_SUPERPRIV; 929 new_flags |= PF_FORKNOEXEC; 930 if (!(clone_flags & CLONE_PTRACE)) 931 p->ptrace = 0; 932 p->flags = new_flags; 933 } 934 935 asmlinkage long sys_set_tid_address(int __user *tidptr) 936 { 937 current->clear_child_tid = tidptr; 938 939 return current->pid; 940 } 941 942 static inline void rt_mutex_init_task(struct task_struct *p) 943 { 944 spin_lock_init(&p->pi_lock); 945 #ifdef CONFIG_RT_MUTEXES 946 plist_head_init(&p->pi_waiters, &p->pi_lock); 947 p->pi_blocked_on = NULL; 948 #endif 949 } 950 951 /* 952 * This creates a new process as a copy of the old one, 953 * but does not actually start it yet. 954 * 955 * It copies the registers, and all the appropriate 956 * parts of the process environment (as per the clone 957 * flags). The actual kick-off is left to the caller. 958 */ 959 static struct task_struct *copy_process(unsigned long clone_flags, 960 unsigned long stack_start, 961 struct pt_regs *regs, 962 unsigned long stack_size, 963 int __user *parent_tidptr, 964 int __user *child_tidptr, 965 struct pid *pid) 966 { 967 int retval; 968 struct task_struct *p = NULL; 969 970 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 971 return ERR_PTR(-EINVAL); 972 973 /* 974 * Thread groups must share signals as well, and detached threads 975 * can only be started up within the thread group. 976 */ 977 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 978 return ERR_PTR(-EINVAL); 979 980 /* 981 * Shared signal handlers imply shared VM. By way of the above, 982 * thread groups also imply shared VM. Blocking this case allows 983 * for various simplifications in other code. 984 */ 985 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 986 return ERR_PTR(-EINVAL); 987 988 retval = security_task_create(clone_flags); 989 if (retval) 990 goto fork_out; 991 992 retval = -ENOMEM; 993 p = dup_task_struct(current); 994 if (!p) 995 goto fork_out; 996 997 rt_mutex_init_task(p); 998 999 #ifdef CONFIG_TRACE_IRQFLAGS 1000 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1001 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1002 #endif 1003 retval = -EAGAIN; 1004 if (atomic_read(&p->user->processes) >= 1005 p->signal->rlim[RLIMIT_NPROC].rlim_cur) { 1006 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1007 p->user != current->nsproxy->user_ns->root_user) 1008 goto bad_fork_free; 1009 } 1010 1011 atomic_inc(&p->user->__count); 1012 atomic_inc(&p->user->processes); 1013 get_group_info(p->group_info); 1014 1015 /* 1016 * If multiple threads are within copy_process(), then this check 1017 * triggers too late. This doesn't hurt, the check is only there 1018 * to stop root fork bombs. 1019 */ 1020 if (nr_threads >= max_threads) 1021 goto bad_fork_cleanup_count; 1022 1023 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1024 goto bad_fork_cleanup_count; 1025 1026 if (p->binfmt && !try_module_get(p->binfmt->module)) 1027 goto bad_fork_cleanup_put_domain; 1028 1029 p->did_exec = 0; 1030 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1031 copy_flags(clone_flags, p); 1032 p->pid = pid_nr(pid); 1033 retval = -EFAULT; 1034 if (clone_flags & CLONE_PARENT_SETTID) 1035 if (put_user(p->pid, parent_tidptr)) 1036 goto bad_fork_cleanup_delays_binfmt; 1037 1038 INIT_LIST_HEAD(&p->children); 1039 INIT_LIST_HEAD(&p->sibling); 1040 p->vfork_done = NULL; 1041 spin_lock_init(&p->alloc_lock); 1042 1043 clear_tsk_thread_flag(p, TIF_SIGPENDING); 1044 init_sigpending(&p->pending); 1045 1046 p->utime = cputime_zero; 1047 p->stime = cputime_zero; 1048 1049 #ifdef CONFIG_TASK_XACCT 1050 p->rchar = 0; /* I/O counter: bytes read */ 1051 p->wchar = 0; /* I/O counter: bytes written */ 1052 p->syscr = 0; /* I/O counter: read syscalls */ 1053 p->syscw = 0; /* I/O counter: write syscalls */ 1054 #endif 1055 task_io_accounting_init(p); 1056 acct_clear_integrals(p); 1057 1058 p->it_virt_expires = cputime_zero; 1059 p->it_prof_expires = cputime_zero; 1060 p->it_sched_expires = 0; 1061 INIT_LIST_HEAD(&p->cpu_timers[0]); 1062 INIT_LIST_HEAD(&p->cpu_timers[1]); 1063 INIT_LIST_HEAD(&p->cpu_timers[2]); 1064 1065 p->lock_depth = -1; /* -1 = no lock */ 1066 do_posix_clock_monotonic_gettime(&p->start_time); 1067 p->real_start_time = p->start_time; 1068 monotonic_to_bootbased(&p->real_start_time); 1069 p->security = NULL; 1070 p->io_context = NULL; 1071 p->io_wait = NULL; 1072 p->audit_context = NULL; 1073 cpuset_fork(p); 1074 #ifdef CONFIG_NUMA 1075 p->mempolicy = mpol_copy(p->mempolicy); 1076 if (IS_ERR(p->mempolicy)) { 1077 retval = PTR_ERR(p->mempolicy); 1078 p->mempolicy = NULL; 1079 goto bad_fork_cleanup_cpuset; 1080 } 1081 mpol_fix_fork_child_flag(p); 1082 #endif 1083 #ifdef CONFIG_TRACE_IRQFLAGS 1084 p->irq_events = 0; 1085 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1086 p->hardirqs_enabled = 1; 1087 #else 1088 p->hardirqs_enabled = 0; 1089 #endif 1090 p->hardirq_enable_ip = 0; 1091 p->hardirq_enable_event = 0; 1092 p->hardirq_disable_ip = _THIS_IP_; 1093 p->hardirq_disable_event = 0; 1094 p->softirqs_enabled = 1; 1095 p->softirq_enable_ip = _THIS_IP_; 1096 p->softirq_enable_event = 0; 1097 p->softirq_disable_ip = 0; 1098 p->softirq_disable_event = 0; 1099 p->hardirq_context = 0; 1100 p->softirq_context = 0; 1101 #endif 1102 #ifdef CONFIG_LOCKDEP 1103 p->lockdep_depth = 0; /* no locks held yet */ 1104 p->curr_chain_key = 0; 1105 p->lockdep_recursion = 0; 1106 #endif 1107 1108 #ifdef CONFIG_DEBUG_MUTEXES 1109 p->blocked_on = NULL; /* not blocked yet */ 1110 #endif 1111 1112 p->tgid = p->pid; 1113 if (clone_flags & CLONE_THREAD) 1114 p->tgid = current->tgid; 1115 1116 if ((retval = security_task_alloc(p))) 1117 goto bad_fork_cleanup_policy; 1118 if ((retval = audit_alloc(p))) 1119 goto bad_fork_cleanup_security; 1120 /* copy all the process information */ 1121 if ((retval = copy_semundo(clone_flags, p))) 1122 goto bad_fork_cleanup_audit; 1123 if ((retval = copy_files(clone_flags, p))) 1124 goto bad_fork_cleanup_semundo; 1125 if ((retval = copy_fs(clone_flags, p))) 1126 goto bad_fork_cleanup_files; 1127 if ((retval = copy_sighand(clone_flags, p))) 1128 goto bad_fork_cleanup_fs; 1129 if ((retval = copy_signal(clone_flags, p))) 1130 goto bad_fork_cleanup_sighand; 1131 if ((retval = copy_mm(clone_flags, p))) 1132 goto bad_fork_cleanup_signal; 1133 if ((retval = copy_keys(clone_flags, p))) 1134 goto bad_fork_cleanup_mm; 1135 if ((retval = copy_namespaces(clone_flags, p))) 1136 goto bad_fork_cleanup_keys; 1137 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); 1138 if (retval) 1139 goto bad_fork_cleanup_namespaces; 1140 1141 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1142 /* 1143 * Clear TID on mm_release()? 1144 */ 1145 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; 1146 p->robust_list = NULL; 1147 #ifdef CONFIG_COMPAT 1148 p->compat_robust_list = NULL; 1149 #endif 1150 INIT_LIST_HEAD(&p->pi_state_list); 1151 p->pi_state_cache = NULL; 1152 1153 /* 1154 * sigaltstack should be cleared when sharing the same VM 1155 */ 1156 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1157 p->sas_ss_sp = p->sas_ss_size = 0; 1158 1159 /* 1160 * Syscall tracing should be turned off in the child regardless 1161 * of CLONE_PTRACE. 1162 */ 1163 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1164 #ifdef TIF_SYSCALL_EMU 1165 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1166 #endif 1167 1168 /* Our parent execution domain becomes current domain 1169 These must match for thread signalling to apply */ 1170 p->parent_exec_id = p->self_exec_id; 1171 1172 /* ok, now we should be set up.. */ 1173 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1174 p->pdeath_signal = 0; 1175 p->exit_state = 0; 1176 1177 /* 1178 * Ok, make it visible to the rest of the system. 1179 * We dont wake it up yet. 1180 */ 1181 p->group_leader = p; 1182 INIT_LIST_HEAD(&p->thread_group); 1183 INIT_LIST_HEAD(&p->ptrace_children); 1184 INIT_LIST_HEAD(&p->ptrace_list); 1185 1186 /* Perform scheduler related setup. Assign this task to a CPU. */ 1187 sched_fork(p, clone_flags); 1188 1189 /* Need tasklist lock for parent etc handling! */ 1190 write_lock_irq(&tasklist_lock); 1191 1192 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */ 1193 p->ioprio = current->ioprio; 1194 1195 /* 1196 * The task hasn't been attached yet, so its cpus_allowed mask will 1197 * not be changed, nor will its assigned CPU. 1198 * 1199 * The cpus_allowed mask of the parent may have changed after it was 1200 * copied first time - so re-copy it here, then check the child's CPU 1201 * to ensure it is on a valid CPU (and if not, just force it back to 1202 * parent's CPU). This avoids alot of nasty races. 1203 */ 1204 p->cpus_allowed = current->cpus_allowed; 1205 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || 1206 !cpu_online(task_cpu(p)))) 1207 set_task_cpu(p, smp_processor_id()); 1208 1209 /* CLONE_PARENT re-uses the old parent */ 1210 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) 1211 p->real_parent = current->real_parent; 1212 else 1213 p->real_parent = current; 1214 p->parent = p->real_parent; 1215 1216 spin_lock(¤t->sighand->siglock); 1217 1218 /* 1219 * Process group and session signals need to be delivered to just the 1220 * parent before the fork or both the parent and the child after the 1221 * fork. Restart if a signal comes in before we add the new process to 1222 * it's process group. 1223 * A fatal signal pending means that current will exit, so the new 1224 * thread can't slip out of an OOM kill (or normal SIGKILL). 1225 */ 1226 recalc_sigpending(); 1227 if (signal_pending(current)) { 1228 spin_unlock(¤t->sighand->siglock); 1229 write_unlock_irq(&tasklist_lock); 1230 retval = -ERESTARTNOINTR; 1231 goto bad_fork_cleanup_namespaces; 1232 } 1233 1234 if (clone_flags & CLONE_THREAD) { 1235 p->group_leader = current->group_leader; 1236 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1237 1238 if (!cputime_eq(current->signal->it_virt_expires, 1239 cputime_zero) || 1240 !cputime_eq(current->signal->it_prof_expires, 1241 cputime_zero) || 1242 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || 1243 !list_empty(¤t->signal->cpu_timers[0]) || 1244 !list_empty(¤t->signal->cpu_timers[1]) || 1245 !list_empty(¤t->signal->cpu_timers[2])) { 1246 /* 1247 * Have child wake up on its first tick to check 1248 * for process CPU timers. 1249 */ 1250 p->it_prof_expires = jiffies_to_cputime(1); 1251 } 1252 } 1253 1254 if (likely(p->pid)) { 1255 add_parent(p); 1256 if (unlikely(p->ptrace & PT_PTRACED)) 1257 __ptrace_link(p, current->parent); 1258 1259 if (thread_group_leader(p)) { 1260 p->signal->tty = current->signal->tty; 1261 p->signal->pgrp = process_group(current); 1262 set_signal_session(p->signal, process_session(current)); 1263 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1264 attach_pid(p, PIDTYPE_SID, task_session(current)); 1265 1266 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1267 __get_cpu_var(process_counts)++; 1268 } 1269 attach_pid(p, PIDTYPE_PID, pid); 1270 nr_threads++; 1271 } 1272 1273 total_forks++; 1274 spin_unlock(¤t->sighand->siglock); 1275 write_unlock_irq(&tasklist_lock); 1276 proc_fork_connector(p); 1277 return p; 1278 1279 bad_fork_cleanup_namespaces: 1280 exit_task_namespaces(p); 1281 bad_fork_cleanup_keys: 1282 exit_keys(p); 1283 bad_fork_cleanup_mm: 1284 if (p->mm) 1285 mmput(p->mm); 1286 bad_fork_cleanup_signal: 1287 cleanup_signal(p); 1288 bad_fork_cleanup_sighand: 1289 __cleanup_sighand(p->sighand); 1290 bad_fork_cleanup_fs: 1291 exit_fs(p); /* blocking */ 1292 bad_fork_cleanup_files: 1293 exit_files(p); /* blocking */ 1294 bad_fork_cleanup_semundo: 1295 exit_sem(p); 1296 bad_fork_cleanup_audit: 1297 audit_free(p); 1298 bad_fork_cleanup_security: 1299 security_task_free(p); 1300 bad_fork_cleanup_policy: 1301 #ifdef CONFIG_NUMA 1302 mpol_free(p->mempolicy); 1303 bad_fork_cleanup_cpuset: 1304 #endif 1305 cpuset_exit(p); 1306 bad_fork_cleanup_delays_binfmt: 1307 delayacct_tsk_free(p); 1308 if (p->binfmt) 1309 module_put(p->binfmt->module); 1310 bad_fork_cleanup_put_domain: 1311 module_put(task_thread_info(p)->exec_domain->module); 1312 bad_fork_cleanup_count: 1313 put_group_info(p->group_info); 1314 atomic_dec(&p->user->processes); 1315 free_uid(p->user); 1316 bad_fork_free: 1317 free_task(p); 1318 fork_out: 1319 return ERR_PTR(retval); 1320 } 1321 1322 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1323 { 1324 memset(regs, 0, sizeof(struct pt_regs)); 1325 return regs; 1326 } 1327 1328 struct task_struct * __cpuinit fork_idle(int cpu) 1329 { 1330 struct task_struct *task; 1331 struct pt_regs regs; 1332 1333 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, NULL, 1334 &init_struct_pid); 1335 if (!IS_ERR(task)) 1336 init_idle(task, cpu); 1337 1338 return task; 1339 } 1340 1341 static inline int fork_traceflag (unsigned clone_flags) 1342 { 1343 if (clone_flags & CLONE_UNTRACED) 1344 return 0; 1345 else if (clone_flags & CLONE_VFORK) { 1346 if (current->ptrace & PT_TRACE_VFORK) 1347 return PTRACE_EVENT_VFORK; 1348 } else if ((clone_flags & CSIGNAL) != SIGCHLD) { 1349 if (current->ptrace & PT_TRACE_CLONE) 1350 return PTRACE_EVENT_CLONE; 1351 } else if (current->ptrace & PT_TRACE_FORK) 1352 return PTRACE_EVENT_FORK; 1353 1354 return 0; 1355 } 1356 1357 /* 1358 * Ok, this is the main fork-routine. 1359 * 1360 * It copies the process, and if successful kick-starts 1361 * it and waits for it to finish using the VM if required. 1362 */ 1363 long do_fork(unsigned long clone_flags, 1364 unsigned long stack_start, 1365 struct pt_regs *regs, 1366 unsigned long stack_size, 1367 int __user *parent_tidptr, 1368 int __user *child_tidptr) 1369 { 1370 struct task_struct *p; 1371 int trace = 0; 1372 struct pid *pid = alloc_pid(); 1373 long nr; 1374 1375 if (!pid) 1376 return -EAGAIN; 1377 nr = pid->nr; 1378 if (unlikely(current->ptrace)) { 1379 trace = fork_traceflag (clone_flags); 1380 if (trace) 1381 clone_flags |= CLONE_PTRACE; 1382 } 1383 1384 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid); 1385 /* 1386 * Do this prior waking up the new thread - the thread pointer 1387 * might get invalid after that point, if the thread exits quickly. 1388 */ 1389 if (!IS_ERR(p)) { 1390 struct completion vfork; 1391 1392 if (clone_flags & CLONE_VFORK) { 1393 p->vfork_done = &vfork; 1394 init_completion(&vfork); 1395 } 1396 1397 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { 1398 /* 1399 * We'll start up with an immediate SIGSTOP. 1400 */ 1401 sigaddset(&p->pending.signal, SIGSTOP); 1402 set_tsk_thread_flag(p, TIF_SIGPENDING); 1403 } 1404 1405 if (!(clone_flags & CLONE_STOPPED)) 1406 wake_up_new_task(p, clone_flags); 1407 else 1408 p->state = TASK_STOPPED; 1409 1410 if (unlikely (trace)) { 1411 current->ptrace_message = nr; 1412 ptrace_notify ((trace << 8) | SIGTRAP); 1413 } 1414 1415 if (clone_flags & CLONE_VFORK) { 1416 freezer_do_not_count(); 1417 wait_for_completion(&vfork); 1418 freezer_count(); 1419 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) { 1420 current->ptrace_message = nr; 1421 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); 1422 } 1423 } 1424 } else { 1425 free_pid(pid); 1426 nr = PTR_ERR(p); 1427 } 1428 return nr; 1429 } 1430 1431 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1432 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1433 #endif 1434 1435 static void sighand_ctor(void *data, struct kmem_cache *cachep, 1436 unsigned long flags) 1437 { 1438 struct sighand_struct *sighand = data; 1439 1440 spin_lock_init(&sighand->siglock); 1441 INIT_LIST_HEAD(&sighand->signalfd_list); 1442 } 1443 1444 void __init proc_caches_init(void) 1445 { 1446 sighand_cachep = kmem_cache_create("sighand_cache", 1447 sizeof(struct sighand_struct), 0, 1448 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, 1449 sighand_ctor); 1450 signal_cachep = kmem_cache_create("signal_cache", 1451 sizeof(struct signal_struct), 0, 1452 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1453 files_cachep = kmem_cache_create("files_cache", 1454 sizeof(struct files_struct), 0, 1455 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1456 fs_cachep = kmem_cache_create("fs_cache", 1457 sizeof(struct fs_struct), 0, 1458 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1459 vm_area_cachep = kmem_cache_create("vm_area_struct", 1460 sizeof(struct vm_area_struct), 0, 1461 SLAB_PANIC, NULL); 1462 mm_cachep = kmem_cache_create("mm_struct", 1463 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1464 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1465 } 1466 1467 /* 1468 * Check constraints on flags passed to the unshare system call and 1469 * force unsharing of additional process context as appropriate. 1470 */ 1471 static inline void check_unshare_flags(unsigned long *flags_ptr) 1472 { 1473 /* 1474 * If unsharing a thread from a thread group, must also 1475 * unshare vm. 1476 */ 1477 if (*flags_ptr & CLONE_THREAD) 1478 *flags_ptr |= CLONE_VM; 1479 1480 /* 1481 * If unsharing vm, must also unshare signal handlers. 1482 */ 1483 if (*flags_ptr & CLONE_VM) 1484 *flags_ptr |= CLONE_SIGHAND; 1485 1486 /* 1487 * If unsharing signal handlers and the task was created 1488 * using CLONE_THREAD, then must unshare the thread 1489 */ 1490 if ((*flags_ptr & CLONE_SIGHAND) && 1491 (atomic_read(¤t->signal->count) > 1)) 1492 *flags_ptr |= CLONE_THREAD; 1493 1494 /* 1495 * If unsharing namespace, must also unshare filesystem information. 1496 */ 1497 if (*flags_ptr & CLONE_NEWNS) 1498 *flags_ptr |= CLONE_FS; 1499 } 1500 1501 /* 1502 * Unsharing of tasks created with CLONE_THREAD is not supported yet 1503 */ 1504 static int unshare_thread(unsigned long unshare_flags) 1505 { 1506 if (unshare_flags & CLONE_THREAD) 1507 return -EINVAL; 1508 1509 return 0; 1510 } 1511 1512 /* 1513 * Unshare the filesystem structure if it is being shared 1514 */ 1515 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1516 { 1517 struct fs_struct *fs = current->fs; 1518 1519 if ((unshare_flags & CLONE_FS) && 1520 (fs && atomic_read(&fs->count) > 1)) { 1521 *new_fsp = __copy_fs_struct(current->fs); 1522 if (!*new_fsp) 1523 return -ENOMEM; 1524 } 1525 1526 return 0; 1527 } 1528 1529 /* 1530 * Unsharing of sighand is not supported yet 1531 */ 1532 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) 1533 { 1534 struct sighand_struct *sigh = current->sighand; 1535 1536 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) 1537 return -EINVAL; 1538 else 1539 return 0; 1540 } 1541 1542 /* 1543 * Unshare vm if it is being shared 1544 */ 1545 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) 1546 { 1547 struct mm_struct *mm = current->mm; 1548 1549 if ((unshare_flags & CLONE_VM) && 1550 (mm && atomic_read(&mm->mm_users) > 1)) { 1551 return -EINVAL; 1552 } 1553 1554 return 0; 1555 } 1556 1557 /* 1558 * Unshare file descriptor table if it is being shared 1559 */ 1560 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1561 { 1562 struct files_struct *fd = current->files; 1563 int error = 0; 1564 1565 if ((unshare_flags & CLONE_FILES) && 1566 (fd && atomic_read(&fd->count) > 1)) { 1567 *new_fdp = dup_fd(fd, &error); 1568 if (!*new_fdp) 1569 return error; 1570 } 1571 1572 return 0; 1573 } 1574 1575 /* 1576 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not 1577 * supported yet 1578 */ 1579 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp) 1580 { 1581 if (unshare_flags & CLONE_SYSVSEM) 1582 return -EINVAL; 1583 1584 return 0; 1585 } 1586 1587 /* 1588 * unshare allows a process to 'unshare' part of the process 1589 * context which was originally shared using clone. copy_* 1590 * functions used by do_fork() cannot be used here directly 1591 * because they modify an inactive task_struct that is being 1592 * constructed. Here we are modifying the current, active, 1593 * task_struct. 1594 */ 1595 asmlinkage long sys_unshare(unsigned long unshare_flags) 1596 { 1597 int err = 0; 1598 struct fs_struct *fs, *new_fs = NULL; 1599 struct sighand_struct *new_sigh = NULL; 1600 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; 1601 struct files_struct *fd, *new_fd = NULL; 1602 struct sem_undo_list *new_ulist = NULL; 1603 struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL; 1604 1605 check_unshare_flags(&unshare_flags); 1606 1607 /* Return -EINVAL for all unsupported flags */ 1608 err = -EINVAL; 1609 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1610 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1611 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER)) 1612 goto bad_unshare_out; 1613 1614 if ((err = unshare_thread(unshare_flags))) 1615 goto bad_unshare_out; 1616 if ((err = unshare_fs(unshare_flags, &new_fs))) 1617 goto bad_unshare_cleanup_thread; 1618 if ((err = unshare_sighand(unshare_flags, &new_sigh))) 1619 goto bad_unshare_cleanup_fs; 1620 if ((err = unshare_vm(unshare_flags, &new_mm))) 1621 goto bad_unshare_cleanup_sigh; 1622 if ((err = unshare_fd(unshare_flags, &new_fd))) 1623 goto bad_unshare_cleanup_vm; 1624 if ((err = unshare_semundo(unshare_flags, &new_ulist))) 1625 goto bad_unshare_cleanup_fd; 1626 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1627 new_fs))) 1628 goto bad_unshare_cleanup_semundo; 1629 1630 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) { 1631 1632 task_lock(current); 1633 1634 if (new_nsproxy) { 1635 old_nsproxy = current->nsproxy; 1636 current->nsproxy = new_nsproxy; 1637 new_nsproxy = old_nsproxy; 1638 } 1639 1640 if (new_fs) { 1641 fs = current->fs; 1642 current->fs = new_fs; 1643 new_fs = fs; 1644 } 1645 1646 if (new_mm) { 1647 mm = current->mm; 1648 active_mm = current->active_mm; 1649 current->mm = new_mm; 1650 current->active_mm = new_mm; 1651 activate_mm(active_mm, new_mm); 1652 new_mm = mm; 1653 } 1654 1655 if (new_fd) { 1656 fd = current->files; 1657 current->files = new_fd; 1658 new_fd = fd; 1659 } 1660 1661 task_unlock(current); 1662 } 1663 1664 if (new_nsproxy) 1665 put_nsproxy(new_nsproxy); 1666 1667 bad_unshare_cleanup_semundo: 1668 bad_unshare_cleanup_fd: 1669 if (new_fd) 1670 put_files_struct(new_fd); 1671 1672 bad_unshare_cleanup_vm: 1673 if (new_mm) 1674 mmput(new_mm); 1675 1676 bad_unshare_cleanup_sigh: 1677 if (new_sigh) 1678 if (atomic_dec_and_test(&new_sigh->count)) 1679 kmem_cache_free(sighand_cachep, new_sigh); 1680 1681 bad_unshare_cleanup_fs: 1682 if (new_fs) 1683 put_fs_struct(new_fs); 1684 1685 bad_unshare_cleanup_thread: 1686 bad_unshare_out: 1687 return err; 1688 } 1689