xref: /openbmc/linux/kernel/fork.c (revision c0e297dc)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85 
86 #include <trace/events/sched.h>
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90 
91 /*
92  * Minimum number of threads to boot the kernel
93  */
94 #define MIN_THREADS 20
95 
96 /*
97  * Maximum number of threads
98  */
99 #define MAX_THREADS FUTEX_TID_MASK
100 
101 /*
102  * Protected counters by write_lock_irq(&tasklist_lock)
103  */
104 unsigned long total_forks;	/* Handle normal Linux uptimes. */
105 int nr_threads;			/* The idle threads do not count.. */
106 
107 int max_threads;		/* tunable limit on nr_threads */
108 
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110 
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
112 
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 	return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120 
121 int nr_processes(void)
122 {
123 	int cpu;
124 	int total = 0;
125 
126 	for_each_possible_cpu(cpu)
127 		total += per_cpu(process_counts, cpu);
128 
129 	return total;
130 }
131 
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135 
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138 
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143 
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 	kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149 
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153 
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155 
156 /*
157  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158  * kmemcache based allocator.
159  */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 						  int node)
163 {
164 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 						  THREAD_SIZE_ORDER);
166 
167 	return page ? page_address(page) : NULL;
168 }
169 
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 	free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176 
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 						  int node)
179 {
180 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182 
183 static void free_thread_info(struct thread_info *ti)
184 {
185 	kmem_cache_free(thread_info_cache, ti);
186 }
187 
188 void thread_info_cache_init(void)
189 {
190 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 					      THREAD_SIZE, 0, NULL);
192 	BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196 
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199 
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202 
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205 
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208 
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211 
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214 
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 	struct zone *zone = page_zone(virt_to_page(ti));
218 
219 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221 
222 void free_task(struct task_struct *tsk)
223 {
224 	account_kernel_stack(tsk->stack, -1);
225 	arch_release_thread_info(tsk->stack);
226 	free_thread_info(tsk->stack);
227 	rt_mutex_debug_task_free(tsk);
228 	ftrace_graph_exit_task(tsk);
229 	put_seccomp_filter(tsk);
230 	arch_release_task_struct(tsk);
231 	free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234 
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 	taskstats_tgid_free(sig);
238 	sched_autogroup_exit(sig);
239 	kmem_cache_free(signal_cachep, sig);
240 }
241 
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 	if (atomic_dec_and_test(&sig->sigcnt))
245 		free_signal_struct(sig);
246 }
247 
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 	WARN_ON(!tsk->exit_state);
251 	WARN_ON(atomic_read(&tsk->usage));
252 	WARN_ON(tsk == current);
253 
254 	task_numa_free(tsk);
255 	security_task_free(tsk);
256 	exit_creds(tsk);
257 	delayacct_tsk_free(tsk);
258 	put_signal_struct(tsk->signal);
259 
260 	if (!profile_handoff_task(tsk))
261 		free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264 
265 void __init __weak arch_task_cache_init(void) { }
266 
267 /*
268  * set_max_threads
269  */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 	u64 threads;
273 
274 	/*
275 	 * The number of threads shall be limited such that the thread
276 	 * structures may only consume a small part of the available memory.
277 	 */
278 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 		threads = MAX_THREADS;
280 	else
281 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 				    (u64) THREAD_SIZE * 8UL);
283 
284 	if (threads > max_threads_suggested)
285 		threads = max_threads_suggested;
286 
287 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289 
290 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
291 /* Initialized by the architecture: */
292 int arch_task_struct_size __read_mostly;
293 #endif
294 
295 void __init fork_init(void)
296 {
297 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
298 #ifndef ARCH_MIN_TASKALIGN
299 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
300 #endif
301 	/* create a slab on which task_structs can be allocated */
302 	task_struct_cachep =
303 		kmem_cache_create("task_struct", arch_task_struct_size,
304 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
305 #endif
306 
307 	/* do the arch specific task caches init */
308 	arch_task_cache_init();
309 
310 	set_max_threads(MAX_THREADS);
311 
312 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
313 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
314 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
315 		init_task.signal->rlim[RLIMIT_NPROC];
316 }
317 
318 int __weak arch_dup_task_struct(struct task_struct *dst,
319 					       struct task_struct *src)
320 {
321 	*dst = *src;
322 	return 0;
323 }
324 
325 void set_task_stack_end_magic(struct task_struct *tsk)
326 {
327 	unsigned long *stackend;
328 
329 	stackend = end_of_stack(tsk);
330 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
331 }
332 
333 static struct task_struct *dup_task_struct(struct task_struct *orig)
334 {
335 	struct task_struct *tsk;
336 	struct thread_info *ti;
337 	int node = tsk_fork_get_node(orig);
338 	int err;
339 
340 	tsk = alloc_task_struct_node(node);
341 	if (!tsk)
342 		return NULL;
343 
344 	ti = alloc_thread_info_node(tsk, node);
345 	if (!ti)
346 		goto free_tsk;
347 
348 	err = arch_dup_task_struct(tsk, orig);
349 	if (err)
350 		goto free_ti;
351 
352 	tsk->stack = ti;
353 #ifdef CONFIG_SECCOMP
354 	/*
355 	 * We must handle setting up seccomp filters once we're under
356 	 * the sighand lock in case orig has changed between now and
357 	 * then. Until then, filter must be NULL to avoid messing up
358 	 * the usage counts on the error path calling free_task.
359 	 */
360 	tsk->seccomp.filter = NULL;
361 #endif
362 
363 	setup_thread_stack(tsk, orig);
364 	clear_user_return_notifier(tsk);
365 	clear_tsk_need_resched(tsk);
366 	set_task_stack_end_magic(tsk);
367 
368 #ifdef CONFIG_CC_STACKPROTECTOR
369 	tsk->stack_canary = get_random_int();
370 #endif
371 
372 	/*
373 	 * One for us, one for whoever does the "release_task()" (usually
374 	 * parent)
375 	 */
376 	atomic_set(&tsk->usage, 2);
377 #ifdef CONFIG_BLK_DEV_IO_TRACE
378 	tsk->btrace_seq = 0;
379 #endif
380 	tsk->splice_pipe = NULL;
381 	tsk->task_frag.page = NULL;
382 
383 	account_kernel_stack(ti, 1);
384 
385 	return tsk;
386 
387 free_ti:
388 	free_thread_info(ti);
389 free_tsk:
390 	free_task_struct(tsk);
391 	return NULL;
392 }
393 
394 #ifdef CONFIG_MMU
395 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
396 {
397 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
398 	struct rb_node **rb_link, *rb_parent;
399 	int retval;
400 	unsigned long charge;
401 
402 	uprobe_start_dup_mmap();
403 	down_write(&oldmm->mmap_sem);
404 	flush_cache_dup_mm(oldmm);
405 	uprobe_dup_mmap(oldmm, mm);
406 	/*
407 	 * Not linked in yet - no deadlock potential:
408 	 */
409 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
410 
411 	/* No ordering required: file already has been exposed. */
412 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
413 
414 	mm->total_vm = oldmm->total_vm;
415 	mm->shared_vm = oldmm->shared_vm;
416 	mm->exec_vm = oldmm->exec_vm;
417 	mm->stack_vm = oldmm->stack_vm;
418 
419 	rb_link = &mm->mm_rb.rb_node;
420 	rb_parent = NULL;
421 	pprev = &mm->mmap;
422 	retval = ksm_fork(mm, oldmm);
423 	if (retval)
424 		goto out;
425 	retval = khugepaged_fork(mm, oldmm);
426 	if (retval)
427 		goto out;
428 
429 	prev = NULL;
430 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
431 		struct file *file;
432 
433 		if (mpnt->vm_flags & VM_DONTCOPY) {
434 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
435 							-vma_pages(mpnt));
436 			continue;
437 		}
438 		charge = 0;
439 		if (mpnt->vm_flags & VM_ACCOUNT) {
440 			unsigned long len = vma_pages(mpnt);
441 
442 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
443 				goto fail_nomem;
444 			charge = len;
445 		}
446 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
447 		if (!tmp)
448 			goto fail_nomem;
449 		*tmp = *mpnt;
450 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
451 		retval = vma_dup_policy(mpnt, tmp);
452 		if (retval)
453 			goto fail_nomem_policy;
454 		tmp->vm_mm = mm;
455 		if (anon_vma_fork(tmp, mpnt))
456 			goto fail_nomem_anon_vma_fork;
457 		tmp->vm_flags &= ~VM_LOCKED;
458 		tmp->vm_next = tmp->vm_prev = NULL;
459 		file = tmp->vm_file;
460 		if (file) {
461 			struct inode *inode = file_inode(file);
462 			struct address_space *mapping = file->f_mapping;
463 
464 			get_file(file);
465 			if (tmp->vm_flags & VM_DENYWRITE)
466 				atomic_dec(&inode->i_writecount);
467 			i_mmap_lock_write(mapping);
468 			if (tmp->vm_flags & VM_SHARED)
469 				atomic_inc(&mapping->i_mmap_writable);
470 			flush_dcache_mmap_lock(mapping);
471 			/* insert tmp into the share list, just after mpnt */
472 			vma_interval_tree_insert_after(tmp, mpnt,
473 					&mapping->i_mmap);
474 			flush_dcache_mmap_unlock(mapping);
475 			i_mmap_unlock_write(mapping);
476 		}
477 
478 		/*
479 		 * Clear hugetlb-related page reserves for children. This only
480 		 * affects MAP_PRIVATE mappings. Faults generated by the child
481 		 * are not guaranteed to succeed, even if read-only
482 		 */
483 		if (is_vm_hugetlb_page(tmp))
484 			reset_vma_resv_huge_pages(tmp);
485 
486 		/*
487 		 * Link in the new vma and copy the page table entries.
488 		 */
489 		*pprev = tmp;
490 		pprev = &tmp->vm_next;
491 		tmp->vm_prev = prev;
492 		prev = tmp;
493 
494 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
495 		rb_link = &tmp->vm_rb.rb_right;
496 		rb_parent = &tmp->vm_rb;
497 
498 		mm->map_count++;
499 		retval = copy_page_range(mm, oldmm, mpnt);
500 
501 		if (tmp->vm_ops && tmp->vm_ops->open)
502 			tmp->vm_ops->open(tmp);
503 
504 		if (retval)
505 			goto out;
506 	}
507 	/* a new mm has just been created */
508 	arch_dup_mmap(oldmm, mm);
509 	retval = 0;
510 out:
511 	up_write(&mm->mmap_sem);
512 	flush_tlb_mm(oldmm);
513 	up_write(&oldmm->mmap_sem);
514 	uprobe_end_dup_mmap();
515 	return retval;
516 fail_nomem_anon_vma_fork:
517 	mpol_put(vma_policy(tmp));
518 fail_nomem_policy:
519 	kmem_cache_free(vm_area_cachep, tmp);
520 fail_nomem:
521 	retval = -ENOMEM;
522 	vm_unacct_memory(charge);
523 	goto out;
524 }
525 
526 static inline int mm_alloc_pgd(struct mm_struct *mm)
527 {
528 	mm->pgd = pgd_alloc(mm);
529 	if (unlikely(!mm->pgd))
530 		return -ENOMEM;
531 	return 0;
532 }
533 
534 static inline void mm_free_pgd(struct mm_struct *mm)
535 {
536 	pgd_free(mm, mm->pgd);
537 }
538 #else
539 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
540 {
541 	down_write(&oldmm->mmap_sem);
542 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
543 	up_write(&oldmm->mmap_sem);
544 	return 0;
545 }
546 #define mm_alloc_pgd(mm)	(0)
547 #define mm_free_pgd(mm)
548 #endif /* CONFIG_MMU */
549 
550 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
551 
552 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
553 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
554 
555 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
556 
557 static int __init coredump_filter_setup(char *s)
558 {
559 	default_dump_filter =
560 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
561 		MMF_DUMP_FILTER_MASK;
562 	return 1;
563 }
564 
565 __setup("coredump_filter=", coredump_filter_setup);
566 
567 #include <linux/init_task.h>
568 
569 static void mm_init_aio(struct mm_struct *mm)
570 {
571 #ifdef CONFIG_AIO
572 	spin_lock_init(&mm->ioctx_lock);
573 	mm->ioctx_table = NULL;
574 #endif
575 }
576 
577 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
578 {
579 #ifdef CONFIG_MEMCG
580 	mm->owner = p;
581 #endif
582 }
583 
584 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
585 {
586 	mm->mmap = NULL;
587 	mm->mm_rb = RB_ROOT;
588 	mm->vmacache_seqnum = 0;
589 	atomic_set(&mm->mm_users, 1);
590 	atomic_set(&mm->mm_count, 1);
591 	init_rwsem(&mm->mmap_sem);
592 	INIT_LIST_HEAD(&mm->mmlist);
593 	mm->core_state = NULL;
594 	atomic_long_set(&mm->nr_ptes, 0);
595 	mm_nr_pmds_init(mm);
596 	mm->map_count = 0;
597 	mm->locked_vm = 0;
598 	mm->pinned_vm = 0;
599 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
600 	spin_lock_init(&mm->page_table_lock);
601 	mm_init_cpumask(mm);
602 	mm_init_aio(mm);
603 	mm_init_owner(mm, p);
604 	mmu_notifier_mm_init(mm);
605 	clear_tlb_flush_pending(mm);
606 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
607 	mm->pmd_huge_pte = NULL;
608 #endif
609 
610 	if (current->mm) {
611 		mm->flags = current->mm->flags & MMF_INIT_MASK;
612 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
613 	} else {
614 		mm->flags = default_dump_filter;
615 		mm->def_flags = 0;
616 	}
617 
618 	if (mm_alloc_pgd(mm))
619 		goto fail_nopgd;
620 
621 	if (init_new_context(p, mm))
622 		goto fail_nocontext;
623 
624 	return mm;
625 
626 fail_nocontext:
627 	mm_free_pgd(mm);
628 fail_nopgd:
629 	free_mm(mm);
630 	return NULL;
631 }
632 
633 static void check_mm(struct mm_struct *mm)
634 {
635 	int i;
636 
637 	for (i = 0; i < NR_MM_COUNTERS; i++) {
638 		long x = atomic_long_read(&mm->rss_stat.count[i]);
639 
640 		if (unlikely(x))
641 			printk(KERN_ALERT "BUG: Bad rss-counter state "
642 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
643 	}
644 
645 	if (atomic_long_read(&mm->nr_ptes))
646 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
647 				atomic_long_read(&mm->nr_ptes));
648 	if (mm_nr_pmds(mm))
649 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
650 				mm_nr_pmds(mm));
651 
652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
653 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
654 #endif
655 }
656 
657 /*
658  * Allocate and initialize an mm_struct.
659  */
660 struct mm_struct *mm_alloc(void)
661 {
662 	struct mm_struct *mm;
663 
664 	mm = allocate_mm();
665 	if (!mm)
666 		return NULL;
667 
668 	memset(mm, 0, sizeof(*mm));
669 	return mm_init(mm, current);
670 }
671 
672 /*
673  * Called when the last reference to the mm
674  * is dropped: either by a lazy thread or by
675  * mmput. Free the page directory and the mm.
676  */
677 void __mmdrop(struct mm_struct *mm)
678 {
679 	BUG_ON(mm == &init_mm);
680 	mm_free_pgd(mm);
681 	destroy_context(mm);
682 	mmu_notifier_mm_destroy(mm);
683 	check_mm(mm);
684 	free_mm(mm);
685 }
686 EXPORT_SYMBOL_GPL(__mmdrop);
687 
688 /*
689  * Decrement the use count and release all resources for an mm.
690  */
691 void mmput(struct mm_struct *mm)
692 {
693 	might_sleep();
694 
695 	if (atomic_dec_and_test(&mm->mm_users)) {
696 		uprobe_clear_state(mm);
697 		exit_aio(mm);
698 		ksm_exit(mm);
699 		khugepaged_exit(mm); /* must run before exit_mmap */
700 		exit_mmap(mm);
701 		set_mm_exe_file(mm, NULL);
702 		if (!list_empty(&mm->mmlist)) {
703 			spin_lock(&mmlist_lock);
704 			list_del(&mm->mmlist);
705 			spin_unlock(&mmlist_lock);
706 		}
707 		if (mm->binfmt)
708 			module_put(mm->binfmt->module);
709 		mmdrop(mm);
710 	}
711 }
712 EXPORT_SYMBOL_GPL(mmput);
713 
714 /**
715  * set_mm_exe_file - change a reference to the mm's executable file
716  *
717  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
718  *
719  * Main users are mmput() and sys_execve(). Callers prevent concurrent
720  * invocations: in mmput() nobody alive left, in execve task is single
721  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
722  * mm->exe_file, but does so without using set_mm_exe_file() in order
723  * to do avoid the need for any locks.
724  */
725 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
726 {
727 	struct file *old_exe_file;
728 
729 	/*
730 	 * It is safe to dereference the exe_file without RCU as
731 	 * this function is only called if nobody else can access
732 	 * this mm -- see comment above for justification.
733 	 */
734 	old_exe_file = rcu_dereference_raw(mm->exe_file);
735 
736 	if (new_exe_file)
737 		get_file(new_exe_file);
738 	rcu_assign_pointer(mm->exe_file, new_exe_file);
739 	if (old_exe_file)
740 		fput(old_exe_file);
741 }
742 
743 /**
744  * get_mm_exe_file - acquire a reference to the mm's executable file
745  *
746  * Returns %NULL if mm has no associated executable file.
747  * User must release file via fput().
748  */
749 struct file *get_mm_exe_file(struct mm_struct *mm)
750 {
751 	struct file *exe_file;
752 
753 	rcu_read_lock();
754 	exe_file = rcu_dereference(mm->exe_file);
755 	if (exe_file && !get_file_rcu(exe_file))
756 		exe_file = NULL;
757 	rcu_read_unlock();
758 	return exe_file;
759 }
760 EXPORT_SYMBOL(get_mm_exe_file);
761 
762 /**
763  * get_task_mm - acquire a reference to the task's mm
764  *
765  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
766  * this kernel workthread has transiently adopted a user mm with use_mm,
767  * to do its AIO) is not set and if so returns a reference to it, after
768  * bumping up the use count.  User must release the mm via mmput()
769  * after use.  Typically used by /proc and ptrace.
770  */
771 struct mm_struct *get_task_mm(struct task_struct *task)
772 {
773 	struct mm_struct *mm;
774 
775 	task_lock(task);
776 	mm = task->mm;
777 	if (mm) {
778 		if (task->flags & PF_KTHREAD)
779 			mm = NULL;
780 		else
781 			atomic_inc(&mm->mm_users);
782 	}
783 	task_unlock(task);
784 	return mm;
785 }
786 EXPORT_SYMBOL_GPL(get_task_mm);
787 
788 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
789 {
790 	struct mm_struct *mm;
791 	int err;
792 
793 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
794 	if (err)
795 		return ERR_PTR(err);
796 
797 	mm = get_task_mm(task);
798 	if (mm && mm != current->mm &&
799 			!ptrace_may_access(task, mode)) {
800 		mmput(mm);
801 		mm = ERR_PTR(-EACCES);
802 	}
803 	mutex_unlock(&task->signal->cred_guard_mutex);
804 
805 	return mm;
806 }
807 
808 static void complete_vfork_done(struct task_struct *tsk)
809 {
810 	struct completion *vfork;
811 
812 	task_lock(tsk);
813 	vfork = tsk->vfork_done;
814 	if (likely(vfork)) {
815 		tsk->vfork_done = NULL;
816 		complete(vfork);
817 	}
818 	task_unlock(tsk);
819 }
820 
821 static int wait_for_vfork_done(struct task_struct *child,
822 				struct completion *vfork)
823 {
824 	int killed;
825 
826 	freezer_do_not_count();
827 	killed = wait_for_completion_killable(vfork);
828 	freezer_count();
829 
830 	if (killed) {
831 		task_lock(child);
832 		child->vfork_done = NULL;
833 		task_unlock(child);
834 	}
835 
836 	put_task_struct(child);
837 	return killed;
838 }
839 
840 /* Please note the differences between mmput and mm_release.
841  * mmput is called whenever we stop holding onto a mm_struct,
842  * error success whatever.
843  *
844  * mm_release is called after a mm_struct has been removed
845  * from the current process.
846  *
847  * This difference is important for error handling, when we
848  * only half set up a mm_struct for a new process and need to restore
849  * the old one.  Because we mmput the new mm_struct before
850  * restoring the old one. . .
851  * Eric Biederman 10 January 1998
852  */
853 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
854 {
855 	/* Get rid of any futexes when releasing the mm */
856 #ifdef CONFIG_FUTEX
857 	if (unlikely(tsk->robust_list)) {
858 		exit_robust_list(tsk);
859 		tsk->robust_list = NULL;
860 	}
861 #ifdef CONFIG_COMPAT
862 	if (unlikely(tsk->compat_robust_list)) {
863 		compat_exit_robust_list(tsk);
864 		tsk->compat_robust_list = NULL;
865 	}
866 #endif
867 	if (unlikely(!list_empty(&tsk->pi_state_list)))
868 		exit_pi_state_list(tsk);
869 #endif
870 
871 	uprobe_free_utask(tsk);
872 
873 	/* Get rid of any cached register state */
874 	deactivate_mm(tsk, mm);
875 
876 	/*
877 	 * If we're exiting normally, clear a user-space tid field if
878 	 * requested.  We leave this alone when dying by signal, to leave
879 	 * the value intact in a core dump, and to save the unnecessary
880 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
881 	 * Userland only wants this done for a sys_exit.
882 	 */
883 	if (tsk->clear_child_tid) {
884 		if (!(tsk->flags & PF_SIGNALED) &&
885 		    atomic_read(&mm->mm_users) > 1) {
886 			/*
887 			 * We don't check the error code - if userspace has
888 			 * not set up a proper pointer then tough luck.
889 			 */
890 			put_user(0, tsk->clear_child_tid);
891 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
892 					1, NULL, NULL, 0);
893 		}
894 		tsk->clear_child_tid = NULL;
895 	}
896 
897 	/*
898 	 * All done, finally we can wake up parent and return this mm to him.
899 	 * Also kthread_stop() uses this completion for synchronization.
900 	 */
901 	if (tsk->vfork_done)
902 		complete_vfork_done(tsk);
903 }
904 
905 /*
906  * Allocate a new mm structure and copy contents from the
907  * mm structure of the passed in task structure.
908  */
909 static struct mm_struct *dup_mm(struct task_struct *tsk)
910 {
911 	struct mm_struct *mm, *oldmm = current->mm;
912 	int err;
913 
914 	mm = allocate_mm();
915 	if (!mm)
916 		goto fail_nomem;
917 
918 	memcpy(mm, oldmm, sizeof(*mm));
919 
920 	if (!mm_init(mm, tsk))
921 		goto fail_nomem;
922 
923 	err = dup_mmap(mm, oldmm);
924 	if (err)
925 		goto free_pt;
926 
927 	mm->hiwater_rss = get_mm_rss(mm);
928 	mm->hiwater_vm = mm->total_vm;
929 
930 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
931 		goto free_pt;
932 
933 	return mm;
934 
935 free_pt:
936 	/* don't put binfmt in mmput, we haven't got module yet */
937 	mm->binfmt = NULL;
938 	mmput(mm);
939 
940 fail_nomem:
941 	return NULL;
942 }
943 
944 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
945 {
946 	struct mm_struct *mm, *oldmm;
947 	int retval;
948 
949 	tsk->min_flt = tsk->maj_flt = 0;
950 	tsk->nvcsw = tsk->nivcsw = 0;
951 #ifdef CONFIG_DETECT_HUNG_TASK
952 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
953 #endif
954 
955 	tsk->mm = NULL;
956 	tsk->active_mm = NULL;
957 
958 	/*
959 	 * Are we cloning a kernel thread?
960 	 *
961 	 * We need to steal a active VM for that..
962 	 */
963 	oldmm = current->mm;
964 	if (!oldmm)
965 		return 0;
966 
967 	/* initialize the new vmacache entries */
968 	vmacache_flush(tsk);
969 
970 	if (clone_flags & CLONE_VM) {
971 		atomic_inc(&oldmm->mm_users);
972 		mm = oldmm;
973 		goto good_mm;
974 	}
975 
976 	retval = -ENOMEM;
977 	mm = dup_mm(tsk);
978 	if (!mm)
979 		goto fail_nomem;
980 
981 good_mm:
982 	tsk->mm = mm;
983 	tsk->active_mm = mm;
984 	return 0;
985 
986 fail_nomem:
987 	return retval;
988 }
989 
990 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
991 {
992 	struct fs_struct *fs = current->fs;
993 	if (clone_flags & CLONE_FS) {
994 		/* tsk->fs is already what we want */
995 		spin_lock(&fs->lock);
996 		if (fs->in_exec) {
997 			spin_unlock(&fs->lock);
998 			return -EAGAIN;
999 		}
1000 		fs->users++;
1001 		spin_unlock(&fs->lock);
1002 		return 0;
1003 	}
1004 	tsk->fs = copy_fs_struct(fs);
1005 	if (!tsk->fs)
1006 		return -ENOMEM;
1007 	return 0;
1008 }
1009 
1010 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1011 {
1012 	struct files_struct *oldf, *newf;
1013 	int error = 0;
1014 
1015 	/*
1016 	 * A background process may not have any files ...
1017 	 */
1018 	oldf = current->files;
1019 	if (!oldf)
1020 		goto out;
1021 
1022 	if (clone_flags & CLONE_FILES) {
1023 		atomic_inc(&oldf->count);
1024 		goto out;
1025 	}
1026 
1027 	newf = dup_fd(oldf, &error);
1028 	if (!newf)
1029 		goto out;
1030 
1031 	tsk->files = newf;
1032 	error = 0;
1033 out:
1034 	return error;
1035 }
1036 
1037 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1038 {
1039 #ifdef CONFIG_BLOCK
1040 	struct io_context *ioc = current->io_context;
1041 	struct io_context *new_ioc;
1042 
1043 	if (!ioc)
1044 		return 0;
1045 	/*
1046 	 * Share io context with parent, if CLONE_IO is set
1047 	 */
1048 	if (clone_flags & CLONE_IO) {
1049 		ioc_task_link(ioc);
1050 		tsk->io_context = ioc;
1051 	} else if (ioprio_valid(ioc->ioprio)) {
1052 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1053 		if (unlikely(!new_ioc))
1054 			return -ENOMEM;
1055 
1056 		new_ioc->ioprio = ioc->ioprio;
1057 		put_io_context(new_ioc);
1058 	}
1059 #endif
1060 	return 0;
1061 }
1062 
1063 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1064 {
1065 	struct sighand_struct *sig;
1066 
1067 	if (clone_flags & CLONE_SIGHAND) {
1068 		atomic_inc(&current->sighand->count);
1069 		return 0;
1070 	}
1071 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1072 	rcu_assign_pointer(tsk->sighand, sig);
1073 	if (!sig)
1074 		return -ENOMEM;
1075 	atomic_set(&sig->count, 1);
1076 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1077 	return 0;
1078 }
1079 
1080 void __cleanup_sighand(struct sighand_struct *sighand)
1081 {
1082 	if (atomic_dec_and_test(&sighand->count)) {
1083 		signalfd_cleanup(sighand);
1084 		/*
1085 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1086 		 * without an RCU grace period, see __lock_task_sighand().
1087 		 */
1088 		kmem_cache_free(sighand_cachep, sighand);
1089 	}
1090 }
1091 
1092 /*
1093  * Initialize POSIX timer handling for a thread group.
1094  */
1095 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1096 {
1097 	unsigned long cpu_limit;
1098 
1099 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1100 	if (cpu_limit != RLIM_INFINITY) {
1101 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1102 		sig->cputimer.running = 1;
1103 	}
1104 
1105 	/* The timer lists. */
1106 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1107 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1108 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1109 }
1110 
1111 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1112 {
1113 	struct signal_struct *sig;
1114 
1115 	if (clone_flags & CLONE_THREAD)
1116 		return 0;
1117 
1118 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1119 	tsk->signal = sig;
1120 	if (!sig)
1121 		return -ENOMEM;
1122 
1123 	sig->nr_threads = 1;
1124 	atomic_set(&sig->live, 1);
1125 	atomic_set(&sig->sigcnt, 1);
1126 
1127 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1128 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1129 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1130 
1131 	init_waitqueue_head(&sig->wait_chldexit);
1132 	sig->curr_target = tsk;
1133 	init_sigpending(&sig->shared_pending);
1134 	INIT_LIST_HEAD(&sig->posix_timers);
1135 	seqlock_init(&sig->stats_lock);
1136 
1137 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1138 	sig->real_timer.function = it_real_fn;
1139 
1140 	task_lock(current->group_leader);
1141 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1142 	task_unlock(current->group_leader);
1143 
1144 	posix_cpu_timers_init_group(sig);
1145 
1146 	tty_audit_fork(sig);
1147 	sched_autogroup_fork(sig);
1148 
1149 	sig->oom_score_adj = current->signal->oom_score_adj;
1150 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1151 
1152 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1153 				   current->signal->is_child_subreaper;
1154 
1155 	mutex_init(&sig->cred_guard_mutex);
1156 
1157 	return 0;
1158 }
1159 
1160 static void copy_seccomp(struct task_struct *p)
1161 {
1162 #ifdef CONFIG_SECCOMP
1163 	/*
1164 	 * Must be called with sighand->lock held, which is common to
1165 	 * all threads in the group. Holding cred_guard_mutex is not
1166 	 * needed because this new task is not yet running and cannot
1167 	 * be racing exec.
1168 	 */
1169 	assert_spin_locked(&current->sighand->siglock);
1170 
1171 	/* Ref-count the new filter user, and assign it. */
1172 	get_seccomp_filter(current);
1173 	p->seccomp = current->seccomp;
1174 
1175 	/*
1176 	 * Explicitly enable no_new_privs here in case it got set
1177 	 * between the task_struct being duplicated and holding the
1178 	 * sighand lock. The seccomp state and nnp must be in sync.
1179 	 */
1180 	if (task_no_new_privs(current))
1181 		task_set_no_new_privs(p);
1182 
1183 	/*
1184 	 * If the parent gained a seccomp mode after copying thread
1185 	 * flags and between before we held the sighand lock, we have
1186 	 * to manually enable the seccomp thread flag here.
1187 	 */
1188 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1189 		set_tsk_thread_flag(p, TIF_SECCOMP);
1190 #endif
1191 }
1192 
1193 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1194 {
1195 	current->clear_child_tid = tidptr;
1196 
1197 	return task_pid_vnr(current);
1198 }
1199 
1200 static void rt_mutex_init_task(struct task_struct *p)
1201 {
1202 	raw_spin_lock_init(&p->pi_lock);
1203 #ifdef CONFIG_RT_MUTEXES
1204 	p->pi_waiters = RB_ROOT;
1205 	p->pi_waiters_leftmost = NULL;
1206 	p->pi_blocked_on = NULL;
1207 #endif
1208 }
1209 
1210 /*
1211  * Initialize POSIX timer handling for a single task.
1212  */
1213 static void posix_cpu_timers_init(struct task_struct *tsk)
1214 {
1215 	tsk->cputime_expires.prof_exp = 0;
1216 	tsk->cputime_expires.virt_exp = 0;
1217 	tsk->cputime_expires.sched_exp = 0;
1218 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1219 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1220 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1221 }
1222 
1223 static inline void
1224 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1225 {
1226 	 task->pids[type].pid = pid;
1227 }
1228 
1229 /*
1230  * This creates a new process as a copy of the old one,
1231  * but does not actually start it yet.
1232  *
1233  * It copies the registers, and all the appropriate
1234  * parts of the process environment (as per the clone
1235  * flags). The actual kick-off is left to the caller.
1236  */
1237 static struct task_struct *copy_process(unsigned long clone_flags,
1238 					unsigned long stack_start,
1239 					unsigned long stack_size,
1240 					int __user *child_tidptr,
1241 					struct pid *pid,
1242 					int trace,
1243 					unsigned long tls)
1244 {
1245 	int retval;
1246 	struct task_struct *p;
1247 
1248 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1249 		return ERR_PTR(-EINVAL);
1250 
1251 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1252 		return ERR_PTR(-EINVAL);
1253 
1254 	/*
1255 	 * Thread groups must share signals as well, and detached threads
1256 	 * can only be started up within the thread group.
1257 	 */
1258 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1259 		return ERR_PTR(-EINVAL);
1260 
1261 	/*
1262 	 * Shared signal handlers imply shared VM. By way of the above,
1263 	 * thread groups also imply shared VM. Blocking this case allows
1264 	 * for various simplifications in other code.
1265 	 */
1266 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1267 		return ERR_PTR(-EINVAL);
1268 
1269 	/*
1270 	 * Siblings of global init remain as zombies on exit since they are
1271 	 * not reaped by their parent (swapper). To solve this and to avoid
1272 	 * multi-rooted process trees, prevent global and container-inits
1273 	 * from creating siblings.
1274 	 */
1275 	if ((clone_flags & CLONE_PARENT) &&
1276 				current->signal->flags & SIGNAL_UNKILLABLE)
1277 		return ERR_PTR(-EINVAL);
1278 
1279 	/*
1280 	 * If the new process will be in a different pid or user namespace
1281 	 * do not allow it to share a thread group or signal handlers or
1282 	 * parent with the forking task.
1283 	 */
1284 	if (clone_flags & CLONE_SIGHAND) {
1285 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1286 		    (task_active_pid_ns(current) !=
1287 				current->nsproxy->pid_ns_for_children))
1288 			return ERR_PTR(-EINVAL);
1289 	}
1290 
1291 	retval = security_task_create(clone_flags);
1292 	if (retval)
1293 		goto fork_out;
1294 
1295 	retval = -ENOMEM;
1296 	p = dup_task_struct(current);
1297 	if (!p)
1298 		goto fork_out;
1299 
1300 	ftrace_graph_init_task(p);
1301 
1302 	rt_mutex_init_task(p);
1303 
1304 #ifdef CONFIG_PROVE_LOCKING
1305 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1306 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1307 #endif
1308 	retval = -EAGAIN;
1309 	if (atomic_read(&p->real_cred->user->processes) >=
1310 			task_rlimit(p, RLIMIT_NPROC)) {
1311 		if (p->real_cred->user != INIT_USER &&
1312 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1313 			goto bad_fork_free;
1314 	}
1315 	current->flags &= ~PF_NPROC_EXCEEDED;
1316 
1317 	retval = copy_creds(p, clone_flags);
1318 	if (retval < 0)
1319 		goto bad_fork_free;
1320 
1321 	/*
1322 	 * If multiple threads are within copy_process(), then this check
1323 	 * triggers too late. This doesn't hurt, the check is only there
1324 	 * to stop root fork bombs.
1325 	 */
1326 	retval = -EAGAIN;
1327 	if (nr_threads >= max_threads)
1328 		goto bad_fork_cleanup_count;
1329 
1330 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1331 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1332 	p->flags |= PF_FORKNOEXEC;
1333 	INIT_LIST_HEAD(&p->children);
1334 	INIT_LIST_HEAD(&p->sibling);
1335 	rcu_copy_process(p);
1336 	p->vfork_done = NULL;
1337 	spin_lock_init(&p->alloc_lock);
1338 
1339 	init_sigpending(&p->pending);
1340 
1341 	p->utime = p->stime = p->gtime = 0;
1342 	p->utimescaled = p->stimescaled = 0;
1343 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1344 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1345 #endif
1346 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1347 	seqlock_init(&p->vtime_seqlock);
1348 	p->vtime_snap = 0;
1349 	p->vtime_snap_whence = VTIME_SLEEPING;
1350 #endif
1351 
1352 #if defined(SPLIT_RSS_COUNTING)
1353 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1354 #endif
1355 
1356 	p->default_timer_slack_ns = current->timer_slack_ns;
1357 
1358 	task_io_accounting_init(&p->ioac);
1359 	acct_clear_integrals(p);
1360 
1361 	posix_cpu_timers_init(p);
1362 
1363 	p->start_time = ktime_get_ns();
1364 	p->real_start_time = ktime_get_boot_ns();
1365 	p->io_context = NULL;
1366 	p->audit_context = NULL;
1367 	if (clone_flags & CLONE_THREAD)
1368 		threadgroup_change_begin(current);
1369 	cgroup_fork(p);
1370 #ifdef CONFIG_NUMA
1371 	p->mempolicy = mpol_dup(p->mempolicy);
1372 	if (IS_ERR(p->mempolicy)) {
1373 		retval = PTR_ERR(p->mempolicy);
1374 		p->mempolicy = NULL;
1375 		goto bad_fork_cleanup_threadgroup_lock;
1376 	}
1377 #endif
1378 #ifdef CONFIG_CPUSETS
1379 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1380 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1381 	seqcount_init(&p->mems_allowed_seq);
1382 #endif
1383 #ifdef CONFIG_TRACE_IRQFLAGS
1384 	p->irq_events = 0;
1385 	p->hardirqs_enabled = 0;
1386 	p->hardirq_enable_ip = 0;
1387 	p->hardirq_enable_event = 0;
1388 	p->hardirq_disable_ip = _THIS_IP_;
1389 	p->hardirq_disable_event = 0;
1390 	p->softirqs_enabled = 1;
1391 	p->softirq_enable_ip = _THIS_IP_;
1392 	p->softirq_enable_event = 0;
1393 	p->softirq_disable_ip = 0;
1394 	p->softirq_disable_event = 0;
1395 	p->hardirq_context = 0;
1396 	p->softirq_context = 0;
1397 #endif
1398 
1399 	p->pagefault_disabled = 0;
1400 
1401 #ifdef CONFIG_LOCKDEP
1402 	p->lockdep_depth = 0; /* no locks held yet */
1403 	p->curr_chain_key = 0;
1404 	p->lockdep_recursion = 0;
1405 #endif
1406 
1407 #ifdef CONFIG_DEBUG_MUTEXES
1408 	p->blocked_on = NULL; /* not blocked yet */
1409 #endif
1410 #ifdef CONFIG_BCACHE
1411 	p->sequential_io	= 0;
1412 	p->sequential_io_avg	= 0;
1413 #endif
1414 
1415 	/* Perform scheduler related setup. Assign this task to a CPU. */
1416 	retval = sched_fork(clone_flags, p);
1417 	if (retval)
1418 		goto bad_fork_cleanup_policy;
1419 
1420 	retval = perf_event_init_task(p);
1421 	if (retval)
1422 		goto bad_fork_cleanup_policy;
1423 	retval = audit_alloc(p);
1424 	if (retval)
1425 		goto bad_fork_cleanup_perf;
1426 	/* copy all the process information */
1427 	shm_init_task(p);
1428 	retval = copy_semundo(clone_flags, p);
1429 	if (retval)
1430 		goto bad_fork_cleanup_audit;
1431 	retval = copy_files(clone_flags, p);
1432 	if (retval)
1433 		goto bad_fork_cleanup_semundo;
1434 	retval = copy_fs(clone_flags, p);
1435 	if (retval)
1436 		goto bad_fork_cleanup_files;
1437 	retval = copy_sighand(clone_flags, p);
1438 	if (retval)
1439 		goto bad_fork_cleanup_fs;
1440 	retval = copy_signal(clone_flags, p);
1441 	if (retval)
1442 		goto bad_fork_cleanup_sighand;
1443 	retval = copy_mm(clone_flags, p);
1444 	if (retval)
1445 		goto bad_fork_cleanup_signal;
1446 	retval = copy_namespaces(clone_flags, p);
1447 	if (retval)
1448 		goto bad_fork_cleanup_mm;
1449 	retval = copy_io(clone_flags, p);
1450 	if (retval)
1451 		goto bad_fork_cleanup_namespaces;
1452 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1453 	if (retval)
1454 		goto bad_fork_cleanup_io;
1455 
1456 	if (pid != &init_struct_pid) {
1457 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1458 		if (IS_ERR(pid)) {
1459 			retval = PTR_ERR(pid);
1460 			goto bad_fork_cleanup_io;
1461 		}
1462 	}
1463 
1464 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1465 	/*
1466 	 * Clear TID on mm_release()?
1467 	 */
1468 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1469 #ifdef CONFIG_BLOCK
1470 	p->plug = NULL;
1471 #endif
1472 #ifdef CONFIG_FUTEX
1473 	p->robust_list = NULL;
1474 #ifdef CONFIG_COMPAT
1475 	p->compat_robust_list = NULL;
1476 #endif
1477 	INIT_LIST_HEAD(&p->pi_state_list);
1478 	p->pi_state_cache = NULL;
1479 #endif
1480 	/*
1481 	 * sigaltstack should be cleared when sharing the same VM
1482 	 */
1483 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1484 		p->sas_ss_sp = p->sas_ss_size = 0;
1485 
1486 	/*
1487 	 * Syscall tracing and stepping should be turned off in the
1488 	 * child regardless of CLONE_PTRACE.
1489 	 */
1490 	user_disable_single_step(p);
1491 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1492 #ifdef TIF_SYSCALL_EMU
1493 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1494 #endif
1495 	clear_all_latency_tracing(p);
1496 
1497 	/* ok, now we should be set up.. */
1498 	p->pid = pid_nr(pid);
1499 	if (clone_flags & CLONE_THREAD) {
1500 		p->exit_signal = -1;
1501 		p->group_leader = current->group_leader;
1502 		p->tgid = current->tgid;
1503 	} else {
1504 		if (clone_flags & CLONE_PARENT)
1505 			p->exit_signal = current->group_leader->exit_signal;
1506 		else
1507 			p->exit_signal = (clone_flags & CSIGNAL);
1508 		p->group_leader = p;
1509 		p->tgid = p->pid;
1510 	}
1511 
1512 	p->nr_dirtied = 0;
1513 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1514 	p->dirty_paused_when = 0;
1515 
1516 	p->pdeath_signal = 0;
1517 	INIT_LIST_HEAD(&p->thread_group);
1518 	p->task_works = NULL;
1519 
1520 	/*
1521 	 * Make it visible to the rest of the system, but dont wake it up yet.
1522 	 * Need tasklist lock for parent etc handling!
1523 	 */
1524 	write_lock_irq(&tasklist_lock);
1525 
1526 	/* CLONE_PARENT re-uses the old parent */
1527 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1528 		p->real_parent = current->real_parent;
1529 		p->parent_exec_id = current->parent_exec_id;
1530 	} else {
1531 		p->real_parent = current;
1532 		p->parent_exec_id = current->self_exec_id;
1533 	}
1534 
1535 	spin_lock(&current->sighand->siglock);
1536 
1537 	/*
1538 	 * Copy seccomp details explicitly here, in case they were changed
1539 	 * before holding sighand lock.
1540 	 */
1541 	copy_seccomp(p);
1542 
1543 	/*
1544 	 * Process group and session signals need to be delivered to just the
1545 	 * parent before the fork or both the parent and the child after the
1546 	 * fork. Restart if a signal comes in before we add the new process to
1547 	 * it's process group.
1548 	 * A fatal signal pending means that current will exit, so the new
1549 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1550 	*/
1551 	recalc_sigpending();
1552 	if (signal_pending(current)) {
1553 		spin_unlock(&current->sighand->siglock);
1554 		write_unlock_irq(&tasklist_lock);
1555 		retval = -ERESTARTNOINTR;
1556 		goto bad_fork_free_pid;
1557 	}
1558 
1559 	if (likely(p->pid)) {
1560 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1561 
1562 		init_task_pid(p, PIDTYPE_PID, pid);
1563 		if (thread_group_leader(p)) {
1564 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1565 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1566 
1567 			if (is_child_reaper(pid)) {
1568 				ns_of_pid(pid)->child_reaper = p;
1569 				p->signal->flags |= SIGNAL_UNKILLABLE;
1570 			}
1571 
1572 			p->signal->leader_pid = pid;
1573 			p->signal->tty = tty_kref_get(current->signal->tty);
1574 			list_add_tail(&p->sibling, &p->real_parent->children);
1575 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1576 			attach_pid(p, PIDTYPE_PGID);
1577 			attach_pid(p, PIDTYPE_SID);
1578 			__this_cpu_inc(process_counts);
1579 		} else {
1580 			current->signal->nr_threads++;
1581 			atomic_inc(&current->signal->live);
1582 			atomic_inc(&current->signal->sigcnt);
1583 			list_add_tail_rcu(&p->thread_group,
1584 					  &p->group_leader->thread_group);
1585 			list_add_tail_rcu(&p->thread_node,
1586 					  &p->signal->thread_head);
1587 		}
1588 		attach_pid(p, PIDTYPE_PID);
1589 		nr_threads++;
1590 	}
1591 
1592 	total_forks++;
1593 	spin_unlock(&current->sighand->siglock);
1594 	syscall_tracepoint_update(p);
1595 	write_unlock_irq(&tasklist_lock);
1596 
1597 	proc_fork_connector(p);
1598 	cgroup_post_fork(p);
1599 	if (clone_flags & CLONE_THREAD)
1600 		threadgroup_change_end(current);
1601 	perf_event_fork(p);
1602 
1603 	trace_task_newtask(p, clone_flags);
1604 	uprobe_copy_process(p, clone_flags);
1605 
1606 	return p;
1607 
1608 bad_fork_free_pid:
1609 	if (pid != &init_struct_pid)
1610 		free_pid(pid);
1611 bad_fork_cleanup_io:
1612 	if (p->io_context)
1613 		exit_io_context(p);
1614 bad_fork_cleanup_namespaces:
1615 	exit_task_namespaces(p);
1616 bad_fork_cleanup_mm:
1617 	if (p->mm)
1618 		mmput(p->mm);
1619 bad_fork_cleanup_signal:
1620 	if (!(clone_flags & CLONE_THREAD))
1621 		free_signal_struct(p->signal);
1622 bad_fork_cleanup_sighand:
1623 	__cleanup_sighand(p->sighand);
1624 bad_fork_cleanup_fs:
1625 	exit_fs(p); /* blocking */
1626 bad_fork_cleanup_files:
1627 	exit_files(p); /* blocking */
1628 bad_fork_cleanup_semundo:
1629 	exit_sem(p);
1630 bad_fork_cleanup_audit:
1631 	audit_free(p);
1632 bad_fork_cleanup_perf:
1633 	perf_event_free_task(p);
1634 bad_fork_cleanup_policy:
1635 #ifdef CONFIG_NUMA
1636 	mpol_put(p->mempolicy);
1637 bad_fork_cleanup_threadgroup_lock:
1638 #endif
1639 	if (clone_flags & CLONE_THREAD)
1640 		threadgroup_change_end(current);
1641 	delayacct_tsk_free(p);
1642 bad_fork_cleanup_count:
1643 	atomic_dec(&p->cred->user->processes);
1644 	exit_creds(p);
1645 bad_fork_free:
1646 	free_task(p);
1647 fork_out:
1648 	return ERR_PTR(retval);
1649 }
1650 
1651 static inline void init_idle_pids(struct pid_link *links)
1652 {
1653 	enum pid_type type;
1654 
1655 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1656 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1657 		links[type].pid = &init_struct_pid;
1658 	}
1659 }
1660 
1661 struct task_struct *fork_idle(int cpu)
1662 {
1663 	struct task_struct *task;
1664 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1665 	if (!IS_ERR(task)) {
1666 		init_idle_pids(task->pids);
1667 		init_idle(task, cpu);
1668 	}
1669 
1670 	return task;
1671 }
1672 
1673 /*
1674  *  Ok, this is the main fork-routine.
1675  *
1676  * It copies the process, and if successful kick-starts
1677  * it and waits for it to finish using the VM if required.
1678  */
1679 long _do_fork(unsigned long clone_flags,
1680 	      unsigned long stack_start,
1681 	      unsigned long stack_size,
1682 	      int __user *parent_tidptr,
1683 	      int __user *child_tidptr,
1684 	      unsigned long tls)
1685 {
1686 	struct task_struct *p;
1687 	int trace = 0;
1688 	long nr;
1689 
1690 	/*
1691 	 * Determine whether and which event to report to ptracer.  When
1692 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1693 	 * requested, no event is reported; otherwise, report if the event
1694 	 * for the type of forking is enabled.
1695 	 */
1696 	if (!(clone_flags & CLONE_UNTRACED)) {
1697 		if (clone_flags & CLONE_VFORK)
1698 			trace = PTRACE_EVENT_VFORK;
1699 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1700 			trace = PTRACE_EVENT_CLONE;
1701 		else
1702 			trace = PTRACE_EVENT_FORK;
1703 
1704 		if (likely(!ptrace_event_enabled(current, trace)))
1705 			trace = 0;
1706 	}
1707 
1708 	p = copy_process(clone_flags, stack_start, stack_size,
1709 			 child_tidptr, NULL, trace, tls);
1710 	/*
1711 	 * Do this prior waking up the new thread - the thread pointer
1712 	 * might get invalid after that point, if the thread exits quickly.
1713 	 */
1714 	if (!IS_ERR(p)) {
1715 		struct completion vfork;
1716 		struct pid *pid;
1717 
1718 		trace_sched_process_fork(current, p);
1719 
1720 		pid = get_task_pid(p, PIDTYPE_PID);
1721 		nr = pid_vnr(pid);
1722 
1723 		if (clone_flags & CLONE_PARENT_SETTID)
1724 			put_user(nr, parent_tidptr);
1725 
1726 		if (clone_flags & CLONE_VFORK) {
1727 			p->vfork_done = &vfork;
1728 			init_completion(&vfork);
1729 			get_task_struct(p);
1730 		}
1731 
1732 		wake_up_new_task(p);
1733 
1734 		/* forking complete and child started to run, tell ptracer */
1735 		if (unlikely(trace))
1736 			ptrace_event_pid(trace, pid);
1737 
1738 		if (clone_flags & CLONE_VFORK) {
1739 			if (!wait_for_vfork_done(p, &vfork))
1740 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1741 		}
1742 
1743 		put_pid(pid);
1744 	} else {
1745 		nr = PTR_ERR(p);
1746 	}
1747 	return nr;
1748 }
1749 
1750 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1751 /* For compatibility with architectures that call do_fork directly rather than
1752  * using the syscall entry points below. */
1753 long do_fork(unsigned long clone_flags,
1754 	      unsigned long stack_start,
1755 	      unsigned long stack_size,
1756 	      int __user *parent_tidptr,
1757 	      int __user *child_tidptr)
1758 {
1759 	return _do_fork(clone_flags, stack_start, stack_size,
1760 			parent_tidptr, child_tidptr, 0);
1761 }
1762 #endif
1763 
1764 /*
1765  * Create a kernel thread.
1766  */
1767 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1768 {
1769 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1770 		(unsigned long)arg, NULL, NULL, 0);
1771 }
1772 
1773 #ifdef __ARCH_WANT_SYS_FORK
1774 SYSCALL_DEFINE0(fork)
1775 {
1776 #ifdef CONFIG_MMU
1777 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1778 #else
1779 	/* can not support in nommu mode */
1780 	return -EINVAL;
1781 #endif
1782 }
1783 #endif
1784 
1785 #ifdef __ARCH_WANT_SYS_VFORK
1786 SYSCALL_DEFINE0(vfork)
1787 {
1788 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1789 			0, NULL, NULL, 0);
1790 }
1791 #endif
1792 
1793 #ifdef __ARCH_WANT_SYS_CLONE
1794 #ifdef CONFIG_CLONE_BACKWARDS
1795 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1796 		 int __user *, parent_tidptr,
1797 		 unsigned long, tls,
1798 		 int __user *, child_tidptr)
1799 #elif defined(CONFIG_CLONE_BACKWARDS2)
1800 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1801 		 int __user *, parent_tidptr,
1802 		 int __user *, child_tidptr,
1803 		 unsigned long, tls)
1804 #elif defined(CONFIG_CLONE_BACKWARDS3)
1805 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1806 		int, stack_size,
1807 		int __user *, parent_tidptr,
1808 		int __user *, child_tidptr,
1809 		unsigned long, tls)
1810 #else
1811 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1812 		 int __user *, parent_tidptr,
1813 		 int __user *, child_tidptr,
1814 		 unsigned long, tls)
1815 #endif
1816 {
1817 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1818 }
1819 #endif
1820 
1821 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1822 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1823 #endif
1824 
1825 static void sighand_ctor(void *data)
1826 {
1827 	struct sighand_struct *sighand = data;
1828 
1829 	spin_lock_init(&sighand->siglock);
1830 	init_waitqueue_head(&sighand->signalfd_wqh);
1831 }
1832 
1833 void __init proc_caches_init(void)
1834 {
1835 	sighand_cachep = kmem_cache_create("sighand_cache",
1836 			sizeof(struct sighand_struct), 0,
1837 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1838 			SLAB_NOTRACK, sighand_ctor);
1839 	signal_cachep = kmem_cache_create("signal_cache",
1840 			sizeof(struct signal_struct), 0,
1841 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1842 	files_cachep = kmem_cache_create("files_cache",
1843 			sizeof(struct files_struct), 0,
1844 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1845 	fs_cachep = kmem_cache_create("fs_cache",
1846 			sizeof(struct fs_struct), 0,
1847 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1848 	/*
1849 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1850 	 * whole struct cpumask for the OFFSTACK case. We could change
1851 	 * this to *only* allocate as much of it as required by the
1852 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1853 	 * is at the end of the structure, exactly for that reason.
1854 	 */
1855 	mm_cachep = kmem_cache_create("mm_struct",
1856 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1857 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1858 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1859 	mmap_init();
1860 	nsproxy_cache_init();
1861 }
1862 
1863 /*
1864  * Check constraints on flags passed to the unshare system call.
1865  */
1866 static int check_unshare_flags(unsigned long unshare_flags)
1867 {
1868 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1869 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1870 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1871 				CLONE_NEWUSER|CLONE_NEWPID))
1872 		return -EINVAL;
1873 	/*
1874 	 * Not implemented, but pretend it works if there is nothing to
1875 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1876 	 * needs to unshare vm.
1877 	 */
1878 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1879 		/* FIXME: get_task_mm() increments ->mm_users */
1880 		if (atomic_read(&current->mm->mm_users) > 1)
1881 			return -EINVAL;
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 /*
1888  * Unshare the filesystem structure if it is being shared
1889  */
1890 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1891 {
1892 	struct fs_struct *fs = current->fs;
1893 
1894 	if (!(unshare_flags & CLONE_FS) || !fs)
1895 		return 0;
1896 
1897 	/* don't need lock here; in the worst case we'll do useless copy */
1898 	if (fs->users == 1)
1899 		return 0;
1900 
1901 	*new_fsp = copy_fs_struct(fs);
1902 	if (!*new_fsp)
1903 		return -ENOMEM;
1904 
1905 	return 0;
1906 }
1907 
1908 /*
1909  * Unshare file descriptor table if it is being shared
1910  */
1911 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1912 {
1913 	struct files_struct *fd = current->files;
1914 	int error = 0;
1915 
1916 	if ((unshare_flags & CLONE_FILES) &&
1917 	    (fd && atomic_read(&fd->count) > 1)) {
1918 		*new_fdp = dup_fd(fd, &error);
1919 		if (!*new_fdp)
1920 			return error;
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 /*
1927  * unshare allows a process to 'unshare' part of the process
1928  * context which was originally shared using clone.  copy_*
1929  * functions used by do_fork() cannot be used here directly
1930  * because they modify an inactive task_struct that is being
1931  * constructed. Here we are modifying the current, active,
1932  * task_struct.
1933  */
1934 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1935 {
1936 	struct fs_struct *fs, *new_fs = NULL;
1937 	struct files_struct *fd, *new_fd = NULL;
1938 	struct cred *new_cred = NULL;
1939 	struct nsproxy *new_nsproxy = NULL;
1940 	int do_sysvsem = 0;
1941 	int err;
1942 
1943 	/*
1944 	 * If unsharing a user namespace must also unshare the thread.
1945 	 */
1946 	if (unshare_flags & CLONE_NEWUSER)
1947 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1948 	/*
1949 	 * If unsharing a thread from a thread group, must also unshare vm.
1950 	 */
1951 	if (unshare_flags & CLONE_THREAD)
1952 		unshare_flags |= CLONE_VM;
1953 	/*
1954 	 * If unsharing vm, must also unshare signal handlers.
1955 	 */
1956 	if (unshare_flags & CLONE_VM)
1957 		unshare_flags |= CLONE_SIGHAND;
1958 	/*
1959 	 * If unsharing namespace, must also unshare filesystem information.
1960 	 */
1961 	if (unshare_flags & CLONE_NEWNS)
1962 		unshare_flags |= CLONE_FS;
1963 
1964 	err = check_unshare_flags(unshare_flags);
1965 	if (err)
1966 		goto bad_unshare_out;
1967 	/*
1968 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1969 	 * to a new ipc namespace, the semaphore arrays from the old
1970 	 * namespace are unreachable.
1971 	 */
1972 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1973 		do_sysvsem = 1;
1974 	err = unshare_fs(unshare_flags, &new_fs);
1975 	if (err)
1976 		goto bad_unshare_out;
1977 	err = unshare_fd(unshare_flags, &new_fd);
1978 	if (err)
1979 		goto bad_unshare_cleanup_fs;
1980 	err = unshare_userns(unshare_flags, &new_cred);
1981 	if (err)
1982 		goto bad_unshare_cleanup_fd;
1983 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1984 					 new_cred, new_fs);
1985 	if (err)
1986 		goto bad_unshare_cleanup_cred;
1987 
1988 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1989 		if (do_sysvsem) {
1990 			/*
1991 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1992 			 */
1993 			exit_sem(current);
1994 		}
1995 		if (unshare_flags & CLONE_NEWIPC) {
1996 			/* Orphan segments in old ns (see sem above). */
1997 			exit_shm(current);
1998 			shm_init_task(current);
1999 		}
2000 
2001 		if (new_nsproxy)
2002 			switch_task_namespaces(current, new_nsproxy);
2003 
2004 		task_lock(current);
2005 
2006 		if (new_fs) {
2007 			fs = current->fs;
2008 			spin_lock(&fs->lock);
2009 			current->fs = new_fs;
2010 			if (--fs->users)
2011 				new_fs = NULL;
2012 			else
2013 				new_fs = fs;
2014 			spin_unlock(&fs->lock);
2015 		}
2016 
2017 		if (new_fd) {
2018 			fd = current->files;
2019 			current->files = new_fd;
2020 			new_fd = fd;
2021 		}
2022 
2023 		task_unlock(current);
2024 
2025 		if (new_cred) {
2026 			/* Install the new user namespace */
2027 			commit_creds(new_cred);
2028 			new_cred = NULL;
2029 		}
2030 	}
2031 
2032 bad_unshare_cleanup_cred:
2033 	if (new_cred)
2034 		put_cred(new_cred);
2035 bad_unshare_cleanup_fd:
2036 	if (new_fd)
2037 		put_files_struct(new_fd);
2038 
2039 bad_unshare_cleanup_fs:
2040 	if (new_fs)
2041 		free_fs_struct(new_fs);
2042 
2043 bad_unshare_out:
2044 	return err;
2045 }
2046 
2047 /*
2048  *	Helper to unshare the files of the current task.
2049  *	We don't want to expose copy_files internals to
2050  *	the exec layer of the kernel.
2051  */
2052 
2053 int unshare_files(struct files_struct **displaced)
2054 {
2055 	struct task_struct *task = current;
2056 	struct files_struct *copy = NULL;
2057 	int error;
2058 
2059 	error = unshare_fd(CLONE_FILES, &copy);
2060 	if (error || !copy) {
2061 		*displaced = NULL;
2062 		return error;
2063 	}
2064 	*displaced = task->files;
2065 	task_lock(task);
2066 	task->files = copy;
2067 	task_unlock(task);
2068 	return 0;
2069 }
2070 
2071 int sysctl_max_threads(struct ctl_table *table, int write,
2072 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2073 {
2074 	struct ctl_table t;
2075 	int ret;
2076 	int threads = max_threads;
2077 	int min = MIN_THREADS;
2078 	int max = MAX_THREADS;
2079 
2080 	t = *table;
2081 	t.data = &threads;
2082 	t.extra1 = &min;
2083 	t.extra2 = &max;
2084 
2085 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2086 	if (ret || !write)
2087 		return ret;
2088 
2089 	set_max_threads(threads);
2090 
2091 	return 0;
2092 }
2093