1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/mm.h> 32 #include <linux/vmacache.h> 33 #include <linux/nsproxy.h> 34 #include <linux/capability.h> 35 #include <linux/cpu.h> 36 #include <linux/cgroup.h> 37 #include <linux/security.h> 38 #include <linux/hugetlb.h> 39 #include <linux/seccomp.h> 40 #include <linux/swap.h> 41 #include <linux/syscalls.h> 42 #include <linux/jiffies.h> 43 #include <linux/futex.h> 44 #include <linux/compat.h> 45 #include <linux/kthread.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/rcupdate.h> 48 #include <linux/ptrace.h> 49 #include <linux/mount.h> 50 #include <linux/audit.h> 51 #include <linux/memcontrol.h> 52 #include <linux/ftrace.h> 53 #include <linux/proc_fs.h> 54 #include <linux/profile.h> 55 #include <linux/rmap.h> 56 #include <linux/ksm.h> 57 #include <linux/acct.h> 58 #include <linux/tsacct_kern.h> 59 #include <linux/cn_proc.h> 60 #include <linux/freezer.h> 61 #include <linux/delayacct.h> 62 #include <linux/taskstats_kern.h> 63 #include <linux/random.h> 64 #include <linux/tty.h> 65 #include <linux/blkdev.h> 66 #include <linux/fs_struct.h> 67 #include <linux/magic.h> 68 #include <linux/perf_event.h> 69 #include <linux/posix-timers.h> 70 #include <linux/user-return-notifier.h> 71 #include <linux/oom.h> 72 #include <linux/khugepaged.h> 73 #include <linux/signalfd.h> 74 #include <linux/uprobes.h> 75 #include <linux/aio.h> 76 #include <linux/compiler.h> 77 #include <linux/sysctl.h> 78 79 #include <asm/pgtable.h> 80 #include <asm/pgalloc.h> 81 #include <asm/uaccess.h> 82 #include <asm/mmu_context.h> 83 #include <asm/cacheflush.h> 84 #include <asm/tlbflush.h> 85 86 #include <trace/events/sched.h> 87 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/task.h> 90 91 /* 92 * Minimum number of threads to boot the kernel 93 */ 94 #define MIN_THREADS 20 95 96 /* 97 * Maximum number of threads 98 */ 99 #define MAX_THREADS FUTEX_TID_MASK 100 101 /* 102 * Protected counters by write_lock_irq(&tasklist_lock) 103 */ 104 unsigned long total_forks; /* Handle normal Linux uptimes. */ 105 int nr_threads; /* The idle threads do not count.. */ 106 107 int max_threads; /* tunable limit on nr_threads */ 108 109 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 110 111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 112 113 #ifdef CONFIG_PROVE_RCU 114 int lockdep_tasklist_lock_is_held(void) 115 { 116 return lockdep_is_held(&tasklist_lock); 117 } 118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 119 #endif /* #ifdef CONFIG_PROVE_RCU */ 120 121 int nr_processes(void) 122 { 123 int cpu; 124 int total = 0; 125 126 for_each_possible_cpu(cpu) 127 total += per_cpu(process_counts, cpu); 128 129 return total; 130 } 131 132 void __weak arch_release_task_struct(struct task_struct *tsk) 133 { 134 } 135 136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 137 static struct kmem_cache *task_struct_cachep; 138 139 static inline struct task_struct *alloc_task_struct_node(int node) 140 { 141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 142 } 143 144 static inline void free_task_struct(struct task_struct *tsk) 145 { 146 kmem_cache_free(task_struct_cachep, tsk); 147 } 148 #endif 149 150 void __weak arch_release_thread_info(struct thread_info *ti) 151 { 152 } 153 154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 155 156 /* 157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 158 * kmemcache based allocator. 159 */ 160 # if THREAD_SIZE >= PAGE_SIZE 161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 162 int node) 163 { 164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP, 165 THREAD_SIZE_ORDER); 166 167 return page ? page_address(page) : NULL; 168 } 169 170 static inline void free_thread_info(struct thread_info *ti) 171 { 172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER); 173 } 174 # else 175 static struct kmem_cache *thread_info_cache; 176 177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 178 int node) 179 { 180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 181 } 182 183 static void free_thread_info(struct thread_info *ti) 184 { 185 kmem_cache_free(thread_info_cache, ti); 186 } 187 188 void thread_info_cache_init(void) 189 { 190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 191 THREAD_SIZE, 0, NULL); 192 BUG_ON(thread_info_cache == NULL); 193 } 194 # endif 195 #endif 196 197 /* SLAB cache for signal_struct structures (tsk->signal) */ 198 static struct kmem_cache *signal_cachep; 199 200 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 201 struct kmem_cache *sighand_cachep; 202 203 /* SLAB cache for files_struct structures (tsk->files) */ 204 struct kmem_cache *files_cachep; 205 206 /* SLAB cache for fs_struct structures (tsk->fs) */ 207 struct kmem_cache *fs_cachep; 208 209 /* SLAB cache for vm_area_struct structures */ 210 struct kmem_cache *vm_area_cachep; 211 212 /* SLAB cache for mm_struct structures (tsk->mm) */ 213 static struct kmem_cache *mm_cachep; 214 215 static void account_kernel_stack(struct thread_info *ti, int account) 216 { 217 struct zone *zone = page_zone(virt_to_page(ti)); 218 219 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 220 } 221 222 void free_task(struct task_struct *tsk) 223 { 224 account_kernel_stack(tsk->stack, -1); 225 arch_release_thread_info(tsk->stack); 226 free_thread_info(tsk->stack); 227 rt_mutex_debug_task_free(tsk); 228 ftrace_graph_exit_task(tsk); 229 put_seccomp_filter(tsk); 230 arch_release_task_struct(tsk); 231 free_task_struct(tsk); 232 } 233 EXPORT_SYMBOL(free_task); 234 235 static inline void free_signal_struct(struct signal_struct *sig) 236 { 237 taskstats_tgid_free(sig); 238 sched_autogroup_exit(sig); 239 kmem_cache_free(signal_cachep, sig); 240 } 241 242 static inline void put_signal_struct(struct signal_struct *sig) 243 { 244 if (atomic_dec_and_test(&sig->sigcnt)) 245 free_signal_struct(sig); 246 } 247 248 void __put_task_struct(struct task_struct *tsk) 249 { 250 WARN_ON(!tsk->exit_state); 251 WARN_ON(atomic_read(&tsk->usage)); 252 WARN_ON(tsk == current); 253 254 task_numa_free(tsk); 255 security_task_free(tsk); 256 exit_creds(tsk); 257 delayacct_tsk_free(tsk); 258 put_signal_struct(tsk->signal); 259 260 if (!profile_handoff_task(tsk)) 261 free_task(tsk); 262 } 263 EXPORT_SYMBOL_GPL(__put_task_struct); 264 265 void __init __weak arch_task_cache_init(void) { } 266 267 /* 268 * set_max_threads 269 */ 270 static void set_max_threads(unsigned int max_threads_suggested) 271 { 272 u64 threads; 273 274 /* 275 * The number of threads shall be limited such that the thread 276 * structures may only consume a small part of the available memory. 277 */ 278 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64) 279 threads = MAX_THREADS; 280 else 281 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE, 282 (u64) THREAD_SIZE * 8UL); 283 284 if (threads > max_threads_suggested) 285 threads = max_threads_suggested; 286 287 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 288 } 289 290 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 291 /* Initialized by the architecture: */ 292 int arch_task_struct_size __read_mostly; 293 #endif 294 295 void __init fork_init(void) 296 { 297 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 298 #ifndef ARCH_MIN_TASKALIGN 299 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 300 #endif 301 /* create a slab on which task_structs can be allocated */ 302 task_struct_cachep = 303 kmem_cache_create("task_struct", arch_task_struct_size, 304 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 305 #endif 306 307 /* do the arch specific task caches init */ 308 arch_task_cache_init(); 309 310 set_max_threads(MAX_THREADS); 311 312 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 313 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 314 init_task.signal->rlim[RLIMIT_SIGPENDING] = 315 init_task.signal->rlim[RLIMIT_NPROC]; 316 } 317 318 int __weak arch_dup_task_struct(struct task_struct *dst, 319 struct task_struct *src) 320 { 321 *dst = *src; 322 return 0; 323 } 324 325 void set_task_stack_end_magic(struct task_struct *tsk) 326 { 327 unsigned long *stackend; 328 329 stackend = end_of_stack(tsk); 330 *stackend = STACK_END_MAGIC; /* for overflow detection */ 331 } 332 333 static struct task_struct *dup_task_struct(struct task_struct *orig) 334 { 335 struct task_struct *tsk; 336 struct thread_info *ti; 337 int node = tsk_fork_get_node(orig); 338 int err; 339 340 tsk = alloc_task_struct_node(node); 341 if (!tsk) 342 return NULL; 343 344 ti = alloc_thread_info_node(tsk, node); 345 if (!ti) 346 goto free_tsk; 347 348 err = arch_dup_task_struct(tsk, orig); 349 if (err) 350 goto free_ti; 351 352 tsk->stack = ti; 353 #ifdef CONFIG_SECCOMP 354 /* 355 * We must handle setting up seccomp filters once we're under 356 * the sighand lock in case orig has changed between now and 357 * then. Until then, filter must be NULL to avoid messing up 358 * the usage counts on the error path calling free_task. 359 */ 360 tsk->seccomp.filter = NULL; 361 #endif 362 363 setup_thread_stack(tsk, orig); 364 clear_user_return_notifier(tsk); 365 clear_tsk_need_resched(tsk); 366 set_task_stack_end_magic(tsk); 367 368 #ifdef CONFIG_CC_STACKPROTECTOR 369 tsk->stack_canary = get_random_int(); 370 #endif 371 372 /* 373 * One for us, one for whoever does the "release_task()" (usually 374 * parent) 375 */ 376 atomic_set(&tsk->usage, 2); 377 #ifdef CONFIG_BLK_DEV_IO_TRACE 378 tsk->btrace_seq = 0; 379 #endif 380 tsk->splice_pipe = NULL; 381 tsk->task_frag.page = NULL; 382 383 account_kernel_stack(ti, 1); 384 385 return tsk; 386 387 free_ti: 388 free_thread_info(ti); 389 free_tsk: 390 free_task_struct(tsk); 391 return NULL; 392 } 393 394 #ifdef CONFIG_MMU 395 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 396 { 397 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 398 struct rb_node **rb_link, *rb_parent; 399 int retval; 400 unsigned long charge; 401 402 uprobe_start_dup_mmap(); 403 down_write(&oldmm->mmap_sem); 404 flush_cache_dup_mm(oldmm); 405 uprobe_dup_mmap(oldmm, mm); 406 /* 407 * Not linked in yet - no deadlock potential: 408 */ 409 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 410 411 /* No ordering required: file already has been exposed. */ 412 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 413 414 mm->total_vm = oldmm->total_vm; 415 mm->shared_vm = oldmm->shared_vm; 416 mm->exec_vm = oldmm->exec_vm; 417 mm->stack_vm = oldmm->stack_vm; 418 419 rb_link = &mm->mm_rb.rb_node; 420 rb_parent = NULL; 421 pprev = &mm->mmap; 422 retval = ksm_fork(mm, oldmm); 423 if (retval) 424 goto out; 425 retval = khugepaged_fork(mm, oldmm); 426 if (retval) 427 goto out; 428 429 prev = NULL; 430 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 431 struct file *file; 432 433 if (mpnt->vm_flags & VM_DONTCOPY) { 434 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 435 -vma_pages(mpnt)); 436 continue; 437 } 438 charge = 0; 439 if (mpnt->vm_flags & VM_ACCOUNT) { 440 unsigned long len = vma_pages(mpnt); 441 442 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 443 goto fail_nomem; 444 charge = len; 445 } 446 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 447 if (!tmp) 448 goto fail_nomem; 449 *tmp = *mpnt; 450 INIT_LIST_HEAD(&tmp->anon_vma_chain); 451 retval = vma_dup_policy(mpnt, tmp); 452 if (retval) 453 goto fail_nomem_policy; 454 tmp->vm_mm = mm; 455 if (anon_vma_fork(tmp, mpnt)) 456 goto fail_nomem_anon_vma_fork; 457 tmp->vm_flags &= ~(VM_LOCKED|VM_UFFD_MISSING|VM_UFFD_WP); 458 tmp->vm_next = tmp->vm_prev = NULL; 459 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 460 file = tmp->vm_file; 461 if (file) { 462 struct inode *inode = file_inode(file); 463 struct address_space *mapping = file->f_mapping; 464 465 get_file(file); 466 if (tmp->vm_flags & VM_DENYWRITE) 467 atomic_dec(&inode->i_writecount); 468 i_mmap_lock_write(mapping); 469 if (tmp->vm_flags & VM_SHARED) 470 atomic_inc(&mapping->i_mmap_writable); 471 flush_dcache_mmap_lock(mapping); 472 /* insert tmp into the share list, just after mpnt */ 473 vma_interval_tree_insert_after(tmp, mpnt, 474 &mapping->i_mmap); 475 flush_dcache_mmap_unlock(mapping); 476 i_mmap_unlock_write(mapping); 477 } 478 479 /* 480 * Clear hugetlb-related page reserves for children. This only 481 * affects MAP_PRIVATE mappings. Faults generated by the child 482 * are not guaranteed to succeed, even if read-only 483 */ 484 if (is_vm_hugetlb_page(tmp)) 485 reset_vma_resv_huge_pages(tmp); 486 487 /* 488 * Link in the new vma and copy the page table entries. 489 */ 490 *pprev = tmp; 491 pprev = &tmp->vm_next; 492 tmp->vm_prev = prev; 493 prev = tmp; 494 495 __vma_link_rb(mm, tmp, rb_link, rb_parent); 496 rb_link = &tmp->vm_rb.rb_right; 497 rb_parent = &tmp->vm_rb; 498 499 mm->map_count++; 500 retval = copy_page_range(mm, oldmm, mpnt); 501 502 if (tmp->vm_ops && tmp->vm_ops->open) 503 tmp->vm_ops->open(tmp); 504 505 if (retval) 506 goto out; 507 } 508 /* a new mm has just been created */ 509 arch_dup_mmap(oldmm, mm); 510 retval = 0; 511 out: 512 up_write(&mm->mmap_sem); 513 flush_tlb_mm(oldmm); 514 up_write(&oldmm->mmap_sem); 515 uprobe_end_dup_mmap(); 516 return retval; 517 fail_nomem_anon_vma_fork: 518 mpol_put(vma_policy(tmp)); 519 fail_nomem_policy: 520 kmem_cache_free(vm_area_cachep, tmp); 521 fail_nomem: 522 retval = -ENOMEM; 523 vm_unacct_memory(charge); 524 goto out; 525 } 526 527 static inline int mm_alloc_pgd(struct mm_struct *mm) 528 { 529 mm->pgd = pgd_alloc(mm); 530 if (unlikely(!mm->pgd)) 531 return -ENOMEM; 532 return 0; 533 } 534 535 static inline void mm_free_pgd(struct mm_struct *mm) 536 { 537 pgd_free(mm, mm->pgd); 538 } 539 #else 540 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 541 { 542 down_write(&oldmm->mmap_sem); 543 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 544 up_write(&oldmm->mmap_sem); 545 return 0; 546 } 547 #define mm_alloc_pgd(mm) (0) 548 #define mm_free_pgd(mm) 549 #endif /* CONFIG_MMU */ 550 551 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 552 553 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 554 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 555 556 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 557 558 static int __init coredump_filter_setup(char *s) 559 { 560 default_dump_filter = 561 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 562 MMF_DUMP_FILTER_MASK; 563 return 1; 564 } 565 566 __setup("coredump_filter=", coredump_filter_setup); 567 568 #include <linux/init_task.h> 569 570 static void mm_init_aio(struct mm_struct *mm) 571 { 572 #ifdef CONFIG_AIO 573 spin_lock_init(&mm->ioctx_lock); 574 mm->ioctx_table = NULL; 575 #endif 576 } 577 578 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 579 { 580 #ifdef CONFIG_MEMCG 581 mm->owner = p; 582 #endif 583 } 584 585 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 586 { 587 mm->mmap = NULL; 588 mm->mm_rb = RB_ROOT; 589 mm->vmacache_seqnum = 0; 590 atomic_set(&mm->mm_users, 1); 591 atomic_set(&mm->mm_count, 1); 592 init_rwsem(&mm->mmap_sem); 593 INIT_LIST_HEAD(&mm->mmlist); 594 mm->core_state = NULL; 595 atomic_long_set(&mm->nr_ptes, 0); 596 mm_nr_pmds_init(mm); 597 mm->map_count = 0; 598 mm->locked_vm = 0; 599 mm->pinned_vm = 0; 600 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 601 spin_lock_init(&mm->page_table_lock); 602 mm_init_cpumask(mm); 603 mm_init_aio(mm); 604 mm_init_owner(mm, p); 605 mmu_notifier_mm_init(mm); 606 clear_tlb_flush_pending(mm); 607 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 608 mm->pmd_huge_pte = NULL; 609 #endif 610 611 if (current->mm) { 612 mm->flags = current->mm->flags & MMF_INIT_MASK; 613 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 614 } else { 615 mm->flags = default_dump_filter; 616 mm->def_flags = 0; 617 } 618 619 if (mm_alloc_pgd(mm)) 620 goto fail_nopgd; 621 622 if (init_new_context(p, mm)) 623 goto fail_nocontext; 624 625 return mm; 626 627 fail_nocontext: 628 mm_free_pgd(mm); 629 fail_nopgd: 630 free_mm(mm); 631 return NULL; 632 } 633 634 static void check_mm(struct mm_struct *mm) 635 { 636 int i; 637 638 for (i = 0; i < NR_MM_COUNTERS; i++) { 639 long x = atomic_long_read(&mm->rss_stat.count[i]); 640 641 if (unlikely(x)) 642 printk(KERN_ALERT "BUG: Bad rss-counter state " 643 "mm:%p idx:%d val:%ld\n", mm, i, x); 644 } 645 646 if (atomic_long_read(&mm->nr_ptes)) 647 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n", 648 atomic_long_read(&mm->nr_ptes)); 649 if (mm_nr_pmds(mm)) 650 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n", 651 mm_nr_pmds(mm)); 652 653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 654 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 655 #endif 656 } 657 658 /* 659 * Allocate and initialize an mm_struct. 660 */ 661 struct mm_struct *mm_alloc(void) 662 { 663 struct mm_struct *mm; 664 665 mm = allocate_mm(); 666 if (!mm) 667 return NULL; 668 669 memset(mm, 0, sizeof(*mm)); 670 return mm_init(mm, current); 671 } 672 673 /* 674 * Called when the last reference to the mm 675 * is dropped: either by a lazy thread or by 676 * mmput. Free the page directory and the mm. 677 */ 678 void __mmdrop(struct mm_struct *mm) 679 { 680 BUG_ON(mm == &init_mm); 681 mm_free_pgd(mm); 682 destroy_context(mm); 683 mmu_notifier_mm_destroy(mm); 684 check_mm(mm); 685 free_mm(mm); 686 } 687 EXPORT_SYMBOL_GPL(__mmdrop); 688 689 /* 690 * Decrement the use count and release all resources for an mm. 691 */ 692 void mmput(struct mm_struct *mm) 693 { 694 might_sleep(); 695 696 if (atomic_dec_and_test(&mm->mm_users)) { 697 uprobe_clear_state(mm); 698 exit_aio(mm); 699 ksm_exit(mm); 700 khugepaged_exit(mm); /* must run before exit_mmap */ 701 exit_mmap(mm); 702 set_mm_exe_file(mm, NULL); 703 if (!list_empty(&mm->mmlist)) { 704 spin_lock(&mmlist_lock); 705 list_del(&mm->mmlist); 706 spin_unlock(&mmlist_lock); 707 } 708 if (mm->binfmt) 709 module_put(mm->binfmt->module); 710 mmdrop(mm); 711 } 712 } 713 EXPORT_SYMBOL_GPL(mmput); 714 715 /** 716 * set_mm_exe_file - change a reference to the mm's executable file 717 * 718 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 719 * 720 * Main users are mmput() and sys_execve(). Callers prevent concurrent 721 * invocations: in mmput() nobody alive left, in execve task is single 722 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 723 * mm->exe_file, but does so without using set_mm_exe_file() in order 724 * to do avoid the need for any locks. 725 */ 726 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 727 { 728 struct file *old_exe_file; 729 730 /* 731 * It is safe to dereference the exe_file without RCU as 732 * this function is only called if nobody else can access 733 * this mm -- see comment above for justification. 734 */ 735 old_exe_file = rcu_dereference_raw(mm->exe_file); 736 737 if (new_exe_file) 738 get_file(new_exe_file); 739 rcu_assign_pointer(mm->exe_file, new_exe_file); 740 if (old_exe_file) 741 fput(old_exe_file); 742 } 743 744 /** 745 * get_mm_exe_file - acquire a reference to the mm's executable file 746 * 747 * Returns %NULL if mm has no associated executable file. 748 * User must release file via fput(). 749 */ 750 struct file *get_mm_exe_file(struct mm_struct *mm) 751 { 752 struct file *exe_file; 753 754 rcu_read_lock(); 755 exe_file = rcu_dereference(mm->exe_file); 756 if (exe_file && !get_file_rcu(exe_file)) 757 exe_file = NULL; 758 rcu_read_unlock(); 759 return exe_file; 760 } 761 EXPORT_SYMBOL(get_mm_exe_file); 762 763 /** 764 * get_task_mm - acquire a reference to the task's mm 765 * 766 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 767 * this kernel workthread has transiently adopted a user mm with use_mm, 768 * to do its AIO) is not set and if so returns a reference to it, after 769 * bumping up the use count. User must release the mm via mmput() 770 * after use. Typically used by /proc and ptrace. 771 */ 772 struct mm_struct *get_task_mm(struct task_struct *task) 773 { 774 struct mm_struct *mm; 775 776 task_lock(task); 777 mm = task->mm; 778 if (mm) { 779 if (task->flags & PF_KTHREAD) 780 mm = NULL; 781 else 782 atomic_inc(&mm->mm_users); 783 } 784 task_unlock(task); 785 return mm; 786 } 787 EXPORT_SYMBOL_GPL(get_task_mm); 788 789 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 790 { 791 struct mm_struct *mm; 792 int err; 793 794 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 795 if (err) 796 return ERR_PTR(err); 797 798 mm = get_task_mm(task); 799 if (mm && mm != current->mm && 800 !ptrace_may_access(task, mode)) { 801 mmput(mm); 802 mm = ERR_PTR(-EACCES); 803 } 804 mutex_unlock(&task->signal->cred_guard_mutex); 805 806 return mm; 807 } 808 809 static void complete_vfork_done(struct task_struct *tsk) 810 { 811 struct completion *vfork; 812 813 task_lock(tsk); 814 vfork = tsk->vfork_done; 815 if (likely(vfork)) { 816 tsk->vfork_done = NULL; 817 complete(vfork); 818 } 819 task_unlock(tsk); 820 } 821 822 static int wait_for_vfork_done(struct task_struct *child, 823 struct completion *vfork) 824 { 825 int killed; 826 827 freezer_do_not_count(); 828 killed = wait_for_completion_killable(vfork); 829 freezer_count(); 830 831 if (killed) { 832 task_lock(child); 833 child->vfork_done = NULL; 834 task_unlock(child); 835 } 836 837 put_task_struct(child); 838 return killed; 839 } 840 841 /* Please note the differences between mmput and mm_release. 842 * mmput is called whenever we stop holding onto a mm_struct, 843 * error success whatever. 844 * 845 * mm_release is called after a mm_struct has been removed 846 * from the current process. 847 * 848 * This difference is important for error handling, when we 849 * only half set up a mm_struct for a new process and need to restore 850 * the old one. Because we mmput the new mm_struct before 851 * restoring the old one. . . 852 * Eric Biederman 10 January 1998 853 */ 854 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 855 { 856 /* Get rid of any futexes when releasing the mm */ 857 #ifdef CONFIG_FUTEX 858 if (unlikely(tsk->robust_list)) { 859 exit_robust_list(tsk); 860 tsk->robust_list = NULL; 861 } 862 #ifdef CONFIG_COMPAT 863 if (unlikely(tsk->compat_robust_list)) { 864 compat_exit_robust_list(tsk); 865 tsk->compat_robust_list = NULL; 866 } 867 #endif 868 if (unlikely(!list_empty(&tsk->pi_state_list))) 869 exit_pi_state_list(tsk); 870 #endif 871 872 uprobe_free_utask(tsk); 873 874 /* Get rid of any cached register state */ 875 deactivate_mm(tsk, mm); 876 877 /* 878 * If we're exiting normally, clear a user-space tid field if 879 * requested. We leave this alone when dying by signal, to leave 880 * the value intact in a core dump, and to save the unnecessary 881 * trouble, say, a killed vfork parent shouldn't touch this mm. 882 * Userland only wants this done for a sys_exit. 883 */ 884 if (tsk->clear_child_tid) { 885 if (!(tsk->flags & PF_SIGNALED) && 886 atomic_read(&mm->mm_users) > 1) { 887 /* 888 * We don't check the error code - if userspace has 889 * not set up a proper pointer then tough luck. 890 */ 891 put_user(0, tsk->clear_child_tid); 892 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 893 1, NULL, NULL, 0); 894 } 895 tsk->clear_child_tid = NULL; 896 } 897 898 /* 899 * All done, finally we can wake up parent and return this mm to him. 900 * Also kthread_stop() uses this completion for synchronization. 901 */ 902 if (tsk->vfork_done) 903 complete_vfork_done(tsk); 904 } 905 906 /* 907 * Allocate a new mm structure and copy contents from the 908 * mm structure of the passed in task structure. 909 */ 910 static struct mm_struct *dup_mm(struct task_struct *tsk) 911 { 912 struct mm_struct *mm, *oldmm = current->mm; 913 int err; 914 915 mm = allocate_mm(); 916 if (!mm) 917 goto fail_nomem; 918 919 memcpy(mm, oldmm, sizeof(*mm)); 920 921 if (!mm_init(mm, tsk)) 922 goto fail_nomem; 923 924 err = dup_mmap(mm, oldmm); 925 if (err) 926 goto free_pt; 927 928 mm->hiwater_rss = get_mm_rss(mm); 929 mm->hiwater_vm = mm->total_vm; 930 931 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 932 goto free_pt; 933 934 return mm; 935 936 free_pt: 937 /* don't put binfmt in mmput, we haven't got module yet */ 938 mm->binfmt = NULL; 939 mmput(mm); 940 941 fail_nomem: 942 return NULL; 943 } 944 945 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 946 { 947 struct mm_struct *mm, *oldmm; 948 int retval; 949 950 tsk->min_flt = tsk->maj_flt = 0; 951 tsk->nvcsw = tsk->nivcsw = 0; 952 #ifdef CONFIG_DETECT_HUNG_TASK 953 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 954 #endif 955 956 tsk->mm = NULL; 957 tsk->active_mm = NULL; 958 959 /* 960 * Are we cloning a kernel thread? 961 * 962 * We need to steal a active VM for that.. 963 */ 964 oldmm = current->mm; 965 if (!oldmm) 966 return 0; 967 968 /* initialize the new vmacache entries */ 969 vmacache_flush(tsk); 970 971 if (clone_flags & CLONE_VM) { 972 atomic_inc(&oldmm->mm_users); 973 mm = oldmm; 974 goto good_mm; 975 } 976 977 retval = -ENOMEM; 978 mm = dup_mm(tsk); 979 if (!mm) 980 goto fail_nomem; 981 982 good_mm: 983 tsk->mm = mm; 984 tsk->active_mm = mm; 985 return 0; 986 987 fail_nomem: 988 return retval; 989 } 990 991 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 992 { 993 struct fs_struct *fs = current->fs; 994 if (clone_flags & CLONE_FS) { 995 /* tsk->fs is already what we want */ 996 spin_lock(&fs->lock); 997 if (fs->in_exec) { 998 spin_unlock(&fs->lock); 999 return -EAGAIN; 1000 } 1001 fs->users++; 1002 spin_unlock(&fs->lock); 1003 return 0; 1004 } 1005 tsk->fs = copy_fs_struct(fs); 1006 if (!tsk->fs) 1007 return -ENOMEM; 1008 return 0; 1009 } 1010 1011 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1012 { 1013 struct files_struct *oldf, *newf; 1014 int error = 0; 1015 1016 /* 1017 * A background process may not have any files ... 1018 */ 1019 oldf = current->files; 1020 if (!oldf) 1021 goto out; 1022 1023 if (clone_flags & CLONE_FILES) { 1024 atomic_inc(&oldf->count); 1025 goto out; 1026 } 1027 1028 newf = dup_fd(oldf, &error); 1029 if (!newf) 1030 goto out; 1031 1032 tsk->files = newf; 1033 error = 0; 1034 out: 1035 return error; 1036 } 1037 1038 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1039 { 1040 #ifdef CONFIG_BLOCK 1041 struct io_context *ioc = current->io_context; 1042 struct io_context *new_ioc; 1043 1044 if (!ioc) 1045 return 0; 1046 /* 1047 * Share io context with parent, if CLONE_IO is set 1048 */ 1049 if (clone_flags & CLONE_IO) { 1050 ioc_task_link(ioc); 1051 tsk->io_context = ioc; 1052 } else if (ioprio_valid(ioc->ioprio)) { 1053 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1054 if (unlikely(!new_ioc)) 1055 return -ENOMEM; 1056 1057 new_ioc->ioprio = ioc->ioprio; 1058 put_io_context(new_ioc); 1059 } 1060 #endif 1061 return 0; 1062 } 1063 1064 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1065 { 1066 struct sighand_struct *sig; 1067 1068 if (clone_flags & CLONE_SIGHAND) { 1069 atomic_inc(¤t->sighand->count); 1070 return 0; 1071 } 1072 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1073 rcu_assign_pointer(tsk->sighand, sig); 1074 if (!sig) 1075 return -ENOMEM; 1076 1077 atomic_set(&sig->count, 1); 1078 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1079 return 0; 1080 } 1081 1082 void __cleanup_sighand(struct sighand_struct *sighand) 1083 { 1084 if (atomic_dec_and_test(&sighand->count)) { 1085 signalfd_cleanup(sighand); 1086 /* 1087 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it 1088 * without an RCU grace period, see __lock_task_sighand(). 1089 */ 1090 kmem_cache_free(sighand_cachep, sighand); 1091 } 1092 } 1093 1094 /* 1095 * Initialize POSIX timer handling for a thread group. 1096 */ 1097 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1098 { 1099 unsigned long cpu_limit; 1100 1101 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1102 if (cpu_limit != RLIM_INFINITY) { 1103 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1104 sig->cputimer.running = 1; 1105 } 1106 1107 /* The timer lists. */ 1108 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1109 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1110 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1111 } 1112 1113 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1114 { 1115 struct signal_struct *sig; 1116 1117 if (clone_flags & CLONE_THREAD) 1118 return 0; 1119 1120 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1121 tsk->signal = sig; 1122 if (!sig) 1123 return -ENOMEM; 1124 1125 sig->nr_threads = 1; 1126 atomic_set(&sig->live, 1); 1127 atomic_set(&sig->sigcnt, 1); 1128 1129 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1130 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1131 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1132 1133 init_waitqueue_head(&sig->wait_chldexit); 1134 sig->curr_target = tsk; 1135 init_sigpending(&sig->shared_pending); 1136 INIT_LIST_HEAD(&sig->posix_timers); 1137 seqlock_init(&sig->stats_lock); 1138 prev_cputime_init(&sig->prev_cputime); 1139 1140 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1141 sig->real_timer.function = it_real_fn; 1142 1143 task_lock(current->group_leader); 1144 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1145 task_unlock(current->group_leader); 1146 1147 posix_cpu_timers_init_group(sig); 1148 1149 tty_audit_fork(sig); 1150 sched_autogroup_fork(sig); 1151 1152 #ifdef CONFIG_CGROUPS 1153 init_rwsem(&sig->group_rwsem); 1154 #endif 1155 1156 sig->oom_score_adj = current->signal->oom_score_adj; 1157 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1158 1159 sig->has_child_subreaper = current->signal->has_child_subreaper || 1160 current->signal->is_child_subreaper; 1161 1162 mutex_init(&sig->cred_guard_mutex); 1163 1164 return 0; 1165 } 1166 1167 static void copy_seccomp(struct task_struct *p) 1168 { 1169 #ifdef CONFIG_SECCOMP 1170 /* 1171 * Must be called with sighand->lock held, which is common to 1172 * all threads in the group. Holding cred_guard_mutex is not 1173 * needed because this new task is not yet running and cannot 1174 * be racing exec. 1175 */ 1176 assert_spin_locked(¤t->sighand->siglock); 1177 1178 /* Ref-count the new filter user, and assign it. */ 1179 get_seccomp_filter(current); 1180 p->seccomp = current->seccomp; 1181 1182 /* 1183 * Explicitly enable no_new_privs here in case it got set 1184 * between the task_struct being duplicated and holding the 1185 * sighand lock. The seccomp state and nnp must be in sync. 1186 */ 1187 if (task_no_new_privs(current)) 1188 task_set_no_new_privs(p); 1189 1190 /* 1191 * If the parent gained a seccomp mode after copying thread 1192 * flags and between before we held the sighand lock, we have 1193 * to manually enable the seccomp thread flag here. 1194 */ 1195 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1196 set_tsk_thread_flag(p, TIF_SECCOMP); 1197 #endif 1198 } 1199 1200 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1201 { 1202 current->clear_child_tid = tidptr; 1203 1204 return task_pid_vnr(current); 1205 } 1206 1207 static void rt_mutex_init_task(struct task_struct *p) 1208 { 1209 raw_spin_lock_init(&p->pi_lock); 1210 #ifdef CONFIG_RT_MUTEXES 1211 p->pi_waiters = RB_ROOT; 1212 p->pi_waiters_leftmost = NULL; 1213 p->pi_blocked_on = NULL; 1214 #endif 1215 } 1216 1217 /* 1218 * Initialize POSIX timer handling for a single task. 1219 */ 1220 static void posix_cpu_timers_init(struct task_struct *tsk) 1221 { 1222 tsk->cputime_expires.prof_exp = 0; 1223 tsk->cputime_expires.virt_exp = 0; 1224 tsk->cputime_expires.sched_exp = 0; 1225 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1226 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1227 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1228 } 1229 1230 static inline void 1231 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1232 { 1233 task->pids[type].pid = pid; 1234 } 1235 1236 /* 1237 * This creates a new process as a copy of the old one, 1238 * but does not actually start it yet. 1239 * 1240 * It copies the registers, and all the appropriate 1241 * parts of the process environment (as per the clone 1242 * flags). The actual kick-off is left to the caller. 1243 */ 1244 static struct task_struct *copy_process(unsigned long clone_flags, 1245 unsigned long stack_start, 1246 unsigned long stack_size, 1247 int __user *child_tidptr, 1248 struct pid *pid, 1249 int trace, 1250 unsigned long tls) 1251 { 1252 int retval; 1253 struct task_struct *p; 1254 void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {}; 1255 1256 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1257 return ERR_PTR(-EINVAL); 1258 1259 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1260 return ERR_PTR(-EINVAL); 1261 1262 /* 1263 * Thread groups must share signals as well, and detached threads 1264 * can only be started up within the thread group. 1265 */ 1266 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1267 return ERR_PTR(-EINVAL); 1268 1269 /* 1270 * Shared signal handlers imply shared VM. By way of the above, 1271 * thread groups also imply shared VM. Blocking this case allows 1272 * for various simplifications in other code. 1273 */ 1274 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1275 return ERR_PTR(-EINVAL); 1276 1277 /* 1278 * Siblings of global init remain as zombies on exit since they are 1279 * not reaped by their parent (swapper). To solve this and to avoid 1280 * multi-rooted process trees, prevent global and container-inits 1281 * from creating siblings. 1282 */ 1283 if ((clone_flags & CLONE_PARENT) && 1284 current->signal->flags & SIGNAL_UNKILLABLE) 1285 return ERR_PTR(-EINVAL); 1286 1287 /* 1288 * If the new process will be in a different pid or user namespace 1289 * do not allow it to share a thread group with the forking task. 1290 */ 1291 if (clone_flags & CLONE_THREAD) { 1292 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1293 (task_active_pid_ns(current) != 1294 current->nsproxy->pid_ns_for_children)) 1295 return ERR_PTR(-EINVAL); 1296 } 1297 1298 retval = security_task_create(clone_flags); 1299 if (retval) 1300 goto fork_out; 1301 1302 retval = -ENOMEM; 1303 p = dup_task_struct(current); 1304 if (!p) 1305 goto fork_out; 1306 1307 ftrace_graph_init_task(p); 1308 1309 rt_mutex_init_task(p); 1310 1311 #ifdef CONFIG_PROVE_LOCKING 1312 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1313 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1314 #endif 1315 retval = -EAGAIN; 1316 if (atomic_read(&p->real_cred->user->processes) >= 1317 task_rlimit(p, RLIMIT_NPROC)) { 1318 if (p->real_cred->user != INIT_USER && 1319 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1320 goto bad_fork_free; 1321 } 1322 current->flags &= ~PF_NPROC_EXCEEDED; 1323 1324 retval = copy_creds(p, clone_flags); 1325 if (retval < 0) 1326 goto bad_fork_free; 1327 1328 /* 1329 * If multiple threads are within copy_process(), then this check 1330 * triggers too late. This doesn't hurt, the check is only there 1331 * to stop root fork bombs. 1332 */ 1333 retval = -EAGAIN; 1334 if (nr_threads >= max_threads) 1335 goto bad_fork_cleanup_count; 1336 1337 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1338 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1339 p->flags |= PF_FORKNOEXEC; 1340 INIT_LIST_HEAD(&p->children); 1341 INIT_LIST_HEAD(&p->sibling); 1342 rcu_copy_process(p); 1343 p->vfork_done = NULL; 1344 spin_lock_init(&p->alloc_lock); 1345 1346 init_sigpending(&p->pending); 1347 1348 p->utime = p->stime = p->gtime = 0; 1349 p->utimescaled = p->stimescaled = 0; 1350 prev_cputime_init(&p->prev_cputime); 1351 1352 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1353 seqlock_init(&p->vtime_seqlock); 1354 p->vtime_snap = 0; 1355 p->vtime_snap_whence = VTIME_SLEEPING; 1356 #endif 1357 1358 #if defined(SPLIT_RSS_COUNTING) 1359 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1360 #endif 1361 1362 p->default_timer_slack_ns = current->timer_slack_ns; 1363 1364 task_io_accounting_init(&p->ioac); 1365 acct_clear_integrals(p); 1366 1367 posix_cpu_timers_init(p); 1368 1369 p->start_time = ktime_get_ns(); 1370 p->real_start_time = ktime_get_boot_ns(); 1371 p->io_context = NULL; 1372 p->audit_context = NULL; 1373 if (clone_flags & CLONE_THREAD) 1374 threadgroup_change_begin(current); 1375 cgroup_fork(p); 1376 #ifdef CONFIG_NUMA 1377 p->mempolicy = mpol_dup(p->mempolicy); 1378 if (IS_ERR(p->mempolicy)) { 1379 retval = PTR_ERR(p->mempolicy); 1380 p->mempolicy = NULL; 1381 goto bad_fork_cleanup_threadgroup_lock; 1382 } 1383 #endif 1384 #ifdef CONFIG_CPUSETS 1385 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1386 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1387 seqcount_init(&p->mems_allowed_seq); 1388 #endif 1389 #ifdef CONFIG_TRACE_IRQFLAGS 1390 p->irq_events = 0; 1391 p->hardirqs_enabled = 0; 1392 p->hardirq_enable_ip = 0; 1393 p->hardirq_enable_event = 0; 1394 p->hardirq_disable_ip = _THIS_IP_; 1395 p->hardirq_disable_event = 0; 1396 p->softirqs_enabled = 1; 1397 p->softirq_enable_ip = _THIS_IP_; 1398 p->softirq_enable_event = 0; 1399 p->softirq_disable_ip = 0; 1400 p->softirq_disable_event = 0; 1401 p->hardirq_context = 0; 1402 p->softirq_context = 0; 1403 #endif 1404 1405 p->pagefault_disabled = 0; 1406 1407 #ifdef CONFIG_LOCKDEP 1408 p->lockdep_depth = 0; /* no locks held yet */ 1409 p->curr_chain_key = 0; 1410 p->lockdep_recursion = 0; 1411 #endif 1412 1413 #ifdef CONFIG_DEBUG_MUTEXES 1414 p->blocked_on = NULL; /* not blocked yet */ 1415 #endif 1416 #ifdef CONFIG_BCACHE 1417 p->sequential_io = 0; 1418 p->sequential_io_avg = 0; 1419 #endif 1420 1421 /* Perform scheduler related setup. Assign this task to a CPU. */ 1422 retval = sched_fork(clone_flags, p); 1423 if (retval) 1424 goto bad_fork_cleanup_policy; 1425 1426 retval = perf_event_init_task(p); 1427 if (retval) 1428 goto bad_fork_cleanup_policy; 1429 retval = audit_alloc(p); 1430 if (retval) 1431 goto bad_fork_cleanup_perf; 1432 /* copy all the process information */ 1433 shm_init_task(p); 1434 retval = copy_semundo(clone_flags, p); 1435 if (retval) 1436 goto bad_fork_cleanup_audit; 1437 retval = copy_files(clone_flags, p); 1438 if (retval) 1439 goto bad_fork_cleanup_semundo; 1440 retval = copy_fs(clone_flags, p); 1441 if (retval) 1442 goto bad_fork_cleanup_files; 1443 retval = copy_sighand(clone_flags, p); 1444 if (retval) 1445 goto bad_fork_cleanup_fs; 1446 retval = copy_signal(clone_flags, p); 1447 if (retval) 1448 goto bad_fork_cleanup_sighand; 1449 retval = copy_mm(clone_flags, p); 1450 if (retval) 1451 goto bad_fork_cleanup_signal; 1452 retval = copy_namespaces(clone_flags, p); 1453 if (retval) 1454 goto bad_fork_cleanup_mm; 1455 retval = copy_io(clone_flags, p); 1456 if (retval) 1457 goto bad_fork_cleanup_namespaces; 1458 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls); 1459 if (retval) 1460 goto bad_fork_cleanup_io; 1461 1462 if (pid != &init_struct_pid) { 1463 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 1464 if (IS_ERR(pid)) { 1465 retval = PTR_ERR(pid); 1466 goto bad_fork_cleanup_io; 1467 } 1468 } 1469 1470 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1471 /* 1472 * Clear TID on mm_release()? 1473 */ 1474 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1475 #ifdef CONFIG_BLOCK 1476 p->plug = NULL; 1477 #endif 1478 #ifdef CONFIG_FUTEX 1479 p->robust_list = NULL; 1480 #ifdef CONFIG_COMPAT 1481 p->compat_robust_list = NULL; 1482 #endif 1483 INIT_LIST_HEAD(&p->pi_state_list); 1484 p->pi_state_cache = NULL; 1485 #endif 1486 /* 1487 * sigaltstack should be cleared when sharing the same VM 1488 */ 1489 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1490 p->sas_ss_sp = p->sas_ss_size = 0; 1491 1492 /* 1493 * Syscall tracing and stepping should be turned off in the 1494 * child regardless of CLONE_PTRACE. 1495 */ 1496 user_disable_single_step(p); 1497 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1498 #ifdef TIF_SYSCALL_EMU 1499 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1500 #endif 1501 clear_all_latency_tracing(p); 1502 1503 /* ok, now we should be set up.. */ 1504 p->pid = pid_nr(pid); 1505 if (clone_flags & CLONE_THREAD) { 1506 p->exit_signal = -1; 1507 p->group_leader = current->group_leader; 1508 p->tgid = current->tgid; 1509 } else { 1510 if (clone_flags & CLONE_PARENT) 1511 p->exit_signal = current->group_leader->exit_signal; 1512 else 1513 p->exit_signal = (clone_flags & CSIGNAL); 1514 p->group_leader = p; 1515 p->tgid = p->pid; 1516 } 1517 1518 p->nr_dirtied = 0; 1519 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1520 p->dirty_paused_when = 0; 1521 1522 p->pdeath_signal = 0; 1523 INIT_LIST_HEAD(&p->thread_group); 1524 p->task_works = NULL; 1525 1526 /* 1527 * Ensure that the cgroup subsystem policies allow the new process to be 1528 * forked. It should be noted the the new process's css_set can be changed 1529 * between here and cgroup_post_fork() if an organisation operation is in 1530 * progress. 1531 */ 1532 retval = cgroup_can_fork(p, cgrp_ss_priv); 1533 if (retval) 1534 goto bad_fork_free_pid; 1535 1536 /* 1537 * Make it visible to the rest of the system, but dont wake it up yet. 1538 * Need tasklist lock for parent etc handling! 1539 */ 1540 write_lock_irq(&tasklist_lock); 1541 1542 /* CLONE_PARENT re-uses the old parent */ 1543 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1544 p->real_parent = current->real_parent; 1545 p->parent_exec_id = current->parent_exec_id; 1546 } else { 1547 p->real_parent = current; 1548 p->parent_exec_id = current->self_exec_id; 1549 } 1550 1551 spin_lock(¤t->sighand->siglock); 1552 1553 /* 1554 * Copy seccomp details explicitly here, in case they were changed 1555 * before holding sighand lock. 1556 */ 1557 copy_seccomp(p); 1558 1559 /* 1560 * Process group and session signals need to be delivered to just the 1561 * parent before the fork or both the parent and the child after the 1562 * fork. Restart if a signal comes in before we add the new process to 1563 * it's process group. 1564 * A fatal signal pending means that current will exit, so the new 1565 * thread can't slip out of an OOM kill (or normal SIGKILL). 1566 */ 1567 recalc_sigpending(); 1568 if (signal_pending(current)) { 1569 spin_unlock(¤t->sighand->siglock); 1570 write_unlock_irq(&tasklist_lock); 1571 retval = -ERESTARTNOINTR; 1572 goto bad_fork_cancel_cgroup; 1573 } 1574 1575 if (likely(p->pid)) { 1576 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1577 1578 init_task_pid(p, PIDTYPE_PID, pid); 1579 if (thread_group_leader(p)) { 1580 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1581 init_task_pid(p, PIDTYPE_SID, task_session(current)); 1582 1583 if (is_child_reaper(pid)) { 1584 ns_of_pid(pid)->child_reaper = p; 1585 p->signal->flags |= SIGNAL_UNKILLABLE; 1586 } 1587 1588 p->signal->leader_pid = pid; 1589 p->signal->tty = tty_kref_get(current->signal->tty); 1590 list_add_tail(&p->sibling, &p->real_parent->children); 1591 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1592 attach_pid(p, PIDTYPE_PGID); 1593 attach_pid(p, PIDTYPE_SID); 1594 __this_cpu_inc(process_counts); 1595 } else { 1596 current->signal->nr_threads++; 1597 atomic_inc(¤t->signal->live); 1598 atomic_inc(¤t->signal->sigcnt); 1599 list_add_tail_rcu(&p->thread_group, 1600 &p->group_leader->thread_group); 1601 list_add_tail_rcu(&p->thread_node, 1602 &p->signal->thread_head); 1603 } 1604 attach_pid(p, PIDTYPE_PID); 1605 nr_threads++; 1606 } 1607 1608 total_forks++; 1609 spin_unlock(¤t->sighand->siglock); 1610 syscall_tracepoint_update(p); 1611 write_unlock_irq(&tasklist_lock); 1612 1613 proc_fork_connector(p); 1614 cgroup_post_fork(p, cgrp_ss_priv); 1615 if (clone_flags & CLONE_THREAD) 1616 threadgroup_change_end(current); 1617 perf_event_fork(p); 1618 1619 trace_task_newtask(p, clone_flags); 1620 uprobe_copy_process(p, clone_flags); 1621 1622 return p; 1623 1624 bad_fork_cancel_cgroup: 1625 cgroup_cancel_fork(p, cgrp_ss_priv); 1626 bad_fork_free_pid: 1627 if (pid != &init_struct_pid) 1628 free_pid(pid); 1629 bad_fork_cleanup_io: 1630 if (p->io_context) 1631 exit_io_context(p); 1632 bad_fork_cleanup_namespaces: 1633 exit_task_namespaces(p); 1634 bad_fork_cleanup_mm: 1635 if (p->mm) 1636 mmput(p->mm); 1637 bad_fork_cleanup_signal: 1638 if (!(clone_flags & CLONE_THREAD)) 1639 free_signal_struct(p->signal); 1640 bad_fork_cleanup_sighand: 1641 __cleanup_sighand(p->sighand); 1642 bad_fork_cleanup_fs: 1643 exit_fs(p); /* blocking */ 1644 bad_fork_cleanup_files: 1645 exit_files(p); /* blocking */ 1646 bad_fork_cleanup_semundo: 1647 exit_sem(p); 1648 bad_fork_cleanup_audit: 1649 audit_free(p); 1650 bad_fork_cleanup_perf: 1651 perf_event_free_task(p); 1652 bad_fork_cleanup_policy: 1653 #ifdef CONFIG_NUMA 1654 mpol_put(p->mempolicy); 1655 bad_fork_cleanup_threadgroup_lock: 1656 #endif 1657 if (clone_flags & CLONE_THREAD) 1658 threadgroup_change_end(current); 1659 delayacct_tsk_free(p); 1660 bad_fork_cleanup_count: 1661 atomic_dec(&p->cred->user->processes); 1662 exit_creds(p); 1663 bad_fork_free: 1664 free_task(p); 1665 fork_out: 1666 return ERR_PTR(retval); 1667 } 1668 1669 static inline void init_idle_pids(struct pid_link *links) 1670 { 1671 enum pid_type type; 1672 1673 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1674 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1675 links[type].pid = &init_struct_pid; 1676 } 1677 } 1678 1679 struct task_struct *fork_idle(int cpu) 1680 { 1681 struct task_struct *task; 1682 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0); 1683 if (!IS_ERR(task)) { 1684 init_idle_pids(task->pids); 1685 init_idle(task, cpu); 1686 } 1687 1688 return task; 1689 } 1690 1691 /* 1692 * Ok, this is the main fork-routine. 1693 * 1694 * It copies the process, and if successful kick-starts 1695 * it and waits for it to finish using the VM if required. 1696 */ 1697 long _do_fork(unsigned long clone_flags, 1698 unsigned long stack_start, 1699 unsigned long stack_size, 1700 int __user *parent_tidptr, 1701 int __user *child_tidptr, 1702 unsigned long tls) 1703 { 1704 struct task_struct *p; 1705 int trace = 0; 1706 long nr; 1707 1708 /* 1709 * Determine whether and which event to report to ptracer. When 1710 * called from kernel_thread or CLONE_UNTRACED is explicitly 1711 * requested, no event is reported; otherwise, report if the event 1712 * for the type of forking is enabled. 1713 */ 1714 if (!(clone_flags & CLONE_UNTRACED)) { 1715 if (clone_flags & CLONE_VFORK) 1716 trace = PTRACE_EVENT_VFORK; 1717 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1718 trace = PTRACE_EVENT_CLONE; 1719 else 1720 trace = PTRACE_EVENT_FORK; 1721 1722 if (likely(!ptrace_event_enabled(current, trace))) 1723 trace = 0; 1724 } 1725 1726 p = copy_process(clone_flags, stack_start, stack_size, 1727 child_tidptr, NULL, trace, tls); 1728 /* 1729 * Do this prior waking up the new thread - the thread pointer 1730 * might get invalid after that point, if the thread exits quickly. 1731 */ 1732 if (!IS_ERR(p)) { 1733 struct completion vfork; 1734 struct pid *pid; 1735 1736 trace_sched_process_fork(current, p); 1737 1738 pid = get_task_pid(p, PIDTYPE_PID); 1739 nr = pid_vnr(pid); 1740 1741 if (clone_flags & CLONE_PARENT_SETTID) 1742 put_user(nr, parent_tidptr); 1743 1744 if (clone_flags & CLONE_VFORK) { 1745 p->vfork_done = &vfork; 1746 init_completion(&vfork); 1747 get_task_struct(p); 1748 } 1749 1750 wake_up_new_task(p); 1751 1752 /* forking complete and child started to run, tell ptracer */ 1753 if (unlikely(trace)) 1754 ptrace_event_pid(trace, pid); 1755 1756 if (clone_flags & CLONE_VFORK) { 1757 if (!wait_for_vfork_done(p, &vfork)) 1758 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 1759 } 1760 1761 put_pid(pid); 1762 } else { 1763 nr = PTR_ERR(p); 1764 } 1765 return nr; 1766 } 1767 1768 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 1769 /* For compatibility with architectures that call do_fork directly rather than 1770 * using the syscall entry points below. */ 1771 long do_fork(unsigned long clone_flags, 1772 unsigned long stack_start, 1773 unsigned long stack_size, 1774 int __user *parent_tidptr, 1775 int __user *child_tidptr) 1776 { 1777 return _do_fork(clone_flags, stack_start, stack_size, 1778 parent_tidptr, child_tidptr, 0); 1779 } 1780 #endif 1781 1782 /* 1783 * Create a kernel thread. 1784 */ 1785 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 1786 { 1787 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 1788 (unsigned long)arg, NULL, NULL, 0); 1789 } 1790 1791 #ifdef __ARCH_WANT_SYS_FORK 1792 SYSCALL_DEFINE0(fork) 1793 { 1794 #ifdef CONFIG_MMU 1795 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0); 1796 #else 1797 /* can not support in nommu mode */ 1798 return -EINVAL; 1799 #endif 1800 } 1801 #endif 1802 1803 #ifdef __ARCH_WANT_SYS_VFORK 1804 SYSCALL_DEFINE0(vfork) 1805 { 1806 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 1807 0, NULL, NULL, 0); 1808 } 1809 #endif 1810 1811 #ifdef __ARCH_WANT_SYS_CLONE 1812 #ifdef CONFIG_CLONE_BACKWARDS 1813 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1814 int __user *, parent_tidptr, 1815 unsigned long, tls, 1816 int __user *, child_tidptr) 1817 #elif defined(CONFIG_CLONE_BACKWARDS2) 1818 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 1819 int __user *, parent_tidptr, 1820 int __user *, child_tidptr, 1821 unsigned long, tls) 1822 #elif defined(CONFIG_CLONE_BACKWARDS3) 1823 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 1824 int, stack_size, 1825 int __user *, parent_tidptr, 1826 int __user *, child_tidptr, 1827 unsigned long, tls) 1828 #else 1829 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1830 int __user *, parent_tidptr, 1831 int __user *, child_tidptr, 1832 unsigned long, tls) 1833 #endif 1834 { 1835 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls); 1836 } 1837 #endif 1838 1839 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1840 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1841 #endif 1842 1843 static void sighand_ctor(void *data) 1844 { 1845 struct sighand_struct *sighand = data; 1846 1847 spin_lock_init(&sighand->siglock); 1848 init_waitqueue_head(&sighand->signalfd_wqh); 1849 } 1850 1851 void __init proc_caches_init(void) 1852 { 1853 sighand_cachep = kmem_cache_create("sighand_cache", 1854 sizeof(struct sighand_struct), 0, 1855 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1856 SLAB_NOTRACK, sighand_ctor); 1857 signal_cachep = kmem_cache_create("signal_cache", 1858 sizeof(struct signal_struct), 0, 1859 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1860 files_cachep = kmem_cache_create("files_cache", 1861 sizeof(struct files_struct), 0, 1862 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1863 fs_cachep = kmem_cache_create("fs_cache", 1864 sizeof(struct fs_struct), 0, 1865 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1866 /* 1867 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1868 * whole struct cpumask for the OFFSTACK case. We could change 1869 * this to *only* allocate as much of it as required by the 1870 * maximum number of CPU's we can ever have. The cpumask_allocation 1871 * is at the end of the structure, exactly for that reason. 1872 */ 1873 mm_cachep = kmem_cache_create("mm_struct", 1874 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1875 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1876 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1877 mmap_init(); 1878 nsproxy_cache_init(); 1879 } 1880 1881 /* 1882 * Check constraints on flags passed to the unshare system call. 1883 */ 1884 static int check_unshare_flags(unsigned long unshare_flags) 1885 { 1886 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1887 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1888 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 1889 CLONE_NEWUSER|CLONE_NEWPID)) 1890 return -EINVAL; 1891 /* 1892 * Not implemented, but pretend it works if there is nothing 1893 * to unshare. Note that unsharing the address space or the 1894 * signal handlers also need to unshare the signal queues (aka 1895 * CLONE_THREAD). 1896 */ 1897 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1898 if (!thread_group_empty(current)) 1899 return -EINVAL; 1900 } 1901 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 1902 if (atomic_read(¤t->sighand->count) > 1) 1903 return -EINVAL; 1904 } 1905 if (unshare_flags & CLONE_VM) { 1906 if (!current_is_single_threaded()) 1907 return -EINVAL; 1908 } 1909 1910 return 0; 1911 } 1912 1913 /* 1914 * Unshare the filesystem structure if it is being shared 1915 */ 1916 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1917 { 1918 struct fs_struct *fs = current->fs; 1919 1920 if (!(unshare_flags & CLONE_FS) || !fs) 1921 return 0; 1922 1923 /* don't need lock here; in the worst case we'll do useless copy */ 1924 if (fs->users == 1) 1925 return 0; 1926 1927 *new_fsp = copy_fs_struct(fs); 1928 if (!*new_fsp) 1929 return -ENOMEM; 1930 1931 return 0; 1932 } 1933 1934 /* 1935 * Unshare file descriptor table if it is being shared 1936 */ 1937 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1938 { 1939 struct files_struct *fd = current->files; 1940 int error = 0; 1941 1942 if ((unshare_flags & CLONE_FILES) && 1943 (fd && atomic_read(&fd->count) > 1)) { 1944 *new_fdp = dup_fd(fd, &error); 1945 if (!*new_fdp) 1946 return error; 1947 } 1948 1949 return 0; 1950 } 1951 1952 /* 1953 * unshare allows a process to 'unshare' part of the process 1954 * context which was originally shared using clone. copy_* 1955 * functions used by do_fork() cannot be used here directly 1956 * because they modify an inactive task_struct that is being 1957 * constructed. Here we are modifying the current, active, 1958 * task_struct. 1959 */ 1960 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1961 { 1962 struct fs_struct *fs, *new_fs = NULL; 1963 struct files_struct *fd, *new_fd = NULL; 1964 struct cred *new_cred = NULL; 1965 struct nsproxy *new_nsproxy = NULL; 1966 int do_sysvsem = 0; 1967 int err; 1968 1969 /* 1970 * If unsharing a user namespace must also unshare the thread group 1971 * and unshare the filesystem root and working directories. 1972 */ 1973 if (unshare_flags & CLONE_NEWUSER) 1974 unshare_flags |= CLONE_THREAD | CLONE_FS; 1975 /* 1976 * If unsharing vm, must also unshare signal handlers. 1977 */ 1978 if (unshare_flags & CLONE_VM) 1979 unshare_flags |= CLONE_SIGHAND; 1980 /* 1981 * If unsharing a signal handlers, must also unshare the signal queues. 1982 */ 1983 if (unshare_flags & CLONE_SIGHAND) 1984 unshare_flags |= CLONE_THREAD; 1985 /* 1986 * If unsharing namespace, must also unshare filesystem information. 1987 */ 1988 if (unshare_flags & CLONE_NEWNS) 1989 unshare_flags |= CLONE_FS; 1990 1991 err = check_unshare_flags(unshare_flags); 1992 if (err) 1993 goto bad_unshare_out; 1994 /* 1995 * CLONE_NEWIPC must also detach from the undolist: after switching 1996 * to a new ipc namespace, the semaphore arrays from the old 1997 * namespace are unreachable. 1998 */ 1999 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2000 do_sysvsem = 1; 2001 err = unshare_fs(unshare_flags, &new_fs); 2002 if (err) 2003 goto bad_unshare_out; 2004 err = unshare_fd(unshare_flags, &new_fd); 2005 if (err) 2006 goto bad_unshare_cleanup_fs; 2007 err = unshare_userns(unshare_flags, &new_cred); 2008 if (err) 2009 goto bad_unshare_cleanup_fd; 2010 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2011 new_cred, new_fs); 2012 if (err) 2013 goto bad_unshare_cleanup_cred; 2014 2015 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2016 if (do_sysvsem) { 2017 /* 2018 * CLONE_SYSVSEM is equivalent to sys_exit(). 2019 */ 2020 exit_sem(current); 2021 } 2022 if (unshare_flags & CLONE_NEWIPC) { 2023 /* Orphan segments in old ns (see sem above). */ 2024 exit_shm(current); 2025 shm_init_task(current); 2026 } 2027 2028 if (new_nsproxy) 2029 switch_task_namespaces(current, new_nsproxy); 2030 2031 task_lock(current); 2032 2033 if (new_fs) { 2034 fs = current->fs; 2035 spin_lock(&fs->lock); 2036 current->fs = new_fs; 2037 if (--fs->users) 2038 new_fs = NULL; 2039 else 2040 new_fs = fs; 2041 spin_unlock(&fs->lock); 2042 } 2043 2044 if (new_fd) { 2045 fd = current->files; 2046 current->files = new_fd; 2047 new_fd = fd; 2048 } 2049 2050 task_unlock(current); 2051 2052 if (new_cred) { 2053 /* Install the new user namespace */ 2054 commit_creds(new_cred); 2055 new_cred = NULL; 2056 } 2057 } 2058 2059 bad_unshare_cleanup_cred: 2060 if (new_cred) 2061 put_cred(new_cred); 2062 bad_unshare_cleanup_fd: 2063 if (new_fd) 2064 put_files_struct(new_fd); 2065 2066 bad_unshare_cleanup_fs: 2067 if (new_fs) 2068 free_fs_struct(new_fs); 2069 2070 bad_unshare_out: 2071 return err; 2072 } 2073 2074 /* 2075 * Helper to unshare the files of the current task. 2076 * We don't want to expose copy_files internals to 2077 * the exec layer of the kernel. 2078 */ 2079 2080 int unshare_files(struct files_struct **displaced) 2081 { 2082 struct task_struct *task = current; 2083 struct files_struct *copy = NULL; 2084 int error; 2085 2086 error = unshare_fd(CLONE_FILES, ©); 2087 if (error || !copy) { 2088 *displaced = NULL; 2089 return error; 2090 } 2091 *displaced = task->files; 2092 task_lock(task); 2093 task->files = copy; 2094 task_unlock(task); 2095 return 0; 2096 } 2097 2098 int sysctl_max_threads(struct ctl_table *table, int write, 2099 void __user *buffer, size_t *lenp, loff_t *ppos) 2100 { 2101 struct ctl_table t; 2102 int ret; 2103 int threads = max_threads; 2104 int min = MIN_THREADS; 2105 int max = MAX_THREADS; 2106 2107 t = *table; 2108 t.data = &threads; 2109 t.extra1 = &min; 2110 t.extra2 = &max; 2111 2112 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2113 if (ret || !write) 2114 return ret; 2115 2116 set_max_threads(threads); 2117 2118 return 0; 2119 } 2120