xref: /openbmc/linux/kernel/fork.c (revision bbaf1ff0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
108 
109 #include <trace/events/sched.h>
110 
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
113 
114 /*
115  * Minimum number of threads to boot the kernel
116  */
117 #define MIN_THREADS 20
118 
119 /*
120  * Maximum number of threads
121  */
122 #define MAX_THREADS FUTEX_TID_MASK
123 
124 /*
125  * Protected counters by write_lock_irq(&tasklist_lock)
126  */
127 unsigned long total_forks;	/* Handle normal Linux uptimes. */
128 int nr_threads;			/* The idle threads do not count.. */
129 
130 static int max_threads;		/* tunable limit on nr_threads */
131 
132 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
133 
134 static const char * const resident_page_types[] = {
135 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 };
140 
141 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142 
143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
144 
145 #ifdef CONFIG_PROVE_RCU
146 int lockdep_tasklist_lock_is_held(void)
147 {
148 	return lockdep_is_held(&tasklist_lock);
149 }
150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 #endif /* #ifdef CONFIG_PROVE_RCU */
152 
153 int nr_processes(void)
154 {
155 	int cpu;
156 	int total = 0;
157 
158 	for_each_possible_cpu(cpu)
159 		total += per_cpu(process_counts, cpu);
160 
161 	return total;
162 }
163 
164 void __weak arch_release_task_struct(struct task_struct *tsk)
165 {
166 }
167 
168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
169 static struct kmem_cache *task_struct_cachep;
170 
171 static inline struct task_struct *alloc_task_struct_node(int node)
172 {
173 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 }
175 
176 static inline void free_task_struct(struct task_struct *tsk)
177 {
178 	kmem_cache_free(task_struct_cachep, tsk);
179 }
180 #endif
181 
182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183 
184 /*
185  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186  * kmemcache based allocator.
187  */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 
190 #  ifdef CONFIG_VMAP_STACK
191 /*
192  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193  * flush.  Try to minimize the number of calls by caching stacks.
194  */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197 
198 struct vm_stack {
199 	struct rcu_head rcu;
200 	struct vm_struct *stack_vm_area;
201 };
202 
203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 	unsigned int i;
206 
207 	for (i = 0; i < NR_CACHED_STACKS; i++) {
208 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 			continue;
210 		return true;
211 	}
212 	return false;
213 }
214 
215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 
219 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 		return;
221 
222 	vfree(vm_stack);
223 }
224 
225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 	struct vm_stack *vm_stack = tsk->stack;
228 
229 	vm_stack->stack_vm_area = tsk->stack_vm_area;
230 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232 
233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 	int i;
237 
238 	for (i = 0; i < NR_CACHED_STACKS; i++) {
239 		struct vm_struct *vm_stack = cached_vm_stacks[i];
240 
241 		if (!vm_stack)
242 			continue;
243 
244 		vfree(vm_stack->addr);
245 		cached_vm_stacks[i] = NULL;
246 	}
247 
248 	return 0;
249 }
250 
251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 	int i;
254 	int ret;
255 	int nr_charged = 0;
256 
257 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 
259 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 		if (ret)
262 			goto err;
263 		nr_charged++;
264 	}
265 	return 0;
266 err:
267 	for (i = 0; i < nr_charged; i++)
268 		memcg_kmem_uncharge_page(vm->pages[i], 0);
269 	return ret;
270 }
271 
272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 	struct vm_struct *vm;
275 	void *stack;
276 	int i;
277 
278 	for (i = 0; i < NR_CACHED_STACKS; i++) {
279 		struct vm_struct *s;
280 
281 		s = this_cpu_xchg(cached_stacks[i], NULL);
282 
283 		if (!s)
284 			continue;
285 
286 		/* Reset stack metadata. */
287 		kasan_unpoison_range(s->addr, THREAD_SIZE);
288 
289 		stack = kasan_reset_tag(s->addr);
290 
291 		/* Clear stale pointers from reused stack. */
292 		memset(stack, 0, THREAD_SIZE);
293 
294 		if (memcg_charge_kernel_stack(s)) {
295 			vfree(s->addr);
296 			return -ENOMEM;
297 		}
298 
299 		tsk->stack_vm_area = s;
300 		tsk->stack = stack;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Allocated stacks are cached and later reused by new threads,
306 	 * so memcg accounting is performed manually on assigning/releasing
307 	 * stacks to tasks. Drop __GFP_ACCOUNT.
308 	 */
309 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 				     VMALLOC_START, VMALLOC_END,
311 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
312 				     PAGE_KERNEL,
313 				     0, node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #  else /* !CONFIG_VMAP_STACK */
343 
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348 
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 	struct rcu_head *rh = tsk->stack;
352 
353 	call_rcu(rh, thread_stack_free_rcu);
354 }
355 
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 					     THREAD_SIZE_ORDER);
360 
361 	if (likely(page)) {
362 		tsk->stack = kasan_reset_tag(page_address(page));
363 		return 0;
364 	}
365 	return -ENOMEM;
366 }
367 
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 	thread_stack_delayed_free(tsk);
371 	tsk->stack = NULL;
372 }
373 
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 
377 static struct kmem_cache *thread_stack_cache;
378 
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 	kmem_cache_free(thread_stack_cache, rh);
382 }
383 
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 	struct rcu_head *rh = tsk->stack;
387 
388 	call_rcu(rh, thread_stack_free_rcu);
389 }
390 
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 	unsigned long *stack;
394 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 	stack = kasan_reset_tag(stack);
396 	tsk->stack = stack;
397 	return stack ? 0 : -ENOMEM;
398 }
399 
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 	thread_stack_delayed_free(tsk);
403 	tsk->stack = NULL;
404 }
405 
406 void thread_stack_cache_init(void)
407 {
408 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 					THREAD_SIZE, THREAD_SIZE, 0, 0,
410 					THREAD_SIZE, NULL);
411 	BUG_ON(thread_stack_cache == NULL);
412 }
413 
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416 
417 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
418 {
419 	unsigned long *stack;
420 
421 	stack = arch_alloc_thread_stack_node(tsk, node);
422 	tsk->stack = stack;
423 	return stack ? 0 : -ENOMEM;
424 }
425 
426 static void free_thread_stack(struct task_struct *tsk)
427 {
428 	arch_free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 }
431 
432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
433 
434 /* SLAB cache for signal_struct structures (tsk->signal) */
435 static struct kmem_cache *signal_cachep;
436 
437 /* SLAB cache for sighand_struct structures (tsk->sighand) */
438 struct kmem_cache *sighand_cachep;
439 
440 /* SLAB cache for files_struct structures (tsk->files) */
441 struct kmem_cache *files_cachep;
442 
443 /* SLAB cache for fs_struct structures (tsk->fs) */
444 struct kmem_cache *fs_cachep;
445 
446 /* SLAB cache for vm_area_struct structures */
447 static struct kmem_cache *vm_area_cachep;
448 
449 /* SLAB cache for mm_struct structures (tsk->mm) */
450 static struct kmem_cache *mm_cachep;
451 
452 #ifdef CONFIG_PER_VMA_LOCK
453 
454 /* SLAB cache for vm_area_struct.lock */
455 static struct kmem_cache *vma_lock_cachep;
456 
457 static bool vma_lock_alloc(struct vm_area_struct *vma)
458 {
459 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 	if (!vma->vm_lock)
461 		return false;
462 
463 	init_rwsem(&vma->vm_lock->lock);
464 	vma->vm_lock_seq = -1;
465 
466 	return true;
467 }
468 
469 static inline void vma_lock_free(struct vm_area_struct *vma)
470 {
471 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472 }
473 
474 #else /* CONFIG_PER_VMA_LOCK */
475 
476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
477 static inline void vma_lock_free(struct vm_area_struct *vma) {}
478 
479 #endif /* CONFIG_PER_VMA_LOCK */
480 
481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
482 {
483 	struct vm_area_struct *vma;
484 
485 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
486 	if (!vma)
487 		return NULL;
488 
489 	vma_init(vma, mm);
490 	if (!vma_lock_alloc(vma)) {
491 		kmem_cache_free(vm_area_cachep, vma);
492 		return NULL;
493 	}
494 
495 	return vma;
496 }
497 
498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499 {
500 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501 
502 	if (!new)
503 		return NULL;
504 
505 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 	/*
508 	 * orig->shared.rb may be modified concurrently, but the clone
509 	 * will be reinitialized.
510 	 */
511 	data_race(memcpy(new, orig, sizeof(*new)));
512 	if (!vma_lock_alloc(new)) {
513 		kmem_cache_free(vm_area_cachep, new);
514 		return NULL;
515 	}
516 	INIT_LIST_HEAD(&new->anon_vma_chain);
517 	vma_numab_state_init(new);
518 	dup_anon_vma_name(orig, new);
519 
520 	return new;
521 }
522 
523 void __vm_area_free(struct vm_area_struct *vma)
524 {
525 	vma_numab_state_free(vma);
526 	free_anon_vma_name(vma);
527 	vma_lock_free(vma);
528 	kmem_cache_free(vm_area_cachep, vma);
529 }
530 
531 #ifdef CONFIG_PER_VMA_LOCK
532 static void vm_area_free_rcu_cb(struct rcu_head *head)
533 {
534 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 						  vm_rcu);
536 
537 	/* The vma should not be locked while being destroyed. */
538 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
539 	__vm_area_free(vma);
540 }
541 #endif
542 
543 void vm_area_free(struct vm_area_struct *vma)
544 {
545 #ifdef CONFIG_PER_VMA_LOCK
546 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547 #else
548 	__vm_area_free(vma);
549 #endif
550 }
551 
552 static void account_kernel_stack(struct task_struct *tsk, int account)
553 {
554 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 		struct vm_struct *vm = task_stack_vm_area(tsk);
556 		int i;
557 
558 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 					      account * (PAGE_SIZE / 1024));
561 	} else {
562 		void *stack = task_stack_page(tsk);
563 
564 		/* All stack pages are in the same node. */
565 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
566 				      account * (THREAD_SIZE / 1024));
567 	}
568 }
569 
570 void exit_task_stack_account(struct task_struct *tsk)
571 {
572 	account_kernel_stack(tsk, -1);
573 
574 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 		struct vm_struct *vm;
576 		int i;
577 
578 		vm = task_stack_vm_area(tsk);
579 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 			memcg_kmem_uncharge_page(vm->pages[i], 0);
581 	}
582 }
583 
584 static void release_task_stack(struct task_struct *tsk)
585 {
586 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
587 		return;  /* Better to leak the stack than to free prematurely */
588 
589 	free_thread_stack(tsk);
590 }
591 
592 #ifdef CONFIG_THREAD_INFO_IN_TASK
593 void put_task_stack(struct task_struct *tsk)
594 {
595 	if (refcount_dec_and_test(&tsk->stack_refcount))
596 		release_task_stack(tsk);
597 }
598 #endif
599 
600 void free_task(struct task_struct *tsk)
601 {
602 #ifdef CONFIG_SECCOMP
603 	WARN_ON_ONCE(tsk->seccomp.filter);
604 #endif
605 	release_user_cpus_ptr(tsk);
606 	scs_release(tsk);
607 
608 #ifndef CONFIG_THREAD_INFO_IN_TASK
609 	/*
610 	 * The task is finally done with both the stack and thread_info,
611 	 * so free both.
612 	 */
613 	release_task_stack(tsk);
614 #else
615 	/*
616 	 * If the task had a separate stack allocation, it should be gone
617 	 * by now.
618 	 */
619 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
620 #endif
621 	rt_mutex_debug_task_free(tsk);
622 	ftrace_graph_exit_task(tsk);
623 	arch_release_task_struct(tsk);
624 	if (tsk->flags & PF_KTHREAD)
625 		free_kthread_struct(tsk);
626 	bpf_task_storage_free(tsk);
627 	free_task_struct(tsk);
628 }
629 EXPORT_SYMBOL(free_task);
630 
631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632 {
633 	struct file *exe_file;
634 
635 	exe_file = get_mm_exe_file(oldmm);
636 	RCU_INIT_POINTER(mm->exe_file, exe_file);
637 	/*
638 	 * We depend on the oldmm having properly denied write access to the
639 	 * exe_file already.
640 	 */
641 	if (exe_file && deny_write_access(exe_file))
642 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
643 }
644 
645 #ifdef CONFIG_MMU
646 static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 					struct mm_struct *oldmm)
648 {
649 	struct vm_area_struct *mpnt, *tmp;
650 	int retval;
651 	unsigned long charge = 0;
652 	LIST_HEAD(uf);
653 	VMA_ITERATOR(old_vmi, oldmm, 0);
654 	VMA_ITERATOR(vmi, mm, 0);
655 
656 	uprobe_start_dup_mmap();
657 	if (mmap_write_lock_killable(oldmm)) {
658 		retval = -EINTR;
659 		goto fail_uprobe_end;
660 	}
661 	flush_cache_dup_mm(oldmm);
662 	uprobe_dup_mmap(oldmm, mm);
663 	/*
664 	 * Not linked in yet - no deadlock potential:
665 	 */
666 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
667 
668 	/* No ordering required: file already has been exposed. */
669 	dup_mm_exe_file(mm, oldmm);
670 
671 	mm->total_vm = oldmm->total_vm;
672 	mm->data_vm = oldmm->data_vm;
673 	mm->exec_vm = oldmm->exec_vm;
674 	mm->stack_vm = oldmm->stack_vm;
675 
676 	retval = ksm_fork(mm, oldmm);
677 	if (retval)
678 		goto out;
679 	khugepaged_fork(mm, oldmm);
680 
681 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
682 	if (retval)
683 		goto out;
684 
685 	mt_clear_in_rcu(vmi.mas.tree);
686 	for_each_vma(old_vmi, mpnt) {
687 		struct file *file;
688 
689 		if (mpnt->vm_flags & VM_DONTCOPY) {
690 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
691 			continue;
692 		}
693 		charge = 0;
694 		/*
695 		 * Don't duplicate many vmas if we've been oom-killed (for
696 		 * example)
697 		 */
698 		if (fatal_signal_pending(current)) {
699 			retval = -EINTR;
700 			goto loop_out;
701 		}
702 		if (mpnt->vm_flags & VM_ACCOUNT) {
703 			unsigned long len = vma_pages(mpnt);
704 
705 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
706 				goto fail_nomem;
707 			charge = len;
708 		}
709 		tmp = vm_area_dup(mpnt);
710 		if (!tmp)
711 			goto fail_nomem;
712 		retval = vma_dup_policy(mpnt, tmp);
713 		if (retval)
714 			goto fail_nomem_policy;
715 		tmp->vm_mm = mm;
716 		retval = dup_userfaultfd(tmp, &uf);
717 		if (retval)
718 			goto fail_nomem_anon_vma_fork;
719 		if (tmp->vm_flags & VM_WIPEONFORK) {
720 			/*
721 			 * VM_WIPEONFORK gets a clean slate in the child.
722 			 * Don't prepare anon_vma until fault since we don't
723 			 * copy page for current vma.
724 			 */
725 			tmp->anon_vma = NULL;
726 		} else if (anon_vma_fork(tmp, mpnt))
727 			goto fail_nomem_anon_vma_fork;
728 		vm_flags_clear(tmp, VM_LOCKED_MASK);
729 		file = tmp->vm_file;
730 		if (file) {
731 			struct address_space *mapping = file->f_mapping;
732 
733 			get_file(file);
734 			i_mmap_lock_write(mapping);
735 			if (tmp->vm_flags & VM_SHARED)
736 				mapping_allow_writable(mapping);
737 			flush_dcache_mmap_lock(mapping);
738 			/* insert tmp into the share list, just after mpnt */
739 			vma_interval_tree_insert_after(tmp, mpnt,
740 					&mapping->i_mmap);
741 			flush_dcache_mmap_unlock(mapping);
742 			i_mmap_unlock_write(mapping);
743 		}
744 
745 		/*
746 		 * Copy/update hugetlb private vma information.
747 		 */
748 		if (is_vm_hugetlb_page(tmp))
749 			hugetlb_dup_vma_private(tmp);
750 
751 		/* Link the vma into the MT */
752 		if (vma_iter_bulk_store(&vmi, tmp))
753 			goto fail_nomem_vmi_store;
754 
755 		mm->map_count++;
756 		if (!(tmp->vm_flags & VM_WIPEONFORK))
757 			retval = copy_page_range(tmp, mpnt);
758 
759 		if (tmp->vm_ops && tmp->vm_ops->open)
760 			tmp->vm_ops->open(tmp);
761 
762 		if (retval)
763 			goto loop_out;
764 	}
765 	/* a new mm has just been created */
766 	retval = arch_dup_mmap(oldmm, mm);
767 loop_out:
768 	vma_iter_free(&vmi);
769 	if (!retval)
770 		mt_set_in_rcu(vmi.mas.tree);
771 out:
772 	mmap_write_unlock(mm);
773 	flush_tlb_mm(oldmm);
774 	mmap_write_unlock(oldmm);
775 	dup_userfaultfd_complete(&uf);
776 fail_uprobe_end:
777 	uprobe_end_dup_mmap();
778 	return retval;
779 
780 fail_nomem_vmi_store:
781 	unlink_anon_vmas(tmp);
782 fail_nomem_anon_vma_fork:
783 	mpol_put(vma_policy(tmp));
784 fail_nomem_policy:
785 	vm_area_free(tmp);
786 fail_nomem:
787 	retval = -ENOMEM;
788 	vm_unacct_memory(charge);
789 	goto loop_out;
790 }
791 
792 static inline int mm_alloc_pgd(struct mm_struct *mm)
793 {
794 	mm->pgd = pgd_alloc(mm);
795 	if (unlikely(!mm->pgd))
796 		return -ENOMEM;
797 	return 0;
798 }
799 
800 static inline void mm_free_pgd(struct mm_struct *mm)
801 {
802 	pgd_free(mm, mm->pgd);
803 }
804 #else
805 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
806 {
807 	mmap_write_lock(oldmm);
808 	dup_mm_exe_file(mm, oldmm);
809 	mmap_write_unlock(oldmm);
810 	return 0;
811 }
812 #define mm_alloc_pgd(mm)	(0)
813 #define mm_free_pgd(mm)
814 #endif /* CONFIG_MMU */
815 
816 static void check_mm(struct mm_struct *mm)
817 {
818 	int i;
819 
820 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
821 			 "Please make sure 'struct resident_page_types[]' is updated as well");
822 
823 	for (i = 0; i < NR_MM_COUNTERS; i++) {
824 		long x = percpu_counter_sum(&mm->rss_stat[i]);
825 
826 		if (unlikely(x))
827 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
828 				 mm, resident_page_types[i], x);
829 	}
830 
831 	if (mm_pgtables_bytes(mm))
832 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
833 				mm_pgtables_bytes(mm));
834 
835 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
836 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
837 #endif
838 }
839 
840 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
841 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
842 
843 static void do_check_lazy_tlb(void *arg)
844 {
845 	struct mm_struct *mm = arg;
846 
847 	WARN_ON_ONCE(current->active_mm == mm);
848 }
849 
850 static void do_shoot_lazy_tlb(void *arg)
851 {
852 	struct mm_struct *mm = arg;
853 
854 	if (current->active_mm == mm) {
855 		WARN_ON_ONCE(current->mm);
856 		current->active_mm = &init_mm;
857 		switch_mm(mm, &init_mm, current);
858 	}
859 }
860 
861 static void cleanup_lazy_tlbs(struct mm_struct *mm)
862 {
863 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
864 		/*
865 		 * In this case, lazy tlb mms are refounted and would not reach
866 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
867 		 */
868 		return;
869 	}
870 
871 	/*
872 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
873 	 * requires lazy mm users to switch to another mm when the refcount
874 	 * drops to zero, before the mm is freed. This requires IPIs here to
875 	 * switch kernel threads to init_mm.
876 	 *
877 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
878 	 * switch with the final userspace teardown TLB flush which leaves the
879 	 * mm lazy on this CPU but no others, reducing the need for additional
880 	 * IPIs here. There are cases where a final IPI is still required here,
881 	 * such as the final mmdrop being performed on a different CPU than the
882 	 * one exiting, or kernel threads using the mm when userspace exits.
883 	 *
884 	 * IPI overheads have not found to be expensive, but they could be
885 	 * reduced in a number of possible ways, for example (roughly
886 	 * increasing order of complexity):
887 	 * - The last lazy reference created by exit_mm() could instead switch
888 	 *   to init_mm, however it's probable this will run on the same CPU
889 	 *   immediately afterwards, so this may not reduce IPIs much.
890 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
891 	 * - CPUs store active_mm where it can be remotely checked without a
892 	 *   lock, to filter out false-positives in the cpumask.
893 	 * - After mm_users or mm_count reaches zero, switching away from the
894 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
895 	 *   with some batching or delaying of the final IPIs.
896 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
897 	 *   switching to avoid IPIs completely.
898 	 */
899 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
900 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
901 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
902 }
903 
904 /*
905  * Called when the last reference to the mm
906  * is dropped: either by a lazy thread or by
907  * mmput. Free the page directory and the mm.
908  */
909 void __mmdrop(struct mm_struct *mm)
910 {
911 	int i;
912 
913 	BUG_ON(mm == &init_mm);
914 	WARN_ON_ONCE(mm == current->mm);
915 
916 	/* Ensure no CPUs are using this as their lazy tlb mm */
917 	cleanup_lazy_tlbs(mm);
918 
919 	WARN_ON_ONCE(mm == current->active_mm);
920 	mm_free_pgd(mm);
921 	destroy_context(mm);
922 	mmu_notifier_subscriptions_destroy(mm);
923 	check_mm(mm);
924 	put_user_ns(mm->user_ns);
925 	mm_pasid_drop(mm);
926 	mm_destroy_cid(mm);
927 
928 	for (i = 0; i < NR_MM_COUNTERS; i++)
929 		percpu_counter_destroy(&mm->rss_stat[i]);
930 	free_mm(mm);
931 }
932 EXPORT_SYMBOL_GPL(__mmdrop);
933 
934 static void mmdrop_async_fn(struct work_struct *work)
935 {
936 	struct mm_struct *mm;
937 
938 	mm = container_of(work, struct mm_struct, async_put_work);
939 	__mmdrop(mm);
940 }
941 
942 static void mmdrop_async(struct mm_struct *mm)
943 {
944 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
945 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
946 		schedule_work(&mm->async_put_work);
947 	}
948 }
949 
950 static inline void free_signal_struct(struct signal_struct *sig)
951 {
952 	taskstats_tgid_free(sig);
953 	sched_autogroup_exit(sig);
954 	/*
955 	 * __mmdrop is not safe to call from softirq context on x86 due to
956 	 * pgd_dtor so postpone it to the async context
957 	 */
958 	if (sig->oom_mm)
959 		mmdrop_async(sig->oom_mm);
960 	kmem_cache_free(signal_cachep, sig);
961 }
962 
963 static inline void put_signal_struct(struct signal_struct *sig)
964 {
965 	if (refcount_dec_and_test(&sig->sigcnt))
966 		free_signal_struct(sig);
967 }
968 
969 void __put_task_struct(struct task_struct *tsk)
970 {
971 	WARN_ON(!tsk->exit_state);
972 	WARN_ON(refcount_read(&tsk->usage));
973 	WARN_ON(tsk == current);
974 
975 	io_uring_free(tsk);
976 	cgroup_free(tsk);
977 	task_numa_free(tsk, true);
978 	security_task_free(tsk);
979 	exit_creds(tsk);
980 	delayacct_tsk_free(tsk);
981 	put_signal_struct(tsk->signal);
982 	sched_core_free(tsk);
983 	free_task(tsk);
984 }
985 EXPORT_SYMBOL_GPL(__put_task_struct);
986 
987 void __init __weak arch_task_cache_init(void) { }
988 
989 /*
990  * set_max_threads
991  */
992 static void set_max_threads(unsigned int max_threads_suggested)
993 {
994 	u64 threads;
995 	unsigned long nr_pages = totalram_pages();
996 
997 	/*
998 	 * The number of threads shall be limited such that the thread
999 	 * structures may only consume a small part of the available memory.
1000 	 */
1001 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1002 		threads = MAX_THREADS;
1003 	else
1004 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1005 				    (u64) THREAD_SIZE * 8UL);
1006 
1007 	if (threads > max_threads_suggested)
1008 		threads = max_threads_suggested;
1009 
1010 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1011 }
1012 
1013 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1014 /* Initialized by the architecture: */
1015 int arch_task_struct_size __read_mostly;
1016 #endif
1017 
1018 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1019 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1020 {
1021 	/* Fetch thread_struct whitelist for the architecture. */
1022 	arch_thread_struct_whitelist(offset, size);
1023 
1024 	/*
1025 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1026 	 * adjust offset to position of thread_struct in task_struct.
1027 	 */
1028 	if (unlikely(*size == 0))
1029 		*offset = 0;
1030 	else
1031 		*offset += offsetof(struct task_struct, thread);
1032 }
1033 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1034 
1035 void __init fork_init(void)
1036 {
1037 	int i;
1038 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1039 #ifndef ARCH_MIN_TASKALIGN
1040 #define ARCH_MIN_TASKALIGN	0
1041 #endif
1042 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1043 	unsigned long useroffset, usersize;
1044 
1045 	/* create a slab on which task_structs can be allocated */
1046 	task_struct_whitelist(&useroffset, &usersize);
1047 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1048 			arch_task_struct_size, align,
1049 			SLAB_PANIC|SLAB_ACCOUNT,
1050 			useroffset, usersize, NULL);
1051 #endif
1052 
1053 	/* do the arch specific task caches init */
1054 	arch_task_cache_init();
1055 
1056 	set_max_threads(MAX_THREADS);
1057 
1058 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1059 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1060 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1061 		init_task.signal->rlim[RLIMIT_NPROC];
1062 
1063 	for (i = 0; i < UCOUNT_COUNTS; i++)
1064 		init_user_ns.ucount_max[i] = max_threads/2;
1065 
1066 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1067 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1068 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1069 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1070 
1071 #ifdef CONFIG_VMAP_STACK
1072 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1073 			  NULL, free_vm_stack_cache);
1074 #endif
1075 
1076 	scs_init();
1077 
1078 	lockdep_init_task(&init_task);
1079 	uprobes_init();
1080 }
1081 
1082 int __weak arch_dup_task_struct(struct task_struct *dst,
1083 					       struct task_struct *src)
1084 {
1085 	*dst = *src;
1086 	return 0;
1087 }
1088 
1089 void set_task_stack_end_magic(struct task_struct *tsk)
1090 {
1091 	unsigned long *stackend;
1092 
1093 	stackend = end_of_stack(tsk);
1094 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1095 }
1096 
1097 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1098 {
1099 	struct task_struct *tsk;
1100 	int err;
1101 
1102 	if (node == NUMA_NO_NODE)
1103 		node = tsk_fork_get_node(orig);
1104 	tsk = alloc_task_struct_node(node);
1105 	if (!tsk)
1106 		return NULL;
1107 
1108 	err = arch_dup_task_struct(tsk, orig);
1109 	if (err)
1110 		goto free_tsk;
1111 
1112 	err = alloc_thread_stack_node(tsk, node);
1113 	if (err)
1114 		goto free_tsk;
1115 
1116 #ifdef CONFIG_THREAD_INFO_IN_TASK
1117 	refcount_set(&tsk->stack_refcount, 1);
1118 #endif
1119 	account_kernel_stack(tsk, 1);
1120 
1121 	err = scs_prepare(tsk, node);
1122 	if (err)
1123 		goto free_stack;
1124 
1125 #ifdef CONFIG_SECCOMP
1126 	/*
1127 	 * We must handle setting up seccomp filters once we're under
1128 	 * the sighand lock in case orig has changed between now and
1129 	 * then. Until then, filter must be NULL to avoid messing up
1130 	 * the usage counts on the error path calling free_task.
1131 	 */
1132 	tsk->seccomp.filter = NULL;
1133 #endif
1134 
1135 	setup_thread_stack(tsk, orig);
1136 	clear_user_return_notifier(tsk);
1137 	clear_tsk_need_resched(tsk);
1138 	set_task_stack_end_magic(tsk);
1139 	clear_syscall_work_syscall_user_dispatch(tsk);
1140 
1141 #ifdef CONFIG_STACKPROTECTOR
1142 	tsk->stack_canary = get_random_canary();
1143 #endif
1144 	if (orig->cpus_ptr == &orig->cpus_mask)
1145 		tsk->cpus_ptr = &tsk->cpus_mask;
1146 	dup_user_cpus_ptr(tsk, orig, node);
1147 
1148 	/*
1149 	 * One for the user space visible state that goes away when reaped.
1150 	 * One for the scheduler.
1151 	 */
1152 	refcount_set(&tsk->rcu_users, 2);
1153 	/* One for the rcu users */
1154 	refcount_set(&tsk->usage, 1);
1155 #ifdef CONFIG_BLK_DEV_IO_TRACE
1156 	tsk->btrace_seq = 0;
1157 #endif
1158 	tsk->splice_pipe = NULL;
1159 	tsk->task_frag.page = NULL;
1160 	tsk->wake_q.next = NULL;
1161 	tsk->worker_private = NULL;
1162 
1163 	kcov_task_init(tsk);
1164 	kmsan_task_create(tsk);
1165 	kmap_local_fork(tsk);
1166 
1167 #ifdef CONFIG_FAULT_INJECTION
1168 	tsk->fail_nth = 0;
1169 #endif
1170 
1171 #ifdef CONFIG_BLK_CGROUP
1172 	tsk->throttle_disk = NULL;
1173 	tsk->use_memdelay = 0;
1174 #endif
1175 
1176 #ifdef CONFIG_IOMMU_SVA
1177 	tsk->pasid_activated = 0;
1178 #endif
1179 
1180 #ifdef CONFIG_MEMCG
1181 	tsk->active_memcg = NULL;
1182 #endif
1183 
1184 #ifdef CONFIG_CPU_SUP_INTEL
1185 	tsk->reported_split_lock = 0;
1186 #endif
1187 
1188 #ifdef CONFIG_SCHED_MM_CID
1189 	tsk->mm_cid = -1;
1190 	tsk->last_mm_cid = -1;
1191 	tsk->mm_cid_active = 0;
1192 	tsk->migrate_from_cpu = -1;
1193 #endif
1194 	return tsk;
1195 
1196 free_stack:
1197 	exit_task_stack_account(tsk);
1198 	free_thread_stack(tsk);
1199 free_tsk:
1200 	free_task_struct(tsk);
1201 	return NULL;
1202 }
1203 
1204 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1205 
1206 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1207 
1208 static int __init coredump_filter_setup(char *s)
1209 {
1210 	default_dump_filter =
1211 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1212 		MMF_DUMP_FILTER_MASK;
1213 	return 1;
1214 }
1215 
1216 __setup("coredump_filter=", coredump_filter_setup);
1217 
1218 #include <linux/init_task.h>
1219 
1220 static void mm_init_aio(struct mm_struct *mm)
1221 {
1222 #ifdef CONFIG_AIO
1223 	spin_lock_init(&mm->ioctx_lock);
1224 	mm->ioctx_table = NULL;
1225 #endif
1226 }
1227 
1228 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1229 					   struct task_struct *p)
1230 {
1231 #ifdef CONFIG_MEMCG
1232 	if (mm->owner == p)
1233 		WRITE_ONCE(mm->owner, NULL);
1234 #endif
1235 }
1236 
1237 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1238 {
1239 #ifdef CONFIG_MEMCG
1240 	mm->owner = p;
1241 #endif
1242 }
1243 
1244 static void mm_init_uprobes_state(struct mm_struct *mm)
1245 {
1246 #ifdef CONFIG_UPROBES
1247 	mm->uprobes_state.xol_area = NULL;
1248 #endif
1249 }
1250 
1251 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1252 	struct user_namespace *user_ns)
1253 {
1254 	int i;
1255 
1256 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1257 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1258 	atomic_set(&mm->mm_users, 1);
1259 	atomic_set(&mm->mm_count, 1);
1260 	seqcount_init(&mm->write_protect_seq);
1261 	mmap_init_lock(mm);
1262 	INIT_LIST_HEAD(&mm->mmlist);
1263 #ifdef CONFIG_PER_VMA_LOCK
1264 	mm->mm_lock_seq = 0;
1265 #endif
1266 	mm_pgtables_bytes_init(mm);
1267 	mm->map_count = 0;
1268 	mm->locked_vm = 0;
1269 	atomic64_set(&mm->pinned_vm, 0);
1270 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1271 	spin_lock_init(&mm->page_table_lock);
1272 	spin_lock_init(&mm->arg_lock);
1273 	mm_init_cpumask(mm);
1274 	mm_init_aio(mm);
1275 	mm_init_owner(mm, p);
1276 	mm_pasid_init(mm);
1277 	RCU_INIT_POINTER(mm->exe_file, NULL);
1278 	mmu_notifier_subscriptions_init(mm);
1279 	init_tlb_flush_pending(mm);
1280 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1281 	mm->pmd_huge_pte = NULL;
1282 #endif
1283 	mm_init_uprobes_state(mm);
1284 	hugetlb_count_init(mm);
1285 
1286 	if (current->mm) {
1287 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1288 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1289 	} else {
1290 		mm->flags = default_dump_filter;
1291 		mm->def_flags = 0;
1292 	}
1293 
1294 	if (mm_alloc_pgd(mm))
1295 		goto fail_nopgd;
1296 
1297 	if (init_new_context(p, mm))
1298 		goto fail_nocontext;
1299 
1300 	if (mm_alloc_cid(mm))
1301 		goto fail_cid;
1302 
1303 	for (i = 0; i < NR_MM_COUNTERS; i++)
1304 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1305 			goto fail_pcpu;
1306 
1307 	mm->user_ns = get_user_ns(user_ns);
1308 	lru_gen_init_mm(mm);
1309 	return mm;
1310 
1311 fail_pcpu:
1312 	while (i > 0)
1313 		percpu_counter_destroy(&mm->rss_stat[--i]);
1314 	mm_destroy_cid(mm);
1315 fail_cid:
1316 	destroy_context(mm);
1317 fail_nocontext:
1318 	mm_free_pgd(mm);
1319 fail_nopgd:
1320 	free_mm(mm);
1321 	return NULL;
1322 }
1323 
1324 /*
1325  * Allocate and initialize an mm_struct.
1326  */
1327 struct mm_struct *mm_alloc(void)
1328 {
1329 	struct mm_struct *mm;
1330 
1331 	mm = allocate_mm();
1332 	if (!mm)
1333 		return NULL;
1334 
1335 	memset(mm, 0, sizeof(*mm));
1336 	return mm_init(mm, current, current_user_ns());
1337 }
1338 
1339 static inline void __mmput(struct mm_struct *mm)
1340 {
1341 	VM_BUG_ON(atomic_read(&mm->mm_users));
1342 
1343 	uprobe_clear_state(mm);
1344 	exit_aio(mm);
1345 	ksm_exit(mm);
1346 	khugepaged_exit(mm); /* must run before exit_mmap */
1347 	exit_mmap(mm);
1348 	mm_put_huge_zero_page(mm);
1349 	set_mm_exe_file(mm, NULL);
1350 	if (!list_empty(&mm->mmlist)) {
1351 		spin_lock(&mmlist_lock);
1352 		list_del(&mm->mmlist);
1353 		spin_unlock(&mmlist_lock);
1354 	}
1355 	if (mm->binfmt)
1356 		module_put(mm->binfmt->module);
1357 	lru_gen_del_mm(mm);
1358 	mmdrop(mm);
1359 }
1360 
1361 /*
1362  * Decrement the use count and release all resources for an mm.
1363  */
1364 void mmput(struct mm_struct *mm)
1365 {
1366 	might_sleep();
1367 
1368 	if (atomic_dec_and_test(&mm->mm_users))
1369 		__mmput(mm);
1370 }
1371 EXPORT_SYMBOL_GPL(mmput);
1372 
1373 #ifdef CONFIG_MMU
1374 static void mmput_async_fn(struct work_struct *work)
1375 {
1376 	struct mm_struct *mm = container_of(work, struct mm_struct,
1377 					    async_put_work);
1378 
1379 	__mmput(mm);
1380 }
1381 
1382 void mmput_async(struct mm_struct *mm)
1383 {
1384 	if (atomic_dec_and_test(&mm->mm_users)) {
1385 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1386 		schedule_work(&mm->async_put_work);
1387 	}
1388 }
1389 EXPORT_SYMBOL_GPL(mmput_async);
1390 #endif
1391 
1392 /**
1393  * set_mm_exe_file - change a reference to the mm's executable file
1394  *
1395  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1396  *
1397  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1398  * invocations: in mmput() nobody alive left, in execve task is single
1399  * threaded.
1400  *
1401  * Can only fail if new_exe_file != NULL.
1402  */
1403 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1404 {
1405 	struct file *old_exe_file;
1406 
1407 	/*
1408 	 * It is safe to dereference the exe_file without RCU as
1409 	 * this function is only called if nobody else can access
1410 	 * this mm -- see comment above for justification.
1411 	 */
1412 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1413 
1414 	if (new_exe_file) {
1415 		/*
1416 		 * We expect the caller (i.e., sys_execve) to already denied
1417 		 * write access, so this is unlikely to fail.
1418 		 */
1419 		if (unlikely(deny_write_access(new_exe_file)))
1420 			return -EACCES;
1421 		get_file(new_exe_file);
1422 	}
1423 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1424 	if (old_exe_file) {
1425 		allow_write_access(old_exe_file);
1426 		fput(old_exe_file);
1427 	}
1428 	return 0;
1429 }
1430 
1431 /**
1432  * replace_mm_exe_file - replace a reference to the mm's executable file
1433  *
1434  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1435  * dealing with concurrent invocation and without grabbing the mmap lock in
1436  * write mode.
1437  *
1438  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1439  */
1440 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1441 {
1442 	struct vm_area_struct *vma;
1443 	struct file *old_exe_file;
1444 	int ret = 0;
1445 
1446 	/* Forbid mm->exe_file change if old file still mapped. */
1447 	old_exe_file = get_mm_exe_file(mm);
1448 	if (old_exe_file) {
1449 		VMA_ITERATOR(vmi, mm, 0);
1450 		mmap_read_lock(mm);
1451 		for_each_vma(vmi, vma) {
1452 			if (!vma->vm_file)
1453 				continue;
1454 			if (path_equal(&vma->vm_file->f_path,
1455 				       &old_exe_file->f_path)) {
1456 				ret = -EBUSY;
1457 				break;
1458 			}
1459 		}
1460 		mmap_read_unlock(mm);
1461 		fput(old_exe_file);
1462 		if (ret)
1463 			return ret;
1464 	}
1465 
1466 	/* set the new file, lockless */
1467 	ret = deny_write_access(new_exe_file);
1468 	if (ret)
1469 		return -EACCES;
1470 	get_file(new_exe_file);
1471 
1472 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1473 	if (old_exe_file) {
1474 		/*
1475 		 * Don't race with dup_mmap() getting the file and disallowing
1476 		 * write access while someone might open the file writable.
1477 		 */
1478 		mmap_read_lock(mm);
1479 		allow_write_access(old_exe_file);
1480 		fput(old_exe_file);
1481 		mmap_read_unlock(mm);
1482 	}
1483 	return 0;
1484 }
1485 
1486 /**
1487  * get_mm_exe_file - acquire a reference to the mm's executable file
1488  *
1489  * Returns %NULL if mm has no associated executable file.
1490  * User must release file via fput().
1491  */
1492 struct file *get_mm_exe_file(struct mm_struct *mm)
1493 {
1494 	struct file *exe_file;
1495 
1496 	rcu_read_lock();
1497 	exe_file = rcu_dereference(mm->exe_file);
1498 	if (exe_file && !get_file_rcu(exe_file))
1499 		exe_file = NULL;
1500 	rcu_read_unlock();
1501 	return exe_file;
1502 }
1503 
1504 /**
1505  * get_task_exe_file - acquire a reference to the task's executable file
1506  *
1507  * Returns %NULL if task's mm (if any) has no associated executable file or
1508  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1509  * User must release file via fput().
1510  */
1511 struct file *get_task_exe_file(struct task_struct *task)
1512 {
1513 	struct file *exe_file = NULL;
1514 	struct mm_struct *mm;
1515 
1516 	task_lock(task);
1517 	mm = task->mm;
1518 	if (mm) {
1519 		if (!(task->flags & PF_KTHREAD))
1520 			exe_file = get_mm_exe_file(mm);
1521 	}
1522 	task_unlock(task);
1523 	return exe_file;
1524 }
1525 
1526 /**
1527  * get_task_mm - acquire a reference to the task's mm
1528  *
1529  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1530  * this kernel workthread has transiently adopted a user mm with use_mm,
1531  * to do its AIO) is not set and if so returns a reference to it, after
1532  * bumping up the use count.  User must release the mm via mmput()
1533  * after use.  Typically used by /proc and ptrace.
1534  */
1535 struct mm_struct *get_task_mm(struct task_struct *task)
1536 {
1537 	struct mm_struct *mm;
1538 
1539 	task_lock(task);
1540 	mm = task->mm;
1541 	if (mm) {
1542 		if (task->flags & PF_KTHREAD)
1543 			mm = NULL;
1544 		else
1545 			mmget(mm);
1546 	}
1547 	task_unlock(task);
1548 	return mm;
1549 }
1550 EXPORT_SYMBOL_GPL(get_task_mm);
1551 
1552 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1553 {
1554 	struct mm_struct *mm;
1555 	int err;
1556 
1557 	err =  down_read_killable(&task->signal->exec_update_lock);
1558 	if (err)
1559 		return ERR_PTR(err);
1560 
1561 	mm = get_task_mm(task);
1562 	if (mm && mm != current->mm &&
1563 			!ptrace_may_access(task, mode)) {
1564 		mmput(mm);
1565 		mm = ERR_PTR(-EACCES);
1566 	}
1567 	up_read(&task->signal->exec_update_lock);
1568 
1569 	return mm;
1570 }
1571 
1572 static void complete_vfork_done(struct task_struct *tsk)
1573 {
1574 	struct completion *vfork;
1575 
1576 	task_lock(tsk);
1577 	vfork = tsk->vfork_done;
1578 	if (likely(vfork)) {
1579 		tsk->vfork_done = NULL;
1580 		complete(vfork);
1581 	}
1582 	task_unlock(tsk);
1583 }
1584 
1585 static int wait_for_vfork_done(struct task_struct *child,
1586 				struct completion *vfork)
1587 {
1588 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1589 	int killed;
1590 
1591 	cgroup_enter_frozen();
1592 	killed = wait_for_completion_state(vfork, state);
1593 	cgroup_leave_frozen(false);
1594 
1595 	if (killed) {
1596 		task_lock(child);
1597 		child->vfork_done = NULL;
1598 		task_unlock(child);
1599 	}
1600 
1601 	put_task_struct(child);
1602 	return killed;
1603 }
1604 
1605 /* Please note the differences between mmput and mm_release.
1606  * mmput is called whenever we stop holding onto a mm_struct,
1607  * error success whatever.
1608  *
1609  * mm_release is called after a mm_struct has been removed
1610  * from the current process.
1611  *
1612  * This difference is important for error handling, when we
1613  * only half set up a mm_struct for a new process and need to restore
1614  * the old one.  Because we mmput the new mm_struct before
1615  * restoring the old one. . .
1616  * Eric Biederman 10 January 1998
1617  */
1618 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1619 {
1620 	uprobe_free_utask(tsk);
1621 
1622 	/* Get rid of any cached register state */
1623 	deactivate_mm(tsk, mm);
1624 
1625 	/*
1626 	 * Signal userspace if we're not exiting with a core dump
1627 	 * because we want to leave the value intact for debugging
1628 	 * purposes.
1629 	 */
1630 	if (tsk->clear_child_tid) {
1631 		if (atomic_read(&mm->mm_users) > 1) {
1632 			/*
1633 			 * We don't check the error code - if userspace has
1634 			 * not set up a proper pointer then tough luck.
1635 			 */
1636 			put_user(0, tsk->clear_child_tid);
1637 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1638 					1, NULL, NULL, 0, 0);
1639 		}
1640 		tsk->clear_child_tid = NULL;
1641 	}
1642 
1643 	/*
1644 	 * All done, finally we can wake up parent and return this mm to him.
1645 	 * Also kthread_stop() uses this completion for synchronization.
1646 	 */
1647 	if (tsk->vfork_done)
1648 		complete_vfork_done(tsk);
1649 }
1650 
1651 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1652 {
1653 	futex_exit_release(tsk);
1654 	mm_release(tsk, mm);
1655 }
1656 
1657 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1658 {
1659 	futex_exec_release(tsk);
1660 	mm_release(tsk, mm);
1661 }
1662 
1663 /**
1664  * dup_mm() - duplicates an existing mm structure
1665  * @tsk: the task_struct with which the new mm will be associated.
1666  * @oldmm: the mm to duplicate.
1667  *
1668  * Allocates a new mm structure and duplicates the provided @oldmm structure
1669  * content into it.
1670  *
1671  * Return: the duplicated mm or NULL on failure.
1672  */
1673 static struct mm_struct *dup_mm(struct task_struct *tsk,
1674 				struct mm_struct *oldmm)
1675 {
1676 	struct mm_struct *mm;
1677 	int err;
1678 
1679 	mm = allocate_mm();
1680 	if (!mm)
1681 		goto fail_nomem;
1682 
1683 	memcpy(mm, oldmm, sizeof(*mm));
1684 
1685 	if (!mm_init(mm, tsk, mm->user_ns))
1686 		goto fail_nomem;
1687 
1688 	err = dup_mmap(mm, oldmm);
1689 	if (err)
1690 		goto free_pt;
1691 
1692 	mm->hiwater_rss = get_mm_rss(mm);
1693 	mm->hiwater_vm = mm->total_vm;
1694 
1695 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1696 		goto free_pt;
1697 
1698 	return mm;
1699 
1700 free_pt:
1701 	/* don't put binfmt in mmput, we haven't got module yet */
1702 	mm->binfmt = NULL;
1703 	mm_init_owner(mm, NULL);
1704 	mmput(mm);
1705 
1706 fail_nomem:
1707 	return NULL;
1708 }
1709 
1710 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1711 {
1712 	struct mm_struct *mm, *oldmm;
1713 
1714 	tsk->min_flt = tsk->maj_flt = 0;
1715 	tsk->nvcsw = tsk->nivcsw = 0;
1716 #ifdef CONFIG_DETECT_HUNG_TASK
1717 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1718 	tsk->last_switch_time = 0;
1719 #endif
1720 
1721 	tsk->mm = NULL;
1722 	tsk->active_mm = NULL;
1723 
1724 	/*
1725 	 * Are we cloning a kernel thread?
1726 	 *
1727 	 * We need to steal a active VM for that..
1728 	 */
1729 	oldmm = current->mm;
1730 	if (!oldmm)
1731 		return 0;
1732 
1733 	if (clone_flags & CLONE_VM) {
1734 		mmget(oldmm);
1735 		mm = oldmm;
1736 	} else {
1737 		mm = dup_mm(tsk, current->mm);
1738 		if (!mm)
1739 			return -ENOMEM;
1740 	}
1741 
1742 	tsk->mm = mm;
1743 	tsk->active_mm = mm;
1744 	sched_mm_cid_fork(tsk);
1745 	return 0;
1746 }
1747 
1748 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1749 {
1750 	struct fs_struct *fs = current->fs;
1751 	if (clone_flags & CLONE_FS) {
1752 		/* tsk->fs is already what we want */
1753 		spin_lock(&fs->lock);
1754 		if (fs->in_exec) {
1755 			spin_unlock(&fs->lock);
1756 			return -EAGAIN;
1757 		}
1758 		fs->users++;
1759 		spin_unlock(&fs->lock);
1760 		return 0;
1761 	}
1762 	tsk->fs = copy_fs_struct(fs);
1763 	if (!tsk->fs)
1764 		return -ENOMEM;
1765 	return 0;
1766 }
1767 
1768 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1769 		      int no_files)
1770 {
1771 	struct files_struct *oldf, *newf;
1772 	int error = 0;
1773 
1774 	/*
1775 	 * A background process may not have any files ...
1776 	 */
1777 	oldf = current->files;
1778 	if (!oldf)
1779 		goto out;
1780 
1781 	if (no_files) {
1782 		tsk->files = NULL;
1783 		goto out;
1784 	}
1785 
1786 	if (clone_flags & CLONE_FILES) {
1787 		atomic_inc(&oldf->count);
1788 		goto out;
1789 	}
1790 
1791 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1792 	if (!newf)
1793 		goto out;
1794 
1795 	tsk->files = newf;
1796 	error = 0;
1797 out:
1798 	return error;
1799 }
1800 
1801 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1802 {
1803 	struct sighand_struct *sig;
1804 
1805 	if (clone_flags & CLONE_SIGHAND) {
1806 		refcount_inc(&current->sighand->count);
1807 		return 0;
1808 	}
1809 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1810 	RCU_INIT_POINTER(tsk->sighand, sig);
1811 	if (!sig)
1812 		return -ENOMEM;
1813 
1814 	refcount_set(&sig->count, 1);
1815 	spin_lock_irq(&current->sighand->siglock);
1816 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1817 	spin_unlock_irq(&current->sighand->siglock);
1818 
1819 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1820 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1821 		flush_signal_handlers(tsk, 0);
1822 
1823 	return 0;
1824 }
1825 
1826 void __cleanup_sighand(struct sighand_struct *sighand)
1827 {
1828 	if (refcount_dec_and_test(&sighand->count)) {
1829 		signalfd_cleanup(sighand);
1830 		/*
1831 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1832 		 * without an RCU grace period, see __lock_task_sighand().
1833 		 */
1834 		kmem_cache_free(sighand_cachep, sighand);
1835 	}
1836 }
1837 
1838 /*
1839  * Initialize POSIX timer handling for a thread group.
1840  */
1841 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1842 {
1843 	struct posix_cputimers *pct = &sig->posix_cputimers;
1844 	unsigned long cpu_limit;
1845 
1846 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1847 	posix_cputimers_group_init(pct, cpu_limit);
1848 }
1849 
1850 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1851 {
1852 	struct signal_struct *sig;
1853 
1854 	if (clone_flags & CLONE_THREAD)
1855 		return 0;
1856 
1857 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1858 	tsk->signal = sig;
1859 	if (!sig)
1860 		return -ENOMEM;
1861 
1862 	sig->nr_threads = 1;
1863 	sig->quick_threads = 1;
1864 	atomic_set(&sig->live, 1);
1865 	refcount_set(&sig->sigcnt, 1);
1866 
1867 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1868 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1869 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1870 
1871 	init_waitqueue_head(&sig->wait_chldexit);
1872 	sig->curr_target = tsk;
1873 	init_sigpending(&sig->shared_pending);
1874 	INIT_HLIST_HEAD(&sig->multiprocess);
1875 	seqlock_init(&sig->stats_lock);
1876 	prev_cputime_init(&sig->prev_cputime);
1877 
1878 #ifdef CONFIG_POSIX_TIMERS
1879 	INIT_LIST_HEAD(&sig->posix_timers);
1880 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1881 	sig->real_timer.function = it_real_fn;
1882 #endif
1883 
1884 	task_lock(current->group_leader);
1885 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1886 	task_unlock(current->group_leader);
1887 
1888 	posix_cpu_timers_init_group(sig);
1889 
1890 	tty_audit_fork(sig);
1891 	sched_autogroup_fork(sig);
1892 
1893 	sig->oom_score_adj = current->signal->oom_score_adj;
1894 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1895 
1896 	mutex_init(&sig->cred_guard_mutex);
1897 	init_rwsem(&sig->exec_update_lock);
1898 
1899 	return 0;
1900 }
1901 
1902 static void copy_seccomp(struct task_struct *p)
1903 {
1904 #ifdef CONFIG_SECCOMP
1905 	/*
1906 	 * Must be called with sighand->lock held, which is common to
1907 	 * all threads in the group. Holding cred_guard_mutex is not
1908 	 * needed because this new task is not yet running and cannot
1909 	 * be racing exec.
1910 	 */
1911 	assert_spin_locked(&current->sighand->siglock);
1912 
1913 	/* Ref-count the new filter user, and assign it. */
1914 	get_seccomp_filter(current);
1915 	p->seccomp = current->seccomp;
1916 
1917 	/*
1918 	 * Explicitly enable no_new_privs here in case it got set
1919 	 * between the task_struct being duplicated and holding the
1920 	 * sighand lock. The seccomp state and nnp must be in sync.
1921 	 */
1922 	if (task_no_new_privs(current))
1923 		task_set_no_new_privs(p);
1924 
1925 	/*
1926 	 * If the parent gained a seccomp mode after copying thread
1927 	 * flags and between before we held the sighand lock, we have
1928 	 * to manually enable the seccomp thread flag here.
1929 	 */
1930 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1931 		set_task_syscall_work(p, SECCOMP);
1932 #endif
1933 }
1934 
1935 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1936 {
1937 	current->clear_child_tid = tidptr;
1938 
1939 	return task_pid_vnr(current);
1940 }
1941 
1942 static void rt_mutex_init_task(struct task_struct *p)
1943 {
1944 	raw_spin_lock_init(&p->pi_lock);
1945 #ifdef CONFIG_RT_MUTEXES
1946 	p->pi_waiters = RB_ROOT_CACHED;
1947 	p->pi_top_task = NULL;
1948 	p->pi_blocked_on = NULL;
1949 #endif
1950 }
1951 
1952 static inline void init_task_pid_links(struct task_struct *task)
1953 {
1954 	enum pid_type type;
1955 
1956 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1957 		INIT_HLIST_NODE(&task->pid_links[type]);
1958 }
1959 
1960 static inline void
1961 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1962 {
1963 	if (type == PIDTYPE_PID)
1964 		task->thread_pid = pid;
1965 	else
1966 		task->signal->pids[type] = pid;
1967 }
1968 
1969 static inline void rcu_copy_process(struct task_struct *p)
1970 {
1971 #ifdef CONFIG_PREEMPT_RCU
1972 	p->rcu_read_lock_nesting = 0;
1973 	p->rcu_read_unlock_special.s = 0;
1974 	p->rcu_blocked_node = NULL;
1975 	INIT_LIST_HEAD(&p->rcu_node_entry);
1976 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1977 #ifdef CONFIG_TASKS_RCU
1978 	p->rcu_tasks_holdout = false;
1979 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1980 	p->rcu_tasks_idle_cpu = -1;
1981 #endif /* #ifdef CONFIG_TASKS_RCU */
1982 #ifdef CONFIG_TASKS_TRACE_RCU
1983 	p->trc_reader_nesting = 0;
1984 	p->trc_reader_special.s = 0;
1985 	INIT_LIST_HEAD(&p->trc_holdout_list);
1986 	INIT_LIST_HEAD(&p->trc_blkd_node);
1987 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1988 }
1989 
1990 struct pid *pidfd_pid(const struct file *file)
1991 {
1992 	if (file->f_op == &pidfd_fops)
1993 		return file->private_data;
1994 
1995 	return ERR_PTR(-EBADF);
1996 }
1997 
1998 static int pidfd_release(struct inode *inode, struct file *file)
1999 {
2000 	struct pid *pid = file->private_data;
2001 
2002 	file->private_data = NULL;
2003 	put_pid(pid);
2004 	return 0;
2005 }
2006 
2007 #ifdef CONFIG_PROC_FS
2008 /**
2009  * pidfd_show_fdinfo - print information about a pidfd
2010  * @m: proc fdinfo file
2011  * @f: file referencing a pidfd
2012  *
2013  * Pid:
2014  * This function will print the pid that a given pidfd refers to in the
2015  * pid namespace of the procfs instance.
2016  * If the pid namespace of the process is not a descendant of the pid
2017  * namespace of the procfs instance 0 will be shown as its pid. This is
2018  * similar to calling getppid() on a process whose parent is outside of
2019  * its pid namespace.
2020  *
2021  * NSpid:
2022  * If pid namespaces are supported then this function will also print
2023  * the pid of a given pidfd refers to for all descendant pid namespaces
2024  * starting from the current pid namespace of the instance, i.e. the
2025  * Pid field and the first entry in the NSpid field will be identical.
2026  * If the pid namespace of the process is not a descendant of the pid
2027  * namespace of the procfs instance 0 will be shown as its first NSpid
2028  * entry and no others will be shown.
2029  * Note that this differs from the Pid and NSpid fields in
2030  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2031  * the  pid namespace of the procfs instance. The difference becomes
2032  * obvious when sending around a pidfd between pid namespaces from a
2033  * different branch of the tree, i.e. where no ancestral relation is
2034  * present between the pid namespaces:
2035  * - create two new pid namespaces ns1 and ns2 in the initial pid
2036  *   namespace (also take care to create new mount namespaces in the
2037  *   new pid namespace and mount procfs)
2038  * - create a process with a pidfd in ns1
2039  * - send pidfd from ns1 to ns2
2040  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2041  *   have exactly one entry, which is 0
2042  */
2043 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2044 {
2045 	struct pid *pid = f->private_data;
2046 	struct pid_namespace *ns;
2047 	pid_t nr = -1;
2048 
2049 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2050 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2051 		nr = pid_nr_ns(pid, ns);
2052 	}
2053 
2054 	seq_put_decimal_ll(m, "Pid:\t", nr);
2055 
2056 #ifdef CONFIG_PID_NS
2057 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2058 	if (nr > 0) {
2059 		int i;
2060 
2061 		/* If nr is non-zero it means that 'pid' is valid and that
2062 		 * ns, i.e. the pid namespace associated with the procfs
2063 		 * instance, is in the pid namespace hierarchy of pid.
2064 		 * Start at one below the already printed level.
2065 		 */
2066 		for (i = ns->level + 1; i <= pid->level; i++)
2067 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2068 	}
2069 #endif
2070 	seq_putc(m, '\n');
2071 }
2072 #endif
2073 
2074 /*
2075  * Poll support for process exit notification.
2076  */
2077 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2078 {
2079 	struct pid *pid = file->private_data;
2080 	__poll_t poll_flags = 0;
2081 
2082 	poll_wait(file, &pid->wait_pidfd, pts);
2083 
2084 	/*
2085 	 * Inform pollers only when the whole thread group exits.
2086 	 * If the thread group leader exits before all other threads in the
2087 	 * group, then poll(2) should block, similar to the wait(2) family.
2088 	 */
2089 	if (thread_group_exited(pid))
2090 		poll_flags = EPOLLIN | EPOLLRDNORM;
2091 
2092 	return poll_flags;
2093 }
2094 
2095 const struct file_operations pidfd_fops = {
2096 	.release = pidfd_release,
2097 	.poll = pidfd_poll,
2098 #ifdef CONFIG_PROC_FS
2099 	.show_fdinfo = pidfd_show_fdinfo,
2100 #endif
2101 };
2102 
2103 /**
2104  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2105  * @pid:   the struct pid for which to create a pidfd
2106  * @flags: flags of the new @pidfd
2107  * @pidfd: the pidfd to return
2108  *
2109  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2110  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2111 
2112  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2113  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2114  * pidfd file are prepared.
2115  *
2116  * If this function returns successfully the caller is responsible to either
2117  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2118  * order to install the pidfd into its file descriptor table or they must use
2119  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2120  * respectively.
2121  *
2122  * This function is useful when a pidfd must already be reserved but there
2123  * might still be points of failure afterwards and the caller wants to ensure
2124  * that no pidfd is leaked into its file descriptor table.
2125  *
2126  * Return: On success, a reserved pidfd is returned from the function and a new
2127  *         pidfd file is returned in the last argument to the function. On
2128  *         error, a negative error code is returned from the function and the
2129  *         last argument remains unchanged.
2130  */
2131 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2132 {
2133 	int pidfd;
2134 	struct file *pidfd_file;
2135 
2136 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2137 		return -EINVAL;
2138 
2139 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2140 	if (pidfd < 0)
2141 		return pidfd;
2142 
2143 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2144 					flags | O_RDWR | O_CLOEXEC);
2145 	if (IS_ERR(pidfd_file)) {
2146 		put_unused_fd(pidfd);
2147 		return PTR_ERR(pidfd_file);
2148 	}
2149 	get_pid(pid); /* held by pidfd_file now */
2150 	*ret = pidfd_file;
2151 	return pidfd;
2152 }
2153 
2154 /**
2155  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2156  * @pid:   the struct pid for which to create a pidfd
2157  * @flags: flags of the new @pidfd
2158  * @pidfd: the pidfd to return
2159  *
2160  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2161  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2162  *
2163  * The helper verifies that @pid is used as a thread group leader.
2164  *
2165  * If this function returns successfully the caller is responsible to either
2166  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2167  * order to install the pidfd into its file descriptor table or they must use
2168  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2169  * respectively.
2170  *
2171  * This function is useful when a pidfd must already be reserved but there
2172  * might still be points of failure afterwards and the caller wants to ensure
2173  * that no pidfd is leaked into its file descriptor table.
2174  *
2175  * Return: On success, a reserved pidfd is returned from the function and a new
2176  *         pidfd file is returned in the last argument to the function. On
2177  *         error, a negative error code is returned from the function and the
2178  *         last argument remains unchanged.
2179  */
2180 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2181 {
2182 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2183 		return -EINVAL;
2184 
2185 	return __pidfd_prepare(pid, flags, ret);
2186 }
2187 
2188 static void __delayed_free_task(struct rcu_head *rhp)
2189 {
2190 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2191 
2192 	free_task(tsk);
2193 }
2194 
2195 static __always_inline void delayed_free_task(struct task_struct *tsk)
2196 {
2197 	if (IS_ENABLED(CONFIG_MEMCG))
2198 		call_rcu(&tsk->rcu, __delayed_free_task);
2199 	else
2200 		free_task(tsk);
2201 }
2202 
2203 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2204 {
2205 	/* Skip if kernel thread */
2206 	if (!tsk->mm)
2207 		return;
2208 
2209 	/* Skip if spawning a thread or using vfork */
2210 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2211 		return;
2212 
2213 	/* We need to synchronize with __set_oom_adj */
2214 	mutex_lock(&oom_adj_mutex);
2215 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2216 	/* Update the values in case they were changed after copy_signal */
2217 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2218 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2219 	mutex_unlock(&oom_adj_mutex);
2220 }
2221 
2222 #ifdef CONFIG_RV
2223 static void rv_task_fork(struct task_struct *p)
2224 {
2225 	int i;
2226 
2227 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2228 		p->rv[i].da_mon.monitoring = false;
2229 }
2230 #else
2231 #define rv_task_fork(p) do {} while (0)
2232 #endif
2233 
2234 /*
2235  * This creates a new process as a copy of the old one,
2236  * but does not actually start it yet.
2237  *
2238  * It copies the registers, and all the appropriate
2239  * parts of the process environment (as per the clone
2240  * flags). The actual kick-off is left to the caller.
2241  */
2242 __latent_entropy struct task_struct *copy_process(
2243 					struct pid *pid,
2244 					int trace,
2245 					int node,
2246 					struct kernel_clone_args *args)
2247 {
2248 	int pidfd = -1, retval;
2249 	struct task_struct *p;
2250 	struct multiprocess_signals delayed;
2251 	struct file *pidfile = NULL;
2252 	const u64 clone_flags = args->flags;
2253 	struct nsproxy *nsp = current->nsproxy;
2254 
2255 	/*
2256 	 * Don't allow sharing the root directory with processes in a different
2257 	 * namespace
2258 	 */
2259 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2260 		return ERR_PTR(-EINVAL);
2261 
2262 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2263 		return ERR_PTR(-EINVAL);
2264 
2265 	/*
2266 	 * Thread groups must share signals as well, and detached threads
2267 	 * can only be started up within the thread group.
2268 	 */
2269 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2270 		return ERR_PTR(-EINVAL);
2271 
2272 	/*
2273 	 * Shared signal handlers imply shared VM. By way of the above,
2274 	 * thread groups also imply shared VM. Blocking this case allows
2275 	 * for various simplifications in other code.
2276 	 */
2277 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2278 		return ERR_PTR(-EINVAL);
2279 
2280 	/*
2281 	 * Siblings of global init remain as zombies on exit since they are
2282 	 * not reaped by their parent (swapper). To solve this and to avoid
2283 	 * multi-rooted process trees, prevent global and container-inits
2284 	 * from creating siblings.
2285 	 */
2286 	if ((clone_flags & CLONE_PARENT) &&
2287 				current->signal->flags & SIGNAL_UNKILLABLE)
2288 		return ERR_PTR(-EINVAL);
2289 
2290 	/*
2291 	 * If the new process will be in a different pid or user namespace
2292 	 * do not allow it to share a thread group with the forking task.
2293 	 */
2294 	if (clone_flags & CLONE_THREAD) {
2295 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2296 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2297 			return ERR_PTR(-EINVAL);
2298 	}
2299 
2300 	if (clone_flags & CLONE_PIDFD) {
2301 		/*
2302 		 * - CLONE_DETACHED is blocked so that we can potentially
2303 		 *   reuse it later for CLONE_PIDFD.
2304 		 * - CLONE_THREAD is blocked until someone really needs it.
2305 		 */
2306 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2307 			return ERR_PTR(-EINVAL);
2308 	}
2309 
2310 	/*
2311 	 * Force any signals received before this point to be delivered
2312 	 * before the fork happens.  Collect up signals sent to multiple
2313 	 * processes that happen during the fork and delay them so that
2314 	 * they appear to happen after the fork.
2315 	 */
2316 	sigemptyset(&delayed.signal);
2317 	INIT_HLIST_NODE(&delayed.node);
2318 
2319 	spin_lock_irq(&current->sighand->siglock);
2320 	if (!(clone_flags & CLONE_THREAD))
2321 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2322 	recalc_sigpending();
2323 	spin_unlock_irq(&current->sighand->siglock);
2324 	retval = -ERESTARTNOINTR;
2325 	if (task_sigpending(current))
2326 		goto fork_out;
2327 
2328 	retval = -ENOMEM;
2329 	p = dup_task_struct(current, node);
2330 	if (!p)
2331 		goto fork_out;
2332 	p->flags &= ~PF_KTHREAD;
2333 	if (args->kthread)
2334 		p->flags |= PF_KTHREAD;
2335 	if (args->user_worker) {
2336 		/*
2337 		 * Mark us a user worker, and block any signal that isn't
2338 		 * fatal or STOP
2339 		 */
2340 		p->flags |= PF_USER_WORKER;
2341 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2342 	}
2343 	if (args->io_thread)
2344 		p->flags |= PF_IO_WORKER;
2345 
2346 	if (args->name)
2347 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2348 
2349 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2350 	/*
2351 	 * Clear TID on mm_release()?
2352 	 */
2353 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2354 
2355 	ftrace_graph_init_task(p);
2356 
2357 	rt_mutex_init_task(p);
2358 
2359 	lockdep_assert_irqs_enabled();
2360 #ifdef CONFIG_PROVE_LOCKING
2361 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2362 #endif
2363 	retval = copy_creds(p, clone_flags);
2364 	if (retval < 0)
2365 		goto bad_fork_free;
2366 
2367 	retval = -EAGAIN;
2368 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2369 		if (p->real_cred->user != INIT_USER &&
2370 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2371 			goto bad_fork_cleanup_count;
2372 	}
2373 	current->flags &= ~PF_NPROC_EXCEEDED;
2374 
2375 	/*
2376 	 * If multiple threads are within copy_process(), then this check
2377 	 * triggers too late. This doesn't hurt, the check is only there
2378 	 * to stop root fork bombs.
2379 	 */
2380 	retval = -EAGAIN;
2381 	if (data_race(nr_threads >= max_threads))
2382 		goto bad_fork_cleanup_count;
2383 
2384 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2385 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2386 	p->flags |= PF_FORKNOEXEC;
2387 	INIT_LIST_HEAD(&p->children);
2388 	INIT_LIST_HEAD(&p->sibling);
2389 	rcu_copy_process(p);
2390 	p->vfork_done = NULL;
2391 	spin_lock_init(&p->alloc_lock);
2392 
2393 	init_sigpending(&p->pending);
2394 
2395 	p->utime = p->stime = p->gtime = 0;
2396 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2397 	p->utimescaled = p->stimescaled = 0;
2398 #endif
2399 	prev_cputime_init(&p->prev_cputime);
2400 
2401 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2402 	seqcount_init(&p->vtime.seqcount);
2403 	p->vtime.starttime = 0;
2404 	p->vtime.state = VTIME_INACTIVE;
2405 #endif
2406 
2407 #ifdef CONFIG_IO_URING
2408 	p->io_uring = NULL;
2409 #endif
2410 
2411 #if defined(SPLIT_RSS_COUNTING)
2412 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2413 #endif
2414 
2415 	p->default_timer_slack_ns = current->timer_slack_ns;
2416 
2417 #ifdef CONFIG_PSI
2418 	p->psi_flags = 0;
2419 #endif
2420 
2421 	task_io_accounting_init(&p->ioac);
2422 	acct_clear_integrals(p);
2423 
2424 	posix_cputimers_init(&p->posix_cputimers);
2425 
2426 	p->io_context = NULL;
2427 	audit_set_context(p, NULL);
2428 	cgroup_fork(p);
2429 	if (args->kthread) {
2430 		if (!set_kthread_struct(p))
2431 			goto bad_fork_cleanup_delayacct;
2432 	}
2433 #ifdef CONFIG_NUMA
2434 	p->mempolicy = mpol_dup(p->mempolicy);
2435 	if (IS_ERR(p->mempolicy)) {
2436 		retval = PTR_ERR(p->mempolicy);
2437 		p->mempolicy = NULL;
2438 		goto bad_fork_cleanup_delayacct;
2439 	}
2440 #endif
2441 #ifdef CONFIG_CPUSETS
2442 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2443 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2444 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2445 #endif
2446 #ifdef CONFIG_TRACE_IRQFLAGS
2447 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2448 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2449 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2450 	p->softirqs_enabled		= 1;
2451 	p->softirq_context		= 0;
2452 #endif
2453 
2454 	p->pagefault_disabled = 0;
2455 
2456 #ifdef CONFIG_LOCKDEP
2457 	lockdep_init_task(p);
2458 #endif
2459 
2460 #ifdef CONFIG_DEBUG_MUTEXES
2461 	p->blocked_on = NULL; /* not blocked yet */
2462 #endif
2463 #ifdef CONFIG_BCACHE
2464 	p->sequential_io	= 0;
2465 	p->sequential_io_avg	= 0;
2466 #endif
2467 #ifdef CONFIG_BPF_SYSCALL
2468 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2469 	p->bpf_ctx = NULL;
2470 #endif
2471 
2472 	/* Perform scheduler related setup. Assign this task to a CPU. */
2473 	retval = sched_fork(clone_flags, p);
2474 	if (retval)
2475 		goto bad_fork_cleanup_policy;
2476 
2477 	retval = perf_event_init_task(p, clone_flags);
2478 	if (retval)
2479 		goto bad_fork_cleanup_policy;
2480 	retval = audit_alloc(p);
2481 	if (retval)
2482 		goto bad_fork_cleanup_perf;
2483 	/* copy all the process information */
2484 	shm_init_task(p);
2485 	retval = security_task_alloc(p, clone_flags);
2486 	if (retval)
2487 		goto bad_fork_cleanup_audit;
2488 	retval = copy_semundo(clone_flags, p);
2489 	if (retval)
2490 		goto bad_fork_cleanup_security;
2491 	retval = copy_files(clone_flags, p, args->no_files);
2492 	if (retval)
2493 		goto bad_fork_cleanup_semundo;
2494 	retval = copy_fs(clone_flags, p);
2495 	if (retval)
2496 		goto bad_fork_cleanup_files;
2497 	retval = copy_sighand(clone_flags, p);
2498 	if (retval)
2499 		goto bad_fork_cleanup_fs;
2500 	retval = copy_signal(clone_flags, p);
2501 	if (retval)
2502 		goto bad_fork_cleanup_sighand;
2503 	retval = copy_mm(clone_flags, p);
2504 	if (retval)
2505 		goto bad_fork_cleanup_signal;
2506 	retval = copy_namespaces(clone_flags, p);
2507 	if (retval)
2508 		goto bad_fork_cleanup_mm;
2509 	retval = copy_io(clone_flags, p);
2510 	if (retval)
2511 		goto bad_fork_cleanup_namespaces;
2512 	retval = copy_thread(p, args);
2513 	if (retval)
2514 		goto bad_fork_cleanup_io;
2515 
2516 	stackleak_task_init(p);
2517 
2518 	if (pid != &init_struct_pid) {
2519 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2520 				args->set_tid_size);
2521 		if (IS_ERR(pid)) {
2522 			retval = PTR_ERR(pid);
2523 			goto bad_fork_cleanup_thread;
2524 		}
2525 	}
2526 
2527 	/*
2528 	 * This has to happen after we've potentially unshared the file
2529 	 * descriptor table (so that the pidfd doesn't leak into the child
2530 	 * if the fd table isn't shared).
2531 	 */
2532 	if (clone_flags & CLONE_PIDFD) {
2533 		/* Note that no task has been attached to @pid yet. */
2534 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2535 		if (retval < 0)
2536 			goto bad_fork_free_pid;
2537 		pidfd = retval;
2538 
2539 		retval = put_user(pidfd, args->pidfd);
2540 		if (retval)
2541 			goto bad_fork_put_pidfd;
2542 	}
2543 
2544 #ifdef CONFIG_BLOCK
2545 	p->plug = NULL;
2546 #endif
2547 	futex_init_task(p);
2548 
2549 	/*
2550 	 * sigaltstack should be cleared when sharing the same VM
2551 	 */
2552 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2553 		sas_ss_reset(p);
2554 
2555 	/*
2556 	 * Syscall tracing and stepping should be turned off in the
2557 	 * child regardless of CLONE_PTRACE.
2558 	 */
2559 	user_disable_single_step(p);
2560 	clear_task_syscall_work(p, SYSCALL_TRACE);
2561 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2562 	clear_task_syscall_work(p, SYSCALL_EMU);
2563 #endif
2564 	clear_tsk_latency_tracing(p);
2565 
2566 	/* ok, now we should be set up.. */
2567 	p->pid = pid_nr(pid);
2568 	if (clone_flags & CLONE_THREAD) {
2569 		p->group_leader = current->group_leader;
2570 		p->tgid = current->tgid;
2571 	} else {
2572 		p->group_leader = p;
2573 		p->tgid = p->pid;
2574 	}
2575 
2576 	p->nr_dirtied = 0;
2577 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2578 	p->dirty_paused_when = 0;
2579 
2580 	p->pdeath_signal = 0;
2581 	INIT_LIST_HEAD(&p->thread_group);
2582 	p->task_works = NULL;
2583 	clear_posix_cputimers_work(p);
2584 
2585 #ifdef CONFIG_KRETPROBES
2586 	p->kretprobe_instances.first = NULL;
2587 #endif
2588 #ifdef CONFIG_RETHOOK
2589 	p->rethooks.first = NULL;
2590 #endif
2591 
2592 	/*
2593 	 * Ensure that the cgroup subsystem policies allow the new process to be
2594 	 * forked. It should be noted that the new process's css_set can be changed
2595 	 * between here and cgroup_post_fork() if an organisation operation is in
2596 	 * progress.
2597 	 */
2598 	retval = cgroup_can_fork(p, args);
2599 	if (retval)
2600 		goto bad_fork_put_pidfd;
2601 
2602 	/*
2603 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2604 	 * the new task on the correct runqueue. All this *before* the task
2605 	 * becomes visible.
2606 	 *
2607 	 * This isn't part of ->can_fork() because while the re-cloning is
2608 	 * cgroup specific, it unconditionally needs to place the task on a
2609 	 * runqueue.
2610 	 */
2611 	sched_cgroup_fork(p, args);
2612 
2613 	/*
2614 	 * From this point on we must avoid any synchronous user-space
2615 	 * communication until we take the tasklist-lock. In particular, we do
2616 	 * not want user-space to be able to predict the process start-time by
2617 	 * stalling fork(2) after we recorded the start_time but before it is
2618 	 * visible to the system.
2619 	 */
2620 
2621 	p->start_time = ktime_get_ns();
2622 	p->start_boottime = ktime_get_boottime_ns();
2623 
2624 	/*
2625 	 * Make it visible to the rest of the system, but dont wake it up yet.
2626 	 * Need tasklist lock for parent etc handling!
2627 	 */
2628 	write_lock_irq(&tasklist_lock);
2629 
2630 	/* CLONE_PARENT re-uses the old parent */
2631 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2632 		p->real_parent = current->real_parent;
2633 		p->parent_exec_id = current->parent_exec_id;
2634 		if (clone_flags & CLONE_THREAD)
2635 			p->exit_signal = -1;
2636 		else
2637 			p->exit_signal = current->group_leader->exit_signal;
2638 	} else {
2639 		p->real_parent = current;
2640 		p->parent_exec_id = current->self_exec_id;
2641 		p->exit_signal = args->exit_signal;
2642 	}
2643 
2644 	klp_copy_process(p);
2645 
2646 	sched_core_fork(p);
2647 
2648 	spin_lock(&current->sighand->siglock);
2649 
2650 	rv_task_fork(p);
2651 
2652 	rseq_fork(p, clone_flags);
2653 
2654 	/* Don't start children in a dying pid namespace */
2655 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2656 		retval = -ENOMEM;
2657 		goto bad_fork_cancel_cgroup;
2658 	}
2659 
2660 	/* Let kill terminate clone/fork in the middle */
2661 	if (fatal_signal_pending(current)) {
2662 		retval = -EINTR;
2663 		goto bad_fork_cancel_cgroup;
2664 	}
2665 
2666 	/* No more failure paths after this point. */
2667 
2668 	/*
2669 	 * Copy seccomp details explicitly here, in case they were changed
2670 	 * before holding sighand lock.
2671 	 */
2672 	copy_seccomp(p);
2673 
2674 	init_task_pid_links(p);
2675 	if (likely(p->pid)) {
2676 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2677 
2678 		init_task_pid(p, PIDTYPE_PID, pid);
2679 		if (thread_group_leader(p)) {
2680 			init_task_pid(p, PIDTYPE_TGID, pid);
2681 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2682 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2683 
2684 			if (is_child_reaper(pid)) {
2685 				ns_of_pid(pid)->child_reaper = p;
2686 				p->signal->flags |= SIGNAL_UNKILLABLE;
2687 			}
2688 			p->signal->shared_pending.signal = delayed.signal;
2689 			p->signal->tty = tty_kref_get(current->signal->tty);
2690 			/*
2691 			 * Inherit has_child_subreaper flag under the same
2692 			 * tasklist_lock with adding child to the process tree
2693 			 * for propagate_has_child_subreaper optimization.
2694 			 */
2695 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2696 							 p->real_parent->signal->is_child_subreaper;
2697 			list_add_tail(&p->sibling, &p->real_parent->children);
2698 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2699 			attach_pid(p, PIDTYPE_TGID);
2700 			attach_pid(p, PIDTYPE_PGID);
2701 			attach_pid(p, PIDTYPE_SID);
2702 			__this_cpu_inc(process_counts);
2703 		} else {
2704 			current->signal->nr_threads++;
2705 			current->signal->quick_threads++;
2706 			atomic_inc(&current->signal->live);
2707 			refcount_inc(&current->signal->sigcnt);
2708 			task_join_group_stop(p);
2709 			list_add_tail_rcu(&p->thread_group,
2710 					  &p->group_leader->thread_group);
2711 			list_add_tail_rcu(&p->thread_node,
2712 					  &p->signal->thread_head);
2713 		}
2714 		attach_pid(p, PIDTYPE_PID);
2715 		nr_threads++;
2716 	}
2717 	total_forks++;
2718 	hlist_del_init(&delayed.node);
2719 	spin_unlock(&current->sighand->siglock);
2720 	syscall_tracepoint_update(p);
2721 	write_unlock_irq(&tasklist_lock);
2722 
2723 	if (pidfile)
2724 		fd_install(pidfd, pidfile);
2725 
2726 	proc_fork_connector(p);
2727 	sched_post_fork(p);
2728 	cgroup_post_fork(p, args);
2729 	perf_event_fork(p);
2730 
2731 	trace_task_newtask(p, clone_flags);
2732 	uprobe_copy_process(p, clone_flags);
2733 	user_events_fork(p, clone_flags);
2734 
2735 	copy_oom_score_adj(clone_flags, p);
2736 
2737 	return p;
2738 
2739 bad_fork_cancel_cgroup:
2740 	sched_core_free(p);
2741 	spin_unlock(&current->sighand->siglock);
2742 	write_unlock_irq(&tasklist_lock);
2743 	cgroup_cancel_fork(p, args);
2744 bad_fork_put_pidfd:
2745 	if (clone_flags & CLONE_PIDFD) {
2746 		fput(pidfile);
2747 		put_unused_fd(pidfd);
2748 	}
2749 bad_fork_free_pid:
2750 	if (pid != &init_struct_pid)
2751 		free_pid(pid);
2752 bad_fork_cleanup_thread:
2753 	exit_thread(p);
2754 bad_fork_cleanup_io:
2755 	if (p->io_context)
2756 		exit_io_context(p);
2757 bad_fork_cleanup_namespaces:
2758 	exit_task_namespaces(p);
2759 bad_fork_cleanup_mm:
2760 	if (p->mm) {
2761 		mm_clear_owner(p->mm, p);
2762 		mmput(p->mm);
2763 	}
2764 bad_fork_cleanup_signal:
2765 	if (!(clone_flags & CLONE_THREAD))
2766 		free_signal_struct(p->signal);
2767 bad_fork_cleanup_sighand:
2768 	__cleanup_sighand(p->sighand);
2769 bad_fork_cleanup_fs:
2770 	exit_fs(p); /* blocking */
2771 bad_fork_cleanup_files:
2772 	exit_files(p); /* blocking */
2773 bad_fork_cleanup_semundo:
2774 	exit_sem(p);
2775 bad_fork_cleanup_security:
2776 	security_task_free(p);
2777 bad_fork_cleanup_audit:
2778 	audit_free(p);
2779 bad_fork_cleanup_perf:
2780 	perf_event_free_task(p);
2781 bad_fork_cleanup_policy:
2782 	lockdep_free_task(p);
2783 #ifdef CONFIG_NUMA
2784 	mpol_put(p->mempolicy);
2785 #endif
2786 bad_fork_cleanup_delayacct:
2787 	delayacct_tsk_free(p);
2788 bad_fork_cleanup_count:
2789 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2790 	exit_creds(p);
2791 bad_fork_free:
2792 	WRITE_ONCE(p->__state, TASK_DEAD);
2793 	exit_task_stack_account(p);
2794 	put_task_stack(p);
2795 	delayed_free_task(p);
2796 fork_out:
2797 	spin_lock_irq(&current->sighand->siglock);
2798 	hlist_del_init(&delayed.node);
2799 	spin_unlock_irq(&current->sighand->siglock);
2800 	return ERR_PTR(retval);
2801 }
2802 
2803 static inline void init_idle_pids(struct task_struct *idle)
2804 {
2805 	enum pid_type type;
2806 
2807 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2808 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2809 		init_task_pid(idle, type, &init_struct_pid);
2810 	}
2811 }
2812 
2813 static int idle_dummy(void *dummy)
2814 {
2815 	/* This function is never called */
2816 	return 0;
2817 }
2818 
2819 struct task_struct * __init fork_idle(int cpu)
2820 {
2821 	struct task_struct *task;
2822 	struct kernel_clone_args args = {
2823 		.flags		= CLONE_VM,
2824 		.fn		= &idle_dummy,
2825 		.fn_arg		= NULL,
2826 		.kthread	= 1,
2827 		.idle		= 1,
2828 	};
2829 
2830 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2831 	if (!IS_ERR(task)) {
2832 		init_idle_pids(task);
2833 		init_idle(task, cpu);
2834 	}
2835 
2836 	return task;
2837 }
2838 
2839 /*
2840  * This is like kernel_clone(), but shaved down and tailored to just
2841  * creating io_uring workers. It returns a created task, or an error pointer.
2842  * The returned task is inactive, and the caller must fire it up through
2843  * wake_up_new_task(p). All signals are blocked in the created task.
2844  */
2845 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2846 {
2847 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2848 				CLONE_IO;
2849 	struct kernel_clone_args args = {
2850 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2851 				    CLONE_UNTRACED) & ~CSIGNAL),
2852 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2853 		.fn		= fn,
2854 		.fn_arg		= arg,
2855 		.io_thread	= 1,
2856 		.user_worker	= 1,
2857 	};
2858 
2859 	return copy_process(NULL, 0, node, &args);
2860 }
2861 
2862 /*
2863  *  Ok, this is the main fork-routine.
2864  *
2865  * It copies the process, and if successful kick-starts
2866  * it and waits for it to finish using the VM if required.
2867  *
2868  * args->exit_signal is expected to be checked for sanity by the caller.
2869  */
2870 pid_t kernel_clone(struct kernel_clone_args *args)
2871 {
2872 	u64 clone_flags = args->flags;
2873 	struct completion vfork;
2874 	struct pid *pid;
2875 	struct task_struct *p;
2876 	int trace = 0;
2877 	pid_t nr;
2878 
2879 	/*
2880 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2881 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2882 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2883 	 * field in struct clone_args and it still doesn't make sense to have
2884 	 * them both point at the same memory location. Performing this check
2885 	 * here has the advantage that we don't need to have a separate helper
2886 	 * to check for legacy clone().
2887 	 */
2888 	if ((args->flags & CLONE_PIDFD) &&
2889 	    (args->flags & CLONE_PARENT_SETTID) &&
2890 	    (args->pidfd == args->parent_tid))
2891 		return -EINVAL;
2892 
2893 	/*
2894 	 * Determine whether and which event to report to ptracer.  When
2895 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2896 	 * requested, no event is reported; otherwise, report if the event
2897 	 * for the type of forking is enabled.
2898 	 */
2899 	if (!(clone_flags & CLONE_UNTRACED)) {
2900 		if (clone_flags & CLONE_VFORK)
2901 			trace = PTRACE_EVENT_VFORK;
2902 		else if (args->exit_signal != SIGCHLD)
2903 			trace = PTRACE_EVENT_CLONE;
2904 		else
2905 			trace = PTRACE_EVENT_FORK;
2906 
2907 		if (likely(!ptrace_event_enabled(current, trace)))
2908 			trace = 0;
2909 	}
2910 
2911 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2912 	add_latent_entropy();
2913 
2914 	if (IS_ERR(p))
2915 		return PTR_ERR(p);
2916 
2917 	/*
2918 	 * Do this prior waking up the new thread - the thread pointer
2919 	 * might get invalid after that point, if the thread exits quickly.
2920 	 */
2921 	trace_sched_process_fork(current, p);
2922 
2923 	pid = get_task_pid(p, PIDTYPE_PID);
2924 	nr = pid_vnr(pid);
2925 
2926 	if (clone_flags & CLONE_PARENT_SETTID)
2927 		put_user(nr, args->parent_tid);
2928 
2929 	if (clone_flags & CLONE_VFORK) {
2930 		p->vfork_done = &vfork;
2931 		init_completion(&vfork);
2932 		get_task_struct(p);
2933 	}
2934 
2935 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2936 		/* lock the task to synchronize with memcg migration */
2937 		task_lock(p);
2938 		lru_gen_add_mm(p->mm);
2939 		task_unlock(p);
2940 	}
2941 
2942 	wake_up_new_task(p);
2943 
2944 	/* forking complete and child started to run, tell ptracer */
2945 	if (unlikely(trace))
2946 		ptrace_event_pid(trace, pid);
2947 
2948 	if (clone_flags & CLONE_VFORK) {
2949 		if (!wait_for_vfork_done(p, &vfork))
2950 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2951 	}
2952 
2953 	put_pid(pid);
2954 	return nr;
2955 }
2956 
2957 /*
2958  * Create a kernel thread.
2959  */
2960 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2961 		    unsigned long flags)
2962 {
2963 	struct kernel_clone_args args = {
2964 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2965 				    CLONE_UNTRACED) & ~CSIGNAL),
2966 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2967 		.fn		= fn,
2968 		.fn_arg		= arg,
2969 		.name		= name,
2970 		.kthread	= 1,
2971 	};
2972 
2973 	return kernel_clone(&args);
2974 }
2975 
2976 /*
2977  * Create a user mode thread.
2978  */
2979 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2980 {
2981 	struct kernel_clone_args args = {
2982 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2983 				    CLONE_UNTRACED) & ~CSIGNAL),
2984 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2985 		.fn		= fn,
2986 		.fn_arg		= arg,
2987 	};
2988 
2989 	return kernel_clone(&args);
2990 }
2991 
2992 #ifdef __ARCH_WANT_SYS_FORK
2993 SYSCALL_DEFINE0(fork)
2994 {
2995 #ifdef CONFIG_MMU
2996 	struct kernel_clone_args args = {
2997 		.exit_signal = SIGCHLD,
2998 	};
2999 
3000 	return kernel_clone(&args);
3001 #else
3002 	/* can not support in nommu mode */
3003 	return -EINVAL;
3004 #endif
3005 }
3006 #endif
3007 
3008 #ifdef __ARCH_WANT_SYS_VFORK
3009 SYSCALL_DEFINE0(vfork)
3010 {
3011 	struct kernel_clone_args args = {
3012 		.flags		= CLONE_VFORK | CLONE_VM,
3013 		.exit_signal	= SIGCHLD,
3014 	};
3015 
3016 	return kernel_clone(&args);
3017 }
3018 #endif
3019 
3020 #ifdef __ARCH_WANT_SYS_CLONE
3021 #ifdef CONFIG_CLONE_BACKWARDS
3022 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3023 		 int __user *, parent_tidptr,
3024 		 unsigned long, tls,
3025 		 int __user *, child_tidptr)
3026 #elif defined(CONFIG_CLONE_BACKWARDS2)
3027 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3028 		 int __user *, parent_tidptr,
3029 		 int __user *, child_tidptr,
3030 		 unsigned long, tls)
3031 #elif defined(CONFIG_CLONE_BACKWARDS3)
3032 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3033 		int, stack_size,
3034 		int __user *, parent_tidptr,
3035 		int __user *, child_tidptr,
3036 		unsigned long, tls)
3037 #else
3038 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3039 		 int __user *, parent_tidptr,
3040 		 int __user *, child_tidptr,
3041 		 unsigned long, tls)
3042 #endif
3043 {
3044 	struct kernel_clone_args args = {
3045 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3046 		.pidfd		= parent_tidptr,
3047 		.child_tid	= child_tidptr,
3048 		.parent_tid	= parent_tidptr,
3049 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3050 		.stack		= newsp,
3051 		.tls		= tls,
3052 	};
3053 
3054 	return kernel_clone(&args);
3055 }
3056 #endif
3057 
3058 #ifdef __ARCH_WANT_SYS_CLONE3
3059 
3060 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3061 					      struct clone_args __user *uargs,
3062 					      size_t usize)
3063 {
3064 	int err;
3065 	struct clone_args args;
3066 	pid_t *kset_tid = kargs->set_tid;
3067 
3068 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3069 		     CLONE_ARGS_SIZE_VER0);
3070 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3071 		     CLONE_ARGS_SIZE_VER1);
3072 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3073 		     CLONE_ARGS_SIZE_VER2);
3074 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3075 
3076 	if (unlikely(usize > PAGE_SIZE))
3077 		return -E2BIG;
3078 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3079 		return -EINVAL;
3080 
3081 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3082 	if (err)
3083 		return err;
3084 
3085 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3086 		return -EINVAL;
3087 
3088 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3089 		return -EINVAL;
3090 
3091 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3092 		return -EINVAL;
3093 
3094 	/*
3095 	 * Verify that higher 32bits of exit_signal are unset and that
3096 	 * it is a valid signal
3097 	 */
3098 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3099 		     !valid_signal(args.exit_signal)))
3100 		return -EINVAL;
3101 
3102 	if ((args.flags & CLONE_INTO_CGROUP) &&
3103 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3104 		return -EINVAL;
3105 
3106 	*kargs = (struct kernel_clone_args){
3107 		.flags		= args.flags,
3108 		.pidfd		= u64_to_user_ptr(args.pidfd),
3109 		.child_tid	= u64_to_user_ptr(args.child_tid),
3110 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3111 		.exit_signal	= args.exit_signal,
3112 		.stack		= args.stack,
3113 		.stack_size	= args.stack_size,
3114 		.tls		= args.tls,
3115 		.set_tid_size	= args.set_tid_size,
3116 		.cgroup		= args.cgroup,
3117 	};
3118 
3119 	if (args.set_tid &&
3120 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3121 			(kargs->set_tid_size * sizeof(pid_t))))
3122 		return -EFAULT;
3123 
3124 	kargs->set_tid = kset_tid;
3125 
3126 	return 0;
3127 }
3128 
3129 /**
3130  * clone3_stack_valid - check and prepare stack
3131  * @kargs: kernel clone args
3132  *
3133  * Verify that the stack arguments userspace gave us are sane.
3134  * In addition, set the stack direction for userspace since it's easy for us to
3135  * determine.
3136  */
3137 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3138 {
3139 	if (kargs->stack == 0) {
3140 		if (kargs->stack_size > 0)
3141 			return false;
3142 	} else {
3143 		if (kargs->stack_size == 0)
3144 			return false;
3145 
3146 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3147 			return false;
3148 
3149 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3150 		kargs->stack += kargs->stack_size;
3151 #endif
3152 	}
3153 
3154 	return true;
3155 }
3156 
3157 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3158 {
3159 	/* Verify that no unknown flags are passed along. */
3160 	if (kargs->flags &
3161 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3162 		return false;
3163 
3164 	/*
3165 	 * - make the CLONE_DETACHED bit reusable for clone3
3166 	 * - make the CSIGNAL bits reusable for clone3
3167 	 */
3168 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3169 		return false;
3170 
3171 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3172 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3173 		return false;
3174 
3175 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3176 	    kargs->exit_signal)
3177 		return false;
3178 
3179 	if (!clone3_stack_valid(kargs))
3180 		return false;
3181 
3182 	return true;
3183 }
3184 
3185 /**
3186  * clone3 - create a new process with specific properties
3187  * @uargs: argument structure
3188  * @size:  size of @uargs
3189  *
3190  * clone3() is the extensible successor to clone()/clone2().
3191  * It takes a struct as argument that is versioned by its size.
3192  *
3193  * Return: On success, a positive PID for the child process.
3194  *         On error, a negative errno number.
3195  */
3196 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3197 {
3198 	int err;
3199 
3200 	struct kernel_clone_args kargs;
3201 	pid_t set_tid[MAX_PID_NS_LEVEL];
3202 
3203 	kargs.set_tid = set_tid;
3204 
3205 	err = copy_clone_args_from_user(&kargs, uargs, size);
3206 	if (err)
3207 		return err;
3208 
3209 	if (!clone3_args_valid(&kargs))
3210 		return -EINVAL;
3211 
3212 	return kernel_clone(&kargs);
3213 }
3214 #endif
3215 
3216 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3217 {
3218 	struct task_struct *leader, *parent, *child;
3219 	int res;
3220 
3221 	read_lock(&tasklist_lock);
3222 	leader = top = top->group_leader;
3223 down:
3224 	for_each_thread(leader, parent) {
3225 		list_for_each_entry(child, &parent->children, sibling) {
3226 			res = visitor(child, data);
3227 			if (res) {
3228 				if (res < 0)
3229 					goto out;
3230 				leader = child;
3231 				goto down;
3232 			}
3233 up:
3234 			;
3235 		}
3236 	}
3237 
3238 	if (leader != top) {
3239 		child = leader;
3240 		parent = child->real_parent;
3241 		leader = parent->group_leader;
3242 		goto up;
3243 	}
3244 out:
3245 	read_unlock(&tasklist_lock);
3246 }
3247 
3248 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3249 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3250 #endif
3251 
3252 static void sighand_ctor(void *data)
3253 {
3254 	struct sighand_struct *sighand = data;
3255 
3256 	spin_lock_init(&sighand->siglock);
3257 	init_waitqueue_head(&sighand->signalfd_wqh);
3258 }
3259 
3260 void __init mm_cache_init(void)
3261 {
3262 	unsigned int mm_size;
3263 
3264 	/*
3265 	 * The mm_cpumask is located at the end of mm_struct, and is
3266 	 * dynamically sized based on the maximum CPU number this system
3267 	 * can have, taking hotplug into account (nr_cpu_ids).
3268 	 */
3269 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3270 
3271 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3272 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3273 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3274 			offsetof(struct mm_struct, saved_auxv),
3275 			sizeof_field(struct mm_struct, saved_auxv),
3276 			NULL);
3277 }
3278 
3279 void __init proc_caches_init(void)
3280 {
3281 	sighand_cachep = kmem_cache_create("sighand_cache",
3282 			sizeof(struct sighand_struct), 0,
3283 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3284 			SLAB_ACCOUNT, sighand_ctor);
3285 	signal_cachep = kmem_cache_create("signal_cache",
3286 			sizeof(struct signal_struct), 0,
3287 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3288 			NULL);
3289 	files_cachep = kmem_cache_create("files_cache",
3290 			sizeof(struct files_struct), 0,
3291 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3292 			NULL);
3293 	fs_cachep = kmem_cache_create("fs_cache",
3294 			sizeof(struct fs_struct), 0,
3295 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3296 			NULL);
3297 
3298 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3299 #ifdef CONFIG_PER_VMA_LOCK
3300 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3301 #endif
3302 	mmap_init();
3303 	nsproxy_cache_init();
3304 }
3305 
3306 /*
3307  * Check constraints on flags passed to the unshare system call.
3308  */
3309 static int check_unshare_flags(unsigned long unshare_flags)
3310 {
3311 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3312 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3313 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3314 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3315 				CLONE_NEWTIME))
3316 		return -EINVAL;
3317 	/*
3318 	 * Not implemented, but pretend it works if there is nothing
3319 	 * to unshare.  Note that unsharing the address space or the
3320 	 * signal handlers also need to unshare the signal queues (aka
3321 	 * CLONE_THREAD).
3322 	 */
3323 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3324 		if (!thread_group_empty(current))
3325 			return -EINVAL;
3326 	}
3327 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3328 		if (refcount_read(&current->sighand->count) > 1)
3329 			return -EINVAL;
3330 	}
3331 	if (unshare_flags & CLONE_VM) {
3332 		if (!current_is_single_threaded())
3333 			return -EINVAL;
3334 	}
3335 
3336 	return 0;
3337 }
3338 
3339 /*
3340  * Unshare the filesystem structure if it is being shared
3341  */
3342 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3343 {
3344 	struct fs_struct *fs = current->fs;
3345 
3346 	if (!(unshare_flags & CLONE_FS) || !fs)
3347 		return 0;
3348 
3349 	/* don't need lock here; in the worst case we'll do useless copy */
3350 	if (fs->users == 1)
3351 		return 0;
3352 
3353 	*new_fsp = copy_fs_struct(fs);
3354 	if (!*new_fsp)
3355 		return -ENOMEM;
3356 
3357 	return 0;
3358 }
3359 
3360 /*
3361  * Unshare file descriptor table if it is being shared
3362  */
3363 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3364 	       struct files_struct **new_fdp)
3365 {
3366 	struct files_struct *fd = current->files;
3367 	int error = 0;
3368 
3369 	if ((unshare_flags & CLONE_FILES) &&
3370 	    (fd && atomic_read(&fd->count) > 1)) {
3371 		*new_fdp = dup_fd(fd, max_fds, &error);
3372 		if (!*new_fdp)
3373 			return error;
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 /*
3380  * unshare allows a process to 'unshare' part of the process
3381  * context which was originally shared using clone.  copy_*
3382  * functions used by kernel_clone() cannot be used here directly
3383  * because they modify an inactive task_struct that is being
3384  * constructed. Here we are modifying the current, active,
3385  * task_struct.
3386  */
3387 int ksys_unshare(unsigned long unshare_flags)
3388 {
3389 	struct fs_struct *fs, *new_fs = NULL;
3390 	struct files_struct *new_fd = NULL;
3391 	struct cred *new_cred = NULL;
3392 	struct nsproxy *new_nsproxy = NULL;
3393 	int do_sysvsem = 0;
3394 	int err;
3395 
3396 	/*
3397 	 * If unsharing a user namespace must also unshare the thread group
3398 	 * and unshare the filesystem root and working directories.
3399 	 */
3400 	if (unshare_flags & CLONE_NEWUSER)
3401 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3402 	/*
3403 	 * If unsharing vm, must also unshare signal handlers.
3404 	 */
3405 	if (unshare_flags & CLONE_VM)
3406 		unshare_flags |= CLONE_SIGHAND;
3407 	/*
3408 	 * If unsharing a signal handlers, must also unshare the signal queues.
3409 	 */
3410 	if (unshare_flags & CLONE_SIGHAND)
3411 		unshare_flags |= CLONE_THREAD;
3412 	/*
3413 	 * If unsharing namespace, must also unshare filesystem information.
3414 	 */
3415 	if (unshare_flags & CLONE_NEWNS)
3416 		unshare_flags |= CLONE_FS;
3417 
3418 	err = check_unshare_flags(unshare_flags);
3419 	if (err)
3420 		goto bad_unshare_out;
3421 	/*
3422 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3423 	 * to a new ipc namespace, the semaphore arrays from the old
3424 	 * namespace are unreachable.
3425 	 */
3426 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3427 		do_sysvsem = 1;
3428 	err = unshare_fs(unshare_flags, &new_fs);
3429 	if (err)
3430 		goto bad_unshare_out;
3431 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3432 	if (err)
3433 		goto bad_unshare_cleanup_fs;
3434 	err = unshare_userns(unshare_flags, &new_cred);
3435 	if (err)
3436 		goto bad_unshare_cleanup_fd;
3437 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3438 					 new_cred, new_fs);
3439 	if (err)
3440 		goto bad_unshare_cleanup_cred;
3441 
3442 	if (new_cred) {
3443 		err = set_cred_ucounts(new_cred);
3444 		if (err)
3445 			goto bad_unshare_cleanup_cred;
3446 	}
3447 
3448 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3449 		if (do_sysvsem) {
3450 			/*
3451 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3452 			 */
3453 			exit_sem(current);
3454 		}
3455 		if (unshare_flags & CLONE_NEWIPC) {
3456 			/* Orphan segments in old ns (see sem above). */
3457 			exit_shm(current);
3458 			shm_init_task(current);
3459 		}
3460 
3461 		if (new_nsproxy)
3462 			switch_task_namespaces(current, new_nsproxy);
3463 
3464 		task_lock(current);
3465 
3466 		if (new_fs) {
3467 			fs = current->fs;
3468 			spin_lock(&fs->lock);
3469 			current->fs = new_fs;
3470 			if (--fs->users)
3471 				new_fs = NULL;
3472 			else
3473 				new_fs = fs;
3474 			spin_unlock(&fs->lock);
3475 		}
3476 
3477 		if (new_fd)
3478 			swap(current->files, new_fd);
3479 
3480 		task_unlock(current);
3481 
3482 		if (new_cred) {
3483 			/* Install the new user namespace */
3484 			commit_creds(new_cred);
3485 			new_cred = NULL;
3486 		}
3487 	}
3488 
3489 	perf_event_namespaces(current);
3490 
3491 bad_unshare_cleanup_cred:
3492 	if (new_cred)
3493 		put_cred(new_cred);
3494 bad_unshare_cleanup_fd:
3495 	if (new_fd)
3496 		put_files_struct(new_fd);
3497 
3498 bad_unshare_cleanup_fs:
3499 	if (new_fs)
3500 		free_fs_struct(new_fs);
3501 
3502 bad_unshare_out:
3503 	return err;
3504 }
3505 
3506 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3507 {
3508 	return ksys_unshare(unshare_flags);
3509 }
3510 
3511 /*
3512  *	Helper to unshare the files of the current task.
3513  *	We don't want to expose copy_files internals to
3514  *	the exec layer of the kernel.
3515  */
3516 
3517 int unshare_files(void)
3518 {
3519 	struct task_struct *task = current;
3520 	struct files_struct *old, *copy = NULL;
3521 	int error;
3522 
3523 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3524 	if (error || !copy)
3525 		return error;
3526 
3527 	old = task->files;
3528 	task_lock(task);
3529 	task->files = copy;
3530 	task_unlock(task);
3531 	put_files_struct(old);
3532 	return 0;
3533 }
3534 
3535 int sysctl_max_threads(struct ctl_table *table, int write,
3536 		       void *buffer, size_t *lenp, loff_t *ppos)
3537 {
3538 	struct ctl_table t;
3539 	int ret;
3540 	int threads = max_threads;
3541 	int min = 1;
3542 	int max = MAX_THREADS;
3543 
3544 	t = *table;
3545 	t.data = &threads;
3546 	t.extra1 = &min;
3547 	t.extra2 = &max;
3548 
3549 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3550 	if (ret || !write)
3551 		return ret;
3552 
3553 	max_threads = threads;
3554 
3555 	return 0;
3556 }
3557