1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/hmm.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/blkdev.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 98 #include <asm/pgtable.h> 99 #include <asm/pgalloc.h> 100 #include <linux/uaccess.h> 101 #include <asm/mmu_context.h> 102 #include <asm/cacheflush.h> 103 #include <asm/tlbflush.h> 104 105 #include <trace/events/sched.h> 106 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/task.h> 109 110 /* 111 * Minimum number of threads to boot the kernel 112 */ 113 #define MIN_THREADS 20 114 115 /* 116 * Maximum number of threads 117 */ 118 #define MAX_THREADS FUTEX_TID_MASK 119 120 /* 121 * Protected counters by write_lock_irq(&tasklist_lock) 122 */ 123 unsigned long total_forks; /* Handle normal Linux uptimes. */ 124 int nr_threads; /* The idle threads do not count.. */ 125 126 static int max_threads; /* tunable limit on nr_threads */ 127 128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 129 130 static const char * const resident_page_types[] = { 131 NAMED_ARRAY_INDEX(MM_FILEPAGES), 132 NAMED_ARRAY_INDEX(MM_ANONPAGES), 133 NAMED_ARRAY_INDEX(MM_SWAPENTS), 134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 135 }; 136 137 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 138 139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 140 141 #ifdef CONFIG_PROVE_RCU 142 int lockdep_tasklist_lock_is_held(void) 143 { 144 return lockdep_is_held(&tasklist_lock); 145 } 146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 147 #endif /* #ifdef CONFIG_PROVE_RCU */ 148 149 int nr_processes(void) 150 { 151 int cpu; 152 int total = 0; 153 154 for_each_possible_cpu(cpu) 155 total += per_cpu(process_counts, cpu); 156 157 return total; 158 } 159 160 void __weak arch_release_task_struct(struct task_struct *tsk) 161 { 162 } 163 164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 165 static struct kmem_cache *task_struct_cachep; 166 167 static inline struct task_struct *alloc_task_struct_node(int node) 168 { 169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 170 } 171 172 static inline void free_task_struct(struct task_struct *tsk) 173 { 174 kmem_cache_free(task_struct_cachep, tsk); 175 } 176 #endif 177 178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 179 180 /* 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 182 * kmemcache based allocator. 183 */ 184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 185 186 #ifdef CONFIG_VMAP_STACK 187 /* 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 189 * flush. Try to minimize the number of calls by caching stacks. 190 */ 191 #define NR_CACHED_STACKS 2 192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 193 194 static int free_vm_stack_cache(unsigned int cpu) 195 { 196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 197 int i; 198 199 for (i = 0; i < NR_CACHED_STACKS; i++) { 200 struct vm_struct *vm_stack = cached_vm_stacks[i]; 201 202 if (!vm_stack) 203 continue; 204 205 vfree(vm_stack->addr); 206 cached_vm_stacks[i] = NULL; 207 } 208 209 return 0; 210 } 211 #endif 212 213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 214 { 215 #ifdef CONFIG_VMAP_STACK 216 void *stack; 217 int i; 218 219 for (i = 0; i < NR_CACHED_STACKS; i++) { 220 struct vm_struct *s; 221 222 s = this_cpu_xchg(cached_stacks[i], NULL); 223 224 if (!s) 225 continue; 226 227 /* Clear stale pointers from reused stack. */ 228 memset(s->addr, 0, THREAD_SIZE); 229 230 tsk->stack_vm_area = s; 231 tsk->stack = s->addr; 232 return s->addr; 233 } 234 235 /* 236 * Allocated stacks are cached and later reused by new threads, 237 * so memcg accounting is performed manually on assigning/releasing 238 * stacks to tasks. Drop __GFP_ACCOUNT. 239 */ 240 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 241 VMALLOC_START, VMALLOC_END, 242 THREADINFO_GFP & ~__GFP_ACCOUNT, 243 PAGE_KERNEL, 244 0, node, __builtin_return_address(0)); 245 246 /* 247 * We can't call find_vm_area() in interrupt context, and 248 * free_thread_stack() can be called in interrupt context, 249 * so cache the vm_struct. 250 */ 251 if (stack) { 252 tsk->stack_vm_area = find_vm_area(stack); 253 tsk->stack = stack; 254 } 255 return stack; 256 #else 257 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 258 THREAD_SIZE_ORDER); 259 260 if (likely(page)) { 261 tsk->stack = page_address(page); 262 return tsk->stack; 263 } 264 return NULL; 265 #endif 266 } 267 268 static inline void free_thread_stack(struct task_struct *tsk) 269 { 270 #ifdef CONFIG_VMAP_STACK 271 struct vm_struct *vm = task_stack_vm_area(tsk); 272 273 if (vm) { 274 int i; 275 276 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 277 mod_memcg_page_state(vm->pages[i], 278 MEMCG_KERNEL_STACK_KB, 279 -(int)(PAGE_SIZE / 1024)); 280 281 memcg_kmem_uncharge(vm->pages[i], 0); 282 } 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 *new = *orig; 360 INIT_LIST_HEAD(&new->anon_vma_chain); 361 } 362 return new; 363 } 364 365 void vm_area_free(struct vm_area_struct *vma) 366 { 367 kmem_cache_free(vm_area_cachep, vma); 368 } 369 370 static void account_kernel_stack(struct task_struct *tsk, int account) 371 { 372 void *stack = task_stack_page(tsk); 373 struct vm_struct *vm = task_stack_vm_area(tsk); 374 375 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 376 377 if (vm) { 378 int i; 379 380 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 381 382 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 383 mod_zone_page_state(page_zone(vm->pages[i]), 384 NR_KERNEL_STACK_KB, 385 PAGE_SIZE / 1024 * account); 386 } 387 } else { 388 /* 389 * All stack pages are in the same zone and belong to the 390 * same memcg. 391 */ 392 struct page *first_page = virt_to_page(stack); 393 394 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 395 THREAD_SIZE / 1024 * account); 396 397 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 398 account * (THREAD_SIZE / 1024)); 399 } 400 } 401 402 static int memcg_charge_kernel_stack(struct task_struct *tsk) 403 { 404 #ifdef CONFIG_VMAP_STACK 405 struct vm_struct *vm = task_stack_vm_area(tsk); 406 int ret; 407 408 if (vm) { 409 int i; 410 411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 412 /* 413 * If memcg_kmem_charge() fails, page->mem_cgroup 414 * pointer is NULL, and both memcg_kmem_uncharge() 415 * and mod_memcg_page_state() in free_thread_stack() 416 * will ignore this page. So it's safe. 417 */ 418 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); 419 if (ret) 420 return ret; 421 422 mod_memcg_page_state(vm->pages[i], 423 MEMCG_KERNEL_STACK_KB, 424 PAGE_SIZE / 1024); 425 } 426 } 427 #endif 428 return 0; 429 } 430 431 static void release_task_stack(struct task_struct *tsk) 432 { 433 if (WARN_ON(tsk->state != TASK_DEAD)) 434 return; /* Better to leak the stack than to free prematurely */ 435 436 account_kernel_stack(tsk, -1); 437 free_thread_stack(tsk); 438 tsk->stack = NULL; 439 #ifdef CONFIG_VMAP_STACK 440 tsk->stack_vm_area = NULL; 441 #endif 442 } 443 444 #ifdef CONFIG_THREAD_INFO_IN_TASK 445 void put_task_stack(struct task_struct *tsk) 446 { 447 if (refcount_dec_and_test(&tsk->stack_refcount)) 448 release_task_stack(tsk); 449 } 450 #endif 451 452 void free_task(struct task_struct *tsk) 453 { 454 #ifndef CONFIG_THREAD_INFO_IN_TASK 455 /* 456 * The task is finally done with both the stack and thread_info, 457 * so free both. 458 */ 459 release_task_stack(tsk); 460 #else 461 /* 462 * If the task had a separate stack allocation, it should be gone 463 * by now. 464 */ 465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 466 #endif 467 rt_mutex_debug_task_free(tsk); 468 ftrace_graph_exit_task(tsk); 469 put_seccomp_filter(tsk); 470 arch_release_task_struct(tsk); 471 if (tsk->flags & PF_KTHREAD) 472 free_kthread_struct(tsk); 473 free_task_struct(tsk); 474 } 475 EXPORT_SYMBOL(free_task); 476 477 #ifdef CONFIG_MMU 478 static __latent_entropy int dup_mmap(struct mm_struct *mm, 479 struct mm_struct *oldmm) 480 { 481 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 482 struct rb_node **rb_link, *rb_parent; 483 int retval; 484 unsigned long charge; 485 LIST_HEAD(uf); 486 487 uprobe_start_dup_mmap(); 488 if (down_write_killable(&oldmm->mmap_sem)) { 489 retval = -EINTR; 490 goto fail_uprobe_end; 491 } 492 flush_cache_dup_mm(oldmm); 493 uprobe_dup_mmap(oldmm, mm); 494 /* 495 * Not linked in yet - no deadlock potential: 496 */ 497 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 498 499 /* No ordering required: file already has been exposed. */ 500 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 501 502 mm->total_vm = oldmm->total_vm; 503 mm->data_vm = oldmm->data_vm; 504 mm->exec_vm = oldmm->exec_vm; 505 mm->stack_vm = oldmm->stack_vm; 506 507 rb_link = &mm->mm_rb.rb_node; 508 rb_parent = NULL; 509 pprev = &mm->mmap; 510 retval = ksm_fork(mm, oldmm); 511 if (retval) 512 goto out; 513 retval = khugepaged_fork(mm, oldmm); 514 if (retval) 515 goto out; 516 517 prev = NULL; 518 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 519 struct file *file; 520 521 if (mpnt->vm_flags & VM_DONTCOPY) { 522 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 523 continue; 524 } 525 charge = 0; 526 /* 527 * Don't duplicate many vmas if we've been oom-killed (for 528 * example) 529 */ 530 if (fatal_signal_pending(current)) { 531 retval = -EINTR; 532 goto out; 533 } 534 if (mpnt->vm_flags & VM_ACCOUNT) { 535 unsigned long len = vma_pages(mpnt); 536 537 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 538 goto fail_nomem; 539 charge = len; 540 } 541 tmp = vm_area_dup(mpnt); 542 if (!tmp) 543 goto fail_nomem; 544 retval = vma_dup_policy(mpnt, tmp); 545 if (retval) 546 goto fail_nomem_policy; 547 tmp->vm_mm = mm; 548 retval = dup_userfaultfd(tmp, &uf); 549 if (retval) 550 goto fail_nomem_anon_vma_fork; 551 if (tmp->vm_flags & VM_WIPEONFORK) { 552 /* VM_WIPEONFORK gets a clean slate in the child. */ 553 tmp->anon_vma = NULL; 554 if (anon_vma_prepare(tmp)) 555 goto fail_nomem_anon_vma_fork; 556 } else if (anon_vma_fork(tmp, mpnt)) 557 goto fail_nomem_anon_vma_fork; 558 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 559 tmp->vm_next = tmp->vm_prev = NULL; 560 file = tmp->vm_file; 561 if (file) { 562 struct inode *inode = file_inode(file); 563 struct address_space *mapping = file->f_mapping; 564 565 get_file(file); 566 if (tmp->vm_flags & VM_DENYWRITE) 567 atomic_dec(&inode->i_writecount); 568 i_mmap_lock_write(mapping); 569 if (tmp->vm_flags & VM_SHARED) 570 atomic_inc(&mapping->i_mmap_writable); 571 flush_dcache_mmap_lock(mapping); 572 /* insert tmp into the share list, just after mpnt */ 573 vma_interval_tree_insert_after(tmp, mpnt, 574 &mapping->i_mmap); 575 flush_dcache_mmap_unlock(mapping); 576 i_mmap_unlock_write(mapping); 577 } 578 579 /* 580 * Clear hugetlb-related page reserves for children. This only 581 * affects MAP_PRIVATE mappings. Faults generated by the child 582 * are not guaranteed to succeed, even if read-only 583 */ 584 if (is_vm_hugetlb_page(tmp)) 585 reset_vma_resv_huge_pages(tmp); 586 587 /* 588 * Link in the new vma and copy the page table entries. 589 */ 590 *pprev = tmp; 591 pprev = &tmp->vm_next; 592 tmp->vm_prev = prev; 593 prev = tmp; 594 595 __vma_link_rb(mm, tmp, rb_link, rb_parent); 596 rb_link = &tmp->vm_rb.rb_right; 597 rb_parent = &tmp->vm_rb; 598 599 mm->map_count++; 600 if (!(tmp->vm_flags & VM_WIPEONFORK)) 601 retval = copy_page_range(mm, oldmm, mpnt); 602 603 if (tmp->vm_ops && tmp->vm_ops->open) 604 tmp->vm_ops->open(tmp); 605 606 if (retval) 607 goto out; 608 } 609 /* a new mm has just been created */ 610 retval = arch_dup_mmap(oldmm, mm); 611 out: 612 up_write(&mm->mmap_sem); 613 flush_tlb_mm(oldmm); 614 up_write(&oldmm->mmap_sem); 615 dup_userfaultfd_complete(&uf); 616 fail_uprobe_end: 617 uprobe_end_dup_mmap(); 618 return retval; 619 fail_nomem_anon_vma_fork: 620 mpol_put(vma_policy(tmp)); 621 fail_nomem_policy: 622 vm_area_free(tmp); 623 fail_nomem: 624 retval = -ENOMEM; 625 vm_unacct_memory(charge); 626 goto out; 627 } 628 629 static inline int mm_alloc_pgd(struct mm_struct *mm) 630 { 631 mm->pgd = pgd_alloc(mm); 632 if (unlikely(!mm->pgd)) 633 return -ENOMEM; 634 return 0; 635 } 636 637 static inline void mm_free_pgd(struct mm_struct *mm) 638 { 639 pgd_free(mm, mm->pgd); 640 } 641 #else 642 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 643 { 644 down_write(&oldmm->mmap_sem); 645 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 646 up_write(&oldmm->mmap_sem); 647 return 0; 648 } 649 #define mm_alloc_pgd(mm) (0) 650 #define mm_free_pgd(mm) 651 #endif /* CONFIG_MMU */ 652 653 static void check_mm(struct mm_struct *mm) 654 { 655 int i; 656 657 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 658 "Please make sure 'struct resident_page_types[]' is updated as well"); 659 660 for (i = 0; i < NR_MM_COUNTERS; i++) { 661 long x = atomic_long_read(&mm->rss_stat.count[i]); 662 663 if (unlikely(x)) 664 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 665 mm, resident_page_types[i], x); 666 } 667 668 if (mm_pgtables_bytes(mm)) 669 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 670 mm_pgtables_bytes(mm)); 671 672 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 673 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 674 #endif 675 } 676 677 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 678 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 679 680 /* 681 * Called when the last reference to the mm 682 * is dropped: either by a lazy thread or by 683 * mmput. Free the page directory and the mm. 684 */ 685 void __mmdrop(struct mm_struct *mm) 686 { 687 BUG_ON(mm == &init_mm); 688 WARN_ON_ONCE(mm == current->mm); 689 WARN_ON_ONCE(mm == current->active_mm); 690 mm_free_pgd(mm); 691 destroy_context(mm); 692 mmu_notifier_mm_destroy(mm); 693 check_mm(mm); 694 put_user_ns(mm->user_ns); 695 free_mm(mm); 696 } 697 EXPORT_SYMBOL_GPL(__mmdrop); 698 699 static void mmdrop_async_fn(struct work_struct *work) 700 { 701 struct mm_struct *mm; 702 703 mm = container_of(work, struct mm_struct, async_put_work); 704 __mmdrop(mm); 705 } 706 707 static void mmdrop_async(struct mm_struct *mm) 708 { 709 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 710 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 711 schedule_work(&mm->async_put_work); 712 } 713 } 714 715 static inline void free_signal_struct(struct signal_struct *sig) 716 { 717 taskstats_tgid_free(sig); 718 sched_autogroup_exit(sig); 719 /* 720 * __mmdrop is not safe to call from softirq context on x86 due to 721 * pgd_dtor so postpone it to the async context 722 */ 723 if (sig->oom_mm) 724 mmdrop_async(sig->oom_mm); 725 kmem_cache_free(signal_cachep, sig); 726 } 727 728 static inline void put_signal_struct(struct signal_struct *sig) 729 { 730 if (refcount_dec_and_test(&sig->sigcnt)) 731 free_signal_struct(sig); 732 } 733 734 void __put_task_struct(struct task_struct *tsk) 735 { 736 WARN_ON(!tsk->exit_state); 737 WARN_ON(refcount_read(&tsk->usage)); 738 WARN_ON(tsk == current); 739 740 cgroup_free(tsk); 741 task_numa_free(tsk, true); 742 security_task_free(tsk); 743 exit_creds(tsk); 744 delayacct_tsk_free(tsk); 745 put_signal_struct(tsk->signal); 746 747 if (!profile_handoff_task(tsk)) 748 free_task(tsk); 749 } 750 EXPORT_SYMBOL_GPL(__put_task_struct); 751 752 void __init __weak arch_task_cache_init(void) { } 753 754 /* 755 * set_max_threads 756 */ 757 static void set_max_threads(unsigned int max_threads_suggested) 758 { 759 u64 threads; 760 unsigned long nr_pages = totalram_pages(); 761 762 /* 763 * The number of threads shall be limited such that the thread 764 * structures may only consume a small part of the available memory. 765 */ 766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 767 threads = MAX_THREADS; 768 else 769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 770 (u64) THREAD_SIZE * 8UL); 771 772 if (threads > max_threads_suggested) 773 threads = max_threads_suggested; 774 775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 776 } 777 778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 779 /* Initialized by the architecture: */ 780 int arch_task_struct_size __read_mostly; 781 #endif 782 783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 785 { 786 /* Fetch thread_struct whitelist for the architecture. */ 787 arch_thread_struct_whitelist(offset, size); 788 789 /* 790 * Handle zero-sized whitelist or empty thread_struct, otherwise 791 * adjust offset to position of thread_struct in task_struct. 792 */ 793 if (unlikely(*size == 0)) 794 *offset = 0; 795 else 796 *offset += offsetof(struct task_struct, thread); 797 } 798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 799 800 void __init fork_init(void) 801 { 802 int i; 803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 804 #ifndef ARCH_MIN_TASKALIGN 805 #define ARCH_MIN_TASKALIGN 0 806 #endif 807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 808 unsigned long useroffset, usersize; 809 810 /* create a slab on which task_structs can be allocated */ 811 task_struct_whitelist(&useroffset, &usersize); 812 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 813 arch_task_struct_size, align, 814 SLAB_PANIC|SLAB_ACCOUNT, 815 useroffset, usersize, NULL); 816 #endif 817 818 /* do the arch specific task caches init */ 819 arch_task_cache_init(); 820 821 set_max_threads(MAX_THREADS); 822 823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 825 init_task.signal->rlim[RLIMIT_SIGPENDING] = 826 init_task.signal->rlim[RLIMIT_NPROC]; 827 828 for (i = 0; i < UCOUNT_COUNTS; i++) { 829 init_user_ns.ucount_max[i] = max_threads/2; 830 } 831 832 #ifdef CONFIG_VMAP_STACK 833 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 834 NULL, free_vm_stack_cache); 835 #endif 836 837 lockdep_init_task(&init_task); 838 uprobes_init(); 839 } 840 841 int __weak arch_dup_task_struct(struct task_struct *dst, 842 struct task_struct *src) 843 { 844 *dst = *src; 845 return 0; 846 } 847 848 void set_task_stack_end_magic(struct task_struct *tsk) 849 { 850 unsigned long *stackend; 851 852 stackend = end_of_stack(tsk); 853 *stackend = STACK_END_MAGIC; /* for overflow detection */ 854 } 855 856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 857 { 858 struct task_struct *tsk; 859 unsigned long *stack; 860 struct vm_struct *stack_vm_area __maybe_unused; 861 int err; 862 863 if (node == NUMA_NO_NODE) 864 node = tsk_fork_get_node(orig); 865 tsk = alloc_task_struct_node(node); 866 if (!tsk) 867 return NULL; 868 869 stack = alloc_thread_stack_node(tsk, node); 870 if (!stack) 871 goto free_tsk; 872 873 if (memcg_charge_kernel_stack(tsk)) 874 goto free_stack; 875 876 stack_vm_area = task_stack_vm_area(tsk); 877 878 err = arch_dup_task_struct(tsk, orig); 879 880 /* 881 * arch_dup_task_struct() clobbers the stack-related fields. Make 882 * sure they're properly initialized before using any stack-related 883 * functions again. 884 */ 885 tsk->stack = stack; 886 #ifdef CONFIG_VMAP_STACK 887 tsk->stack_vm_area = stack_vm_area; 888 #endif 889 #ifdef CONFIG_THREAD_INFO_IN_TASK 890 refcount_set(&tsk->stack_refcount, 1); 891 #endif 892 893 if (err) 894 goto free_stack; 895 896 #ifdef CONFIG_SECCOMP 897 /* 898 * We must handle setting up seccomp filters once we're under 899 * the sighand lock in case orig has changed between now and 900 * then. Until then, filter must be NULL to avoid messing up 901 * the usage counts on the error path calling free_task. 902 */ 903 tsk->seccomp.filter = NULL; 904 #endif 905 906 setup_thread_stack(tsk, orig); 907 clear_user_return_notifier(tsk); 908 clear_tsk_need_resched(tsk); 909 set_task_stack_end_magic(tsk); 910 911 #ifdef CONFIG_STACKPROTECTOR 912 tsk->stack_canary = get_random_canary(); 913 #endif 914 if (orig->cpus_ptr == &orig->cpus_mask) 915 tsk->cpus_ptr = &tsk->cpus_mask; 916 917 /* 918 * One for the user space visible state that goes away when reaped. 919 * One for the scheduler. 920 */ 921 refcount_set(&tsk->rcu_users, 2); 922 /* One for the rcu users */ 923 refcount_set(&tsk->usage, 1); 924 #ifdef CONFIG_BLK_DEV_IO_TRACE 925 tsk->btrace_seq = 0; 926 #endif 927 tsk->splice_pipe = NULL; 928 tsk->task_frag.page = NULL; 929 tsk->wake_q.next = NULL; 930 931 account_kernel_stack(tsk, 1); 932 933 kcov_task_init(tsk); 934 935 #ifdef CONFIG_FAULT_INJECTION 936 tsk->fail_nth = 0; 937 #endif 938 939 #ifdef CONFIG_BLK_CGROUP 940 tsk->throttle_queue = NULL; 941 tsk->use_memdelay = 0; 942 #endif 943 944 #ifdef CONFIG_MEMCG 945 tsk->active_memcg = NULL; 946 #endif 947 return tsk; 948 949 free_stack: 950 free_thread_stack(tsk); 951 free_tsk: 952 free_task_struct(tsk); 953 return NULL; 954 } 955 956 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 957 958 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 959 960 static int __init coredump_filter_setup(char *s) 961 { 962 default_dump_filter = 963 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 964 MMF_DUMP_FILTER_MASK; 965 return 1; 966 } 967 968 __setup("coredump_filter=", coredump_filter_setup); 969 970 #include <linux/init_task.h> 971 972 static void mm_init_aio(struct mm_struct *mm) 973 { 974 #ifdef CONFIG_AIO 975 spin_lock_init(&mm->ioctx_lock); 976 mm->ioctx_table = NULL; 977 #endif 978 } 979 980 static __always_inline void mm_clear_owner(struct mm_struct *mm, 981 struct task_struct *p) 982 { 983 #ifdef CONFIG_MEMCG 984 if (mm->owner == p) 985 WRITE_ONCE(mm->owner, NULL); 986 #endif 987 } 988 989 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 990 { 991 #ifdef CONFIG_MEMCG 992 mm->owner = p; 993 #endif 994 } 995 996 static void mm_init_uprobes_state(struct mm_struct *mm) 997 { 998 #ifdef CONFIG_UPROBES 999 mm->uprobes_state.xol_area = NULL; 1000 #endif 1001 } 1002 1003 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1004 struct user_namespace *user_ns) 1005 { 1006 mm->mmap = NULL; 1007 mm->mm_rb = RB_ROOT; 1008 mm->vmacache_seqnum = 0; 1009 atomic_set(&mm->mm_users, 1); 1010 atomic_set(&mm->mm_count, 1); 1011 init_rwsem(&mm->mmap_sem); 1012 INIT_LIST_HEAD(&mm->mmlist); 1013 mm->core_state = NULL; 1014 mm_pgtables_bytes_init(mm); 1015 mm->map_count = 0; 1016 mm->locked_vm = 0; 1017 atomic64_set(&mm->pinned_vm, 0); 1018 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1019 spin_lock_init(&mm->page_table_lock); 1020 spin_lock_init(&mm->arg_lock); 1021 mm_init_cpumask(mm); 1022 mm_init_aio(mm); 1023 mm_init_owner(mm, p); 1024 RCU_INIT_POINTER(mm->exe_file, NULL); 1025 mmu_notifier_mm_init(mm); 1026 init_tlb_flush_pending(mm); 1027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1028 mm->pmd_huge_pte = NULL; 1029 #endif 1030 mm_init_uprobes_state(mm); 1031 1032 if (current->mm) { 1033 mm->flags = current->mm->flags & MMF_INIT_MASK; 1034 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1035 } else { 1036 mm->flags = default_dump_filter; 1037 mm->def_flags = 0; 1038 } 1039 1040 if (mm_alloc_pgd(mm)) 1041 goto fail_nopgd; 1042 1043 if (init_new_context(p, mm)) 1044 goto fail_nocontext; 1045 1046 mm->user_ns = get_user_ns(user_ns); 1047 return mm; 1048 1049 fail_nocontext: 1050 mm_free_pgd(mm); 1051 fail_nopgd: 1052 free_mm(mm); 1053 return NULL; 1054 } 1055 1056 /* 1057 * Allocate and initialize an mm_struct. 1058 */ 1059 struct mm_struct *mm_alloc(void) 1060 { 1061 struct mm_struct *mm; 1062 1063 mm = allocate_mm(); 1064 if (!mm) 1065 return NULL; 1066 1067 memset(mm, 0, sizeof(*mm)); 1068 return mm_init(mm, current, current_user_ns()); 1069 } 1070 1071 static inline void __mmput(struct mm_struct *mm) 1072 { 1073 VM_BUG_ON(atomic_read(&mm->mm_users)); 1074 1075 uprobe_clear_state(mm); 1076 exit_aio(mm); 1077 ksm_exit(mm); 1078 khugepaged_exit(mm); /* must run before exit_mmap */ 1079 exit_mmap(mm); 1080 mm_put_huge_zero_page(mm); 1081 set_mm_exe_file(mm, NULL); 1082 if (!list_empty(&mm->mmlist)) { 1083 spin_lock(&mmlist_lock); 1084 list_del(&mm->mmlist); 1085 spin_unlock(&mmlist_lock); 1086 } 1087 if (mm->binfmt) 1088 module_put(mm->binfmt->module); 1089 mmdrop(mm); 1090 } 1091 1092 /* 1093 * Decrement the use count and release all resources for an mm. 1094 */ 1095 void mmput(struct mm_struct *mm) 1096 { 1097 might_sleep(); 1098 1099 if (atomic_dec_and_test(&mm->mm_users)) 1100 __mmput(mm); 1101 } 1102 EXPORT_SYMBOL_GPL(mmput); 1103 1104 #ifdef CONFIG_MMU 1105 static void mmput_async_fn(struct work_struct *work) 1106 { 1107 struct mm_struct *mm = container_of(work, struct mm_struct, 1108 async_put_work); 1109 1110 __mmput(mm); 1111 } 1112 1113 void mmput_async(struct mm_struct *mm) 1114 { 1115 if (atomic_dec_and_test(&mm->mm_users)) { 1116 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1117 schedule_work(&mm->async_put_work); 1118 } 1119 } 1120 #endif 1121 1122 /** 1123 * set_mm_exe_file - change a reference to the mm's executable file 1124 * 1125 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1126 * 1127 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1128 * invocations: in mmput() nobody alive left, in execve task is single 1129 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1130 * mm->exe_file, but does so without using set_mm_exe_file() in order 1131 * to do avoid the need for any locks. 1132 */ 1133 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1134 { 1135 struct file *old_exe_file; 1136 1137 /* 1138 * It is safe to dereference the exe_file without RCU as 1139 * this function is only called if nobody else can access 1140 * this mm -- see comment above for justification. 1141 */ 1142 old_exe_file = rcu_dereference_raw(mm->exe_file); 1143 1144 if (new_exe_file) 1145 get_file(new_exe_file); 1146 rcu_assign_pointer(mm->exe_file, new_exe_file); 1147 if (old_exe_file) 1148 fput(old_exe_file); 1149 } 1150 1151 /** 1152 * get_mm_exe_file - acquire a reference to the mm's executable file 1153 * 1154 * Returns %NULL if mm has no associated executable file. 1155 * User must release file via fput(). 1156 */ 1157 struct file *get_mm_exe_file(struct mm_struct *mm) 1158 { 1159 struct file *exe_file; 1160 1161 rcu_read_lock(); 1162 exe_file = rcu_dereference(mm->exe_file); 1163 if (exe_file && !get_file_rcu(exe_file)) 1164 exe_file = NULL; 1165 rcu_read_unlock(); 1166 return exe_file; 1167 } 1168 EXPORT_SYMBOL(get_mm_exe_file); 1169 1170 /** 1171 * get_task_exe_file - acquire a reference to the task's executable file 1172 * 1173 * Returns %NULL if task's mm (if any) has no associated executable file or 1174 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1175 * User must release file via fput(). 1176 */ 1177 struct file *get_task_exe_file(struct task_struct *task) 1178 { 1179 struct file *exe_file = NULL; 1180 struct mm_struct *mm; 1181 1182 task_lock(task); 1183 mm = task->mm; 1184 if (mm) { 1185 if (!(task->flags & PF_KTHREAD)) 1186 exe_file = get_mm_exe_file(mm); 1187 } 1188 task_unlock(task); 1189 return exe_file; 1190 } 1191 EXPORT_SYMBOL(get_task_exe_file); 1192 1193 /** 1194 * get_task_mm - acquire a reference to the task's mm 1195 * 1196 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1197 * this kernel workthread has transiently adopted a user mm with use_mm, 1198 * to do its AIO) is not set and if so returns a reference to it, after 1199 * bumping up the use count. User must release the mm via mmput() 1200 * after use. Typically used by /proc and ptrace. 1201 */ 1202 struct mm_struct *get_task_mm(struct task_struct *task) 1203 { 1204 struct mm_struct *mm; 1205 1206 task_lock(task); 1207 mm = task->mm; 1208 if (mm) { 1209 if (task->flags & PF_KTHREAD) 1210 mm = NULL; 1211 else 1212 mmget(mm); 1213 } 1214 task_unlock(task); 1215 return mm; 1216 } 1217 EXPORT_SYMBOL_GPL(get_task_mm); 1218 1219 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1220 { 1221 struct mm_struct *mm; 1222 int err; 1223 1224 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1225 if (err) 1226 return ERR_PTR(err); 1227 1228 mm = get_task_mm(task); 1229 if (mm && mm != current->mm && 1230 !ptrace_may_access(task, mode)) { 1231 mmput(mm); 1232 mm = ERR_PTR(-EACCES); 1233 } 1234 mutex_unlock(&task->signal->cred_guard_mutex); 1235 1236 return mm; 1237 } 1238 1239 static void complete_vfork_done(struct task_struct *tsk) 1240 { 1241 struct completion *vfork; 1242 1243 task_lock(tsk); 1244 vfork = tsk->vfork_done; 1245 if (likely(vfork)) { 1246 tsk->vfork_done = NULL; 1247 complete(vfork); 1248 } 1249 task_unlock(tsk); 1250 } 1251 1252 static int wait_for_vfork_done(struct task_struct *child, 1253 struct completion *vfork) 1254 { 1255 int killed; 1256 1257 freezer_do_not_count(); 1258 cgroup_enter_frozen(); 1259 killed = wait_for_completion_killable(vfork); 1260 cgroup_leave_frozen(false); 1261 freezer_count(); 1262 1263 if (killed) { 1264 task_lock(child); 1265 child->vfork_done = NULL; 1266 task_unlock(child); 1267 } 1268 1269 put_task_struct(child); 1270 return killed; 1271 } 1272 1273 /* Please note the differences between mmput and mm_release. 1274 * mmput is called whenever we stop holding onto a mm_struct, 1275 * error success whatever. 1276 * 1277 * mm_release is called after a mm_struct has been removed 1278 * from the current process. 1279 * 1280 * This difference is important for error handling, when we 1281 * only half set up a mm_struct for a new process and need to restore 1282 * the old one. Because we mmput the new mm_struct before 1283 * restoring the old one. . . 1284 * Eric Biederman 10 January 1998 1285 */ 1286 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1287 { 1288 /* Get rid of any futexes when releasing the mm */ 1289 #ifdef CONFIG_FUTEX 1290 if (unlikely(tsk->robust_list)) { 1291 exit_robust_list(tsk); 1292 tsk->robust_list = NULL; 1293 } 1294 #ifdef CONFIG_COMPAT 1295 if (unlikely(tsk->compat_robust_list)) { 1296 compat_exit_robust_list(tsk); 1297 tsk->compat_robust_list = NULL; 1298 } 1299 #endif 1300 if (unlikely(!list_empty(&tsk->pi_state_list))) 1301 exit_pi_state_list(tsk); 1302 #endif 1303 1304 uprobe_free_utask(tsk); 1305 1306 /* Get rid of any cached register state */ 1307 deactivate_mm(tsk, mm); 1308 1309 /* 1310 * Signal userspace if we're not exiting with a core dump 1311 * because we want to leave the value intact for debugging 1312 * purposes. 1313 */ 1314 if (tsk->clear_child_tid) { 1315 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1316 atomic_read(&mm->mm_users) > 1) { 1317 /* 1318 * We don't check the error code - if userspace has 1319 * not set up a proper pointer then tough luck. 1320 */ 1321 put_user(0, tsk->clear_child_tid); 1322 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1323 1, NULL, NULL, 0, 0); 1324 } 1325 tsk->clear_child_tid = NULL; 1326 } 1327 1328 /* 1329 * All done, finally we can wake up parent and return this mm to him. 1330 * Also kthread_stop() uses this completion for synchronization. 1331 */ 1332 if (tsk->vfork_done) 1333 complete_vfork_done(tsk); 1334 } 1335 1336 /** 1337 * dup_mm() - duplicates an existing mm structure 1338 * @tsk: the task_struct with which the new mm will be associated. 1339 * @oldmm: the mm to duplicate. 1340 * 1341 * Allocates a new mm structure and duplicates the provided @oldmm structure 1342 * content into it. 1343 * 1344 * Return: the duplicated mm or NULL on failure. 1345 */ 1346 static struct mm_struct *dup_mm(struct task_struct *tsk, 1347 struct mm_struct *oldmm) 1348 { 1349 struct mm_struct *mm; 1350 int err; 1351 1352 mm = allocate_mm(); 1353 if (!mm) 1354 goto fail_nomem; 1355 1356 memcpy(mm, oldmm, sizeof(*mm)); 1357 1358 if (!mm_init(mm, tsk, mm->user_ns)) 1359 goto fail_nomem; 1360 1361 err = dup_mmap(mm, oldmm); 1362 if (err) 1363 goto free_pt; 1364 1365 mm->hiwater_rss = get_mm_rss(mm); 1366 mm->hiwater_vm = mm->total_vm; 1367 1368 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1369 goto free_pt; 1370 1371 return mm; 1372 1373 free_pt: 1374 /* don't put binfmt in mmput, we haven't got module yet */ 1375 mm->binfmt = NULL; 1376 mm_init_owner(mm, NULL); 1377 mmput(mm); 1378 1379 fail_nomem: 1380 return NULL; 1381 } 1382 1383 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1384 { 1385 struct mm_struct *mm, *oldmm; 1386 int retval; 1387 1388 tsk->min_flt = tsk->maj_flt = 0; 1389 tsk->nvcsw = tsk->nivcsw = 0; 1390 #ifdef CONFIG_DETECT_HUNG_TASK 1391 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1392 tsk->last_switch_time = 0; 1393 #endif 1394 1395 tsk->mm = NULL; 1396 tsk->active_mm = NULL; 1397 1398 /* 1399 * Are we cloning a kernel thread? 1400 * 1401 * We need to steal a active VM for that.. 1402 */ 1403 oldmm = current->mm; 1404 if (!oldmm) 1405 return 0; 1406 1407 /* initialize the new vmacache entries */ 1408 vmacache_flush(tsk); 1409 1410 if (clone_flags & CLONE_VM) { 1411 mmget(oldmm); 1412 mm = oldmm; 1413 goto good_mm; 1414 } 1415 1416 retval = -ENOMEM; 1417 mm = dup_mm(tsk, current->mm); 1418 if (!mm) 1419 goto fail_nomem; 1420 1421 good_mm: 1422 tsk->mm = mm; 1423 tsk->active_mm = mm; 1424 return 0; 1425 1426 fail_nomem: 1427 return retval; 1428 } 1429 1430 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1431 { 1432 struct fs_struct *fs = current->fs; 1433 if (clone_flags & CLONE_FS) { 1434 /* tsk->fs is already what we want */ 1435 spin_lock(&fs->lock); 1436 if (fs->in_exec) { 1437 spin_unlock(&fs->lock); 1438 return -EAGAIN; 1439 } 1440 fs->users++; 1441 spin_unlock(&fs->lock); 1442 return 0; 1443 } 1444 tsk->fs = copy_fs_struct(fs); 1445 if (!tsk->fs) 1446 return -ENOMEM; 1447 return 0; 1448 } 1449 1450 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1451 { 1452 struct files_struct *oldf, *newf; 1453 int error = 0; 1454 1455 /* 1456 * A background process may not have any files ... 1457 */ 1458 oldf = current->files; 1459 if (!oldf) 1460 goto out; 1461 1462 if (clone_flags & CLONE_FILES) { 1463 atomic_inc(&oldf->count); 1464 goto out; 1465 } 1466 1467 newf = dup_fd(oldf, &error); 1468 if (!newf) 1469 goto out; 1470 1471 tsk->files = newf; 1472 error = 0; 1473 out: 1474 return error; 1475 } 1476 1477 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1478 { 1479 #ifdef CONFIG_BLOCK 1480 struct io_context *ioc = current->io_context; 1481 struct io_context *new_ioc; 1482 1483 if (!ioc) 1484 return 0; 1485 /* 1486 * Share io context with parent, if CLONE_IO is set 1487 */ 1488 if (clone_flags & CLONE_IO) { 1489 ioc_task_link(ioc); 1490 tsk->io_context = ioc; 1491 } else if (ioprio_valid(ioc->ioprio)) { 1492 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1493 if (unlikely(!new_ioc)) 1494 return -ENOMEM; 1495 1496 new_ioc->ioprio = ioc->ioprio; 1497 put_io_context(new_ioc); 1498 } 1499 #endif 1500 return 0; 1501 } 1502 1503 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1504 { 1505 struct sighand_struct *sig; 1506 1507 if (clone_flags & CLONE_SIGHAND) { 1508 refcount_inc(¤t->sighand->count); 1509 return 0; 1510 } 1511 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1512 rcu_assign_pointer(tsk->sighand, sig); 1513 if (!sig) 1514 return -ENOMEM; 1515 1516 refcount_set(&sig->count, 1); 1517 spin_lock_irq(¤t->sighand->siglock); 1518 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1519 spin_unlock_irq(¤t->sighand->siglock); 1520 return 0; 1521 } 1522 1523 void __cleanup_sighand(struct sighand_struct *sighand) 1524 { 1525 if (refcount_dec_and_test(&sighand->count)) { 1526 signalfd_cleanup(sighand); 1527 /* 1528 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1529 * without an RCU grace period, see __lock_task_sighand(). 1530 */ 1531 kmem_cache_free(sighand_cachep, sighand); 1532 } 1533 } 1534 1535 /* 1536 * Initialize POSIX timer handling for a thread group. 1537 */ 1538 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1539 { 1540 struct posix_cputimers *pct = &sig->posix_cputimers; 1541 unsigned long cpu_limit; 1542 1543 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1544 posix_cputimers_group_init(pct, cpu_limit); 1545 } 1546 1547 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1548 { 1549 struct signal_struct *sig; 1550 1551 if (clone_flags & CLONE_THREAD) 1552 return 0; 1553 1554 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1555 tsk->signal = sig; 1556 if (!sig) 1557 return -ENOMEM; 1558 1559 sig->nr_threads = 1; 1560 atomic_set(&sig->live, 1); 1561 refcount_set(&sig->sigcnt, 1); 1562 1563 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1564 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1565 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1566 1567 init_waitqueue_head(&sig->wait_chldexit); 1568 sig->curr_target = tsk; 1569 init_sigpending(&sig->shared_pending); 1570 INIT_HLIST_HEAD(&sig->multiprocess); 1571 seqlock_init(&sig->stats_lock); 1572 prev_cputime_init(&sig->prev_cputime); 1573 1574 #ifdef CONFIG_POSIX_TIMERS 1575 INIT_LIST_HEAD(&sig->posix_timers); 1576 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1577 sig->real_timer.function = it_real_fn; 1578 #endif 1579 1580 task_lock(current->group_leader); 1581 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1582 task_unlock(current->group_leader); 1583 1584 posix_cpu_timers_init_group(sig); 1585 1586 tty_audit_fork(sig); 1587 sched_autogroup_fork(sig); 1588 1589 sig->oom_score_adj = current->signal->oom_score_adj; 1590 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1591 1592 mutex_init(&sig->cred_guard_mutex); 1593 1594 return 0; 1595 } 1596 1597 static void copy_seccomp(struct task_struct *p) 1598 { 1599 #ifdef CONFIG_SECCOMP 1600 /* 1601 * Must be called with sighand->lock held, which is common to 1602 * all threads in the group. Holding cred_guard_mutex is not 1603 * needed because this new task is not yet running and cannot 1604 * be racing exec. 1605 */ 1606 assert_spin_locked(¤t->sighand->siglock); 1607 1608 /* Ref-count the new filter user, and assign it. */ 1609 get_seccomp_filter(current); 1610 p->seccomp = current->seccomp; 1611 1612 /* 1613 * Explicitly enable no_new_privs here in case it got set 1614 * between the task_struct being duplicated and holding the 1615 * sighand lock. The seccomp state and nnp must be in sync. 1616 */ 1617 if (task_no_new_privs(current)) 1618 task_set_no_new_privs(p); 1619 1620 /* 1621 * If the parent gained a seccomp mode after copying thread 1622 * flags and between before we held the sighand lock, we have 1623 * to manually enable the seccomp thread flag here. 1624 */ 1625 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1626 set_tsk_thread_flag(p, TIF_SECCOMP); 1627 #endif 1628 } 1629 1630 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1631 { 1632 current->clear_child_tid = tidptr; 1633 1634 return task_pid_vnr(current); 1635 } 1636 1637 static void rt_mutex_init_task(struct task_struct *p) 1638 { 1639 raw_spin_lock_init(&p->pi_lock); 1640 #ifdef CONFIG_RT_MUTEXES 1641 p->pi_waiters = RB_ROOT_CACHED; 1642 p->pi_top_task = NULL; 1643 p->pi_blocked_on = NULL; 1644 #endif 1645 } 1646 1647 static inline void init_task_pid_links(struct task_struct *task) 1648 { 1649 enum pid_type type; 1650 1651 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1652 INIT_HLIST_NODE(&task->pid_links[type]); 1653 } 1654 } 1655 1656 static inline void 1657 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1658 { 1659 if (type == PIDTYPE_PID) 1660 task->thread_pid = pid; 1661 else 1662 task->signal->pids[type] = pid; 1663 } 1664 1665 static inline void rcu_copy_process(struct task_struct *p) 1666 { 1667 #ifdef CONFIG_PREEMPT_RCU 1668 p->rcu_read_lock_nesting = 0; 1669 p->rcu_read_unlock_special.s = 0; 1670 p->rcu_blocked_node = NULL; 1671 INIT_LIST_HEAD(&p->rcu_node_entry); 1672 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1673 #ifdef CONFIG_TASKS_RCU 1674 p->rcu_tasks_holdout = false; 1675 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1676 p->rcu_tasks_idle_cpu = -1; 1677 #endif /* #ifdef CONFIG_TASKS_RCU */ 1678 } 1679 1680 struct pid *pidfd_pid(const struct file *file) 1681 { 1682 if (file->f_op == &pidfd_fops) 1683 return file->private_data; 1684 1685 return ERR_PTR(-EBADF); 1686 } 1687 1688 static int pidfd_release(struct inode *inode, struct file *file) 1689 { 1690 struct pid *pid = file->private_data; 1691 1692 file->private_data = NULL; 1693 put_pid(pid); 1694 return 0; 1695 } 1696 1697 #ifdef CONFIG_PROC_FS 1698 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1699 { 1700 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file)); 1701 struct pid *pid = f->private_data; 1702 1703 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns)); 1704 seq_putc(m, '\n'); 1705 } 1706 #endif 1707 1708 /* 1709 * Poll support for process exit notification. 1710 */ 1711 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts) 1712 { 1713 struct task_struct *task; 1714 struct pid *pid = file->private_data; 1715 int poll_flags = 0; 1716 1717 poll_wait(file, &pid->wait_pidfd, pts); 1718 1719 rcu_read_lock(); 1720 task = pid_task(pid, PIDTYPE_PID); 1721 /* 1722 * Inform pollers only when the whole thread group exits. 1723 * If the thread group leader exits before all other threads in the 1724 * group, then poll(2) should block, similar to the wait(2) family. 1725 */ 1726 if (!task || (task->exit_state && thread_group_empty(task))) 1727 poll_flags = POLLIN | POLLRDNORM; 1728 rcu_read_unlock(); 1729 1730 return poll_flags; 1731 } 1732 1733 const struct file_operations pidfd_fops = { 1734 .release = pidfd_release, 1735 .poll = pidfd_poll, 1736 #ifdef CONFIG_PROC_FS 1737 .show_fdinfo = pidfd_show_fdinfo, 1738 #endif 1739 }; 1740 1741 static void __delayed_free_task(struct rcu_head *rhp) 1742 { 1743 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1744 1745 free_task(tsk); 1746 } 1747 1748 static __always_inline void delayed_free_task(struct task_struct *tsk) 1749 { 1750 if (IS_ENABLED(CONFIG_MEMCG)) 1751 call_rcu(&tsk->rcu, __delayed_free_task); 1752 else 1753 free_task(tsk); 1754 } 1755 1756 /* 1757 * This creates a new process as a copy of the old one, 1758 * but does not actually start it yet. 1759 * 1760 * It copies the registers, and all the appropriate 1761 * parts of the process environment (as per the clone 1762 * flags). The actual kick-off is left to the caller. 1763 */ 1764 static __latent_entropy struct task_struct *copy_process( 1765 struct pid *pid, 1766 int trace, 1767 int node, 1768 struct kernel_clone_args *args) 1769 { 1770 int pidfd = -1, retval; 1771 struct task_struct *p; 1772 struct multiprocess_signals delayed; 1773 struct file *pidfile = NULL; 1774 u64 clone_flags = args->flags; 1775 1776 /* 1777 * Don't allow sharing the root directory with processes in a different 1778 * namespace 1779 */ 1780 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1781 return ERR_PTR(-EINVAL); 1782 1783 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1784 return ERR_PTR(-EINVAL); 1785 1786 /* 1787 * Thread groups must share signals as well, and detached threads 1788 * can only be started up within the thread group. 1789 */ 1790 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1791 return ERR_PTR(-EINVAL); 1792 1793 /* 1794 * Shared signal handlers imply shared VM. By way of the above, 1795 * thread groups also imply shared VM. Blocking this case allows 1796 * for various simplifications in other code. 1797 */ 1798 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1799 return ERR_PTR(-EINVAL); 1800 1801 /* 1802 * Siblings of global init remain as zombies on exit since they are 1803 * not reaped by their parent (swapper). To solve this and to avoid 1804 * multi-rooted process trees, prevent global and container-inits 1805 * from creating siblings. 1806 */ 1807 if ((clone_flags & CLONE_PARENT) && 1808 current->signal->flags & SIGNAL_UNKILLABLE) 1809 return ERR_PTR(-EINVAL); 1810 1811 /* 1812 * If the new process will be in a different pid or user namespace 1813 * do not allow it to share a thread group with the forking task. 1814 */ 1815 if (clone_flags & CLONE_THREAD) { 1816 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1817 (task_active_pid_ns(current) != 1818 current->nsproxy->pid_ns_for_children)) 1819 return ERR_PTR(-EINVAL); 1820 } 1821 1822 if (clone_flags & CLONE_PIDFD) { 1823 /* 1824 * - CLONE_DETACHED is blocked so that we can potentially 1825 * reuse it later for CLONE_PIDFD. 1826 * - CLONE_THREAD is blocked until someone really needs it. 1827 */ 1828 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1829 return ERR_PTR(-EINVAL); 1830 } 1831 1832 /* 1833 * Force any signals received before this point to be delivered 1834 * before the fork happens. Collect up signals sent to multiple 1835 * processes that happen during the fork and delay them so that 1836 * they appear to happen after the fork. 1837 */ 1838 sigemptyset(&delayed.signal); 1839 INIT_HLIST_NODE(&delayed.node); 1840 1841 spin_lock_irq(¤t->sighand->siglock); 1842 if (!(clone_flags & CLONE_THREAD)) 1843 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1844 recalc_sigpending(); 1845 spin_unlock_irq(¤t->sighand->siglock); 1846 retval = -ERESTARTNOINTR; 1847 if (signal_pending(current)) 1848 goto fork_out; 1849 1850 retval = -ENOMEM; 1851 p = dup_task_struct(current, node); 1852 if (!p) 1853 goto fork_out; 1854 1855 /* 1856 * This _must_ happen before we call free_task(), i.e. before we jump 1857 * to any of the bad_fork_* labels. This is to avoid freeing 1858 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1859 * kernel threads (PF_KTHREAD). 1860 */ 1861 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1862 /* 1863 * Clear TID on mm_release()? 1864 */ 1865 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1866 1867 ftrace_graph_init_task(p); 1868 1869 rt_mutex_init_task(p); 1870 1871 #ifdef CONFIG_PROVE_LOCKING 1872 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1873 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1874 #endif 1875 retval = -EAGAIN; 1876 if (atomic_read(&p->real_cred->user->processes) >= 1877 task_rlimit(p, RLIMIT_NPROC)) { 1878 if (p->real_cred->user != INIT_USER && 1879 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1880 goto bad_fork_free; 1881 } 1882 current->flags &= ~PF_NPROC_EXCEEDED; 1883 1884 retval = copy_creds(p, clone_flags); 1885 if (retval < 0) 1886 goto bad_fork_free; 1887 1888 /* 1889 * If multiple threads are within copy_process(), then this check 1890 * triggers too late. This doesn't hurt, the check is only there 1891 * to stop root fork bombs. 1892 */ 1893 retval = -EAGAIN; 1894 if (nr_threads >= max_threads) 1895 goto bad_fork_cleanup_count; 1896 1897 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1898 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1899 p->flags |= PF_FORKNOEXEC; 1900 INIT_LIST_HEAD(&p->children); 1901 INIT_LIST_HEAD(&p->sibling); 1902 rcu_copy_process(p); 1903 p->vfork_done = NULL; 1904 spin_lock_init(&p->alloc_lock); 1905 1906 init_sigpending(&p->pending); 1907 1908 p->utime = p->stime = p->gtime = 0; 1909 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1910 p->utimescaled = p->stimescaled = 0; 1911 #endif 1912 prev_cputime_init(&p->prev_cputime); 1913 1914 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1915 seqcount_init(&p->vtime.seqcount); 1916 p->vtime.starttime = 0; 1917 p->vtime.state = VTIME_INACTIVE; 1918 #endif 1919 1920 #if defined(SPLIT_RSS_COUNTING) 1921 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1922 #endif 1923 1924 p->default_timer_slack_ns = current->timer_slack_ns; 1925 1926 #ifdef CONFIG_PSI 1927 p->psi_flags = 0; 1928 #endif 1929 1930 task_io_accounting_init(&p->ioac); 1931 acct_clear_integrals(p); 1932 1933 posix_cputimers_init(&p->posix_cputimers); 1934 1935 p->io_context = NULL; 1936 audit_set_context(p, NULL); 1937 cgroup_fork(p); 1938 #ifdef CONFIG_NUMA 1939 p->mempolicy = mpol_dup(p->mempolicy); 1940 if (IS_ERR(p->mempolicy)) { 1941 retval = PTR_ERR(p->mempolicy); 1942 p->mempolicy = NULL; 1943 goto bad_fork_cleanup_threadgroup_lock; 1944 } 1945 #endif 1946 #ifdef CONFIG_CPUSETS 1947 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1948 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1949 seqcount_init(&p->mems_allowed_seq); 1950 #endif 1951 #ifdef CONFIG_TRACE_IRQFLAGS 1952 p->irq_events = 0; 1953 p->hardirqs_enabled = 0; 1954 p->hardirq_enable_ip = 0; 1955 p->hardirq_enable_event = 0; 1956 p->hardirq_disable_ip = _THIS_IP_; 1957 p->hardirq_disable_event = 0; 1958 p->softirqs_enabled = 1; 1959 p->softirq_enable_ip = _THIS_IP_; 1960 p->softirq_enable_event = 0; 1961 p->softirq_disable_ip = 0; 1962 p->softirq_disable_event = 0; 1963 p->hardirq_context = 0; 1964 p->softirq_context = 0; 1965 #endif 1966 1967 p->pagefault_disabled = 0; 1968 1969 #ifdef CONFIG_LOCKDEP 1970 lockdep_init_task(p); 1971 #endif 1972 1973 #ifdef CONFIG_DEBUG_MUTEXES 1974 p->blocked_on = NULL; /* not blocked yet */ 1975 #endif 1976 #ifdef CONFIG_BCACHE 1977 p->sequential_io = 0; 1978 p->sequential_io_avg = 0; 1979 #endif 1980 1981 /* Perform scheduler related setup. Assign this task to a CPU. */ 1982 retval = sched_fork(clone_flags, p); 1983 if (retval) 1984 goto bad_fork_cleanup_policy; 1985 1986 retval = perf_event_init_task(p); 1987 if (retval) 1988 goto bad_fork_cleanup_policy; 1989 retval = audit_alloc(p); 1990 if (retval) 1991 goto bad_fork_cleanup_perf; 1992 /* copy all the process information */ 1993 shm_init_task(p); 1994 retval = security_task_alloc(p, clone_flags); 1995 if (retval) 1996 goto bad_fork_cleanup_audit; 1997 retval = copy_semundo(clone_flags, p); 1998 if (retval) 1999 goto bad_fork_cleanup_security; 2000 retval = copy_files(clone_flags, p); 2001 if (retval) 2002 goto bad_fork_cleanup_semundo; 2003 retval = copy_fs(clone_flags, p); 2004 if (retval) 2005 goto bad_fork_cleanup_files; 2006 retval = copy_sighand(clone_flags, p); 2007 if (retval) 2008 goto bad_fork_cleanup_fs; 2009 retval = copy_signal(clone_flags, p); 2010 if (retval) 2011 goto bad_fork_cleanup_sighand; 2012 retval = copy_mm(clone_flags, p); 2013 if (retval) 2014 goto bad_fork_cleanup_signal; 2015 retval = copy_namespaces(clone_flags, p); 2016 if (retval) 2017 goto bad_fork_cleanup_mm; 2018 retval = copy_io(clone_flags, p); 2019 if (retval) 2020 goto bad_fork_cleanup_namespaces; 2021 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p, 2022 args->tls); 2023 if (retval) 2024 goto bad_fork_cleanup_io; 2025 2026 stackleak_task_init(p); 2027 2028 if (pid != &init_struct_pid) { 2029 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 2030 if (IS_ERR(pid)) { 2031 retval = PTR_ERR(pid); 2032 goto bad_fork_cleanup_thread; 2033 } 2034 } 2035 2036 /* 2037 * This has to happen after we've potentially unshared the file 2038 * descriptor table (so that the pidfd doesn't leak into the child 2039 * if the fd table isn't shared). 2040 */ 2041 if (clone_flags & CLONE_PIDFD) { 2042 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2043 if (retval < 0) 2044 goto bad_fork_free_pid; 2045 2046 pidfd = retval; 2047 2048 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2049 O_RDWR | O_CLOEXEC); 2050 if (IS_ERR(pidfile)) { 2051 put_unused_fd(pidfd); 2052 retval = PTR_ERR(pidfile); 2053 goto bad_fork_free_pid; 2054 } 2055 get_pid(pid); /* held by pidfile now */ 2056 2057 retval = put_user(pidfd, args->pidfd); 2058 if (retval) 2059 goto bad_fork_put_pidfd; 2060 } 2061 2062 #ifdef CONFIG_BLOCK 2063 p->plug = NULL; 2064 #endif 2065 #ifdef CONFIG_FUTEX 2066 p->robust_list = NULL; 2067 #ifdef CONFIG_COMPAT 2068 p->compat_robust_list = NULL; 2069 #endif 2070 INIT_LIST_HEAD(&p->pi_state_list); 2071 p->pi_state_cache = NULL; 2072 #endif 2073 /* 2074 * sigaltstack should be cleared when sharing the same VM 2075 */ 2076 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2077 sas_ss_reset(p); 2078 2079 /* 2080 * Syscall tracing and stepping should be turned off in the 2081 * child regardless of CLONE_PTRACE. 2082 */ 2083 user_disable_single_step(p); 2084 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2085 #ifdef TIF_SYSCALL_EMU 2086 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2087 #endif 2088 clear_tsk_latency_tracing(p); 2089 2090 /* ok, now we should be set up.. */ 2091 p->pid = pid_nr(pid); 2092 if (clone_flags & CLONE_THREAD) { 2093 p->exit_signal = -1; 2094 p->group_leader = current->group_leader; 2095 p->tgid = current->tgid; 2096 } else { 2097 if (clone_flags & CLONE_PARENT) 2098 p->exit_signal = current->group_leader->exit_signal; 2099 else 2100 p->exit_signal = args->exit_signal; 2101 p->group_leader = p; 2102 p->tgid = p->pid; 2103 } 2104 2105 p->nr_dirtied = 0; 2106 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2107 p->dirty_paused_when = 0; 2108 2109 p->pdeath_signal = 0; 2110 INIT_LIST_HEAD(&p->thread_group); 2111 p->task_works = NULL; 2112 2113 cgroup_threadgroup_change_begin(current); 2114 /* 2115 * Ensure that the cgroup subsystem policies allow the new process to be 2116 * forked. It should be noted the the new process's css_set can be changed 2117 * between here and cgroup_post_fork() if an organisation operation is in 2118 * progress. 2119 */ 2120 retval = cgroup_can_fork(p); 2121 if (retval) 2122 goto bad_fork_cgroup_threadgroup_change_end; 2123 2124 /* 2125 * From this point on we must avoid any synchronous user-space 2126 * communication until we take the tasklist-lock. In particular, we do 2127 * not want user-space to be able to predict the process start-time by 2128 * stalling fork(2) after we recorded the start_time but before it is 2129 * visible to the system. 2130 */ 2131 2132 p->start_time = ktime_get_ns(); 2133 p->real_start_time = ktime_get_boottime_ns(); 2134 2135 /* 2136 * Make it visible to the rest of the system, but dont wake it up yet. 2137 * Need tasklist lock for parent etc handling! 2138 */ 2139 write_lock_irq(&tasklist_lock); 2140 2141 /* CLONE_PARENT re-uses the old parent */ 2142 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2143 p->real_parent = current->real_parent; 2144 p->parent_exec_id = current->parent_exec_id; 2145 } else { 2146 p->real_parent = current; 2147 p->parent_exec_id = current->self_exec_id; 2148 } 2149 2150 klp_copy_process(p); 2151 2152 spin_lock(¤t->sighand->siglock); 2153 2154 /* 2155 * Copy seccomp details explicitly here, in case they were changed 2156 * before holding sighand lock. 2157 */ 2158 copy_seccomp(p); 2159 2160 rseq_fork(p, clone_flags); 2161 2162 /* Don't start children in a dying pid namespace */ 2163 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2164 retval = -ENOMEM; 2165 goto bad_fork_cancel_cgroup; 2166 } 2167 2168 /* Let kill terminate clone/fork in the middle */ 2169 if (fatal_signal_pending(current)) { 2170 retval = -EINTR; 2171 goto bad_fork_cancel_cgroup; 2172 } 2173 2174 /* past the last point of failure */ 2175 if (pidfile) 2176 fd_install(pidfd, pidfile); 2177 2178 init_task_pid_links(p); 2179 if (likely(p->pid)) { 2180 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2181 2182 init_task_pid(p, PIDTYPE_PID, pid); 2183 if (thread_group_leader(p)) { 2184 init_task_pid(p, PIDTYPE_TGID, pid); 2185 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2186 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2187 2188 if (is_child_reaper(pid)) { 2189 ns_of_pid(pid)->child_reaper = p; 2190 p->signal->flags |= SIGNAL_UNKILLABLE; 2191 } 2192 p->signal->shared_pending.signal = delayed.signal; 2193 p->signal->tty = tty_kref_get(current->signal->tty); 2194 /* 2195 * Inherit has_child_subreaper flag under the same 2196 * tasklist_lock with adding child to the process tree 2197 * for propagate_has_child_subreaper optimization. 2198 */ 2199 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2200 p->real_parent->signal->is_child_subreaper; 2201 list_add_tail(&p->sibling, &p->real_parent->children); 2202 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2203 attach_pid(p, PIDTYPE_TGID); 2204 attach_pid(p, PIDTYPE_PGID); 2205 attach_pid(p, PIDTYPE_SID); 2206 __this_cpu_inc(process_counts); 2207 } else { 2208 current->signal->nr_threads++; 2209 atomic_inc(¤t->signal->live); 2210 refcount_inc(¤t->signal->sigcnt); 2211 task_join_group_stop(p); 2212 list_add_tail_rcu(&p->thread_group, 2213 &p->group_leader->thread_group); 2214 list_add_tail_rcu(&p->thread_node, 2215 &p->signal->thread_head); 2216 } 2217 attach_pid(p, PIDTYPE_PID); 2218 nr_threads++; 2219 } 2220 total_forks++; 2221 hlist_del_init(&delayed.node); 2222 spin_unlock(¤t->sighand->siglock); 2223 syscall_tracepoint_update(p); 2224 write_unlock_irq(&tasklist_lock); 2225 2226 proc_fork_connector(p); 2227 cgroup_post_fork(p); 2228 cgroup_threadgroup_change_end(current); 2229 perf_event_fork(p); 2230 2231 trace_task_newtask(p, clone_flags); 2232 uprobe_copy_process(p, clone_flags); 2233 2234 return p; 2235 2236 bad_fork_cancel_cgroup: 2237 spin_unlock(¤t->sighand->siglock); 2238 write_unlock_irq(&tasklist_lock); 2239 cgroup_cancel_fork(p); 2240 bad_fork_cgroup_threadgroup_change_end: 2241 cgroup_threadgroup_change_end(current); 2242 bad_fork_put_pidfd: 2243 if (clone_flags & CLONE_PIDFD) { 2244 fput(pidfile); 2245 put_unused_fd(pidfd); 2246 } 2247 bad_fork_free_pid: 2248 if (pid != &init_struct_pid) 2249 free_pid(pid); 2250 bad_fork_cleanup_thread: 2251 exit_thread(p); 2252 bad_fork_cleanup_io: 2253 if (p->io_context) 2254 exit_io_context(p); 2255 bad_fork_cleanup_namespaces: 2256 exit_task_namespaces(p); 2257 bad_fork_cleanup_mm: 2258 if (p->mm) { 2259 mm_clear_owner(p->mm, p); 2260 mmput(p->mm); 2261 } 2262 bad_fork_cleanup_signal: 2263 if (!(clone_flags & CLONE_THREAD)) 2264 free_signal_struct(p->signal); 2265 bad_fork_cleanup_sighand: 2266 __cleanup_sighand(p->sighand); 2267 bad_fork_cleanup_fs: 2268 exit_fs(p); /* blocking */ 2269 bad_fork_cleanup_files: 2270 exit_files(p); /* blocking */ 2271 bad_fork_cleanup_semundo: 2272 exit_sem(p); 2273 bad_fork_cleanup_security: 2274 security_task_free(p); 2275 bad_fork_cleanup_audit: 2276 audit_free(p); 2277 bad_fork_cleanup_perf: 2278 perf_event_free_task(p); 2279 bad_fork_cleanup_policy: 2280 lockdep_free_task(p); 2281 #ifdef CONFIG_NUMA 2282 mpol_put(p->mempolicy); 2283 bad_fork_cleanup_threadgroup_lock: 2284 #endif 2285 delayacct_tsk_free(p); 2286 bad_fork_cleanup_count: 2287 atomic_dec(&p->cred->user->processes); 2288 exit_creds(p); 2289 bad_fork_free: 2290 p->state = TASK_DEAD; 2291 put_task_stack(p); 2292 delayed_free_task(p); 2293 fork_out: 2294 spin_lock_irq(¤t->sighand->siglock); 2295 hlist_del_init(&delayed.node); 2296 spin_unlock_irq(¤t->sighand->siglock); 2297 return ERR_PTR(retval); 2298 } 2299 2300 static inline void init_idle_pids(struct task_struct *idle) 2301 { 2302 enum pid_type type; 2303 2304 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2305 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2306 init_task_pid(idle, type, &init_struct_pid); 2307 } 2308 } 2309 2310 struct task_struct *fork_idle(int cpu) 2311 { 2312 struct task_struct *task; 2313 struct kernel_clone_args args = { 2314 .flags = CLONE_VM, 2315 }; 2316 2317 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2318 if (!IS_ERR(task)) { 2319 init_idle_pids(task); 2320 init_idle(task, cpu); 2321 } 2322 2323 return task; 2324 } 2325 2326 struct mm_struct *copy_init_mm(void) 2327 { 2328 return dup_mm(NULL, &init_mm); 2329 } 2330 2331 /* 2332 * Ok, this is the main fork-routine. 2333 * 2334 * It copies the process, and if successful kick-starts 2335 * it and waits for it to finish using the VM if required. 2336 * 2337 * args->exit_signal is expected to be checked for sanity by the caller. 2338 */ 2339 long _do_fork(struct kernel_clone_args *args) 2340 { 2341 u64 clone_flags = args->flags; 2342 struct completion vfork; 2343 struct pid *pid; 2344 struct task_struct *p; 2345 int trace = 0; 2346 long nr; 2347 2348 /* 2349 * Determine whether and which event to report to ptracer. When 2350 * called from kernel_thread or CLONE_UNTRACED is explicitly 2351 * requested, no event is reported; otherwise, report if the event 2352 * for the type of forking is enabled. 2353 */ 2354 if (!(clone_flags & CLONE_UNTRACED)) { 2355 if (clone_flags & CLONE_VFORK) 2356 trace = PTRACE_EVENT_VFORK; 2357 else if (args->exit_signal != SIGCHLD) 2358 trace = PTRACE_EVENT_CLONE; 2359 else 2360 trace = PTRACE_EVENT_FORK; 2361 2362 if (likely(!ptrace_event_enabled(current, trace))) 2363 trace = 0; 2364 } 2365 2366 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2367 add_latent_entropy(); 2368 2369 if (IS_ERR(p)) 2370 return PTR_ERR(p); 2371 2372 /* 2373 * Do this prior waking up the new thread - the thread pointer 2374 * might get invalid after that point, if the thread exits quickly. 2375 */ 2376 trace_sched_process_fork(current, p); 2377 2378 pid = get_task_pid(p, PIDTYPE_PID); 2379 nr = pid_vnr(pid); 2380 2381 if (clone_flags & CLONE_PARENT_SETTID) 2382 put_user(nr, args->parent_tid); 2383 2384 if (clone_flags & CLONE_VFORK) { 2385 p->vfork_done = &vfork; 2386 init_completion(&vfork); 2387 get_task_struct(p); 2388 } 2389 2390 wake_up_new_task(p); 2391 2392 /* forking complete and child started to run, tell ptracer */ 2393 if (unlikely(trace)) 2394 ptrace_event_pid(trace, pid); 2395 2396 if (clone_flags & CLONE_VFORK) { 2397 if (!wait_for_vfork_done(p, &vfork)) 2398 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2399 } 2400 2401 put_pid(pid); 2402 return nr; 2403 } 2404 2405 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs) 2406 { 2407 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */ 2408 if ((kargs->flags & CLONE_PIDFD) && 2409 (kargs->flags & CLONE_PARENT_SETTID)) 2410 return false; 2411 2412 return true; 2413 } 2414 2415 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2416 /* For compatibility with architectures that call do_fork directly rather than 2417 * using the syscall entry points below. */ 2418 long do_fork(unsigned long clone_flags, 2419 unsigned long stack_start, 2420 unsigned long stack_size, 2421 int __user *parent_tidptr, 2422 int __user *child_tidptr) 2423 { 2424 struct kernel_clone_args args = { 2425 .flags = (clone_flags & ~CSIGNAL), 2426 .pidfd = parent_tidptr, 2427 .child_tid = child_tidptr, 2428 .parent_tid = parent_tidptr, 2429 .exit_signal = (clone_flags & CSIGNAL), 2430 .stack = stack_start, 2431 .stack_size = stack_size, 2432 }; 2433 2434 if (!legacy_clone_args_valid(&args)) 2435 return -EINVAL; 2436 2437 return _do_fork(&args); 2438 } 2439 #endif 2440 2441 /* 2442 * Create a kernel thread. 2443 */ 2444 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2445 { 2446 struct kernel_clone_args args = { 2447 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), 2448 .exit_signal = (flags & CSIGNAL), 2449 .stack = (unsigned long)fn, 2450 .stack_size = (unsigned long)arg, 2451 }; 2452 2453 return _do_fork(&args); 2454 } 2455 2456 #ifdef __ARCH_WANT_SYS_FORK 2457 SYSCALL_DEFINE0(fork) 2458 { 2459 #ifdef CONFIG_MMU 2460 struct kernel_clone_args args = { 2461 .exit_signal = SIGCHLD, 2462 }; 2463 2464 return _do_fork(&args); 2465 #else 2466 /* can not support in nommu mode */ 2467 return -EINVAL; 2468 #endif 2469 } 2470 #endif 2471 2472 #ifdef __ARCH_WANT_SYS_VFORK 2473 SYSCALL_DEFINE0(vfork) 2474 { 2475 struct kernel_clone_args args = { 2476 .flags = CLONE_VFORK | CLONE_VM, 2477 .exit_signal = SIGCHLD, 2478 }; 2479 2480 return _do_fork(&args); 2481 } 2482 #endif 2483 2484 #ifdef __ARCH_WANT_SYS_CLONE 2485 #ifdef CONFIG_CLONE_BACKWARDS 2486 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2487 int __user *, parent_tidptr, 2488 unsigned long, tls, 2489 int __user *, child_tidptr) 2490 #elif defined(CONFIG_CLONE_BACKWARDS2) 2491 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2492 int __user *, parent_tidptr, 2493 int __user *, child_tidptr, 2494 unsigned long, tls) 2495 #elif defined(CONFIG_CLONE_BACKWARDS3) 2496 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2497 int, stack_size, 2498 int __user *, parent_tidptr, 2499 int __user *, child_tidptr, 2500 unsigned long, tls) 2501 #else 2502 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2503 int __user *, parent_tidptr, 2504 int __user *, child_tidptr, 2505 unsigned long, tls) 2506 #endif 2507 { 2508 struct kernel_clone_args args = { 2509 .flags = (clone_flags & ~CSIGNAL), 2510 .pidfd = parent_tidptr, 2511 .child_tid = child_tidptr, 2512 .parent_tid = parent_tidptr, 2513 .exit_signal = (clone_flags & CSIGNAL), 2514 .stack = newsp, 2515 .tls = tls, 2516 }; 2517 2518 if (!legacy_clone_args_valid(&args)) 2519 return -EINVAL; 2520 2521 return _do_fork(&args); 2522 } 2523 #endif 2524 2525 #ifdef __ARCH_WANT_SYS_CLONE3 2526 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2527 struct clone_args __user *uargs, 2528 size_t size) 2529 { 2530 struct clone_args args; 2531 2532 if (unlikely(size > PAGE_SIZE)) 2533 return -E2BIG; 2534 2535 if (unlikely(size < sizeof(struct clone_args))) 2536 return -EINVAL; 2537 2538 if (unlikely(!access_ok(uargs, size))) 2539 return -EFAULT; 2540 2541 if (size > sizeof(struct clone_args)) { 2542 unsigned char __user *addr; 2543 unsigned char __user *end; 2544 unsigned char val; 2545 2546 addr = (void __user *)uargs + sizeof(struct clone_args); 2547 end = (void __user *)uargs + size; 2548 2549 for (; addr < end; addr++) { 2550 if (get_user(val, addr)) 2551 return -EFAULT; 2552 if (val) 2553 return -E2BIG; 2554 } 2555 2556 size = sizeof(struct clone_args); 2557 } 2558 2559 if (copy_from_user(&args, uargs, size)) 2560 return -EFAULT; 2561 2562 /* 2563 * Verify that higher 32bits of exit_signal are unset and that 2564 * it is a valid signal 2565 */ 2566 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2567 !valid_signal(args.exit_signal))) 2568 return -EINVAL; 2569 2570 *kargs = (struct kernel_clone_args){ 2571 .flags = args.flags, 2572 .pidfd = u64_to_user_ptr(args.pidfd), 2573 .child_tid = u64_to_user_ptr(args.child_tid), 2574 .parent_tid = u64_to_user_ptr(args.parent_tid), 2575 .exit_signal = args.exit_signal, 2576 .stack = args.stack, 2577 .stack_size = args.stack_size, 2578 .tls = args.tls, 2579 }; 2580 2581 return 0; 2582 } 2583 2584 static bool clone3_args_valid(const struct kernel_clone_args *kargs) 2585 { 2586 /* 2587 * All lower bits of the flag word are taken. 2588 * Verify that no other unknown flags are passed along. 2589 */ 2590 if (kargs->flags & ~CLONE_LEGACY_FLAGS) 2591 return false; 2592 2593 /* 2594 * - make the CLONE_DETACHED bit reuseable for clone3 2595 * - make the CSIGNAL bits reuseable for clone3 2596 */ 2597 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2598 return false; 2599 2600 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2601 kargs->exit_signal) 2602 return false; 2603 2604 return true; 2605 } 2606 2607 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2608 { 2609 int err; 2610 2611 struct kernel_clone_args kargs; 2612 2613 err = copy_clone_args_from_user(&kargs, uargs, size); 2614 if (err) 2615 return err; 2616 2617 if (!clone3_args_valid(&kargs)) 2618 return -EINVAL; 2619 2620 return _do_fork(&kargs); 2621 } 2622 #endif 2623 2624 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2625 { 2626 struct task_struct *leader, *parent, *child; 2627 int res; 2628 2629 read_lock(&tasklist_lock); 2630 leader = top = top->group_leader; 2631 down: 2632 for_each_thread(leader, parent) { 2633 list_for_each_entry(child, &parent->children, sibling) { 2634 res = visitor(child, data); 2635 if (res) { 2636 if (res < 0) 2637 goto out; 2638 leader = child; 2639 goto down; 2640 } 2641 up: 2642 ; 2643 } 2644 } 2645 2646 if (leader != top) { 2647 child = leader; 2648 parent = child->real_parent; 2649 leader = parent->group_leader; 2650 goto up; 2651 } 2652 out: 2653 read_unlock(&tasklist_lock); 2654 } 2655 2656 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2657 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2658 #endif 2659 2660 static void sighand_ctor(void *data) 2661 { 2662 struct sighand_struct *sighand = data; 2663 2664 spin_lock_init(&sighand->siglock); 2665 init_waitqueue_head(&sighand->signalfd_wqh); 2666 } 2667 2668 void __init proc_caches_init(void) 2669 { 2670 unsigned int mm_size; 2671 2672 sighand_cachep = kmem_cache_create("sighand_cache", 2673 sizeof(struct sighand_struct), 0, 2674 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2675 SLAB_ACCOUNT, sighand_ctor); 2676 signal_cachep = kmem_cache_create("signal_cache", 2677 sizeof(struct signal_struct), 0, 2678 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2679 NULL); 2680 files_cachep = kmem_cache_create("files_cache", 2681 sizeof(struct files_struct), 0, 2682 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2683 NULL); 2684 fs_cachep = kmem_cache_create("fs_cache", 2685 sizeof(struct fs_struct), 0, 2686 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2687 NULL); 2688 2689 /* 2690 * The mm_cpumask is located at the end of mm_struct, and is 2691 * dynamically sized based on the maximum CPU number this system 2692 * can have, taking hotplug into account (nr_cpu_ids). 2693 */ 2694 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2695 2696 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2697 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2698 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2699 offsetof(struct mm_struct, saved_auxv), 2700 sizeof_field(struct mm_struct, saved_auxv), 2701 NULL); 2702 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2703 mmap_init(); 2704 nsproxy_cache_init(); 2705 } 2706 2707 /* 2708 * Check constraints on flags passed to the unshare system call. 2709 */ 2710 static int check_unshare_flags(unsigned long unshare_flags) 2711 { 2712 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2713 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2714 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2715 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2716 return -EINVAL; 2717 /* 2718 * Not implemented, but pretend it works if there is nothing 2719 * to unshare. Note that unsharing the address space or the 2720 * signal handlers also need to unshare the signal queues (aka 2721 * CLONE_THREAD). 2722 */ 2723 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2724 if (!thread_group_empty(current)) 2725 return -EINVAL; 2726 } 2727 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2728 if (refcount_read(¤t->sighand->count) > 1) 2729 return -EINVAL; 2730 } 2731 if (unshare_flags & CLONE_VM) { 2732 if (!current_is_single_threaded()) 2733 return -EINVAL; 2734 } 2735 2736 return 0; 2737 } 2738 2739 /* 2740 * Unshare the filesystem structure if it is being shared 2741 */ 2742 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2743 { 2744 struct fs_struct *fs = current->fs; 2745 2746 if (!(unshare_flags & CLONE_FS) || !fs) 2747 return 0; 2748 2749 /* don't need lock here; in the worst case we'll do useless copy */ 2750 if (fs->users == 1) 2751 return 0; 2752 2753 *new_fsp = copy_fs_struct(fs); 2754 if (!*new_fsp) 2755 return -ENOMEM; 2756 2757 return 0; 2758 } 2759 2760 /* 2761 * Unshare file descriptor table if it is being shared 2762 */ 2763 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2764 { 2765 struct files_struct *fd = current->files; 2766 int error = 0; 2767 2768 if ((unshare_flags & CLONE_FILES) && 2769 (fd && atomic_read(&fd->count) > 1)) { 2770 *new_fdp = dup_fd(fd, &error); 2771 if (!*new_fdp) 2772 return error; 2773 } 2774 2775 return 0; 2776 } 2777 2778 /* 2779 * unshare allows a process to 'unshare' part of the process 2780 * context which was originally shared using clone. copy_* 2781 * functions used by do_fork() cannot be used here directly 2782 * because they modify an inactive task_struct that is being 2783 * constructed. Here we are modifying the current, active, 2784 * task_struct. 2785 */ 2786 int ksys_unshare(unsigned long unshare_flags) 2787 { 2788 struct fs_struct *fs, *new_fs = NULL; 2789 struct files_struct *fd, *new_fd = NULL; 2790 struct cred *new_cred = NULL; 2791 struct nsproxy *new_nsproxy = NULL; 2792 int do_sysvsem = 0; 2793 int err; 2794 2795 /* 2796 * If unsharing a user namespace must also unshare the thread group 2797 * and unshare the filesystem root and working directories. 2798 */ 2799 if (unshare_flags & CLONE_NEWUSER) 2800 unshare_flags |= CLONE_THREAD | CLONE_FS; 2801 /* 2802 * If unsharing vm, must also unshare signal handlers. 2803 */ 2804 if (unshare_flags & CLONE_VM) 2805 unshare_flags |= CLONE_SIGHAND; 2806 /* 2807 * If unsharing a signal handlers, must also unshare the signal queues. 2808 */ 2809 if (unshare_flags & CLONE_SIGHAND) 2810 unshare_flags |= CLONE_THREAD; 2811 /* 2812 * If unsharing namespace, must also unshare filesystem information. 2813 */ 2814 if (unshare_flags & CLONE_NEWNS) 2815 unshare_flags |= CLONE_FS; 2816 2817 err = check_unshare_flags(unshare_flags); 2818 if (err) 2819 goto bad_unshare_out; 2820 /* 2821 * CLONE_NEWIPC must also detach from the undolist: after switching 2822 * to a new ipc namespace, the semaphore arrays from the old 2823 * namespace are unreachable. 2824 */ 2825 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2826 do_sysvsem = 1; 2827 err = unshare_fs(unshare_flags, &new_fs); 2828 if (err) 2829 goto bad_unshare_out; 2830 err = unshare_fd(unshare_flags, &new_fd); 2831 if (err) 2832 goto bad_unshare_cleanup_fs; 2833 err = unshare_userns(unshare_flags, &new_cred); 2834 if (err) 2835 goto bad_unshare_cleanup_fd; 2836 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2837 new_cred, new_fs); 2838 if (err) 2839 goto bad_unshare_cleanup_cred; 2840 2841 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2842 if (do_sysvsem) { 2843 /* 2844 * CLONE_SYSVSEM is equivalent to sys_exit(). 2845 */ 2846 exit_sem(current); 2847 } 2848 if (unshare_flags & CLONE_NEWIPC) { 2849 /* Orphan segments in old ns (see sem above). */ 2850 exit_shm(current); 2851 shm_init_task(current); 2852 } 2853 2854 if (new_nsproxy) 2855 switch_task_namespaces(current, new_nsproxy); 2856 2857 task_lock(current); 2858 2859 if (new_fs) { 2860 fs = current->fs; 2861 spin_lock(&fs->lock); 2862 current->fs = new_fs; 2863 if (--fs->users) 2864 new_fs = NULL; 2865 else 2866 new_fs = fs; 2867 spin_unlock(&fs->lock); 2868 } 2869 2870 if (new_fd) { 2871 fd = current->files; 2872 current->files = new_fd; 2873 new_fd = fd; 2874 } 2875 2876 task_unlock(current); 2877 2878 if (new_cred) { 2879 /* Install the new user namespace */ 2880 commit_creds(new_cred); 2881 new_cred = NULL; 2882 } 2883 } 2884 2885 perf_event_namespaces(current); 2886 2887 bad_unshare_cleanup_cred: 2888 if (new_cred) 2889 put_cred(new_cred); 2890 bad_unshare_cleanup_fd: 2891 if (new_fd) 2892 put_files_struct(new_fd); 2893 2894 bad_unshare_cleanup_fs: 2895 if (new_fs) 2896 free_fs_struct(new_fs); 2897 2898 bad_unshare_out: 2899 return err; 2900 } 2901 2902 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2903 { 2904 return ksys_unshare(unshare_flags); 2905 } 2906 2907 /* 2908 * Helper to unshare the files of the current task. 2909 * We don't want to expose copy_files internals to 2910 * the exec layer of the kernel. 2911 */ 2912 2913 int unshare_files(struct files_struct **displaced) 2914 { 2915 struct task_struct *task = current; 2916 struct files_struct *copy = NULL; 2917 int error; 2918 2919 error = unshare_fd(CLONE_FILES, ©); 2920 if (error || !copy) { 2921 *displaced = NULL; 2922 return error; 2923 } 2924 *displaced = task->files; 2925 task_lock(task); 2926 task->files = copy; 2927 task_unlock(task); 2928 return 0; 2929 } 2930 2931 int sysctl_max_threads(struct ctl_table *table, int write, 2932 void __user *buffer, size_t *lenp, loff_t *ppos) 2933 { 2934 struct ctl_table t; 2935 int ret; 2936 int threads = max_threads; 2937 int min = MIN_THREADS; 2938 int max = MAX_THREADS; 2939 2940 t = *table; 2941 t.data = &threads; 2942 t.extra1 = &min; 2943 t.extra2 = &max; 2944 2945 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2946 if (ret || !write) 2947 return ret; 2948 2949 set_max_threads(threads); 2950 2951 return 0; 2952 } 2953