1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 100 #include <asm/pgalloc.h> 101 #include <linux/uaccess.h> 102 #include <asm/mmu_context.h> 103 #include <asm/cacheflush.h> 104 #include <asm/tlbflush.h> 105 106 #include <trace/events/sched.h> 107 108 #define CREATE_TRACE_POINTS 109 #include <trace/events/task.h> 110 111 /* 112 * Minimum number of threads to boot the kernel 113 */ 114 #define MIN_THREADS 20 115 116 /* 117 * Maximum number of threads 118 */ 119 #define MAX_THREADS FUTEX_TID_MASK 120 121 /* 122 * Protected counters by write_lock_irq(&tasklist_lock) 123 */ 124 unsigned long total_forks; /* Handle normal Linux uptimes. */ 125 int nr_threads; /* The idle threads do not count.. */ 126 127 static int max_threads; /* tunable limit on nr_threads */ 128 129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 130 131 static const char * const resident_page_types[] = { 132 NAMED_ARRAY_INDEX(MM_FILEPAGES), 133 NAMED_ARRAY_INDEX(MM_ANONPAGES), 134 NAMED_ARRAY_INDEX(MM_SWAPENTS), 135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 136 }; 137 138 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 139 140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 141 142 #ifdef CONFIG_PROVE_RCU 143 int lockdep_tasklist_lock_is_held(void) 144 { 145 return lockdep_is_held(&tasklist_lock); 146 } 147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 148 #endif /* #ifdef CONFIG_PROVE_RCU */ 149 150 int nr_processes(void) 151 { 152 int cpu; 153 int total = 0; 154 155 for_each_possible_cpu(cpu) 156 total += per_cpu(process_counts, cpu); 157 158 return total; 159 } 160 161 void __weak arch_release_task_struct(struct task_struct *tsk) 162 { 163 } 164 165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 166 static struct kmem_cache *task_struct_cachep; 167 168 static inline struct task_struct *alloc_task_struct_node(int node) 169 { 170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 171 } 172 173 static inline void free_task_struct(struct task_struct *tsk) 174 { 175 kmem_cache_free(task_struct_cachep, tsk); 176 } 177 #endif 178 179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 180 181 /* 182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 183 * kmemcache based allocator. 184 */ 185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 186 187 #ifdef CONFIG_VMAP_STACK 188 /* 189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 190 * flush. Try to minimize the number of calls by caching stacks. 191 */ 192 #define NR_CACHED_STACKS 2 193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 194 195 static int free_vm_stack_cache(unsigned int cpu) 196 { 197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 198 int i; 199 200 for (i = 0; i < NR_CACHED_STACKS; i++) { 201 struct vm_struct *vm_stack = cached_vm_stacks[i]; 202 203 if (!vm_stack) 204 continue; 205 206 vfree(vm_stack->addr); 207 cached_vm_stacks[i] = NULL; 208 } 209 210 return 0; 211 } 212 #endif 213 214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 215 { 216 #ifdef CONFIG_VMAP_STACK 217 void *stack; 218 int i; 219 220 for (i = 0; i < NR_CACHED_STACKS; i++) { 221 struct vm_struct *s; 222 223 s = this_cpu_xchg(cached_stacks[i], NULL); 224 225 if (!s) 226 continue; 227 228 /* Mark stack accessible for KASAN. */ 229 kasan_unpoison_range(s->addr, THREAD_SIZE); 230 231 /* Clear stale pointers from reused stack. */ 232 memset(s->addr, 0, THREAD_SIZE); 233 234 tsk->stack_vm_area = s; 235 tsk->stack = s->addr; 236 return s->addr; 237 } 238 239 /* 240 * Allocated stacks are cached and later reused by new threads, 241 * so memcg accounting is performed manually on assigning/releasing 242 * stacks to tasks. Drop __GFP_ACCOUNT. 243 */ 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 245 VMALLOC_START, VMALLOC_END, 246 THREADINFO_GFP & ~__GFP_ACCOUNT, 247 PAGE_KERNEL, 248 0, node, __builtin_return_address(0)); 249 250 /* 251 * We can't call find_vm_area() in interrupt context, and 252 * free_thread_stack() can be called in interrupt context, 253 * so cache the vm_struct. 254 */ 255 if (stack) { 256 tsk->stack_vm_area = find_vm_area(stack); 257 tsk->stack = stack; 258 } 259 return stack; 260 #else 261 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 262 THREAD_SIZE_ORDER); 263 264 if (likely(page)) { 265 tsk->stack = kasan_reset_tag(page_address(page)); 266 return tsk->stack; 267 } 268 return NULL; 269 #endif 270 } 271 272 static inline void free_thread_stack(struct task_struct *tsk) 273 { 274 #ifdef CONFIG_VMAP_STACK 275 struct vm_struct *vm = task_stack_vm_area(tsk); 276 277 if (vm) { 278 int i; 279 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 281 memcg_kmem_uncharge_page(vm->pages[i], 0); 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 if (this_cpu_cmpxchg(cached_stacks[i], 285 NULL, tsk->stack_vm_area) != NULL) 286 continue; 287 288 return; 289 } 290 291 vfree_atomic(tsk->stack); 292 return; 293 } 294 #endif 295 296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 297 } 298 # else 299 static struct kmem_cache *thread_stack_cache; 300 301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 302 int node) 303 { 304 unsigned long *stack; 305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 306 stack = kasan_reset_tag(stack); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 361 /* 362 * orig->shared.rb may be modified concurrently, but the clone 363 * will be reinitialized. 364 */ 365 *new = data_race(*orig); 366 INIT_LIST_HEAD(&new->anon_vma_chain); 367 new->vm_next = new->vm_prev = NULL; 368 } 369 return new; 370 } 371 372 void vm_area_free(struct vm_area_struct *vma) 373 { 374 kmem_cache_free(vm_area_cachep, vma); 375 } 376 377 static void account_kernel_stack(struct task_struct *tsk, int account) 378 { 379 void *stack = task_stack_page(tsk); 380 struct vm_struct *vm = task_stack_vm_area(tsk); 381 382 383 /* All stack pages are in the same node. */ 384 if (vm) 385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 386 account * (THREAD_SIZE / 1024)); 387 else 388 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 389 account * (THREAD_SIZE / 1024)); 390 } 391 392 static int memcg_charge_kernel_stack(struct task_struct *tsk) 393 { 394 #ifdef CONFIG_VMAP_STACK 395 struct vm_struct *vm = task_stack_vm_area(tsk); 396 int ret; 397 398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 399 400 if (vm) { 401 int i; 402 403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 404 405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 406 /* 407 * If memcg_kmem_charge_page() fails, page's 408 * memory cgroup pointer is NULL, and 409 * memcg_kmem_uncharge_page() in free_thread_stack() 410 * will ignore this page. 411 */ 412 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 413 0); 414 if (ret) 415 return ret; 416 } 417 } 418 #endif 419 return 0; 420 } 421 422 static void release_task_stack(struct task_struct *tsk) 423 { 424 if (WARN_ON(tsk->state != TASK_DEAD)) 425 return; /* Better to leak the stack than to free prematurely */ 426 427 account_kernel_stack(tsk, -1); 428 free_thread_stack(tsk); 429 tsk->stack = NULL; 430 #ifdef CONFIG_VMAP_STACK 431 tsk->stack_vm_area = NULL; 432 #endif 433 } 434 435 #ifdef CONFIG_THREAD_INFO_IN_TASK 436 void put_task_stack(struct task_struct *tsk) 437 { 438 if (refcount_dec_and_test(&tsk->stack_refcount)) 439 release_task_stack(tsk); 440 } 441 #endif 442 443 void free_task(struct task_struct *tsk) 444 { 445 scs_release(tsk); 446 447 #ifndef CONFIG_THREAD_INFO_IN_TASK 448 /* 449 * The task is finally done with both the stack and thread_info, 450 * so free both. 451 */ 452 release_task_stack(tsk); 453 #else 454 /* 455 * If the task had a separate stack allocation, it should be gone 456 * by now. 457 */ 458 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 459 #endif 460 rt_mutex_debug_task_free(tsk); 461 ftrace_graph_exit_task(tsk); 462 arch_release_task_struct(tsk); 463 if (tsk->flags & PF_KTHREAD) 464 free_kthread_struct(tsk); 465 free_task_struct(tsk); 466 } 467 EXPORT_SYMBOL(free_task); 468 469 #ifdef CONFIG_MMU 470 static __latent_entropy int dup_mmap(struct mm_struct *mm, 471 struct mm_struct *oldmm) 472 { 473 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 474 struct rb_node **rb_link, *rb_parent; 475 int retval; 476 unsigned long charge; 477 LIST_HEAD(uf); 478 479 uprobe_start_dup_mmap(); 480 if (mmap_write_lock_killable(oldmm)) { 481 retval = -EINTR; 482 goto fail_uprobe_end; 483 } 484 flush_cache_dup_mm(oldmm); 485 uprobe_dup_mmap(oldmm, mm); 486 /* 487 * Not linked in yet - no deadlock potential: 488 */ 489 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 490 491 /* No ordering required: file already has been exposed. */ 492 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 493 494 mm->total_vm = oldmm->total_vm; 495 mm->data_vm = oldmm->data_vm; 496 mm->exec_vm = oldmm->exec_vm; 497 mm->stack_vm = oldmm->stack_vm; 498 499 rb_link = &mm->mm_rb.rb_node; 500 rb_parent = NULL; 501 pprev = &mm->mmap; 502 retval = ksm_fork(mm, oldmm); 503 if (retval) 504 goto out; 505 retval = khugepaged_fork(mm, oldmm); 506 if (retval) 507 goto out; 508 509 prev = NULL; 510 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 511 struct file *file; 512 513 if (mpnt->vm_flags & VM_DONTCOPY) { 514 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 515 continue; 516 } 517 charge = 0; 518 /* 519 * Don't duplicate many vmas if we've been oom-killed (for 520 * example) 521 */ 522 if (fatal_signal_pending(current)) { 523 retval = -EINTR; 524 goto out; 525 } 526 if (mpnt->vm_flags & VM_ACCOUNT) { 527 unsigned long len = vma_pages(mpnt); 528 529 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 530 goto fail_nomem; 531 charge = len; 532 } 533 tmp = vm_area_dup(mpnt); 534 if (!tmp) 535 goto fail_nomem; 536 retval = vma_dup_policy(mpnt, tmp); 537 if (retval) 538 goto fail_nomem_policy; 539 tmp->vm_mm = mm; 540 retval = dup_userfaultfd(tmp, &uf); 541 if (retval) 542 goto fail_nomem_anon_vma_fork; 543 if (tmp->vm_flags & VM_WIPEONFORK) { 544 /* 545 * VM_WIPEONFORK gets a clean slate in the child. 546 * Don't prepare anon_vma until fault since we don't 547 * copy page for current vma. 548 */ 549 tmp->anon_vma = NULL; 550 } else if (anon_vma_fork(tmp, mpnt)) 551 goto fail_nomem_anon_vma_fork; 552 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 553 file = tmp->vm_file; 554 if (file) { 555 struct inode *inode = file_inode(file); 556 struct address_space *mapping = file->f_mapping; 557 558 get_file(file); 559 if (tmp->vm_flags & VM_DENYWRITE) 560 put_write_access(inode); 561 i_mmap_lock_write(mapping); 562 if (tmp->vm_flags & VM_SHARED) 563 mapping_allow_writable(mapping); 564 flush_dcache_mmap_lock(mapping); 565 /* insert tmp into the share list, just after mpnt */ 566 vma_interval_tree_insert_after(tmp, mpnt, 567 &mapping->i_mmap); 568 flush_dcache_mmap_unlock(mapping); 569 i_mmap_unlock_write(mapping); 570 } 571 572 /* 573 * Clear hugetlb-related page reserves for children. This only 574 * affects MAP_PRIVATE mappings. Faults generated by the child 575 * are not guaranteed to succeed, even if read-only 576 */ 577 if (is_vm_hugetlb_page(tmp)) 578 reset_vma_resv_huge_pages(tmp); 579 580 /* 581 * Link in the new vma and copy the page table entries. 582 */ 583 *pprev = tmp; 584 pprev = &tmp->vm_next; 585 tmp->vm_prev = prev; 586 prev = tmp; 587 588 __vma_link_rb(mm, tmp, rb_link, rb_parent); 589 rb_link = &tmp->vm_rb.rb_right; 590 rb_parent = &tmp->vm_rb; 591 592 mm->map_count++; 593 if (!(tmp->vm_flags & VM_WIPEONFORK)) 594 retval = copy_page_range(tmp, mpnt); 595 596 if (tmp->vm_ops && tmp->vm_ops->open) 597 tmp->vm_ops->open(tmp); 598 599 if (retval) 600 goto out; 601 } 602 /* a new mm has just been created */ 603 retval = arch_dup_mmap(oldmm, mm); 604 out: 605 mmap_write_unlock(mm); 606 flush_tlb_mm(oldmm); 607 mmap_write_unlock(oldmm); 608 dup_userfaultfd_complete(&uf); 609 fail_uprobe_end: 610 uprobe_end_dup_mmap(); 611 return retval; 612 fail_nomem_anon_vma_fork: 613 mpol_put(vma_policy(tmp)); 614 fail_nomem_policy: 615 vm_area_free(tmp); 616 fail_nomem: 617 retval = -ENOMEM; 618 vm_unacct_memory(charge); 619 goto out; 620 } 621 622 static inline int mm_alloc_pgd(struct mm_struct *mm) 623 { 624 mm->pgd = pgd_alloc(mm); 625 if (unlikely(!mm->pgd)) 626 return -ENOMEM; 627 return 0; 628 } 629 630 static inline void mm_free_pgd(struct mm_struct *mm) 631 { 632 pgd_free(mm, mm->pgd); 633 } 634 #else 635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 636 { 637 mmap_write_lock(oldmm); 638 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 639 mmap_write_unlock(oldmm); 640 return 0; 641 } 642 #define mm_alloc_pgd(mm) (0) 643 #define mm_free_pgd(mm) 644 #endif /* CONFIG_MMU */ 645 646 static void check_mm(struct mm_struct *mm) 647 { 648 int i; 649 650 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 651 "Please make sure 'struct resident_page_types[]' is updated as well"); 652 653 for (i = 0; i < NR_MM_COUNTERS; i++) { 654 long x = atomic_long_read(&mm->rss_stat.count[i]); 655 656 if (unlikely(x)) 657 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 658 mm, resident_page_types[i], x); 659 } 660 661 if (mm_pgtables_bytes(mm)) 662 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 663 mm_pgtables_bytes(mm)); 664 665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 667 #endif 668 } 669 670 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 671 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 672 673 /* 674 * Called when the last reference to the mm 675 * is dropped: either by a lazy thread or by 676 * mmput. Free the page directory and the mm. 677 */ 678 void __mmdrop(struct mm_struct *mm) 679 { 680 BUG_ON(mm == &init_mm); 681 WARN_ON_ONCE(mm == current->mm); 682 WARN_ON_ONCE(mm == current->active_mm); 683 mm_free_pgd(mm); 684 destroy_context(mm); 685 mmu_notifier_subscriptions_destroy(mm); 686 check_mm(mm); 687 put_user_ns(mm->user_ns); 688 free_mm(mm); 689 } 690 EXPORT_SYMBOL_GPL(__mmdrop); 691 692 static void mmdrop_async_fn(struct work_struct *work) 693 { 694 struct mm_struct *mm; 695 696 mm = container_of(work, struct mm_struct, async_put_work); 697 __mmdrop(mm); 698 } 699 700 static void mmdrop_async(struct mm_struct *mm) 701 { 702 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 703 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 704 schedule_work(&mm->async_put_work); 705 } 706 } 707 708 static inline void free_signal_struct(struct signal_struct *sig) 709 { 710 taskstats_tgid_free(sig); 711 sched_autogroup_exit(sig); 712 /* 713 * __mmdrop is not safe to call from softirq context on x86 due to 714 * pgd_dtor so postpone it to the async context 715 */ 716 if (sig->oom_mm) 717 mmdrop_async(sig->oom_mm); 718 kmem_cache_free(signal_cachep, sig); 719 } 720 721 static inline void put_signal_struct(struct signal_struct *sig) 722 { 723 if (refcount_dec_and_test(&sig->sigcnt)) 724 free_signal_struct(sig); 725 } 726 727 void __put_task_struct(struct task_struct *tsk) 728 { 729 WARN_ON(!tsk->exit_state); 730 WARN_ON(refcount_read(&tsk->usage)); 731 WARN_ON(tsk == current); 732 733 io_uring_free(tsk); 734 cgroup_free(tsk); 735 task_numa_free(tsk, true); 736 security_task_free(tsk); 737 exit_creds(tsk); 738 delayacct_tsk_free(tsk); 739 put_signal_struct(tsk->signal); 740 741 if (!profile_handoff_task(tsk)) 742 free_task(tsk); 743 } 744 EXPORT_SYMBOL_GPL(__put_task_struct); 745 746 void __init __weak arch_task_cache_init(void) { } 747 748 /* 749 * set_max_threads 750 */ 751 static void set_max_threads(unsigned int max_threads_suggested) 752 { 753 u64 threads; 754 unsigned long nr_pages = totalram_pages(); 755 756 /* 757 * The number of threads shall be limited such that the thread 758 * structures may only consume a small part of the available memory. 759 */ 760 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 761 threads = MAX_THREADS; 762 else 763 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 764 (u64) THREAD_SIZE * 8UL); 765 766 if (threads > max_threads_suggested) 767 threads = max_threads_suggested; 768 769 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 770 } 771 772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 773 /* Initialized by the architecture: */ 774 int arch_task_struct_size __read_mostly; 775 #endif 776 777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 779 { 780 /* Fetch thread_struct whitelist for the architecture. */ 781 arch_thread_struct_whitelist(offset, size); 782 783 /* 784 * Handle zero-sized whitelist or empty thread_struct, otherwise 785 * adjust offset to position of thread_struct in task_struct. 786 */ 787 if (unlikely(*size == 0)) 788 *offset = 0; 789 else 790 *offset += offsetof(struct task_struct, thread); 791 } 792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 793 794 void __init fork_init(void) 795 { 796 int i; 797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 798 #ifndef ARCH_MIN_TASKALIGN 799 #define ARCH_MIN_TASKALIGN 0 800 #endif 801 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 802 unsigned long useroffset, usersize; 803 804 /* create a slab on which task_structs can be allocated */ 805 task_struct_whitelist(&useroffset, &usersize); 806 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 807 arch_task_struct_size, align, 808 SLAB_PANIC|SLAB_ACCOUNT, 809 useroffset, usersize, NULL); 810 #endif 811 812 /* do the arch specific task caches init */ 813 arch_task_cache_init(); 814 815 set_max_threads(MAX_THREADS); 816 817 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 818 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 819 init_task.signal->rlim[RLIMIT_SIGPENDING] = 820 init_task.signal->rlim[RLIMIT_NPROC]; 821 822 for (i = 0; i < UCOUNT_COUNTS; i++) 823 init_user_ns.ucount_max[i] = max_threads/2; 824 825 #ifdef CONFIG_VMAP_STACK 826 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 827 NULL, free_vm_stack_cache); 828 #endif 829 830 scs_init(); 831 832 lockdep_init_task(&init_task); 833 uprobes_init(); 834 } 835 836 int __weak arch_dup_task_struct(struct task_struct *dst, 837 struct task_struct *src) 838 { 839 *dst = *src; 840 return 0; 841 } 842 843 void set_task_stack_end_magic(struct task_struct *tsk) 844 { 845 unsigned long *stackend; 846 847 stackend = end_of_stack(tsk); 848 *stackend = STACK_END_MAGIC; /* for overflow detection */ 849 } 850 851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 852 { 853 struct task_struct *tsk; 854 unsigned long *stack; 855 struct vm_struct *stack_vm_area __maybe_unused; 856 int err; 857 858 if (node == NUMA_NO_NODE) 859 node = tsk_fork_get_node(orig); 860 tsk = alloc_task_struct_node(node); 861 if (!tsk) 862 return NULL; 863 864 stack = alloc_thread_stack_node(tsk, node); 865 if (!stack) 866 goto free_tsk; 867 868 if (memcg_charge_kernel_stack(tsk)) 869 goto free_stack; 870 871 stack_vm_area = task_stack_vm_area(tsk); 872 873 err = arch_dup_task_struct(tsk, orig); 874 875 /* 876 * arch_dup_task_struct() clobbers the stack-related fields. Make 877 * sure they're properly initialized before using any stack-related 878 * functions again. 879 */ 880 tsk->stack = stack; 881 #ifdef CONFIG_VMAP_STACK 882 tsk->stack_vm_area = stack_vm_area; 883 #endif 884 #ifdef CONFIG_THREAD_INFO_IN_TASK 885 refcount_set(&tsk->stack_refcount, 1); 886 #endif 887 888 if (err) 889 goto free_stack; 890 891 err = scs_prepare(tsk, node); 892 if (err) 893 goto free_stack; 894 895 #ifdef CONFIG_SECCOMP 896 /* 897 * We must handle setting up seccomp filters once we're under 898 * the sighand lock in case orig has changed between now and 899 * then. Until then, filter must be NULL to avoid messing up 900 * the usage counts on the error path calling free_task. 901 */ 902 tsk->seccomp.filter = NULL; 903 #endif 904 905 setup_thread_stack(tsk, orig); 906 clear_user_return_notifier(tsk); 907 clear_tsk_need_resched(tsk); 908 set_task_stack_end_magic(tsk); 909 clear_syscall_work_syscall_user_dispatch(tsk); 910 911 #ifdef CONFIG_STACKPROTECTOR 912 tsk->stack_canary = get_random_canary(); 913 #endif 914 if (orig->cpus_ptr == &orig->cpus_mask) 915 tsk->cpus_ptr = &tsk->cpus_mask; 916 917 /* 918 * One for the user space visible state that goes away when reaped. 919 * One for the scheduler. 920 */ 921 refcount_set(&tsk->rcu_users, 2); 922 /* One for the rcu users */ 923 refcount_set(&tsk->usage, 1); 924 #ifdef CONFIG_BLK_DEV_IO_TRACE 925 tsk->btrace_seq = 0; 926 #endif 927 tsk->splice_pipe = NULL; 928 tsk->task_frag.page = NULL; 929 tsk->wake_q.next = NULL; 930 931 account_kernel_stack(tsk, 1); 932 933 kcov_task_init(tsk); 934 kmap_local_fork(tsk); 935 936 #ifdef CONFIG_FAULT_INJECTION 937 tsk->fail_nth = 0; 938 #endif 939 940 #ifdef CONFIG_BLK_CGROUP 941 tsk->throttle_queue = NULL; 942 tsk->use_memdelay = 0; 943 #endif 944 945 #ifdef CONFIG_MEMCG 946 tsk->active_memcg = NULL; 947 #endif 948 return tsk; 949 950 free_stack: 951 free_thread_stack(tsk); 952 free_tsk: 953 free_task_struct(tsk); 954 return NULL; 955 } 956 957 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 958 959 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 960 961 static int __init coredump_filter_setup(char *s) 962 { 963 default_dump_filter = 964 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 965 MMF_DUMP_FILTER_MASK; 966 return 1; 967 } 968 969 __setup("coredump_filter=", coredump_filter_setup); 970 971 #include <linux/init_task.h> 972 973 static void mm_init_aio(struct mm_struct *mm) 974 { 975 #ifdef CONFIG_AIO 976 spin_lock_init(&mm->ioctx_lock); 977 mm->ioctx_table = NULL; 978 #endif 979 } 980 981 static __always_inline void mm_clear_owner(struct mm_struct *mm, 982 struct task_struct *p) 983 { 984 #ifdef CONFIG_MEMCG 985 if (mm->owner == p) 986 WRITE_ONCE(mm->owner, NULL); 987 #endif 988 } 989 990 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 991 { 992 #ifdef CONFIG_MEMCG 993 mm->owner = p; 994 #endif 995 } 996 997 static void mm_init_uprobes_state(struct mm_struct *mm) 998 { 999 #ifdef CONFIG_UPROBES 1000 mm->uprobes_state.xol_area = NULL; 1001 #endif 1002 } 1003 1004 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1005 struct user_namespace *user_ns) 1006 { 1007 mm->mmap = NULL; 1008 mm->mm_rb = RB_ROOT; 1009 mm->vmacache_seqnum = 0; 1010 atomic_set(&mm->mm_users, 1); 1011 atomic_set(&mm->mm_count, 1); 1012 seqcount_init(&mm->write_protect_seq); 1013 mmap_init_lock(mm); 1014 INIT_LIST_HEAD(&mm->mmlist); 1015 mm->core_state = NULL; 1016 mm_pgtables_bytes_init(mm); 1017 mm->map_count = 0; 1018 mm->locked_vm = 0; 1019 atomic_set(&mm->has_pinned, 0); 1020 atomic64_set(&mm->pinned_vm, 0); 1021 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1022 spin_lock_init(&mm->page_table_lock); 1023 spin_lock_init(&mm->arg_lock); 1024 mm_init_cpumask(mm); 1025 mm_init_aio(mm); 1026 mm_init_owner(mm, p); 1027 RCU_INIT_POINTER(mm->exe_file, NULL); 1028 mmu_notifier_subscriptions_init(mm); 1029 init_tlb_flush_pending(mm); 1030 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1031 mm->pmd_huge_pte = NULL; 1032 #endif 1033 mm_init_uprobes_state(mm); 1034 1035 if (current->mm) { 1036 mm->flags = current->mm->flags & MMF_INIT_MASK; 1037 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1038 } else { 1039 mm->flags = default_dump_filter; 1040 mm->def_flags = 0; 1041 } 1042 1043 if (mm_alloc_pgd(mm)) 1044 goto fail_nopgd; 1045 1046 if (init_new_context(p, mm)) 1047 goto fail_nocontext; 1048 1049 mm->user_ns = get_user_ns(user_ns); 1050 return mm; 1051 1052 fail_nocontext: 1053 mm_free_pgd(mm); 1054 fail_nopgd: 1055 free_mm(mm); 1056 return NULL; 1057 } 1058 1059 /* 1060 * Allocate and initialize an mm_struct. 1061 */ 1062 struct mm_struct *mm_alloc(void) 1063 { 1064 struct mm_struct *mm; 1065 1066 mm = allocate_mm(); 1067 if (!mm) 1068 return NULL; 1069 1070 memset(mm, 0, sizeof(*mm)); 1071 return mm_init(mm, current, current_user_ns()); 1072 } 1073 1074 static inline void __mmput(struct mm_struct *mm) 1075 { 1076 VM_BUG_ON(atomic_read(&mm->mm_users)); 1077 1078 uprobe_clear_state(mm); 1079 exit_aio(mm); 1080 ksm_exit(mm); 1081 khugepaged_exit(mm); /* must run before exit_mmap */ 1082 exit_mmap(mm); 1083 mm_put_huge_zero_page(mm); 1084 set_mm_exe_file(mm, NULL); 1085 if (!list_empty(&mm->mmlist)) { 1086 spin_lock(&mmlist_lock); 1087 list_del(&mm->mmlist); 1088 spin_unlock(&mmlist_lock); 1089 } 1090 if (mm->binfmt) 1091 module_put(mm->binfmt->module); 1092 mmdrop(mm); 1093 } 1094 1095 /* 1096 * Decrement the use count and release all resources for an mm. 1097 */ 1098 void mmput(struct mm_struct *mm) 1099 { 1100 might_sleep(); 1101 1102 if (atomic_dec_and_test(&mm->mm_users)) 1103 __mmput(mm); 1104 } 1105 EXPORT_SYMBOL_GPL(mmput); 1106 1107 #ifdef CONFIG_MMU 1108 static void mmput_async_fn(struct work_struct *work) 1109 { 1110 struct mm_struct *mm = container_of(work, struct mm_struct, 1111 async_put_work); 1112 1113 __mmput(mm); 1114 } 1115 1116 void mmput_async(struct mm_struct *mm) 1117 { 1118 if (atomic_dec_and_test(&mm->mm_users)) { 1119 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1120 schedule_work(&mm->async_put_work); 1121 } 1122 } 1123 #endif 1124 1125 /** 1126 * set_mm_exe_file - change a reference to the mm's executable file 1127 * 1128 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1129 * 1130 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1131 * invocations: in mmput() nobody alive left, in execve task is single 1132 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1133 * mm->exe_file, but does so without using set_mm_exe_file() in order 1134 * to do avoid the need for any locks. 1135 */ 1136 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1137 { 1138 struct file *old_exe_file; 1139 1140 /* 1141 * It is safe to dereference the exe_file without RCU as 1142 * this function is only called if nobody else can access 1143 * this mm -- see comment above for justification. 1144 */ 1145 old_exe_file = rcu_dereference_raw(mm->exe_file); 1146 1147 if (new_exe_file) 1148 get_file(new_exe_file); 1149 rcu_assign_pointer(mm->exe_file, new_exe_file); 1150 if (old_exe_file) 1151 fput(old_exe_file); 1152 } 1153 1154 /** 1155 * get_mm_exe_file - acquire a reference to the mm's executable file 1156 * 1157 * Returns %NULL if mm has no associated executable file. 1158 * User must release file via fput(). 1159 */ 1160 struct file *get_mm_exe_file(struct mm_struct *mm) 1161 { 1162 struct file *exe_file; 1163 1164 rcu_read_lock(); 1165 exe_file = rcu_dereference(mm->exe_file); 1166 if (exe_file && !get_file_rcu(exe_file)) 1167 exe_file = NULL; 1168 rcu_read_unlock(); 1169 return exe_file; 1170 } 1171 EXPORT_SYMBOL(get_mm_exe_file); 1172 1173 /** 1174 * get_task_exe_file - acquire a reference to the task's executable file 1175 * 1176 * Returns %NULL if task's mm (if any) has no associated executable file or 1177 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1178 * User must release file via fput(). 1179 */ 1180 struct file *get_task_exe_file(struct task_struct *task) 1181 { 1182 struct file *exe_file = NULL; 1183 struct mm_struct *mm; 1184 1185 task_lock(task); 1186 mm = task->mm; 1187 if (mm) { 1188 if (!(task->flags & PF_KTHREAD)) 1189 exe_file = get_mm_exe_file(mm); 1190 } 1191 task_unlock(task); 1192 return exe_file; 1193 } 1194 EXPORT_SYMBOL(get_task_exe_file); 1195 1196 /** 1197 * get_task_mm - acquire a reference to the task's mm 1198 * 1199 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1200 * this kernel workthread has transiently adopted a user mm with use_mm, 1201 * to do its AIO) is not set and if so returns a reference to it, after 1202 * bumping up the use count. User must release the mm via mmput() 1203 * after use. Typically used by /proc and ptrace. 1204 */ 1205 struct mm_struct *get_task_mm(struct task_struct *task) 1206 { 1207 struct mm_struct *mm; 1208 1209 task_lock(task); 1210 mm = task->mm; 1211 if (mm) { 1212 if (task->flags & PF_KTHREAD) 1213 mm = NULL; 1214 else 1215 mmget(mm); 1216 } 1217 task_unlock(task); 1218 return mm; 1219 } 1220 EXPORT_SYMBOL_GPL(get_task_mm); 1221 1222 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1223 { 1224 struct mm_struct *mm; 1225 int err; 1226 1227 err = down_read_killable(&task->signal->exec_update_lock); 1228 if (err) 1229 return ERR_PTR(err); 1230 1231 mm = get_task_mm(task); 1232 if (mm && mm != current->mm && 1233 !ptrace_may_access(task, mode)) { 1234 mmput(mm); 1235 mm = ERR_PTR(-EACCES); 1236 } 1237 up_read(&task->signal->exec_update_lock); 1238 1239 return mm; 1240 } 1241 1242 static void complete_vfork_done(struct task_struct *tsk) 1243 { 1244 struct completion *vfork; 1245 1246 task_lock(tsk); 1247 vfork = tsk->vfork_done; 1248 if (likely(vfork)) { 1249 tsk->vfork_done = NULL; 1250 complete(vfork); 1251 } 1252 task_unlock(tsk); 1253 } 1254 1255 static int wait_for_vfork_done(struct task_struct *child, 1256 struct completion *vfork) 1257 { 1258 int killed; 1259 1260 freezer_do_not_count(); 1261 cgroup_enter_frozen(); 1262 killed = wait_for_completion_killable(vfork); 1263 cgroup_leave_frozen(false); 1264 freezer_count(); 1265 1266 if (killed) { 1267 task_lock(child); 1268 child->vfork_done = NULL; 1269 task_unlock(child); 1270 } 1271 1272 put_task_struct(child); 1273 return killed; 1274 } 1275 1276 /* Please note the differences between mmput and mm_release. 1277 * mmput is called whenever we stop holding onto a mm_struct, 1278 * error success whatever. 1279 * 1280 * mm_release is called after a mm_struct has been removed 1281 * from the current process. 1282 * 1283 * This difference is important for error handling, when we 1284 * only half set up a mm_struct for a new process and need to restore 1285 * the old one. Because we mmput the new mm_struct before 1286 * restoring the old one. . . 1287 * Eric Biederman 10 January 1998 1288 */ 1289 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1290 { 1291 uprobe_free_utask(tsk); 1292 1293 /* Get rid of any cached register state */ 1294 deactivate_mm(tsk, mm); 1295 1296 /* 1297 * Signal userspace if we're not exiting with a core dump 1298 * because we want to leave the value intact for debugging 1299 * purposes. 1300 */ 1301 if (tsk->clear_child_tid) { 1302 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1303 atomic_read(&mm->mm_users) > 1) { 1304 /* 1305 * We don't check the error code - if userspace has 1306 * not set up a proper pointer then tough luck. 1307 */ 1308 put_user(0, tsk->clear_child_tid); 1309 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1310 1, NULL, NULL, 0, 0); 1311 } 1312 tsk->clear_child_tid = NULL; 1313 } 1314 1315 /* 1316 * All done, finally we can wake up parent and return this mm to him. 1317 * Also kthread_stop() uses this completion for synchronization. 1318 */ 1319 if (tsk->vfork_done) 1320 complete_vfork_done(tsk); 1321 } 1322 1323 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1324 { 1325 futex_exit_release(tsk); 1326 mm_release(tsk, mm); 1327 } 1328 1329 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1330 { 1331 futex_exec_release(tsk); 1332 mm_release(tsk, mm); 1333 } 1334 1335 /** 1336 * dup_mm() - duplicates an existing mm structure 1337 * @tsk: the task_struct with which the new mm will be associated. 1338 * @oldmm: the mm to duplicate. 1339 * 1340 * Allocates a new mm structure and duplicates the provided @oldmm structure 1341 * content into it. 1342 * 1343 * Return: the duplicated mm or NULL on failure. 1344 */ 1345 static struct mm_struct *dup_mm(struct task_struct *tsk, 1346 struct mm_struct *oldmm) 1347 { 1348 struct mm_struct *mm; 1349 int err; 1350 1351 mm = allocate_mm(); 1352 if (!mm) 1353 goto fail_nomem; 1354 1355 memcpy(mm, oldmm, sizeof(*mm)); 1356 1357 if (!mm_init(mm, tsk, mm->user_ns)) 1358 goto fail_nomem; 1359 1360 err = dup_mmap(mm, oldmm); 1361 if (err) 1362 goto free_pt; 1363 1364 mm->hiwater_rss = get_mm_rss(mm); 1365 mm->hiwater_vm = mm->total_vm; 1366 1367 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1368 goto free_pt; 1369 1370 return mm; 1371 1372 free_pt: 1373 /* don't put binfmt in mmput, we haven't got module yet */ 1374 mm->binfmt = NULL; 1375 mm_init_owner(mm, NULL); 1376 mmput(mm); 1377 1378 fail_nomem: 1379 return NULL; 1380 } 1381 1382 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1383 { 1384 struct mm_struct *mm, *oldmm; 1385 int retval; 1386 1387 tsk->min_flt = tsk->maj_flt = 0; 1388 tsk->nvcsw = tsk->nivcsw = 0; 1389 #ifdef CONFIG_DETECT_HUNG_TASK 1390 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1391 tsk->last_switch_time = 0; 1392 #endif 1393 1394 tsk->mm = NULL; 1395 tsk->active_mm = NULL; 1396 1397 /* 1398 * Are we cloning a kernel thread? 1399 * 1400 * We need to steal a active VM for that.. 1401 */ 1402 oldmm = current->mm; 1403 if (!oldmm) 1404 return 0; 1405 1406 /* initialize the new vmacache entries */ 1407 vmacache_flush(tsk); 1408 1409 if (clone_flags & CLONE_VM) { 1410 mmget(oldmm); 1411 mm = oldmm; 1412 goto good_mm; 1413 } 1414 1415 retval = -ENOMEM; 1416 mm = dup_mm(tsk, current->mm); 1417 if (!mm) 1418 goto fail_nomem; 1419 1420 good_mm: 1421 tsk->mm = mm; 1422 tsk->active_mm = mm; 1423 return 0; 1424 1425 fail_nomem: 1426 return retval; 1427 } 1428 1429 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1430 { 1431 struct fs_struct *fs = current->fs; 1432 if (clone_flags & CLONE_FS) { 1433 /* tsk->fs is already what we want */ 1434 spin_lock(&fs->lock); 1435 if (fs->in_exec) { 1436 spin_unlock(&fs->lock); 1437 return -EAGAIN; 1438 } 1439 fs->users++; 1440 spin_unlock(&fs->lock); 1441 return 0; 1442 } 1443 tsk->fs = copy_fs_struct(fs); 1444 if (!tsk->fs) 1445 return -ENOMEM; 1446 return 0; 1447 } 1448 1449 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1450 { 1451 struct files_struct *oldf, *newf; 1452 int error = 0; 1453 1454 /* 1455 * A background process may not have any files ... 1456 */ 1457 oldf = current->files; 1458 if (!oldf) 1459 goto out; 1460 1461 if (clone_flags & CLONE_FILES) { 1462 atomic_inc(&oldf->count); 1463 goto out; 1464 } 1465 1466 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1467 if (!newf) 1468 goto out; 1469 1470 tsk->files = newf; 1471 error = 0; 1472 out: 1473 return error; 1474 } 1475 1476 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1477 { 1478 #ifdef CONFIG_BLOCK 1479 struct io_context *ioc = current->io_context; 1480 struct io_context *new_ioc; 1481 1482 if (!ioc) 1483 return 0; 1484 /* 1485 * Share io context with parent, if CLONE_IO is set 1486 */ 1487 if (clone_flags & CLONE_IO) { 1488 ioc_task_link(ioc); 1489 tsk->io_context = ioc; 1490 } else if (ioprio_valid(ioc->ioprio)) { 1491 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1492 if (unlikely(!new_ioc)) 1493 return -ENOMEM; 1494 1495 new_ioc->ioprio = ioc->ioprio; 1496 put_io_context(new_ioc); 1497 } 1498 #endif 1499 return 0; 1500 } 1501 1502 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1503 { 1504 struct sighand_struct *sig; 1505 1506 if (clone_flags & CLONE_SIGHAND) { 1507 refcount_inc(¤t->sighand->count); 1508 return 0; 1509 } 1510 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1511 RCU_INIT_POINTER(tsk->sighand, sig); 1512 if (!sig) 1513 return -ENOMEM; 1514 1515 refcount_set(&sig->count, 1); 1516 spin_lock_irq(¤t->sighand->siglock); 1517 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1518 spin_unlock_irq(¤t->sighand->siglock); 1519 1520 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1521 if (clone_flags & CLONE_CLEAR_SIGHAND) 1522 flush_signal_handlers(tsk, 0); 1523 1524 return 0; 1525 } 1526 1527 void __cleanup_sighand(struct sighand_struct *sighand) 1528 { 1529 if (refcount_dec_and_test(&sighand->count)) { 1530 signalfd_cleanup(sighand); 1531 /* 1532 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1533 * without an RCU grace period, see __lock_task_sighand(). 1534 */ 1535 kmem_cache_free(sighand_cachep, sighand); 1536 } 1537 } 1538 1539 /* 1540 * Initialize POSIX timer handling for a thread group. 1541 */ 1542 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1543 { 1544 struct posix_cputimers *pct = &sig->posix_cputimers; 1545 unsigned long cpu_limit; 1546 1547 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1548 posix_cputimers_group_init(pct, cpu_limit); 1549 } 1550 1551 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1552 { 1553 struct signal_struct *sig; 1554 1555 if (clone_flags & CLONE_THREAD) 1556 return 0; 1557 1558 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1559 tsk->signal = sig; 1560 if (!sig) 1561 return -ENOMEM; 1562 1563 sig->nr_threads = 1; 1564 atomic_set(&sig->live, 1); 1565 refcount_set(&sig->sigcnt, 1); 1566 1567 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1568 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1569 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1570 1571 init_waitqueue_head(&sig->wait_chldexit); 1572 sig->curr_target = tsk; 1573 init_sigpending(&sig->shared_pending); 1574 INIT_HLIST_HEAD(&sig->multiprocess); 1575 seqlock_init(&sig->stats_lock); 1576 prev_cputime_init(&sig->prev_cputime); 1577 1578 #ifdef CONFIG_POSIX_TIMERS 1579 INIT_LIST_HEAD(&sig->posix_timers); 1580 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1581 sig->real_timer.function = it_real_fn; 1582 #endif 1583 1584 task_lock(current->group_leader); 1585 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1586 task_unlock(current->group_leader); 1587 1588 posix_cpu_timers_init_group(sig); 1589 1590 tty_audit_fork(sig); 1591 sched_autogroup_fork(sig); 1592 1593 sig->oom_score_adj = current->signal->oom_score_adj; 1594 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1595 1596 mutex_init(&sig->cred_guard_mutex); 1597 init_rwsem(&sig->exec_update_lock); 1598 1599 return 0; 1600 } 1601 1602 static void copy_seccomp(struct task_struct *p) 1603 { 1604 #ifdef CONFIG_SECCOMP 1605 /* 1606 * Must be called with sighand->lock held, which is common to 1607 * all threads in the group. Holding cred_guard_mutex is not 1608 * needed because this new task is not yet running and cannot 1609 * be racing exec. 1610 */ 1611 assert_spin_locked(¤t->sighand->siglock); 1612 1613 /* Ref-count the new filter user, and assign it. */ 1614 get_seccomp_filter(current); 1615 p->seccomp = current->seccomp; 1616 1617 /* 1618 * Explicitly enable no_new_privs here in case it got set 1619 * between the task_struct being duplicated and holding the 1620 * sighand lock. The seccomp state and nnp must be in sync. 1621 */ 1622 if (task_no_new_privs(current)) 1623 task_set_no_new_privs(p); 1624 1625 /* 1626 * If the parent gained a seccomp mode after copying thread 1627 * flags and between before we held the sighand lock, we have 1628 * to manually enable the seccomp thread flag here. 1629 */ 1630 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1631 set_task_syscall_work(p, SECCOMP); 1632 #endif 1633 } 1634 1635 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1636 { 1637 current->clear_child_tid = tidptr; 1638 1639 return task_pid_vnr(current); 1640 } 1641 1642 static void rt_mutex_init_task(struct task_struct *p) 1643 { 1644 raw_spin_lock_init(&p->pi_lock); 1645 #ifdef CONFIG_RT_MUTEXES 1646 p->pi_waiters = RB_ROOT_CACHED; 1647 p->pi_top_task = NULL; 1648 p->pi_blocked_on = NULL; 1649 #endif 1650 } 1651 1652 static inline void init_task_pid_links(struct task_struct *task) 1653 { 1654 enum pid_type type; 1655 1656 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1657 INIT_HLIST_NODE(&task->pid_links[type]); 1658 } 1659 1660 static inline void 1661 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1662 { 1663 if (type == PIDTYPE_PID) 1664 task->thread_pid = pid; 1665 else 1666 task->signal->pids[type] = pid; 1667 } 1668 1669 static inline void rcu_copy_process(struct task_struct *p) 1670 { 1671 #ifdef CONFIG_PREEMPT_RCU 1672 p->rcu_read_lock_nesting = 0; 1673 p->rcu_read_unlock_special.s = 0; 1674 p->rcu_blocked_node = NULL; 1675 INIT_LIST_HEAD(&p->rcu_node_entry); 1676 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1677 #ifdef CONFIG_TASKS_RCU 1678 p->rcu_tasks_holdout = false; 1679 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1680 p->rcu_tasks_idle_cpu = -1; 1681 #endif /* #ifdef CONFIG_TASKS_RCU */ 1682 #ifdef CONFIG_TASKS_TRACE_RCU 1683 p->trc_reader_nesting = 0; 1684 p->trc_reader_special.s = 0; 1685 INIT_LIST_HEAD(&p->trc_holdout_list); 1686 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1687 } 1688 1689 struct pid *pidfd_pid(const struct file *file) 1690 { 1691 if (file->f_op == &pidfd_fops) 1692 return file->private_data; 1693 1694 return ERR_PTR(-EBADF); 1695 } 1696 1697 static int pidfd_release(struct inode *inode, struct file *file) 1698 { 1699 struct pid *pid = file->private_data; 1700 1701 file->private_data = NULL; 1702 put_pid(pid); 1703 return 0; 1704 } 1705 1706 #ifdef CONFIG_PROC_FS 1707 /** 1708 * pidfd_show_fdinfo - print information about a pidfd 1709 * @m: proc fdinfo file 1710 * @f: file referencing a pidfd 1711 * 1712 * Pid: 1713 * This function will print the pid that a given pidfd refers to in the 1714 * pid namespace of the procfs instance. 1715 * If the pid namespace of the process is not a descendant of the pid 1716 * namespace of the procfs instance 0 will be shown as its pid. This is 1717 * similar to calling getppid() on a process whose parent is outside of 1718 * its pid namespace. 1719 * 1720 * NSpid: 1721 * If pid namespaces are supported then this function will also print 1722 * the pid of a given pidfd refers to for all descendant pid namespaces 1723 * starting from the current pid namespace of the instance, i.e. the 1724 * Pid field and the first entry in the NSpid field will be identical. 1725 * If the pid namespace of the process is not a descendant of the pid 1726 * namespace of the procfs instance 0 will be shown as its first NSpid 1727 * entry and no others will be shown. 1728 * Note that this differs from the Pid and NSpid fields in 1729 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1730 * the pid namespace of the procfs instance. The difference becomes 1731 * obvious when sending around a pidfd between pid namespaces from a 1732 * different branch of the tree, i.e. where no ancestoral relation is 1733 * present between the pid namespaces: 1734 * - create two new pid namespaces ns1 and ns2 in the initial pid 1735 * namespace (also take care to create new mount namespaces in the 1736 * new pid namespace and mount procfs) 1737 * - create a process with a pidfd in ns1 1738 * - send pidfd from ns1 to ns2 1739 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1740 * have exactly one entry, which is 0 1741 */ 1742 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1743 { 1744 struct pid *pid = f->private_data; 1745 struct pid_namespace *ns; 1746 pid_t nr = -1; 1747 1748 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1749 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1750 nr = pid_nr_ns(pid, ns); 1751 } 1752 1753 seq_put_decimal_ll(m, "Pid:\t", nr); 1754 1755 #ifdef CONFIG_PID_NS 1756 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1757 if (nr > 0) { 1758 int i; 1759 1760 /* If nr is non-zero it means that 'pid' is valid and that 1761 * ns, i.e. the pid namespace associated with the procfs 1762 * instance, is in the pid namespace hierarchy of pid. 1763 * Start at one below the already printed level. 1764 */ 1765 for (i = ns->level + 1; i <= pid->level; i++) 1766 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1767 } 1768 #endif 1769 seq_putc(m, '\n'); 1770 } 1771 #endif 1772 1773 /* 1774 * Poll support for process exit notification. 1775 */ 1776 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1777 { 1778 struct pid *pid = file->private_data; 1779 __poll_t poll_flags = 0; 1780 1781 poll_wait(file, &pid->wait_pidfd, pts); 1782 1783 /* 1784 * Inform pollers only when the whole thread group exits. 1785 * If the thread group leader exits before all other threads in the 1786 * group, then poll(2) should block, similar to the wait(2) family. 1787 */ 1788 if (thread_group_exited(pid)) 1789 poll_flags = EPOLLIN | EPOLLRDNORM; 1790 1791 return poll_flags; 1792 } 1793 1794 const struct file_operations pidfd_fops = { 1795 .release = pidfd_release, 1796 .poll = pidfd_poll, 1797 #ifdef CONFIG_PROC_FS 1798 .show_fdinfo = pidfd_show_fdinfo, 1799 #endif 1800 }; 1801 1802 static void __delayed_free_task(struct rcu_head *rhp) 1803 { 1804 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1805 1806 free_task(tsk); 1807 } 1808 1809 static __always_inline void delayed_free_task(struct task_struct *tsk) 1810 { 1811 if (IS_ENABLED(CONFIG_MEMCG)) 1812 call_rcu(&tsk->rcu, __delayed_free_task); 1813 else 1814 free_task(tsk); 1815 } 1816 1817 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1818 { 1819 /* Skip if kernel thread */ 1820 if (!tsk->mm) 1821 return; 1822 1823 /* Skip if spawning a thread or using vfork */ 1824 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1825 return; 1826 1827 /* We need to synchronize with __set_oom_adj */ 1828 mutex_lock(&oom_adj_mutex); 1829 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1830 /* Update the values in case they were changed after copy_signal */ 1831 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1832 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1833 mutex_unlock(&oom_adj_mutex); 1834 } 1835 1836 /* 1837 * This creates a new process as a copy of the old one, 1838 * but does not actually start it yet. 1839 * 1840 * It copies the registers, and all the appropriate 1841 * parts of the process environment (as per the clone 1842 * flags). The actual kick-off is left to the caller. 1843 */ 1844 static __latent_entropy struct task_struct *copy_process( 1845 struct pid *pid, 1846 int trace, 1847 int node, 1848 struct kernel_clone_args *args) 1849 { 1850 int pidfd = -1, retval; 1851 struct task_struct *p; 1852 struct multiprocess_signals delayed; 1853 struct file *pidfile = NULL; 1854 u64 clone_flags = args->flags; 1855 struct nsproxy *nsp = current->nsproxy; 1856 1857 /* 1858 * Don't allow sharing the root directory with processes in a different 1859 * namespace 1860 */ 1861 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1862 return ERR_PTR(-EINVAL); 1863 1864 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1865 return ERR_PTR(-EINVAL); 1866 1867 /* 1868 * Thread groups must share signals as well, and detached threads 1869 * can only be started up within the thread group. 1870 */ 1871 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1872 return ERR_PTR(-EINVAL); 1873 1874 /* 1875 * Shared signal handlers imply shared VM. By way of the above, 1876 * thread groups also imply shared VM. Blocking this case allows 1877 * for various simplifications in other code. 1878 */ 1879 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1880 return ERR_PTR(-EINVAL); 1881 1882 /* 1883 * Siblings of global init remain as zombies on exit since they are 1884 * not reaped by their parent (swapper). To solve this and to avoid 1885 * multi-rooted process trees, prevent global and container-inits 1886 * from creating siblings. 1887 */ 1888 if ((clone_flags & CLONE_PARENT) && 1889 current->signal->flags & SIGNAL_UNKILLABLE) 1890 return ERR_PTR(-EINVAL); 1891 1892 /* 1893 * If the new process will be in a different pid or user namespace 1894 * do not allow it to share a thread group with the forking task. 1895 */ 1896 if (clone_flags & CLONE_THREAD) { 1897 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1898 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1899 return ERR_PTR(-EINVAL); 1900 } 1901 1902 /* 1903 * If the new process will be in a different time namespace 1904 * do not allow it to share VM or a thread group with the forking task. 1905 */ 1906 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1907 if (nsp->time_ns != nsp->time_ns_for_children) 1908 return ERR_PTR(-EINVAL); 1909 } 1910 1911 if (clone_flags & CLONE_PIDFD) { 1912 /* 1913 * - CLONE_DETACHED is blocked so that we can potentially 1914 * reuse it later for CLONE_PIDFD. 1915 * - CLONE_THREAD is blocked until someone really needs it. 1916 */ 1917 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1918 return ERR_PTR(-EINVAL); 1919 } 1920 1921 /* 1922 * Force any signals received before this point to be delivered 1923 * before the fork happens. Collect up signals sent to multiple 1924 * processes that happen during the fork and delay them so that 1925 * they appear to happen after the fork. 1926 */ 1927 sigemptyset(&delayed.signal); 1928 INIT_HLIST_NODE(&delayed.node); 1929 1930 spin_lock_irq(¤t->sighand->siglock); 1931 if (!(clone_flags & CLONE_THREAD)) 1932 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1933 recalc_sigpending(); 1934 spin_unlock_irq(¤t->sighand->siglock); 1935 retval = -ERESTARTNOINTR; 1936 if (signal_pending(current)) 1937 goto fork_out; 1938 1939 retval = -ENOMEM; 1940 p = dup_task_struct(current, node); 1941 if (!p) 1942 goto fork_out; 1943 1944 /* 1945 * This _must_ happen before we call free_task(), i.e. before we jump 1946 * to any of the bad_fork_* labels. This is to avoid freeing 1947 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1948 * kernel threads (PF_KTHREAD). 1949 */ 1950 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1951 /* 1952 * Clear TID on mm_release()? 1953 */ 1954 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1955 1956 ftrace_graph_init_task(p); 1957 1958 rt_mutex_init_task(p); 1959 1960 lockdep_assert_irqs_enabled(); 1961 #ifdef CONFIG_PROVE_LOCKING 1962 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1963 #endif 1964 retval = -EAGAIN; 1965 if (atomic_read(&p->real_cred->user->processes) >= 1966 task_rlimit(p, RLIMIT_NPROC)) { 1967 if (p->real_cred->user != INIT_USER && 1968 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1969 goto bad_fork_free; 1970 } 1971 current->flags &= ~PF_NPROC_EXCEEDED; 1972 1973 retval = copy_creds(p, clone_flags); 1974 if (retval < 0) 1975 goto bad_fork_free; 1976 1977 /* 1978 * If multiple threads are within copy_process(), then this check 1979 * triggers too late. This doesn't hurt, the check is only there 1980 * to stop root fork bombs. 1981 */ 1982 retval = -EAGAIN; 1983 if (data_race(nr_threads >= max_threads)) 1984 goto bad_fork_cleanup_count; 1985 1986 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1987 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1988 p->flags |= PF_FORKNOEXEC; 1989 INIT_LIST_HEAD(&p->children); 1990 INIT_LIST_HEAD(&p->sibling); 1991 rcu_copy_process(p); 1992 p->vfork_done = NULL; 1993 spin_lock_init(&p->alloc_lock); 1994 1995 init_sigpending(&p->pending); 1996 1997 p->utime = p->stime = p->gtime = 0; 1998 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1999 p->utimescaled = p->stimescaled = 0; 2000 #endif 2001 prev_cputime_init(&p->prev_cputime); 2002 2003 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2004 seqcount_init(&p->vtime.seqcount); 2005 p->vtime.starttime = 0; 2006 p->vtime.state = VTIME_INACTIVE; 2007 #endif 2008 2009 #ifdef CONFIG_IO_URING 2010 p->io_uring = NULL; 2011 #endif 2012 2013 #if defined(SPLIT_RSS_COUNTING) 2014 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2015 #endif 2016 2017 p->default_timer_slack_ns = current->timer_slack_ns; 2018 2019 #ifdef CONFIG_PSI 2020 p->psi_flags = 0; 2021 #endif 2022 2023 task_io_accounting_init(&p->ioac); 2024 acct_clear_integrals(p); 2025 2026 posix_cputimers_init(&p->posix_cputimers); 2027 2028 p->io_context = NULL; 2029 audit_set_context(p, NULL); 2030 cgroup_fork(p); 2031 #ifdef CONFIG_NUMA 2032 p->mempolicy = mpol_dup(p->mempolicy); 2033 if (IS_ERR(p->mempolicy)) { 2034 retval = PTR_ERR(p->mempolicy); 2035 p->mempolicy = NULL; 2036 goto bad_fork_cleanup_threadgroup_lock; 2037 } 2038 #endif 2039 #ifdef CONFIG_CPUSETS 2040 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2041 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2042 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2043 #endif 2044 #ifdef CONFIG_TRACE_IRQFLAGS 2045 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2046 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2047 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2048 p->softirqs_enabled = 1; 2049 p->softirq_context = 0; 2050 #endif 2051 2052 p->pagefault_disabled = 0; 2053 2054 #ifdef CONFIG_LOCKDEP 2055 lockdep_init_task(p); 2056 #endif 2057 2058 #ifdef CONFIG_DEBUG_MUTEXES 2059 p->blocked_on = NULL; /* not blocked yet */ 2060 #endif 2061 #ifdef CONFIG_BCACHE 2062 p->sequential_io = 0; 2063 p->sequential_io_avg = 0; 2064 #endif 2065 2066 /* Perform scheduler related setup. Assign this task to a CPU. */ 2067 retval = sched_fork(clone_flags, p); 2068 if (retval) 2069 goto bad_fork_cleanup_policy; 2070 2071 retval = perf_event_init_task(p); 2072 if (retval) 2073 goto bad_fork_cleanup_policy; 2074 retval = audit_alloc(p); 2075 if (retval) 2076 goto bad_fork_cleanup_perf; 2077 /* copy all the process information */ 2078 shm_init_task(p); 2079 retval = security_task_alloc(p, clone_flags); 2080 if (retval) 2081 goto bad_fork_cleanup_audit; 2082 retval = copy_semundo(clone_flags, p); 2083 if (retval) 2084 goto bad_fork_cleanup_security; 2085 retval = copy_files(clone_flags, p); 2086 if (retval) 2087 goto bad_fork_cleanup_semundo; 2088 retval = copy_fs(clone_flags, p); 2089 if (retval) 2090 goto bad_fork_cleanup_files; 2091 retval = copy_sighand(clone_flags, p); 2092 if (retval) 2093 goto bad_fork_cleanup_fs; 2094 retval = copy_signal(clone_flags, p); 2095 if (retval) 2096 goto bad_fork_cleanup_sighand; 2097 retval = copy_mm(clone_flags, p); 2098 if (retval) 2099 goto bad_fork_cleanup_signal; 2100 retval = copy_namespaces(clone_flags, p); 2101 if (retval) 2102 goto bad_fork_cleanup_mm; 2103 retval = copy_io(clone_flags, p); 2104 if (retval) 2105 goto bad_fork_cleanup_namespaces; 2106 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2107 if (retval) 2108 goto bad_fork_cleanup_io; 2109 2110 stackleak_task_init(p); 2111 2112 if (pid != &init_struct_pid) { 2113 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2114 args->set_tid_size); 2115 if (IS_ERR(pid)) { 2116 retval = PTR_ERR(pid); 2117 goto bad_fork_cleanup_thread; 2118 } 2119 } 2120 2121 /* 2122 * This has to happen after we've potentially unshared the file 2123 * descriptor table (so that the pidfd doesn't leak into the child 2124 * if the fd table isn't shared). 2125 */ 2126 if (clone_flags & CLONE_PIDFD) { 2127 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2128 if (retval < 0) 2129 goto bad_fork_free_pid; 2130 2131 pidfd = retval; 2132 2133 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2134 O_RDWR | O_CLOEXEC); 2135 if (IS_ERR(pidfile)) { 2136 put_unused_fd(pidfd); 2137 retval = PTR_ERR(pidfile); 2138 goto bad_fork_free_pid; 2139 } 2140 get_pid(pid); /* held by pidfile now */ 2141 2142 retval = put_user(pidfd, args->pidfd); 2143 if (retval) 2144 goto bad_fork_put_pidfd; 2145 } 2146 2147 #ifdef CONFIG_BLOCK 2148 p->plug = NULL; 2149 #endif 2150 futex_init_task(p); 2151 2152 /* 2153 * sigaltstack should be cleared when sharing the same VM 2154 */ 2155 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2156 sas_ss_reset(p); 2157 2158 /* 2159 * Syscall tracing and stepping should be turned off in the 2160 * child regardless of CLONE_PTRACE. 2161 */ 2162 user_disable_single_step(p); 2163 clear_task_syscall_work(p, SYSCALL_TRACE); 2164 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2165 clear_task_syscall_work(p, SYSCALL_EMU); 2166 #endif 2167 clear_tsk_latency_tracing(p); 2168 2169 /* ok, now we should be set up.. */ 2170 p->pid = pid_nr(pid); 2171 if (clone_flags & CLONE_THREAD) { 2172 p->group_leader = current->group_leader; 2173 p->tgid = current->tgid; 2174 } else { 2175 p->group_leader = p; 2176 p->tgid = p->pid; 2177 } 2178 2179 p->nr_dirtied = 0; 2180 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2181 p->dirty_paused_when = 0; 2182 2183 p->pdeath_signal = 0; 2184 INIT_LIST_HEAD(&p->thread_group); 2185 p->task_works = NULL; 2186 2187 #ifdef CONFIG_KRETPROBES 2188 p->kretprobe_instances.first = NULL; 2189 #endif 2190 2191 /* 2192 * Ensure that the cgroup subsystem policies allow the new process to be 2193 * forked. It should be noted that the new process's css_set can be changed 2194 * between here and cgroup_post_fork() if an organisation operation is in 2195 * progress. 2196 */ 2197 retval = cgroup_can_fork(p, args); 2198 if (retval) 2199 goto bad_fork_put_pidfd; 2200 2201 /* 2202 * From this point on we must avoid any synchronous user-space 2203 * communication until we take the tasklist-lock. In particular, we do 2204 * not want user-space to be able to predict the process start-time by 2205 * stalling fork(2) after we recorded the start_time but before it is 2206 * visible to the system. 2207 */ 2208 2209 p->start_time = ktime_get_ns(); 2210 p->start_boottime = ktime_get_boottime_ns(); 2211 2212 /* 2213 * Make it visible to the rest of the system, but dont wake it up yet. 2214 * Need tasklist lock for parent etc handling! 2215 */ 2216 write_lock_irq(&tasklist_lock); 2217 2218 /* CLONE_PARENT re-uses the old parent */ 2219 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2220 p->real_parent = current->real_parent; 2221 p->parent_exec_id = current->parent_exec_id; 2222 if (clone_flags & CLONE_THREAD) 2223 p->exit_signal = -1; 2224 else 2225 p->exit_signal = current->group_leader->exit_signal; 2226 } else { 2227 p->real_parent = current; 2228 p->parent_exec_id = current->self_exec_id; 2229 p->exit_signal = args->exit_signal; 2230 } 2231 2232 klp_copy_process(p); 2233 2234 spin_lock(¤t->sighand->siglock); 2235 2236 /* 2237 * Copy seccomp details explicitly here, in case they were changed 2238 * before holding sighand lock. 2239 */ 2240 copy_seccomp(p); 2241 2242 rseq_fork(p, clone_flags); 2243 2244 /* Don't start children in a dying pid namespace */ 2245 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2246 retval = -ENOMEM; 2247 goto bad_fork_cancel_cgroup; 2248 } 2249 2250 /* Let kill terminate clone/fork in the middle */ 2251 if (fatal_signal_pending(current)) { 2252 retval = -EINTR; 2253 goto bad_fork_cancel_cgroup; 2254 } 2255 2256 /* past the last point of failure */ 2257 if (pidfile) 2258 fd_install(pidfd, pidfile); 2259 2260 init_task_pid_links(p); 2261 if (likely(p->pid)) { 2262 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2263 2264 init_task_pid(p, PIDTYPE_PID, pid); 2265 if (thread_group_leader(p)) { 2266 init_task_pid(p, PIDTYPE_TGID, pid); 2267 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2268 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2269 2270 if (is_child_reaper(pid)) { 2271 ns_of_pid(pid)->child_reaper = p; 2272 p->signal->flags |= SIGNAL_UNKILLABLE; 2273 } 2274 p->signal->shared_pending.signal = delayed.signal; 2275 p->signal->tty = tty_kref_get(current->signal->tty); 2276 /* 2277 * Inherit has_child_subreaper flag under the same 2278 * tasklist_lock with adding child to the process tree 2279 * for propagate_has_child_subreaper optimization. 2280 */ 2281 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2282 p->real_parent->signal->is_child_subreaper; 2283 list_add_tail(&p->sibling, &p->real_parent->children); 2284 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2285 attach_pid(p, PIDTYPE_TGID); 2286 attach_pid(p, PIDTYPE_PGID); 2287 attach_pid(p, PIDTYPE_SID); 2288 __this_cpu_inc(process_counts); 2289 } else { 2290 current->signal->nr_threads++; 2291 atomic_inc(¤t->signal->live); 2292 refcount_inc(¤t->signal->sigcnt); 2293 task_join_group_stop(p); 2294 list_add_tail_rcu(&p->thread_group, 2295 &p->group_leader->thread_group); 2296 list_add_tail_rcu(&p->thread_node, 2297 &p->signal->thread_head); 2298 } 2299 attach_pid(p, PIDTYPE_PID); 2300 nr_threads++; 2301 } 2302 total_forks++; 2303 hlist_del_init(&delayed.node); 2304 spin_unlock(¤t->sighand->siglock); 2305 syscall_tracepoint_update(p); 2306 write_unlock_irq(&tasklist_lock); 2307 2308 proc_fork_connector(p); 2309 sched_post_fork(p); 2310 cgroup_post_fork(p, args); 2311 perf_event_fork(p); 2312 2313 trace_task_newtask(p, clone_flags); 2314 uprobe_copy_process(p, clone_flags); 2315 2316 copy_oom_score_adj(clone_flags, p); 2317 2318 return p; 2319 2320 bad_fork_cancel_cgroup: 2321 spin_unlock(¤t->sighand->siglock); 2322 write_unlock_irq(&tasklist_lock); 2323 cgroup_cancel_fork(p, args); 2324 bad_fork_put_pidfd: 2325 if (clone_flags & CLONE_PIDFD) { 2326 fput(pidfile); 2327 put_unused_fd(pidfd); 2328 } 2329 bad_fork_free_pid: 2330 if (pid != &init_struct_pid) 2331 free_pid(pid); 2332 bad_fork_cleanup_thread: 2333 exit_thread(p); 2334 bad_fork_cleanup_io: 2335 if (p->io_context) 2336 exit_io_context(p); 2337 bad_fork_cleanup_namespaces: 2338 exit_task_namespaces(p); 2339 bad_fork_cleanup_mm: 2340 if (p->mm) { 2341 mm_clear_owner(p->mm, p); 2342 mmput(p->mm); 2343 } 2344 bad_fork_cleanup_signal: 2345 if (!(clone_flags & CLONE_THREAD)) 2346 free_signal_struct(p->signal); 2347 bad_fork_cleanup_sighand: 2348 __cleanup_sighand(p->sighand); 2349 bad_fork_cleanup_fs: 2350 exit_fs(p); /* blocking */ 2351 bad_fork_cleanup_files: 2352 exit_files(p); /* blocking */ 2353 bad_fork_cleanup_semundo: 2354 exit_sem(p); 2355 bad_fork_cleanup_security: 2356 security_task_free(p); 2357 bad_fork_cleanup_audit: 2358 audit_free(p); 2359 bad_fork_cleanup_perf: 2360 perf_event_free_task(p); 2361 bad_fork_cleanup_policy: 2362 lockdep_free_task(p); 2363 #ifdef CONFIG_NUMA 2364 mpol_put(p->mempolicy); 2365 bad_fork_cleanup_threadgroup_lock: 2366 #endif 2367 delayacct_tsk_free(p); 2368 bad_fork_cleanup_count: 2369 atomic_dec(&p->cred->user->processes); 2370 exit_creds(p); 2371 bad_fork_free: 2372 p->state = TASK_DEAD; 2373 put_task_stack(p); 2374 delayed_free_task(p); 2375 fork_out: 2376 spin_lock_irq(¤t->sighand->siglock); 2377 hlist_del_init(&delayed.node); 2378 spin_unlock_irq(¤t->sighand->siglock); 2379 return ERR_PTR(retval); 2380 } 2381 2382 static inline void init_idle_pids(struct task_struct *idle) 2383 { 2384 enum pid_type type; 2385 2386 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2387 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2388 init_task_pid(idle, type, &init_struct_pid); 2389 } 2390 } 2391 2392 struct task_struct *fork_idle(int cpu) 2393 { 2394 struct task_struct *task; 2395 struct kernel_clone_args args = { 2396 .flags = CLONE_VM, 2397 }; 2398 2399 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2400 if (!IS_ERR(task)) { 2401 init_idle_pids(task); 2402 init_idle(task, cpu); 2403 } 2404 2405 return task; 2406 } 2407 2408 struct mm_struct *copy_init_mm(void) 2409 { 2410 return dup_mm(NULL, &init_mm); 2411 } 2412 2413 /* 2414 * Ok, this is the main fork-routine. 2415 * 2416 * It copies the process, and if successful kick-starts 2417 * it and waits for it to finish using the VM if required. 2418 * 2419 * args->exit_signal is expected to be checked for sanity by the caller. 2420 */ 2421 pid_t kernel_clone(struct kernel_clone_args *args) 2422 { 2423 u64 clone_flags = args->flags; 2424 struct completion vfork; 2425 struct pid *pid; 2426 struct task_struct *p; 2427 int trace = 0; 2428 pid_t nr; 2429 2430 /* 2431 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2432 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2433 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2434 * field in struct clone_args and it still doesn't make sense to have 2435 * them both point at the same memory location. Performing this check 2436 * here has the advantage that we don't need to have a separate helper 2437 * to check for legacy clone(). 2438 */ 2439 if ((args->flags & CLONE_PIDFD) && 2440 (args->flags & CLONE_PARENT_SETTID) && 2441 (args->pidfd == args->parent_tid)) 2442 return -EINVAL; 2443 2444 /* 2445 * Determine whether and which event to report to ptracer. When 2446 * called from kernel_thread or CLONE_UNTRACED is explicitly 2447 * requested, no event is reported; otherwise, report if the event 2448 * for the type of forking is enabled. 2449 */ 2450 if (!(clone_flags & CLONE_UNTRACED)) { 2451 if (clone_flags & CLONE_VFORK) 2452 trace = PTRACE_EVENT_VFORK; 2453 else if (args->exit_signal != SIGCHLD) 2454 trace = PTRACE_EVENT_CLONE; 2455 else 2456 trace = PTRACE_EVENT_FORK; 2457 2458 if (likely(!ptrace_event_enabled(current, trace))) 2459 trace = 0; 2460 } 2461 2462 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2463 add_latent_entropy(); 2464 2465 if (IS_ERR(p)) 2466 return PTR_ERR(p); 2467 2468 /* 2469 * Do this prior waking up the new thread - the thread pointer 2470 * might get invalid after that point, if the thread exits quickly. 2471 */ 2472 trace_sched_process_fork(current, p); 2473 2474 pid = get_task_pid(p, PIDTYPE_PID); 2475 nr = pid_vnr(pid); 2476 2477 if (clone_flags & CLONE_PARENT_SETTID) 2478 put_user(nr, args->parent_tid); 2479 2480 if (clone_flags & CLONE_VFORK) { 2481 p->vfork_done = &vfork; 2482 init_completion(&vfork); 2483 get_task_struct(p); 2484 } 2485 2486 wake_up_new_task(p); 2487 2488 /* forking complete and child started to run, tell ptracer */ 2489 if (unlikely(trace)) 2490 ptrace_event_pid(trace, pid); 2491 2492 if (clone_flags & CLONE_VFORK) { 2493 if (!wait_for_vfork_done(p, &vfork)) 2494 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2495 } 2496 2497 put_pid(pid); 2498 return nr; 2499 } 2500 2501 /* 2502 * Create a kernel thread. 2503 */ 2504 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2505 { 2506 struct kernel_clone_args args = { 2507 .flags = ((lower_32_bits(flags) | CLONE_VM | 2508 CLONE_UNTRACED) & ~CSIGNAL), 2509 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2510 .stack = (unsigned long)fn, 2511 .stack_size = (unsigned long)arg, 2512 }; 2513 2514 return kernel_clone(&args); 2515 } 2516 2517 #ifdef __ARCH_WANT_SYS_FORK 2518 SYSCALL_DEFINE0(fork) 2519 { 2520 #ifdef CONFIG_MMU 2521 struct kernel_clone_args args = { 2522 .exit_signal = SIGCHLD, 2523 }; 2524 2525 return kernel_clone(&args); 2526 #else 2527 /* can not support in nommu mode */ 2528 return -EINVAL; 2529 #endif 2530 } 2531 #endif 2532 2533 #ifdef __ARCH_WANT_SYS_VFORK 2534 SYSCALL_DEFINE0(vfork) 2535 { 2536 struct kernel_clone_args args = { 2537 .flags = CLONE_VFORK | CLONE_VM, 2538 .exit_signal = SIGCHLD, 2539 }; 2540 2541 return kernel_clone(&args); 2542 } 2543 #endif 2544 2545 #ifdef __ARCH_WANT_SYS_CLONE 2546 #ifdef CONFIG_CLONE_BACKWARDS 2547 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2548 int __user *, parent_tidptr, 2549 unsigned long, tls, 2550 int __user *, child_tidptr) 2551 #elif defined(CONFIG_CLONE_BACKWARDS2) 2552 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2553 int __user *, parent_tidptr, 2554 int __user *, child_tidptr, 2555 unsigned long, tls) 2556 #elif defined(CONFIG_CLONE_BACKWARDS3) 2557 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2558 int, stack_size, 2559 int __user *, parent_tidptr, 2560 int __user *, child_tidptr, 2561 unsigned long, tls) 2562 #else 2563 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2564 int __user *, parent_tidptr, 2565 int __user *, child_tidptr, 2566 unsigned long, tls) 2567 #endif 2568 { 2569 struct kernel_clone_args args = { 2570 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2571 .pidfd = parent_tidptr, 2572 .child_tid = child_tidptr, 2573 .parent_tid = parent_tidptr, 2574 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2575 .stack = newsp, 2576 .tls = tls, 2577 }; 2578 2579 return kernel_clone(&args); 2580 } 2581 #endif 2582 2583 #ifdef __ARCH_WANT_SYS_CLONE3 2584 2585 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2586 struct clone_args __user *uargs, 2587 size_t usize) 2588 { 2589 int err; 2590 struct clone_args args; 2591 pid_t *kset_tid = kargs->set_tid; 2592 2593 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2594 CLONE_ARGS_SIZE_VER0); 2595 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2596 CLONE_ARGS_SIZE_VER1); 2597 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2598 CLONE_ARGS_SIZE_VER2); 2599 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2600 2601 if (unlikely(usize > PAGE_SIZE)) 2602 return -E2BIG; 2603 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2604 return -EINVAL; 2605 2606 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2607 if (err) 2608 return err; 2609 2610 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2611 return -EINVAL; 2612 2613 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2614 return -EINVAL; 2615 2616 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2617 return -EINVAL; 2618 2619 /* 2620 * Verify that higher 32bits of exit_signal are unset and that 2621 * it is a valid signal 2622 */ 2623 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2624 !valid_signal(args.exit_signal))) 2625 return -EINVAL; 2626 2627 if ((args.flags & CLONE_INTO_CGROUP) && 2628 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2629 return -EINVAL; 2630 2631 *kargs = (struct kernel_clone_args){ 2632 .flags = args.flags, 2633 .pidfd = u64_to_user_ptr(args.pidfd), 2634 .child_tid = u64_to_user_ptr(args.child_tid), 2635 .parent_tid = u64_to_user_ptr(args.parent_tid), 2636 .exit_signal = args.exit_signal, 2637 .stack = args.stack, 2638 .stack_size = args.stack_size, 2639 .tls = args.tls, 2640 .set_tid_size = args.set_tid_size, 2641 .cgroup = args.cgroup, 2642 }; 2643 2644 if (args.set_tid && 2645 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2646 (kargs->set_tid_size * sizeof(pid_t)))) 2647 return -EFAULT; 2648 2649 kargs->set_tid = kset_tid; 2650 2651 return 0; 2652 } 2653 2654 /** 2655 * clone3_stack_valid - check and prepare stack 2656 * @kargs: kernel clone args 2657 * 2658 * Verify that the stack arguments userspace gave us are sane. 2659 * In addition, set the stack direction for userspace since it's easy for us to 2660 * determine. 2661 */ 2662 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2663 { 2664 if (kargs->stack == 0) { 2665 if (kargs->stack_size > 0) 2666 return false; 2667 } else { 2668 if (kargs->stack_size == 0) 2669 return false; 2670 2671 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2672 return false; 2673 2674 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2675 kargs->stack += kargs->stack_size; 2676 #endif 2677 } 2678 2679 return true; 2680 } 2681 2682 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2683 { 2684 /* Verify that no unknown flags are passed along. */ 2685 if (kargs->flags & 2686 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2687 return false; 2688 2689 /* 2690 * - make the CLONE_DETACHED bit reuseable for clone3 2691 * - make the CSIGNAL bits reuseable for clone3 2692 */ 2693 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2694 return false; 2695 2696 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2697 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2698 return false; 2699 2700 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2701 kargs->exit_signal) 2702 return false; 2703 2704 if (!clone3_stack_valid(kargs)) 2705 return false; 2706 2707 return true; 2708 } 2709 2710 /** 2711 * clone3 - create a new process with specific properties 2712 * @uargs: argument structure 2713 * @size: size of @uargs 2714 * 2715 * clone3() is the extensible successor to clone()/clone2(). 2716 * It takes a struct as argument that is versioned by its size. 2717 * 2718 * Return: On success, a positive PID for the child process. 2719 * On error, a negative errno number. 2720 */ 2721 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2722 { 2723 int err; 2724 2725 struct kernel_clone_args kargs; 2726 pid_t set_tid[MAX_PID_NS_LEVEL]; 2727 2728 kargs.set_tid = set_tid; 2729 2730 err = copy_clone_args_from_user(&kargs, uargs, size); 2731 if (err) 2732 return err; 2733 2734 if (!clone3_args_valid(&kargs)) 2735 return -EINVAL; 2736 2737 return kernel_clone(&kargs); 2738 } 2739 #endif 2740 2741 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2742 { 2743 struct task_struct *leader, *parent, *child; 2744 int res; 2745 2746 read_lock(&tasklist_lock); 2747 leader = top = top->group_leader; 2748 down: 2749 for_each_thread(leader, parent) { 2750 list_for_each_entry(child, &parent->children, sibling) { 2751 res = visitor(child, data); 2752 if (res) { 2753 if (res < 0) 2754 goto out; 2755 leader = child; 2756 goto down; 2757 } 2758 up: 2759 ; 2760 } 2761 } 2762 2763 if (leader != top) { 2764 child = leader; 2765 parent = child->real_parent; 2766 leader = parent->group_leader; 2767 goto up; 2768 } 2769 out: 2770 read_unlock(&tasklist_lock); 2771 } 2772 2773 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2774 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2775 #endif 2776 2777 static void sighand_ctor(void *data) 2778 { 2779 struct sighand_struct *sighand = data; 2780 2781 spin_lock_init(&sighand->siglock); 2782 init_waitqueue_head(&sighand->signalfd_wqh); 2783 } 2784 2785 void __init proc_caches_init(void) 2786 { 2787 unsigned int mm_size; 2788 2789 sighand_cachep = kmem_cache_create("sighand_cache", 2790 sizeof(struct sighand_struct), 0, 2791 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2792 SLAB_ACCOUNT, sighand_ctor); 2793 signal_cachep = kmem_cache_create("signal_cache", 2794 sizeof(struct signal_struct), 0, 2795 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2796 NULL); 2797 files_cachep = kmem_cache_create("files_cache", 2798 sizeof(struct files_struct), 0, 2799 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2800 NULL); 2801 fs_cachep = kmem_cache_create("fs_cache", 2802 sizeof(struct fs_struct), 0, 2803 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2804 NULL); 2805 2806 /* 2807 * The mm_cpumask is located at the end of mm_struct, and is 2808 * dynamically sized based on the maximum CPU number this system 2809 * can have, taking hotplug into account (nr_cpu_ids). 2810 */ 2811 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2812 2813 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2814 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2815 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2816 offsetof(struct mm_struct, saved_auxv), 2817 sizeof_field(struct mm_struct, saved_auxv), 2818 NULL); 2819 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2820 mmap_init(); 2821 nsproxy_cache_init(); 2822 } 2823 2824 /* 2825 * Check constraints on flags passed to the unshare system call. 2826 */ 2827 static int check_unshare_flags(unsigned long unshare_flags) 2828 { 2829 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2830 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2831 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2832 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2833 CLONE_NEWTIME)) 2834 return -EINVAL; 2835 /* 2836 * Not implemented, but pretend it works if there is nothing 2837 * to unshare. Note that unsharing the address space or the 2838 * signal handlers also need to unshare the signal queues (aka 2839 * CLONE_THREAD). 2840 */ 2841 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2842 if (!thread_group_empty(current)) 2843 return -EINVAL; 2844 } 2845 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2846 if (refcount_read(¤t->sighand->count) > 1) 2847 return -EINVAL; 2848 } 2849 if (unshare_flags & CLONE_VM) { 2850 if (!current_is_single_threaded()) 2851 return -EINVAL; 2852 } 2853 2854 return 0; 2855 } 2856 2857 /* 2858 * Unshare the filesystem structure if it is being shared 2859 */ 2860 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2861 { 2862 struct fs_struct *fs = current->fs; 2863 2864 if (!(unshare_flags & CLONE_FS) || !fs) 2865 return 0; 2866 2867 /* don't need lock here; in the worst case we'll do useless copy */ 2868 if (fs->users == 1) 2869 return 0; 2870 2871 *new_fsp = copy_fs_struct(fs); 2872 if (!*new_fsp) 2873 return -ENOMEM; 2874 2875 return 0; 2876 } 2877 2878 /* 2879 * Unshare file descriptor table if it is being shared 2880 */ 2881 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2882 struct files_struct **new_fdp) 2883 { 2884 struct files_struct *fd = current->files; 2885 int error = 0; 2886 2887 if ((unshare_flags & CLONE_FILES) && 2888 (fd && atomic_read(&fd->count) > 1)) { 2889 *new_fdp = dup_fd(fd, max_fds, &error); 2890 if (!*new_fdp) 2891 return error; 2892 } 2893 2894 return 0; 2895 } 2896 2897 /* 2898 * unshare allows a process to 'unshare' part of the process 2899 * context which was originally shared using clone. copy_* 2900 * functions used by kernel_clone() cannot be used here directly 2901 * because they modify an inactive task_struct that is being 2902 * constructed. Here we are modifying the current, active, 2903 * task_struct. 2904 */ 2905 int ksys_unshare(unsigned long unshare_flags) 2906 { 2907 struct fs_struct *fs, *new_fs = NULL; 2908 struct files_struct *fd, *new_fd = NULL; 2909 struct cred *new_cred = NULL; 2910 struct nsproxy *new_nsproxy = NULL; 2911 int do_sysvsem = 0; 2912 int err; 2913 2914 /* 2915 * If unsharing a user namespace must also unshare the thread group 2916 * and unshare the filesystem root and working directories. 2917 */ 2918 if (unshare_flags & CLONE_NEWUSER) 2919 unshare_flags |= CLONE_THREAD | CLONE_FS; 2920 /* 2921 * If unsharing vm, must also unshare signal handlers. 2922 */ 2923 if (unshare_flags & CLONE_VM) 2924 unshare_flags |= CLONE_SIGHAND; 2925 /* 2926 * If unsharing a signal handlers, must also unshare the signal queues. 2927 */ 2928 if (unshare_flags & CLONE_SIGHAND) 2929 unshare_flags |= CLONE_THREAD; 2930 /* 2931 * If unsharing namespace, must also unshare filesystem information. 2932 */ 2933 if (unshare_flags & CLONE_NEWNS) 2934 unshare_flags |= CLONE_FS; 2935 2936 err = check_unshare_flags(unshare_flags); 2937 if (err) 2938 goto bad_unshare_out; 2939 /* 2940 * CLONE_NEWIPC must also detach from the undolist: after switching 2941 * to a new ipc namespace, the semaphore arrays from the old 2942 * namespace are unreachable. 2943 */ 2944 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2945 do_sysvsem = 1; 2946 err = unshare_fs(unshare_flags, &new_fs); 2947 if (err) 2948 goto bad_unshare_out; 2949 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2950 if (err) 2951 goto bad_unshare_cleanup_fs; 2952 err = unshare_userns(unshare_flags, &new_cred); 2953 if (err) 2954 goto bad_unshare_cleanup_fd; 2955 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2956 new_cred, new_fs); 2957 if (err) 2958 goto bad_unshare_cleanup_cred; 2959 2960 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2961 if (do_sysvsem) { 2962 /* 2963 * CLONE_SYSVSEM is equivalent to sys_exit(). 2964 */ 2965 exit_sem(current); 2966 } 2967 if (unshare_flags & CLONE_NEWIPC) { 2968 /* Orphan segments in old ns (see sem above). */ 2969 exit_shm(current); 2970 shm_init_task(current); 2971 } 2972 2973 if (new_nsproxy) 2974 switch_task_namespaces(current, new_nsproxy); 2975 2976 task_lock(current); 2977 2978 if (new_fs) { 2979 fs = current->fs; 2980 spin_lock(&fs->lock); 2981 current->fs = new_fs; 2982 if (--fs->users) 2983 new_fs = NULL; 2984 else 2985 new_fs = fs; 2986 spin_unlock(&fs->lock); 2987 } 2988 2989 if (new_fd) { 2990 fd = current->files; 2991 current->files = new_fd; 2992 new_fd = fd; 2993 } 2994 2995 task_unlock(current); 2996 2997 if (new_cred) { 2998 /* Install the new user namespace */ 2999 commit_creds(new_cred); 3000 new_cred = NULL; 3001 } 3002 } 3003 3004 perf_event_namespaces(current); 3005 3006 bad_unshare_cleanup_cred: 3007 if (new_cred) 3008 put_cred(new_cred); 3009 bad_unshare_cleanup_fd: 3010 if (new_fd) 3011 put_files_struct(new_fd); 3012 3013 bad_unshare_cleanup_fs: 3014 if (new_fs) 3015 free_fs_struct(new_fs); 3016 3017 bad_unshare_out: 3018 return err; 3019 } 3020 3021 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3022 { 3023 return ksys_unshare(unshare_flags); 3024 } 3025 3026 /* 3027 * Helper to unshare the files of the current task. 3028 * We don't want to expose copy_files internals to 3029 * the exec layer of the kernel. 3030 */ 3031 3032 int unshare_files(void) 3033 { 3034 struct task_struct *task = current; 3035 struct files_struct *old, *copy = NULL; 3036 int error; 3037 3038 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3039 if (error || !copy) 3040 return error; 3041 3042 old = task->files; 3043 task_lock(task); 3044 task->files = copy; 3045 task_unlock(task); 3046 put_files_struct(old); 3047 return 0; 3048 } 3049 3050 int sysctl_max_threads(struct ctl_table *table, int write, 3051 void *buffer, size_t *lenp, loff_t *ppos) 3052 { 3053 struct ctl_table t; 3054 int ret; 3055 int threads = max_threads; 3056 int min = 1; 3057 int max = MAX_THREADS; 3058 3059 t = *table; 3060 t.data = &threads; 3061 t.extra1 = &min; 3062 t.extra2 = &max; 3063 3064 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3065 if (ret || !write) 3066 return ret; 3067 3068 max_threads = threads; 3069 3070 return 0; 3071 } 3072