xref: /openbmc/linux/kernel/fork.c (revision c21b37f6)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/cacheflush.h>
59 #include <asm/tlbflush.h>
60 
61 /*
62  * Protected counters by write_lock_irq(&tasklist_lock)
63  */
64 unsigned long total_forks;	/* Handle normal Linux uptimes. */
65 int nr_threads; 		/* The idle threads do not count.. */
66 
67 int max_threads;		/* tunable limit on nr_threads */
68 
69 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
70 
71 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
72 
73 int nr_processes(void)
74 {
75 	int cpu;
76 	int total = 0;
77 
78 	for_each_online_cpu(cpu)
79 		total += per_cpu(process_counts, cpu);
80 
81 	return total;
82 }
83 
84 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
85 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
86 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
87 static struct kmem_cache *task_struct_cachep;
88 #endif
89 
90 /* SLAB cache for signal_struct structures (tsk->signal) */
91 static struct kmem_cache *signal_cachep;
92 
93 /* SLAB cache for sighand_struct structures (tsk->sighand) */
94 struct kmem_cache *sighand_cachep;
95 
96 /* SLAB cache for files_struct structures (tsk->files) */
97 struct kmem_cache *files_cachep;
98 
99 /* SLAB cache for fs_struct structures (tsk->fs) */
100 struct kmem_cache *fs_cachep;
101 
102 /* SLAB cache for vm_area_struct structures */
103 struct kmem_cache *vm_area_cachep;
104 
105 /* SLAB cache for mm_struct structures (tsk->mm) */
106 static struct kmem_cache *mm_cachep;
107 
108 void free_task(struct task_struct *tsk)
109 {
110 	free_thread_info(tsk->stack);
111 	rt_mutex_debug_task_free(tsk);
112 	free_task_struct(tsk);
113 }
114 EXPORT_SYMBOL(free_task);
115 
116 void __put_task_struct(struct task_struct *tsk)
117 {
118 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
119 	WARN_ON(atomic_read(&tsk->usage));
120 	WARN_ON(tsk == current);
121 
122 	security_task_free(tsk);
123 	free_uid(tsk->user);
124 	put_group_info(tsk->group_info);
125 	delayacct_tsk_free(tsk);
126 
127 	if (!profile_handoff_task(tsk))
128 		free_task(tsk);
129 }
130 
131 void __init fork_init(unsigned long mempages)
132 {
133 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
134 #ifndef ARCH_MIN_TASKALIGN
135 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
136 #endif
137 	/* create a slab on which task_structs can be allocated */
138 	task_struct_cachep =
139 		kmem_cache_create("task_struct", sizeof(struct task_struct),
140 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
141 #endif
142 
143 	/*
144 	 * The default maximum number of threads is set to a safe
145 	 * value: the thread structures can take up at most half
146 	 * of memory.
147 	 */
148 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
149 
150 	/*
151 	 * we need to allow at least 20 threads to boot a system
152 	 */
153 	if(max_threads < 20)
154 		max_threads = 20;
155 
156 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
157 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
158 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
159 		init_task.signal->rlim[RLIMIT_NPROC];
160 }
161 
162 static struct task_struct *dup_task_struct(struct task_struct *orig)
163 {
164 	struct task_struct *tsk;
165 	struct thread_info *ti;
166 
167 	prepare_to_copy(orig);
168 
169 	tsk = alloc_task_struct();
170 	if (!tsk)
171 		return NULL;
172 
173 	ti = alloc_thread_info(tsk);
174 	if (!ti) {
175 		free_task_struct(tsk);
176 		return NULL;
177 	}
178 
179 	*tsk = *orig;
180 	tsk->stack = ti;
181 	setup_thread_stack(tsk, orig);
182 
183 #ifdef CONFIG_CC_STACKPROTECTOR
184 	tsk->stack_canary = get_random_int();
185 #endif
186 
187 	/* One for us, one for whoever does the "release_task()" (usually parent) */
188 	atomic_set(&tsk->usage,2);
189 	atomic_set(&tsk->fs_excl, 0);
190 #ifdef CONFIG_BLK_DEV_IO_TRACE
191 	tsk->btrace_seq = 0;
192 #endif
193 	tsk->splice_pipe = NULL;
194 	return tsk;
195 }
196 
197 #ifdef CONFIG_MMU
198 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
199 {
200 	struct vm_area_struct *mpnt, *tmp, **pprev;
201 	struct rb_node **rb_link, *rb_parent;
202 	int retval;
203 	unsigned long charge;
204 	struct mempolicy *pol;
205 
206 	down_write(&oldmm->mmap_sem);
207 	flush_cache_dup_mm(oldmm);
208 	/*
209 	 * Not linked in yet - no deadlock potential:
210 	 */
211 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
212 
213 	mm->locked_vm = 0;
214 	mm->mmap = NULL;
215 	mm->mmap_cache = NULL;
216 	mm->free_area_cache = oldmm->mmap_base;
217 	mm->cached_hole_size = ~0UL;
218 	mm->map_count = 0;
219 	cpus_clear(mm->cpu_vm_mask);
220 	mm->mm_rb = RB_ROOT;
221 	rb_link = &mm->mm_rb.rb_node;
222 	rb_parent = NULL;
223 	pprev = &mm->mmap;
224 
225 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
226 		struct file *file;
227 
228 		if (mpnt->vm_flags & VM_DONTCOPY) {
229 			long pages = vma_pages(mpnt);
230 			mm->total_vm -= pages;
231 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
232 								-pages);
233 			continue;
234 		}
235 		charge = 0;
236 		if (mpnt->vm_flags & VM_ACCOUNT) {
237 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
238 			if (security_vm_enough_memory(len))
239 				goto fail_nomem;
240 			charge = len;
241 		}
242 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
243 		if (!tmp)
244 			goto fail_nomem;
245 		*tmp = *mpnt;
246 		pol = mpol_copy(vma_policy(mpnt));
247 		retval = PTR_ERR(pol);
248 		if (IS_ERR(pol))
249 			goto fail_nomem_policy;
250 		vma_set_policy(tmp, pol);
251 		tmp->vm_flags &= ~VM_LOCKED;
252 		tmp->vm_mm = mm;
253 		tmp->vm_next = NULL;
254 		anon_vma_link(tmp);
255 		file = tmp->vm_file;
256 		if (file) {
257 			struct inode *inode = file->f_path.dentry->d_inode;
258 			get_file(file);
259 			if (tmp->vm_flags & VM_DENYWRITE)
260 				atomic_dec(&inode->i_writecount);
261 
262 			/* insert tmp into the share list, just after mpnt */
263 			spin_lock(&file->f_mapping->i_mmap_lock);
264 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
265 			flush_dcache_mmap_lock(file->f_mapping);
266 			vma_prio_tree_add(tmp, mpnt);
267 			flush_dcache_mmap_unlock(file->f_mapping);
268 			spin_unlock(&file->f_mapping->i_mmap_lock);
269 		}
270 
271 		/*
272 		 * Link in the new vma and copy the page table entries.
273 		 */
274 		*pprev = tmp;
275 		pprev = &tmp->vm_next;
276 
277 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
278 		rb_link = &tmp->vm_rb.rb_right;
279 		rb_parent = &tmp->vm_rb;
280 
281 		mm->map_count++;
282 		retval = copy_page_range(mm, oldmm, mpnt);
283 
284 		if (tmp->vm_ops && tmp->vm_ops->open)
285 			tmp->vm_ops->open(tmp);
286 
287 		if (retval)
288 			goto out;
289 	}
290 	/* a new mm has just been created */
291 	arch_dup_mmap(oldmm, mm);
292 	retval = 0;
293 out:
294 	up_write(&mm->mmap_sem);
295 	flush_tlb_mm(oldmm);
296 	up_write(&oldmm->mmap_sem);
297 	return retval;
298 fail_nomem_policy:
299 	kmem_cache_free(vm_area_cachep, tmp);
300 fail_nomem:
301 	retval = -ENOMEM;
302 	vm_unacct_memory(charge);
303 	goto out;
304 }
305 
306 static inline int mm_alloc_pgd(struct mm_struct * mm)
307 {
308 	mm->pgd = pgd_alloc(mm);
309 	if (unlikely(!mm->pgd))
310 		return -ENOMEM;
311 	return 0;
312 }
313 
314 static inline void mm_free_pgd(struct mm_struct * mm)
315 {
316 	pgd_free(mm->pgd);
317 }
318 #else
319 #define dup_mmap(mm, oldmm)	(0)
320 #define mm_alloc_pgd(mm)	(0)
321 #define mm_free_pgd(mm)
322 #endif /* CONFIG_MMU */
323 
324  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
325 
326 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
327 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
328 
329 #include <linux/init_task.h>
330 
331 static struct mm_struct * mm_init(struct mm_struct * mm)
332 {
333 	atomic_set(&mm->mm_users, 1);
334 	atomic_set(&mm->mm_count, 1);
335 	init_rwsem(&mm->mmap_sem);
336 	INIT_LIST_HEAD(&mm->mmlist);
337 	mm->flags = (current->mm) ? current->mm->flags
338 				  : MMF_DUMP_FILTER_DEFAULT;
339 	mm->core_waiters = 0;
340 	mm->nr_ptes = 0;
341 	set_mm_counter(mm, file_rss, 0);
342 	set_mm_counter(mm, anon_rss, 0);
343 	spin_lock_init(&mm->page_table_lock);
344 	rwlock_init(&mm->ioctx_list_lock);
345 	mm->ioctx_list = NULL;
346 	mm->free_area_cache = TASK_UNMAPPED_BASE;
347 	mm->cached_hole_size = ~0UL;
348 
349 	if (likely(!mm_alloc_pgd(mm))) {
350 		mm->def_flags = 0;
351 		return mm;
352 	}
353 	free_mm(mm);
354 	return NULL;
355 }
356 
357 /*
358  * Allocate and initialize an mm_struct.
359  */
360 struct mm_struct * mm_alloc(void)
361 {
362 	struct mm_struct * mm;
363 
364 	mm = allocate_mm();
365 	if (mm) {
366 		memset(mm, 0, sizeof(*mm));
367 		mm = mm_init(mm);
368 	}
369 	return mm;
370 }
371 
372 /*
373  * Called when the last reference to the mm
374  * is dropped: either by a lazy thread or by
375  * mmput. Free the page directory and the mm.
376  */
377 void fastcall __mmdrop(struct mm_struct *mm)
378 {
379 	BUG_ON(mm == &init_mm);
380 	mm_free_pgd(mm);
381 	destroy_context(mm);
382 	free_mm(mm);
383 }
384 
385 /*
386  * Decrement the use count and release all resources for an mm.
387  */
388 void mmput(struct mm_struct *mm)
389 {
390 	might_sleep();
391 
392 	if (atomic_dec_and_test(&mm->mm_users)) {
393 		exit_aio(mm);
394 		exit_mmap(mm);
395 		if (!list_empty(&mm->mmlist)) {
396 			spin_lock(&mmlist_lock);
397 			list_del(&mm->mmlist);
398 			spin_unlock(&mmlist_lock);
399 		}
400 		put_swap_token(mm);
401 		mmdrop(mm);
402 	}
403 }
404 EXPORT_SYMBOL_GPL(mmput);
405 
406 /**
407  * get_task_mm - acquire a reference to the task's mm
408  *
409  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
410  * this kernel workthread has transiently adopted a user mm with use_mm,
411  * to do its AIO) is not set and if so returns a reference to it, after
412  * bumping up the use count.  User must release the mm via mmput()
413  * after use.  Typically used by /proc and ptrace.
414  */
415 struct mm_struct *get_task_mm(struct task_struct *task)
416 {
417 	struct mm_struct *mm;
418 
419 	task_lock(task);
420 	mm = task->mm;
421 	if (mm) {
422 		if (task->flags & PF_BORROWED_MM)
423 			mm = NULL;
424 		else
425 			atomic_inc(&mm->mm_users);
426 	}
427 	task_unlock(task);
428 	return mm;
429 }
430 EXPORT_SYMBOL_GPL(get_task_mm);
431 
432 /* Please note the differences between mmput and mm_release.
433  * mmput is called whenever we stop holding onto a mm_struct,
434  * error success whatever.
435  *
436  * mm_release is called after a mm_struct has been removed
437  * from the current process.
438  *
439  * This difference is important for error handling, when we
440  * only half set up a mm_struct for a new process and need to restore
441  * the old one.  Because we mmput the new mm_struct before
442  * restoring the old one. . .
443  * Eric Biederman 10 January 1998
444  */
445 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
446 {
447 	struct completion *vfork_done = tsk->vfork_done;
448 
449 	/* Get rid of any cached register state */
450 	deactivate_mm(tsk, mm);
451 
452 	/* notify parent sleeping on vfork() */
453 	if (vfork_done) {
454 		tsk->vfork_done = NULL;
455 		complete(vfork_done);
456 	}
457 
458 	/*
459 	 * If we're exiting normally, clear a user-space tid field if
460 	 * requested.  We leave this alone when dying by signal, to leave
461 	 * the value intact in a core dump, and to save the unnecessary
462 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
463 	 */
464 	if (tsk->clear_child_tid
465 	    && !(tsk->flags & PF_SIGNALED)
466 	    && atomic_read(&mm->mm_users) > 1) {
467 		u32 __user * tidptr = tsk->clear_child_tid;
468 		tsk->clear_child_tid = NULL;
469 
470 		/*
471 		 * We don't check the error code - if userspace has
472 		 * not set up a proper pointer then tough luck.
473 		 */
474 		put_user(0, tidptr);
475 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
476 	}
477 }
478 
479 /*
480  * Allocate a new mm structure and copy contents from the
481  * mm structure of the passed in task structure.
482  */
483 static struct mm_struct *dup_mm(struct task_struct *tsk)
484 {
485 	struct mm_struct *mm, *oldmm = current->mm;
486 	int err;
487 
488 	if (!oldmm)
489 		return NULL;
490 
491 	mm = allocate_mm();
492 	if (!mm)
493 		goto fail_nomem;
494 
495 	memcpy(mm, oldmm, sizeof(*mm));
496 
497 	/* Initializing for Swap token stuff */
498 	mm->token_priority = 0;
499 	mm->last_interval = 0;
500 
501 	if (!mm_init(mm))
502 		goto fail_nomem;
503 
504 	if (init_new_context(tsk, mm))
505 		goto fail_nocontext;
506 
507 	err = dup_mmap(mm, oldmm);
508 	if (err)
509 		goto free_pt;
510 
511 	mm->hiwater_rss = get_mm_rss(mm);
512 	mm->hiwater_vm = mm->total_vm;
513 
514 	return mm;
515 
516 free_pt:
517 	mmput(mm);
518 
519 fail_nomem:
520 	return NULL;
521 
522 fail_nocontext:
523 	/*
524 	 * If init_new_context() failed, we cannot use mmput() to free the mm
525 	 * because it calls destroy_context()
526 	 */
527 	mm_free_pgd(mm);
528 	free_mm(mm);
529 	return NULL;
530 }
531 
532 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
533 {
534 	struct mm_struct * mm, *oldmm;
535 	int retval;
536 
537 	tsk->min_flt = tsk->maj_flt = 0;
538 	tsk->nvcsw = tsk->nivcsw = 0;
539 
540 	tsk->mm = NULL;
541 	tsk->active_mm = NULL;
542 
543 	/*
544 	 * Are we cloning a kernel thread?
545 	 *
546 	 * We need to steal a active VM for that..
547 	 */
548 	oldmm = current->mm;
549 	if (!oldmm)
550 		return 0;
551 
552 	if (clone_flags & CLONE_VM) {
553 		atomic_inc(&oldmm->mm_users);
554 		mm = oldmm;
555 		goto good_mm;
556 	}
557 
558 	retval = -ENOMEM;
559 	mm = dup_mm(tsk);
560 	if (!mm)
561 		goto fail_nomem;
562 
563 good_mm:
564 	/* Initializing for Swap token stuff */
565 	mm->token_priority = 0;
566 	mm->last_interval = 0;
567 
568 	tsk->mm = mm;
569 	tsk->active_mm = mm;
570 	return 0;
571 
572 fail_nomem:
573 	return retval;
574 }
575 
576 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
577 {
578 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
579 	/* We don't need to lock fs - think why ;-) */
580 	if (fs) {
581 		atomic_set(&fs->count, 1);
582 		rwlock_init(&fs->lock);
583 		fs->umask = old->umask;
584 		read_lock(&old->lock);
585 		fs->rootmnt = mntget(old->rootmnt);
586 		fs->root = dget(old->root);
587 		fs->pwdmnt = mntget(old->pwdmnt);
588 		fs->pwd = dget(old->pwd);
589 		if (old->altroot) {
590 			fs->altrootmnt = mntget(old->altrootmnt);
591 			fs->altroot = dget(old->altroot);
592 		} else {
593 			fs->altrootmnt = NULL;
594 			fs->altroot = NULL;
595 		}
596 		read_unlock(&old->lock);
597 	}
598 	return fs;
599 }
600 
601 struct fs_struct *copy_fs_struct(struct fs_struct *old)
602 {
603 	return __copy_fs_struct(old);
604 }
605 
606 EXPORT_SYMBOL_GPL(copy_fs_struct);
607 
608 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
609 {
610 	if (clone_flags & CLONE_FS) {
611 		atomic_inc(&current->fs->count);
612 		return 0;
613 	}
614 	tsk->fs = __copy_fs_struct(current->fs);
615 	if (!tsk->fs)
616 		return -ENOMEM;
617 	return 0;
618 }
619 
620 static int count_open_files(struct fdtable *fdt)
621 {
622 	int size = fdt->max_fds;
623 	int i;
624 
625 	/* Find the last open fd */
626 	for (i = size/(8*sizeof(long)); i > 0; ) {
627 		if (fdt->open_fds->fds_bits[--i])
628 			break;
629 	}
630 	i = (i+1) * 8 * sizeof(long);
631 	return i;
632 }
633 
634 static struct files_struct *alloc_files(void)
635 {
636 	struct files_struct *newf;
637 	struct fdtable *fdt;
638 
639 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
640 	if (!newf)
641 		goto out;
642 
643 	atomic_set(&newf->count, 1);
644 
645 	spin_lock_init(&newf->file_lock);
646 	newf->next_fd = 0;
647 	fdt = &newf->fdtab;
648 	fdt->max_fds = NR_OPEN_DEFAULT;
649 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
650 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
651 	fdt->fd = &newf->fd_array[0];
652 	INIT_RCU_HEAD(&fdt->rcu);
653 	fdt->next = NULL;
654 	rcu_assign_pointer(newf->fdt, fdt);
655 out:
656 	return newf;
657 }
658 
659 /*
660  * Allocate a new files structure and copy contents from the
661  * passed in files structure.
662  * errorp will be valid only when the returned files_struct is NULL.
663  */
664 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
665 {
666 	struct files_struct *newf;
667 	struct file **old_fds, **new_fds;
668 	int open_files, size, i;
669 	struct fdtable *old_fdt, *new_fdt;
670 
671 	*errorp = -ENOMEM;
672 	newf = alloc_files();
673 	if (!newf)
674 		goto out;
675 
676 	spin_lock(&oldf->file_lock);
677 	old_fdt = files_fdtable(oldf);
678 	new_fdt = files_fdtable(newf);
679 	open_files = count_open_files(old_fdt);
680 
681 	/*
682 	 * Check whether we need to allocate a larger fd array and fd set.
683 	 * Note: we're not a clone task, so the open count won't change.
684 	 */
685 	if (open_files > new_fdt->max_fds) {
686 		new_fdt->max_fds = 0;
687 		spin_unlock(&oldf->file_lock);
688 		spin_lock(&newf->file_lock);
689 		*errorp = expand_files(newf, open_files-1);
690 		spin_unlock(&newf->file_lock);
691 		if (*errorp < 0)
692 			goto out_release;
693 		new_fdt = files_fdtable(newf);
694 		/*
695 		 * Reacquire the oldf lock and a pointer to its fd table
696 		 * who knows it may have a new bigger fd table. We need
697 		 * the latest pointer.
698 		 */
699 		spin_lock(&oldf->file_lock);
700 		old_fdt = files_fdtable(oldf);
701 	}
702 
703 	old_fds = old_fdt->fd;
704 	new_fds = new_fdt->fd;
705 
706 	memcpy(new_fdt->open_fds->fds_bits,
707 		old_fdt->open_fds->fds_bits, open_files/8);
708 	memcpy(new_fdt->close_on_exec->fds_bits,
709 		old_fdt->close_on_exec->fds_bits, open_files/8);
710 
711 	for (i = open_files; i != 0; i--) {
712 		struct file *f = *old_fds++;
713 		if (f) {
714 			get_file(f);
715 		} else {
716 			/*
717 			 * The fd may be claimed in the fd bitmap but not yet
718 			 * instantiated in the files array if a sibling thread
719 			 * is partway through open().  So make sure that this
720 			 * fd is available to the new process.
721 			 */
722 			FD_CLR(open_files - i, new_fdt->open_fds);
723 		}
724 		rcu_assign_pointer(*new_fds++, f);
725 	}
726 	spin_unlock(&oldf->file_lock);
727 
728 	/* compute the remainder to be cleared */
729 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
730 
731 	/* This is long word aligned thus could use a optimized version */
732 	memset(new_fds, 0, size);
733 
734 	if (new_fdt->max_fds > open_files) {
735 		int left = (new_fdt->max_fds-open_files)/8;
736 		int start = open_files / (8 * sizeof(unsigned long));
737 
738 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
739 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
740 	}
741 
742 	return newf;
743 
744 out_release:
745 	kmem_cache_free(files_cachep, newf);
746 out:
747 	return NULL;
748 }
749 
750 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
751 {
752 	struct files_struct *oldf, *newf;
753 	int error = 0;
754 
755 	/*
756 	 * A background process may not have any files ...
757 	 */
758 	oldf = current->files;
759 	if (!oldf)
760 		goto out;
761 
762 	if (clone_flags & CLONE_FILES) {
763 		atomic_inc(&oldf->count);
764 		goto out;
765 	}
766 
767 	/*
768 	 * Note: we may be using current for both targets (See exec.c)
769 	 * This works because we cache current->files (old) as oldf. Don't
770 	 * break this.
771 	 */
772 	tsk->files = NULL;
773 	newf = dup_fd(oldf, &error);
774 	if (!newf)
775 		goto out;
776 
777 	tsk->files = newf;
778 	error = 0;
779 out:
780 	return error;
781 }
782 
783 /*
784  *	Helper to unshare the files of the current task.
785  *	We don't want to expose copy_files internals to
786  *	the exec layer of the kernel.
787  */
788 
789 int unshare_files(void)
790 {
791 	struct files_struct *files  = current->files;
792 	int rc;
793 
794 	BUG_ON(!files);
795 
796 	/* This can race but the race causes us to copy when we don't
797 	   need to and drop the copy */
798 	if(atomic_read(&files->count) == 1)
799 	{
800 		atomic_inc(&files->count);
801 		return 0;
802 	}
803 	rc = copy_files(0, current);
804 	if(rc)
805 		current->files = files;
806 	return rc;
807 }
808 
809 EXPORT_SYMBOL(unshare_files);
810 
811 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
812 {
813 	struct sighand_struct *sig;
814 
815 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
816 		atomic_inc(&current->sighand->count);
817 		return 0;
818 	}
819 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
820 	rcu_assign_pointer(tsk->sighand, sig);
821 	if (!sig)
822 		return -ENOMEM;
823 	atomic_set(&sig->count, 1);
824 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
825 	return 0;
826 }
827 
828 void __cleanup_sighand(struct sighand_struct *sighand)
829 {
830 	if (atomic_dec_and_test(&sighand->count))
831 		kmem_cache_free(sighand_cachep, sighand);
832 }
833 
834 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
835 {
836 	struct signal_struct *sig;
837 	int ret;
838 
839 	if (clone_flags & CLONE_THREAD) {
840 		atomic_inc(&current->signal->count);
841 		atomic_inc(&current->signal->live);
842 		return 0;
843 	}
844 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
845 	tsk->signal = sig;
846 	if (!sig)
847 		return -ENOMEM;
848 
849 	ret = copy_thread_group_keys(tsk);
850 	if (ret < 0) {
851 		kmem_cache_free(signal_cachep, sig);
852 		return ret;
853 	}
854 
855 	atomic_set(&sig->count, 1);
856 	atomic_set(&sig->live, 1);
857 	init_waitqueue_head(&sig->wait_chldexit);
858 	sig->flags = 0;
859 	sig->group_exit_code = 0;
860 	sig->group_exit_task = NULL;
861 	sig->group_stop_count = 0;
862 	sig->curr_target = NULL;
863 	init_sigpending(&sig->shared_pending);
864 	INIT_LIST_HEAD(&sig->posix_timers);
865 
866 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
867 	sig->it_real_incr.tv64 = 0;
868 	sig->real_timer.function = it_real_fn;
869 	sig->tsk = tsk;
870 
871 	sig->it_virt_expires = cputime_zero;
872 	sig->it_virt_incr = cputime_zero;
873 	sig->it_prof_expires = cputime_zero;
874 	sig->it_prof_incr = cputime_zero;
875 
876 	sig->leader = 0;	/* session leadership doesn't inherit */
877 	sig->tty_old_pgrp = NULL;
878 
879 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
880 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
881 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
882 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
883 	sig->sum_sched_runtime = 0;
884 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
885 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
886 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
887 	taskstats_tgid_init(sig);
888 
889 	task_lock(current->group_leader);
890 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
891 	task_unlock(current->group_leader);
892 
893 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
894 		/*
895 		 * New sole thread in the process gets an expiry time
896 		 * of the whole CPU time limit.
897 		 */
898 		tsk->it_prof_expires =
899 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
900 	}
901 	acct_init_pacct(&sig->pacct);
902 
903 	tty_audit_fork(sig);
904 
905 	return 0;
906 }
907 
908 void __cleanup_signal(struct signal_struct *sig)
909 {
910 	exit_thread_group_keys(sig);
911 	kmem_cache_free(signal_cachep, sig);
912 }
913 
914 static inline void cleanup_signal(struct task_struct *tsk)
915 {
916 	struct signal_struct *sig = tsk->signal;
917 
918 	atomic_dec(&sig->live);
919 
920 	if (atomic_dec_and_test(&sig->count))
921 		__cleanup_signal(sig);
922 }
923 
924 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
925 {
926 	unsigned long new_flags = p->flags;
927 
928 	new_flags &= ~PF_SUPERPRIV;
929 	new_flags |= PF_FORKNOEXEC;
930 	if (!(clone_flags & CLONE_PTRACE))
931 		p->ptrace = 0;
932 	p->flags = new_flags;
933 }
934 
935 asmlinkage long sys_set_tid_address(int __user *tidptr)
936 {
937 	current->clear_child_tid = tidptr;
938 
939 	return current->pid;
940 }
941 
942 static inline void rt_mutex_init_task(struct task_struct *p)
943 {
944 	spin_lock_init(&p->pi_lock);
945 #ifdef CONFIG_RT_MUTEXES
946 	plist_head_init(&p->pi_waiters, &p->pi_lock);
947 	p->pi_blocked_on = NULL;
948 #endif
949 }
950 
951 /*
952  * This creates a new process as a copy of the old one,
953  * but does not actually start it yet.
954  *
955  * It copies the registers, and all the appropriate
956  * parts of the process environment (as per the clone
957  * flags). The actual kick-off is left to the caller.
958  */
959 static struct task_struct *copy_process(unsigned long clone_flags,
960 					unsigned long stack_start,
961 					struct pt_regs *regs,
962 					unsigned long stack_size,
963 					int __user *parent_tidptr,
964 					int __user *child_tidptr,
965 					struct pid *pid)
966 {
967 	int retval;
968 	struct task_struct *p = NULL;
969 
970 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
971 		return ERR_PTR(-EINVAL);
972 
973 	/*
974 	 * Thread groups must share signals as well, and detached threads
975 	 * can only be started up within the thread group.
976 	 */
977 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
978 		return ERR_PTR(-EINVAL);
979 
980 	/*
981 	 * Shared signal handlers imply shared VM. By way of the above,
982 	 * thread groups also imply shared VM. Blocking this case allows
983 	 * for various simplifications in other code.
984 	 */
985 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
986 		return ERR_PTR(-EINVAL);
987 
988 	retval = security_task_create(clone_flags);
989 	if (retval)
990 		goto fork_out;
991 
992 	retval = -ENOMEM;
993 	p = dup_task_struct(current);
994 	if (!p)
995 		goto fork_out;
996 
997 	rt_mutex_init_task(p);
998 
999 #ifdef CONFIG_TRACE_IRQFLAGS
1000 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1001 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1002 #endif
1003 	retval = -EAGAIN;
1004 	if (atomic_read(&p->user->processes) >=
1005 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1006 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1007 		    p->user != current->nsproxy->user_ns->root_user)
1008 			goto bad_fork_free;
1009 	}
1010 
1011 	atomic_inc(&p->user->__count);
1012 	atomic_inc(&p->user->processes);
1013 	get_group_info(p->group_info);
1014 
1015 	/*
1016 	 * If multiple threads are within copy_process(), then this check
1017 	 * triggers too late. This doesn't hurt, the check is only there
1018 	 * to stop root fork bombs.
1019 	 */
1020 	if (nr_threads >= max_threads)
1021 		goto bad_fork_cleanup_count;
1022 
1023 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1024 		goto bad_fork_cleanup_count;
1025 
1026 	if (p->binfmt && !try_module_get(p->binfmt->module))
1027 		goto bad_fork_cleanup_put_domain;
1028 
1029 	p->did_exec = 0;
1030 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1031 	copy_flags(clone_flags, p);
1032 	p->pid = pid_nr(pid);
1033 	retval = -EFAULT;
1034 	if (clone_flags & CLONE_PARENT_SETTID)
1035 		if (put_user(p->pid, parent_tidptr))
1036 			goto bad_fork_cleanup_delays_binfmt;
1037 
1038 	INIT_LIST_HEAD(&p->children);
1039 	INIT_LIST_HEAD(&p->sibling);
1040 	p->vfork_done = NULL;
1041 	spin_lock_init(&p->alloc_lock);
1042 
1043 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1044 	init_sigpending(&p->pending);
1045 
1046 	p->utime = cputime_zero;
1047 	p->stime = cputime_zero;
1048 
1049 #ifdef CONFIG_TASK_XACCT
1050 	p->rchar = 0;		/* I/O counter: bytes read */
1051 	p->wchar = 0;		/* I/O counter: bytes written */
1052 	p->syscr = 0;		/* I/O counter: read syscalls */
1053 	p->syscw = 0;		/* I/O counter: write syscalls */
1054 #endif
1055 	task_io_accounting_init(p);
1056 	acct_clear_integrals(p);
1057 
1058  	p->it_virt_expires = cputime_zero;
1059 	p->it_prof_expires = cputime_zero;
1060  	p->it_sched_expires = 0;
1061  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1062  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1063  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1064 
1065 	p->lock_depth = -1;		/* -1 = no lock */
1066 	do_posix_clock_monotonic_gettime(&p->start_time);
1067 	p->real_start_time = p->start_time;
1068 	monotonic_to_bootbased(&p->real_start_time);
1069 	p->security = NULL;
1070 	p->io_context = NULL;
1071 	p->io_wait = NULL;
1072 	p->audit_context = NULL;
1073 	cpuset_fork(p);
1074 #ifdef CONFIG_NUMA
1075  	p->mempolicy = mpol_copy(p->mempolicy);
1076  	if (IS_ERR(p->mempolicy)) {
1077  		retval = PTR_ERR(p->mempolicy);
1078  		p->mempolicy = NULL;
1079  		goto bad_fork_cleanup_cpuset;
1080  	}
1081 	mpol_fix_fork_child_flag(p);
1082 #endif
1083 #ifdef CONFIG_TRACE_IRQFLAGS
1084 	p->irq_events = 0;
1085 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1086 	p->hardirqs_enabled = 1;
1087 #else
1088 	p->hardirqs_enabled = 0;
1089 #endif
1090 	p->hardirq_enable_ip = 0;
1091 	p->hardirq_enable_event = 0;
1092 	p->hardirq_disable_ip = _THIS_IP_;
1093 	p->hardirq_disable_event = 0;
1094 	p->softirqs_enabled = 1;
1095 	p->softirq_enable_ip = _THIS_IP_;
1096 	p->softirq_enable_event = 0;
1097 	p->softirq_disable_ip = 0;
1098 	p->softirq_disable_event = 0;
1099 	p->hardirq_context = 0;
1100 	p->softirq_context = 0;
1101 #endif
1102 #ifdef CONFIG_LOCKDEP
1103 	p->lockdep_depth = 0; /* no locks held yet */
1104 	p->curr_chain_key = 0;
1105 	p->lockdep_recursion = 0;
1106 #endif
1107 
1108 #ifdef CONFIG_DEBUG_MUTEXES
1109 	p->blocked_on = NULL; /* not blocked yet */
1110 #endif
1111 
1112 	p->tgid = p->pid;
1113 	if (clone_flags & CLONE_THREAD)
1114 		p->tgid = current->tgid;
1115 
1116 	if ((retval = security_task_alloc(p)))
1117 		goto bad_fork_cleanup_policy;
1118 	if ((retval = audit_alloc(p)))
1119 		goto bad_fork_cleanup_security;
1120 	/* copy all the process information */
1121 	if ((retval = copy_semundo(clone_flags, p)))
1122 		goto bad_fork_cleanup_audit;
1123 	if ((retval = copy_files(clone_flags, p)))
1124 		goto bad_fork_cleanup_semundo;
1125 	if ((retval = copy_fs(clone_flags, p)))
1126 		goto bad_fork_cleanup_files;
1127 	if ((retval = copy_sighand(clone_flags, p)))
1128 		goto bad_fork_cleanup_fs;
1129 	if ((retval = copy_signal(clone_flags, p)))
1130 		goto bad_fork_cleanup_sighand;
1131 	if ((retval = copy_mm(clone_flags, p)))
1132 		goto bad_fork_cleanup_signal;
1133 	if ((retval = copy_keys(clone_flags, p)))
1134 		goto bad_fork_cleanup_mm;
1135 	if ((retval = copy_namespaces(clone_flags, p)))
1136 		goto bad_fork_cleanup_keys;
1137 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1138 	if (retval)
1139 		goto bad_fork_cleanup_namespaces;
1140 
1141 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1142 	/*
1143 	 * Clear TID on mm_release()?
1144 	 */
1145 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1146 	p->robust_list = NULL;
1147 #ifdef CONFIG_COMPAT
1148 	p->compat_robust_list = NULL;
1149 #endif
1150 	INIT_LIST_HEAD(&p->pi_state_list);
1151 	p->pi_state_cache = NULL;
1152 
1153 	/*
1154 	 * sigaltstack should be cleared when sharing the same VM
1155 	 */
1156 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1157 		p->sas_ss_sp = p->sas_ss_size = 0;
1158 
1159 	/*
1160 	 * Syscall tracing should be turned off in the child regardless
1161 	 * of CLONE_PTRACE.
1162 	 */
1163 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1164 #ifdef TIF_SYSCALL_EMU
1165 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1166 #endif
1167 
1168 	/* Our parent execution domain becomes current domain
1169 	   These must match for thread signalling to apply */
1170 	p->parent_exec_id = p->self_exec_id;
1171 
1172 	/* ok, now we should be set up.. */
1173 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1174 	p->pdeath_signal = 0;
1175 	p->exit_state = 0;
1176 
1177 	/*
1178 	 * Ok, make it visible to the rest of the system.
1179 	 * We dont wake it up yet.
1180 	 */
1181 	p->group_leader = p;
1182 	INIT_LIST_HEAD(&p->thread_group);
1183 	INIT_LIST_HEAD(&p->ptrace_children);
1184 	INIT_LIST_HEAD(&p->ptrace_list);
1185 
1186 	/* Perform scheduler related setup. Assign this task to a CPU. */
1187 	sched_fork(p, clone_flags);
1188 
1189 	/* Need tasklist lock for parent etc handling! */
1190 	write_lock_irq(&tasklist_lock);
1191 
1192 	/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1193 	p->ioprio = current->ioprio;
1194 
1195 	/*
1196 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1197 	 * not be changed, nor will its assigned CPU.
1198 	 *
1199 	 * The cpus_allowed mask of the parent may have changed after it was
1200 	 * copied first time - so re-copy it here, then check the child's CPU
1201 	 * to ensure it is on a valid CPU (and if not, just force it back to
1202 	 * parent's CPU). This avoids alot of nasty races.
1203 	 */
1204 	p->cpus_allowed = current->cpus_allowed;
1205 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1206 			!cpu_online(task_cpu(p))))
1207 		set_task_cpu(p, smp_processor_id());
1208 
1209 	/* CLONE_PARENT re-uses the old parent */
1210 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1211 		p->real_parent = current->real_parent;
1212 	else
1213 		p->real_parent = current;
1214 	p->parent = p->real_parent;
1215 
1216 	spin_lock(&current->sighand->siglock);
1217 
1218 	/*
1219 	 * Process group and session signals need to be delivered to just the
1220 	 * parent before the fork or both the parent and the child after the
1221 	 * fork. Restart if a signal comes in before we add the new process to
1222 	 * it's process group.
1223 	 * A fatal signal pending means that current will exit, so the new
1224 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1225  	 */
1226  	recalc_sigpending();
1227 	if (signal_pending(current)) {
1228 		spin_unlock(&current->sighand->siglock);
1229 		write_unlock_irq(&tasklist_lock);
1230 		retval = -ERESTARTNOINTR;
1231 		goto bad_fork_cleanup_namespaces;
1232 	}
1233 
1234 	if (clone_flags & CLONE_THREAD) {
1235 		p->group_leader = current->group_leader;
1236 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1237 
1238 		if (!cputime_eq(current->signal->it_virt_expires,
1239 				cputime_zero) ||
1240 		    !cputime_eq(current->signal->it_prof_expires,
1241 				cputime_zero) ||
1242 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1243 		    !list_empty(&current->signal->cpu_timers[0]) ||
1244 		    !list_empty(&current->signal->cpu_timers[1]) ||
1245 		    !list_empty(&current->signal->cpu_timers[2])) {
1246 			/*
1247 			 * Have child wake up on its first tick to check
1248 			 * for process CPU timers.
1249 			 */
1250 			p->it_prof_expires = jiffies_to_cputime(1);
1251 		}
1252 	}
1253 
1254 	if (likely(p->pid)) {
1255 		add_parent(p);
1256 		if (unlikely(p->ptrace & PT_PTRACED))
1257 			__ptrace_link(p, current->parent);
1258 
1259 		if (thread_group_leader(p)) {
1260 			p->signal->tty = current->signal->tty;
1261 			p->signal->pgrp = process_group(current);
1262 			set_signal_session(p->signal, process_session(current));
1263 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1264 			attach_pid(p, PIDTYPE_SID, task_session(current));
1265 
1266 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1267 			__get_cpu_var(process_counts)++;
1268 		}
1269 		attach_pid(p, PIDTYPE_PID, pid);
1270 		nr_threads++;
1271 	}
1272 
1273 	total_forks++;
1274 	spin_unlock(&current->sighand->siglock);
1275 	write_unlock_irq(&tasklist_lock);
1276 	proc_fork_connector(p);
1277 	return p;
1278 
1279 bad_fork_cleanup_namespaces:
1280 	exit_task_namespaces(p);
1281 bad_fork_cleanup_keys:
1282 	exit_keys(p);
1283 bad_fork_cleanup_mm:
1284 	if (p->mm)
1285 		mmput(p->mm);
1286 bad_fork_cleanup_signal:
1287 	cleanup_signal(p);
1288 bad_fork_cleanup_sighand:
1289 	__cleanup_sighand(p->sighand);
1290 bad_fork_cleanup_fs:
1291 	exit_fs(p); /* blocking */
1292 bad_fork_cleanup_files:
1293 	exit_files(p); /* blocking */
1294 bad_fork_cleanup_semundo:
1295 	exit_sem(p);
1296 bad_fork_cleanup_audit:
1297 	audit_free(p);
1298 bad_fork_cleanup_security:
1299 	security_task_free(p);
1300 bad_fork_cleanup_policy:
1301 #ifdef CONFIG_NUMA
1302 	mpol_free(p->mempolicy);
1303 bad_fork_cleanup_cpuset:
1304 #endif
1305 	cpuset_exit(p);
1306 bad_fork_cleanup_delays_binfmt:
1307 	delayacct_tsk_free(p);
1308 	if (p->binfmt)
1309 		module_put(p->binfmt->module);
1310 bad_fork_cleanup_put_domain:
1311 	module_put(task_thread_info(p)->exec_domain->module);
1312 bad_fork_cleanup_count:
1313 	put_group_info(p->group_info);
1314 	atomic_dec(&p->user->processes);
1315 	free_uid(p->user);
1316 bad_fork_free:
1317 	free_task(p);
1318 fork_out:
1319 	return ERR_PTR(retval);
1320 }
1321 
1322 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1323 {
1324 	memset(regs, 0, sizeof(struct pt_regs));
1325 	return regs;
1326 }
1327 
1328 struct task_struct * __cpuinit fork_idle(int cpu)
1329 {
1330 	struct task_struct *task;
1331 	struct pt_regs regs;
1332 
1333 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
1334 				&init_struct_pid);
1335 	if (!IS_ERR(task))
1336 		init_idle(task, cpu);
1337 
1338 	return task;
1339 }
1340 
1341 static inline int fork_traceflag (unsigned clone_flags)
1342 {
1343 	if (clone_flags & CLONE_UNTRACED)
1344 		return 0;
1345 	else if (clone_flags & CLONE_VFORK) {
1346 		if (current->ptrace & PT_TRACE_VFORK)
1347 			return PTRACE_EVENT_VFORK;
1348 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1349 		if (current->ptrace & PT_TRACE_CLONE)
1350 			return PTRACE_EVENT_CLONE;
1351 	} else if (current->ptrace & PT_TRACE_FORK)
1352 		return PTRACE_EVENT_FORK;
1353 
1354 	return 0;
1355 }
1356 
1357 /*
1358  *  Ok, this is the main fork-routine.
1359  *
1360  * It copies the process, and if successful kick-starts
1361  * it and waits for it to finish using the VM if required.
1362  */
1363 long do_fork(unsigned long clone_flags,
1364 	      unsigned long stack_start,
1365 	      struct pt_regs *regs,
1366 	      unsigned long stack_size,
1367 	      int __user *parent_tidptr,
1368 	      int __user *child_tidptr)
1369 {
1370 	struct task_struct *p;
1371 	int trace = 0;
1372 	struct pid *pid = alloc_pid();
1373 	long nr;
1374 
1375 	if (!pid)
1376 		return -EAGAIN;
1377 	nr = pid->nr;
1378 	if (unlikely(current->ptrace)) {
1379 		trace = fork_traceflag (clone_flags);
1380 		if (trace)
1381 			clone_flags |= CLONE_PTRACE;
1382 	}
1383 
1384 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1385 	/*
1386 	 * Do this prior waking up the new thread - the thread pointer
1387 	 * might get invalid after that point, if the thread exits quickly.
1388 	 */
1389 	if (!IS_ERR(p)) {
1390 		struct completion vfork;
1391 
1392 		if (clone_flags & CLONE_VFORK) {
1393 			p->vfork_done = &vfork;
1394 			init_completion(&vfork);
1395 		}
1396 
1397 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1398 			/*
1399 			 * We'll start up with an immediate SIGSTOP.
1400 			 */
1401 			sigaddset(&p->pending.signal, SIGSTOP);
1402 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1403 		}
1404 
1405 		if (!(clone_flags & CLONE_STOPPED))
1406 			wake_up_new_task(p, clone_flags);
1407 		else
1408 			p->state = TASK_STOPPED;
1409 
1410 		if (unlikely (trace)) {
1411 			current->ptrace_message = nr;
1412 			ptrace_notify ((trace << 8) | SIGTRAP);
1413 		}
1414 
1415 		if (clone_flags & CLONE_VFORK) {
1416 			freezer_do_not_count();
1417 			wait_for_completion(&vfork);
1418 			freezer_count();
1419 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1420 				current->ptrace_message = nr;
1421 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1422 			}
1423 		}
1424 	} else {
1425 		free_pid(pid);
1426 		nr = PTR_ERR(p);
1427 	}
1428 	return nr;
1429 }
1430 
1431 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1432 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1433 #endif
1434 
1435 static void sighand_ctor(void *data, struct kmem_cache *cachep,
1436 			unsigned long flags)
1437 {
1438 	struct sighand_struct *sighand = data;
1439 
1440 	spin_lock_init(&sighand->siglock);
1441 	INIT_LIST_HEAD(&sighand->signalfd_list);
1442 }
1443 
1444 void __init proc_caches_init(void)
1445 {
1446 	sighand_cachep = kmem_cache_create("sighand_cache",
1447 			sizeof(struct sighand_struct), 0,
1448 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1449 			sighand_ctor);
1450 	signal_cachep = kmem_cache_create("signal_cache",
1451 			sizeof(struct signal_struct), 0,
1452 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1453 	files_cachep = kmem_cache_create("files_cache",
1454 			sizeof(struct files_struct), 0,
1455 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1456 	fs_cachep = kmem_cache_create("fs_cache",
1457 			sizeof(struct fs_struct), 0,
1458 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1459 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1460 			sizeof(struct vm_area_struct), 0,
1461 			SLAB_PANIC, NULL);
1462 	mm_cachep = kmem_cache_create("mm_struct",
1463 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1464 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1465 }
1466 
1467 /*
1468  * Check constraints on flags passed to the unshare system call and
1469  * force unsharing of additional process context as appropriate.
1470  */
1471 static inline void check_unshare_flags(unsigned long *flags_ptr)
1472 {
1473 	/*
1474 	 * If unsharing a thread from a thread group, must also
1475 	 * unshare vm.
1476 	 */
1477 	if (*flags_ptr & CLONE_THREAD)
1478 		*flags_ptr |= CLONE_VM;
1479 
1480 	/*
1481 	 * If unsharing vm, must also unshare signal handlers.
1482 	 */
1483 	if (*flags_ptr & CLONE_VM)
1484 		*flags_ptr |= CLONE_SIGHAND;
1485 
1486 	/*
1487 	 * If unsharing signal handlers and the task was created
1488 	 * using CLONE_THREAD, then must unshare the thread
1489 	 */
1490 	if ((*flags_ptr & CLONE_SIGHAND) &&
1491 	    (atomic_read(&current->signal->count) > 1))
1492 		*flags_ptr |= CLONE_THREAD;
1493 
1494 	/*
1495 	 * If unsharing namespace, must also unshare filesystem information.
1496 	 */
1497 	if (*flags_ptr & CLONE_NEWNS)
1498 		*flags_ptr |= CLONE_FS;
1499 }
1500 
1501 /*
1502  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1503  */
1504 static int unshare_thread(unsigned long unshare_flags)
1505 {
1506 	if (unshare_flags & CLONE_THREAD)
1507 		return -EINVAL;
1508 
1509 	return 0;
1510 }
1511 
1512 /*
1513  * Unshare the filesystem structure if it is being shared
1514  */
1515 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1516 {
1517 	struct fs_struct *fs = current->fs;
1518 
1519 	if ((unshare_flags & CLONE_FS) &&
1520 	    (fs && atomic_read(&fs->count) > 1)) {
1521 		*new_fsp = __copy_fs_struct(current->fs);
1522 		if (!*new_fsp)
1523 			return -ENOMEM;
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 /*
1530  * Unsharing of sighand is not supported yet
1531  */
1532 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1533 {
1534 	struct sighand_struct *sigh = current->sighand;
1535 
1536 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1537 		return -EINVAL;
1538 	else
1539 		return 0;
1540 }
1541 
1542 /*
1543  * Unshare vm if it is being shared
1544  */
1545 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1546 {
1547 	struct mm_struct *mm = current->mm;
1548 
1549 	if ((unshare_flags & CLONE_VM) &&
1550 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1551 		return -EINVAL;
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 /*
1558  * Unshare file descriptor table if it is being shared
1559  */
1560 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1561 {
1562 	struct files_struct *fd = current->files;
1563 	int error = 0;
1564 
1565 	if ((unshare_flags & CLONE_FILES) &&
1566 	    (fd && atomic_read(&fd->count) > 1)) {
1567 		*new_fdp = dup_fd(fd, &error);
1568 		if (!*new_fdp)
1569 			return error;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1577  * supported yet
1578  */
1579 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1580 {
1581 	if (unshare_flags & CLONE_SYSVSEM)
1582 		return -EINVAL;
1583 
1584 	return 0;
1585 }
1586 
1587 /*
1588  * unshare allows a process to 'unshare' part of the process
1589  * context which was originally shared using clone.  copy_*
1590  * functions used by do_fork() cannot be used here directly
1591  * because they modify an inactive task_struct that is being
1592  * constructed. Here we are modifying the current, active,
1593  * task_struct.
1594  */
1595 asmlinkage long sys_unshare(unsigned long unshare_flags)
1596 {
1597 	int err = 0;
1598 	struct fs_struct *fs, *new_fs = NULL;
1599 	struct sighand_struct *new_sigh = NULL;
1600 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1601 	struct files_struct *fd, *new_fd = NULL;
1602 	struct sem_undo_list *new_ulist = NULL;
1603 	struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1604 
1605 	check_unshare_flags(&unshare_flags);
1606 
1607 	/* Return -EINVAL for all unsupported flags */
1608 	err = -EINVAL;
1609 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1610 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1611 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER))
1612 		goto bad_unshare_out;
1613 
1614 	if ((err = unshare_thread(unshare_flags)))
1615 		goto bad_unshare_out;
1616 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1617 		goto bad_unshare_cleanup_thread;
1618 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1619 		goto bad_unshare_cleanup_fs;
1620 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1621 		goto bad_unshare_cleanup_sigh;
1622 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1623 		goto bad_unshare_cleanup_vm;
1624 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1625 		goto bad_unshare_cleanup_fd;
1626 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1627 			new_fs)))
1628 		goto bad_unshare_cleanup_semundo;
1629 
1630 	if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1631 
1632 		task_lock(current);
1633 
1634 		if (new_nsproxy) {
1635 			old_nsproxy = current->nsproxy;
1636 			current->nsproxy = new_nsproxy;
1637 			new_nsproxy = old_nsproxy;
1638 		}
1639 
1640 		if (new_fs) {
1641 			fs = current->fs;
1642 			current->fs = new_fs;
1643 			new_fs = fs;
1644 		}
1645 
1646 		if (new_mm) {
1647 			mm = current->mm;
1648 			active_mm = current->active_mm;
1649 			current->mm = new_mm;
1650 			current->active_mm = new_mm;
1651 			activate_mm(active_mm, new_mm);
1652 			new_mm = mm;
1653 		}
1654 
1655 		if (new_fd) {
1656 			fd = current->files;
1657 			current->files = new_fd;
1658 			new_fd = fd;
1659 		}
1660 
1661 		task_unlock(current);
1662 	}
1663 
1664 	if (new_nsproxy)
1665 		put_nsproxy(new_nsproxy);
1666 
1667 bad_unshare_cleanup_semundo:
1668 bad_unshare_cleanup_fd:
1669 	if (new_fd)
1670 		put_files_struct(new_fd);
1671 
1672 bad_unshare_cleanup_vm:
1673 	if (new_mm)
1674 		mmput(new_mm);
1675 
1676 bad_unshare_cleanup_sigh:
1677 	if (new_sigh)
1678 		if (atomic_dec_and_test(&new_sigh->count))
1679 			kmem_cache_free(sighand_cachep, new_sigh);
1680 
1681 bad_unshare_cleanup_fs:
1682 	if (new_fs)
1683 		put_fs_struct(new_fs);
1684 
1685 bad_unshare_cleanup_thread:
1686 bad_unshare_out:
1687 	return err;
1688 }
1689