xref: /openbmc/linux/kernel/fork.c (revision b96fc2f3)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85 
86 #include <trace/events/sched.h>
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90 
91 /*
92  * Minimum number of threads to boot the kernel
93  */
94 #define MIN_THREADS 20
95 
96 /*
97  * Maximum number of threads
98  */
99 #define MAX_THREADS FUTEX_TID_MASK
100 
101 /*
102  * Protected counters by write_lock_irq(&tasklist_lock)
103  */
104 unsigned long total_forks;	/* Handle normal Linux uptimes. */
105 int nr_threads;			/* The idle threads do not count.. */
106 
107 int max_threads;		/* tunable limit on nr_threads */
108 
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110 
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
112 
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 	return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120 
121 int nr_processes(void)
122 {
123 	int cpu;
124 	int total = 0;
125 
126 	for_each_possible_cpu(cpu)
127 		total += per_cpu(process_counts, cpu);
128 
129 	return total;
130 }
131 
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135 
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138 
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143 
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 	kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149 
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153 
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155 
156 /*
157  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158  * kmemcache based allocator.
159  */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 						  int node)
163 {
164 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 						  THREAD_SIZE_ORDER);
166 
167 	return page ? page_address(page) : NULL;
168 }
169 
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 	free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176 
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 						  int node)
179 {
180 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182 
183 static void free_thread_info(struct thread_info *ti)
184 {
185 	kmem_cache_free(thread_info_cache, ti);
186 }
187 
188 void thread_info_cache_init(void)
189 {
190 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 					      THREAD_SIZE, 0, NULL);
192 	BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196 
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199 
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202 
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205 
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208 
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211 
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214 
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 	struct zone *zone = page_zone(virt_to_page(ti));
218 
219 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221 
222 void free_task(struct task_struct *tsk)
223 {
224 	account_kernel_stack(tsk->stack, -1);
225 	arch_release_thread_info(tsk->stack);
226 	free_thread_info(tsk->stack);
227 	rt_mutex_debug_task_free(tsk);
228 	ftrace_graph_exit_task(tsk);
229 	put_seccomp_filter(tsk);
230 	arch_release_task_struct(tsk);
231 	free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234 
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 	taskstats_tgid_free(sig);
238 	sched_autogroup_exit(sig);
239 	kmem_cache_free(signal_cachep, sig);
240 }
241 
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 	if (atomic_dec_and_test(&sig->sigcnt))
245 		free_signal_struct(sig);
246 }
247 
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 	WARN_ON(!tsk->exit_state);
251 	WARN_ON(atomic_read(&tsk->usage));
252 	WARN_ON(tsk == current);
253 
254 	task_numa_free(tsk);
255 	security_task_free(tsk);
256 	exit_creds(tsk);
257 	delayacct_tsk_free(tsk);
258 	put_signal_struct(tsk->signal);
259 
260 	if (!profile_handoff_task(tsk))
261 		free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264 
265 void __init __weak arch_task_cache_init(void) { }
266 
267 /*
268  * set_max_threads
269  */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 	u64 threads;
273 
274 	/*
275 	 * The number of threads shall be limited such that the thread
276 	 * structures may only consume a small part of the available memory.
277 	 */
278 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 		threads = MAX_THREADS;
280 	else
281 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 				    (u64) THREAD_SIZE * 8UL);
283 
284 	if (threads > max_threads_suggested)
285 		threads = max_threads_suggested;
286 
287 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289 
290 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
291 /* Initialized by the architecture: */
292 int arch_task_struct_size __read_mostly;
293 #endif
294 
295 void __init fork_init(void)
296 {
297 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
298 #ifndef ARCH_MIN_TASKALIGN
299 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
300 #endif
301 	/* create a slab on which task_structs can be allocated */
302 	task_struct_cachep =
303 		kmem_cache_create("task_struct", arch_task_struct_size,
304 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
305 #endif
306 
307 	/* do the arch specific task caches init */
308 	arch_task_cache_init();
309 
310 	set_max_threads(MAX_THREADS);
311 
312 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
313 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
314 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
315 		init_task.signal->rlim[RLIMIT_NPROC];
316 }
317 
318 int __weak arch_dup_task_struct(struct task_struct *dst,
319 					       struct task_struct *src)
320 {
321 	*dst = *src;
322 	return 0;
323 }
324 
325 void set_task_stack_end_magic(struct task_struct *tsk)
326 {
327 	unsigned long *stackend;
328 
329 	stackend = end_of_stack(tsk);
330 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
331 }
332 
333 static struct task_struct *dup_task_struct(struct task_struct *orig)
334 {
335 	struct task_struct *tsk;
336 	struct thread_info *ti;
337 	int node = tsk_fork_get_node(orig);
338 	int err;
339 
340 	tsk = alloc_task_struct_node(node);
341 	if (!tsk)
342 		return NULL;
343 
344 	ti = alloc_thread_info_node(tsk, node);
345 	if (!ti)
346 		goto free_tsk;
347 
348 	err = arch_dup_task_struct(tsk, orig);
349 	if (err)
350 		goto free_ti;
351 
352 	tsk->stack = ti;
353 #ifdef CONFIG_SECCOMP
354 	/*
355 	 * We must handle setting up seccomp filters once we're under
356 	 * the sighand lock in case orig has changed between now and
357 	 * then. Until then, filter must be NULL to avoid messing up
358 	 * the usage counts on the error path calling free_task.
359 	 */
360 	tsk->seccomp.filter = NULL;
361 #endif
362 
363 	setup_thread_stack(tsk, orig);
364 	clear_user_return_notifier(tsk);
365 	clear_tsk_need_resched(tsk);
366 	set_task_stack_end_magic(tsk);
367 
368 #ifdef CONFIG_CC_STACKPROTECTOR
369 	tsk->stack_canary = get_random_int();
370 #endif
371 
372 	/*
373 	 * One for us, one for whoever does the "release_task()" (usually
374 	 * parent)
375 	 */
376 	atomic_set(&tsk->usage, 2);
377 #ifdef CONFIG_BLK_DEV_IO_TRACE
378 	tsk->btrace_seq = 0;
379 #endif
380 	tsk->splice_pipe = NULL;
381 	tsk->task_frag.page = NULL;
382 
383 	account_kernel_stack(ti, 1);
384 
385 	return tsk;
386 
387 free_ti:
388 	free_thread_info(ti);
389 free_tsk:
390 	free_task_struct(tsk);
391 	return NULL;
392 }
393 
394 #ifdef CONFIG_MMU
395 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
396 {
397 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
398 	struct rb_node **rb_link, *rb_parent;
399 	int retval;
400 	unsigned long charge;
401 
402 	uprobe_start_dup_mmap();
403 	down_write(&oldmm->mmap_sem);
404 	flush_cache_dup_mm(oldmm);
405 	uprobe_dup_mmap(oldmm, mm);
406 	/*
407 	 * Not linked in yet - no deadlock potential:
408 	 */
409 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
410 
411 	/* No ordering required: file already has been exposed. */
412 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
413 
414 	mm->total_vm = oldmm->total_vm;
415 	mm->shared_vm = oldmm->shared_vm;
416 	mm->exec_vm = oldmm->exec_vm;
417 	mm->stack_vm = oldmm->stack_vm;
418 
419 	rb_link = &mm->mm_rb.rb_node;
420 	rb_parent = NULL;
421 	pprev = &mm->mmap;
422 	retval = ksm_fork(mm, oldmm);
423 	if (retval)
424 		goto out;
425 	retval = khugepaged_fork(mm, oldmm);
426 	if (retval)
427 		goto out;
428 
429 	prev = NULL;
430 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
431 		struct file *file;
432 
433 		if (mpnt->vm_flags & VM_DONTCOPY) {
434 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
435 							-vma_pages(mpnt));
436 			continue;
437 		}
438 		charge = 0;
439 		if (mpnt->vm_flags & VM_ACCOUNT) {
440 			unsigned long len = vma_pages(mpnt);
441 
442 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
443 				goto fail_nomem;
444 			charge = len;
445 		}
446 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
447 		if (!tmp)
448 			goto fail_nomem;
449 		*tmp = *mpnt;
450 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
451 		retval = vma_dup_policy(mpnt, tmp);
452 		if (retval)
453 			goto fail_nomem_policy;
454 		tmp->vm_mm = mm;
455 		if (anon_vma_fork(tmp, mpnt))
456 			goto fail_nomem_anon_vma_fork;
457 		tmp->vm_flags &= ~(VM_LOCKED|VM_UFFD_MISSING|VM_UFFD_WP);
458 		tmp->vm_next = tmp->vm_prev = NULL;
459 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
460 		file = tmp->vm_file;
461 		if (file) {
462 			struct inode *inode = file_inode(file);
463 			struct address_space *mapping = file->f_mapping;
464 
465 			get_file(file);
466 			if (tmp->vm_flags & VM_DENYWRITE)
467 				atomic_dec(&inode->i_writecount);
468 			i_mmap_lock_write(mapping);
469 			if (tmp->vm_flags & VM_SHARED)
470 				atomic_inc(&mapping->i_mmap_writable);
471 			flush_dcache_mmap_lock(mapping);
472 			/* insert tmp into the share list, just after mpnt */
473 			vma_interval_tree_insert_after(tmp, mpnt,
474 					&mapping->i_mmap);
475 			flush_dcache_mmap_unlock(mapping);
476 			i_mmap_unlock_write(mapping);
477 		}
478 
479 		/*
480 		 * Clear hugetlb-related page reserves for children. This only
481 		 * affects MAP_PRIVATE mappings. Faults generated by the child
482 		 * are not guaranteed to succeed, even if read-only
483 		 */
484 		if (is_vm_hugetlb_page(tmp))
485 			reset_vma_resv_huge_pages(tmp);
486 
487 		/*
488 		 * Link in the new vma and copy the page table entries.
489 		 */
490 		*pprev = tmp;
491 		pprev = &tmp->vm_next;
492 		tmp->vm_prev = prev;
493 		prev = tmp;
494 
495 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
496 		rb_link = &tmp->vm_rb.rb_right;
497 		rb_parent = &tmp->vm_rb;
498 
499 		mm->map_count++;
500 		retval = copy_page_range(mm, oldmm, mpnt);
501 
502 		if (tmp->vm_ops && tmp->vm_ops->open)
503 			tmp->vm_ops->open(tmp);
504 
505 		if (retval)
506 			goto out;
507 	}
508 	/* a new mm has just been created */
509 	arch_dup_mmap(oldmm, mm);
510 	retval = 0;
511 out:
512 	up_write(&mm->mmap_sem);
513 	flush_tlb_mm(oldmm);
514 	up_write(&oldmm->mmap_sem);
515 	uprobe_end_dup_mmap();
516 	return retval;
517 fail_nomem_anon_vma_fork:
518 	mpol_put(vma_policy(tmp));
519 fail_nomem_policy:
520 	kmem_cache_free(vm_area_cachep, tmp);
521 fail_nomem:
522 	retval = -ENOMEM;
523 	vm_unacct_memory(charge);
524 	goto out;
525 }
526 
527 static inline int mm_alloc_pgd(struct mm_struct *mm)
528 {
529 	mm->pgd = pgd_alloc(mm);
530 	if (unlikely(!mm->pgd))
531 		return -ENOMEM;
532 	return 0;
533 }
534 
535 static inline void mm_free_pgd(struct mm_struct *mm)
536 {
537 	pgd_free(mm, mm->pgd);
538 }
539 #else
540 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
541 {
542 	down_write(&oldmm->mmap_sem);
543 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
544 	up_write(&oldmm->mmap_sem);
545 	return 0;
546 }
547 #define mm_alloc_pgd(mm)	(0)
548 #define mm_free_pgd(mm)
549 #endif /* CONFIG_MMU */
550 
551 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
552 
553 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
554 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
555 
556 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
557 
558 static int __init coredump_filter_setup(char *s)
559 {
560 	default_dump_filter =
561 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
562 		MMF_DUMP_FILTER_MASK;
563 	return 1;
564 }
565 
566 __setup("coredump_filter=", coredump_filter_setup);
567 
568 #include <linux/init_task.h>
569 
570 static void mm_init_aio(struct mm_struct *mm)
571 {
572 #ifdef CONFIG_AIO
573 	spin_lock_init(&mm->ioctx_lock);
574 	mm->ioctx_table = NULL;
575 #endif
576 }
577 
578 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
579 {
580 #ifdef CONFIG_MEMCG
581 	mm->owner = p;
582 #endif
583 }
584 
585 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
586 {
587 	mm->mmap = NULL;
588 	mm->mm_rb = RB_ROOT;
589 	mm->vmacache_seqnum = 0;
590 	atomic_set(&mm->mm_users, 1);
591 	atomic_set(&mm->mm_count, 1);
592 	init_rwsem(&mm->mmap_sem);
593 	INIT_LIST_HEAD(&mm->mmlist);
594 	mm->core_state = NULL;
595 	atomic_long_set(&mm->nr_ptes, 0);
596 	mm_nr_pmds_init(mm);
597 	mm->map_count = 0;
598 	mm->locked_vm = 0;
599 	mm->pinned_vm = 0;
600 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
601 	spin_lock_init(&mm->page_table_lock);
602 	mm_init_cpumask(mm);
603 	mm_init_aio(mm);
604 	mm_init_owner(mm, p);
605 	mmu_notifier_mm_init(mm);
606 	clear_tlb_flush_pending(mm);
607 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
608 	mm->pmd_huge_pte = NULL;
609 #endif
610 
611 	if (current->mm) {
612 		mm->flags = current->mm->flags & MMF_INIT_MASK;
613 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
614 	} else {
615 		mm->flags = default_dump_filter;
616 		mm->def_flags = 0;
617 	}
618 
619 	if (mm_alloc_pgd(mm))
620 		goto fail_nopgd;
621 
622 	if (init_new_context(p, mm))
623 		goto fail_nocontext;
624 
625 	return mm;
626 
627 fail_nocontext:
628 	mm_free_pgd(mm);
629 fail_nopgd:
630 	free_mm(mm);
631 	return NULL;
632 }
633 
634 static void check_mm(struct mm_struct *mm)
635 {
636 	int i;
637 
638 	for (i = 0; i < NR_MM_COUNTERS; i++) {
639 		long x = atomic_long_read(&mm->rss_stat.count[i]);
640 
641 		if (unlikely(x))
642 			printk(KERN_ALERT "BUG: Bad rss-counter state "
643 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
644 	}
645 
646 	if (atomic_long_read(&mm->nr_ptes))
647 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
648 				atomic_long_read(&mm->nr_ptes));
649 	if (mm_nr_pmds(mm))
650 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
651 				mm_nr_pmds(mm));
652 
653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
654 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
655 #endif
656 }
657 
658 /*
659  * Allocate and initialize an mm_struct.
660  */
661 struct mm_struct *mm_alloc(void)
662 {
663 	struct mm_struct *mm;
664 
665 	mm = allocate_mm();
666 	if (!mm)
667 		return NULL;
668 
669 	memset(mm, 0, sizeof(*mm));
670 	return mm_init(mm, current);
671 }
672 
673 /*
674  * Called when the last reference to the mm
675  * is dropped: either by a lazy thread or by
676  * mmput. Free the page directory and the mm.
677  */
678 void __mmdrop(struct mm_struct *mm)
679 {
680 	BUG_ON(mm == &init_mm);
681 	mm_free_pgd(mm);
682 	destroy_context(mm);
683 	mmu_notifier_mm_destroy(mm);
684 	check_mm(mm);
685 	free_mm(mm);
686 }
687 EXPORT_SYMBOL_GPL(__mmdrop);
688 
689 /*
690  * Decrement the use count and release all resources for an mm.
691  */
692 void mmput(struct mm_struct *mm)
693 {
694 	might_sleep();
695 
696 	if (atomic_dec_and_test(&mm->mm_users)) {
697 		uprobe_clear_state(mm);
698 		exit_aio(mm);
699 		ksm_exit(mm);
700 		khugepaged_exit(mm); /* must run before exit_mmap */
701 		exit_mmap(mm);
702 		set_mm_exe_file(mm, NULL);
703 		if (!list_empty(&mm->mmlist)) {
704 			spin_lock(&mmlist_lock);
705 			list_del(&mm->mmlist);
706 			spin_unlock(&mmlist_lock);
707 		}
708 		if (mm->binfmt)
709 			module_put(mm->binfmt->module);
710 		mmdrop(mm);
711 	}
712 }
713 EXPORT_SYMBOL_GPL(mmput);
714 
715 /**
716  * set_mm_exe_file - change a reference to the mm's executable file
717  *
718  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
719  *
720  * Main users are mmput() and sys_execve(). Callers prevent concurrent
721  * invocations: in mmput() nobody alive left, in execve task is single
722  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
723  * mm->exe_file, but does so without using set_mm_exe_file() in order
724  * to do avoid the need for any locks.
725  */
726 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
727 {
728 	struct file *old_exe_file;
729 
730 	/*
731 	 * It is safe to dereference the exe_file without RCU as
732 	 * this function is only called if nobody else can access
733 	 * this mm -- see comment above for justification.
734 	 */
735 	old_exe_file = rcu_dereference_raw(mm->exe_file);
736 
737 	if (new_exe_file)
738 		get_file(new_exe_file);
739 	rcu_assign_pointer(mm->exe_file, new_exe_file);
740 	if (old_exe_file)
741 		fput(old_exe_file);
742 }
743 
744 /**
745  * get_mm_exe_file - acquire a reference to the mm's executable file
746  *
747  * Returns %NULL if mm has no associated executable file.
748  * User must release file via fput().
749  */
750 struct file *get_mm_exe_file(struct mm_struct *mm)
751 {
752 	struct file *exe_file;
753 
754 	rcu_read_lock();
755 	exe_file = rcu_dereference(mm->exe_file);
756 	if (exe_file && !get_file_rcu(exe_file))
757 		exe_file = NULL;
758 	rcu_read_unlock();
759 	return exe_file;
760 }
761 EXPORT_SYMBOL(get_mm_exe_file);
762 
763 /**
764  * get_task_mm - acquire a reference to the task's mm
765  *
766  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
767  * this kernel workthread has transiently adopted a user mm with use_mm,
768  * to do its AIO) is not set and if so returns a reference to it, after
769  * bumping up the use count.  User must release the mm via mmput()
770  * after use.  Typically used by /proc and ptrace.
771  */
772 struct mm_struct *get_task_mm(struct task_struct *task)
773 {
774 	struct mm_struct *mm;
775 
776 	task_lock(task);
777 	mm = task->mm;
778 	if (mm) {
779 		if (task->flags & PF_KTHREAD)
780 			mm = NULL;
781 		else
782 			atomic_inc(&mm->mm_users);
783 	}
784 	task_unlock(task);
785 	return mm;
786 }
787 EXPORT_SYMBOL_GPL(get_task_mm);
788 
789 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
790 {
791 	struct mm_struct *mm;
792 	int err;
793 
794 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
795 	if (err)
796 		return ERR_PTR(err);
797 
798 	mm = get_task_mm(task);
799 	if (mm && mm != current->mm &&
800 			!ptrace_may_access(task, mode)) {
801 		mmput(mm);
802 		mm = ERR_PTR(-EACCES);
803 	}
804 	mutex_unlock(&task->signal->cred_guard_mutex);
805 
806 	return mm;
807 }
808 
809 static void complete_vfork_done(struct task_struct *tsk)
810 {
811 	struct completion *vfork;
812 
813 	task_lock(tsk);
814 	vfork = tsk->vfork_done;
815 	if (likely(vfork)) {
816 		tsk->vfork_done = NULL;
817 		complete(vfork);
818 	}
819 	task_unlock(tsk);
820 }
821 
822 static int wait_for_vfork_done(struct task_struct *child,
823 				struct completion *vfork)
824 {
825 	int killed;
826 
827 	freezer_do_not_count();
828 	killed = wait_for_completion_killable(vfork);
829 	freezer_count();
830 
831 	if (killed) {
832 		task_lock(child);
833 		child->vfork_done = NULL;
834 		task_unlock(child);
835 	}
836 
837 	put_task_struct(child);
838 	return killed;
839 }
840 
841 /* Please note the differences between mmput and mm_release.
842  * mmput is called whenever we stop holding onto a mm_struct,
843  * error success whatever.
844  *
845  * mm_release is called after a mm_struct has been removed
846  * from the current process.
847  *
848  * This difference is important for error handling, when we
849  * only half set up a mm_struct for a new process and need to restore
850  * the old one.  Because we mmput the new mm_struct before
851  * restoring the old one. . .
852  * Eric Biederman 10 January 1998
853  */
854 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
855 {
856 	/* Get rid of any futexes when releasing the mm */
857 #ifdef CONFIG_FUTEX
858 	if (unlikely(tsk->robust_list)) {
859 		exit_robust_list(tsk);
860 		tsk->robust_list = NULL;
861 	}
862 #ifdef CONFIG_COMPAT
863 	if (unlikely(tsk->compat_robust_list)) {
864 		compat_exit_robust_list(tsk);
865 		tsk->compat_robust_list = NULL;
866 	}
867 #endif
868 	if (unlikely(!list_empty(&tsk->pi_state_list)))
869 		exit_pi_state_list(tsk);
870 #endif
871 
872 	uprobe_free_utask(tsk);
873 
874 	/* Get rid of any cached register state */
875 	deactivate_mm(tsk, mm);
876 
877 	/*
878 	 * If we're exiting normally, clear a user-space tid field if
879 	 * requested.  We leave this alone when dying by signal, to leave
880 	 * the value intact in a core dump, and to save the unnecessary
881 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
882 	 * Userland only wants this done for a sys_exit.
883 	 */
884 	if (tsk->clear_child_tid) {
885 		if (!(tsk->flags & PF_SIGNALED) &&
886 		    atomic_read(&mm->mm_users) > 1) {
887 			/*
888 			 * We don't check the error code - if userspace has
889 			 * not set up a proper pointer then tough luck.
890 			 */
891 			put_user(0, tsk->clear_child_tid);
892 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
893 					1, NULL, NULL, 0);
894 		}
895 		tsk->clear_child_tid = NULL;
896 	}
897 
898 	/*
899 	 * All done, finally we can wake up parent and return this mm to him.
900 	 * Also kthread_stop() uses this completion for synchronization.
901 	 */
902 	if (tsk->vfork_done)
903 		complete_vfork_done(tsk);
904 }
905 
906 /*
907  * Allocate a new mm structure and copy contents from the
908  * mm structure of the passed in task structure.
909  */
910 static struct mm_struct *dup_mm(struct task_struct *tsk)
911 {
912 	struct mm_struct *mm, *oldmm = current->mm;
913 	int err;
914 
915 	mm = allocate_mm();
916 	if (!mm)
917 		goto fail_nomem;
918 
919 	memcpy(mm, oldmm, sizeof(*mm));
920 
921 	if (!mm_init(mm, tsk))
922 		goto fail_nomem;
923 
924 	err = dup_mmap(mm, oldmm);
925 	if (err)
926 		goto free_pt;
927 
928 	mm->hiwater_rss = get_mm_rss(mm);
929 	mm->hiwater_vm = mm->total_vm;
930 
931 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
932 		goto free_pt;
933 
934 	return mm;
935 
936 free_pt:
937 	/* don't put binfmt in mmput, we haven't got module yet */
938 	mm->binfmt = NULL;
939 	mmput(mm);
940 
941 fail_nomem:
942 	return NULL;
943 }
944 
945 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
946 {
947 	struct mm_struct *mm, *oldmm;
948 	int retval;
949 
950 	tsk->min_flt = tsk->maj_flt = 0;
951 	tsk->nvcsw = tsk->nivcsw = 0;
952 #ifdef CONFIG_DETECT_HUNG_TASK
953 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
954 #endif
955 
956 	tsk->mm = NULL;
957 	tsk->active_mm = NULL;
958 
959 	/*
960 	 * Are we cloning a kernel thread?
961 	 *
962 	 * We need to steal a active VM for that..
963 	 */
964 	oldmm = current->mm;
965 	if (!oldmm)
966 		return 0;
967 
968 	/* initialize the new vmacache entries */
969 	vmacache_flush(tsk);
970 
971 	if (clone_flags & CLONE_VM) {
972 		atomic_inc(&oldmm->mm_users);
973 		mm = oldmm;
974 		goto good_mm;
975 	}
976 
977 	retval = -ENOMEM;
978 	mm = dup_mm(tsk);
979 	if (!mm)
980 		goto fail_nomem;
981 
982 good_mm:
983 	tsk->mm = mm;
984 	tsk->active_mm = mm;
985 	return 0;
986 
987 fail_nomem:
988 	return retval;
989 }
990 
991 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
992 {
993 	struct fs_struct *fs = current->fs;
994 	if (clone_flags & CLONE_FS) {
995 		/* tsk->fs is already what we want */
996 		spin_lock(&fs->lock);
997 		if (fs->in_exec) {
998 			spin_unlock(&fs->lock);
999 			return -EAGAIN;
1000 		}
1001 		fs->users++;
1002 		spin_unlock(&fs->lock);
1003 		return 0;
1004 	}
1005 	tsk->fs = copy_fs_struct(fs);
1006 	if (!tsk->fs)
1007 		return -ENOMEM;
1008 	return 0;
1009 }
1010 
1011 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1012 {
1013 	struct files_struct *oldf, *newf;
1014 	int error = 0;
1015 
1016 	/*
1017 	 * A background process may not have any files ...
1018 	 */
1019 	oldf = current->files;
1020 	if (!oldf)
1021 		goto out;
1022 
1023 	if (clone_flags & CLONE_FILES) {
1024 		atomic_inc(&oldf->count);
1025 		goto out;
1026 	}
1027 
1028 	newf = dup_fd(oldf, &error);
1029 	if (!newf)
1030 		goto out;
1031 
1032 	tsk->files = newf;
1033 	error = 0;
1034 out:
1035 	return error;
1036 }
1037 
1038 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1039 {
1040 #ifdef CONFIG_BLOCK
1041 	struct io_context *ioc = current->io_context;
1042 	struct io_context *new_ioc;
1043 
1044 	if (!ioc)
1045 		return 0;
1046 	/*
1047 	 * Share io context with parent, if CLONE_IO is set
1048 	 */
1049 	if (clone_flags & CLONE_IO) {
1050 		ioc_task_link(ioc);
1051 		tsk->io_context = ioc;
1052 	} else if (ioprio_valid(ioc->ioprio)) {
1053 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1054 		if (unlikely(!new_ioc))
1055 			return -ENOMEM;
1056 
1057 		new_ioc->ioprio = ioc->ioprio;
1058 		put_io_context(new_ioc);
1059 	}
1060 #endif
1061 	return 0;
1062 }
1063 
1064 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1065 {
1066 	struct sighand_struct *sig;
1067 
1068 	if (clone_flags & CLONE_SIGHAND) {
1069 		atomic_inc(&current->sighand->count);
1070 		return 0;
1071 	}
1072 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1073 	rcu_assign_pointer(tsk->sighand, sig);
1074 	if (!sig)
1075 		return -ENOMEM;
1076 
1077 	atomic_set(&sig->count, 1);
1078 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1079 	return 0;
1080 }
1081 
1082 void __cleanup_sighand(struct sighand_struct *sighand)
1083 {
1084 	if (atomic_dec_and_test(&sighand->count)) {
1085 		signalfd_cleanup(sighand);
1086 		/*
1087 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1088 		 * without an RCU grace period, see __lock_task_sighand().
1089 		 */
1090 		kmem_cache_free(sighand_cachep, sighand);
1091 	}
1092 }
1093 
1094 /*
1095  * Initialize POSIX timer handling for a thread group.
1096  */
1097 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1098 {
1099 	unsigned long cpu_limit;
1100 
1101 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1102 	if (cpu_limit != RLIM_INFINITY) {
1103 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1104 		sig->cputimer.running = 1;
1105 	}
1106 
1107 	/* The timer lists. */
1108 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1109 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1110 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1111 }
1112 
1113 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1114 {
1115 	struct signal_struct *sig;
1116 
1117 	if (clone_flags & CLONE_THREAD)
1118 		return 0;
1119 
1120 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1121 	tsk->signal = sig;
1122 	if (!sig)
1123 		return -ENOMEM;
1124 
1125 	sig->nr_threads = 1;
1126 	atomic_set(&sig->live, 1);
1127 	atomic_set(&sig->sigcnt, 1);
1128 
1129 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1130 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1131 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1132 
1133 	init_waitqueue_head(&sig->wait_chldexit);
1134 	sig->curr_target = tsk;
1135 	init_sigpending(&sig->shared_pending);
1136 	INIT_LIST_HEAD(&sig->posix_timers);
1137 	seqlock_init(&sig->stats_lock);
1138 	prev_cputime_init(&sig->prev_cputime);
1139 
1140 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 	sig->real_timer.function = it_real_fn;
1142 
1143 	task_lock(current->group_leader);
1144 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1145 	task_unlock(current->group_leader);
1146 
1147 	posix_cpu_timers_init_group(sig);
1148 
1149 	tty_audit_fork(sig);
1150 	sched_autogroup_fork(sig);
1151 
1152 #ifdef CONFIG_CGROUPS
1153 	init_rwsem(&sig->group_rwsem);
1154 #endif
1155 
1156 	sig->oom_score_adj = current->signal->oom_score_adj;
1157 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1158 
1159 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1160 				   current->signal->is_child_subreaper;
1161 
1162 	mutex_init(&sig->cred_guard_mutex);
1163 
1164 	return 0;
1165 }
1166 
1167 static void copy_seccomp(struct task_struct *p)
1168 {
1169 #ifdef CONFIG_SECCOMP
1170 	/*
1171 	 * Must be called with sighand->lock held, which is common to
1172 	 * all threads in the group. Holding cred_guard_mutex is not
1173 	 * needed because this new task is not yet running and cannot
1174 	 * be racing exec.
1175 	 */
1176 	assert_spin_locked(&current->sighand->siglock);
1177 
1178 	/* Ref-count the new filter user, and assign it. */
1179 	get_seccomp_filter(current);
1180 	p->seccomp = current->seccomp;
1181 
1182 	/*
1183 	 * Explicitly enable no_new_privs here in case it got set
1184 	 * between the task_struct being duplicated and holding the
1185 	 * sighand lock. The seccomp state and nnp must be in sync.
1186 	 */
1187 	if (task_no_new_privs(current))
1188 		task_set_no_new_privs(p);
1189 
1190 	/*
1191 	 * If the parent gained a seccomp mode after copying thread
1192 	 * flags and between before we held the sighand lock, we have
1193 	 * to manually enable the seccomp thread flag here.
1194 	 */
1195 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1196 		set_tsk_thread_flag(p, TIF_SECCOMP);
1197 #endif
1198 }
1199 
1200 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1201 {
1202 	current->clear_child_tid = tidptr;
1203 
1204 	return task_pid_vnr(current);
1205 }
1206 
1207 static void rt_mutex_init_task(struct task_struct *p)
1208 {
1209 	raw_spin_lock_init(&p->pi_lock);
1210 #ifdef CONFIG_RT_MUTEXES
1211 	p->pi_waiters = RB_ROOT;
1212 	p->pi_waiters_leftmost = NULL;
1213 	p->pi_blocked_on = NULL;
1214 #endif
1215 }
1216 
1217 /*
1218  * Initialize POSIX timer handling for a single task.
1219  */
1220 static void posix_cpu_timers_init(struct task_struct *tsk)
1221 {
1222 	tsk->cputime_expires.prof_exp = 0;
1223 	tsk->cputime_expires.virt_exp = 0;
1224 	tsk->cputime_expires.sched_exp = 0;
1225 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1226 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1227 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1228 }
1229 
1230 static inline void
1231 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1232 {
1233 	 task->pids[type].pid = pid;
1234 }
1235 
1236 /*
1237  * This creates a new process as a copy of the old one,
1238  * but does not actually start it yet.
1239  *
1240  * It copies the registers, and all the appropriate
1241  * parts of the process environment (as per the clone
1242  * flags). The actual kick-off is left to the caller.
1243  */
1244 static struct task_struct *copy_process(unsigned long clone_flags,
1245 					unsigned long stack_start,
1246 					unsigned long stack_size,
1247 					int __user *child_tidptr,
1248 					struct pid *pid,
1249 					int trace,
1250 					unsigned long tls)
1251 {
1252 	int retval;
1253 	struct task_struct *p;
1254 	void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1255 
1256 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1257 		return ERR_PTR(-EINVAL);
1258 
1259 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1260 		return ERR_PTR(-EINVAL);
1261 
1262 	/*
1263 	 * Thread groups must share signals as well, and detached threads
1264 	 * can only be started up within the thread group.
1265 	 */
1266 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1267 		return ERR_PTR(-EINVAL);
1268 
1269 	/*
1270 	 * Shared signal handlers imply shared VM. By way of the above,
1271 	 * thread groups also imply shared VM. Blocking this case allows
1272 	 * for various simplifications in other code.
1273 	 */
1274 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1275 		return ERR_PTR(-EINVAL);
1276 
1277 	/*
1278 	 * Siblings of global init remain as zombies on exit since they are
1279 	 * not reaped by their parent (swapper). To solve this and to avoid
1280 	 * multi-rooted process trees, prevent global and container-inits
1281 	 * from creating siblings.
1282 	 */
1283 	if ((clone_flags & CLONE_PARENT) &&
1284 				current->signal->flags & SIGNAL_UNKILLABLE)
1285 		return ERR_PTR(-EINVAL);
1286 
1287 	/*
1288 	 * If the new process will be in a different pid or user namespace
1289 	 * do not allow it to share a thread group with the forking task.
1290 	 */
1291 	if (clone_flags & CLONE_THREAD) {
1292 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1293 		    (task_active_pid_ns(current) !=
1294 				current->nsproxy->pid_ns_for_children))
1295 			return ERR_PTR(-EINVAL);
1296 	}
1297 
1298 	retval = security_task_create(clone_flags);
1299 	if (retval)
1300 		goto fork_out;
1301 
1302 	retval = -ENOMEM;
1303 	p = dup_task_struct(current);
1304 	if (!p)
1305 		goto fork_out;
1306 
1307 	ftrace_graph_init_task(p);
1308 
1309 	rt_mutex_init_task(p);
1310 
1311 #ifdef CONFIG_PROVE_LOCKING
1312 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1313 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1314 #endif
1315 	retval = -EAGAIN;
1316 	if (atomic_read(&p->real_cred->user->processes) >=
1317 			task_rlimit(p, RLIMIT_NPROC)) {
1318 		if (p->real_cred->user != INIT_USER &&
1319 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1320 			goto bad_fork_free;
1321 	}
1322 	current->flags &= ~PF_NPROC_EXCEEDED;
1323 
1324 	retval = copy_creds(p, clone_flags);
1325 	if (retval < 0)
1326 		goto bad_fork_free;
1327 
1328 	/*
1329 	 * If multiple threads are within copy_process(), then this check
1330 	 * triggers too late. This doesn't hurt, the check is only there
1331 	 * to stop root fork bombs.
1332 	 */
1333 	retval = -EAGAIN;
1334 	if (nr_threads >= max_threads)
1335 		goto bad_fork_cleanup_count;
1336 
1337 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1338 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1339 	p->flags |= PF_FORKNOEXEC;
1340 	INIT_LIST_HEAD(&p->children);
1341 	INIT_LIST_HEAD(&p->sibling);
1342 	rcu_copy_process(p);
1343 	p->vfork_done = NULL;
1344 	spin_lock_init(&p->alloc_lock);
1345 
1346 	init_sigpending(&p->pending);
1347 
1348 	p->utime = p->stime = p->gtime = 0;
1349 	p->utimescaled = p->stimescaled = 0;
1350 	prev_cputime_init(&p->prev_cputime);
1351 
1352 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1353 	seqlock_init(&p->vtime_seqlock);
1354 	p->vtime_snap = 0;
1355 	p->vtime_snap_whence = VTIME_SLEEPING;
1356 #endif
1357 
1358 #if defined(SPLIT_RSS_COUNTING)
1359 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1360 #endif
1361 
1362 	p->default_timer_slack_ns = current->timer_slack_ns;
1363 
1364 	task_io_accounting_init(&p->ioac);
1365 	acct_clear_integrals(p);
1366 
1367 	posix_cpu_timers_init(p);
1368 
1369 	p->start_time = ktime_get_ns();
1370 	p->real_start_time = ktime_get_boot_ns();
1371 	p->io_context = NULL;
1372 	p->audit_context = NULL;
1373 	if (clone_flags & CLONE_THREAD)
1374 		threadgroup_change_begin(current);
1375 	cgroup_fork(p);
1376 #ifdef CONFIG_NUMA
1377 	p->mempolicy = mpol_dup(p->mempolicy);
1378 	if (IS_ERR(p->mempolicy)) {
1379 		retval = PTR_ERR(p->mempolicy);
1380 		p->mempolicy = NULL;
1381 		goto bad_fork_cleanup_threadgroup_lock;
1382 	}
1383 #endif
1384 #ifdef CONFIG_CPUSETS
1385 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1386 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1387 	seqcount_init(&p->mems_allowed_seq);
1388 #endif
1389 #ifdef CONFIG_TRACE_IRQFLAGS
1390 	p->irq_events = 0;
1391 	p->hardirqs_enabled = 0;
1392 	p->hardirq_enable_ip = 0;
1393 	p->hardirq_enable_event = 0;
1394 	p->hardirq_disable_ip = _THIS_IP_;
1395 	p->hardirq_disable_event = 0;
1396 	p->softirqs_enabled = 1;
1397 	p->softirq_enable_ip = _THIS_IP_;
1398 	p->softirq_enable_event = 0;
1399 	p->softirq_disable_ip = 0;
1400 	p->softirq_disable_event = 0;
1401 	p->hardirq_context = 0;
1402 	p->softirq_context = 0;
1403 #endif
1404 
1405 	p->pagefault_disabled = 0;
1406 
1407 #ifdef CONFIG_LOCKDEP
1408 	p->lockdep_depth = 0; /* no locks held yet */
1409 	p->curr_chain_key = 0;
1410 	p->lockdep_recursion = 0;
1411 #endif
1412 
1413 #ifdef CONFIG_DEBUG_MUTEXES
1414 	p->blocked_on = NULL; /* not blocked yet */
1415 #endif
1416 #ifdef CONFIG_BCACHE
1417 	p->sequential_io	= 0;
1418 	p->sequential_io_avg	= 0;
1419 #endif
1420 
1421 	/* Perform scheduler related setup. Assign this task to a CPU. */
1422 	retval = sched_fork(clone_flags, p);
1423 	if (retval)
1424 		goto bad_fork_cleanup_policy;
1425 
1426 	retval = perf_event_init_task(p);
1427 	if (retval)
1428 		goto bad_fork_cleanup_policy;
1429 	retval = audit_alloc(p);
1430 	if (retval)
1431 		goto bad_fork_cleanup_perf;
1432 	/* copy all the process information */
1433 	shm_init_task(p);
1434 	retval = copy_semundo(clone_flags, p);
1435 	if (retval)
1436 		goto bad_fork_cleanup_audit;
1437 	retval = copy_files(clone_flags, p);
1438 	if (retval)
1439 		goto bad_fork_cleanup_semundo;
1440 	retval = copy_fs(clone_flags, p);
1441 	if (retval)
1442 		goto bad_fork_cleanup_files;
1443 	retval = copy_sighand(clone_flags, p);
1444 	if (retval)
1445 		goto bad_fork_cleanup_fs;
1446 	retval = copy_signal(clone_flags, p);
1447 	if (retval)
1448 		goto bad_fork_cleanup_sighand;
1449 	retval = copy_mm(clone_flags, p);
1450 	if (retval)
1451 		goto bad_fork_cleanup_signal;
1452 	retval = copy_namespaces(clone_flags, p);
1453 	if (retval)
1454 		goto bad_fork_cleanup_mm;
1455 	retval = copy_io(clone_flags, p);
1456 	if (retval)
1457 		goto bad_fork_cleanup_namespaces;
1458 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1459 	if (retval)
1460 		goto bad_fork_cleanup_io;
1461 
1462 	if (pid != &init_struct_pid) {
1463 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1464 		if (IS_ERR(pid)) {
1465 			retval = PTR_ERR(pid);
1466 			goto bad_fork_cleanup_io;
1467 		}
1468 	}
1469 
1470 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1471 	/*
1472 	 * Clear TID on mm_release()?
1473 	 */
1474 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1475 #ifdef CONFIG_BLOCK
1476 	p->plug = NULL;
1477 #endif
1478 #ifdef CONFIG_FUTEX
1479 	p->robust_list = NULL;
1480 #ifdef CONFIG_COMPAT
1481 	p->compat_robust_list = NULL;
1482 #endif
1483 	INIT_LIST_HEAD(&p->pi_state_list);
1484 	p->pi_state_cache = NULL;
1485 #endif
1486 	/*
1487 	 * sigaltstack should be cleared when sharing the same VM
1488 	 */
1489 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1490 		p->sas_ss_sp = p->sas_ss_size = 0;
1491 
1492 	/*
1493 	 * Syscall tracing and stepping should be turned off in the
1494 	 * child regardless of CLONE_PTRACE.
1495 	 */
1496 	user_disable_single_step(p);
1497 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1498 #ifdef TIF_SYSCALL_EMU
1499 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1500 #endif
1501 	clear_all_latency_tracing(p);
1502 
1503 	/* ok, now we should be set up.. */
1504 	p->pid = pid_nr(pid);
1505 	if (clone_flags & CLONE_THREAD) {
1506 		p->exit_signal = -1;
1507 		p->group_leader = current->group_leader;
1508 		p->tgid = current->tgid;
1509 	} else {
1510 		if (clone_flags & CLONE_PARENT)
1511 			p->exit_signal = current->group_leader->exit_signal;
1512 		else
1513 			p->exit_signal = (clone_flags & CSIGNAL);
1514 		p->group_leader = p;
1515 		p->tgid = p->pid;
1516 	}
1517 
1518 	p->nr_dirtied = 0;
1519 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1520 	p->dirty_paused_when = 0;
1521 
1522 	p->pdeath_signal = 0;
1523 	INIT_LIST_HEAD(&p->thread_group);
1524 	p->task_works = NULL;
1525 
1526 	/*
1527 	 * Ensure that the cgroup subsystem policies allow the new process to be
1528 	 * forked. It should be noted the the new process's css_set can be changed
1529 	 * between here and cgroup_post_fork() if an organisation operation is in
1530 	 * progress.
1531 	 */
1532 	retval = cgroup_can_fork(p, cgrp_ss_priv);
1533 	if (retval)
1534 		goto bad_fork_free_pid;
1535 
1536 	/*
1537 	 * Make it visible to the rest of the system, but dont wake it up yet.
1538 	 * Need tasklist lock for parent etc handling!
1539 	 */
1540 	write_lock_irq(&tasklist_lock);
1541 
1542 	/* CLONE_PARENT re-uses the old parent */
1543 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1544 		p->real_parent = current->real_parent;
1545 		p->parent_exec_id = current->parent_exec_id;
1546 	} else {
1547 		p->real_parent = current;
1548 		p->parent_exec_id = current->self_exec_id;
1549 	}
1550 
1551 	spin_lock(&current->sighand->siglock);
1552 
1553 	/*
1554 	 * Copy seccomp details explicitly here, in case they were changed
1555 	 * before holding sighand lock.
1556 	 */
1557 	copy_seccomp(p);
1558 
1559 	/*
1560 	 * Process group and session signals need to be delivered to just the
1561 	 * parent before the fork or both the parent and the child after the
1562 	 * fork. Restart if a signal comes in before we add the new process to
1563 	 * it's process group.
1564 	 * A fatal signal pending means that current will exit, so the new
1565 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1566 	*/
1567 	recalc_sigpending();
1568 	if (signal_pending(current)) {
1569 		spin_unlock(&current->sighand->siglock);
1570 		write_unlock_irq(&tasklist_lock);
1571 		retval = -ERESTARTNOINTR;
1572 		goto bad_fork_cancel_cgroup;
1573 	}
1574 
1575 	if (likely(p->pid)) {
1576 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1577 
1578 		init_task_pid(p, PIDTYPE_PID, pid);
1579 		if (thread_group_leader(p)) {
1580 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1581 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1582 
1583 			if (is_child_reaper(pid)) {
1584 				ns_of_pid(pid)->child_reaper = p;
1585 				p->signal->flags |= SIGNAL_UNKILLABLE;
1586 			}
1587 
1588 			p->signal->leader_pid = pid;
1589 			p->signal->tty = tty_kref_get(current->signal->tty);
1590 			list_add_tail(&p->sibling, &p->real_parent->children);
1591 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1592 			attach_pid(p, PIDTYPE_PGID);
1593 			attach_pid(p, PIDTYPE_SID);
1594 			__this_cpu_inc(process_counts);
1595 		} else {
1596 			current->signal->nr_threads++;
1597 			atomic_inc(&current->signal->live);
1598 			atomic_inc(&current->signal->sigcnt);
1599 			list_add_tail_rcu(&p->thread_group,
1600 					  &p->group_leader->thread_group);
1601 			list_add_tail_rcu(&p->thread_node,
1602 					  &p->signal->thread_head);
1603 		}
1604 		attach_pid(p, PIDTYPE_PID);
1605 		nr_threads++;
1606 	}
1607 
1608 	total_forks++;
1609 	spin_unlock(&current->sighand->siglock);
1610 	syscall_tracepoint_update(p);
1611 	write_unlock_irq(&tasklist_lock);
1612 
1613 	proc_fork_connector(p);
1614 	cgroup_post_fork(p, cgrp_ss_priv);
1615 	if (clone_flags & CLONE_THREAD)
1616 		threadgroup_change_end(current);
1617 	perf_event_fork(p);
1618 
1619 	trace_task_newtask(p, clone_flags);
1620 	uprobe_copy_process(p, clone_flags);
1621 
1622 	return p;
1623 
1624 bad_fork_cancel_cgroup:
1625 	cgroup_cancel_fork(p, cgrp_ss_priv);
1626 bad_fork_free_pid:
1627 	if (pid != &init_struct_pid)
1628 		free_pid(pid);
1629 bad_fork_cleanup_io:
1630 	if (p->io_context)
1631 		exit_io_context(p);
1632 bad_fork_cleanup_namespaces:
1633 	exit_task_namespaces(p);
1634 bad_fork_cleanup_mm:
1635 	if (p->mm)
1636 		mmput(p->mm);
1637 bad_fork_cleanup_signal:
1638 	if (!(clone_flags & CLONE_THREAD))
1639 		free_signal_struct(p->signal);
1640 bad_fork_cleanup_sighand:
1641 	__cleanup_sighand(p->sighand);
1642 bad_fork_cleanup_fs:
1643 	exit_fs(p); /* blocking */
1644 bad_fork_cleanup_files:
1645 	exit_files(p); /* blocking */
1646 bad_fork_cleanup_semundo:
1647 	exit_sem(p);
1648 bad_fork_cleanup_audit:
1649 	audit_free(p);
1650 bad_fork_cleanup_perf:
1651 	perf_event_free_task(p);
1652 bad_fork_cleanup_policy:
1653 #ifdef CONFIG_NUMA
1654 	mpol_put(p->mempolicy);
1655 bad_fork_cleanup_threadgroup_lock:
1656 #endif
1657 	if (clone_flags & CLONE_THREAD)
1658 		threadgroup_change_end(current);
1659 	delayacct_tsk_free(p);
1660 bad_fork_cleanup_count:
1661 	atomic_dec(&p->cred->user->processes);
1662 	exit_creds(p);
1663 bad_fork_free:
1664 	free_task(p);
1665 fork_out:
1666 	return ERR_PTR(retval);
1667 }
1668 
1669 static inline void init_idle_pids(struct pid_link *links)
1670 {
1671 	enum pid_type type;
1672 
1673 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1674 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1675 		links[type].pid = &init_struct_pid;
1676 	}
1677 }
1678 
1679 struct task_struct *fork_idle(int cpu)
1680 {
1681 	struct task_struct *task;
1682 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1683 	if (!IS_ERR(task)) {
1684 		init_idle_pids(task->pids);
1685 		init_idle(task, cpu);
1686 	}
1687 
1688 	return task;
1689 }
1690 
1691 /*
1692  *  Ok, this is the main fork-routine.
1693  *
1694  * It copies the process, and if successful kick-starts
1695  * it and waits for it to finish using the VM if required.
1696  */
1697 long _do_fork(unsigned long clone_flags,
1698 	      unsigned long stack_start,
1699 	      unsigned long stack_size,
1700 	      int __user *parent_tidptr,
1701 	      int __user *child_tidptr,
1702 	      unsigned long tls)
1703 {
1704 	struct task_struct *p;
1705 	int trace = 0;
1706 	long nr;
1707 
1708 	/*
1709 	 * Determine whether and which event to report to ptracer.  When
1710 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1711 	 * requested, no event is reported; otherwise, report if the event
1712 	 * for the type of forking is enabled.
1713 	 */
1714 	if (!(clone_flags & CLONE_UNTRACED)) {
1715 		if (clone_flags & CLONE_VFORK)
1716 			trace = PTRACE_EVENT_VFORK;
1717 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1718 			trace = PTRACE_EVENT_CLONE;
1719 		else
1720 			trace = PTRACE_EVENT_FORK;
1721 
1722 		if (likely(!ptrace_event_enabled(current, trace)))
1723 			trace = 0;
1724 	}
1725 
1726 	p = copy_process(clone_flags, stack_start, stack_size,
1727 			 child_tidptr, NULL, trace, tls);
1728 	/*
1729 	 * Do this prior waking up the new thread - the thread pointer
1730 	 * might get invalid after that point, if the thread exits quickly.
1731 	 */
1732 	if (!IS_ERR(p)) {
1733 		struct completion vfork;
1734 		struct pid *pid;
1735 
1736 		trace_sched_process_fork(current, p);
1737 
1738 		pid = get_task_pid(p, PIDTYPE_PID);
1739 		nr = pid_vnr(pid);
1740 
1741 		if (clone_flags & CLONE_PARENT_SETTID)
1742 			put_user(nr, parent_tidptr);
1743 
1744 		if (clone_flags & CLONE_VFORK) {
1745 			p->vfork_done = &vfork;
1746 			init_completion(&vfork);
1747 			get_task_struct(p);
1748 		}
1749 
1750 		wake_up_new_task(p);
1751 
1752 		/* forking complete and child started to run, tell ptracer */
1753 		if (unlikely(trace))
1754 			ptrace_event_pid(trace, pid);
1755 
1756 		if (clone_flags & CLONE_VFORK) {
1757 			if (!wait_for_vfork_done(p, &vfork))
1758 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1759 		}
1760 
1761 		put_pid(pid);
1762 	} else {
1763 		nr = PTR_ERR(p);
1764 	}
1765 	return nr;
1766 }
1767 
1768 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1769 /* For compatibility with architectures that call do_fork directly rather than
1770  * using the syscall entry points below. */
1771 long do_fork(unsigned long clone_flags,
1772 	      unsigned long stack_start,
1773 	      unsigned long stack_size,
1774 	      int __user *parent_tidptr,
1775 	      int __user *child_tidptr)
1776 {
1777 	return _do_fork(clone_flags, stack_start, stack_size,
1778 			parent_tidptr, child_tidptr, 0);
1779 }
1780 #endif
1781 
1782 /*
1783  * Create a kernel thread.
1784  */
1785 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1786 {
1787 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1788 		(unsigned long)arg, NULL, NULL, 0);
1789 }
1790 
1791 #ifdef __ARCH_WANT_SYS_FORK
1792 SYSCALL_DEFINE0(fork)
1793 {
1794 #ifdef CONFIG_MMU
1795 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1796 #else
1797 	/* can not support in nommu mode */
1798 	return -EINVAL;
1799 #endif
1800 }
1801 #endif
1802 
1803 #ifdef __ARCH_WANT_SYS_VFORK
1804 SYSCALL_DEFINE0(vfork)
1805 {
1806 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1807 			0, NULL, NULL, 0);
1808 }
1809 #endif
1810 
1811 #ifdef __ARCH_WANT_SYS_CLONE
1812 #ifdef CONFIG_CLONE_BACKWARDS
1813 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1814 		 int __user *, parent_tidptr,
1815 		 unsigned long, tls,
1816 		 int __user *, child_tidptr)
1817 #elif defined(CONFIG_CLONE_BACKWARDS2)
1818 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1819 		 int __user *, parent_tidptr,
1820 		 int __user *, child_tidptr,
1821 		 unsigned long, tls)
1822 #elif defined(CONFIG_CLONE_BACKWARDS3)
1823 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1824 		int, stack_size,
1825 		int __user *, parent_tidptr,
1826 		int __user *, child_tidptr,
1827 		unsigned long, tls)
1828 #else
1829 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1830 		 int __user *, parent_tidptr,
1831 		 int __user *, child_tidptr,
1832 		 unsigned long, tls)
1833 #endif
1834 {
1835 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1836 }
1837 #endif
1838 
1839 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1840 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1841 #endif
1842 
1843 static void sighand_ctor(void *data)
1844 {
1845 	struct sighand_struct *sighand = data;
1846 
1847 	spin_lock_init(&sighand->siglock);
1848 	init_waitqueue_head(&sighand->signalfd_wqh);
1849 }
1850 
1851 void __init proc_caches_init(void)
1852 {
1853 	sighand_cachep = kmem_cache_create("sighand_cache",
1854 			sizeof(struct sighand_struct), 0,
1855 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1856 			SLAB_NOTRACK, sighand_ctor);
1857 	signal_cachep = kmem_cache_create("signal_cache",
1858 			sizeof(struct signal_struct), 0,
1859 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1860 	files_cachep = kmem_cache_create("files_cache",
1861 			sizeof(struct files_struct), 0,
1862 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1863 	fs_cachep = kmem_cache_create("fs_cache",
1864 			sizeof(struct fs_struct), 0,
1865 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1866 	/*
1867 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1868 	 * whole struct cpumask for the OFFSTACK case. We could change
1869 	 * this to *only* allocate as much of it as required by the
1870 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1871 	 * is at the end of the structure, exactly for that reason.
1872 	 */
1873 	mm_cachep = kmem_cache_create("mm_struct",
1874 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1875 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1876 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1877 	mmap_init();
1878 	nsproxy_cache_init();
1879 }
1880 
1881 /*
1882  * Check constraints on flags passed to the unshare system call.
1883  */
1884 static int check_unshare_flags(unsigned long unshare_flags)
1885 {
1886 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1887 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1888 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1889 				CLONE_NEWUSER|CLONE_NEWPID))
1890 		return -EINVAL;
1891 	/*
1892 	 * Not implemented, but pretend it works if there is nothing
1893 	 * to unshare.  Note that unsharing the address space or the
1894 	 * signal handlers also need to unshare the signal queues (aka
1895 	 * CLONE_THREAD).
1896 	 */
1897 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1898 		if (!thread_group_empty(current))
1899 			return -EINVAL;
1900 	}
1901 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1902 		if (atomic_read(&current->sighand->count) > 1)
1903 			return -EINVAL;
1904 	}
1905 	if (unshare_flags & CLONE_VM) {
1906 		if (!current_is_single_threaded())
1907 			return -EINVAL;
1908 	}
1909 
1910 	return 0;
1911 }
1912 
1913 /*
1914  * Unshare the filesystem structure if it is being shared
1915  */
1916 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1917 {
1918 	struct fs_struct *fs = current->fs;
1919 
1920 	if (!(unshare_flags & CLONE_FS) || !fs)
1921 		return 0;
1922 
1923 	/* don't need lock here; in the worst case we'll do useless copy */
1924 	if (fs->users == 1)
1925 		return 0;
1926 
1927 	*new_fsp = copy_fs_struct(fs);
1928 	if (!*new_fsp)
1929 		return -ENOMEM;
1930 
1931 	return 0;
1932 }
1933 
1934 /*
1935  * Unshare file descriptor table if it is being shared
1936  */
1937 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1938 {
1939 	struct files_struct *fd = current->files;
1940 	int error = 0;
1941 
1942 	if ((unshare_flags & CLONE_FILES) &&
1943 	    (fd && atomic_read(&fd->count) > 1)) {
1944 		*new_fdp = dup_fd(fd, &error);
1945 		if (!*new_fdp)
1946 			return error;
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 /*
1953  * unshare allows a process to 'unshare' part of the process
1954  * context which was originally shared using clone.  copy_*
1955  * functions used by do_fork() cannot be used here directly
1956  * because they modify an inactive task_struct that is being
1957  * constructed. Here we are modifying the current, active,
1958  * task_struct.
1959  */
1960 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1961 {
1962 	struct fs_struct *fs, *new_fs = NULL;
1963 	struct files_struct *fd, *new_fd = NULL;
1964 	struct cred *new_cred = NULL;
1965 	struct nsproxy *new_nsproxy = NULL;
1966 	int do_sysvsem = 0;
1967 	int err;
1968 
1969 	/*
1970 	 * If unsharing a user namespace must also unshare the thread group
1971 	 * and unshare the filesystem root and working directories.
1972 	 */
1973 	if (unshare_flags & CLONE_NEWUSER)
1974 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1975 	/*
1976 	 * If unsharing vm, must also unshare signal handlers.
1977 	 */
1978 	if (unshare_flags & CLONE_VM)
1979 		unshare_flags |= CLONE_SIGHAND;
1980 	/*
1981 	 * If unsharing a signal handlers, must also unshare the signal queues.
1982 	 */
1983 	if (unshare_flags & CLONE_SIGHAND)
1984 		unshare_flags |= CLONE_THREAD;
1985 	/*
1986 	 * If unsharing namespace, must also unshare filesystem information.
1987 	 */
1988 	if (unshare_flags & CLONE_NEWNS)
1989 		unshare_flags |= CLONE_FS;
1990 
1991 	err = check_unshare_flags(unshare_flags);
1992 	if (err)
1993 		goto bad_unshare_out;
1994 	/*
1995 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1996 	 * to a new ipc namespace, the semaphore arrays from the old
1997 	 * namespace are unreachable.
1998 	 */
1999 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2000 		do_sysvsem = 1;
2001 	err = unshare_fs(unshare_flags, &new_fs);
2002 	if (err)
2003 		goto bad_unshare_out;
2004 	err = unshare_fd(unshare_flags, &new_fd);
2005 	if (err)
2006 		goto bad_unshare_cleanup_fs;
2007 	err = unshare_userns(unshare_flags, &new_cred);
2008 	if (err)
2009 		goto bad_unshare_cleanup_fd;
2010 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2011 					 new_cred, new_fs);
2012 	if (err)
2013 		goto bad_unshare_cleanup_cred;
2014 
2015 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2016 		if (do_sysvsem) {
2017 			/*
2018 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2019 			 */
2020 			exit_sem(current);
2021 		}
2022 		if (unshare_flags & CLONE_NEWIPC) {
2023 			/* Orphan segments in old ns (see sem above). */
2024 			exit_shm(current);
2025 			shm_init_task(current);
2026 		}
2027 
2028 		if (new_nsproxy)
2029 			switch_task_namespaces(current, new_nsproxy);
2030 
2031 		task_lock(current);
2032 
2033 		if (new_fs) {
2034 			fs = current->fs;
2035 			spin_lock(&fs->lock);
2036 			current->fs = new_fs;
2037 			if (--fs->users)
2038 				new_fs = NULL;
2039 			else
2040 				new_fs = fs;
2041 			spin_unlock(&fs->lock);
2042 		}
2043 
2044 		if (new_fd) {
2045 			fd = current->files;
2046 			current->files = new_fd;
2047 			new_fd = fd;
2048 		}
2049 
2050 		task_unlock(current);
2051 
2052 		if (new_cred) {
2053 			/* Install the new user namespace */
2054 			commit_creds(new_cred);
2055 			new_cred = NULL;
2056 		}
2057 	}
2058 
2059 bad_unshare_cleanup_cred:
2060 	if (new_cred)
2061 		put_cred(new_cred);
2062 bad_unshare_cleanup_fd:
2063 	if (new_fd)
2064 		put_files_struct(new_fd);
2065 
2066 bad_unshare_cleanup_fs:
2067 	if (new_fs)
2068 		free_fs_struct(new_fs);
2069 
2070 bad_unshare_out:
2071 	return err;
2072 }
2073 
2074 /*
2075  *	Helper to unshare the files of the current task.
2076  *	We don't want to expose copy_files internals to
2077  *	the exec layer of the kernel.
2078  */
2079 
2080 int unshare_files(struct files_struct **displaced)
2081 {
2082 	struct task_struct *task = current;
2083 	struct files_struct *copy = NULL;
2084 	int error;
2085 
2086 	error = unshare_fd(CLONE_FILES, &copy);
2087 	if (error || !copy) {
2088 		*displaced = NULL;
2089 		return error;
2090 	}
2091 	*displaced = task->files;
2092 	task_lock(task);
2093 	task->files = copy;
2094 	task_unlock(task);
2095 	return 0;
2096 }
2097 
2098 int sysctl_max_threads(struct ctl_table *table, int write,
2099 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2100 {
2101 	struct ctl_table t;
2102 	int ret;
2103 	int threads = max_threads;
2104 	int min = MIN_THREADS;
2105 	int max = MAX_THREADS;
2106 
2107 	t = *table;
2108 	t.data = &threads;
2109 	t.extra1 = &min;
2110 	t.extra2 = &max;
2111 
2112 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2113 	if (ret || !write)
2114 		return ret;
2115 
2116 	set_max_threads(threads);
2117 
2118 	return 0;
2119 }
2120