1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 } 370 return new; 371 } 372 373 void vm_area_free(struct vm_area_struct *vma) 374 { 375 kmem_cache_free(vm_area_cachep, vma); 376 } 377 378 static void account_kernel_stack(struct task_struct *tsk, int account) 379 { 380 void *stack = task_stack_page(tsk); 381 struct vm_struct *vm = task_stack_vm_area(tsk); 382 383 if (vm) { 384 int i; 385 386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 387 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 388 account * (PAGE_SIZE / 1024)); 389 } else { 390 /* All stack pages are in the same node. */ 391 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 392 account * (THREAD_SIZE / 1024)); 393 } 394 } 395 396 static int memcg_charge_kernel_stack(struct task_struct *tsk) 397 { 398 #ifdef CONFIG_VMAP_STACK 399 struct vm_struct *vm = task_stack_vm_area(tsk); 400 int ret; 401 402 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 403 404 if (vm) { 405 int i; 406 407 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 408 409 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 410 /* 411 * If memcg_kmem_charge_page() fails, page's 412 * memory cgroup pointer is NULL, and 413 * memcg_kmem_uncharge_page() in free_thread_stack() 414 * will ignore this page. 415 */ 416 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 417 0); 418 if (ret) 419 return ret; 420 } 421 } 422 #endif 423 return 0; 424 } 425 426 static void release_task_stack(struct task_struct *tsk) 427 { 428 if (WARN_ON(tsk->state != TASK_DEAD)) 429 return; /* Better to leak the stack than to free prematurely */ 430 431 account_kernel_stack(tsk, -1); 432 free_thread_stack(tsk); 433 tsk->stack = NULL; 434 #ifdef CONFIG_VMAP_STACK 435 tsk->stack_vm_area = NULL; 436 #endif 437 } 438 439 #ifdef CONFIG_THREAD_INFO_IN_TASK 440 void put_task_stack(struct task_struct *tsk) 441 { 442 if (refcount_dec_and_test(&tsk->stack_refcount)) 443 release_task_stack(tsk); 444 } 445 #endif 446 447 void free_task(struct task_struct *tsk) 448 { 449 scs_release(tsk); 450 451 #ifndef CONFIG_THREAD_INFO_IN_TASK 452 /* 453 * The task is finally done with both the stack and thread_info, 454 * so free both. 455 */ 456 release_task_stack(tsk); 457 #else 458 /* 459 * If the task had a separate stack allocation, it should be gone 460 * by now. 461 */ 462 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 463 #endif 464 rt_mutex_debug_task_free(tsk); 465 ftrace_graph_exit_task(tsk); 466 arch_release_task_struct(tsk); 467 if (tsk->flags & PF_KTHREAD) 468 free_kthread_struct(tsk); 469 free_task_struct(tsk); 470 } 471 EXPORT_SYMBOL(free_task); 472 473 #ifdef CONFIG_MMU 474 static __latent_entropy int dup_mmap(struct mm_struct *mm, 475 struct mm_struct *oldmm) 476 { 477 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 478 struct rb_node **rb_link, *rb_parent; 479 int retval; 480 unsigned long charge; 481 LIST_HEAD(uf); 482 483 uprobe_start_dup_mmap(); 484 if (mmap_write_lock_killable(oldmm)) { 485 retval = -EINTR; 486 goto fail_uprobe_end; 487 } 488 flush_cache_dup_mm(oldmm); 489 uprobe_dup_mmap(oldmm, mm); 490 /* 491 * Not linked in yet - no deadlock potential: 492 */ 493 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 494 495 /* No ordering required: file already has been exposed. */ 496 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 497 498 mm->total_vm = oldmm->total_vm; 499 mm->data_vm = oldmm->data_vm; 500 mm->exec_vm = oldmm->exec_vm; 501 mm->stack_vm = oldmm->stack_vm; 502 503 rb_link = &mm->mm_rb.rb_node; 504 rb_parent = NULL; 505 pprev = &mm->mmap; 506 retval = ksm_fork(mm, oldmm); 507 if (retval) 508 goto out; 509 retval = khugepaged_fork(mm, oldmm); 510 if (retval) 511 goto out; 512 513 prev = NULL; 514 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 515 struct file *file; 516 517 if (mpnt->vm_flags & VM_DONTCOPY) { 518 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 519 continue; 520 } 521 charge = 0; 522 /* 523 * Don't duplicate many vmas if we've been oom-killed (for 524 * example) 525 */ 526 if (fatal_signal_pending(current)) { 527 retval = -EINTR; 528 goto out; 529 } 530 if (mpnt->vm_flags & VM_ACCOUNT) { 531 unsigned long len = vma_pages(mpnt); 532 533 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 534 goto fail_nomem; 535 charge = len; 536 } 537 tmp = vm_area_dup(mpnt); 538 if (!tmp) 539 goto fail_nomem; 540 retval = vma_dup_policy(mpnt, tmp); 541 if (retval) 542 goto fail_nomem_policy; 543 tmp->vm_mm = mm; 544 retval = dup_userfaultfd(tmp, &uf); 545 if (retval) 546 goto fail_nomem_anon_vma_fork; 547 if (tmp->vm_flags & VM_WIPEONFORK) { 548 /* 549 * VM_WIPEONFORK gets a clean slate in the child. 550 * Don't prepare anon_vma until fault since we don't 551 * copy page for current vma. 552 */ 553 tmp->anon_vma = NULL; 554 } else if (anon_vma_fork(tmp, mpnt)) 555 goto fail_nomem_anon_vma_fork; 556 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 557 file = tmp->vm_file; 558 if (file) { 559 struct inode *inode = file_inode(file); 560 struct address_space *mapping = file->f_mapping; 561 562 get_file(file); 563 if (tmp->vm_flags & VM_DENYWRITE) 564 put_write_access(inode); 565 i_mmap_lock_write(mapping); 566 if (tmp->vm_flags & VM_SHARED) 567 mapping_allow_writable(mapping); 568 flush_dcache_mmap_lock(mapping); 569 /* insert tmp into the share list, just after mpnt */ 570 vma_interval_tree_insert_after(tmp, mpnt, 571 &mapping->i_mmap); 572 flush_dcache_mmap_unlock(mapping); 573 i_mmap_unlock_write(mapping); 574 } 575 576 /* 577 * Clear hugetlb-related page reserves for children. This only 578 * affects MAP_PRIVATE mappings. Faults generated by the child 579 * are not guaranteed to succeed, even if read-only 580 */ 581 if (is_vm_hugetlb_page(tmp)) 582 reset_vma_resv_huge_pages(tmp); 583 584 /* 585 * Link in the new vma and copy the page table entries. 586 */ 587 *pprev = tmp; 588 pprev = &tmp->vm_next; 589 tmp->vm_prev = prev; 590 prev = tmp; 591 592 __vma_link_rb(mm, tmp, rb_link, rb_parent); 593 rb_link = &tmp->vm_rb.rb_right; 594 rb_parent = &tmp->vm_rb; 595 596 mm->map_count++; 597 if (!(tmp->vm_flags & VM_WIPEONFORK)) 598 retval = copy_page_range(tmp, mpnt); 599 600 if (tmp->vm_ops && tmp->vm_ops->open) 601 tmp->vm_ops->open(tmp); 602 603 if (retval) 604 goto out; 605 } 606 /* a new mm has just been created */ 607 retval = arch_dup_mmap(oldmm, mm); 608 out: 609 mmap_write_unlock(mm); 610 flush_tlb_mm(oldmm); 611 mmap_write_unlock(oldmm); 612 dup_userfaultfd_complete(&uf); 613 fail_uprobe_end: 614 uprobe_end_dup_mmap(); 615 return retval; 616 fail_nomem_anon_vma_fork: 617 mpol_put(vma_policy(tmp)); 618 fail_nomem_policy: 619 vm_area_free(tmp); 620 fail_nomem: 621 retval = -ENOMEM; 622 vm_unacct_memory(charge); 623 goto out; 624 } 625 626 static inline int mm_alloc_pgd(struct mm_struct *mm) 627 { 628 mm->pgd = pgd_alloc(mm); 629 if (unlikely(!mm->pgd)) 630 return -ENOMEM; 631 return 0; 632 } 633 634 static inline void mm_free_pgd(struct mm_struct *mm) 635 { 636 pgd_free(mm, mm->pgd); 637 } 638 #else 639 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 640 { 641 mmap_write_lock(oldmm); 642 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 643 mmap_write_unlock(oldmm); 644 return 0; 645 } 646 #define mm_alloc_pgd(mm) (0) 647 #define mm_free_pgd(mm) 648 #endif /* CONFIG_MMU */ 649 650 static void check_mm(struct mm_struct *mm) 651 { 652 int i; 653 654 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 655 "Please make sure 'struct resident_page_types[]' is updated as well"); 656 657 for (i = 0; i < NR_MM_COUNTERS; i++) { 658 long x = atomic_long_read(&mm->rss_stat.count[i]); 659 660 if (unlikely(x)) 661 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 662 mm, resident_page_types[i], x); 663 } 664 665 if (mm_pgtables_bytes(mm)) 666 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 667 mm_pgtables_bytes(mm)); 668 669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 670 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 671 #endif 672 } 673 674 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 675 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 676 677 /* 678 * Called when the last reference to the mm 679 * is dropped: either by a lazy thread or by 680 * mmput. Free the page directory and the mm. 681 */ 682 void __mmdrop(struct mm_struct *mm) 683 { 684 BUG_ON(mm == &init_mm); 685 WARN_ON_ONCE(mm == current->mm); 686 WARN_ON_ONCE(mm == current->active_mm); 687 mm_free_pgd(mm); 688 destroy_context(mm); 689 mmu_notifier_subscriptions_destroy(mm); 690 check_mm(mm); 691 put_user_ns(mm->user_ns); 692 free_mm(mm); 693 } 694 EXPORT_SYMBOL_GPL(__mmdrop); 695 696 static void mmdrop_async_fn(struct work_struct *work) 697 { 698 struct mm_struct *mm; 699 700 mm = container_of(work, struct mm_struct, async_put_work); 701 __mmdrop(mm); 702 } 703 704 static void mmdrop_async(struct mm_struct *mm) 705 { 706 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 707 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 708 schedule_work(&mm->async_put_work); 709 } 710 } 711 712 static inline void free_signal_struct(struct signal_struct *sig) 713 { 714 taskstats_tgid_free(sig); 715 sched_autogroup_exit(sig); 716 /* 717 * __mmdrop is not safe to call from softirq context on x86 due to 718 * pgd_dtor so postpone it to the async context 719 */ 720 if (sig->oom_mm) 721 mmdrop_async(sig->oom_mm); 722 kmem_cache_free(signal_cachep, sig); 723 } 724 725 static inline void put_signal_struct(struct signal_struct *sig) 726 { 727 if (refcount_dec_and_test(&sig->sigcnt)) 728 free_signal_struct(sig); 729 } 730 731 void __put_task_struct(struct task_struct *tsk) 732 { 733 WARN_ON(!tsk->exit_state); 734 WARN_ON(refcount_read(&tsk->usage)); 735 WARN_ON(tsk == current); 736 737 io_uring_free(tsk); 738 cgroup_free(tsk); 739 task_numa_free(tsk, true); 740 security_task_free(tsk); 741 bpf_task_storage_free(tsk); 742 exit_creds(tsk); 743 delayacct_tsk_free(tsk); 744 put_signal_struct(tsk->signal); 745 746 if (!profile_handoff_task(tsk)) 747 free_task(tsk); 748 } 749 EXPORT_SYMBOL_GPL(__put_task_struct); 750 751 void __init __weak arch_task_cache_init(void) { } 752 753 /* 754 * set_max_threads 755 */ 756 static void set_max_threads(unsigned int max_threads_suggested) 757 { 758 u64 threads; 759 unsigned long nr_pages = totalram_pages(); 760 761 /* 762 * The number of threads shall be limited such that the thread 763 * structures may only consume a small part of the available memory. 764 */ 765 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 766 threads = MAX_THREADS; 767 else 768 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 769 (u64) THREAD_SIZE * 8UL); 770 771 if (threads > max_threads_suggested) 772 threads = max_threads_suggested; 773 774 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 775 } 776 777 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 778 /* Initialized by the architecture: */ 779 int arch_task_struct_size __read_mostly; 780 #endif 781 782 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 783 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 784 { 785 /* Fetch thread_struct whitelist for the architecture. */ 786 arch_thread_struct_whitelist(offset, size); 787 788 /* 789 * Handle zero-sized whitelist or empty thread_struct, otherwise 790 * adjust offset to position of thread_struct in task_struct. 791 */ 792 if (unlikely(*size == 0)) 793 *offset = 0; 794 else 795 *offset += offsetof(struct task_struct, thread); 796 } 797 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 798 799 void __init fork_init(void) 800 { 801 int i; 802 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 803 #ifndef ARCH_MIN_TASKALIGN 804 #define ARCH_MIN_TASKALIGN 0 805 #endif 806 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 807 unsigned long useroffset, usersize; 808 809 /* create a slab on which task_structs can be allocated */ 810 task_struct_whitelist(&useroffset, &usersize); 811 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 812 arch_task_struct_size, align, 813 SLAB_PANIC|SLAB_ACCOUNT, 814 useroffset, usersize, NULL); 815 #endif 816 817 /* do the arch specific task caches init */ 818 arch_task_cache_init(); 819 820 set_max_threads(MAX_THREADS); 821 822 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 823 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 824 init_task.signal->rlim[RLIMIT_SIGPENDING] = 825 init_task.signal->rlim[RLIMIT_NPROC]; 826 827 for (i = 0; i < UCOUNT_COUNTS; i++) 828 init_user_ns.ucount_max[i] = max_threads/2; 829 830 #ifdef CONFIG_VMAP_STACK 831 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 832 NULL, free_vm_stack_cache); 833 #endif 834 835 scs_init(); 836 837 lockdep_init_task(&init_task); 838 uprobes_init(); 839 } 840 841 int __weak arch_dup_task_struct(struct task_struct *dst, 842 struct task_struct *src) 843 { 844 *dst = *src; 845 return 0; 846 } 847 848 void set_task_stack_end_magic(struct task_struct *tsk) 849 { 850 unsigned long *stackend; 851 852 stackend = end_of_stack(tsk); 853 *stackend = STACK_END_MAGIC; /* for overflow detection */ 854 } 855 856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 857 { 858 struct task_struct *tsk; 859 unsigned long *stack; 860 struct vm_struct *stack_vm_area __maybe_unused; 861 int err; 862 863 if (node == NUMA_NO_NODE) 864 node = tsk_fork_get_node(orig); 865 tsk = alloc_task_struct_node(node); 866 if (!tsk) 867 return NULL; 868 869 stack = alloc_thread_stack_node(tsk, node); 870 if (!stack) 871 goto free_tsk; 872 873 if (memcg_charge_kernel_stack(tsk)) 874 goto free_stack; 875 876 stack_vm_area = task_stack_vm_area(tsk); 877 878 err = arch_dup_task_struct(tsk, orig); 879 880 /* 881 * arch_dup_task_struct() clobbers the stack-related fields. Make 882 * sure they're properly initialized before using any stack-related 883 * functions again. 884 */ 885 tsk->stack = stack; 886 #ifdef CONFIG_VMAP_STACK 887 tsk->stack_vm_area = stack_vm_area; 888 #endif 889 #ifdef CONFIG_THREAD_INFO_IN_TASK 890 refcount_set(&tsk->stack_refcount, 1); 891 #endif 892 893 if (err) 894 goto free_stack; 895 896 err = scs_prepare(tsk, node); 897 if (err) 898 goto free_stack; 899 900 #ifdef CONFIG_SECCOMP 901 /* 902 * We must handle setting up seccomp filters once we're under 903 * the sighand lock in case orig has changed between now and 904 * then. Until then, filter must be NULL to avoid messing up 905 * the usage counts on the error path calling free_task. 906 */ 907 tsk->seccomp.filter = NULL; 908 #endif 909 910 setup_thread_stack(tsk, orig); 911 clear_user_return_notifier(tsk); 912 clear_tsk_need_resched(tsk); 913 set_task_stack_end_magic(tsk); 914 clear_syscall_work_syscall_user_dispatch(tsk); 915 916 #ifdef CONFIG_STACKPROTECTOR 917 tsk->stack_canary = get_random_canary(); 918 #endif 919 if (orig->cpus_ptr == &orig->cpus_mask) 920 tsk->cpus_ptr = &tsk->cpus_mask; 921 922 /* 923 * One for the user space visible state that goes away when reaped. 924 * One for the scheduler. 925 */ 926 refcount_set(&tsk->rcu_users, 2); 927 /* One for the rcu users */ 928 refcount_set(&tsk->usage, 1); 929 #ifdef CONFIG_BLK_DEV_IO_TRACE 930 tsk->btrace_seq = 0; 931 #endif 932 tsk->splice_pipe = NULL; 933 tsk->task_frag.page = NULL; 934 tsk->wake_q.next = NULL; 935 tsk->pf_io_worker = NULL; 936 937 account_kernel_stack(tsk, 1); 938 939 kcov_task_init(tsk); 940 kmap_local_fork(tsk); 941 942 #ifdef CONFIG_FAULT_INJECTION 943 tsk->fail_nth = 0; 944 #endif 945 946 #ifdef CONFIG_BLK_CGROUP 947 tsk->throttle_queue = NULL; 948 tsk->use_memdelay = 0; 949 #endif 950 951 #ifdef CONFIG_MEMCG 952 tsk->active_memcg = NULL; 953 #endif 954 return tsk; 955 956 free_stack: 957 free_thread_stack(tsk); 958 free_tsk: 959 free_task_struct(tsk); 960 return NULL; 961 } 962 963 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 964 965 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 966 967 static int __init coredump_filter_setup(char *s) 968 { 969 default_dump_filter = 970 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 971 MMF_DUMP_FILTER_MASK; 972 return 1; 973 } 974 975 __setup("coredump_filter=", coredump_filter_setup); 976 977 #include <linux/init_task.h> 978 979 static void mm_init_aio(struct mm_struct *mm) 980 { 981 #ifdef CONFIG_AIO 982 spin_lock_init(&mm->ioctx_lock); 983 mm->ioctx_table = NULL; 984 #endif 985 } 986 987 static __always_inline void mm_clear_owner(struct mm_struct *mm, 988 struct task_struct *p) 989 { 990 #ifdef CONFIG_MEMCG 991 if (mm->owner == p) 992 WRITE_ONCE(mm->owner, NULL); 993 #endif 994 } 995 996 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 997 { 998 #ifdef CONFIG_MEMCG 999 mm->owner = p; 1000 #endif 1001 } 1002 1003 static void mm_init_pasid(struct mm_struct *mm) 1004 { 1005 #ifdef CONFIG_IOMMU_SUPPORT 1006 mm->pasid = INIT_PASID; 1007 #endif 1008 } 1009 1010 static void mm_init_uprobes_state(struct mm_struct *mm) 1011 { 1012 #ifdef CONFIG_UPROBES 1013 mm->uprobes_state.xol_area = NULL; 1014 #endif 1015 } 1016 1017 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1018 struct user_namespace *user_ns) 1019 { 1020 mm->mmap = NULL; 1021 mm->mm_rb = RB_ROOT; 1022 mm->vmacache_seqnum = 0; 1023 atomic_set(&mm->mm_users, 1); 1024 atomic_set(&mm->mm_count, 1); 1025 seqcount_init(&mm->write_protect_seq); 1026 mmap_init_lock(mm); 1027 INIT_LIST_HEAD(&mm->mmlist); 1028 mm->core_state = NULL; 1029 mm_pgtables_bytes_init(mm); 1030 mm->map_count = 0; 1031 mm->locked_vm = 0; 1032 atomic_set(&mm->has_pinned, 0); 1033 atomic64_set(&mm->pinned_vm, 0); 1034 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1035 spin_lock_init(&mm->page_table_lock); 1036 spin_lock_init(&mm->arg_lock); 1037 mm_init_cpumask(mm); 1038 mm_init_aio(mm); 1039 mm_init_owner(mm, p); 1040 mm_init_pasid(mm); 1041 RCU_INIT_POINTER(mm->exe_file, NULL); 1042 mmu_notifier_subscriptions_init(mm); 1043 init_tlb_flush_pending(mm); 1044 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1045 mm->pmd_huge_pte = NULL; 1046 #endif 1047 mm_init_uprobes_state(mm); 1048 1049 if (current->mm) { 1050 mm->flags = current->mm->flags & MMF_INIT_MASK; 1051 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1052 } else { 1053 mm->flags = default_dump_filter; 1054 mm->def_flags = 0; 1055 } 1056 1057 if (mm_alloc_pgd(mm)) 1058 goto fail_nopgd; 1059 1060 if (init_new_context(p, mm)) 1061 goto fail_nocontext; 1062 1063 mm->user_ns = get_user_ns(user_ns); 1064 return mm; 1065 1066 fail_nocontext: 1067 mm_free_pgd(mm); 1068 fail_nopgd: 1069 free_mm(mm); 1070 return NULL; 1071 } 1072 1073 /* 1074 * Allocate and initialize an mm_struct. 1075 */ 1076 struct mm_struct *mm_alloc(void) 1077 { 1078 struct mm_struct *mm; 1079 1080 mm = allocate_mm(); 1081 if (!mm) 1082 return NULL; 1083 1084 memset(mm, 0, sizeof(*mm)); 1085 return mm_init(mm, current, current_user_ns()); 1086 } 1087 1088 static inline void __mmput(struct mm_struct *mm) 1089 { 1090 VM_BUG_ON(atomic_read(&mm->mm_users)); 1091 1092 uprobe_clear_state(mm); 1093 exit_aio(mm); 1094 ksm_exit(mm); 1095 khugepaged_exit(mm); /* must run before exit_mmap */ 1096 exit_mmap(mm); 1097 mm_put_huge_zero_page(mm); 1098 set_mm_exe_file(mm, NULL); 1099 if (!list_empty(&mm->mmlist)) { 1100 spin_lock(&mmlist_lock); 1101 list_del(&mm->mmlist); 1102 spin_unlock(&mmlist_lock); 1103 } 1104 if (mm->binfmt) 1105 module_put(mm->binfmt->module); 1106 mmdrop(mm); 1107 } 1108 1109 /* 1110 * Decrement the use count and release all resources for an mm. 1111 */ 1112 void mmput(struct mm_struct *mm) 1113 { 1114 might_sleep(); 1115 1116 if (atomic_dec_and_test(&mm->mm_users)) 1117 __mmput(mm); 1118 } 1119 EXPORT_SYMBOL_GPL(mmput); 1120 1121 #ifdef CONFIG_MMU 1122 static void mmput_async_fn(struct work_struct *work) 1123 { 1124 struct mm_struct *mm = container_of(work, struct mm_struct, 1125 async_put_work); 1126 1127 __mmput(mm); 1128 } 1129 1130 void mmput_async(struct mm_struct *mm) 1131 { 1132 if (atomic_dec_and_test(&mm->mm_users)) { 1133 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1134 schedule_work(&mm->async_put_work); 1135 } 1136 } 1137 #endif 1138 1139 /** 1140 * set_mm_exe_file - change a reference to the mm's executable file 1141 * 1142 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1143 * 1144 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1145 * invocations: in mmput() nobody alive left, in execve task is single 1146 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1147 * mm->exe_file, but does so without using set_mm_exe_file() in order 1148 * to avoid the need for any locks. 1149 */ 1150 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1151 { 1152 struct file *old_exe_file; 1153 1154 /* 1155 * It is safe to dereference the exe_file without RCU as 1156 * this function is only called if nobody else can access 1157 * this mm -- see comment above for justification. 1158 */ 1159 old_exe_file = rcu_dereference_raw(mm->exe_file); 1160 1161 if (new_exe_file) 1162 get_file(new_exe_file); 1163 rcu_assign_pointer(mm->exe_file, new_exe_file); 1164 if (old_exe_file) 1165 fput(old_exe_file); 1166 } 1167 1168 /** 1169 * get_mm_exe_file - acquire a reference to the mm's executable file 1170 * 1171 * Returns %NULL if mm has no associated executable file. 1172 * User must release file via fput(). 1173 */ 1174 struct file *get_mm_exe_file(struct mm_struct *mm) 1175 { 1176 struct file *exe_file; 1177 1178 rcu_read_lock(); 1179 exe_file = rcu_dereference(mm->exe_file); 1180 if (exe_file && !get_file_rcu(exe_file)) 1181 exe_file = NULL; 1182 rcu_read_unlock(); 1183 return exe_file; 1184 } 1185 EXPORT_SYMBOL(get_mm_exe_file); 1186 1187 /** 1188 * get_task_exe_file - acquire a reference to the task's executable file 1189 * 1190 * Returns %NULL if task's mm (if any) has no associated executable file or 1191 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1192 * User must release file via fput(). 1193 */ 1194 struct file *get_task_exe_file(struct task_struct *task) 1195 { 1196 struct file *exe_file = NULL; 1197 struct mm_struct *mm; 1198 1199 task_lock(task); 1200 mm = task->mm; 1201 if (mm) { 1202 if (!(task->flags & PF_KTHREAD)) 1203 exe_file = get_mm_exe_file(mm); 1204 } 1205 task_unlock(task); 1206 return exe_file; 1207 } 1208 EXPORT_SYMBOL(get_task_exe_file); 1209 1210 /** 1211 * get_task_mm - acquire a reference to the task's mm 1212 * 1213 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1214 * this kernel workthread has transiently adopted a user mm with use_mm, 1215 * to do its AIO) is not set and if so returns a reference to it, after 1216 * bumping up the use count. User must release the mm via mmput() 1217 * after use. Typically used by /proc and ptrace. 1218 */ 1219 struct mm_struct *get_task_mm(struct task_struct *task) 1220 { 1221 struct mm_struct *mm; 1222 1223 task_lock(task); 1224 mm = task->mm; 1225 if (mm) { 1226 if (task->flags & PF_KTHREAD) 1227 mm = NULL; 1228 else 1229 mmget(mm); 1230 } 1231 task_unlock(task); 1232 return mm; 1233 } 1234 EXPORT_SYMBOL_GPL(get_task_mm); 1235 1236 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1237 { 1238 struct mm_struct *mm; 1239 int err; 1240 1241 err = down_read_killable(&task->signal->exec_update_lock); 1242 if (err) 1243 return ERR_PTR(err); 1244 1245 mm = get_task_mm(task); 1246 if (mm && mm != current->mm && 1247 !ptrace_may_access(task, mode)) { 1248 mmput(mm); 1249 mm = ERR_PTR(-EACCES); 1250 } 1251 up_read(&task->signal->exec_update_lock); 1252 1253 return mm; 1254 } 1255 1256 static void complete_vfork_done(struct task_struct *tsk) 1257 { 1258 struct completion *vfork; 1259 1260 task_lock(tsk); 1261 vfork = tsk->vfork_done; 1262 if (likely(vfork)) { 1263 tsk->vfork_done = NULL; 1264 complete(vfork); 1265 } 1266 task_unlock(tsk); 1267 } 1268 1269 static int wait_for_vfork_done(struct task_struct *child, 1270 struct completion *vfork) 1271 { 1272 int killed; 1273 1274 freezer_do_not_count(); 1275 cgroup_enter_frozen(); 1276 killed = wait_for_completion_killable(vfork); 1277 cgroup_leave_frozen(false); 1278 freezer_count(); 1279 1280 if (killed) { 1281 task_lock(child); 1282 child->vfork_done = NULL; 1283 task_unlock(child); 1284 } 1285 1286 put_task_struct(child); 1287 return killed; 1288 } 1289 1290 /* Please note the differences between mmput and mm_release. 1291 * mmput is called whenever we stop holding onto a mm_struct, 1292 * error success whatever. 1293 * 1294 * mm_release is called after a mm_struct has been removed 1295 * from the current process. 1296 * 1297 * This difference is important for error handling, when we 1298 * only half set up a mm_struct for a new process and need to restore 1299 * the old one. Because we mmput the new mm_struct before 1300 * restoring the old one. . . 1301 * Eric Biederman 10 January 1998 1302 */ 1303 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1304 { 1305 uprobe_free_utask(tsk); 1306 1307 /* Get rid of any cached register state */ 1308 deactivate_mm(tsk, mm); 1309 1310 /* 1311 * Signal userspace if we're not exiting with a core dump 1312 * because we want to leave the value intact for debugging 1313 * purposes. 1314 */ 1315 if (tsk->clear_child_tid) { 1316 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1317 atomic_read(&mm->mm_users) > 1) { 1318 /* 1319 * We don't check the error code - if userspace has 1320 * not set up a proper pointer then tough luck. 1321 */ 1322 put_user(0, tsk->clear_child_tid); 1323 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1324 1, NULL, NULL, 0, 0); 1325 } 1326 tsk->clear_child_tid = NULL; 1327 } 1328 1329 /* 1330 * All done, finally we can wake up parent and return this mm to him. 1331 * Also kthread_stop() uses this completion for synchronization. 1332 */ 1333 if (tsk->vfork_done) 1334 complete_vfork_done(tsk); 1335 } 1336 1337 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1338 { 1339 futex_exit_release(tsk); 1340 mm_release(tsk, mm); 1341 } 1342 1343 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1344 { 1345 futex_exec_release(tsk); 1346 mm_release(tsk, mm); 1347 } 1348 1349 /** 1350 * dup_mm() - duplicates an existing mm structure 1351 * @tsk: the task_struct with which the new mm will be associated. 1352 * @oldmm: the mm to duplicate. 1353 * 1354 * Allocates a new mm structure and duplicates the provided @oldmm structure 1355 * content into it. 1356 * 1357 * Return: the duplicated mm or NULL on failure. 1358 */ 1359 static struct mm_struct *dup_mm(struct task_struct *tsk, 1360 struct mm_struct *oldmm) 1361 { 1362 struct mm_struct *mm; 1363 int err; 1364 1365 mm = allocate_mm(); 1366 if (!mm) 1367 goto fail_nomem; 1368 1369 memcpy(mm, oldmm, sizeof(*mm)); 1370 1371 if (!mm_init(mm, tsk, mm->user_ns)) 1372 goto fail_nomem; 1373 1374 err = dup_mmap(mm, oldmm); 1375 if (err) 1376 goto free_pt; 1377 1378 mm->hiwater_rss = get_mm_rss(mm); 1379 mm->hiwater_vm = mm->total_vm; 1380 1381 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1382 goto free_pt; 1383 1384 return mm; 1385 1386 free_pt: 1387 /* don't put binfmt in mmput, we haven't got module yet */ 1388 mm->binfmt = NULL; 1389 mm_init_owner(mm, NULL); 1390 mmput(mm); 1391 1392 fail_nomem: 1393 return NULL; 1394 } 1395 1396 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1397 { 1398 struct mm_struct *mm, *oldmm; 1399 1400 tsk->min_flt = tsk->maj_flt = 0; 1401 tsk->nvcsw = tsk->nivcsw = 0; 1402 #ifdef CONFIG_DETECT_HUNG_TASK 1403 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1404 tsk->last_switch_time = 0; 1405 #endif 1406 1407 tsk->mm = NULL; 1408 tsk->active_mm = NULL; 1409 1410 /* 1411 * Are we cloning a kernel thread? 1412 * 1413 * We need to steal a active VM for that.. 1414 */ 1415 oldmm = current->mm; 1416 if (!oldmm) 1417 return 0; 1418 1419 /* initialize the new vmacache entries */ 1420 vmacache_flush(tsk); 1421 1422 if (clone_flags & CLONE_VM) { 1423 mmget(oldmm); 1424 mm = oldmm; 1425 } else { 1426 mm = dup_mm(tsk, current->mm); 1427 if (!mm) 1428 return -ENOMEM; 1429 } 1430 1431 tsk->mm = mm; 1432 tsk->active_mm = mm; 1433 return 0; 1434 } 1435 1436 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1437 { 1438 struct fs_struct *fs = current->fs; 1439 if (clone_flags & CLONE_FS) { 1440 /* tsk->fs is already what we want */ 1441 spin_lock(&fs->lock); 1442 if (fs->in_exec) { 1443 spin_unlock(&fs->lock); 1444 return -EAGAIN; 1445 } 1446 fs->users++; 1447 spin_unlock(&fs->lock); 1448 return 0; 1449 } 1450 tsk->fs = copy_fs_struct(fs); 1451 if (!tsk->fs) 1452 return -ENOMEM; 1453 return 0; 1454 } 1455 1456 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1457 { 1458 struct files_struct *oldf, *newf; 1459 int error = 0; 1460 1461 /* 1462 * A background process may not have any files ... 1463 */ 1464 oldf = current->files; 1465 if (!oldf) 1466 goto out; 1467 1468 if (clone_flags & CLONE_FILES) { 1469 atomic_inc(&oldf->count); 1470 goto out; 1471 } 1472 1473 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1474 if (!newf) 1475 goto out; 1476 1477 tsk->files = newf; 1478 error = 0; 1479 out: 1480 return error; 1481 } 1482 1483 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1484 { 1485 #ifdef CONFIG_BLOCK 1486 struct io_context *ioc = current->io_context; 1487 struct io_context *new_ioc; 1488 1489 if (!ioc) 1490 return 0; 1491 /* 1492 * Share io context with parent, if CLONE_IO is set 1493 */ 1494 if (clone_flags & CLONE_IO) { 1495 ioc_task_link(ioc); 1496 tsk->io_context = ioc; 1497 } else if (ioprio_valid(ioc->ioprio)) { 1498 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1499 if (unlikely(!new_ioc)) 1500 return -ENOMEM; 1501 1502 new_ioc->ioprio = ioc->ioprio; 1503 put_io_context(new_ioc); 1504 } 1505 #endif 1506 return 0; 1507 } 1508 1509 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1510 { 1511 struct sighand_struct *sig; 1512 1513 if (clone_flags & CLONE_SIGHAND) { 1514 refcount_inc(¤t->sighand->count); 1515 return 0; 1516 } 1517 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1518 RCU_INIT_POINTER(tsk->sighand, sig); 1519 if (!sig) 1520 return -ENOMEM; 1521 1522 refcount_set(&sig->count, 1); 1523 spin_lock_irq(¤t->sighand->siglock); 1524 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1525 spin_unlock_irq(¤t->sighand->siglock); 1526 1527 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1528 if (clone_flags & CLONE_CLEAR_SIGHAND) 1529 flush_signal_handlers(tsk, 0); 1530 1531 return 0; 1532 } 1533 1534 void __cleanup_sighand(struct sighand_struct *sighand) 1535 { 1536 if (refcount_dec_and_test(&sighand->count)) { 1537 signalfd_cleanup(sighand); 1538 /* 1539 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1540 * without an RCU grace period, see __lock_task_sighand(). 1541 */ 1542 kmem_cache_free(sighand_cachep, sighand); 1543 } 1544 } 1545 1546 /* 1547 * Initialize POSIX timer handling for a thread group. 1548 */ 1549 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1550 { 1551 struct posix_cputimers *pct = &sig->posix_cputimers; 1552 unsigned long cpu_limit; 1553 1554 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1555 posix_cputimers_group_init(pct, cpu_limit); 1556 } 1557 1558 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1559 { 1560 struct signal_struct *sig; 1561 1562 if (clone_flags & CLONE_THREAD) 1563 return 0; 1564 1565 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1566 tsk->signal = sig; 1567 if (!sig) 1568 return -ENOMEM; 1569 1570 sig->nr_threads = 1; 1571 atomic_set(&sig->live, 1); 1572 refcount_set(&sig->sigcnt, 1); 1573 1574 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1575 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1576 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1577 1578 init_waitqueue_head(&sig->wait_chldexit); 1579 sig->curr_target = tsk; 1580 init_sigpending(&sig->shared_pending); 1581 INIT_HLIST_HEAD(&sig->multiprocess); 1582 seqlock_init(&sig->stats_lock); 1583 prev_cputime_init(&sig->prev_cputime); 1584 1585 #ifdef CONFIG_POSIX_TIMERS 1586 INIT_LIST_HEAD(&sig->posix_timers); 1587 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1588 sig->real_timer.function = it_real_fn; 1589 #endif 1590 1591 task_lock(current->group_leader); 1592 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1593 task_unlock(current->group_leader); 1594 1595 posix_cpu_timers_init_group(sig); 1596 1597 tty_audit_fork(sig); 1598 sched_autogroup_fork(sig); 1599 1600 sig->oom_score_adj = current->signal->oom_score_adj; 1601 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1602 1603 mutex_init(&sig->cred_guard_mutex); 1604 init_rwsem(&sig->exec_update_lock); 1605 1606 return 0; 1607 } 1608 1609 static void copy_seccomp(struct task_struct *p) 1610 { 1611 #ifdef CONFIG_SECCOMP 1612 /* 1613 * Must be called with sighand->lock held, which is common to 1614 * all threads in the group. Holding cred_guard_mutex is not 1615 * needed because this new task is not yet running and cannot 1616 * be racing exec. 1617 */ 1618 assert_spin_locked(¤t->sighand->siglock); 1619 1620 /* Ref-count the new filter user, and assign it. */ 1621 get_seccomp_filter(current); 1622 p->seccomp = current->seccomp; 1623 1624 /* 1625 * Explicitly enable no_new_privs here in case it got set 1626 * between the task_struct being duplicated and holding the 1627 * sighand lock. The seccomp state and nnp must be in sync. 1628 */ 1629 if (task_no_new_privs(current)) 1630 task_set_no_new_privs(p); 1631 1632 /* 1633 * If the parent gained a seccomp mode after copying thread 1634 * flags and between before we held the sighand lock, we have 1635 * to manually enable the seccomp thread flag here. 1636 */ 1637 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1638 set_task_syscall_work(p, SECCOMP); 1639 #endif 1640 } 1641 1642 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1643 { 1644 current->clear_child_tid = tidptr; 1645 1646 return task_pid_vnr(current); 1647 } 1648 1649 static void rt_mutex_init_task(struct task_struct *p) 1650 { 1651 raw_spin_lock_init(&p->pi_lock); 1652 #ifdef CONFIG_RT_MUTEXES 1653 p->pi_waiters = RB_ROOT_CACHED; 1654 p->pi_top_task = NULL; 1655 p->pi_blocked_on = NULL; 1656 #endif 1657 } 1658 1659 static inline void init_task_pid_links(struct task_struct *task) 1660 { 1661 enum pid_type type; 1662 1663 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1664 INIT_HLIST_NODE(&task->pid_links[type]); 1665 } 1666 1667 static inline void 1668 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1669 { 1670 if (type == PIDTYPE_PID) 1671 task->thread_pid = pid; 1672 else 1673 task->signal->pids[type] = pid; 1674 } 1675 1676 static inline void rcu_copy_process(struct task_struct *p) 1677 { 1678 #ifdef CONFIG_PREEMPT_RCU 1679 p->rcu_read_lock_nesting = 0; 1680 p->rcu_read_unlock_special.s = 0; 1681 p->rcu_blocked_node = NULL; 1682 INIT_LIST_HEAD(&p->rcu_node_entry); 1683 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1684 #ifdef CONFIG_TASKS_RCU 1685 p->rcu_tasks_holdout = false; 1686 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1687 p->rcu_tasks_idle_cpu = -1; 1688 #endif /* #ifdef CONFIG_TASKS_RCU */ 1689 #ifdef CONFIG_TASKS_TRACE_RCU 1690 p->trc_reader_nesting = 0; 1691 p->trc_reader_special.s = 0; 1692 INIT_LIST_HEAD(&p->trc_holdout_list); 1693 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1694 } 1695 1696 struct pid *pidfd_pid(const struct file *file) 1697 { 1698 if (file->f_op == &pidfd_fops) 1699 return file->private_data; 1700 1701 return ERR_PTR(-EBADF); 1702 } 1703 1704 static int pidfd_release(struct inode *inode, struct file *file) 1705 { 1706 struct pid *pid = file->private_data; 1707 1708 file->private_data = NULL; 1709 put_pid(pid); 1710 return 0; 1711 } 1712 1713 #ifdef CONFIG_PROC_FS 1714 /** 1715 * pidfd_show_fdinfo - print information about a pidfd 1716 * @m: proc fdinfo file 1717 * @f: file referencing a pidfd 1718 * 1719 * Pid: 1720 * This function will print the pid that a given pidfd refers to in the 1721 * pid namespace of the procfs instance. 1722 * If the pid namespace of the process is not a descendant of the pid 1723 * namespace of the procfs instance 0 will be shown as its pid. This is 1724 * similar to calling getppid() on a process whose parent is outside of 1725 * its pid namespace. 1726 * 1727 * NSpid: 1728 * If pid namespaces are supported then this function will also print 1729 * the pid of a given pidfd refers to for all descendant pid namespaces 1730 * starting from the current pid namespace of the instance, i.e. the 1731 * Pid field and the first entry in the NSpid field will be identical. 1732 * If the pid namespace of the process is not a descendant of the pid 1733 * namespace of the procfs instance 0 will be shown as its first NSpid 1734 * entry and no others will be shown. 1735 * Note that this differs from the Pid and NSpid fields in 1736 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1737 * the pid namespace of the procfs instance. The difference becomes 1738 * obvious when sending around a pidfd between pid namespaces from a 1739 * different branch of the tree, i.e. where no ancestral relation is 1740 * present between the pid namespaces: 1741 * - create two new pid namespaces ns1 and ns2 in the initial pid 1742 * namespace (also take care to create new mount namespaces in the 1743 * new pid namespace and mount procfs) 1744 * - create a process with a pidfd in ns1 1745 * - send pidfd from ns1 to ns2 1746 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1747 * have exactly one entry, which is 0 1748 */ 1749 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1750 { 1751 struct pid *pid = f->private_data; 1752 struct pid_namespace *ns; 1753 pid_t nr = -1; 1754 1755 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1756 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1757 nr = pid_nr_ns(pid, ns); 1758 } 1759 1760 seq_put_decimal_ll(m, "Pid:\t", nr); 1761 1762 #ifdef CONFIG_PID_NS 1763 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1764 if (nr > 0) { 1765 int i; 1766 1767 /* If nr is non-zero it means that 'pid' is valid and that 1768 * ns, i.e. the pid namespace associated with the procfs 1769 * instance, is in the pid namespace hierarchy of pid. 1770 * Start at one below the already printed level. 1771 */ 1772 for (i = ns->level + 1; i <= pid->level; i++) 1773 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1774 } 1775 #endif 1776 seq_putc(m, '\n'); 1777 } 1778 #endif 1779 1780 /* 1781 * Poll support for process exit notification. 1782 */ 1783 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1784 { 1785 struct pid *pid = file->private_data; 1786 __poll_t poll_flags = 0; 1787 1788 poll_wait(file, &pid->wait_pidfd, pts); 1789 1790 /* 1791 * Inform pollers only when the whole thread group exits. 1792 * If the thread group leader exits before all other threads in the 1793 * group, then poll(2) should block, similar to the wait(2) family. 1794 */ 1795 if (thread_group_exited(pid)) 1796 poll_flags = EPOLLIN | EPOLLRDNORM; 1797 1798 return poll_flags; 1799 } 1800 1801 const struct file_operations pidfd_fops = { 1802 .release = pidfd_release, 1803 .poll = pidfd_poll, 1804 #ifdef CONFIG_PROC_FS 1805 .show_fdinfo = pidfd_show_fdinfo, 1806 #endif 1807 }; 1808 1809 static void __delayed_free_task(struct rcu_head *rhp) 1810 { 1811 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1812 1813 free_task(tsk); 1814 } 1815 1816 static __always_inline void delayed_free_task(struct task_struct *tsk) 1817 { 1818 if (IS_ENABLED(CONFIG_MEMCG)) 1819 call_rcu(&tsk->rcu, __delayed_free_task); 1820 else 1821 free_task(tsk); 1822 } 1823 1824 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1825 { 1826 /* Skip if kernel thread */ 1827 if (!tsk->mm) 1828 return; 1829 1830 /* Skip if spawning a thread or using vfork */ 1831 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1832 return; 1833 1834 /* We need to synchronize with __set_oom_adj */ 1835 mutex_lock(&oom_adj_mutex); 1836 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1837 /* Update the values in case they were changed after copy_signal */ 1838 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1839 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1840 mutex_unlock(&oom_adj_mutex); 1841 } 1842 1843 /* 1844 * This creates a new process as a copy of the old one, 1845 * but does not actually start it yet. 1846 * 1847 * It copies the registers, and all the appropriate 1848 * parts of the process environment (as per the clone 1849 * flags). The actual kick-off is left to the caller. 1850 */ 1851 static __latent_entropy struct task_struct *copy_process( 1852 struct pid *pid, 1853 int trace, 1854 int node, 1855 struct kernel_clone_args *args) 1856 { 1857 int pidfd = -1, retval; 1858 struct task_struct *p; 1859 struct multiprocess_signals delayed; 1860 struct file *pidfile = NULL; 1861 u64 clone_flags = args->flags; 1862 struct nsproxy *nsp = current->nsproxy; 1863 1864 /* 1865 * Don't allow sharing the root directory with processes in a different 1866 * namespace 1867 */ 1868 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1869 return ERR_PTR(-EINVAL); 1870 1871 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1872 return ERR_PTR(-EINVAL); 1873 1874 /* 1875 * Thread groups must share signals as well, and detached threads 1876 * can only be started up within the thread group. 1877 */ 1878 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1879 return ERR_PTR(-EINVAL); 1880 1881 /* 1882 * Shared signal handlers imply shared VM. By way of the above, 1883 * thread groups also imply shared VM. Blocking this case allows 1884 * for various simplifications in other code. 1885 */ 1886 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1887 return ERR_PTR(-EINVAL); 1888 1889 /* 1890 * Siblings of global init remain as zombies on exit since they are 1891 * not reaped by their parent (swapper). To solve this and to avoid 1892 * multi-rooted process trees, prevent global and container-inits 1893 * from creating siblings. 1894 */ 1895 if ((clone_flags & CLONE_PARENT) && 1896 current->signal->flags & SIGNAL_UNKILLABLE) 1897 return ERR_PTR(-EINVAL); 1898 1899 /* 1900 * If the new process will be in a different pid or user namespace 1901 * do not allow it to share a thread group with the forking task. 1902 */ 1903 if (clone_flags & CLONE_THREAD) { 1904 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1905 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1906 return ERR_PTR(-EINVAL); 1907 } 1908 1909 /* 1910 * If the new process will be in a different time namespace 1911 * do not allow it to share VM or a thread group with the forking task. 1912 */ 1913 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1914 if (nsp->time_ns != nsp->time_ns_for_children) 1915 return ERR_PTR(-EINVAL); 1916 } 1917 1918 if (clone_flags & CLONE_PIDFD) { 1919 /* 1920 * - CLONE_DETACHED is blocked so that we can potentially 1921 * reuse it later for CLONE_PIDFD. 1922 * - CLONE_THREAD is blocked until someone really needs it. 1923 */ 1924 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1925 return ERR_PTR(-EINVAL); 1926 } 1927 1928 /* 1929 * Force any signals received before this point to be delivered 1930 * before the fork happens. Collect up signals sent to multiple 1931 * processes that happen during the fork and delay them so that 1932 * they appear to happen after the fork. 1933 */ 1934 sigemptyset(&delayed.signal); 1935 INIT_HLIST_NODE(&delayed.node); 1936 1937 spin_lock_irq(¤t->sighand->siglock); 1938 if (!(clone_flags & CLONE_THREAD)) 1939 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1940 recalc_sigpending(); 1941 spin_unlock_irq(¤t->sighand->siglock); 1942 retval = -ERESTARTNOINTR; 1943 if (task_sigpending(current)) 1944 goto fork_out; 1945 1946 retval = -ENOMEM; 1947 p = dup_task_struct(current, node); 1948 if (!p) 1949 goto fork_out; 1950 if (args->io_thread) { 1951 /* 1952 * Mark us an IO worker, and block any signal that isn't 1953 * fatal or STOP 1954 */ 1955 p->flags |= PF_IO_WORKER; 1956 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1957 } 1958 1959 /* 1960 * This _must_ happen before we call free_task(), i.e. before we jump 1961 * to any of the bad_fork_* labels. This is to avoid freeing 1962 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1963 * kernel threads (PF_KTHREAD). 1964 */ 1965 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1966 /* 1967 * Clear TID on mm_release()? 1968 */ 1969 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1970 1971 ftrace_graph_init_task(p); 1972 1973 rt_mutex_init_task(p); 1974 1975 lockdep_assert_irqs_enabled(); 1976 #ifdef CONFIG_PROVE_LOCKING 1977 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1978 #endif 1979 retval = -EAGAIN; 1980 if (atomic_read(&p->real_cred->user->processes) >= 1981 task_rlimit(p, RLIMIT_NPROC)) { 1982 if (p->real_cred->user != INIT_USER && 1983 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1984 goto bad_fork_free; 1985 } 1986 current->flags &= ~PF_NPROC_EXCEEDED; 1987 1988 retval = copy_creds(p, clone_flags); 1989 if (retval < 0) 1990 goto bad_fork_free; 1991 1992 /* 1993 * If multiple threads are within copy_process(), then this check 1994 * triggers too late. This doesn't hurt, the check is only there 1995 * to stop root fork bombs. 1996 */ 1997 retval = -EAGAIN; 1998 if (data_race(nr_threads >= max_threads)) 1999 goto bad_fork_cleanup_count; 2000 2001 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2002 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 2003 p->flags |= PF_FORKNOEXEC; 2004 INIT_LIST_HEAD(&p->children); 2005 INIT_LIST_HEAD(&p->sibling); 2006 rcu_copy_process(p); 2007 p->vfork_done = NULL; 2008 spin_lock_init(&p->alloc_lock); 2009 2010 init_sigpending(&p->pending); 2011 p->sigqueue_cache = NULL; 2012 2013 p->utime = p->stime = p->gtime = 0; 2014 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2015 p->utimescaled = p->stimescaled = 0; 2016 #endif 2017 prev_cputime_init(&p->prev_cputime); 2018 2019 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2020 seqcount_init(&p->vtime.seqcount); 2021 p->vtime.starttime = 0; 2022 p->vtime.state = VTIME_INACTIVE; 2023 #endif 2024 2025 #ifdef CONFIG_IO_URING 2026 p->io_uring = NULL; 2027 #endif 2028 2029 #if defined(SPLIT_RSS_COUNTING) 2030 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2031 #endif 2032 2033 p->default_timer_slack_ns = current->timer_slack_ns; 2034 2035 #ifdef CONFIG_PSI 2036 p->psi_flags = 0; 2037 #endif 2038 2039 task_io_accounting_init(&p->ioac); 2040 acct_clear_integrals(p); 2041 2042 posix_cputimers_init(&p->posix_cputimers); 2043 2044 p->io_context = NULL; 2045 audit_set_context(p, NULL); 2046 cgroup_fork(p); 2047 #ifdef CONFIG_NUMA 2048 p->mempolicy = mpol_dup(p->mempolicy); 2049 if (IS_ERR(p->mempolicy)) { 2050 retval = PTR_ERR(p->mempolicy); 2051 p->mempolicy = NULL; 2052 goto bad_fork_cleanup_threadgroup_lock; 2053 } 2054 #endif 2055 #ifdef CONFIG_CPUSETS 2056 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2057 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2058 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2059 #endif 2060 #ifdef CONFIG_TRACE_IRQFLAGS 2061 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2062 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2063 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2064 p->softirqs_enabled = 1; 2065 p->softirq_context = 0; 2066 #endif 2067 2068 p->pagefault_disabled = 0; 2069 2070 #ifdef CONFIG_LOCKDEP 2071 lockdep_init_task(p); 2072 #endif 2073 2074 #ifdef CONFIG_DEBUG_MUTEXES 2075 p->blocked_on = NULL; /* not blocked yet */ 2076 #endif 2077 #ifdef CONFIG_BCACHE 2078 p->sequential_io = 0; 2079 p->sequential_io_avg = 0; 2080 #endif 2081 #ifdef CONFIG_BPF_SYSCALL 2082 RCU_INIT_POINTER(p->bpf_storage, NULL); 2083 #endif 2084 2085 /* Perform scheduler related setup. Assign this task to a CPU. */ 2086 retval = sched_fork(clone_flags, p); 2087 if (retval) 2088 goto bad_fork_cleanup_policy; 2089 2090 retval = perf_event_init_task(p, clone_flags); 2091 if (retval) 2092 goto bad_fork_cleanup_policy; 2093 retval = audit_alloc(p); 2094 if (retval) 2095 goto bad_fork_cleanup_perf; 2096 /* copy all the process information */ 2097 shm_init_task(p); 2098 retval = security_task_alloc(p, clone_flags); 2099 if (retval) 2100 goto bad_fork_cleanup_audit; 2101 retval = copy_semundo(clone_flags, p); 2102 if (retval) 2103 goto bad_fork_cleanup_security; 2104 retval = copy_files(clone_flags, p); 2105 if (retval) 2106 goto bad_fork_cleanup_semundo; 2107 retval = copy_fs(clone_flags, p); 2108 if (retval) 2109 goto bad_fork_cleanup_files; 2110 retval = copy_sighand(clone_flags, p); 2111 if (retval) 2112 goto bad_fork_cleanup_fs; 2113 retval = copy_signal(clone_flags, p); 2114 if (retval) 2115 goto bad_fork_cleanup_sighand; 2116 retval = copy_mm(clone_flags, p); 2117 if (retval) 2118 goto bad_fork_cleanup_signal; 2119 retval = copy_namespaces(clone_flags, p); 2120 if (retval) 2121 goto bad_fork_cleanup_mm; 2122 retval = copy_io(clone_flags, p); 2123 if (retval) 2124 goto bad_fork_cleanup_namespaces; 2125 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2126 if (retval) 2127 goto bad_fork_cleanup_io; 2128 2129 stackleak_task_init(p); 2130 2131 if (pid != &init_struct_pid) { 2132 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2133 args->set_tid_size); 2134 if (IS_ERR(pid)) { 2135 retval = PTR_ERR(pid); 2136 goto bad_fork_cleanup_thread; 2137 } 2138 } 2139 2140 /* 2141 * This has to happen after we've potentially unshared the file 2142 * descriptor table (so that the pidfd doesn't leak into the child 2143 * if the fd table isn't shared). 2144 */ 2145 if (clone_flags & CLONE_PIDFD) { 2146 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2147 if (retval < 0) 2148 goto bad_fork_free_pid; 2149 2150 pidfd = retval; 2151 2152 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2153 O_RDWR | O_CLOEXEC); 2154 if (IS_ERR(pidfile)) { 2155 put_unused_fd(pidfd); 2156 retval = PTR_ERR(pidfile); 2157 goto bad_fork_free_pid; 2158 } 2159 get_pid(pid); /* held by pidfile now */ 2160 2161 retval = put_user(pidfd, args->pidfd); 2162 if (retval) 2163 goto bad_fork_put_pidfd; 2164 } 2165 2166 #ifdef CONFIG_BLOCK 2167 p->plug = NULL; 2168 #endif 2169 futex_init_task(p); 2170 2171 /* 2172 * sigaltstack should be cleared when sharing the same VM 2173 */ 2174 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2175 sas_ss_reset(p); 2176 2177 /* 2178 * Syscall tracing and stepping should be turned off in the 2179 * child regardless of CLONE_PTRACE. 2180 */ 2181 user_disable_single_step(p); 2182 clear_task_syscall_work(p, SYSCALL_TRACE); 2183 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2184 clear_task_syscall_work(p, SYSCALL_EMU); 2185 #endif 2186 clear_tsk_latency_tracing(p); 2187 2188 /* ok, now we should be set up.. */ 2189 p->pid = pid_nr(pid); 2190 if (clone_flags & CLONE_THREAD) { 2191 p->group_leader = current->group_leader; 2192 p->tgid = current->tgid; 2193 } else { 2194 p->group_leader = p; 2195 p->tgid = p->pid; 2196 } 2197 2198 p->nr_dirtied = 0; 2199 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2200 p->dirty_paused_when = 0; 2201 2202 p->pdeath_signal = 0; 2203 INIT_LIST_HEAD(&p->thread_group); 2204 p->task_works = NULL; 2205 2206 #ifdef CONFIG_KRETPROBES 2207 p->kretprobe_instances.first = NULL; 2208 #endif 2209 2210 /* 2211 * Ensure that the cgroup subsystem policies allow the new process to be 2212 * forked. It should be noted that the new process's css_set can be changed 2213 * between here and cgroup_post_fork() if an organisation operation is in 2214 * progress. 2215 */ 2216 retval = cgroup_can_fork(p, args); 2217 if (retval) 2218 goto bad_fork_put_pidfd; 2219 2220 /* 2221 * From this point on we must avoid any synchronous user-space 2222 * communication until we take the tasklist-lock. In particular, we do 2223 * not want user-space to be able to predict the process start-time by 2224 * stalling fork(2) after we recorded the start_time but before it is 2225 * visible to the system. 2226 */ 2227 2228 p->start_time = ktime_get_ns(); 2229 p->start_boottime = ktime_get_boottime_ns(); 2230 2231 /* 2232 * Make it visible to the rest of the system, but dont wake it up yet. 2233 * Need tasklist lock for parent etc handling! 2234 */ 2235 write_lock_irq(&tasklist_lock); 2236 2237 /* CLONE_PARENT re-uses the old parent */ 2238 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2239 p->real_parent = current->real_parent; 2240 p->parent_exec_id = current->parent_exec_id; 2241 if (clone_flags & CLONE_THREAD) 2242 p->exit_signal = -1; 2243 else 2244 p->exit_signal = current->group_leader->exit_signal; 2245 } else { 2246 p->real_parent = current; 2247 p->parent_exec_id = current->self_exec_id; 2248 p->exit_signal = args->exit_signal; 2249 } 2250 2251 klp_copy_process(p); 2252 2253 spin_lock(¤t->sighand->siglock); 2254 2255 /* 2256 * Copy seccomp details explicitly here, in case they were changed 2257 * before holding sighand lock. 2258 */ 2259 copy_seccomp(p); 2260 2261 rseq_fork(p, clone_flags); 2262 2263 /* Don't start children in a dying pid namespace */ 2264 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2265 retval = -ENOMEM; 2266 goto bad_fork_cancel_cgroup; 2267 } 2268 2269 /* Let kill terminate clone/fork in the middle */ 2270 if (fatal_signal_pending(current)) { 2271 retval = -EINTR; 2272 goto bad_fork_cancel_cgroup; 2273 } 2274 2275 /* past the last point of failure */ 2276 if (pidfile) 2277 fd_install(pidfd, pidfile); 2278 2279 init_task_pid_links(p); 2280 if (likely(p->pid)) { 2281 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2282 2283 init_task_pid(p, PIDTYPE_PID, pid); 2284 if (thread_group_leader(p)) { 2285 init_task_pid(p, PIDTYPE_TGID, pid); 2286 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2287 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2288 2289 if (is_child_reaper(pid)) { 2290 ns_of_pid(pid)->child_reaper = p; 2291 p->signal->flags |= SIGNAL_UNKILLABLE; 2292 } 2293 p->signal->shared_pending.signal = delayed.signal; 2294 p->signal->tty = tty_kref_get(current->signal->tty); 2295 /* 2296 * Inherit has_child_subreaper flag under the same 2297 * tasklist_lock with adding child to the process tree 2298 * for propagate_has_child_subreaper optimization. 2299 */ 2300 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2301 p->real_parent->signal->is_child_subreaper; 2302 list_add_tail(&p->sibling, &p->real_parent->children); 2303 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2304 attach_pid(p, PIDTYPE_TGID); 2305 attach_pid(p, PIDTYPE_PGID); 2306 attach_pid(p, PIDTYPE_SID); 2307 __this_cpu_inc(process_counts); 2308 } else { 2309 current->signal->nr_threads++; 2310 atomic_inc(¤t->signal->live); 2311 refcount_inc(¤t->signal->sigcnt); 2312 task_join_group_stop(p); 2313 list_add_tail_rcu(&p->thread_group, 2314 &p->group_leader->thread_group); 2315 list_add_tail_rcu(&p->thread_node, 2316 &p->signal->thread_head); 2317 } 2318 attach_pid(p, PIDTYPE_PID); 2319 nr_threads++; 2320 } 2321 total_forks++; 2322 hlist_del_init(&delayed.node); 2323 spin_unlock(¤t->sighand->siglock); 2324 syscall_tracepoint_update(p); 2325 write_unlock_irq(&tasklist_lock); 2326 2327 proc_fork_connector(p); 2328 sched_post_fork(p); 2329 cgroup_post_fork(p, args); 2330 perf_event_fork(p); 2331 2332 trace_task_newtask(p, clone_flags); 2333 uprobe_copy_process(p, clone_flags); 2334 2335 copy_oom_score_adj(clone_flags, p); 2336 2337 return p; 2338 2339 bad_fork_cancel_cgroup: 2340 spin_unlock(¤t->sighand->siglock); 2341 write_unlock_irq(&tasklist_lock); 2342 cgroup_cancel_fork(p, args); 2343 bad_fork_put_pidfd: 2344 if (clone_flags & CLONE_PIDFD) { 2345 fput(pidfile); 2346 put_unused_fd(pidfd); 2347 } 2348 bad_fork_free_pid: 2349 if (pid != &init_struct_pid) 2350 free_pid(pid); 2351 bad_fork_cleanup_thread: 2352 exit_thread(p); 2353 bad_fork_cleanup_io: 2354 if (p->io_context) 2355 exit_io_context(p); 2356 bad_fork_cleanup_namespaces: 2357 exit_task_namespaces(p); 2358 bad_fork_cleanup_mm: 2359 if (p->mm) { 2360 mm_clear_owner(p->mm, p); 2361 mmput(p->mm); 2362 } 2363 bad_fork_cleanup_signal: 2364 if (!(clone_flags & CLONE_THREAD)) 2365 free_signal_struct(p->signal); 2366 bad_fork_cleanup_sighand: 2367 __cleanup_sighand(p->sighand); 2368 bad_fork_cleanup_fs: 2369 exit_fs(p); /* blocking */ 2370 bad_fork_cleanup_files: 2371 exit_files(p); /* blocking */ 2372 bad_fork_cleanup_semundo: 2373 exit_sem(p); 2374 bad_fork_cleanup_security: 2375 security_task_free(p); 2376 bad_fork_cleanup_audit: 2377 audit_free(p); 2378 bad_fork_cleanup_perf: 2379 perf_event_free_task(p); 2380 bad_fork_cleanup_policy: 2381 lockdep_free_task(p); 2382 #ifdef CONFIG_NUMA 2383 mpol_put(p->mempolicy); 2384 bad_fork_cleanup_threadgroup_lock: 2385 #endif 2386 delayacct_tsk_free(p); 2387 bad_fork_cleanup_count: 2388 atomic_dec(&p->cred->user->processes); 2389 exit_creds(p); 2390 bad_fork_free: 2391 p->state = TASK_DEAD; 2392 put_task_stack(p); 2393 delayed_free_task(p); 2394 fork_out: 2395 spin_lock_irq(¤t->sighand->siglock); 2396 hlist_del_init(&delayed.node); 2397 spin_unlock_irq(¤t->sighand->siglock); 2398 return ERR_PTR(retval); 2399 } 2400 2401 static inline void init_idle_pids(struct task_struct *idle) 2402 { 2403 enum pid_type type; 2404 2405 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2406 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2407 init_task_pid(idle, type, &init_struct_pid); 2408 } 2409 } 2410 2411 struct task_struct *fork_idle(int cpu) 2412 { 2413 struct task_struct *task; 2414 struct kernel_clone_args args = { 2415 .flags = CLONE_VM, 2416 }; 2417 2418 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2419 if (!IS_ERR(task)) { 2420 init_idle_pids(task); 2421 init_idle(task, cpu); 2422 } 2423 2424 return task; 2425 } 2426 2427 struct mm_struct *copy_init_mm(void) 2428 { 2429 return dup_mm(NULL, &init_mm); 2430 } 2431 2432 /* 2433 * This is like kernel_clone(), but shaved down and tailored to just 2434 * creating io_uring workers. It returns a created task, or an error pointer. 2435 * The returned task is inactive, and the caller must fire it up through 2436 * wake_up_new_task(p). All signals are blocked in the created task. 2437 */ 2438 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2439 { 2440 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2441 CLONE_IO; 2442 struct kernel_clone_args args = { 2443 .flags = ((lower_32_bits(flags) | CLONE_VM | 2444 CLONE_UNTRACED) & ~CSIGNAL), 2445 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2446 .stack = (unsigned long)fn, 2447 .stack_size = (unsigned long)arg, 2448 .io_thread = 1, 2449 }; 2450 2451 return copy_process(NULL, 0, node, &args); 2452 } 2453 2454 /* 2455 * Ok, this is the main fork-routine. 2456 * 2457 * It copies the process, and if successful kick-starts 2458 * it and waits for it to finish using the VM if required. 2459 * 2460 * args->exit_signal is expected to be checked for sanity by the caller. 2461 */ 2462 pid_t kernel_clone(struct kernel_clone_args *args) 2463 { 2464 u64 clone_flags = args->flags; 2465 struct completion vfork; 2466 struct pid *pid; 2467 struct task_struct *p; 2468 int trace = 0; 2469 pid_t nr; 2470 2471 /* 2472 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2473 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2474 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2475 * field in struct clone_args and it still doesn't make sense to have 2476 * them both point at the same memory location. Performing this check 2477 * here has the advantage that we don't need to have a separate helper 2478 * to check for legacy clone(). 2479 */ 2480 if ((args->flags & CLONE_PIDFD) && 2481 (args->flags & CLONE_PARENT_SETTID) && 2482 (args->pidfd == args->parent_tid)) 2483 return -EINVAL; 2484 2485 /* 2486 * Determine whether and which event to report to ptracer. When 2487 * called from kernel_thread or CLONE_UNTRACED is explicitly 2488 * requested, no event is reported; otherwise, report if the event 2489 * for the type of forking is enabled. 2490 */ 2491 if (!(clone_flags & CLONE_UNTRACED)) { 2492 if (clone_flags & CLONE_VFORK) 2493 trace = PTRACE_EVENT_VFORK; 2494 else if (args->exit_signal != SIGCHLD) 2495 trace = PTRACE_EVENT_CLONE; 2496 else 2497 trace = PTRACE_EVENT_FORK; 2498 2499 if (likely(!ptrace_event_enabled(current, trace))) 2500 trace = 0; 2501 } 2502 2503 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2504 add_latent_entropy(); 2505 2506 if (IS_ERR(p)) 2507 return PTR_ERR(p); 2508 2509 /* 2510 * Do this prior waking up the new thread - the thread pointer 2511 * might get invalid after that point, if the thread exits quickly. 2512 */ 2513 trace_sched_process_fork(current, p); 2514 2515 pid = get_task_pid(p, PIDTYPE_PID); 2516 nr = pid_vnr(pid); 2517 2518 if (clone_flags & CLONE_PARENT_SETTID) 2519 put_user(nr, args->parent_tid); 2520 2521 if (clone_flags & CLONE_VFORK) { 2522 p->vfork_done = &vfork; 2523 init_completion(&vfork); 2524 get_task_struct(p); 2525 } 2526 2527 wake_up_new_task(p); 2528 2529 /* forking complete and child started to run, tell ptracer */ 2530 if (unlikely(trace)) 2531 ptrace_event_pid(trace, pid); 2532 2533 if (clone_flags & CLONE_VFORK) { 2534 if (!wait_for_vfork_done(p, &vfork)) 2535 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2536 } 2537 2538 put_pid(pid); 2539 return nr; 2540 } 2541 2542 /* 2543 * Create a kernel thread. 2544 */ 2545 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2546 { 2547 struct kernel_clone_args args = { 2548 .flags = ((lower_32_bits(flags) | CLONE_VM | 2549 CLONE_UNTRACED) & ~CSIGNAL), 2550 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2551 .stack = (unsigned long)fn, 2552 .stack_size = (unsigned long)arg, 2553 }; 2554 2555 return kernel_clone(&args); 2556 } 2557 2558 #ifdef __ARCH_WANT_SYS_FORK 2559 SYSCALL_DEFINE0(fork) 2560 { 2561 #ifdef CONFIG_MMU 2562 struct kernel_clone_args args = { 2563 .exit_signal = SIGCHLD, 2564 }; 2565 2566 return kernel_clone(&args); 2567 #else 2568 /* can not support in nommu mode */ 2569 return -EINVAL; 2570 #endif 2571 } 2572 #endif 2573 2574 #ifdef __ARCH_WANT_SYS_VFORK 2575 SYSCALL_DEFINE0(vfork) 2576 { 2577 struct kernel_clone_args args = { 2578 .flags = CLONE_VFORK | CLONE_VM, 2579 .exit_signal = SIGCHLD, 2580 }; 2581 2582 return kernel_clone(&args); 2583 } 2584 #endif 2585 2586 #ifdef __ARCH_WANT_SYS_CLONE 2587 #ifdef CONFIG_CLONE_BACKWARDS 2588 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2589 int __user *, parent_tidptr, 2590 unsigned long, tls, 2591 int __user *, child_tidptr) 2592 #elif defined(CONFIG_CLONE_BACKWARDS2) 2593 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2594 int __user *, parent_tidptr, 2595 int __user *, child_tidptr, 2596 unsigned long, tls) 2597 #elif defined(CONFIG_CLONE_BACKWARDS3) 2598 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2599 int, stack_size, 2600 int __user *, parent_tidptr, 2601 int __user *, child_tidptr, 2602 unsigned long, tls) 2603 #else 2604 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2605 int __user *, parent_tidptr, 2606 int __user *, child_tidptr, 2607 unsigned long, tls) 2608 #endif 2609 { 2610 struct kernel_clone_args args = { 2611 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2612 .pidfd = parent_tidptr, 2613 .child_tid = child_tidptr, 2614 .parent_tid = parent_tidptr, 2615 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2616 .stack = newsp, 2617 .tls = tls, 2618 }; 2619 2620 return kernel_clone(&args); 2621 } 2622 #endif 2623 2624 #ifdef __ARCH_WANT_SYS_CLONE3 2625 2626 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2627 struct clone_args __user *uargs, 2628 size_t usize) 2629 { 2630 int err; 2631 struct clone_args args; 2632 pid_t *kset_tid = kargs->set_tid; 2633 2634 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2635 CLONE_ARGS_SIZE_VER0); 2636 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2637 CLONE_ARGS_SIZE_VER1); 2638 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2639 CLONE_ARGS_SIZE_VER2); 2640 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2641 2642 if (unlikely(usize > PAGE_SIZE)) 2643 return -E2BIG; 2644 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2645 return -EINVAL; 2646 2647 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2648 if (err) 2649 return err; 2650 2651 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2652 return -EINVAL; 2653 2654 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2655 return -EINVAL; 2656 2657 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2658 return -EINVAL; 2659 2660 /* 2661 * Verify that higher 32bits of exit_signal are unset and that 2662 * it is a valid signal 2663 */ 2664 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2665 !valid_signal(args.exit_signal))) 2666 return -EINVAL; 2667 2668 if ((args.flags & CLONE_INTO_CGROUP) && 2669 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2670 return -EINVAL; 2671 2672 *kargs = (struct kernel_clone_args){ 2673 .flags = args.flags, 2674 .pidfd = u64_to_user_ptr(args.pidfd), 2675 .child_tid = u64_to_user_ptr(args.child_tid), 2676 .parent_tid = u64_to_user_ptr(args.parent_tid), 2677 .exit_signal = args.exit_signal, 2678 .stack = args.stack, 2679 .stack_size = args.stack_size, 2680 .tls = args.tls, 2681 .set_tid_size = args.set_tid_size, 2682 .cgroup = args.cgroup, 2683 }; 2684 2685 if (args.set_tid && 2686 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2687 (kargs->set_tid_size * sizeof(pid_t)))) 2688 return -EFAULT; 2689 2690 kargs->set_tid = kset_tid; 2691 2692 return 0; 2693 } 2694 2695 /** 2696 * clone3_stack_valid - check and prepare stack 2697 * @kargs: kernel clone args 2698 * 2699 * Verify that the stack arguments userspace gave us are sane. 2700 * In addition, set the stack direction for userspace since it's easy for us to 2701 * determine. 2702 */ 2703 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2704 { 2705 if (kargs->stack == 0) { 2706 if (kargs->stack_size > 0) 2707 return false; 2708 } else { 2709 if (kargs->stack_size == 0) 2710 return false; 2711 2712 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2713 return false; 2714 2715 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2716 kargs->stack += kargs->stack_size; 2717 #endif 2718 } 2719 2720 return true; 2721 } 2722 2723 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2724 { 2725 /* Verify that no unknown flags are passed along. */ 2726 if (kargs->flags & 2727 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2728 return false; 2729 2730 /* 2731 * - make the CLONE_DETACHED bit reusable for clone3 2732 * - make the CSIGNAL bits reusable for clone3 2733 */ 2734 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2735 return false; 2736 2737 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2738 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2739 return false; 2740 2741 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2742 kargs->exit_signal) 2743 return false; 2744 2745 if (!clone3_stack_valid(kargs)) 2746 return false; 2747 2748 return true; 2749 } 2750 2751 /** 2752 * clone3 - create a new process with specific properties 2753 * @uargs: argument structure 2754 * @size: size of @uargs 2755 * 2756 * clone3() is the extensible successor to clone()/clone2(). 2757 * It takes a struct as argument that is versioned by its size. 2758 * 2759 * Return: On success, a positive PID for the child process. 2760 * On error, a negative errno number. 2761 */ 2762 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2763 { 2764 int err; 2765 2766 struct kernel_clone_args kargs; 2767 pid_t set_tid[MAX_PID_NS_LEVEL]; 2768 2769 kargs.set_tid = set_tid; 2770 2771 err = copy_clone_args_from_user(&kargs, uargs, size); 2772 if (err) 2773 return err; 2774 2775 if (!clone3_args_valid(&kargs)) 2776 return -EINVAL; 2777 2778 return kernel_clone(&kargs); 2779 } 2780 #endif 2781 2782 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2783 { 2784 struct task_struct *leader, *parent, *child; 2785 int res; 2786 2787 read_lock(&tasklist_lock); 2788 leader = top = top->group_leader; 2789 down: 2790 for_each_thread(leader, parent) { 2791 list_for_each_entry(child, &parent->children, sibling) { 2792 res = visitor(child, data); 2793 if (res) { 2794 if (res < 0) 2795 goto out; 2796 leader = child; 2797 goto down; 2798 } 2799 up: 2800 ; 2801 } 2802 } 2803 2804 if (leader != top) { 2805 child = leader; 2806 parent = child->real_parent; 2807 leader = parent->group_leader; 2808 goto up; 2809 } 2810 out: 2811 read_unlock(&tasklist_lock); 2812 } 2813 2814 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2815 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2816 #endif 2817 2818 static void sighand_ctor(void *data) 2819 { 2820 struct sighand_struct *sighand = data; 2821 2822 spin_lock_init(&sighand->siglock); 2823 init_waitqueue_head(&sighand->signalfd_wqh); 2824 } 2825 2826 void __init proc_caches_init(void) 2827 { 2828 unsigned int mm_size; 2829 2830 sighand_cachep = kmem_cache_create("sighand_cache", 2831 sizeof(struct sighand_struct), 0, 2832 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2833 SLAB_ACCOUNT, sighand_ctor); 2834 signal_cachep = kmem_cache_create("signal_cache", 2835 sizeof(struct signal_struct), 0, 2836 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2837 NULL); 2838 files_cachep = kmem_cache_create("files_cache", 2839 sizeof(struct files_struct), 0, 2840 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2841 NULL); 2842 fs_cachep = kmem_cache_create("fs_cache", 2843 sizeof(struct fs_struct), 0, 2844 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2845 NULL); 2846 2847 /* 2848 * The mm_cpumask is located at the end of mm_struct, and is 2849 * dynamically sized based on the maximum CPU number this system 2850 * can have, taking hotplug into account (nr_cpu_ids). 2851 */ 2852 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2853 2854 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2855 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2856 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2857 offsetof(struct mm_struct, saved_auxv), 2858 sizeof_field(struct mm_struct, saved_auxv), 2859 NULL); 2860 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2861 mmap_init(); 2862 nsproxy_cache_init(); 2863 } 2864 2865 /* 2866 * Check constraints on flags passed to the unshare system call. 2867 */ 2868 static int check_unshare_flags(unsigned long unshare_flags) 2869 { 2870 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2871 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2872 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2873 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2874 CLONE_NEWTIME)) 2875 return -EINVAL; 2876 /* 2877 * Not implemented, but pretend it works if there is nothing 2878 * to unshare. Note that unsharing the address space or the 2879 * signal handlers also need to unshare the signal queues (aka 2880 * CLONE_THREAD). 2881 */ 2882 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2883 if (!thread_group_empty(current)) 2884 return -EINVAL; 2885 } 2886 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2887 if (refcount_read(¤t->sighand->count) > 1) 2888 return -EINVAL; 2889 } 2890 if (unshare_flags & CLONE_VM) { 2891 if (!current_is_single_threaded()) 2892 return -EINVAL; 2893 } 2894 2895 return 0; 2896 } 2897 2898 /* 2899 * Unshare the filesystem structure if it is being shared 2900 */ 2901 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2902 { 2903 struct fs_struct *fs = current->fs; 2904 2905 if (!(unshare_flags & CLONE_FS) || !fs) 2906 return 0; 2907 2908 /* don't need lock here; in the worst case we'll do useless copy */ 2909 if (fs->users == 1) 2910 return 0; 2911 2912 *new_fsp = copy_fs_struct(fs); 2913 if (!*new_fsp) 2914 return -ENOMEM; 2915 2916 return 0; 2917 } 2918 2919 /* 2920 * Unshare file descriptor table if it is being shared 2921 */ 2922 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2923 struct files_struct **new_fdp) 2924 { 2925 struct files_struct *fd = current->files; 2926 int error = 0; 2927 2928 if ((unshare_flags & CLONE_FILES) && 2929 (fd && atomic_read(&fd->count) > 1)) { 2930 *new_fdp = dup_fd(fd, max_fds, &error); 2931 if (!*new_fdp) 2932 return error; 2933 } 2934 2935 return 0; 2936 } 2937 2938 /* 2939 * unshare allows a process to 'unshare' part of the process 2940 * context which was originally shared using clone. copy_* 2941 * functions used by kernel_clone() cannot be used here directly 2942 * because they modify an inactive task_struct that is being 2943 * constructed. Here we are modifying the current, active, 2944 * task_struct. 2945 */ 2946 int ksys_unshare(unsigned long unshare_flags) 2947 { 2948 struct fs_struct *fs, *new_fs = NULL; 2949 struct files_struct *fd, *new_fd = NULL; 2950 struct cred *new_cred = NULL; 2951 struct nsproxy *new_nsproxy = NULL; 2952 int do_sysvsem = 0; 2953 int err; 2954 2955 /* 2956 * If unsharing a user namespace must also unshare the thread group 2957 * and unshare the filesystem root and working directories. 2958 */ 2959 if (unshare_flags & CLONE_NEWUSER) 2960 unshare_flags |= CLONE_THREAD | CLONE_FS; 2961 /* 2962 * If unsharing vm, must also unshare signal handlers. 2963 */ 2964 if (unshare_flags & CLONE_VM) 2965 unshare_flags |= CLONE_SIGHAND; 2966 /* 2967 * If unsharing a signal handlers, must also unshare the signal queues. 2968 */ 2969 if (unshare_flags & CLONE_SIGHAND) 2970 unshare_flags |= CLONE_THREAD; 2971 /* 2972 * If unsharing namespace, must also unshare filesystem information. 2973 */ 2974 if (unshare_flags & CLONE_NEWNS) 2975 unshare_flags |= CLONE_FS; 2976 2977 err = check_unshare_flags(unshare_flags); 2978 if (err) 2979 goto bad_unshare_out; 2980 /* 2981 * CLONE_NEWIPC must also detach from the undolist: after switching 2982 * to a new ipc namespace, the semaphore arrays from the old 2983 * namespace are unreachable. 2984 */ 2985 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2986 do_sysvsem = 1; 2987 err = unshare_fs(unshare_flags, &new_fs); 2988 if (err) 2989 goto bad_unshare_out; 2990 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2991 if (err) 2992 goto bad_unshare_cleanup_fs; 2993 err = unshare_userns(unshare_flags, &new_cred); 2994 if (err) 2995 goto bad_unshare_cleanup_fd; 2996 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2997 new_cred, new_fs); 2998 if (err) 2999 goto bad_unshare_cleanup_cred; 3000 3001 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3002 if (do_sysvsem) { 3003 /* 3004 * CLONE_SYSVSEM is equivalent to sys_exit(). 3005 */ 3006 exit_sem(current); 3007 } 3008 if (unshare_flags & CLONE_NEWIPC) { 3009 /* Orphan segments in old ns (see sem above). */ 3010 exit_shm(current); 3011 shm_init_task(current); 3012 } 3013 3014 if (new_nsproxy) 3015 switch_task_namespaces(current, new_nsproxy); 3016 3017 task_lock(current); 3018 3019 if (new_fs) { 3020 fs = current->fs; 3021 spin_lock(&fs->lock); 3022 current->fs = new_fs; 3023 if (--fs->users) 3024 new_fs = NULL; 3025 else 3026 new_fs = fs; 3027 spin_unlock(&fs->lock); 3028 } 3029 3030 if (new_fd) { 3031 fd = current->files; 3032 current->files = new_fd; 3033 new_fd = fd; 3034 } 3035 3036 task_unlock(current); 3037 3038 if (new_cred) { 3039 /* Install the new user namespace */ 3040 commit_creds(new_cred); 3041 new_cred = NULL; 3042 } 3043 } 3044 3045 perf_event_namespaces(current); 3046 3047 bad_unshare_cleanup_cred: 3048 if (new_cred) 3049 put_cred(new_cred); 3050 bad_unshare_cleanup_fd: 3051 if (new_fd) 3052 put_files_struct(new_fd); 3053 3054 bad_unshare_cleanup_fs: 3055 if (new_fs) 3056 free_fs_struct(new_fs); 3057 3058 bad_unshare_out: 3059 return err; 3060 } 3061 3062 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3063 { 3064 return ksys_unshare(unshare_flags); 3065 } 3066 3067 /* 3068 * Helper to unshare the files of the current task. 3069 * We don't want to expose copy_files internals to 3070 * the exec layer of the kernel. 3071 */ 3072 3073 int unshare_files(void) 3074 { 3075 struct task_struct *task = current; 3076 struct files_struct *old, *copy = NULL; 3077 int error; 3078 3079 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3080 if (error || !copy) 3081 return error; 3082 3083 old = task->files; 3084 task_lock(task); 3085 task->files = copy; 3086 task_unlock(task); 3087 put_files_struct(old); 3088 return 0; 3089 } 3090 3091 int sysctl_max_threads(struct ctl_table *table, int write, 3092 void *buffer, size_t *lenp, loff_t *ppos) 3093 { 3094 struct ctl_table t; 3095 int ret; 3096 int threads = max_threads; 3097 int min = 1; 3098 int max = MAX_THREADS; 3099 3100 t = *table; 3101 t.data = &threads; 3102 t.extra1 = &min; 3103 t.extra2 = &max; 3104 3105 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3106 if (ret || !write) 3107 return ret; 3108 3109 max_threads = threads; 3110 3111 return 0; 3112 } 3113