1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 #include <linux/iommu.h> 102 103 #include <asm/pgalloc.h> 104 #include <linux/uaccess.h> 105 #include <asm/mmu_context.h> 106 #include <asm/cacheflush.h> 107 #include <asm/tlbflush.h> 108 109 #include <trace/events/sched.h> 110 111 #define CREATE_TRACE_POINTS 112 #include <trace/events/task.h> 113 114 /* 115 * Minimum number of threads to boot the kernel 116 */ 117 #define MIN_THREADS 20 118 119 /* 120 * Maximum number of threads 121 */ 122 #define MAX_THREADS FUTEX_TID_MASK 123 124 /* 125 * Protected counters by write_lock_irq(&tasklist_lock) 126 */ 127 unsigned long total_forks; /* Handle normal Linux uptimes. */ 128 int nr_threads; /* The idle threads do not count.. */ 129 130 static int max_threads; /* tunable limit on nr_threads */ 131 132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 133 134 static const char * const resident_page_types[] = { 135 NAMED_ARRAY_INDEX(MM_FILEPAGES), 136 NAMED_ARRAY_INDEX(MM_ANONPAGES), 137 NAMED_ARRAY_INDEX(MM_SWAPENTS), 138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 139 }; 140 141 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 142 143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 144 145 #ifdef CONFIG_PROVE_RCU 146 int lockdep_tasklist_lock_is_held(void) 147 { 148 return lockdep_is_held(&tasklist_lock); 149 } 150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 151 #endif /* #ifdef CONFIG_PROVE_RCU */ 152 153 int nr_processes(void) 154 { 155 int cpu; 156 int total = 0; 157 158 for_each_possible_cpu(cpu) 159 total += per_cpu(process_counts, cpu); 160 161 return total; 162 } 163 164 void __weak arch_release_task_struct(struct task_struct *tsk) 165 { 166 } 167 168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 169 static struct kmem_cache *task_struct_cachep; 170 171 static inline struct task_struct *alloc_task_struct_node(int node) 172 { 173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 174 } 175 176 static inline void free_task_struct(struct task_struct *tsk) 177 { 178 kmem_cache_free(task_struct_cachep, tsk); 179 } 180 #endif 181 182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 183 184 /* 185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 186 * kmemcache based allocator. 187 */ 188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 189 190 # ifdef CONFIG_VMAP_STACK 191 /* 192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 193 * flush. Try to minimize the number of calls by caching stacks. 194 */ 195 #define NR_CACHED_STACKS 2 196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 197 198 struct vm_stack { 199 struct rcu_head rcu; 200 struct vm_struct *stack_vm_area; 201 }; 202 203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 204 { 205 unsigned int i; 206 207 for (i = 0; i < NR_CACHED_STACKS; i++) { 208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 209 continue; 210 return true; 211 } 212 return false; 213 } 214 215 static void thread_stack_free_rcu(struct rcu_head *rh) 216 { 217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 218 219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 220 return; 221 222 vfree(vm_stack); 223 } 224 225 static void thread_stack_delayed_free(struct task_struct *tsk) 226 { 227 struct vm_stack *vm_stack = tsk->stack; 228 229 vm_stack->stack_vm_area = tsk->stack_vm_area; 230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 231 } 232 233 static int free_vm_stack_cache(unsigned int cpu) 234 { 235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 236 int i; 237 238 for (i = 0; i < NR_CACHED_STACKS; i++) { 239 struct vm_struct *vm_stack = cached_vm_stacks[i]; 240 241 if (!vm_stack) 242 continue; 243 244 vfree(vm_stack->addr); 245 cached_vm_stacks[i] = NULL; 246 } 247 248 return 0; 249 } 250 251 static int memcg_charge_kernel_stack(struct vm_struct *vm) 252 { 253 int i; 254 int ret; 255 int nr_charged = 0; 256 257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 258 259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 261 if (ret) 262 goto err; 263 nr_charged++; 264 } 265 return 0; 266 err: 267 for (i = 0; i < nr_charged; i++) 268 memcg_kmem_uncharge_page(vm->pages[i], 0); 269 return ret; 270 } 271 272 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 273 { 274 struct vm_struct *vm; 275 void *stack; 276 int i; 277 278 for (i = 0; i < NR_CACHED_STACKS; i++) { 279 struct vm_struct *s; 280 281 s = this_cpu_xchg(cached_stacks[i], NULL); 282 283 if (!s) 284 continue; 285 286 /* Reset stack metadata. */ 287 kasan_unpoison_range(s->addr, THREAD_SIZE); 288 289 stack = kasan_reset_tag(s->addr); 290 291 /* Clear stale pointers from reused stack. */ 292 memset(stack, 0, THREAD_SIZE); 293 294 if (memcg_charge_kernel_stack(s)) { 295 vfree(s->addr); 296 return -ENOMEM; 297 } 298 299 tsk->stack_vm_area = s; 300 tsk->stack = stack; 301 return 0; 302 } 303 304 /* 305 * Allocated stacks are cached and later reused by new threads, 306 * so memcg accounting is performed manually on assigning/releasing 307 * stacks to tasks. Drop __GFP_ACCOUNT. 308 */ 309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 310 VMALLOC_START, VMALLOC_END, 311 THREADINFO_GFP & ~__GFP_ACCOUNT, 312 PAGE_KERNEL, 313 0, node, __builtin_return_address(0)); 314 if (!stack) 315 return -ENOMEM; 316 317 vm = find_vm_area(stack); 318 if (memcg_charge_kernel_stack(vm)) { 319 vfree(stack); 320 return -ENOMEM; 321 } 322 /* 323 * We can't call find_vm_area() in interrupt context, and 324 * free_thread_stack() can be called in interrupt context, 325 * so cache the vm_struct. 326 */ 327 tsk->stack_vm_area = vm; 328 stack = kasan_reset_tag(stack); 329 tsk->stack = stack; 330 return 0; 331 } 332 333 static void free_thread_stack(struct task_struct *tsk) 334 { 335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 336 thread_stack_delayed_free(tsk); 337 338 tsk->stack = NULL; 339 tsk->stack_vm_area = NULL; 340 } 341 342 # else /* !CONFIG_VMAP_STACK */ 343 344 static void thread_stack_free_rcu(struct rcu_head *rh) 345 { 346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 347 } 348 349 static void thread_stack_delayed_free(struct task_struct *tsk) 350 { 351 struct rcu_head *rh = tsk->stack; 352 353 call_rcu(rh, thread_stack_free_rcu); 354 } 355 356 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 357 { 358 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 359 THREAD_SIZE_ORDER); 360 361 if (likely(page)) { 362 tsk->stack = kasan_reset_tag(page_address(page)); 363 return 0; 364 } 365 return -ENOMEM; 366 } 367 368 static void free_thread_stack(struct task_struct *tsk) 369 { 370 thread_stack_delayed_free(tsk); 371 tsk->stack = NULL; 372 } 373 374 # endif /* CONFIG_VMAP_STACK */ 375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 376 377 static struct kmem_cache *thread_stack_cache; 378 379 static void thread_stack_free_rcu(struct rcu_head *rh) 380 { 381 kmem_cache_free(thread_stack_cache, rh); 382 } 383 384 static void thread_stack_delayed_free(struct task_struct *tsk) 385 { 386 struct rcu_head *rh = tsk->stack; 387 388 call_rcu(rh, thread_stack_free_rcu); 389 } 390 391 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 392 { 393 unsigned long *stack; 394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 395 stack = kasan_reset_tag(stack); 396 tsk->stack = stack; 397 return stack ? 0 : -ENOMEM; 398 } 399 400 static void free_thread_stack(struct task_struct *tsk) 401 { 402 thread_stack_delayed_free(tsk); 403 tsk->stack = NULL; 404 } 405 406 void thread_stack_cache_init(void) 407 { 408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 409 THREAD_SIZE, THREAD_SIZE, 0, 0, 410 THREAD_SIZE, NULL); 411 BUG_ON(thread_stack_cache == NULL); 412 } 413 414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 416 417 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 418 { 419 unsigned long *stack; 420 421 stack = arch_alloc_thread_stack_node(tsk, node); 422 tsk->stack = stack; 423 return stack ? 0 : -ENOMEM; 424 } 425 426 static void free_thread_stack(struct task_struct *tsk) 427 { 428 arch_free_thread_stack(tsk); 429 tsk->stack = NULL; 430 } 431 432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 433 434 /* SLAB cache for signal_struct structures (tsk->signal) */ 435 static struct kmem_cache *signal_cachep; 436 437 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 438 struct kmem_cache *sighand_cachep; 439 440 /* SLAB cache for files_struct structures (tsk->files) */ 441 struct kmem_cache *files_cachep; 442 443 /* SLAB cache for fs_struct structures (tsk->fs) */ 444 struct kmem_cache *fs_cachep; 445 446 /* SLAB cache for vm_area_struct structures */ 447 static struct kmem_cache *vm_area_cachep; 448 449 /* SLAB cache for mm_struct structures (tsk->mm) */ 450 static struct kmem_cache *mm_cachep; 451 452 #ifdef CONFIG_PER_VMA_LOCK 453 454 /* SLAB cache for vm_area_struct.lock */ 455 static struct kmem_cache *vma_lock_cachep; 456 457 static bool vma_lock_alloc(struct vm_area_struct *vma) 458 { 459 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 460 if (!vma->vm_lock) 461 return false; 462 463 init_rwsem(&vma->vm_lock->lock); 464 vma->vm_lock_seq = -1; 465 466 return true; 467 } 468 469 static inline void vma_lock_free(struct vm_area_struct *vma) 470 { 471 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 472 } 473 474 #else /* CONFIG_PER_VMA_LOCK */ 475 476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 477 static inline void vma_lock_free(struct vm_area_struct *vma) {} 478 479 #endif /* CONFIG_PER_VMA_LOCK */ 480 481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 482 { 483 struct vm_area_struct *vma; 484 485 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 486 if (!vma) 487 return NULL; 488 489 vma_init(vma, mm); 490 if (!vma_lock_alloc(vma)) { 491 kmem_cache_free(vm_area_cachep, vma); 492 return NULL; 493 } 494 495 return vma; 496 } 497 498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 499 { 500 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 501 502 if (!new) 503 return NULL; 504 505 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 506 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 507 /* 508 * orig->shared.rb may be modified concurrently, but the clone 509 * will be reinitialized. 510 */ 511 data_race(memcpy(new, orig, sizeof(*new))); 512 if (!vma_lock_alloc(new)) { 513 kmem_cache_free(vm_area_cachep, new); 514 return NULL; 515 } 516 INIT_LIST_HEAD(&new->anon_vma_chain); 517 vma_numab_state_init(new); 518 dup_anon_vma_name(orig, new); 519 520 return new; 521 } 522 523 void __vm_area_free(struct vm_area_struct *vma) 524 { 525 vma_numab_state_free(vma); 526 free_anon_vma_name(vma); 527 vma_lock_free(vma); 528 kmem_cache_free(vm_area_cachep, vma); 529 } 530 531 #ifdef CONFIG_PER_VMA_LOCK 532 static void vm_area_free_rcu_cb(struct rcu_head *head) 533 { 534 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 535 vm_rcu); 536 537 /* The vma should not be locked while being destroyed. */ 538 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 539 __vm_area_free(vma); 540 } 541 #endif 542 543 void vm_area_free(struct vm_area_struct *vma) 544 { 545 #ifdef CONFIG_PER_VMA_LOCK 546 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 547 #else 548 __vm_area_free(vma); 549 #endif 550 } 551 552 static void account_kernel_stack(struct task_struct *tsk, int account) 553 { 554 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 555 struct vm_struct *vm = task_stack_vm_area(tsk); 556 int i; 557 558 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 559 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 560 account * (PAGE_SIZE / 1024)); 561 } else { 562 void *stack = task_stack_page(tsk); 563 564 /* All stack pages are in the same node. */ 565 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 566 account * (THREAD_SIZE / 1024)); 567 } 568 } 569 570 void exit_task_stack_account(struct task_struct *tsk) 571 { 572 account_kernel_stack(tsk, -1); 573 574 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 575 struct vm_struct *vm; 576 int i; 577 578 vm = task_stack_vm_area(tsk); 579 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 580 memcg_kmem_uncharge_page(vm->pages[i], 0); 581 } 582 } 583 584 static void release_task_stack(struct task_struct *tsk) 585 { 586 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 587 return; /* Better to leak the stack than to free prematurely */ 588 589 free_thread_stack(tsk); 590 } 591 592 #ifdef CONFIG_THREAD_INFO_IN_TASK 593 void put_task_stack(struct task_struct *tsk) 594 { 595 if (refcount_dec_and_test(&tsk->stack_refcount)) 596 release_task_stack(tsk); 597 } 598 #endif 599 600 void free_task(struct task_struct *tsk) 601 { 602 #ifdef CONFIG_SECCOMP 603 WARN_ON_ONCE(tsk->seccomp.filter); 604 #endif 605 release_user_cpus_ptr(tsk); 606 scs_release(tsk); 607 608 #ifndef CONFIG_THREAD_INFO_IN_TASK 609 /* 610 * The task is finally done with both the stack and thread_info, 611 * so free both. 612 */ 613 release_task_stack(tsk); 614 #else 615 /* 616 * If the task had a separate stack allocation, it should be gone 617 * by now. 618 */ 619 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 620 #endif 621 rt_mutex_debug_task_free(tsk); 622 ftrace_graph_exit_task(tsk); 623 arch_release_task_struct(tsk); 624 if (tsk->flags & PF_KTHREAD) 625 free_kthread_struct(tsk); 626 bpf_task_storage_free(tsk); 627 free_task_struct(tsk); 628 } 629 EXPORT_SYMBOL(free_task); 630 631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 632 { 633 struct file *exe_file; 634 635 exe_file = get_mm_exe_file(oldmm); 636 RCU_INIT_POINTER(mm->exe_file, exe_file); 637 /* 638 * We depend on the oldmm having properly denied write access to the 639 * exe_file already. 640 */ 641 if (exe_file && deny_write_access(exe_file)) 642 pr_warn_once("deny_write_access() failed in %s\n", __func__); 643 } 644 645 #ifdef CONFIG_MMU 646 static __latent_entropy int dup_mmap(struct mm_struct *mm, 647 struct mm_struct *oldmm) 648 { 649 struct vm_area_struct *mpnt, *tmp; 650 int retval; 651 unsigned long charge = 0; 652 LIST_HEAD(uf); 653 VMA_ITERATOR(old_vmi, oldmm, 0); 654 VMA_ITERATOR(vmi, mm, 0); 655 656 uprobe_start_dup_mmap(); 657 if (mmap_write_lock_killable(oldmm)) { 658 retval = -EINTR; 659 goto fail_uprobe_end; 660 } 661 flush_cache_dup_mm(oldmm); 662 uprobe_dup_mmap(oldmm, mm); 663 /* 664 * Not linked in yet - no deadlock potential: 665 */ 666 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 667 668 /* No ordering required: file already has been exposed. */ 669 dup_mm_exe_file(mm, oldmm); 670 671 mm->total_vm = oldmm->total_vm; 672 mm->data_vm = oldmm->data_vm; 673 mm->exec_vm = oldmm->exec_vm; 674 mm->stack_vm = oldmm->stack_vm; 675 676 retval = ksm_fork(mm, oldmm); 677 if (retval) 678 goto out; 679 khugepaged_fork(mm, oldmm); 680 681 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 682 if (retval) 683 goto out; 684 685 mt_clear_in_rcu(vmi.mas.tree); 686 for_each_vma(old_vmi, mpnt) { 687 struct file *file; 688 689 if (mpnt->vm_flags & VM_DONTCOPY) { 690 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 691 continue; 692 } 693 charge = 0; 694 /* 695 * Don't duplicate many vmas if we've been oom-killed (for 696 * example) 697 */ 698 if (fatal_signal_pending(current)) { 699 retval = -EINTR; 700 goto loop_out; 701 } 702 if (mpnt->vm_flags & VM_ACCOUNT) { 703 unsigned long len = vma_pages(mpnt); 704 705 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 706 goto fail_nomem; 707 charge = len; 708 } 709 tmp = vm_area_dup(mpnt); 710 if (!tmp) 711 goto fail_nomem; 712 retval = vma_dup_policy(mpnt, tmp); 713 if (retval) 714 goto fail_nomem_policy; 715 tmp->vm_mm = mm; 716 retval = dup_userfaultfd(tmp, &uf); 717 if (retval) 718 goto fail_nomem_anon_vma_fork; 719 if (tmp->vm_flags & VM_WIPEONFORK) { 720 /* 721 * VM_WIPEONFORK gets a clean slate in the child. 722 * Don't prepare anon_vma until fault since we don't 723 * copy page for current vma. 724 */ 725 tmp->anon_vma = NULL; 726 } else if (anon_vma_fork(tmp, mpnt)) 727 goto fail_nomem_anon_vma_fork; 728 vm_flags_clear(tmp, VM_LOCKED_MASK); 729 file = tmp->vm_file; 730 if (file) { 731 struct address_space *mapping = file->f_mapping; 732 733 get_file(file); 734 i_mmap_lock_write(mapping); 735 if (tmp->vm_flags & VM_SHARED) 736 mapping_allow_writable(mapping); 737 flush_dcache_mmap_lock(mapping); 738 /* insert tmp into the share list, just after mpnt */ 739 vma_interval_tree_insert_after(tmp, mpnt, 740 &mapping->i_mmap); 741 flush_dcache_mmap_unlock(mapping); 742 i_mmap_unlock_write(mapping); 743 } 744 745 /* 746 * Copy/update hugetlb private vma information. 747 */ 748 if (is_vm_hugetlb_page(tmp)) 749 hugetlb_dup_vma_private(tmp); 750 751 /* Link the vma into the MT */ 752 if (vma_iter_bulk_store(&vmi, tmp)) 753 goto fail_nomem_vmi_store; 754 755 mm->map_count++; 756 if (!(tmp->vm_flags & VM_WIPEONFORK)) 757 retval = copy_page_range(tmp, mpnt); 758 759 if (tmp->vm_ops && tmp->vm_ops->open) 760 tmp->vm_ops->open(tmp); 761 762 if (retval) 763 goto loop_out; 764 } 765 /* a new mm has just been created */ 766 retval = arch_dup_mmap(oldmm, mm); 767 loop_out: 768 vma_iter_free(&vmi); 769 if (!retval) 770 mt_set_in_rcu(vmi.mas.tree); 771 out: 772 mmap_write_unlock(mm); 773 flush_tlb_mm(oldmm); 774 mmap_write_unlock(oldmm); 775 dup_userfaultfd_complete(&uf); 776 fail_uprobe_end: 777 uprobe_end_dup_mmap(); 778 return retval; 779 780 fail_nomem_vmi_store: 781 unlink_anon_vmas(tmp); 782 fail_nomem_anon_vma_fork: 783 mpol_put(vma_policy(tmp)); 784 fail_nomem_policy: 785 vm_area_free(tmp); 786 fail_nomem: 787 retval = -ENOMEM; 788 vm_unacct_memory(charge); 789 goto loop_out; 790 } 791 792 static inline int mm_alloc_pgd(struct mm_struct *mm) 793 { 794 mm->pgd = pgd_alloc(mm); 795 if (unlikely(!mm->pgd)) 796 return -ENOMEM; 797 return 0; 798 } 799 800 static inline void mm_free_pgd(struct mm_struct *mm) 801 { 802 pgd_free(mm, mm->pgd); 803 } 804 #else 805 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 806 { 807 mmap_write_lock(oldmm); 808 dup_mm_exe_file(mm, oldmm); 809 mmap_write_unlock(oldmm); 810 return 0; 811 } 812 #define mm_alloc_pgd(mm) (0) 813 #define mm_free_pgd(mm) 814 #endif /* CONFIG_MMU */ 815 816 static void check_mm(struct mm_struct *mm) 817 { 818 int i; 819 820 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 821 "Please make sure 'struct resident_page_types[]' is updated as well"); 822 823 for (i = 0; i < NR_MM_COUNTERS; i++) { 824 long x = percpu_counter_sum(&mm->rss_stat[i]); 825 826 if (unlikely(x)) 827 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 828 mm, resident_page_types[i], x); 829 } 830 831 if (mm_pgtables_bytes(mm)) 832 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 833 mm_pgtables_bytes(mm)); 834 835 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 836 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 837 #endif 838 } 839 840 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 841 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 842 843 static void do_check_lazy_tlb(void *arg) 844 { 845 struct mm_struct *mm = arg; 846 847 WARN_ON_ONCE(current->active_mm == mm); 848 } 849 850 static void do_shoot_lazy_tlb(void *arg) 851 { 852 struct mm_struct *mm = arg; 853 854 if (current->active_mm == mm) { 855 WARN_ON_ONCE(current->mm); 856 current->active_mm = &init_mm; 857 switch_mm(mm, &init_mm, current); 858 } 859 } 860 861 static void cleanup_lazy_tlbs(struct mm_struct *mm) 862 { 863 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 864 /* 865 * In this case, lazy tlb mms are refounted and would not reach 866 * __mmdrop until all CPUs have switched away and mmdrop()ed. 867 */ 868 return; 869 } 870 871 /* 872 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 873 * requires lazy mm users to switch to another mm when the refcount 874 * drops to zero, before the mm is freed. This requires IPIs here to 875 * switch kernel threads to init_mm. 876 * 877 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 878 * switch with the final userspace teardown TLB flush which leaves the 879 * mm lazy on this CPU but no others, reducing the need for additional 880 * IPIs here. There are cases where a final IPI is still required here, 881 * such as the final mmdrop being performed on a different CPU than the 882 * one exiting, or kernel threads using the mm when userspace exits. 883 * 884 * IPI overheads have not found to be expensive, but they could be 885 * reduced in a number of possible ways, for example (roughly 886 * increasing order of complexity): 887 * - The last lazy reference created by exit_mm() could instead switch 888 * to init_mm, however it's probable this will run on the same CPU 889 * immediately afterwards, so this may not reduce IPIs much. 890 * - A batch of mms requiring IPIs could be gathered and freed at once. 891 * - CPUs store active_mm where it can be remotely checked without a 892 * lock, to filter out false-positives in the cpumask. 893 * - After mm_users or mm_count reaches zero, switching away from the 894 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 895 * with some batching or delaying of the final IPIs. 896 * - A delayed freeing and RCU-like quiescing sequence based on mm 897 * switching to avoid IPIs completely. 898 */ 899 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 900 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 901 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 902 } 903 904 /* 905 * Called when the last reference to the mm 906 * is dropped: either by a lazy thread or by 907 * mmput. Free the page directory and the mm. 908 */ 909 void __mmdrop(struct mm_struct *mm) 910 { 911 int i; 912 913 BUG_ON(mm == &init_mm); 914 WARN_ON_ONCE(mm == current->mm); 915 916 /* Ensure no CPUs are using this as their lazy tlb mm */ 917 cleanup_lazy_tlbs(mm); 918 919 WARN_ON_ONCE(mm == current->active_mm); 920 mm_free_pgd(mm); 921 destroy_context(mm); 922 mmu_notifier_subscriptions_destroy(mm); 923 check_mm(mm); 924 put_user_ns(mm->user_ns); 925 mm_pasid_drop(mm); 926 mm_destroy_cid(mm); 927 928 for (i = 0; i < NR_MM_COUNTERS; i++) 929 percpu_counter_destroy(&mm->rss_stat[i]); 930 free_mm(mm); 931 } 932 EXPORT_SYMBOL_GPL(__mmdrop); 933 934 static void mmdrop_async_fn(struct work_struct *work) 935 { 936 struct mm_struct *mm; 937 938 mm = container_of(work, struct mm_struct, async_put_work); 939 __mmdrop(mm); 940 } 941 942 static void mmdrop_async(struct mm_struct *mm) 943 { 944 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 945 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 946 schedule_work(&mm->async_put_work); 947 } 948 } 949 950 static inline void free_signal_struct(struct signal_struct *sig) 951 { 952 taskstats_tgid_free(sig); 953 sched_autogroup_exit(sig); 954 /* 955 * __mmdrop is not safe to call from softirq context on x86 due to 956 * pgd_dtor so postpone it to the async context 957 */ 958 if (sig->oom_mm) 959 mmdrop_async(sig->oom_mm); 960 kmem_cache_free(signal_cachep, sig); 961 } 962 963 static inline void put_signal_struct(struct signal_struct *sig) 964 { 965 if (refcount_dec_and_test(&sig->sigcnt)) 966 free_signal_struct(sig); 967 } 968 969 void __put_task_struct(struct task_struct *tsk) 970 { 971 WARN_ON(!tsk->exit_state); 972 WARN_ON(refcount_read(&tsk->usage)); 973 WARN_ON(tsk == current); 974 975 io_uring_free(tsk); 976 cgroup_free(tsk); 977 task_numa_free(tsk, true); 978 security_task_free(tsk); 979 exit_creds(tsk); 980 delayacct_tsk_free(tsk); 981 put_signal_struct(tsk->signal); 982 sched_core_free(tsk); 983 free_task(tsk); 984 } 985 EXPORT_SYMBOL_GPL(__put_task_struct); 986 987 void __init __weak arch_task_cache_init(void) { } 988 989 /* 990 * set_max_threads 991 */ 992 static void set_max_threads(unsigned int max_threads_suggested) 993 { 994 u64 threads; 995 unsigned long nr_pages = totalram_pages(); 996 997 /* 998 * The number of threads shall be limited such that the thread 999 * structures may only consume a small part of the available memory. 1000 */ 1001 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1002 threads = MAX_THREADS; 1003 else 1004 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1005 (u64) THREAD_SIZE * 8UL); 1006 1007 if (threads > max_threads_suggested) 1008 threads = max_threads_suggested; 1009 1010 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1011 } 1012 1013 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1014 /* Initialized by the architecture: */ 1015 int arch_task_struct_size __read_mostly; 1016 #endif 1017 1018 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1019 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1020 { 1021 /* Fetch thread_struct whitelist for the architecture. */ 1022 arch_thread_struct_whitelist(offset, size); 1023 1024 /* 1025 * Handle zero-sized whitelist or empty thread_struct, otherwise 1026 * adjust offset to position of thread_struct in task_struct. 1027 */ 1028 if (unlikely(*size == 0)) 1029 *offset = 0; 1030 else 1031 *offset += offsetof(struct task_struct, thread); 1032 } 1033 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 1034 1035 void __init fork_init(void) 1036 { 1037 int i; 1038 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1039 #ifndef ARCH_MIN_TASKALIGN 1040 #define ARCH_MIN_TASKALIGN 0 1041 #endif 1042 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1043 unsigned long useroffset, usersize; 1044 1045 /* create a slab on which task_structs can be allocated */ 1046 task_struct_whitelist(&useroffset, &usersize); 1047 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1048 arch_task_struct_size, align, 1049 SLAB_PANIC|SLAB_ACCOUNT, 1050 useroffset, usersize, NULL); 1051 #endif 1052 1053 /* do the arch specific task caches init */ 1054 arch_task_cache_init(); 1055 1056 set_max_threads(MAX_THREADS); 1057 1058 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1059 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1060 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1061 init_task.signal->rlim[RLIMIT_NPROC]; 1062 1063 for (i = 0; i < UCOUNT_COUNTS; i++) 1064 init_user_ns.ucount_max[i] = max_threads/2; 1065 1066 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1067 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1068 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1070 1071 #ifdef CONFIG_VMAP_STACK 1072 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1073 NULL, free_vm_stack_cache); 1074 #endif 1075 1076 scs_init(); 1077 1078 lockdep_init_task(&init_task); 1079 uprobes_init(); 1080 } 1081 1082 int __weak arch_dup_task_struct(struct task_struct *dst, 1083 struct task_struct *src) 1084 { 1085 *dst = *src; 1086 return 0; 1087 } 1088 1089 void set_task_stack_end_magic(struct task_struct *tsk) 1090 { 1091 unsigned long *stackend; 1092 1093 stackend = end_of_stack(tsk); 1094 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1095 } 1096 1097 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1098 { 1099 struct task_struct *tsk; 1100 int err; 1101 1102 if (node == NUMA_NO_NODE) 1103 node = tsk_fork_get_node(orig); 1104 tsk = alloc_task_struct_node(node); 1105 if (!tsk) 1106 return NULL; 1107 1108 err = arch_dup_task_struct(tsk, orig); 1109 if (err) 1110 goto free_tsk; 1111 1112 err = alloc_thread_stack_node(tsk, node); 1113 if (err) 1114 goto free_tsk; 1115 1116 #ifdef CONFIG_THREAD_INFO_IN_TASK 1117 refcount_set(&tsk->stack_refcount, 1); 1118 #endif 1119 account_kernel_stack(tsk, 1); 1120 1121 err = scs_prepare(tsk, node); 1122 if (err) 1123 goto free_stack; 1124 1125 #ifdef CONFIG_SECCOMP 1126 /* 1127 * We must handle setting up seccomp filters once we're under 1128 * the sighand lock in case orig has changed between now and 1129 * then. Until then, filter must be NULL to avoid messing up 1130 * the usage counts on the error path calling free_task. 1131 */ 1132 tsk->seccomp.filter = NULL; 1133 #endif 1134 1135 setup_thread_stack(tsk, orig); 1136 clear_user_return_notifier(tsk); 1137 clear_tsk_need_resched(tsk); 1138 set_task_stack_end_magic(tsk); 1139 clear_syscall_work_syscall_user_dispatch(tsk); 1140 1141 #ifdef CONFIG_STACKPROTECTOR 1142 tsk->stack_canary = get_random_canary(); 1143 #endif 1144 if (orig->cpus_ptr == &orig->cpus_mask) 1145 tsk->cpus_ptr = &tsk->cpus_mask; 1146 dup_user_cpus_ptr(tsk, orig, node); 1147 1148 /* 1149 * One for the user space visible state that goes away when reaped. 1150 * One for the scheduler. 1151 */ 1152 refcount_set(&tsk->rcu_users, 2); 1153 /* One for the rcu users */ 1154 refcount_set(&tsk->usage, 1); 1155 #ifdef CONFIG_BLK_DEV_IO_TRACE 1156 tsk->btrace_seq = 0; 1157 #endif 1158 tsk->splice_pipe = NULL; 1159 tsk->task_frag.page = NULL; 1160 tsk->wake_q.next = NULL; 1161 tsk->worker_private = NULL; 1162 1163 kcov_task_init(tsk); 1164 kmsan_task_create(tsk); 1165 kmap_local_fork(tsk); 1166 1167 #ifdef CONFIG_FAULT_INJECTION 1168 tsk->fail_nth = 0; 1169 #endif 1170 1171 #ifdef CONFIG_BLK_CGROUP 1172 tsk->throttle_disk = NULL; 1173 tsk->use_memdelay = 0; 1174 #endif 1175 1176 #ifdef CONFIG_IOMMU_SVA 1177 tsk->pasid_activated = 0; 1178 #endif 1179 1180 #ifdef CONFIG_MEMCG 1181 tsk->active_memcg = NULL; 1182 #endif 1183 1184 #ifdef CONFIG_CPU_SUP_INTEL 1185 tsk->reported_split_lock = 0; 1186 #endif 1187 1188 #ifdef CONFIG_SCHED_MM_CID 1189 tsk->mm_cid = -1; 1190 tsk->last_mm_cid = -1; 1191 tsk->mm_cid_active = 0; 1192 tsk->migrate_from_cpu = -1; 1193 #endif 1194 return tsk; 1195 1196 free_stack: 1197 exit_task_stack_account(tsk); 1198 free_thread_stack(tsk); 1199 free_tsk: 1200 free_task_struct(tsk); 1201 return NULL; 1202 } 1203 1204 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1205 1206 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1207 1208 static int __init coredump_filter_setup(char *s) 1209 { 1210 default_dump_filter = 1211 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1212 MMF_DUMP_FILTER_MASK; 1213 return 1; 1214 } 1215 1216 __setup("coredump_filter=", coredump_filter_setup); 1217 1218 #include <linux/init_task.h> 1219 1220 static void mm_init_aio(struct mm_struct *mm) 1221 { 1222 #ifdef CONFIG_AIO 1223 spin_lock_init(&mm->ioctx_lock); 1224 mm->ioctx_table = NULL; 1225 #endif 1226 } 1227 1228 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1229 struct task_struct *p) 1230 { 1231 #ifdef CONFIG_MEMCG 1232 if (mm->owner == p) 1233 WRITE_ONCE(mm->owner, NULL); 1234 #endif 1235 } 1236 1237 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1238 { 1239 #ifdef CONFIG_MEMCG 1240 mm->owner = p; 1241 #endif 1242 } 1243 1244 static void mm_init_uprobes_state(struct mm_struct *mm) 1245 { 1246 #ifdef CONFIG_UPROBES 1247 mm->uprobes_state.xol_area = NULL; 1248 #endif 1249 } 1250 1251 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1252 struct user_namespace *user_ns) 1253 { 1254 int i; 1255 1256 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1257 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1258 atomic_set(&mm->mm_users, 1); 1259 atomic_set(&mm->mm_count, 1); 1260 seqcount_init(&mm->write_protect_seq); 1261 mmap_init_lock(mm); 1262 INIT_LIST_HEAD(&mm->mmlist); 1263 #ifdef CONFIG_PER_VMA_LOCK 1264 mm->mm_lock_seq = 0; 1265 #endif 1266 mm_pgtables_bytes_init(mm); 1267 mm->map_count = 0; 1268 mm->locked_vm = 0; 1269 atomic64_set(&mm->pinned_vm, 0); 1270 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1271 spin_lock_init(&mm->page_table_lock); 1272 spin_lock_init(&mm->arg_lock); 1273 mm_init_cpumask(mm); 1274 mm_init_aio(mm); 1275 mm_init_owner(mm, p); 1276 mm_pasid_init(mm); 1277 RCU_INIT_POINTER(mm->exe_file, NULL); 1278 mmu_notifier_subscriptions_init(mm); 1279 init_tlb_flush_pending(mm); 1280 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1281 mm->pmd_huge_pte = NULL; 1282 #endif 1283 mm_init_uprobes_state(mm); 1284 hugetlb_count_init(mm); 1285 1286 if (current->mm) { 1287 mm->flags = current->mm->flags & MMF_INIT_MASK; 1288 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1289 } else { 1290 mm->flags = default_dump_filter; 1291 mm->def_flags = 0; 1292 } 1293 1294 if (mm_alloc_pgd(mm)) 1295 goto fail_nopgd; 1296 1297 if (init_new_context(p, mm)) 1298 goto fail_nocontext; 1299 1300 if (mm_alloc_cid(mm)) 1301 goto fail_cid; 1302 1303 for (i = 0; i < NR_MM_COUNTERS; i++) 1304 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1305 goto fail_pcpu; 1306 1307 mm->user_ns = get_user_ns(user_ns); 1308 lru_gen_init_mm(mm); 1309 return mm; 1310 1311 fail_pcpu: 1312 while (i > 0) 1313 percpu_counter_destroy(&mm->rss_stat[--i]); 1314 mm_destroy_cid(mm); 1315 fail_cid: 1316 destroy_context(mm); 1317 fail_nocontext: 1318 mm_free_pgd(mm); 1319 fail_nopgd: 1320 free_mm(mm); 1321 return NULL; 1322 } 1323 1324 /* 1325 * Allocate and initialize an mm_struct. 1326 */ 1327 struct mm_struct *mm_alloc(void) 1328 { 1329 struct mm_struct *mm; 1330 1331 mm = allocate_mm(); 1332 if (!mm) 1333 return NULL; 1334 1335 memset(mm, 0, sizeof(*mm)); 1336 return mm_init(mm, current, current_user_ns()); 1337 } 1338 1339 static inline void __mmput(struct mm_struct *mm) 1340 { 1341 VM_BUG_ON(atomic_read(&mm->mm_users)); 1342 1343 uprobe_clear_state(mm); 1344 exit_aio(mm); 1345 ksm_exit(mm); 1346 khugepaged_exit(mm); /* must run before exit_mmap */ 1347 exit_mmap(mm); 1348 mm_put_huge_zero_page(mm); 1349 set_mm_exe_file(mm, NULL); 1350 if (!list_empty(&mm->mmlist)) { 1351 spin_lock(&mmlist_lock); 1352 list_del(&mm->mmlist); 1353 spin_unlock(&mmlist_lock); 1354 } 1355 if (mm->binfmt) 1356 module_put(mm->binfmt->module); 1357 lru_gen_del_mm(mm); 1358 mmdrop(mm); 1359 } 1360 1361 /* 1362 * Decrement the use count and release all resources for an mm. 1363 */ 1364 void mmput(struct mm_struct *mm) 1365 { 1366 might_sleep(); 1367 1368 if (atomic_dec_and_test(&mm->mm_users)) 1369 __mmput(mm); 1370 } 1371 EXPORT_SYMBOL_GPL(mmput); 1372 1373 #ifdef CONFIG_MMU 1374 static void mmput_async_fn(struct work_struct *work) 1375 { 1376 struct mm_struct *mm = container_of(work, struct mm_struct, 1377 async_put_work); 1378 1379 __mmput(mm); 1380 } 1381 1382 void mmput_async(struct mm_struct *mm) 1383 { 1384 if (atomic_dec_and_test(&mm->mm_users)) { 1385 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1386 schedule_work(&mm->async_put_work); 1387 } 1388 } 1389 EXPORT_SYMBOL_GPL(mmput_async); 1390 #endif 1391 1392 /** 1393 * set_mm_exe_file - change a reference to the mm's executable file 1394 * 1395 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1396 * 1397 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1398 * invocations: in mmput() nobody alive left, in execve task is single 1399 * threaded. 1400 * 1401 * Can only fail if new_exe_file != NULL. 1402 */ 1403 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1404 { 1405 struct file *old_exe_file; 1406 1407 /* 1408 * It is safe to dereference the exe_file without RCU as 1409 * this function is only called if nobody else can access 1410 * this mm -- see comment above for justification. 1411 */ 1412 old_exe_file = rcu_dereference_raw(mm->exe_file); 1413 1414 if (new_exe_file) { 1415 /* 1416 * We expect the caller (i.e., sys_execve) to already denied 1417 * write access, so this is unlikely to fail. 1418 */ 1419 if (unlikely(deny_write_access(new_exe_file))) 1420 return -EACCES; 1421 get_file(new_exe_file); 1422 } 1423 rcu_assign_pointer(mm->exe_file, new_exe_file); 1424 if (old_exe_file) { 1425 allow_write_access(old_exe_file); 1426 fput(old_exe_file); 1427 } 1428 return 0; 1429 } 1430 1431 /** 1432 * replace_mm_exe_file - replace a reference to the mm's executable file 1433 * 1434 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1435 * dealing with concurrent invocation and without grabbing the mmap lock in 1436 * write mode. 1437 * 1438 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1439 */ 1440 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1441 { 1442 struct vm_area_struct *vma; 1443 struct file *old_exe_file; 1444 int ret = 0; 1445 1446 /* Forbid mm->exe_file change if old file still mapped. */ 1447 old_exe_file = get_mm_exe_file(mm); 1448 if (old_exe_file) { 1449 VMA_ITERATOR(vmi, mm, 0); 1450 mmap_read_lock(mm); 1451 for_each_vma(vmi, vma) { 1452 if (!vma->vm_file) 1453 continue; 1454 if (path_equal(&vma->vm_file->f_path, 1455 &old_exe_file->f_path)) { 1456 ret = -EBUSY; 1457 break; 1458 } 1459 } 1460 mmap_read_unlock(mm); 1461 fput(old_exe_file); 1462 if (ret) 1463 return ret; 1464 } 1465 1466 /* set the new file, lockless */ 1467 ret = deny_write_access(new_exe_file); 1468 if (ret) 1469 return -EACCES; 1470 get_file(new_exe_file); 1471 1472 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1473 if (old_exe_file) { 1474 /* 1475 * Don't race with dup_mmap() getting the file and disallowing 1476 * write access while someone might open the file writable. 1477 */ 1478 mmap_read_lock(mm); 1479 allow_write_access(old_exe_file); 1480 fput(old_exe_file); 1481 mmap_read_unlock(mm); 1482 } 1483 return 0; 1484 } 1485 1486 /** 1487 * get_mm_exe_file - acquire a reference to the mm's executable file 1488 * 1489 * Returns %NULL if mm has no associated executable file. 1490 * User must release file via fput(). 1491 */ 1492 struct file *get_mm_exe_file(struct mm_struct *mm) 1493 { 1494 struct file *exe_file; 1495 1496 rcu_read_lock(); 1497 exe_file = rcu_dereference(mm->exe_file); 1498 if (exe_file && !get_file_rcu(exe_file)) 1499 exe_file = NULL; 1500 rcu_read_unlock(); 1501 return exe_file; 1502 } 1503 1504 /** 1505 * get_task_exe_file - acquire a reference to the task's executable file 1506 * 1507 * Returns %NULL if task's mm (if any) has no associated executable file or 1508 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1509 * User must release file via fput(). 1510 */ 1511 struct file *get_task_exe_file(struct task_struct *task) 1512 { 1513 struct file *exe_file = NULL; 1514 struct mm_struct *mm; 1515 1516 task_lock(task); 1517 mm = task->mm; 1518 if (mm) { 1519 if (!(task->flags & PF_KTHREAD)) 1520 exe_file = get_mm_exe_file(mm); 1521 } 1522 task_unlock(task); 1523 return exe_file; 1524 } 1525 1526 /** 1527 * get_task_mm - acquire a reference to the task's mm 1528 * 1529 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1530 * this kernel workthread has transiently adopted a user mm with use_mm, 1531 * to do its AIO) is not set and if so returns a reference to it, after 1532 * bumping up the use count. User must release the mm via mmput() 1533 * after use. Typically used by /proc and ptrace. 1534 */ 1535 struct mm_struct *get_task_mm(struct task_struct *task) 1536 { 1537 struct mm_struct *mm; 1538 1539 task_lock(task); 1540 mm = task->mm; 1541 if (mm) { 1542 if (task->flags & PF_KTHREAD) 1543 mm = NULL; 1544 else 1545 mmget(mm); 1546 } 1547 task_unlock(task); 1548 return mm; 1549 } 1550 EXPORT_SYMBOL_GPL(get_task_mm); 1551 1552 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1553 { 1554 struct mm_struct *mm; 1555 int err; 1556 1557 err = down_read_killable(&task->signal->exec_update_lock); 1558 if (err) 1559 return ERR_PTR(err); 1560 1561 mm = get_task_mm(task); 1562 if (mm && mm != current->mm && 1563 !ptrace_may_access(task, mode)) { 1564 mmput(mm); 1565 mm = ERR_PTR(-EACCES); 1566 } 1567 up_read(&task->signal->exec_update_lock); 1568 1569 return mm; 1570 } 1571 1572 static void complete_vfork_done(struct task_struct *tsk) 1573 { 1574 struct completion *vfork; 1575 1576 task_lock(tsk); 1577 vfork = tsk->vfork_done; 1578 if (likely(vfork)) { 1579 tsk->vfork_done = NULL; 1580 complete(vfork); 1581 } 1582 task_unlock(tsk); 1583 } 1584 1585 static int wait_for_vfork_done(struct task_struct *child, 1586 struct completion *vfork) 1587 { 1588 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1589 int killed; 1590 1591 cgroup_enter_frozen(); 1592 killed = wait_for_completion_state(vfork, state); 1593 cgroup_leave_frozen(false); 1594 1595 if (killed) { 1596 task_lock(child); 1597 child->vfork_done = NULL; 1598 task_unlock(child); 1599 } 1600 1601 put_task_struct(child); 1602 return killed; 1603 } 1604 1605 /* Please note the differences between mmput and mm_release. 1606 * mmput is called whenever we stop holding onto a mm_struct, 1607 * error success whatever. 1608 * 1609 * mm_release is called after a mm_struct has been removed 1610 * from the current process. 1611 * 1612 * This difference is important for error handling, when we 1613 * only half set up a mm_struct for a new process and need to restore 1614 * the old one. Because we mmput the new mm_struct before 1615 * restoring the old one. . . 1616 * Eric Biederman 10 January 1998 1617 */ 1618 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1619 { 1620 uprobe_free_utask(tsk); 1621 1622 /* Get rid of any cached register state */ 1623 deactivate_mm(tsk, mm); 1624 1625 /* 1626 * Signal userspace if we're not exiting with a core dump 1627 * because we want to leave the value intact for debugging 1628 * purposes. 1629 */ 1630 if (tsk->clear_child_tid) { 1631 if (atomic_read(&mm->mm_users) > 1) { 1632 /* 1633 * We don't check the error code - if userspace has 1634 * not set up a proper pointer then tough luck. 1635 */ 1636 put_user(0, tsk->clear_child_tid); 1637 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1638 1, NULL, NULL, 0, 0); 1639 } 1640 tsk->clear_child_tid = NULL; 1641 } 1642 1643 /* 1644 * All done, finally we can wake up parent and return this mm to him. 1645 * Also kthread_stop() uses this completion for synchronization. 1646 */ 1647 if (tsk->vfork_done) 1648 complete_vfork_done(tsk); 1649 } 1650 1651 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1652 { 1653 futex_exit_release(tsk); 1654 mm_release(tsk, mm); 1655 } 1656 1657 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1658 { 1659 futex_exec_release(tsk); 1660 mm_release(tsk, mm); 1661 } 1662 1663 /** 1664 * dup_mm() - duplicates an existing mm structure 1665 * @tsk: the task_struct with which the new mm will be associated. 1666 * @oldmm: the mm to duplicate. 1667 * 1668 * Allocates a new mm structure and duplicates the provided @oldmm structure 1669 * content into it. 1670 * 1671 * Return: the duplicated mm or NULL on failure. 1672 */ 1673 static struct mm_struct *dup_mm(struct task_struct *tsk, 1674 struct mm_struct *oldmm) 1675 { 1676 struct mm_struct *mm; 1677 int err; 1678 1679 mm = allocate_mm(); 1680 if (!mm) 1681 goto fail_nomem; 1682 1683 memcpy(mm, oldmm, sizeof(*mm)); 1684 1685 if (!mm_init(mm, tsk, mm->user_ns)) 1686 goto fail_nomem; 1687 1688 err = dup_mmap(mm, oldmm); 1689 if (err) 1690 goto free_pt; 1691 1692 mm->hiwater_rss = get_mm_rss(mm); 1693 mm->hiwater_vm = mm->total_vm; 1694 1695 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1696 goto free_pt; 1697 1698 return mm; 1699 1700 free_pt: 1701 /* don't put binfmt in mmput, we haven't got module yet */ 1702 mm->binfmt = NULL; 1703 mm_init_owner(mm, NULL); 1704 mmput(mm); 1705 1706 fail_nomem: 1707 return NULL; 1708 } 1709 1710 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1711 { 1712 struct mm_struct *mm, *oldmm; 1713 1714 tsk->min_flt = tsk->maj_flt = 0; 1715 tsk->nvcsw = tsk->nivcsw = 0; 1716 #ifdef CONFIG_DETECT_HUNG_TASK 1717 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1718 tsk->last_switch_time = 0; 1719 #endif 1720 1721 tsk->mm = NULL; 1722 tsk->active_mm = NULL; 1723 1724 /* 1725 * Are we cloning a kernel thread? 1726 * 1727 * We need to steal a active VM for that.. 1728 */ 1729 oldmm = current->mm; 1730 if (!oldmm) 1731 return 0; 1732 1733 if (clone_flags & CLONE_VM) { 1734 mmget(oldmm); 1735 mm = oldmm; 1736 } else { 1737 mm = dup_mm(tsk, current->mm); 1738 if (!mm) 1739 return -ENOMEM; 1740 } 1741 1742 tsk->mm = mm; 1743 tsk->active_mm = mm; 1744 sched_mm_cid_fork(tsk); 1745 return 0; 1746 } 1747 1748 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1749 { 1750 struct fs_struct *fs = current->fs; 1751 if (clone_flags & CLONE_FS) { 1752 /* tsk->fs is already what we want */ 1753 spin_lock(&fs->lock); 1754 if (fs->in_exec) { 1755 spin_unlock(&fs->lock); 1756 return -EAGAIN; 1757 } 1758 fs->users++; 1759 spin_unlock(&fs->lock); 1760 return 0; 1761 } 1762 tsk->fs = copy_fs_struct(fs); 1763 if (!tsk->fs) 1764 return -ENOMEM; 1765 return 0; 1766 } 1767 1768 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1769 int no_files) 1770 { 1771 struct files_struct *oldf, *newf; 1772 int error = 0; 1773 1774 /* 1775 * A background process may not have any files ... 1776 */ 1777 oldf = current->files; 1778 if (!oldf) 1779 goto out; 1780 1781 if (no_files) { 1782 tsk->files = NULL; 1783 goto out; 1784 } 1785 1786 if (clone_flags & CLONE_FILES) { 1787 atomic_inc(&oldf->count); 1788 goto out; 1789 } 1790 1791 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1792 if (!newf) 1793 goto out; 1794 1795 tsk->files = newf; 1796 error = 0; 1797 out: 1798 return error; 1799 } 1800 1801 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1802 { 1803 struct sighand_struct *sig; 1804 1805 if (clone_flags & CLONE_SIGHAND) { 1806 refcount_inc(¤t->sighand->count); 1807 return 0; 1808 } 1809 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1810 RCU_INIT_POINTER(tsk->sighand, sig); 1811 if (!sig) 1812 return -ENOMEM; 1813 1814 refcount_set(&sig->count, 1); 1815 spin_lock_irq(¤t->sighand->siglock); 1816 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1817 spin_unlock_irq(¤t->sighand->siglock); 1818 1819 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1820 if (clone_flags & CLONE_CLEAR_SIGHAND) 1821 flush_signal_handlers(tsk, 0); 1822 1823 return 0; 1824 } 1825 1826 void __cleanup_sighand(struct sighand_struct *sighand) 1827 { 1828 if (refcount_dec_and_test(&sighand->count)) { 1829 signalfd_cleanup(sighand); 1830 /* 1831 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1832 * without an RCU grace period, see __lock_task_sighand(). 1833 */ 1834 kmem_cache_free(sighand_cachep, sighand); 1835 } 1836 } 1837 1838 /* 1839 * Initialize POSIX timer handling for a thread group. 1840 */ 1841 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1842 { 1843 struct posix_cputimers *pct = &sig->posix_cputimers; 1844 unsigned long cpu_limit; 1845 1846 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1847 posix_cputimers_group_init(pct, cpu_limit); 1848 } 1849 1850 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1851 { 1852 struct signal_struct *sig; 1853 1854 if (clone_flags & CLONE_THREAD) 1855 return 0; 1856 1857 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1858 tsk->signal = sig; 1859 if (!sig) 1860 return -ENOMEM; 1861 1862 sig->nr_threads = 1; 1863 sig->quick_threads = 1; 1864 atomic_set(&sig->live, 1); 1865 refcount_set(&sig->sigcnt, 1); 1866 1867 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1868 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1869 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1870 1871 init_waitqueue_head(&sig->wait_chldexit); 1872 sig->curr_target = tsk; 1873 init_sigpending(&sig->shared_pending); 1874 INIT_HLIST_HEAD(&sig->multiprocess); 1875 seqlock_init(&sig->stats_lock); 1876 prev_cputime_init(&sig->prev_cputime); 1877 1878 #ifdef CONFIG_POSIX_TIMERS 1879 INIT_LIST_HEAD(&sig->posix_timers); 1880 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1881 sig->real_timer.function = it_real_fn; 1882 #endif 1883 1884 task_lock(current->group_leader); 1885 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1886 task_unlock(current->group_leader); 1887 1888 posix_cpu_timers_init_group(sig); 1889 1890 tty_audit_fork(sig); 1891 sched_autogroup_fork(sig); 1892 1893 sig->oom_score_adj = current->signal->oom_score_adj; 1894 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1895 1896 mutex_init(&sig->cred_guard_mutex); 1897 init_rwsem(&sig->exec_update_lock); 1898 1899 return 0; 1900 } 1901 1902 static void copy_seccomp(struct task_struct *p) 1903 { 1904 #ifdef CONFIG_SECCOMP 1905 /* 1906 * Must be called with sighand->lock held, which is common to 1907 * all threads in the group. Holding cred_guard_mutex is not 1908 * needed because this new task is not yet running and cannot 1909 * be racing exec. 1910 */ 1911 assert_spin_locked(¤t->sighand->siglock); 1912 1913 /* Ref-count the new filter user, and assign it. */ 1914 get_seccomp_filter(current); 1915 p->seccomp = current->seccomp; 1916 1917 /* 1918 * Explicitly enable no_new_privs here in case it got set 1919 * between the task_struct being duplicated and holding the 1920 * sighand lock. The seccomp state and nnp must be in sync. 1921 */ 1922 if (task_no_new_privs(current)) 1923 task_set_no_new_privs(p); 1924 1925 /* 1926 * If the parent gained a seccomp mode after copying thread 1927 * flags and between before we held the sighand lock, we have 1928 * to manually enable the seccomp thread flag here. 1929 */ 1930 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1931 set_task_syscall_work(p, SECCOMP); 1932 #endif 1933 } 1934 1935 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1936 { 1937 current->clear_child_tid = tidptr; 1938 1939 return task_pid_vnr(current); 1940 } 1941 1942 static void rt_mutex_init_task(struct task_struct *p) 1943 { 1944 raw_spin_lock_init(&p->pi_lock); 1945 #ifdef CONFIG_RT_MUTEXES 1946 p->pi_waiters = RB_ROOT_CACHED; 1947 p->pi_top_task = NULL; 1948 p->pi_blocked_on = NULL; 1949 #endif 1950 } 1951 1952 static inline void init_task_pid_links(struct task_struct *task) 1953 { 1954 enum pid_type type; 1955 1956 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1957 INIT_HLIST_NODE(&task->pid_links[type]); 1958 } 1959 1960 static inline void 1961 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1962 { 1963 if (type == PIDTYPE_PID) 1964 task->thread_pid = pid; 1965 else 1966 task->signal->pids[type] = pid; 1967 } 1968 1969 static inline void rcu_copy_process(struct task_struct *p) 1970 { 1971 #ifdef CONFIG_PREEMPT_RCU 1972 p->rcu_read_lock_nesting = 0; 1973 p->rcu_read_unlock_special.s = 0; 1974 p->rcu_blocked_node = NULL; 1975 INIT_LIST_HEAD(&p->rcu_node_entry); 1976 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1977 #ifdef CONFIG_TASKS_RCU 1978 p->rcu_tasks_holdout = false; 1979 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1980 p->rcu_tasks_idle_cpu = -1; 1981 #endif /* #ifdef CONFIG_TASKS_RCU */ 1982 #ifdef CONFIG_TASKS_TRACE_RCU 1983 p->trc_reader_nesting = 0; 1984 p->trc_reader_special.s = 0; 1985 INIT_LIST_HEAD(&p->trc_holdout_list); 1986 INIT_LIST_HEAD(&p->trc_blkd_node); 1987 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1988 } 1989 1990 struct pid *pidfd_pid(const struct file *file) 1991 { 1992 if (file->f_op == &pidfd_fops) 1993 return file->private_data; 1994 1995 return ERR_PTR(-EBADF); 1996 } 1997 1998 static int pidfd_release(struct inode *inode, struct file *file) 1999 { 2000 struct pid *pid = file->private_data; 2001 2002 file->private_data = NULL; 2003 put_pid(pid); 2004 return 0; 2005 } 2006 2007 #ifdef CONFIG_PROC_FS 2008 /** 2009 * pidfd_show_fdinfo - print information about a pidfd 2010 * @m: proc fdinfo file 2011 * @f: file referencing a pidfd 2012 * 2013 * Pid: 2014 * This function will print the pid that a given pidfd refers to in the 2015 * pid namespace of the procfs instance. 2016 * If the pid namespace of the process is not a descendant of the pid 2017 * namespace of the procfs instance 0 will be shown as its pid. This is 2018 * similar to calling getppid() on a process whose parent is outside of 2019 * its pid namespace. 2020 * 2021 * NSpid: 2022 * If pid namespaces are supported then this function will also print 2023 * the pid of a given pidfd refers to for all descendant pid namespaces 2024 * starting from the current pid namespace of the instance, i.e. the 2025 * Pid field and the first entry in the NSpid field will be identical. 2026 * If the pid namespace of the process is not a descendant of the pid 2027 * namespace of the procfs instance 0 will be shown as its first NSpid 2028 * entry and no others will be shown. 2029 * Note that this differs from the Pid and NSpid fields in 2030 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2031 * the pid namespace of the procfs instance. The difference becomes 2032 * obvious when sending around a pidfd between pid namespaces from a 2033 * different branch of the tree, i.e. where no ancestral relation is 2034 * present between the pid namespaces: 2035 * - create two new pid namespaces ns1 and ns2 in the initial pid 2036 * namespace (also take care to create new mount namespaces in the 2037 * new pid namespace and mount procfs) 2038 * - create a process with a pidfd in ns1 2039 * - send pidfd from ns1 to ns2 2040 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2041 * have exactly one entry, which is 0 2042 */ 2043 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2044 { 2045 struct pid *pid = f->private_data; 2046 struct pid_namespace *ns; 2047 pid_t nr = -1; 2048 2049 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2050 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2051 nr = pid_nr_ns(pid, ns); 2052 } 2053 2054 seq_put_decimal_ll(m, "Pid:\t", nr); 2055 2056 #ifdef CONFIG_PID_NS 2057 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2058 if (nr > 0) { 2059 int i; 2060 2061 /* If nr is non-zero it means that 'pid' is valid and that 2062 * ns, i.e. the pid namespace associated with the procfs 2063 * instance, is in the pid namespace hierarchy of pid. 2064 * Start at one below the already printed level. 2065 */ 2066 for (i = ns->level + 1; i <= pid->level; i++) 2067 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2068 } 2069 #endif 2070 seq_putc(m, '\n'); 2071 } 2072 #endif 2073 2074 /* 2075 * Poll support for process exit notification. 2076 */ 2077 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2078 { 2079 struct pid *pid = file->private_data; 2080 __poll_t poll_flags = 0; 2081 2082 poll_wait(file, &pid->wait_pidfd, pts); 2083 2084 /* 2085 * Inform pollers only when the whole thread group exits. 2086 * If the thread group leader exits before all other threads in the 2087 * group, then poll(2) should block, similar to the wait(2) family. 2088 */ 2089 if (thread_group_exited(pid)) 2090 poll_flags = EPOLLIN | EPOLLRDNORM; 2091 2092 return poll_flags; 2093 } 2094 2095 const struct file_operations pidfd_fops = { 2096 .release = pidfd_release, 2097 .poll = pidfd_poll, 2098 #ifdef CONFIG_PROC_FS 2099 .show_fdinfo = pidfd_show_fdinfo, 2100 #endif 2101 }; 2102 2103 /** 2104 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2105 * @pid: the struct pid for which to create a pidfd 2106 * @flags: flags of the new @pidfd 2107 * @pidfd: the pidfd to return 2108 * 2109 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2110 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2111 2112 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2113 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2114 * pidfd file are prepared. 2115 * 2116 * If this function returns successfully the caller is responsible to either 2117 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2118 * order to install the pidfd into its file descriptor table or they must use 2119 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2120 * respectively. 2121 * 2122 * This function is useful when a pidfd must already be reserved but there 2123 * might still be points of failure afterwards and the caller wants to ensure 2124 * that no pidfd is leaked into its file descriptor table. 2125 * 2126 * Return: On success, a reserved pidfd is returned from the function and a new 2127 * pidfd file is returned in the last argument to the function. On 2128 * error, a negative error code is returned from the function and the 2129 * last argument remains unchanged. 2130 */ 2131 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2132 { 2133 int pidfd; 2134 struct file *pidfd_file; 2135 2136 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2137 return -EINVAL; 2138 2139 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2140 if (pidfd < 0) 2141 return pidfd; 2142 2143 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2144 flags | O_RDWR | O_CLOEXEC); 2145 if (IS_ERR(pidfd_file)) { 2146 put_unused_fd(pidfd); 2147 return PTR_ERR(pidfd_file); 2148 } 2149 get_pid(pid); /* held by pidfd_file now */ 2150 *ret = pidfd_file; 2151 return pidfd; 2152 } 2153 2154 /** 2155 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2156 * @pid: the struct pid for which to create a pidfd 2157 * @flags: flags of the new @pidfd 2158 * @pidfd: the pidfd to return 2159 * 2160 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2161 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2162 * 2163 * The helper verifies that @pid is used as a thread group leader. 2164 * 2165 * If this function returns successfully the caller is responsible to either 2166 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2167 * order to install the pidfd into its file descriptor table or they must use 2168 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2169 * respectively. 2170 * 2171 * This function is useful when a pidfd must already be reserved but there 2172 * might still be points of failure afterwards and the caller wants to ensure 2173 * that no pidfd is leaked into its file descriptor table. 2174 * 2175 * Return: On success, a reserved pidfd is returned from the function and a new 2176 * pidfd file is returned in the last argument to the function. On 2177 * error, a negative error code is returned from the function and the 2178 * last argument remains unchanged. 2179 */ 2180 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2181 { 2182 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2183 return -EINVAL; 2184 2185 return __pidfd_prepare(pid, flags, ret); 2186 } 2187 2188 static void __delayed_free_task(struct rcu_head *rhp) 2189 { 2190 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2191 2192 free_task(tsk); 2193 } 2194 2195 static __always_inline void delayed_free_task(struct task_struct *tsk) 2196 { 2197 if (IS_ENABLED(CONFIG_MEMCG)) 2198 call_rcu(&tsk->rcu, __delayed_free_task); 2199 else 2200 free_task(tsk); 2201 } 2202 2203 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2204 { 2205 /* Skip if kernel thread */ 2206 if (!tsk->mm) 2207 return; 2208 2209 /* Skip if spawning a thread or using vfork */ 2210 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2211 return; 2212 2213 /* We need to synchronize with __set_oom_adj */ 2214 mutex_lock(&oom_adj_mutex); 2215 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2216 /* Update the values in case they were changed after copy_signal */ 2217 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2218 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2219 mutex_unlock(&oom_adj_mutex); 2220 } 2221 2222 #ifdef CONFIG_RV 2223 static void rv_task_fork(struct task_struct *p) 2224 { 2225 int i; 2226 2227 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2228 p->rv[i].da_mon.monitoring = false; 2229 } 2230 #else 2231 #define rv_task_fork(p) do {} while (0) 2232 #endif 2233 2234 /* 2235 * This creates a new process as a copy of the old one, 2236 * but does not actually start it yet. 2237 * 2238 * It copies the registers, and all the appropriate 2239 * parts of the process environment (as per the clone 2240 * flags). The actual kick-off is left to the caller. 2241 */ 2242 __latent_entropy struct task_struct *copy_process( 2243 struct pid *pid, 2244 int trace, 2245 int node, 2246 struct kernel_clone_args *args) 2247 { 2248 int pidfd = -1, retval; 2249 struct task_struct *p; 2250 struct multiprocess_signals delayed; 2251 struct file *pidfile = NULL; 2252 const u64 clone_flags = args->flags; 2253 struct nsproxy *nsp = current->nsproxy; 2254 2255 /* 2256 * Don't allow sharing the root directory with processes in a different 2257 * namespace 2258 */ 2259 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2260 return ERR_PTR(-EINVAL); 2261 2262 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2263 return ERR_PTR(-EINVAL); 2264 2265 /* 2266 * Thread groups must share signals as well, and detached threads 2267 * can only be started up within the thread group. 2268 */ 2269 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2270 return ERR_PTR(-EINVAL); 2271 2272 /* 2273 * Shared signal handlers imply shared VM. By way of the above, 2274 * thread groups also imply shared VM. Blocking this case allows 2275 * for various simplifications in other code. 2276 */ 2277 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2278 return ERR_PTR(-EINVAL); 2279 2280 /* 2281 * Siblings of global init remain as zombies on exit since they are 2282 * not reaped by their parent (swapper). To solve this and to avoid 2283 * multi-rooted process trees, prevent global and container-inits 2284 * from creating siblings. 2285 */ 2286 if ((clone_flags & CLONE_PARENT) && 2287 current->signal->flags & SIGNAL_UNKILLABLE) 2288 return ERR_PTR(-EINVAL); 2289 2290 /* 2291 * If the new process will be in a different pid or user namespace 2292 * do not allow it to share a thread group with the forking task. 2293 */ 2294 if (clone_flags & CLONE_THREAD) { 2295 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2296 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2297 return ERR_PTR(-EINVAL); 2298 } 2299 2300 if (clone_flags & CLONE_PIDFD) { 2301 /* 2302 * - CLONE_DETACHED is blocked so that we can potentially 2303 * reuse it later for CLONE_PIDFD. 2304 * - CLONE_THREAD is blocked until someone really needs it. 2305 */ 2306 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2307 return ERR_PTR(-EINVAL); 2308 } 2309 2310 /* 2311 * Force any signals received before this point to be delivered 2312 * before the fork happens. Collect up signals sent to multiple 2313 * processes that happen during the fork and delay them so that 2314 * they appear to happen after the fork. 2315 */ 2316 sigemptyset(&delayed.signal); 2317 INIT_HLIST_NODE(&delayed.node); 2318 2319 spin_lock_irq(¤t->sighand->siglock); 2320 if (!(clone_flags & CLONE_THREAD)) 2321 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2322 recalc_sigpending(); 2323 spin_unlock_irq(¤t->sighand->siglock); 2324 retval = -ERESTARTNOINTR; 2325 if (task_sigpending(current)) 2326 goto fork_out; 2327 2328 retval = -ENOMEM; 2329 p = dup_task_struct(current, node); 2330 if (!p) 2331 goto fork_out; 2332 p->flags &= ~PF_KTHREAD; 2333 if (args->kthread) 2334 p->flags |= PF_KTHREAD; 2335 if (args->user_worker) { 2336 /* 2337 * Mark us a user worker, and block any signal that isn't 2338 * fatal or STOP 2339 */ 2340 p->flags |= PF_USER_WORKER; 2341 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2342 } 2343 if (args->io_thread) 2344 p->flags |= PF_IO_WORKER; 2345 2346 if (args->name) 2347 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2348 2349 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2350 /* 2351 * Clear TID on mm_release()? 2352 */ 2353 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2354 2355 ftrace_graph_init_task(p); 2356 2357 rt_mutex_init_task(p); 2358 2359 lockdep_assert_irqs_enabled(); 2360 #ifdef CONFIG_PROVE_LOCKING 2361 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2362 #endif 2363 retval = copy_creds(p, clone_flags); 2364 if (retval < 0) 2365 goto bad_fork_free; 2366 2367 retval = -EAGAIN; 2368 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2369 if (p->real_cred->user != INIT_USER && 2370 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2371 goto bad_fork_cleanup_count; 2372 } 2373 current->flags &= ~PF_NPROC_EXCEEDED; 2374 2375 /* 2376 * If multiple threads are within copy_process(), then this check 2377 * triggers too late. This doesn't hurt, the check is only there 2378 * to stop root fork bombs. 2379 */ 2380 retval = -EAGAIN; 2381 if (data_race(nr_threads >= max_threads)) 2382 goto bad_fork_cleanup_count; 2383 2384 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2385 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2386 p->flags |= PF_FORKNOEXEC; 2387 INIT_LIST_HEAD(&p->children); 2388 INIT_LIST_HEAD(&p->sibling); 2389 rcu_copy_process(p); 2390 p->vfork_done = NULL; 2391 spin_lock_init(&p->alloc_lock); 2392 2393 init_sigpending(&p->pending); 2394 2395 p->utime = p->stime = p->gtime = 0; 2396 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2397 p->utimescaled = p->stimescaled = 0; 2398 #endif 2399 prev_cputime_init(&p->prev_cputime); 2400 2401 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2402 seqcount_init(&p->vtime.seqcount); 2403 p->vtime.starttime = 0; 2404 p->vtime.state = VTIME_INACTIVE; 2405 #endif 2406 2407 #ifdef CONFIG_IO_URING 2408 p->io_uring = NULL; 2409 #endif 2410 2411 #if defined(SPLIT_RSS_COUNTING) 2412 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2413 #endif 2414 2415 p->default_timer_slack_ns = current->timer_slack_ns; 2416 2417 #ifdef CONFIG_PSI 2418 p->psi_flags = 0; 2419 #endif 2420 2421 task_io_accounting_init(&p->ioac); 2422 acct_clear_integrals(p); 2423 2424 posix_cputimers_init(&p->posix_cputimers); 2425 2426 p->io_context = NULL; 2427 audit_set_context(p, NULL); 2428 cgroup_fork(p); 2429 if (args->kthread) { 2430 if (!set_kthread_struct(p)) 2431 goto bad_fork_cleanup_delayacct; 2432 } 2433 #ifdef CONFIG_NUMA 2434 p->mempolicy = mpol_dup(p->mempolicy); 2435 if (IS_ERR(p->mempolicy)) { 2436 retval = PTR_ERR(p->mempolicy); 2437 p->mempolicy = NULL; 2438 goto bad_fork_cleanup_delayacct; 2439 } 2440 #endif 2441 #ifdef CONFIG_CPUSETS 2442 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2443 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2444 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2445 #endif 2446 #ifdef CONFIG_TRACE_IRQFLAGS 2447 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2448 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2449 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2450 p->softirqs_enabled = 1; 2451 p->softirq_context = 0; 2452 #endif 2453 2454 p->pagefault_disabled = 0; 2455 2456 #ifdef CONFIG_LOCKDEP 2457 lockdep_init_task(p); 2458 #endif 2459 2460 #ifdef CONFIG_DEBUG_MUTEXES 2461 p->blocked_on = NULL; /* not blocked yet */ 2462 #endif 2463 #ifdef CONFIG_BCACHE 2464 p->sequential_io = 0; 2465 p->sequential_io_avg = 0; 2466 #endif 2467 #ifdef CONFIG_BPF_SYSCALL 2468 RCU_INIT_POINTER(p->bpf_storage, NULL); 2469 p->bpf_ctx = NULL; 2470 #endif 2471 2472 /* Perform scheduler related setup. Assign this task to a CPU. */ 2473 retval = sched_fork(clone_flags, p); 2474 if (retval) 2475 goto bad_fork_cleanup_policy; 2476 2477 retval = perf_event_init_task(p, clone_flags); 2478 if (retval) 2479 goto bad_fork_cleanup_policy; 2480 retval = audit_alloc(p); 2481 if (retval) 2482 goto bad_fork_cleanup_perf; 2483 /* copy all the process information */ 2484 shm_init_task(p); 2485 retval = security_task_alloc(p, clone_flags); 2486 if (retval) 2487 goto bad_fork_cleanup_audit; 2488 retval = copy_semundo(clone_flags, p); 2489 if (retval) 2490 goto bad_fork_cleanup_security; 2491 retval = copy_files(clone_flags, p, args->no_files); 2492 if (retval) 2493 goto bad_fork_cleanup_semundo; 2494 retval = copy_fs(clone_flags, p); 2495 if (retval) 2496 goto bad_fork_cleanup_files; 2497 retval = copy_sighand(clone_flags, p); 2498 if (retval) 2499 goto bad_fork_cleanup_fs; 2500 retval = copy_signal(clone_flags, p); 2501 if (retval) 2502 goto bad_fork_cleanup_sighand; 2503 retval = copy_mm(clone_flags, p); 2504 if (retval) 2505 goto bad_fork_cleanup_signal; 2506 retval = copy_namespaces(clone_flags, p); 2507 if (retval) 2508 goto bad_fork_cleanup_mm; 2509 retval = copy_io(clone_flags, p); 2510 if (retval) 2511 goto bad_fork_cleanup_namespaces; 2512 retval = copy_thread(p, args); 2513 if (retval) 2514 goto bad_fork_cleanup_io; 2515 2516 stackleak_task_init(p); 2517 2518 if (pid != &init_struct_pid) { 2519 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2520 args->set_tid_size); 2521 if (IS_ERR(pid)) { 2522 retval = PTR_ERR(pid); 2523 goto bad_fork_cleanup_thread; 2524 } 2525 } 2526 2527 /* 2528 * This has to happen after we've potentially unshared the file 2529 * descriptor table (so that the pidfd doesn't leak into the child 2530 * if the fd table isn't shared). 2531 */ 2532 if (clone_flags & CLONE_PIDFD) { 2533 /* Note that no task has been attached to @pid yet. */ 2534 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2535 if (retval < 0) 2536 goto bad_fork_free_pid; 2537 pidfd = retval; 2538 2539 retval = put_user(pidfd, args->pidfd); 2540 if (retval) 2541 goto bad_fork_put_pidfd; 2542 } 2543 2544 #ifdef CONFIG_BLOCK 2545 p->plug = NULL; 2546 #endif 2547 futex_init_task(p); 2548 2549 /* 2550 * sigaltstack should be cleared when sharing the same VM 2551 */ 2552 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2553 sas_ss_reset(p); 2554 2555 /* 2556 * Syscall tracing and stepping should be turned off in the 2557 * child regardless of CLONE_PTRACE. 2558 */ 2559 user_disable_single_step(p); 2560 clear_task_syscall_work(p, SYSCALL_TRACE); 2561 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2562 clear_task_syscall_work(p, SYSCALL_EMU); 2563 #endif 2564 clear_tsk_latency_tracing(p); 2565 2566 /* ok, now we should be set up.. */ 2567 p->pid = pid_nr(pid); 2568 if (clone_flags & CLONE_THREAD) { 2569 p->group_leader = current->group_leader; 2570 p->tgid = current->tgid; 2571 } else { 2572 p->group_leader = p; 2573 p->tgid = p->pid; 2574 } 2575 2576 p->nr_dirtied = 0; 2577 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2578 p->dirty_paused_when = 0; 2579 2580 p->pdeath_signal = 0; 2581 INIT_LIST_HEAD(&p->thread_group); 2582 p->task_works = NULL; 2583 clear_posix_cputimers_work(p); 2584 2585 #ifdef CONFIG_KRETPROBES 2586 p->kretprobe_instances.first = NULL; 2587 #endif 2588 #ifdef CONFIG_RETHOOK 2589 p->rethooks.first = NULL; 2590 #endif 2591 2592 /* 2593 * Ensure that the cgroup subsystem policies allow the new process to be 2594 * forked. It should be noted that the new process's css_set can be changed 2595 * between here and cgroup_post_fork() if an organisation operation is in 2596 * progress. 2597 */ 2598 retval = cgroup_can_fork(p, args); 2599 if (retval) 2600 goto bad_fork_put_pidfd; 2601 2602 /* 2603 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2604 * the new task on the correct runqueue. All this *before* the task 2605 * becomes visible. 2606 * 2607 * This isn't part of ->can_fork() because while the re-cloning is 2608 * cgroup specific, it unconditionally needs to place the task on a 2609 * runqueue. 2610 */ 2611 sched_cgroup_fork(p, args); 2612 2613 /* 2614 * From this point on we must avoid any synchronous user-space 2615 * communication until we take the tasklist-lock. In particular, we do 2616 * not want user-space to be able to predict the process start-time by 2617 * stalling fork(2) after we recorded the start_time but before it is 2618 * visible to the system. 2619 */ 2620 2621 p->start_time = ktime_get_ns(); 2622 p->start_boottime = ktime_get_boottime_ns(); 2623 2624 /* 2625 * Make it visible to the rest of the system, but dont wake it up yet. 2626 * Need tasklist lock for parent etc handling! 2627 */ 2628 write_lock_irq(&tasklist_lock); 2629 2630 /* CLONE_PARENT re-uses the old parent */ 2631 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2632 p->real_parent = current->real_parent; 2633 p->parent_exec_id = current->parent_exec_id; 2634 if (clone_flags & CLONE_THREAD) 2635 p->exit_signal = -1; 2636 else 2637 p->exit_signal = current->group_leader->exit_signal; 2638 } else { 2639 p->real_parent = current; 2640 p->parent_exec_id = current->self_exec_id; 2641 p->exit_signal = args->exit_signal; 2642 } 2643 2644 klp_copy_process(p); 2645 2646 sched_core_fork(p); 2647 2648 spin_lock(¤t->sighand->siglock); 2649 2650 rv_task_fork(p); 2651 2652 rseq_fork(p, clone_flags); 2653 2654 /* Don't start children in a dying pid namespace */ 2655 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2656 retval = -ENOMEM; 2657 goto bad_fork_cancel_cgroup; 2658 } 2659 2660 /* Let kill terminate clone/fork in the middle */ 2661 if (fatal_signal_pending(current)) { 2662 retval = -EINTR; 2663 goto bad_fork_cancel_cgroup; 2664 } 2665 2666 /* No more failure paths after this point. */ 2667 2668 /* 2669 * Copy seccomp details explicitly here, in case they were changed 2670 * before holding sighand lock. 2671 */ 2672 copy_seccomp(p); 2673 2674 init_task_pid_links(p); 2675 if (likely(p->pid)) { 2676 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2677 2678 init_task_pid(p, PIDTYPE_PID, pid); 2679 if (thread_group_leader(p)) { 2680 init_task_pid(p, PIDTYPE_TGID, pid); 2681 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2682 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2683 2684 if (is_child_reaper(pid)) { 2685 ns_of_pid(pid)->child_reaper = p; 2686 p->signal->flags |= SIGNAL_UNKILLABLE; 2687 } 2688 p->signal->shared_pending.signal = delayed.signal; 2689 p->signal->tty = tty_kref_get(current->signal->tty); 2690 /* 2691 * Inherit has_child_subreaper flag under the same 2692 * tasklist_lock with adding child to the process tree 2693 * for propagate_has_child_subreaper optimization. 2694 */ 2695 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2696 p->real_parent->signal->is_child_subreaper; 2697 list_add_tail(&p->sibling, &p->real_parent->children); 2698 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2699 attach_pid(p, PIDTYPE_TGID); 2700 attach_pid(p, PIDTYPE_PGID); 2701 attach_pid(p, PIDTYPE_SID); 2702 __this_cpu_inc(process_counts); 2703 } else { 2704 current->signal->nr_threads++; 2705 current->signal->quick_threads++; 2706 atomic_inc(¤t->signal->live); 2707 refcount_inc(¤t->signal->sigcnt); 2708 task_join_group_stop(p); 2709 list_add_tail_rcu(&p->thread_group, 2710 &p->group_leader->thread_group); 2711 list_add_tail_rcu(&p->thread_node, 2712 &p->signal->thread_head); 2713 } 2714 attach_pid(p, PIDTYPE_PID); 2715 nr_threads++; 2716 } 2717 total_forks++; 2718 hlist_del_init(&delayed.node); 2719 spin_unlock(¤t->sighand->siglock); 2720 syscall_tracepoint_update(p); 2721 write_unlock_irq(&tasklist_lock); 2722 2723 if (pidfile) 2724 fd_install(pidfd, pidfile); 2725 2726 proc_fork_connector(p); 2727 sched_post_fork(p); 2728 cgroup_post_fork(p, args); 2729 perf_event_fork(p); 2730 2731 trace_task_newtask(p, clone_flags); 2732 uprobe_copy_process(p, clone_flags); 2733 user_events_fork(p, clone_flags); 2734 2735 copy_oom_score_adj(clone_flags, p); 2736 2737 return p; 2738 2739 bad_fork_cancel_cgroup: 2740 sched_core_free(p); 2741 spin_unlock(¤t->sighand->siglock); 2742 write_unlock_irq(&tasklist_lock); 2743 cgroup_cancel_fork(p, args); 2744 bad_fork_put_pidfd: 2745 if (clone_flags & CLONE_PIDFD) { 2746 fput(pidfile); 2747 put_unused_fd(pidfd); 2748 } 2749 bad_fork_free_pid: 2750 if (pid != &init_struct_pid) 2751 free_pid(pid); 2752 bad_fork_cleanup_thread: 2753 exit_thread(p); 2754 bad_fork_cleanup_io: 2755 if (p->io_context) 2756 exit_io_context(p); 2757 bad_fork_cleanup_namespaces: 2758 exit_task_namespaces(p); 2759 bad_fork_cleanup_mm: 2760 if (p->mm) { 2761 mm_clear_owner(p->mm, p); 2762 mmput(p->mm); 2763 } 2764 bad_fork_cleanup_signal: 2765 if (!(clone_flags & CLONE_THREAD)) 2766 free_signal_struct(p->signal); 2767 bad_fork_cleanup_sighand: 2768 __cleanup_sighand(p->sighand); 2769 bad_fork_cleanup_fs: 2770 exit_fs(p); /* blocking */ 2771 bad_fork_cleanup_files: 2772 exit_files(p); /* blocking */ 2773 bad_fork_cleanup_semundo: 2774 exit_sem(p); 2775 bad_fork_cleanup_security: 2776 security_task_free(p); 2777 bad_fork_cleanup_audit: 2778 audit_free(p); 2779 bad_fork_cleanup_perf: 2780 perf_event_free_task(p); 2781 bad_fork_cleanup_policy: 2782 lockdep_free_task(p); 2783 #ifdef CONFIG_NUMA 2784 mpol_put(p->mempolicy); 2785 #endif 2786 bad_fork_cleanup_delayacct: 2787 delayacct_tsk_free(p); 2788 bad_fork_cleanup_count: 2789 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2790 exit_creds(p); 2791 bad_fork_free: 2792 WRITE_ONCE(p->__state, TASK_DEAD); 2793 exit_task_stack_account(p); 2794 put_task_stack(p); 2795 delayed_free_task(p); 2796 fork_out: 2797 spin_lock_irq(¤t->sighand->siglock); 2798 hlist_del_init(&delayed.node); 2799 spin_unlock_irq(¤t->sighand->siglock); 2800 return ERR_PTR(retval); 2801 } 2802 2803 static inline void init_idle_pids(struct task_struct *idle) 2804 { 2805 enum pid_type type; 2806 2807 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2808 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2809 init_task_pid(idle, type, &init_struct_pid); 2810 } 2811 } 2812 2813 static int idle_dummy(void *dummy) 2814 { 2815 /* This function is never called */ 2816 return 0; 2817 } 2818 2819 struct task_struct * __init fork_idle(int cpu) 2820 { 2821 struct task_struct *task; 2822 struct kernel_clone_args args = { 2823 .flags = CLONE_VM, 2824 .fn = &idle_dummy, 2825 .fn_arg = NULL, 2826 .kthread = 1, 2827 .idle = 1, 2828 }; 2829 2830 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2831 if (!IS_ERR(task)) { 2832 init_idle_pids(task); 2833 init_idle(task, cpu); 2834 } 2835 2836 return task; 2837 } 2838 2839 /* 2840 * This is like kernel_clone(), but shaved down and tailored to just 2841 * creating io_uring workers. It returns a created task, or an error pointer. 2842 * The returned task is inactive, and the caller must fire it up through 2843 * wake_up_new_task(p). All signals are blocked in the created task. 2844 */ 2845 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2846 { 2847 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2848 CLONE_IO; 2849 struct kernel_clone_args args = { 2850 .flags = ((lower_32_bits(flags) | CLONE_VM | 2851 CLONE_UNTRACED) & ~CSIGNAL), 2852 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2853 .fn = fn, 2854 .fn_arg = arg, 2855 .io_thread = 1, 2856 .user_worker = 1, 2857 }; 2858 2859 return copy_process(NULL, 0, node, &args); 2860 } 2861 2862 /* 2863 * Ok, this is the main fork-routine. 2864 * 2865 * It copies the process, and if successful kick-starts 2866 * it and waits for it to finish using the VM if required. 2867 * 2868 * args->exit_signal is expected to be checked for sanity by the caller. 2869 */ 2870 pid_t kernel_clone(struct kernel_clone_args *args) 2871 { 2872 u64 clone_flags = args->flags; 2873 struct completion vfork; 2874 struct pid *pid; 2875 struct task_struct *p; 2876 int trace = 0; 2877 pid_t nr; 2878 2879 /* 2880 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2881 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2882 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2883 * field in struct clone_args and it still doesn't make sense to have 2884 * them both point at the same memory location. Performing this check 2885 * here has the advantage that we don't need to have a separate helper 2886 * to check for legacy clone(). 2887 */ 2888 if ((args->flags & CLONE_PIDFD) && 2889 (args->flags & CLONE_PARENT_SETTID) && 2890 (args->pidfd == args->parent_tid)) 2891 return -EINVAL; 2892 2893 /* 2894 * Determine whether and which event to report to ptracer. When 2895 * called from kernel_thread or CLONE_UNTRACED is explicitly 2896 * requested, no event is reported; otherwise, report if the event 2897 * for the type of forking is enabled. 2898 */ 2899 if (!(clone_flags & CLONE_UNTRACED)) { 2900 if (clone_flags & CLONE_VFORK) 2901 trace = PTRACE_EVENT_VFORK; 2902 else if (args->exit_signal != SIGCHLD) 2903 trace = PTRACE_EVENT_CLONE; 2904 else 2905 trace = PTRACE_EVENT_FORK; 2906 2907 if (likely(!ptrace_event_enabled(current, trace))) 2908 trace = 0; 2909 } 2910 2911 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2912 add_latent_entropy(); 2913 2914 if (IS_ERR(p)) 2915 return PTR_ERR(p); 2916 2917 /* 2918 * Do this prior waking up the new thread - the thread pointer 2919 * might get invalid after that point, if the thread exits quickly. 2920 */ 2921 trace_sched_process_fork(current, p); 2922 2923 pid = get_task_pid(p, PIDTYPE_PID); 2924 nr = pid_vnr(pid); 2925 2926 if (clone_flags & CLONE_PARENT_SETTID) 2927 put_user(nr, args->parent_tid); 2928 2929 if (clone_flags & CLONE_VFORK) { 2930 p->vfork_done = &vfork; 2931 init_completion(&vfork); 2932 get_task_struct(p); 2933 } 2934 2935 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2936 /* lock the task to synchronize with memcg migration */ 2937 task_lock(p); 2938 lru_gen_add_mm(p->mm); 2939 task_unlock(p); 2940 } 2941 2942 wake_up_new_task(p); 2943 2944 /* forking complete and child started to run, tell ptracer */ 2945 if (unlikely(trace)) 2946 ptrace_event_pid(trace, pid); 2947 2948 if (clone_flags & CLONE_VFORK) { 2949 if (!wait_for_vfork_done(p, &vfork)) 2950 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2951 } 2952 2953 put_pid(pid); 2954 return nr; 2955 } 2956 2957 /* 2958 * Create a kernel thread. 2959 */ 2960 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2961 unsigned long flags) 2962 { 2963 struct kernel_clone_args args = { 2964 .flags = ((lower_32_bits(flags) | CLONE_VM | 2965 CLONE_UNTRACED) & ~CSIGNAL), 2966 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2967 .fn = fn, 2968 .fn_arg = arg, 2969 .name = name, 2970 .kthread = 1, 2971 }; 2972 2973 return kernel_clone(&args); 2974 } 2975 2976 /* 2977 * Create a user mode thread. 2978 */ 2979 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2980 { 2981 struct kernel_clone_args args = { 2982 .flags = ((lower_32_bits(flags) | CLONE_VM | 2983 CLONE_UNTRACED) & ~CSIGNAL), 2984 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2985 .fn = fn, 2986 .fn_arg = arg, 2987 }; 2988 2989 return kernel_clone(&args); 2990 } 2991 2992 #ifdef __ARCH_WANT_SYS_FORK 2993 SYSCALL_DEFINE0(fork) 2994 { 2995 #ifdef CONFIG_MMU 2996 struct kernel_clone_args args = { 2997 .exit_signal = SIGCHLD, 2998 }; 2999 3000 return kernel_clone(&args); 3001 #else 3002 /* can not support in nommu mode */ 3003 return -EINVAL; 3004 #endif 3005 } 3006 #endif 3007 3008 #ifdef __ARCH_WANT_SYS_VFORK 3009 SYSCALL_DEFINE0(vfork) 3010 { 3011 struct kernel_clone_args args = { 3012 .flags = CLONE_VFORK | CLONE_VM, 3013 .exit_signal = SIGCHLD, 3014 }; 3015 3016 return kernel_clone(&args); 3017 } 3018 #endif 3019 3020 #ifdef __ARCH_WANT_SYS_CLONE 3021 #ifdef CONFIG_CLONE_BACKWARDS 3022 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3023 int __user *, parent_tidptr, 3024 unsigned long, tls, 3025 int __user *, child_tidptr) 3026 #elif defined(CONFIG_CLONE_BACKWARDS2) 3027 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3028 int __user *, parent_tidptr, 3029 int __user *, child_tidptr, 3030 unsigned long, tls) 3031 #elif defined(CONFIG_CLONE_BACKWARDS3) 3032 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3033 int, stack_size, 3034 int __user *, parent_tidptr, 3035 int __user *, child_tidptr, 3036 unsigned long, tls) 3037 #else 3038 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3039 int __user *, parent_tidptr, 3040 int __user *, child_tidptr, 3041 unsigned long, tls) 3042 #endif 3043 { 3044 struct kernel_clone_args args = { 3045 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3046 .pidfd = parent_tidptr, 3047 .child_tid = child_tidptr, 3048 .parent_tid = parent_tidptr, 3049 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3050 .stack = newsp, 3051 .tls = tls, 3052 }; 3053 3054 return kernel_clone(&args); 3055 } 3056 #endif 3057 3058 #ifdef __ARCH_WANT_SYS_CLONE3 3059 3060 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3061 struct clone_args __user *uargs, 3062 size_t usize) 3063 { 3064 int err; 3065 struct clone_args args; 3066 pid_t *kset_tid = kargs->set_tid; 3067 3068 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3069 CLONE_ARGS_SIZE_VER0); 3070 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3071 CLONE_ARGS_SIZE_VER1); 3072 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3073 CLONE_ARGS_SIZE_VER2); 3074 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3075 3076 if (unlikely(usize > PAGE_SIZE)) 3077 return -E2BIG; 3078 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3079 return -EINVAL; 3080 3081 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3082 if (err) 3083 return err; 3084 3085 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3086 return -EINVAL; 3087 3088 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3089 return -EINVAL; 3090 3091 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3092 return -EINVAL; 3093 3094 /* 3095 * Verify that higher 32bits of exit_signal are unset and that 3096 * it is a valid signal 3097 */ 3098 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3099 !valid_signal(args.exit_signal))) 3100 return -EINVAL; 3101 3102 if ((args.flags & CLONE_INTO_CGROUP) && 3103 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3104 return -EINVAL; 3105 3106 *kargs = (struct kernel_clone_args){ 3107 .flags = args.flags, 3108 .pidfd = u64_to_user_ptr(args.pidfd), 3109 .child_tid = u64_to_user_ptr(args.child_tid), 3110 .parent_tid = u64_to_user_ptr(args.parent_tid), 3111 .exit_signal = args.exit_signal, 3112 .stack = args.stack, 3113 .stack_size = args.stack_size, 3114 .tls = args.tls, 3115 .set_tid_size = args.set_tid_size, 3116 .cgroup = args.cgroup, 3117 }; 3118 3119 if (args.set_tid && 3120 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3121 (kargs->set_tid_size * sizeof(pid_t)))) 3122 return -EFAULT; 3123 3124 kargs->set_tid = kset_tid; 3125 3126 return 0; 3127 } 3128 3129 /** 3130 * clone3_stack_valid - check and prepare stack 3131 * @kargs: kernel clone args 3132 * 3133 * Verify that the stack arguments userspace gave us are sane. 3134 * In addition, set the stack direction for userspace since it's easy for us to 3135 * determine. 3136 */ 3137 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3138 { 3139 if (kargs->stack == 0) { 3140 if (kargs->stack_size > 0) 3141 return false; 3142 } else { 3143 if (kargs->stack_size == 0) 3144 return false; 3145 3146 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3147 return false; 3148 3149 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 3150 kargs->stack += kargs->stack_size; 3151 #endif 3152 } 3153 3154 return true; 3155 } 3156 3157 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3158 { 3159 /* Verify that no unknown flags are passed along. */ 3160 if (kargs->flags & 3161 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3162 return false; 3163 3164 /* 3165 * - make the CLONE_DETACHED bit reusable for clone3 3166 * - make the CSIGNAL bits reusable for clone3 3167 */ 3168 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3169 return false; 3170 3171 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3172 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3173 return false; 3174 3175 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3176 kargs->exit_signal) 3177 return false; 3178 3179 if (!clone3_stack_valid(kargs)) 3180 return false; 3181 3182 return true; 3183 } 3184 3185 /** 3186 * clone3 - create a new process with specific properties 3187 * @uargs: argument structure 3188 * @size: size of @uargs 3189 * 3190 * clone3() is the extensible successor to clone()/clone2(). 3191 * It takes a struct as argument that is versioned by its size. 3192 * 3193 * Return: On success, a positive PID for the child process. 3194 * On error, a negative errno number. 3195 */ 3196 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3197 { 3198 int err; 3199 3200 struct kernel_clone_args kargs; 3201 pid_t set_tid[MAX_PID_NS_LEVEL]; 3202 3203 kargs.set_tid = set_tid; 3204 3205 err = copy_clone_args_from_user(&kargs, uargs, size); 3206 if (err) 3207 return err; 3208 3209 if (!clone3_args_valid(&kargs)) 3210 return -EINVAL; 3211 3212 return kernel_clone(&kargs); 3213 } 3214 #endif 3215 3216 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3217 { 3218 struct task_struct *leader, *parent, *child; 3219 int res; 3220 3221 read_lock(&tasklist_lock); 3222 leader = top = top->group_leader; 3223 down: 3224 for_each_thread(leader, parent) { 3225 list_for_each_entry(child, &parent->children, sibling) { 3226 res = visitor(child, data); 3227 if (res) { 3228 if (res < 0) 3229 goto out; 3230 leader = child; 3231 goto down; 3232 } 3233 up: 3234 ; 3235 } 3236 } 3237 3238 if (leader != top) { 3239 child = leader; 3240 parent = child->real_parent; 3241 leader = parent->group_leader; 3242 goto up; 3243 } 3244 out: 3245 read_unlock(&tasklist_lock); 3246 } 3247 3248 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3249 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3250 #endif 3251 3252 static void sighand_ctor(void *data) 3253 { 3254 struct sighand_struct *sighand = data; 3255 3256 spin_lock_init(&sighand->siglock); 3257 init_waitqueue_head(&sighand->signalfd_wqh); 3258 } 3259 3260 void __init mm_cache_init(void) 3261 { 3262 unsigned int mm_size; 3263 3264 /* 3265 * The mm_cpumask is located at the end of mm_struct, and is 3266 * dynamically sized based on the maximum CPU number this system 3267 * can have, taking hotplug into account (nr_cpu_ids). 3268 */ 3269 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3270 3271 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3272 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3273 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3274 offsetof(struct mm_struct, saved_auxv), 3275 sizeof_field(struct mm_struct, saved_auxv), 3276 NULL); 3277 } 3278 3279 void __init proc_caches_init(void) 3280 { 3281 sighand_cachep = kmem_cache_create("sighand_cache", 3282 sizeof(struct sighand_struct), 0, 3283 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3284 SLAB_ACCOUNT, sighand_ctor); 3285 signal_cachep = kmem_cache_create("signal_cache", 3286 sizeof(struct signal_struct), 0, 3287 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3288 NULL); 3289 files_cachep = kmem_cache_create("files_cache", 3290 sizeof(struct files_struct), 0, 3291 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3292 NULL); 3293 fs_cachep = kmem_cache_create("fs_cache", 3294 sizeof(struct fs_struct), 0, 3295 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3296 NULL); 3297 3298 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3299 #ifdef CONFIG_PER_VMA_LOCK 3300 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3301 #endif 3302 mmap_init(); 3303 nsproxy_cache_init(); 3304 } 3305 3306 /* 3307 * Check constraints on flags passed to the unshare system call. 3308 */ 3309 static int check_unshare_flags(unsigned long unshare_flags) 3310 { 3311 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3312 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3313 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3314 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3315 CLONE_NEWTIME)) 3316 return -EINVAL; 3317 /* 3318 * Not implemented, but pretend it works if there is nothing 3319 * to unshare. Note that unsharing the address space or the 3320 * signal handlers also need to unshare the signal queues (aka 3321 * CLONE_THREAD). 3322 */ 3323 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3324 if (!thread_group_empty(current)) 3325 return -EINVAL; 3326 } 3327 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3328 if (refcount_read(¤t->sighand->count) > 1) 3329 return -EINVAL; 3330 } 3331 if (unshare_flags & CLONE_VM) { 3332 if (!current_is_single_threaded()) 3333 return -EINVAL; 3334 } 3335 3336 return 0; 3337 } 3338 3339 /* 3340 * Unshare the filesystem structure if it is being shared 3341 */ 3342 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3343 { 3344 struct fs_struct *fs = current->fs; 3345 3346 if (!(unshare_flags & CLONE_FS) || !fs) 3347 return 0; 3348 3349 /* don't need lock here; in the worst case we'll do useless copy */ 3350 if (fs->users == 1) 3351 return 0; 3352 3353 *new_fsp = copy_fs_struct(fs); 3354 if (!*new_fsp) 3355 return -ENOMEM; 3356 3357 return 0; 3358 } 3359 3360 /* 3361 * Unshare file descriptor table if it is being shared 3362 */ 3363 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3364 struct files_struct **new_fdp) 3365 { 3366 struct files_struct *fd = current->files; 3367 int error = 0; 3368 3369 if ((unshare_flags & CLONE_FILES) && 3370 (fd && atomic_read(&fd->count) > 1)) { 3371 *new_fdp = dup_fd(fd, max_fds, &error); 3372 if (!*new_fdp) 3373 return error; 3374 } 3375 3376 return 0; 3377 } 3378 3379 /* 3380 * unshare allows a process to 'unshare' part of the process 3381 * context which was originally shared using clone. copy_* 3382 * functions used by kernel_clone() cannot be used here directly 3383 * because they modify an inactive task_struct that is being 3384 * constructed. Here we are modifying the current, active, 3385 * task_struct. 3386 */ 3387 int ksys_unshare(unsigned long unshare_flags) 3388 { 3389 struct fs_struct *fs, *new_fs = NULL; 3390 struct files_struct *new_fd = NULL; 3391 struct cred *new_cred = NULL; 3392 struct nsproxy *new_nsproxy = NULL; 3393 int do_sysvsem = 0; 3394 int err; 3395 3396 /* 3397 * If unsharing a user namespace must also unshare the thread group 3398 * and unshare the filesystem root and working directories. 3399 */ 3400 if (unshare_flags & CLONE_NEWUSER) 3401 unshare_flags |= CLONE_THREAD | CLONE_FS; 3402 /* 3403 * If unsharing vm, must also unshare signal handlers. 3404 */ 3405 if (unshare_flags & CLONE_VM) 3406 unshare_flags |= CLONE_SIGHAND; 3407 /* 3408 * If unsharing a signal handlers, must also unshare the signal queues. 3409 */ 3410 if (unshare_flags & CLONE_SIGHAND) 3411 unshare_flags |= CLONE_THREAD; 3412 /* 3413 * If unsharing namespace, must also unshare filesystem information. 3414 */ 3415 if (unshare_flags & CLONE_NEWNS) 3416 unshare_flags |= CLONE_FS; 3417 3418 err = check_unshare_flags(unshare_flags); 3419 if (err) 3420 goto bad_unshare_out; 3421 /* 3422 * CLONE_NEWIPC must also detach from the undolist: after switching 3423 * to a new ipc namespace, the semaphore arrays from the old 3424 * namespace are unreachable. 3425 */ 3426 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3427 do_sysvsem = 1; 3428 err = unshare_fs(unshare_flags, &new_fs); 3429 if (err) 3430 goto bad_unshare_out; 3431 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3432 if (err) 3433 goto bad_unshare_cleanup_fs; 3434 err = unshare_userns(unshare_flags, &new_cred); 3435 if (err) 3436 goto bad_unshare_cleanup_fd; 3437 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3438 new_cred, new_fs); 3439 if (err) 3440 goto bad_unshare_cleanup_cred; 3441 3442 if (new_cred) { 3443 err = set_cred_ucounts(new_cred); 3444 if (err) 3445 goto bad_unshare_cleanup_cred; 3446 } 3447 3448 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3449 if (do_sysvsem) { 3450 /* 3451 * CLONE_SYSVSEM is equivalent to sys_exit(). 3452 */ 3453 exit_sem(current); 3454 } 3455 if (unshare_flags & CLONE_NEWIPC) { 3456 /* Orphan segments in old ns (see sem above). */ 3457 exit_shm(current); 3458 shm_init_task(current); 3459 } 3460 3461 if (new_nsproxy) 3462 switch_task_namespaces(current, new_nsproxy); 3463 3464 task_lock(current); 3465 3466 if (new_fs) { 3467 fs = current->fs; 3468 spin_lock(&fs->lock); 3469 current->fs = new_fs; 3470 if (--fs->users) 3471 new_fs = NULL; 3472 else 3473 new_fs = fs; 3474 spin_unlock(&fs->lock); 3475 } 3476 3477 if (new_fd) 3478 swap(current->files, new_fd); 3479 3480 task_unlock(current); 3481 3482 if (new_cred) { 3483 /* Install the new user namespace */ 3484 commit_creds(new_cred); 3485 new_cred = NULL; 3486 } 3487 } 3488 3489 perf_event_namespaces(current); 3490 3491 bad_unshare_cleanup_cred: 3492 if (new_cred) 3493 put_cred(new_cred); 3494 bad_unshare_cleanup_fd: 3495 if (new_fd) 3496 put_files_struct(new_fd); 3497 3498 bad_unshare_cleanup_fs: 3499 if (new_fs) 3500 free_fs_struct(new_fs); 3501 3502 bad_unshare_out: 3503 return err; 3504 } 3505 3506 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3507 { 3508 return ksys_unshare(unshare_flags); 3509 } 3510 3511 /* 3512 * Helper to unshare the files of the current task. 3513 * We don't want to expose copy_files internals to 3514 * the exec layer of the kernel. 3515 */ 3516 3517 int unshare_files(void) 3518 { 3519 struct task_struct *task = current; 3520 struct files_struct *old, *copy = NULL; 3521 int error; 3522 3523 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3524 if (error || !copy) 3525 return error; 3526 3527 old = task->files; 3528 task_lock(task); 3529 task->files = copy; 3530 task_unlock(task); 3531 put_files_struct(old); 3532 return 0; 3533 } 3534 3535 int sysctl_max_threads(struct ctl_table *table, int write, 3536 void *buffer, size_t *lenp, loff_t *ppos) 3537 { 3538 struct ctl_table t; 3539 int ret; 3540 int threads = max_threads; 3541 int min = 1; 3542 int max = MAX_THREADS; 3543 3544 t = *table; 3545 t.data = &threads; 3546 t.extra1 = &min; 3547 t.extra2 = &max; 3548 3549 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3550 if (ret || !write) 3551 return ret; 3552 3553 max_threads = threads; 3554 3555 return 0; 3556 } 3557