1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/hmm.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/blkdev.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 98 #include <asm/pgtable.h> 99 #include <asm/pgalloc.h> 100 #include <linux/uaccess.h> 101 #include <asm/mmu_context.h> 102 #include <asm/cacheflush.h> 103 #include <asm/tlbflush.h> 104 105 #include <trace/events/sched.h> 106 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/task.h> 109 110 /* 111 * Minimum number of threads to boot the kernel 112 */ 113 #define MIN_THREADS 20 114 115 /* 116 * Maximum number of threads 117 */ 118 #define MAX_THREADS FUTEX_TID_MASK 119 120 /* 121 * Protected counters by write_lock_irq(&tasklist_lock) 122 */ 123 unsigned long total_forks; /* Handle normal Linux uptimes. */ 124 int nr_threads; /* The idle threads do not count.. */ 125 126 static int max_threads; /* tunable limit on nr_threads */ 127 128 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 129 130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 131 132 #ifdef CONFIG_PROVE_RCU 133 int lockdep_tasklist_lock_is_held(void) 134 { 135 return lockdep_is_held(&tasklist_lock); 136 } 137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 138 #endif /* #ifdef CONFIG_PROVE_RCU */ 139 140 int nr_processes(void) 141 { 142 int cpu; 143 int total = 0; 144 145 for_each_possible_cpu(cpu) 146 total += per_cpu(process_counts, cpu); 147 148 return total; 149 } 150 151 void __weak arch_release_task_struct(struct task_struct *tsk) 152 { 153 } 154 155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 156 static struct kmem_cache *task_struct_cachep; 157 158 static inline struct task_struct *alloc_task_struct_node(int node) 159 { 160 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 161 } 162 163 static inline void free_task_struct(struct task_struct *tsk) 164 { 165 kmem_cache_free(task_struct_cachep, tsk); 166 } 167 #endif 168 169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 170 171 /* 172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 173 * kmemcache based allocator. 174 */ 175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 176 177 #ifdef CONFIG_VMAP_STACK 178 /* 179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 180 * flush. Try to minimize the number of calls by caching stacks. 181 */ 182 #define NR_CACHED_STACKS 2 183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 184 185 static int free_vm_stack_cache(unsigned int cpu) 186 { 187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 188 int i; 189 190 for (i = 0; i < NR_CACHED_STACKS; i++) { 191 struct vm_struct *vm_stack = cached_vm_stacks[i]; 192 193 if (!vm_stack) 194 continue; 195 196 vfree(vm_stack->addr); 197 cached_vm_stacks[i] = NULL; 198 } 199 200 return 0; 201 } 202 #endif 203 204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 205 { 206 #ifdef CONFIG_VMAP_STACK 207 void *stack; 208 int i; 209 210 for (i = 0; i < NR_CACHED_STACKS; i++) { 211 struct vm_struct *s; 212 213 s = this_cpu_xchg(cached_stacks[i], NULL); 214 215 if (!s) 216 continue; 217 218 /* Clear stale pointers from reused stack. */ 219 memset(s->addr, 0, THREAD_SIZE); 220 221 tsk->stack_vm_area = s; 222 tsk->stack = s->addr; 223 return s->addr; 224 } 225 226 /* 227 * Allocated stacks are cached and later reused by new threads, 228 * so memcg accounting is performed manually on assigning/releasing 229 * stacks to tasks. Drop __GFP_ACCOUNT. 230 */ 231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 232 VMALLOC_START, VMALLOC_END, 233 THREADINFO_GFP & ~__GFP_ACCOUNT, 234 PAGE_KERNEL, 235 0, node, __builtin_return_address(0)); 236 237 /* 238 * We can't call find_vm_area() in interrupt context, and 239 * free_thread_stack() can be called in interrupt context, 240 * so cache the vm_struct. 241 */ 242 if (stack) { 243 tsk->stack_vm_area = find_vm_area(stack); 244 tsk->stack = stack; 245 } 246 return stack; 247 #else 248 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 249 THREAD_SIZE_ORDER); 250 251 if (likely(page)) { 252 tsk->stack = page_address(page); 253 return tsk->stack; 254 } 255 return NULL; 256 #endif 257 } 258 259 static inline void free_thread_stack(struct task_struct *tsk) 260 { 261 #ifdef CONFIG_VMAP_STACK 262 struct vm_struct *vm = task_stack_vm_area(tsk); 263 264 if (vm) { 265 int i; 266 267 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 268 mod_memcg_page_state(vm->pages[i], 269 MEMCG_KERNEL_STACK_KB, 270 -(int)(PAGE_SIZE / 1024)); 271 272 memcg_kmem_uncharge(vm->pages[i], 0); 273 } 274 275 for (i = 0; i < NR_CACHED_STACKS; i++) { 276 if (this_cpu_cmpxchg(cached_stacks[i], 277 NULL, tsk->stack_vm_area) != NULL) 278 continue; 279 280 return; 281 } 282 283 vfree_atomic(tsk->stack); 284 return; 285 } 286 #endif 287 288 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 289 } 290 # else 291 static struct kmem_cache *thread_stack_cache; 292 293 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 294 int node) 295 { 296 unsigned long *stack; 297 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 298 tsk->stack = stack; 299 return stack; 300 } 301 302 static void free_thread_stack(struct task_struct *tsk) 303 { 304 kmem_cache_free(thread_stack_cache, tsk->stack); 305 } 306 307 void thread_stack_cache_init(void) 308 { 309 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 310 THREAD_SIZE, THREAD_SIZE, 0, 0, 311 THREAD_SIZE, NULL); 312 BUG_ON(thread_stack_cache == NULL); 313 } 314 # endif 315 #endif 316 317 /* SLAB cache for signal_struct structures (tsk->signal) */ 318 static struct kmem_cache *signal_cachep; 319 320 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 321 struct kmem_cache *sighand_cachep; 322 323 /* SLAB cache for files_struct structures (tsk->files) */ 324 struct kmem_cache *files_cachep; 325 326 /* SLAB cache for fs_struct structures (tsk->fs) */ 327 struct kmem_cache *fs_cachep; 328 329 /* SLAB cache for vm_area_struct structures */ 330 static struct kmem_cache *vm_area_cachep; 331 332 /* SLAB cache for mm_struct structures (tsk->mm) */ 333 static struct kmem_cache *mm_cachep; 334 335 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 336 { 337 struct vm_area_struct *vma; 338 339 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 340 if (vma) 341 vma_init(vma, mm); 342 return vma; 343 } 344 345 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 346 { 347 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 348 349 if (new) { 350 *new = *orig; 351 INIT_LIST_HEAD(&new->anon_vma_chain); 352 } 353 return new; 354 } 355 356 void vm_area_free(struct vm_area_struct *vma) 357 { 358 kmem_cache_free(vm_area_cachep, vma); 359 } 360 361 static void account_kernel_stack(struct task_struct *tsk, int account) 362 { 363 void *stack = task_stack_page(tsk); 364 struct vm_struct *vm = task_stack_vm_area(tsk); 365 366 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 367 368 if (vm) { 369 int i; 370 371 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 372 373 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 374 mod_zone_page_state(page_zone(vm->pages[i]), 375 NR_KERNEL_STACK_KB, 376 PAGE_SIZE / 1024 * account); 377 } 378 } else { 379 /* 380 * All stack pages are in the same zone and belong to the 381 * same memcg. 382 */ 383 struct page *first_page = virt_to_page(stack); 384 385 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 386 THREAD_SIZE / 1024 * account); 387 388 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 389 account * (THREAD_SIZE / 1024)); 390 } 391 } 392 393 static int memcg_charge_kernel_stack(struct task_struct *tsk) 394 { 395 #ifdef CONFIG_VMAP_STACK 396 struct vm_struct *vm = task_stack_vm_area(tsk); 397 int ret; 398 399 if (vm) { 400 int i; 401 402 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 403 /* 404 * If memcg_kmem_charge() fails, page->mem_cgroup 405 * pointer is NULL, and both memcg_kmem_uncharge() 406 * and mod_memcg_page_state() in free_thread_stack() 407 * will ignore this page. So it's safe. 408 */ 409 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); 410 if (ret) 411 return ret; 412 413 mod_memcg_page_state(vm->pages[i], 414 MEMCG_KERNEL_STACK_KB, 415 PAGE_SIZE / 1024); 416 } 417 } 418 #endif 419 return 0; 420 } 421 422 static void release_task_stack(struct task_struct *tsk) 423 { 424 if (WARN_ON(tsk->state != TASK_DEAD)) 425 return; /* Better to leak the stack than to free prematurely */ 426 427 account_kernel_stack(tsk, -1); 428 free_thread_stack(tsk); 429 tsk->stack = NULL; 430 #ifdef CONFIG_VMAP_STACK 431 tsk->stack_vm_area = NULL; 432 #endif 433 } 434 435 #ifdef CONFIG_THREAD_INFO_IN_TASK 436 void put_task_stack(struct task_struct *tsk) 437 { 438 if (refcount_dec_and_test(&tsk->stack_refcount)) 439 release_task_stack(tsk); 440 } 441 #endif 442 443 void free_task(struct task_struct *tsk) 444 { 445 #ifndef CONFIG_THREAD_INFO_IN_TASK 446 /* 447 * The task is finally done with both the stack and thread_info, 448 * so free both. 449 */ 450 release_task_stack(tsk); 451 #else 452 /* 453 * If the task had a separate stack allocation, it should be gone 454 * by now. 455 */ 456 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 457 #endif 458 rt_mutex_debug_task_free(tsk); 459 ftrace_graph_exit_task(tsk); 460 put_seccomp_filter(tsk); 461 arch_release_task_struct(tsk); 462 if (tsk->flags & PF_KTHREAD) 463 free_kthread_struct(tsk); 464 free_task_struct(tsk); 465 } 466 EXPORT_SYMBOL(free_task); 467 468 #ifdef CONFIG_MMU 469 static __latent_entropy int dup_mmap(struct mm_struct *mm, 470 struct mm_struct *oldmm) 471 { 472 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 473 struct rb_node **rb_link, *rb_parent; 474 int retval; 475 unsigned long charge; 476 LIST_HEAD(uf); 477 478 uprobe_start_dup_mmap(); 479 if (down_write_killable(&oldmm->mmap_sem)) { 480 retval = -EINTR; 481 goto fail_uprobe_end; 482 } 483 flush_cache_dup_mm(oldmm); 484 uprobe_dup_mmap(oldmm, mm); 485 /* 486 * Not linked in yet - no deadlock potential: 487 */ 488 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 489 490 /* No ordering required: file already has been exposed. */ 491 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 492 493 mm->total_vm = oldmm->total_vm; 494 mm->data_vm = oldmm->data_vm; 495 mm->exec_vm = oldmm->exec_vm; 496 mm->stack_vm = oldmm->stack_vm; 497 498 rb_link = &mm->mm_rb.rb_node; 499 rb_parent = NULL; 500 pprev = &mm->mmap; 501 retval = ksm_fork(mm, oldmm); 502 if (retval) 503 goto out; 504 retval = khugepaged_fork(mm, oldmm); 505 if (retval) 506 goto out; 507 508 prev = NULL; 509 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 510 struct file *file; 511 512 if (mpnt->vm_flags & VM_DONTCOPY) { 513 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 514 continue; 515 } 516 charge = 0; 517 /* 518 * Don't duplicate many vmas if we've been oom-killed (for 519 * example) 520 */ 521 if (fatal_signal_pending(current)) { 522 retval = -EINTR; 523 goto out; 524 } 525 if (mpnt->vm_flags & VM_ACCOUNT) { 526 unsigned long len = vma_pages(mpnt); 527 528 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 529 goto fail_nomem; 530 charge = len; 531 } 532 tmp = vm_area_dup(mpnt); 533 if (!tmp) 534 goto fail_nomem; 535 retval = vma_dup_policy(mpnt, tmp); 536 if (retval) 537 goto fail_nomem_policy; 538 tmp->vm_mm = mm; 539 retval = dup_userfaultfd(tmp, &uf); 540 if (retval) 541 goto fail_nomem_anon_vma_fork; 542 if (tmp->vm_flags & VM_WIPEONFORK) { 543 /* VM_WIPEONFORK gets a clean slate in the child. */ 544 tmp->anon_vma = NULL; 545 if (anon_vma_prepare(tmp)) 546 goto fail_nomem_anon_vma_fork; 547 } else if (anon_vma_fork(tmp, mpnt)) 548 goto fail_nomem_anon_vma_fork; 549 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 550 tmp->vm_next = tmp->vm_prev = NULL; 551 file = tmp->vm_file; 552 if (file) { 553 struct inode *inode = file_inode(file); 554 struct address_space *mapping = file->f_mapping; 555 556 get_file(file); 557 if (tmp->vm_flags & VM_DENYWRITE) 558 atomic_dec(&inode->i_writecount); 559 i_mmap_lock_write(mapping); 560 if (tmp->vm_flags & VM_SHARED) 561 atomic_inc(&mapping->i_mmap_writable); 562 flush_dcache_mmap_lock(mapping); 563 /* insert tmp into the share list, just after mpnt */ 564 vma_interval_tree_insert_after(tmp, mpnt, 565 &mapping->i_mmap); 566 flush_dcache_mmap_unlock(mapping); 567 i_mmap_unlock_write(mapping); 568 } 569 570 /* 571 * Clear hugetlb-related page reserves for children. This only 572 * affects MAP_PRIVATE mappings. Faults generated by the child 573 * are not guaranteed to succeed, even if read-only 574 */ 575 if (is_vm_hugetlb_page(tmp)) 576 reset_vma_resv_huge_pages(tmp); 577 578 /* 579 * Link in the new vma and copy the page table entries. 580 */ 581 *pprev = tmp; 582 pprev = &tmp->vm_next; 583 tmp->vm_prev = prev; 584 prev = tmp; 585 586 __vma_link_rb(mm, tmp, rb_link, rb_parent); 587 rb_link = &tmp->vm_rb.rb_right; 588 rb_parent = &tmp->vm_rb; 589 590 mm->map_count++; 591 if (!(tmp->vm_flags & VM_WIPEONFORK)) 592 retval = copy_page_range(mm, oldmm, mpnt); 593 594 if (tmp->vm_ops && tmp->vm_ops->open) 595 tmp->vm_ops->open(tmp); 596 597 if (retval) 598 goto out; 599 } 600 /* a new mm has just been created */ 601 retval = arch_dup_mmap(oldmm, mm); 602 out: 603 up_write(&mm->mmap_sem); 604 flush_tlb_mm(oldmm); 605 up_write(&oldmm->mmap_sem); 606 dup_userfaultfd_complete(&uf); 607 fail_uprobe_end: 608 uprobe_end_dup_mmap(); 609 return retval; 610 fail_nomem_anon_vma_fork: 611 mpol_put(vma_policy(tmp)); 612 fail_nomem_policy: 613 vm_area_free(tmp); 614 fail_nomem: 615 retval = -ENOMEM; 616 vm_unacct_memory(charge); 617 goto out; 618 } 619 620 static inline int mm_alloc_pgd(struct mm_struct *mm) 621 { 622 mm->pgd = pgd_alloc(mm); 623 if (unlikely(!mm->pgd)) 624 return -ENOMEM; 625 return 0; 626 } 627 628 static inline void mm_free_pgd(struct mm_struct *mm) 629 { 630 pgd_free(mm, mm->pgd); 631 } 632 #else 633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 634 { 635 down_write(&oldmm->mmap_sem); 636 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 637 up_write(&oldmm->mmap_sem); 638 return 0; 639 } 640 #define mm_alloc_pgd(mm) (0) 641 #define mm_free_pgd(mm) 642 #endif /* CONFIG_MMU */ 643 644 static void check_mm(struct mm_struct *mm) 645 { 646 int i; 647 648 for (i = 0; i < NR_MM_COUNTERS; i++) { 649 long x = atomic_long_read(&mm->rss_stat.count[i]); 650 651 if (unlikely(x)) 652 printk(KERN_ALERT "BUG: Bad rss-counter state " 653 "mm:%p idx:%d val:%ld\n", mm, i, x); 654 } 655 656 if (mm_pgtables_bytes(mm)) 657 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 658 mm_pgtables_bytes(mm)); 659 660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 661 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 662 #endif 663 } 664 665 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 666 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 667 668 /* 669 * Called when the last reference to the mm 670 * is dropped: either by a lazy thread or by 671 * mmput. Free the page directory and the mm. 672 */ 673 void __mmdrop(struct mm_struct *mm) 674 { 675 BUG_ON(mm == &init_mm); 676 WARN_ON_ONCE(mm == current->mm); 677 WARN_ON_ONCE(mm == current->active_mm); 678 mm_free_pgd(mm); 679 destroy_context(mm); 680 mmu_notifier_mm_destroy(mm); 681 check_mm(mm); 682 put_user_ns(mm->user_ns); 683 free_mm(mm); 684 } 685 EXPORT_SYMBOL_GPL(__mmdrop); 686 687 static void mmdrop_async_fn(struct work_struct *work) 688 { 689 struct mm_struct *mm; 690 691 mm = container_of(work, struct mm_struct, async_put_work); 692 __mmdrop(mm); 693 } 694 695 static void mmdrop_async(struct mm_struct *mm) 696 { 697 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 698 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 699 schedule_work(&mm->async_put_work); 700 } 701 } 702 703 static inline void free_signal_struct(struct signal_struct *sig) 704 { 705 taskstats_tgid_free(sig); 706 sched_autogroup_exit(sig); 707 /* 708 * __mmdrop is not safe to call from softirq context on x86 due to 709 * pgd_dtor so postpone it to the async context 710 */ 711 if (sig->oom_mm) 712 mmdrop_async(sig->oom_mm); 713 kmem_cache_free(signal_cachep, sig); 714 } 715 716 static inline void put_signal_struct(struct signal_struct *sig) 717 { 718 if (refcount_dec_and_test(&sig->sigcnt)) 719 free_signal_struct(sig); 720 } 721 722 void __put_task_struct(struct task_struct *tsk) 723 { 724 WARN_ON(!tsk->exit_state); 725 WARN_ON(refcount_read(&tsk->usage)); 726 WARN_ON(tsk == current); 727 728 cgroup_free(tsk); 729 task_numa_free(tsk); 730 security_task_free(tsk); 731 exit_creds(tsk); 732 delayacct_tsk_free(tsk); 733 put_signal_struct(tsk->signal); 734 735 if (!profile_handoff_task(tsk)) 736 free_task(tsk); 737 } 738 EXPORT_SYMBOL_GPL(__put_task_struct); 739 740 void __init __weak arch_task_cache_init(void) { } 741 742 /* 743 * set_max_threads 744 */ 745 static void set_max_threads(unsigned int max_threads_suggested) 746 { 747 u64 threads; 748 unsigned long nr_pages = totalram_pages(); 749 750 /* 751 * The number of threads shall be limited such that the thread 752 * structures may only consume a small part of the available memory. 753 */ 754 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 755 threads = MAX_THREADS; 756 else 757 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 758 (u64) THREAD_SIZE * 8UL); 759 760 if (threads > max_threads_suggested) 761 threads = max_threads_suggested; 762 763 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 764 } 765 766 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 767 /* Initialized by the architecture: */ 768 int arch_task_struct_size __read_mostly; 769 #endif 770 771 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 772 { 773 /* Fetch thread_struct whitelist for the architecture. */ 774 arch_thread_struct_whitelist(offset, size); 775 776 /* 777 * Handle zero-sized whitelist or empty thread_struct, otherwise 778 * adjust offset to position of thread_struct in task_struct. 779 */ 780 if (unlikely(*size == 0)) 781 *offset = 0; 782 else 783 *offset += offsetof(struct task_struct, thread); 784 } 785 786 void __init fork_init(void) 787 { 788 int i; 789 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 790 #ifndef ARCH_MIN_TASKALIGN 791 #define ARCH_MIN_TASKALIGN 0 792 #endif 793 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 794 unsigned long useroffset, usersize; 795 796 /* create a slab on which task_structs can be allocated */ 797 task_struct_whitelist(&useroffset, &usersize); 798 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 799 arch_task_struct_size, align, 800 SLAB_PANIC|SLAB_ACCOUNT, 801 useroffset, usersize, NULL); 802 #endif 803 804 /* do the arch specific task caches init */ 805 arch_task_cache_init(); 806 807 set_max_threads(MAX_THREADS); 808 809 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 810 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 811 init_task.signal->rlim[RLIMIT_SIGPENDING] = 812 init_task.signal->rlim[RLIMIT_NPROC]; 813 814 for (i = 0; i < UCOUNT_COUNTS; i++) { 815 init_user_ns.ucount_max[i] = max_threads/2; 816 } 817 818 #ifdef CONFIG_VMAP_STACK 819 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 820 NULL, free_vm_stack_cache); 821 #endif 822 823 lockdep_init_task(&init_task); 824 uprobes_init(); 825 } 826 827 int __weak arch_dup_task_struct(struct task_struct *dst, 828 struct task_struct *src) 829 { 830 *dst = *src; 831 return 0; 832 } 833 834 void set_task_stack_end_magic(struct task_struct *tsk) 835 { 836 unsigned long *stackend; 837 838 stackend = end_of_stack(tsk); 839 *stackend = STACK_END_MAGIC; /* for overflow detection */ 840 } 841 842 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 843 { 844 struct task_struct *tsk; 845 unsigned long *stack; 846 struct vm_struct *stack_vm_area __maybe_unused; 847 int err; 848 849 if (node == NUMA_NO_NODE) 850 node = tsk_fork_get_node(orig); 851 tsk = alloc_task_struct_node(node); 852 if (!tsk) 853 return NULL; 854 855 stack = alloc_thread_stack_node(tsk, node); 856 if (!stack) 857 goto free_tsk; 858 859 if (memcg_charge_kernel_stack(tsk)) 860 goto free_stack; 861 862 stack_vm_area = task_stack_vm_area(tsk); 863 864 err = arch_dup_task_struct(tsk, orig); 865 866 /* 867 * arch_dup_task_struct() clobbers the stack-related fields. Make 868 * sure they're properly initialized before using any stack-related 869 * functions again. 870 */ 871 tsk->stack = stack; 872 #ifdef CONFIG_VMAP_STACK 873 tsk->stack_vm_area = stack_vm_area; 874 #endif 875 #ifdef CONFIG_THREAD_INFO_IN_TASK 876 refcount_set(&tsk->stack_refcount, 1); 877 #endif 878 879 if (err) 880 goto free_stack; 881 882 #ifdef CONFIG_SECCOMP 883 /* 884 * We must handle setting up seccomp filters once we're under 885 * the sighand lock in case orig has changed between now and 886 * then. Until then, filter must be NULL to avoid messing up 887 * the usage counts on the error path calling free_task. 888 */ 889 tsk->seccomp.filter = NULL; 890 #endif 891 892 setup_thread_stack(tsk, orig); 893 clear_user_return_notifier(tsk); 894 clear_tsk_need_resched(tsk); 895 set_task_stack_end_magic(tsk); 896 897 #ifdef CONFIG_STACKPROTECTOR 898 tsk->stack_canary = get_random_canary(); 899 #endif 900 if (orig->cpus_ptr == &orig->cpus_mask) 901 tsk->cpus_ptr = &tsk->cpus_mask; 902 903 /* 904 * One for us, one for whoever does the "release_task()" (usually 905 * parent) 906 */ 907 refcount_set(&tsk->usage, 2); 908 #ifdef CONFIG_BLK_DEV_IO_TRACE 909 tsk->btrace_seq = 0; 910 #endif 911 tsk->splice_pipe = NULL; 912 tsk->task_frag.page = NULL; 913 tsk->wake_q.next = NULL; 914 915 account_kernel_stack(tsk, 1); 916 917 kcov_task_init(tsk); 918 919 #ifdef CONFIG_FAULT_INJECTION 920 tsk->fail_nth = 0; 921 #endif 922 923 #ifdef CONFIG_BLK_CGROUP 924 tsk->throttle_queue = NULL; 925 tsk->use_memdelay = 0; 926 #endif 927 928 #ifdef CONFIG_MEMCG 929 tsk->active_memcg = NULL; 930 #endif 931 return tsk; 932 933 free_stack: 934 free_thread_stack(tsk); 935 free_tsk: 936 free_task_struct(tsk); 937 return NULL; 938 } 939 940 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 941 942 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 943 944 static int __init coredump_filter_setup(char *s) 945 { 946 default_dump_filter = 947 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 948 MMF_DUMP_FILTER_MASK; 949 return 1; 950 } 951 952 __setup("coredump_filter=", coredump_filter_setup); 953 954 #include <linux/init_task.h> 955 956 static void mm_init_aio(struct mm_struct *mm) 957 { 958 #ifdef CONFIG_AIO 959 spin_lock_init(&mm->ioctx_lock); 960 mm->ioctx_table = NULL; 961 #endif 962 } 963 964 static __always_inline void mm_clear_owner(struct mm_struct *mm, 965 struct task_struct *p) 966 { 967 #ifdef CONFIG_MEMCG 968 if (mm->owner == p) 969 WRITE_ONCE(mm->owner, NULL); 970 #endif 971 } 972 973 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 974 { 975 #ifdef CONFIG_MEMCG 976 mm->owner = p; 977 #endif 978 } 979 980 static void mm_init_uprobes_state(struct mm_struct *mm) 981 { 982 #ifdef CONFIG_UPROBES 983 mm->uprobes_state.xol_area = NULL; 984 #endif 985 } 986 987 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 988 struct user_namespace *user_ns) 989 { 990 mm->mmap = NULL; 991 mm->mm_rb = RB_ROOT; 992 mm->vmacache_seqnum = 0; 993 atomic_set(&mm->mm_users, 1); 994 atomic_set(&mm->mm_count, 1); 995 init_rwsem(&mm->mmap_sem); 996 INIT_LIST_HEAD(&mm->mmlist); 997 mm->core_state = NULL; 998 mm_pgtables_bytes_init(mm); 999 mm->map_count = 0; 1000 mm->locked_vm = 0; 1001 atomic64_set(&mm->pinned_vm, 0); 1002 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1003 spin_lock_init(&mm->page_table_lock); 1004 spin_lock_init(&mm->arg_lock); 1005 mm_init_cpumask(mm); 1006 mm_init_aio(mm); 1007 mm_init_owner(mm, p); 1008 RCU_INIT_POINTER(mm->exe_file, NULL); 1009 mmu_notifier_mm_init(mm); 1010 hmm_mm_init(mm); 1011 init_tlb_flush_pending(mm); 1012 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1013 mm->pmd_huge_pte = NULL; 1014 #endif 1015 mm_init_uprobes_state(mm); 1016 1017 if (current->mm) { 1018 mm->flags = current->mm->flags & MMF_INIT_MASK; 1019 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1020 } else { 1021 mm->flags = default_dump_filter; 1022 mm->def_flags = 0; 1023 } 1024 1025 if (mm_alloc_pgd(mm)) 1026 goto fail_nopgd; 1027 1028 if (init_new_context(p, mm)) 1029 goto fail_nocontext; 1030 1031 mm->user_ns = get_user_ns(user_ns); 1032 return mm; 1033 1034 fail_nocontext: 1035 mm_free_pgd(mm); 1036 fail_nopgd: 1037 free_mm(mm); 1038 return NULL; 1039 } 1040 1041 /* 1042 * Allocate and initialize an mm_struct. 1043 */ 1044 struct mm_struct *mm_alloc(void) 1045 { 1046 struct mm_struct *mm; 1047 1048 mm = allocate_mm(); 1049 if (!mm) 1050 return NULL; 1051 1052 memset(mm, 0, sizeof(*mm)); 1053 return mm_init(mm, current, current_user_ns()); 1054 } 1055 1056 static inline void __mmput(struct mm_struct *mm) 1057 { 1058 VM_BUG_ON(atomic_read(&mm->mm_users)); 1059 1060 uprobe_clear_state(mm); 1061 exit_aio(mm); 1062 ksm_exit(mm); 1063 khugepaged_exit(mm); /* must run before exit_mmap */ 1064 exit_mmap(mm); 1065 mm_put_huge_zero_page(mm); 1066 set_mm_exe_file(mm, NULL); 1067 if (!list_empty(&mm->mmlist)) { 1068 spin_lock(&mmlist_lock); 1069 list_del(&mm->mmlist); 1070 spin_unlock(&mmlist_lock); 1071 } 1072 if (mm->binfmt) 1073 module_put(mm->binfmt->module); 1074 mmdrop(mm); 1075 } 1076 1077 /* 1078 * Decrement the use count and release all resources for an mm. 1079 */ 1080 void mmput(struct mm_struct *mm) 1081 { 1082 might_sleep(); 1083 1084 if (atomic_dec_and_test(&mm->mm_users)) 1085 __mmput(mm); 1086 } 1087 EXPORT_SYMBOL_GPL(mmput); 1088 1089 #ifdef CONFIG_MMU 1090 static void mmput_async_fn(struct work_struct *work) 1091 { 1092 struct mm_struct *mm = container_of(work, struct mm_struct, 1093 async_put_work); 1094 1095 __mmput(mm); 1096 } 1097 1098 void mmput_async(struct mm_struct *mm) 1099 { 1100 if (atomic_dec_and_test(&mm->mm_users)) { 1101 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1102 schedule_work(&mm->async_put_work); 1103 } 1104 } 1105 #endif 1106 1107 /** 1108 * set_mm_exe_file - change a reference to the mm's executable file 1109 * 1110 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1111 * 1112 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1113 * invocations: in mmput() nobody alive left, in execve task is single 1114 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1115 * mm->exe_file, but does so without using set_mm_exe_file() in order 1116 * to do avoid the need for any locks. 1117 */ 1118 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1119 { 1120 struct file *old_exe_file; 1121 1122 /* 1123 * It is safe to dereference the exe_file without RCU as 1124 * this function is only called if nobody else can access 1125 * this mm -- see comment above for justification. 1126 */ 1127 old_exe_file = rcu_dereference_raw(mm->exe_file); 1128 1129 if (new_exe_file) 1130 get_file(new_exe_file); 1131 rcu_assign_pointer(mm->exe_file, new_exe_file); 1132 if (old_exe_file) 1133 fput(old_exe_file); 1134 } 1135 1136 /** 1137 * get_mm_exe_file - acquire a reference to the mm's executable file 1138 * 1139 * Returns %NULL if mm has no associated executable file. 1140 * User must release file via fput(). 1141 */ 1142 struct file *get_mm_exe_file(struct mm_struct *mm) 1143 { 1144 struct file *exe_file; 1145 1146 rcu_read_lock(); 1147 exe_file = rcu_dereference(mm->exe_file); 1148 if (exe_file && !get_file_rcu(exe_file)) 1149 exe_file = NULL; 1150 rcu_read_unlock(); 1151 return exe_file; 1152 } 1153 EXPORT_SYMBOL(get_mm_exe_file); 1154 1155 /** 1156 * get_task_exe_file - acquire a reference to the task's executable file 1157 * 1158 * Returns %NULL if task's mm (if any) has no associated executable file or 1159 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1160 * User must release file via fput(). 1161 */ 1162 struct file *get_task_exe_file(struct task_struct *task) 1163 { 1164 struct file *exe_file = NULL; 1165 struct mm_struct *mm; 1166 1167 task_lock(task); 1168 mm = task->mm; 1169 if (mm) { 1170 if (!(task->flags & PF_KTHREAD)) 1171 exe_file = get_mm_exe_file(mm); 1172 } 1173 task_unlock(task); 1174 return exe_file; 1175 } 1176 EXPORT_SYMBOL(get_task_exe_file); 1177 1178 /** 1179 * get_task_mm - acquire a reference to the task's mm 1180 * 1181 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1182 * this kernel workthread has transiently adopted a user mm with use_mm, 1183 * to do its AIO) is not set and if so returns a reference to it, after 1184 * bumping up the use count. User must release the mm via mmput() 1185 * after use. Typically used by /proc and ptrace. 1186 */ 1187 struct mm_struct *get_task_mm(struct task_struct *task) 1188 { 1189 struct mm_struct *mm; 1190 1191 task_lock(task); 1192 mm = task->mm; 1193 if (mm) { 1194 if (task->flags & PF_KTHREAD) 1195 mm = NULL; 1196 else 1197 mmget(mm); 1198 } 1199 task_unlock(task); 1200 return mm; 1201 } 1202 EXPORT_SYMBOL_GPL(get_task_mm); 1203 1204 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1205 { 1206 struct mm_struct *mm; 1207 int err; 1208 1209 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1210 if (err) 1211 return ERR_PTR(err); 1212 1213 mm = get_task_mm(task); 1214 if (mm && mm != current->mm && 1215 !ptrace_may_access(task, mode)) { 1216 mmput(mm); 1217 mm = ERR_PTR(-EACCES); 1218 } 1219 mutex_unlock(&task->signal->cred_guard_mutex); 1220 1221 return mm; 1222 } 1223 1224 static void complete_vfork_done(struct task_struct *tsk) 1225 { 1226 struct completion *vfork; 1227 1228 task_lock(tsk); 1229 vfork = tsk->vfork_done; 1230 if (likely(vfork)) { 1231 tsk->vfork_done = NULL; 1232 complete(vfork); 1233 } 1234 task_unlock(tsk); 1235 } 1236 1237 static int wait_for_vfork_done(struct task_struct *child, 1238 struct completion *vfork) 1239 { 1240 int killed; 1241 1242 freezer_do_not_count(); 1243 cgroup_enter_frozen(); 1244 killed = wait_for_completion_killable(vfork); 1245 cgroup_leave_frozen(false); 1246 freezer_count(); 1247 1248 if (killed) { 1249 task_lock(child); 1250 child->vfork_done = NULL; 1251 task_unlock(child); 1252 } 1253 1254 put_task_struct(child); 1255 return killed; 1256 } 1257 1258 /* Please note the differences between mmput and mm_release. 1259 * mmput is called whenever we stop holding onto a mm_struct, 1260 * error success whatever. 1261 * 1262 * mm_release is called after a mm_struct has been removed 1263 * from the current process. 1264 * 1265 * This difference is important for error handling, when we 1266 * only half set up a mm_struct for a new process and need to restore 1267 * the old one. Because we mmput the new mm_struct before 1268 * restoring the old one. . . 1269 * Eric Biederman 10 January 1998 1270 */ 1271 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1272 { 1273 /* Get rid of any futexes when releasing the mm */ 1274 #ifdef CONFIG_FUTEX 1275 if (unlikely(tsk->robust_list)) { 1276 exit_robust_list(tsk); 1277 tsk->robust_list = NULL; 1278 } 1279 #ifdef CONFIG_COMPAT 1280 if (unlikely(tsk->compat_robust_list)) { 1281 compat_exit_robust_list(tsk); 1282 tsk->compat_robust_list = NULL; 1283 } 1284 #endif 1285 if (unlikely(!list_empty(&tsk->pi_state_list))) 1286 exit_pi_state_list(tsk); 1287 #endif 1288 1289 uprobe_free_utask(tsk); 1290 1291 /* Get rid of any cached register state */ 1292 deactivate_mm(tsk, mm); 1293 1294 /* 1295 * Signal userspace if we're not exiting with a core dump 1296 * because we want to leave the value intact for debugging 1297 * purposes. 1298 */ 1299 if (tsk->clear_child_tid) { 1300 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1301 atomic_read(&mm->mm_users) > 1) { 1302 /* 1303 * We don't check the error code - if userspace has 1304 * not set up a proper pointer then tough luck. 1305 */ 1306 put_user(0, tsk->clear_child_tid); 1307 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1308 1, NULL, NULL, 0, 0); 1309 } 1310 tsk->clear_child_tid = NULL; 1311 } 1312 1313 /* 1314 * All done, finally we can wake up parent and return this mm to him. 1315 * Also kthread_stop() uses this completion for synchronization. 1316 */ 1317 if (tsk->vfork_done) 1318 complete_vfork_done(tsk); 1319 } 1320 1321 /** 1322 * dup_mm() - duplicates an existing mm structure 1323 * @tsk: the task_struct with which the new mm will be associated. 1324 * @oldmm: the mm to duplicate. 1325 * 1326 * Allocates a new mm structure and duplicates the provided @oldmm structure 1327 * content into it. 1328 * 1329 * Return: the duplicated mm or NULL on failure. 1330 */ 1331 static struct mm_struct *dup_mm(struct task_struct *tsk, 1332 struct mm_struct *oldmm) 1333 { 1334 struct mm_struct *mm; 1335 int err; 1336 1337 mm = allocate_mm(); 1338 if (!mm) 1339 goto fail_nomem; 1340 1341 memcpy(mm, oldmm, sizeof(*mm)); 1342 1343 if (!mm_init(mm, tsk, mm->user_ns)) 1344 goto fail_nomem; 1345 1346 err = dup_mmap(mm, oldmm); 1347 if (err) 1348 goto free_pt; 1349 1350 mm->hiwater_rss = get_mm_rss(mm); 1351 mm->hiwater_vm = mm->total_vm; 1352 1353 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1354 goto free_pt; 1355 1356 return mm; 1357 1358 free_pt: 1359 /* don't put binfmt in mmput, we haven't got module yet */ 1360 mm->binfmt = NULL; 1361 mm_init_owner(mm, NULL); 1362 mmput(mm); 1363 1364 fail_nomem: 1365 return NULL; 1366 } 1367 1368 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1369 { 1370 struct mm_struct *mm, *oldmm; 1371 int retval; 1372 1373 tsk->min_flt = tsk->maj_flt = 0; 1374 tsk->nvcsw = tsk->nivcsw = 0; 1375 #ifdef CONFIG_DETECT_HUNG_TASK 1376 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1377 tsk->last_switch_time = 0; 1378 #endif 1379 1380 tsk->mm = NULL; 1381 tsk->active_mm = NULL; 1382 1383 /* 1384 * Are we cloning a kernel thread? 1385 * 1386 * We need to steal a active VM for that.. 1387 */ 1388 oldmm = current->mm; 1389 if (!oldmm) 1390 return 0; 1391 1392 /* initialize the new vmacache entries */ 1393 vmacache_flush(tsk); 1394 1395 if (clone_flags & CLONE_VM) { 1396 mmget(oldmm); 1397 mm = oldmm; 1398 goto good_mm; 1399 } 1400 1401 retval = -ENOMEM; 1402 mm = dup_mm(tsk, current->mm); 1403 if (!mm) 1404 goto fail_nomem; 1405 1406 good_mm: 1407 tsk->mm = mm; 1408 tsk->active_mm = mm; 1409 return 0; 1410 1411 fail_nomem: 1412 return retval; 1413 } 1414 1415 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1416 { 1417 struct fs_struct *fs = current->fs; 1418 if (clone_flags & CLONE_FS) { 1419 /* tsk->fs is already what we want */ 1420 spin_lock(&fs->lock); 1421 if (fs->in_exec) { 1422 spin_unlock(&fs->lock); 1423 return -EAGAIN; 1424 } 1425 fs->users++; 1426 spin_unlock(&fs->lock); 1427 return 0; 1428 } 1429 tsk->fs = copy_fs_struct(fs); 1430 if (!tsk->fs) 1431 return -ENOMEM; 1432 return 0; 1433 } 1434 1435 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1436 { 1437 struct files_struct *oldf, *newf; 1438 int error = 0; 1439 1440 /* 1441 * A background process may not have any files ... 1442 */ 1443 oldf = current->files; 1444 if (!oldf) 1445 goto out; 1446 1447 if (clone_flags & CLONE_FILES) { 1448 atomic_inc(&oldf->count); 1449 goto out; 1450 } 1451 1452 newf = dup_fd(oldf, &error); 1453 if (!newf) 1454 goto out; 1455 1456 tsk->files = newf; 1457 error = 0; 1458 out: 1459 return error; 1460 } 1461 1462 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1463 { 1464 #ifdef CONFIG_BLOCK 1465 struct io_context *ioc = current->io_context; 1466 struct io_context *new_ioc; 1467 1468 if (!ioc) 1469 return 0; 1470 /* 1471 * Share io context with parent, if CLONE_IO is set 1472 */ 1473 if (clone_flags & CLONE_IO) { 1474 ioc_task_link(ioc); 1475 tsk->io_context = ioc; 1476 } else if (ioprio_valid(ioc->ioprio)) { 1477 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1478 if (unlikely(!new_ioc)) 1479 return -ENOMEM; 1480 1481 new_ioc->ioprio = ioc->ioprio; 1482 put_io_context(new_ioc); 1483 } 1484 #endif 1485 return 0; 1486 } 1487 1488 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1489 { 1490 struct sighand_struct *sig; 1491 1492 if (clone_flags & CLONE_SIGHAND) { 1493 refcount_inc(¤t->sighand->count); 1494 return 0; 1495 } 1496 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1497 rcu_assign_pointer(tsk->sighand, sig); 1498 if (!sig) 1499 return -ENOMEM; 1500 1501 refcount_set(&sig->count, 1); 1502 spin_lock_irq(¤t->sighand->siglock); 1503 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1504 spin_unlock_irq(¤t->sighand->siglock); 1505 return 0; 1506 } 1507 1508 void __cleanup_sighand(struct sighand_struct *sighand) 1509 { 1510 if (refcount_dec_and_test(&sighand->count)) { 1511 signalfd_cleanup(sighand); 1512 /* 1513 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1514 * without an RCU grace period, see __lock_task_sighand(). 1515 */ 1516 kmem_cache_free(sighand_cachep, sighand); 1517 } 1518 } 1519 1520 #ifdef CONFIG_POSIX_TIMERS 1521 /* 1522 * Initialize POSIX timer handling for a thread group. 1523 */ 1524 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1525 { 1526 unsigned long cpu_limit; 1527 1528 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1529 if (cpu_limit != RLIM_INFINITY) { 1530 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC; 1531 sig->cputimer.running = true; 1532 } 1533 1534 /* The timer lists. */ 1535 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1536 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1537 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1538 } 1539 #else 1540 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { } 1541 #endif 1542 1543 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1544 { 1545 struct signal_struct *sig; 1546 1547 if (clone_flags & CLONE_THREAD) 1548 return 0; 1549 1550 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1551 tsk->signal = sig; 1552 if (!sig) 1553 return -ENOMEM; 1554 1555 sig->nr_threads = 1; 1556 atomic_set(&sig->live, 1); 1557 refcount_set(&sig->sigcnt, 1); 1558 1559 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1560 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1561 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1562 1563 init_waitqueue_head(&sig->wait_chldexit); 1564 sig->curr_target = tsk; 1565 init_sigpending(&sig->shared_pending); 1566 INIT_HLIST_HEAD(&sig->multiprocess); 1567 seqlock_init(&sig->stats_lock); 1568 prev_cputime_init(&sig->prev_cputime); 1569 1570 #ifdef CONFIG_POSIX_TIMERS 1571 INIT_LIST_HEAD(&sig->posix_timers); 1572 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1573 sig->real_timer.function = it_real_fn; 1574 #endif 1575 1576 task_lock(current->group_leader); 1577 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1578 task_unlock(current->group_leader); 1579 1580 posix_cpu_timers_init_group(sig); 1581 1582 tty_audit_fork(sig); 1583 sched_autogroup_fork(sig); 1584 1585 sig->oom_score_adj = current->signal->oom_score_adj; 1586 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1587 1588 mutex_init(&sig->cred_guard_mutex); 1589 1590 return 0; 1591 } 1592 1593 static void copy_seccomp(struct task_struct *p) 1594 { 1595 #ifdef CONFIG_SECCOMP 1596 /* 1597 * Must be called with sighand->lock held, which is common to 1598 * all threads in the group. Holding cred_guard_mutex is not 1599 * needed because this new task is not yet running and cannot 1600 * be racing exec. 1601 */ 1602 assert_spin_locked(¤t->sighand->siglock); 1603 1604 /* Ref-count the new filter user, and assign it. */ 1605 get_seccomp_filter(current); 1606 p->seccomp = current->seccomp; 1607 1608 /* 1609 * Explicitly enable no_new_privs here in case it got set 1610 * between the task_struct being duplicated and holding the 1611 * sighand lock. The seccomp state and nnp must be in sync. 1612 */ 1613 if (task_no_new_privs(current)) 1614 task_set_no_new_privs(p); 1615 1616 /* 1617 * If the parent gained a seccomp mode after copying thread 1618 * flags and between before we held the sighand lock, we have 1619 * to manually enable the seccomp thread flag here. 1620 */ 1621 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1622 set_tsk_thread_flag(p, TIF_SECCOMP); 1623 #endif 1624 } 1625 1626 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1627 { 1628 current->clear_child_tid = tidptr; 1629 1630 return task_pid_vnr(current); 1631 } 1632 1633 static void rt_mutex_init_task(struct task_struct *p) 1634 { 1635 raw_spin_lock_init(&p->pi_lock); 1636 #ifdef CONFIG_RT_MUTEXES 1637 p->pi_waiters = RB_ROOT_CACHED; 1638 p->pi_top_task = NULL; 1639 p->pi_blocked_on = NULL; 1640 #endif 1641 } 1642 1643 #ifdef CONFIG_POSIX_TIMERS 1644 /* 1645 * Initialize POSIX timer handling for a single task. 1646 */ 1647 static void posix_cpu_timers_init(struct task_struct *tsk) 1648 { 1649 tsk->cputime_expires.prof_exp = 0; 1650 tsk->cputime_expires.virt_exp = 0; 1651 tsk->cputime_expires.sched_exp = 0; 1652 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1653 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1654 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1655 } 1656 #else 1657 static inline void posix_cpu_timers_init(struct task_struct *tsk) { } 1658 #endif 1659 1660 static inline void init_task_pid_links(struct task_struct *task) 1661 { 1662 enum pid_type type; 1663 1664 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1665 INIT_HLIST_NODE(&task->pid_links[type]); 1666 } 1667 } 1668 1669 static inline void 1670 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1671 { 1672 if (type == PIDTYPE_PID) 1673 task->thread_pid = pid; 1674 else 1675 task->signal->pids[type] = pid; 1676 } 1677 1678 static inline void rcu_copy_process(struct task_struct *p) 1679 { 1680 #ifdef CONFIG_PREEMPT_RCU 1681 p->rcu_read_lock_nesting = 0; 1682 p->rcu_read_unlock_special.s = 0; 1683 p->rcu_blocked_node = NULL; 1684 INIT_LIST_HEAD(&p->rcu_node_entry); 1685 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1686 #ifdef CONFIG_TASKS_RCU 1687 p->rcu_tasks_holdout = false; 1688 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1689 p->rcu_tasks_idle_cpu = -1; 1690 #endif /* #ifdef CONFIG_TASKS_RCU */ 1691 } 1692 1693 static int pidfd_release(struct inode *inode, struct file *file) 1694 { 1695 struct pid *pid = file->private_data; 1696 1697 file->private_data = NULL; 1698 put_pid(pid); 1699 return 0; 1700 } 1701 1702 #ifdef CONFIG_PROC_FS 1703 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1704 { 1705 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file)); 1706 struct pid *pid = f->private_data; 1707 1708 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns)); 1709 seq_putc(m, '\n'); 1710 } 1711 #endif 1712 1713 /* 1714 * Poll support for process exit notification. 1715 */ 1716 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts) 1717 { 1718 struct task_struct *task; 1719 struct pid *pid = file->private_data; 1720 int poll_flags = 0; 1721 1722 poll_wait(file, &pid->wait_pidfd, pts); 1723 1724 rcu_read_lock(); 1725 task = pid_task(pid, PIDTYPE_PID); 1726 /* 1727 * Inform pollers only when the whole thread group exits. 1728 * If the thread group leader exits before all other threads in the 1729 * group, then poll(2) should block, similar to the wait(2) family. 1730 */ 1731 if (!task || (task->exit_state && thread_group_empty(task))) 1732 poll_flags = POLLIN | POLLRDNORM; 1733 rcu_read_unlock(); 1734 1735 return poll_flags; 1736 } 1737 1738 const struct file_operations pidfd_fops = { 1739 .release = pidfd_release, 1740 .poll = pidfd_poll, 1741 #ifdef CONFIG_PROC_FS 1742 .show_fdinfo = pidfd_show_fdinfo, 1743 #endif 1744 }; 1745 1746 static void __delayed_free_task(struct rcu_head *rhp) 1747 { 1748 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1749 1750 free_task(tsk); 1751 } 1752 1753 static __always_inline void delayed_free_task(struct task_struct *tsk) 1754 { 1755 if (IS_ENABLED(CONFIG_MEMCG)) 1756 call_rcu(&tsk->rcu, __delayed_free_task); 1757 else 1758 free_task(tsk); 1759 } 1760 1761 /* 1762 * This creates a new process as a copy of the old one, 1763 * but does not actually start it yet. 1764 * 1765 * It copies the registers, and all the appropriate 1766 * parts of the process environment (as per the clone 1767 * flags). The actual kick-off is left to the caller. 1768 */ 1769 static __latent_entropy struct task_struct *copy_process( 1770 struct pid *pid, 1771 int trace, 1772 int node, 1773 struct kernel_clone_args *args) 1774 { 1775 int pidfd = -1, retval; 1776 struct task_struct *p; 1777 struct multiprocess_signals delayed; 1778 struct file *pidfile = NULL; 1779 u64 clone_flags = args->flags; 1780 1781 /* 1782 * Don't allow sharing the root directory with processes in a different 1783 * namespace 1784 */ 1785 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1786 return ERR_PTR(-EINVAL); 1787 1788 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1789 return ERR_PTR(-EINVAL); 1790 1791 /* 1792 * Thread groups must share signals as well, and detached threads 1793 * can only be started up within the thread group. 1794 */ 1795 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1796 return ERR_PTR(-EINVAL); 1797 1798 /* 1799 * Shared signal handlers imply shared VM. By way of the above, 1800 * thread groups also imply shared VM. Blocking this case allows 1801 * for various simplifications in other code. 1802 */ 1803 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1804 return ERR_PTR(-EINVAL); 1805 1806 /* 1807 * Siblings of global init remain as zombies on exit since they are 1808 * not reaped by their parent (swapper). To solve this and to avoid 1809 * multi-rooted process trees, prevent global and container-inits 1810 * from creating siblings. 1811 */ 1812 if ((clone_flags & CLONE_PARENT) && 1813 current->signal->flags & SIGNAL_UNKILLABLE) 1814 return ERR_PTR(-EINVAL); 1815 1816 /* 1817 * If the new process will be in a different pid or user namespace 1818 * do not allow it to share a thread group with the forking task. 1819 */ 1820 if (clone_flags & CLONE_THREAD) { 1821 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1822 (task_active_pid_ns(current) != 1823 current->nsproxy->pid_ns_for_children)) 1824 return ERR_PTR(-EINVAL); 1825 } 1826 1827 if (clone_flags & CLONE_PIDFD) { 1828 /* 1829 * - CLONE_DETACHED is blocked so that we can potentially 1830 * reuse it later for CLONE_PIDFD. 1831 * - CLONE_THREAD is blocked until someone really needs it. 1832 */ 1833 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1834 return ERR_PTR(-EINVAL); 1835 } 1836 1837 /* 1838 * Force any signals received before this point to be delivered 1839 * before the fork happens. Collect up signals sent to multiple 1840 * processes that happen during the fork and delay them so that 1841 * they appear to happen after the fork. 1842 */ 1843 sigemptyset(&delayed.signal); 1844 INIT_HLIST_NODE(&delayed.node); 1845 1846 spin_lock_irq(¤t->sighand->siglock); 1847 if (!(clone_flags & CLONE_THREAD)) 1848 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1849 recalc_sigpending(); 1850 spin_unlock_irq(¤t->sighand->siglock); 1851 retval = -ERESTARTNOINTR; 1852 if (signal_pending(current)) 1853 goto fork_out; 1854 1855 retval = -ENOMEM; 1856 p = dup_task_struct(current, node); 1857 if (!p) 1858 goto fork_out; 1859 1860 /* 1861 * This _must_ happen before we call free_task(), i.e. before we jump 1862 * to any of the bad_fork_* labels. This is to avoid freeing 1863 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1864 * kernel threads (PF_KTHREAD). 1865 */ 1866 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1867 /* 1868 * Clear TID on mm_release()? 1869 */ 1870 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1871 1872 ftrace_graph_init_task(p); 1873 1874 rt_mutex_init_task(p); 1875 1876 #ifdef CONFIG_PROVE_LOCKING 1877 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1878 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1879 #endif 1880 retval = -EAGAIN; 1881 if (atomic_read(&p->real_cred->user->processes) >= 1882 task_rlimit(p, RLIMIT_NPROC)) { 1883 if (p->real_cred->user != INIT_USER && 1884 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1885 goto bad_fork_free; 1886 } 1887 current->flags &= ~PF_NPROC_EXCEEDED; 1888 1889 retval = copy_creds(p, clone_flags); 1890 if (retval < 0) 1891 goto bad_fork_free; 1892 1893 /* 1894 * If multiple threads are within copy_process(), then this check 1895 * triggers too late. This doesn't hurt, the check is only there 1896 * to stop root fork bombs. 1897 */ 1898 retval = -EAGAIN; 1899 if (nr_threads >= max_threads) 1900 goto bad_fork_cleanup_count; 1901 1902 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1903 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1904 p->flags |= PF_FORKNOEXEC; 1905 INIT_LIST_HEAD(&p->children); 1906 INIT_LIST_HEAD(&p->sibling); 1907 rcu_copy_process(p); 1908 p->vfork_done = NULL; 1909 spin_lock_init(&p->alloc_lock); 1910 1911 init_sigpending(&p->pending); 1912 1913 p->utime = p->stime = p->gtime = 0; 1914 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1915 p->utimescaled = p->stimescaled = 0; 1916 #endif 1917 prev_cputime_init(&p->prev_cputime); 1918 1919 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1920 seqcount_init(&p->vtime.seqcount); 1921 p->vtime.starttime = 0; 1922 p->vtime.state = VTIME_INACTIVE; 1923 #endif 1924 1925 #if defined(SPLIT_RSS_COUNTING) 1926 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1927 #endif 1928 1929 p->default_timer_slack_ns = current->timer_slack_ns; 1930 1931 #ifdef CONFIG_PSI 1932 p->psi_flags = 0; 1933 #endif 1934 1935 task_io_accounting_init(&p->ioac); 1936 acct_clear_integrals(p); 1937 1938 posix_cpu_timers_init(p); 1939 1940 p->io_context = NULL; 1941 audit_set_context(p, NULL); 1942 cgroup_fork(p); 1943 #ifdef CONFIG_NUMA 1944 p->mempolicy = mpol_dup(p->mempolicy); 1945 if (IS_ERR(p->mempolicy)) { 1946 retval = PTR_ERR(p->mempolicy); 1947 p->mempolicy = NULL; 1948 goto bad_fork_cleanup_threadgroup_lock; 1949 } 1950 #endif 1951 #ifdef CONFIG_CPUSETS 1952 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1953 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1954 seqcount_init(&p->mems_allowed_seq); 1955 #endif 1956 #ifdef CONFIG_TRACE_IRQFLAGS 1957 p->irq_events = 0; 1958 p->hardirqs_enabled = 0; 1959 p->hardirq_enable_ip = 0; 1960 p->hardirq_enable_event = 0; 1961 p->hardirq_disable_ip = _THIS_IP_; 1962 p->hardirq_disable_event = 0; 1963 p->softirqs_enabled = 1; 1964 p->softirq_enable_ip = _THIS_IP_; 1965 p->softirq_enable_event = 0; 1966 p->softirq_disable_ip = 0; 1967 p->softirq_disable_event = 0; 1968 p->hardirq_context = 0; 1969 p->softirq_context = 0; 1970 #endif 1971 1972 p->pagefault_disabled = 0; 1973 1974 #ifdef CONFIG_LOCKDEP 1975 lockdep_init_task(p); 1976 #endif 1977 1978 #ifdef CONFIG_DEBUG_MUTEXES 1979 p->blocked_on = NULL; /* not blocked yet */ 1980 #endif 1981 #ifdef CONFIG_BCACHE 1982 p->sequential_io = 0; 1983 p->sequential_io_avg = 0; 1984 #endif 1985 1986 /* Perform scheduler related setup. Assign this task to a CPU. */ 1987 retval = sched_fork(clone_flags, p); 1988 if (retval) 1989 goto bad_fork_cleanup_policy; 1990 1991 retval = perf_event_init_task(p); 1992 if (retval) 1993 goto bad_fork_cleanup_policy; 1994 retval = audit_alloc(p); 1995 if (retval) 1996 goto bad_fork_cleanup_perf; 1997 /* copy all the process information */ 1998 shm_init_task(p); 1999 retval = security_task_alloc(p, clone_flags); 2000 if (retval) 2001 goto bad_fork_cleanup_audit; 2002 retval = copy_semundo(clone_flags, p); 2003 if (retval) 2004 goto bad_fork_cleanup_security; 2005 retval = copy_files(clone_flags, p); 2006 if (retval) 2007 goto bad_fork_cleanup_semundo; 2008 retval = copy_fs(clone_flags, p); 2009 if (retval) 2010 goto bad_fork_cleanup_files; 2011 retval = copy_sighand(clone_flags, p); 2012 if (retval) 2013 goto bad_fork_cleanup_fs; 2014 retval = copy_signal(clone_flags, p); 2015 if (retval) 2016 goto bad_fork_cleanup_sighand; 2017 retval = copy_mm(clone_flags, p); 2018 if (retval) 2019 goto bad_fork_cleanup_signal; 2020 retval = copy_namespaces(clone_flags, p); 2021 if (retval) 2022 goto bad_fork_cleanup_mm; 2023 retval = copy_io(clone_flags, p); 2024 if (retval) 2025 goto bad_fork_cleanup_namespaces; 2026 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p, 2027 args->tls); 2028 if (retval) 2029 goto bad_fork_cleanup_io; 2030 2031 stackleak_task_init(p); 2032 2033 if (pid != &init_struct_pid) { 2034 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 2035 if (IS_ERR(pid)) { 2036 retval = PTR_ERR(pid); 2037 goto bad_fork_cleanup_thread; 2038 } 2039 } 2040 2041 /* 2042 * This has to happen after we've potentially unshared the file 2043 * descriptor table (so that the pidfd doesn't leak into the child 2044 * if the fd table isn't shared). 2045 */ 2046 if (clone_flags & CLONE_PIDFD) { 2047 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2048 if (retval < 0) 2049 goto bad_fork_free_pid; 2050 2051 pidfd = retval; 2052 2053 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2054 O_RDWR | O_CLOEXEC); 2055 if (IS_ERR(pidfile)) { 2056 put_unused_fd(pidfd); 2057 retval = PTR_ERR(pidfile); 2058 goto bad_fork_free_pid; 2059 } 2060 get_pid(pid); /* held by pidfile now */ 2061 2062 retval = put_user(pidfd, args->pidfd); 2063 if (retval) 2064 goto bad_fork_put_pidfd; 2065 } 2066 2067 #ifdef CONFIG_BLOCK 2068 p->plug = NULL; 2069 #endif 2070 #ifdef CONFIG_FUTEX 2071 p->robust_list = NULL; 2072 #ifdef CONFIG_COMPAT 2073 p->compat_robust_list = NULL; 2074 #endif 2075 INIT_LIST_HEAD(&p->pi_state_list); 2076 p->pi_state_cache = NULL; 2077 #endif 2078 /* 2079 * sigaltstack should be cleared when sharing the same VM 2080 */ 2081 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2082 sas_ss_reset(p); 2083 2084 /* 2085 * Syscall tracing and stepping should be turned off in the 2086 * child regardless of CLONE_PTRACE. 2087 */ 2088 user_disable_single_step(p); 2089 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2090 #ifdef TIF_SYSCALL_EMU 2091 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2092 #endif 2093 clear_tsk_latency_tracing(p); 2094 2095 /* ok, now we should be set up.. */ 2096 p->pid = pid_nr(pid); 2097 if (clone_flags & CLONE_THREAD) { 2098 p->exit_signal = -1; 2099 p->group_leader = current->group_leader; 2100 p->tgid = current->tgid; 2101 } else { 2102 if (clone_flags & CLONE_PARENT) 2103 p->exit_signal = current->group_leader->exit_signal; 2104 else 2105 p->exit_signal = args->exit_signal; 2106 p->group_leader = p; 2107 p->tgid = p->pid; 2108 } 2109 2110 p->nr_dirtied = 0; 2111 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2112 p->dirty_paused_when = 0; 2113 2114 p->pdeath_signal = 0; 2115 INIT_LIST_HEAD(&p->thread_group); 2116 p->task_works = NULL; 2117 2118 cgroup_threadgroup_change_begin(current); 2119 /* 2120 * Ensure that the cgroup subsystem policies allow the new process to be 2121 * forked. It should be noted the the new process's css_set can be changed 2122 * between here and cgroup_post_fork() if an organisation operation is in 2123 * progress. 2124 */ 2125 retval = cgroup_can_fork(p); 2126 if (retval) 2127 goto bad_fork_cgroup_threadgroup_change_end; 2128 2129 /* 2130 * From this point on we must avoid any synchronous user-space 2131 * communication until we take the tasklist-lock. In particular, we do 2132 * not want user-space to be able to predict the process start-time by 2133 * stalling fork(2) after we recorded the start_time but before it is 2134 * visible to the system. 2135 */ 2136 2137 p->start_time = ktime_get_ns(); 2138 p->real_start_time = ktime_get_boottime_ns(); 2139 2140 /* 2141 * Make it visible to the rest of the system, but dont wake it up yet. 2142 * Need tasklist lock for parent etc handling! 2143 */ 2144 write_lock_irq(&tasklist_lock); 2145 2146 /* CLONE_PARENT re-uses the old parent */ 2147 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2148 p->real_parent = current->real_parent; 2149 p->parent_exec_id = current->parent_exec_id; 2150 } else { 2151 p->real_parent = current; 2152 p->parent_exec_id = current->self_exec_id; 2153 } 2154 2155 klp_copy_process(p); 2156 2157 spin_lock(¤t->sighand->siglock); 2158 2159 /* 2160 * Copy seccomp details explicitly here, in case they were changed 2161 * before holding sighand lock. 2162 */ 2163 copy_seccomp(p); 2164 2165 rseq_fork(p, clone_flags); 2166 2167 /* Don't start children in a dying pid namespace */ 2168 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2169 retval = -ENOMEM; 2170 goto bad_fork_cancel_cgroup; 2171 } 2172 2173 /* Let kill terminate clone/fork in the middle */ 2174 if (fatal_signal_pending(current)) { 2175 retval = -EINTR; 2176 goto bad_fork_cancel_cgroup; 2177 } 2178 2179 /* past the last point of failure */ 2180 if (pidfile) 2181 fd_install(pidfd, pidfile); 2182 2183 init_task_pid_links(p); 2184 if (likely(p->pid)) { 2185 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2186 2187 init_task_pid(p, PIDTYPE_PID, pid); 2188 if (thread_group_leader(p)) { 2189 init_task_pid(p, PIDTYPE_TGID, pid); 2190 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2191 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2192 2193 if (is_child_reaper(pid)) { 2194 ns_of_pid(pid)->child_reaper = p; 2195 p->signal->flags |= SIGNAL_UNKILLABLE; 2196 } 2197 p->signal->shared_pending.signal = delayed.signal; 2198 p->signal->tty = tty_kref_get(current->signal->tty); 2199 /* 2200 * Inherit has_child_subreaper flag under the same 2201 * tasklist_lock with adding child to the process tree 2202 * for propagate_has_child_subreaper optimization. 2203 */ 2204 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2205 p->real_parent->signal->is_child_subreaper; 2206 list_add_tail(&p->sibling, &p->real_parent->children); 2207 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2208 attach_pid(p, PIDTYPE_TGID); 2209 attach_pid(p, PIDTYPE_PGID); 2210 attach_pid(p, PIDTYPE_SID); 2211 __this_cpu_inc(process_counts); 2212 } else { 2213 current->signal->nr_threads++; 2214 atomic_inc(¤t->signal->live); 2215 refcount_inc(¤t->signal->sigcnt); 2216 task_join_group_stop(p); 2217 list_add_tail_rcu(&p->thread_group, 2218 &p->group_leader->thread_group); 2219 list_add_tail_rcu(&p->thread_node, 2220 &p->signal->thread_head); 2221 } 2222 attach_pid(p, PIDTYPE_PID); 2223 nr_threads++; 2224 } 2225 total_forks++; 2226 hlist_del_init(&delayed.node); 2227 spin_unlock(¤t->sighand->siglock); 2228 syscall_tracepoint_update(p); 2229 write_unlock_irq(&tasklist_lock); 2230 2231 proc_fork_connector(p); 2232 cgroup_post_fork(p); 2233 cgroup_threadgroup_change_end(current); 2234 perf_event_fork(p); 2235 2236 trace_task_newtask(p, clone_flags); 2237 uprobe_copy_process(p, clone_flags); 2238 2239 return p; 2240 2241 bad_fork_cancel_cgroup: 2242 spin_unlock(¤t->sighand->siglock); 2243 write_unlock_irq(&tasklist_lock); 2244 cgroup_cancel_fork(p); 2245 bad_fork_cgroup_threadgroup_change_end: 2246 cgroup_threadgroup_change_end(current); 2247 bad_fork_put_pidfd: 2248 if (clone_flags & CLONE_PIDFD) { 2249 fput(pidfile); 2250 put_unused_fd(pidfd); 2251 } 2252 bad_fork_free_pid: 2253 if (pid != &init_struct_pid) 2254 free_pid(pid); 2255 bad_fork_cleanup_thread: 2256 exit_thread(p); 2257 bad_fork_cleanup_io: 2258 if (p->io_context) 2259 exit_io_context(p); 2260 bad_fork_cleanup_namespaces: 2261 exit_task_namespaces(p); 2262 bad_fork_cleanup_mm: 2263 if (p->mm) { 2264 mm_clear_owner(p->mm, p); 2265 mmput(p->mm); 2266 } 2267 bad_fork_cleanup_signal: 2268 if (!(clone_flags & CLONE_THREAD)) 2269 free_signal_struct(p->signal); 2270 bad_fork_cleanup_sighand: 2271 __cleanup_sighand(p->sighand); 2272 bad_fork_cleanup_fs: 2273 exit_fs(p); /* blocking */ 2274 bad_fork_cleanup_files: 2275 exit_files(p); /* blocking */ 2276 bad_fork_cleanup_semundo: 2277 exit_sem(p); 2278 bad_fork_cleanup_security: 2279 security_task_free(p); 2280 bad_fork_cleanup_audit: 2281 audit_free(p); 2282 bad_fork_cleanup_perf: 2283 perf_event_free_task(p); 2284 bad_fork_cleanup_policy: 2285 lockdep_free_task(p); 2286 #ifdef CONFIG_NUMA 2287 mpol_put(p->mempolicy); 2288 bad_fork_cleanup_threadgroup_lock: 2289 #endif 2290 delayacct_tsk_free(p); 2291 bad_fork_cleanup_count: 2292 atomic_dec(&p->cred->user->processes); 2293 exit_creds(p); 2294 bad_fork_free: 2295 p->state = TASK_DEAD; 2296 put_task_stack(p); 2297 delayed_free_task(p); 2298 fork_out: 2299 spin_lock_irq(¤t->sighand->siglock); 2300 hlist_del_init(&delayed.node); 2301 spin_unlock_irq(¤t->sighand->siglock); 2302 return ERR_PTR(retval); 2303 } 2304 2305 static inline void init_idle_pids(struct task_struct *idle) 2306 { 2307 enum pid_type type; 2308 2309 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2310 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2311 init_task_pid(idle, type, &init_struct_pid); 2312 } 2313 } 2314 2315 struct task_struct *fork_idle(int cpu) 2316 { 2317 struct task_struct *task; 2318 struct kernel_clone_args args = { 2319 .flags = CLONE_VM, 2320 }; 2321 2322 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2323 if (!IS_ERR(task)) { 2324 init_idle_pids(task); 2325 init_idle(task, cpu); 2326 } 2327 2328 return task; 2329 } 2330 2331 struct mm_struct *copy_init_mm(void) 2332 { 2333 return dup_mm(NULL, &init_mm); 2334 } 2335 2336 /* 2337 * Ok, this is the main fork-routine. 2338 * 2339 * It copies the process, and if successful kick-starts 2340 * it and waits for it to finish using the VM if required. 2341 */ 2342 long _do_fork(struct kernel_clone_args *args) 2343 { 2344 u64 clone_flags = args->flags; 2345 struct completion vfork; 2346 struct pid *pid; 2347 struct task_struct *p; 2348 int trace = 0; 2349 long nr; 2350 2351 /* 2352 * Determine whether and which event to report to ptracer. When 2353 * called from kernel_thread or CLONE_UNTRACED is explicitly 2354 * requested, no event is reported; otherwise, report if the event 2355 * for the type of forking is enabled. 2356 */ 2357 if (!(clone_flags & CLONE_UNTRACED)) { 2358 if (clone_flags & CLONE_VFORK) 2359 trace = PTRACE_EVENT_VFORK; 2360 else if (args->exit_signal != SIGCHLD) 2361 trace = PTRACE_EVENT_CLONE; 2362 else 2363 trace = PTRACE_EVENT_FORK; 2364 2365 if (likely(!ptrace_event_enabled(current, trace))) 2366 trace = 0; 2367 } 2368 2369 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2370 add_latent_entropy(); 2371 2372 if (IS_ERR(p)) 2373 return PTR_ERR(p); 2374 2375 /* 2376 * Do this prior waking up the new thread - the thread pointer 2377 * might get invalid after that point, if the thread exits quickly. 2378 */ 2379 trace_sched_process_fork(current, p); 2380 2381 pid = get_task_pid(p, PIDTYPE_PID); 2382 nr = pid_vnr(pid); 2383 2384 if (clone_flags & CLONE_PARENT_SETTID) 2385 put_user(nr, args->parent_tid); 2386 2387 if (clone_flags & CLONE_VFORK) { 2388 p->vfork_done = &vfork; 2389 init_completion(&vfork); 2390 get_task_struct(p); 2391 } 2392 2393 wake_up_new_task(p); 2394 2395 /* forking complete and child started to run, tell ptracer */ 2396 if (unlikely(trace)) 2397 ptrace_event_pid(trace, pid); 2398 2399 if (clone_flags & CLONE_VFORK) { 2400 if (!wait_for_vfork_done(p, &vfork)) 2401 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2402 } 2403 2404 put_pid(pid); 2405 return nr; 2406 } 2407 2408 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs) 2409 { 2410 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */ 2411 if ((kargs->flags & CLONE_PIDFD) && 2412 (kargs->flags & CLONE_PARENT_SETTID)) 2413 return false; 2414 2415 return true; 2416 } 2417 2418 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2419 /* For compatibility with architectures that call do_fork directly rather than 2420 * using the syscall entry points below. */ 2421 long do_fork(unsigned long clone_flags, 2422 unsigned long stack_start, 2423 unsigned long stack_size, 2424 int __user *parent_tidptr, 2425 int __user *child_tidptr) 2426 { 2427 struct kernel_clone_args args = { 2428 .flags = (clone_flags & ~CSIGNAL), 2429 .pidfd = parent_tidptr, 2430 .child_tid = child_tidptr, 2431 .parent_tid = parent_tidptr, 2432 .exit_signal = (clone_flags & CSIGNAL), 2433 .stack = stack_start, 2434 .stack_size = stack_size, 2435 }; 2436 2437 if (!legacy_clone_args_valid(&args)) 2438 return -EINVAL; 2439 2440 return _do_fork(&args); 2441 } 2442 #endif 2443 2444 /* 2445 * Create a kernel thread. 2446 */ 2447 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2448 { 2449 struct kernel_clone_args args = { 2450 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), 2451 .exit_signal = (flags & CSIGNAL), 2452 .stack = (unsigned long)fn, 2453 .stack_size = (unsigned long)arg, 2454 }; 2455 2456 return _do_fork(&args); 2457 } 2458 2459 #ifdef __ARCH_WANT_SYS_FORK 2460 SYSCALL_DEFINE0(fork) 2461 { 2462 #ifdef CONFIG_MMU 2463 struct kernel_clone_args args = { 2464 .exit_signal = SIGCHLD, 2465 }; 2466 2467 return _do_fork(&args); 2468 #else 2469 /* can not support in nommu mode */ 2470 return -EINVAL; 2471 #endif 2472 } 2473 #endif 2474 2475 #ifdef __ARCH_WANT_SYS_VFORK 2476 SYSCALL_DEFINE0(vfork) 2477 { 2478 struct kernel_clone_args args = { 2479 .flags = CLONE_VFORK | CLONE_VM, 2480 .exit_signal = SIGCHLD, 2481 }; 2482 2483 return _do_fork(&args); 2484 } 2485 #endif 2486 2487 #ifdef __ARCH_WANT_SYS_CLONE 2488 #ifdef CONFIG_CLONE_BACKWARDS 2489 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2490 int __user *, parent_tidptr, 2491 unsigned long, tls, 2492 int __user *, child_tidptr) 2493 #elif defined(CONFIG_CLONE_BACKWARDS2) 2494 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2495 int __user *, parent_tidptr, 2496 int __user *, child_tidptr, 2497 unsigned long, tls) 2498 #elif defined(CONFIG_CLONE_BACKWARDS3) 2499 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2500 int, stack_size, 2501 int __user *, parent_tidptr, 2502 int __user *, child_tidptr, 2503 unsigned long, tls) 2504 #else 2505 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2506 int __user *, parent_tidptr, 2507 int __user *, child_tidptr, 2508 unsigned long, tls) 2509 #endif 2510 { 2511 struct kernel_clone_args args = { 2512 .flags = (clone_flags & ~CSIGNAL), 2513 .pidfd = parent_tidptr, 2514 .child_tid = child_tidptr, 2515 .parent_tid = parent_tidptr, 2516 .exit_signal = (clone_flags & CSIGNAL), 2517 .stack = newsp, 2518 .tls = tls, 2519 }; 2520 2521 if (!legacy_clone_args_valid(&args)) 2522 return -EINVAL; 2523 2524 return _do_fork(&args); 2525 } 2526 #endif 2527 2528 #ifdef __ARCH_WANT_SYS_CLONE3 2529 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2530 struct clone_args __user *uargs, 2531 size_t size) 2532 { 2533 struct clone_args args; 2534 2535 if (unlikely(size > PAGE_SIZE)) 2536 return -E2BIG; 2537 2538 if (unlikely(size < sizeof(struct clone_args))) 2539 return -EINVAL; 2540 2541 if (unlikely(!access_ok(uargs, size))) 2542 return -EFAULT; 2543 2544 if (size > sizeof(struct clone_args)) { 2545 unsigned char __user *addr; 2546 unsigned char __user *end; 2547 unsigned char val; 2548 2549 addr = (void __user *)uargs + sizeof(struct clone_args); 2550 end = (void __user *)uargs + size; 2551 2552 for (; addr < end; addr++) { 2553 if (get_user(val, addr)) 2554 return -EFAULT; 2555 if (val) 2556 return -E2BIG; 2557 } 2558 2559 size = sizeof(struct clone_args); 2560 } 2561 2562 if (copy_from_user(&args, uargs, size)) 2563 return -EFAULT; 2564 2565 *kargs = (struct kernel_clone_args){ 2566 .flags = args.flags, 2567 .pidfd = u64_to_user_ptr(args.pidfd), 2568 .child_tid = u64_to_user_ptr(args.child_tid), 2569 .parent_tid = u64_to_user_ptr(args.parent_tid), 2570 .exit_signal = args.exit_signal, 2571 .stack = args.stack, 2572 .stack_size = args.stack_size, 2573 .tls = args.tls, 2574 }; 2575 2576 return 0; 2577 } 2578 2579 static bool clone3_args_valid(const struct kernel_clone_args *kargs) 2580 { 2581 /* 2582 * All lower bits of the flag word are taken. 2583 * Verify that no other unknown flags are passed along. 2584 */ 2585 if (kargs->flags & ~CLONE_LEGACY_FLAGS) 2586 return false; 2587 2588 /* 2589 * - make the CLONE_DETACHED bit reuseable for clone3 2590 * - make the CSIGNAL bits reuseable for clone3 2591 */ 2592 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2593 return false; 2594 2595 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2596 kargs->exit_signal) 2597 return false; 2598 2599 return true; 2600 } 2601 2602 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2603 { 2604 int err; 2605 2606 struct kernel_clone_args kargs; 2607 2608 err = copy_clone_args_from_user(&kargs, uargs, size); 2609 if (err) 2610 return err; 2611 2612 if (!clone3_args_valid(&kargs)) 2613 return -EINVAL; 2614 2615 return _do_fork(&kargs); 2616 } 2617 #endif 2618 2619 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2620 { 2621 struct task_struct *leader, *parent, *child; 2622 int res; 2623 2624 read_lock(&tasklist_lock); 2625 leader = top = top->group_leader; 2626 down: 2627 for_each_thread(leader, parent) { 2628 list_for_each_entry(child, &parent->children, sibling) { 2629 res = visitor(child, data); 2630 if (res) { 2631 if (res < 0) 2632 goto out; 2633 leader = child; 2634 goto down; 2635 } 2636 up: 2637 ; 2638 } 2639 } 2640 2641 if (leader != top) { 2642 child = leader; 2643 parent = child->real_parent; 2644 leader = parent->group_leader; 2645 goto up; 2646 } 2647 out: 2648 read_unlock(&tasklist_lock); 2649 } 2650 2651 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2652 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2653 #endif 2654 2655 static void sighand_ctor(void *data) 2656 { 2657 struct sighand_struct *sighand = data; 2658 2659 spin_lock_init(&sighand->siglock); 2660 init_waitqueue_head(&sighand->signalfd_wqh); 2661 } 2662 2663 void __init proc_caches_init(void) 2664 { 2665 unsigned int mm_size; 2666 2667 sighand_cachep = kmem_cache_create("sighand_cache", 2668 sizeof(struct sighand_struct), 0, 2669 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2670 SLAB_ACCOUNT, sighand_ctor); 2671 signal_cachep = kmem_cache_create("signal_cache", 2672 sizeof(struct signal_struct), 0, 2673 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2674 NULL); 2675 files_cachep = kmem_cache_create("files_cache", 2676 sizeof(struct files_struct), 0, 2677 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2678 NULL); 2679 fs_cachep = kmem_cache_create("fs_cache", 2680 sizeof(struct fs_struct), 0, 2681 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2682 NULL); 2683 2684 /* 2685 * The mm_cpumask is located at the end of mm_struct, and is 2686 * dynamically sized based on the maximum CPU number this system 2687 * can have, taking hotplug into account (nr_cpu_ids). 2688 */ 2689 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2690 2691 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2692 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2693 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2694 offsetof(struct mm_struct, saved_auxv), 2695 sizeof_field(struct mm_struct, saved_auxv), 2696 NULL); 2697 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2698 mmap_init(); 2699 nsproxy_cache_init(); 2700 } 2701 2702 /* 2703 * Check constraints on flags passed to the unshare system call. 2704 */ 2705 static int check_unshare_flags(unsigned long unshare_flags) 2706 { 2707 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2708 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2709 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2710 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2711 return -EINVAL; 2712 /* 2713 * Not implemented, but pretend it works if there is nothing 2714 * to unshare. Note that unsharing the address space or the 2715 * signal handlers also need to unshare the signal queues (aka 2716 * CLONE_THREAD). 2717 */ 2718 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2719 if (!thread_group_empty(current)) 2720 return -EINVAL; 2721 } 2722 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2723 if (refcount_read(¤t->sighand->count) > 1) 2724 return -EINVAL; 2725 } 2726 if (unshare_flags & CLONE_VM) { 2727 if (!current_is_single_threaded()) 2728 return -EINVAL; 2729 } 2730 2731 return 0; 2732 } 2733 2734 /* 2735 * Unshare the filesystem structure if it is being shared 2736 */ 2737 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2738 { 2739 struct fs_struct *fs = current->fs; 2740 2741 if (!(unshare_flags & CLONE_FS) || !fs) 2742 return 0; 2743 2744 /* don't need lock here; in the worst case we'll do useless copy */ 2745 if (fs->users == 1) 2746 return 0; 2747 2748 *new_fsp = copy_fs_struct(fs); 2749 if (!*new_fsp) 2750 return -ENOMEM; 2751 2752 return 0; 2753 } 2754 2755 /* 2756 * Unshare file descriptor table if it is being shared 2757 */ 2758 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2759 { 2760 struct files_struct *fd = current->files; 2761 int error = 0; 2762 2763 if ((unshare_flags & CLONE_FILES) && 2764 (fd && atomic_read(&fd->count) > 1)) { 2765 *new_fdp = dup_fd(fd, &error); 2766 if (!*new_fdp) 2767 return error; 2768 } 2769 2770 return 0; 2771 } 2772 2773 /* 2774 * unshare allows a process to 'unshare' part of the process 2775 * context which was originally shared using clone. copy_* 2776 * functions used by do_fork() cannot be used here directly 2777 * because they modify an inactive task_struct that is being 2778 * constructed. Here we are modifying the current, active, 2779 * task_struct. 2780 */ 2781 int ksys_unshare(unsigned long unshare_flags) 2782 { 2783 struct fs_struct *fs, *new_fs = NULL; 2784 struct files_struct *fd, *new_fd = NULL; 2785 struct cred *new_cred = NULL; 2786 struct nsproxy *new_nsproxy = NULL; 2787 int do_sysvsem = 0; 2788 int err; 2789 2790 /* 2791 * If unsharing a user namespace must also unshare the thread group 2792 * and unshare the filesystem root and working directories. 2793 */ 2794 if (unshare_flags & CLONE_NEWUSER) 2795 unshare_flags |= CLONE_THREAD | CLONE_FS; 2796 /* 2797 * If unsharing vm, must also unshare signal handlers. 2798 */ 2799 if (unshare_flags & CLONE_VM) 2800 unshare_flags |= CLONE_SIGHAND; 2801 /* 2802 * If unsharing a signal handlers, must also unshare the signal queues. 2803 */ 2804 if (unshare_flags & CLONE_SIGHAND) 2805 unshare_flags |= CLONE_THREAD; 2806 /* 2807 * If unsharing namespace, must also unshare filesystem information. 2808 */ 2809 if (unshare_flags & CLONE_NEWNS) 2810 unshare_flags |= CLONE_FS; 2811 2812 err = check_unshare_flags(unshare_flags); 2813 if (err) 2814 goto bad_unshare_out; 2815 /* 2816 * CLONE_NEWIPC must also detach from the undolist: after switching 2817 * to a new ipc namespace, the semaphore arrays from the old 2818 * namespace are unreachable. 2819 */ 2820 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2821 do_sysvsem = 1; 2822 err = unshare_fs(unshare_flags, &new_fs); 2823 if (err) 2824 goto bad_unshare_out; 2825 err = unshare_fd(unshare_flags, &new_fd); 2826 if (err) 2827 goto bad_unshare_cleanup_fs; 2828 err = unshare_userns(unshare_flags, &new_cred); 2829 if (err) 2830 goto bad_unshare_cleanup_fd; 2831 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2832 new_cred, new_fs); 2833 if (err) 2834 goto bad_unshare_cleanup_cred; 2835 2836 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2837 if (do_sysvsem) { 2838 /* 2839 * CLONE_SYSVSEM is equivalent to sys_exit(). 2840 */ 2841 exit_sem(current); 2842 } 2843 if (unshare_flags & CLONE_NEWIPC) { 2844 /* Orphan segments in old ns (see sem above). */ 2845 exit_shm(current); 2846 shm_init_task(current); 2847 } 2848 2849 if (new_nsproxy) 2850 switch_task_namespaces(current, new_nsproxy); 2851 2852 task_lock(current); 2853 2854 if (new_fs) { 2855 fs = current->fs; 2856 spin_lock(&fs->lock); 2857 current->fs = new_fs; 2858 if (--fs->users) 2859 new_fs = NULL; 2860 else 2861 new_fs = fs; 2862 spin_unlock(&fs->lock); 2863 } 2864 2865 if (new_fd) { 2866 fd = current->files; 2867 current->files = new_fd; 2868 new_fd = fd; 2869 } 2870 2871 task_unlock(current); 2872 2873 if (new_cred) { 2874 /* Install the new user namespace */ 2875 commit_creds(new_cred); 2876 new_cred = NULL; 2877 } 2878 } 2879 2880 perf_event_namespaces(current); 2881 2882 bad_unshare_cleanup_cred: 2883 if (new_cred) 2884 put_cred(new_cred); 2885 bad_unshare_cleanup_fd: 2886 if (new_fd) 2887 put_files_struct(new_fd); 2888 2889 bad_unshare_cleanup_fs: 2890 if (new_fs) 2891 free_fs_struct(new_fs); 2892 2893 bad_unshare_out: 2894 return err; 2895 } 2896 2897 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2898 { 2899 return ksys_unshare(unshare_flags); 2900 } 2901 2902 /* 2903 * Helper to unshare the files of the current task. 2904 * We don't want to expose copy_files internals to 2905 * the exec layer of the kernel. 2906 */ 2907 2908 int unshare_files(struct files_struct **displaced) 2909 { 2910 struct task_struct *task = current; 2911 struct files_struct *copy = NULL; 2912 int error; 2913 2914 error = unshare_fd(CLONE_FILES, ©); 2915 if (error || !copy) { 2916 *displaced = NULL; 2917 return error; 2918 } 2919 *displaced = task->files; 2920 task_lock(task); 2921 task->files = copy; 2922 task_unlock(task); 2923 return 0; 2924 } 2925 2926 int sysctl_max_threads(struct ctl_table *table, int write, 2927 void __user *buffer, size_t *lenp, loff_t *ppos) 2928 { 2929 struct ctl_table t; 2930 int ret; 2931 int threads = max_threads; 2932 int min = MIN_THREADS; 2933 int max = MAX_THREADS; 2934 2935 t = *table; 2936 t.data = &threads; 2937 t.extra1 = &min; 2938 t.extra2 = &max; 2939 2940 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2941 if (ret || !write) 2942 return ret; 2943 2944 set_max_threads(threads); 2945 2946 return 0; 2947 } 2948