1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/seccomp.h> 38 #include <linux/swap.h> 39 #include <linux/syscalls.h> 40 #include <linux/jiffies.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/kthread.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/rmap.h> 54 #include <linux/ksm.h> 55 #include <linux/acct.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/freezer.h> 59 #include <linux/delayacct.h> 60 #include <linux/taskstats_kern.h> 61 #include <linux/random.h> 62 #include <linux/tty.h> 63 #include <linux/blkdev.h> 64 #include <linux/fs_struct.h> 65 #include <linux/magic.h> 66 #include <linux/perf_event.h> 67 #include <linux/posix-timers.h> 68 #include <linux/user-return-notifier.h> 69 #include <linux/oom.h> 70 #include <linux/khugepaged.h> 71 #include <linux/signalfd.h> 72 #include <linux/uprobes.h> 73 74 #include <asm/pgtable.h> 75 #include <asm/pgalloc.h> 76 #include <asm/uaccess.h> 77 #include <asm/mmu_context.h> 78 #include <asm/cacheflush.h> 79 #include <asm/tlbflush.h> 80 81 #include <trace/events/sched.h> 82 83 #define CREATE_TRACE_POINTS 84 #include <trace/events/task.h> 85 86 /* 87 * Protected counters by write_lock_irq(&tasklist_lock) 88 */ 89 unsigned long total_forks; /* Handle normal Linux uptimes. */ 90 int nr_threads; /* The idle threads do not count.. */ 91 92 int max_threads; /* tunable limit on nr_threads */ 93 94 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 95 96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 97 98 #ifdef CONFIG_PROVE_RCU 99 int lockdep_tasklist_lock_is_held(void) 100 { 101 return lockdep_is_held(&tasklist_lock); 102 } 103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 104 #endif /* #ifdef CONFIG_PROVE_RCU */ 105 106 int nr_processes(void) 107 { 108 int cpu; 109 int total = 0; 110 111 for_each_possible_cpu(cpu) 112 total += per_cpu(process_counts, cpu); 113 114 return total; 115 } 116 117 void __weak arch_release_task_struct(struct task_struct *tsk) 118 { 119 } 120 121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 122 static struct kmem_cache *task_struct_cachep; 123 124 static inline struct task_struct *alloc_task_struct_node(int node) 125 { 126 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 127 } 128 129 static inline void free_task_struct(struct task_struct *tsk) 130 { 131 kmem_cache_free(task_struct_cachep, tsk); 132 } 133 #endif 134 135 void __weak arch_release_thread_info(struct thread_info *ti) 136 { 137 } 138 139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 140 141 /* 142 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 143 * kmemcache based allocator. 144 */ 145 # if THREAD_SIZE >= PAGE_SIZE 146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 147 int node) 148 { 149 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED, 150 THREAD_SIZE_ORDER); 151 152 return page ? page_address(page) : NULL; 153 } 154 155 static inline void free_thread_info(struct thread_info *ti) 156 { 157 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER); 158 } 159 # else 160 static struct kmem_cache *thread_info_cache; 161 162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 163 int node) 164 { 165 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 166 } 167 168 static void free_thread_info(struct thread_info *ti) 169 { 170 kmem_cache_free(thread_info_cache, ti); 171 } 172 173 void thread_info_cache_init(void) 174 { 175 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 176 THREAD_SIZE, 0, NULL); 177 BUG_ON(thread_info_cache == NULL); 178 } 179 # endif 180 #endif 181 182 /* SLAB cache for signal_struct structures (tsk->signal) */ 183 static struct kmem_cache *signal_cachep; 184 185 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 186 struct kmem_cache *sighand_cachep; 187 188 /* SLAB cache for files_struct structures (tsk->files) */ 189 struct kmem_cache *files_cachep; 190 191 /* SLAB cache for fs_struct structures (tsk->fs) */ 192 struct kmem_cache *fs_cachep; 193 194 /* SLAB cache for vm_area_struct structures */ 195 struct kmem_cache *vm_area_cachep; 196 197 /* SLAB cache for mm_struct structures (tsk->mm) */ 198 static struct kmem_cache *mm_cachep; 199 200 static void account_kernel_stack(struct thread_info *ti, int account) 201 { 202 struct zone *zone = page_zone(virt_to_page(ti)); 203 204 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 205 } 206 207 void free_task(struct task_struct *tsk) 208 { 209 account_kernel_stack(tsk->stack, -1); 210 arch_release_thread_info(tsk->stack); 211 free_thread_info(tsk->stack); 212 rt_mutex_debug_task_free(tsk); 213 ftrace_graph_exit_task(tsk); 214 put_seccomp_filter(tsk); 215 arch_release_task_struct(tsk); 216 free_task_struct(tsk); 217 } 218 EXPORT_SYMBOL(free_task); 219 220 static inline void free_signal_struct(struct signal_struct *sig) 221 { 222 taskstats_tgid_free(sig); 223 sched_autogroup_exit(sig); 224 kmem_cache_free(signal_cachep, sig); 225 } 226 227 static inline void put_signal_struct(struct signal_struct *sig) 228 { 229 if (atomic_dec_and_test(&sig->sigcnt)) 230 free_signal_struct(sig); 231 } 232 233 void __put_task_struct(struct task_struct *tsk) 234 { 235 WARN_ON(!tsk->exit_state); 236 WARN_ON(atomic_read(&tsk->usage)); 237 WARN_ON(tsk == current); 238 239 security_task_free(tsk); 240 exit_creds(tsk); 241 delayacct_tsk_free(tsk); 242 put_signal_struct(tsk->signal); 243 244 if (!profile_handoff_task(tsk)) 245 free_task(tsk); 246 } 247 EXPORT_SYMBOL_GPL(__put_task_struct); 248 249 void __init __weak arch_task_cache_init(void) { } 250 251 void __init fork_init(unsigned long mempages) 252 { 253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 254 #ifndef ARCH_MIN_TASKALIGN 255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 256 #endif 257 /* create a slab on which task_structs can be allocated */ 258 task_struct_cachep = 259 kmem_cache_create("task_struct", sizeof(struct task_struct), 260 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 261 #endif 262 263 /* do the arch specific task caches init */ 264 arch_task_cache_init(); 265 266 /* 267 * The default maximum number of threads is set to a safe 268 * value: the thread structures can take up at most half 269 * of memory. 270 */ 271 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 272 273 /* 274 * we need to allow at least 20 threads to boot a system 275 */ 276 if (max_threads < 20) 277 max_threads = 20; 278 279 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 280 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 281 init_task.signal->rlim[RLIMIT_SIGPENDING] = 282 init_task.signal->rlim[RLIMIT_NPROC]; 283 } 284 285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 286 struct task_struct *src) 287 { 288 *dst = *src; 289 return 0; 290 } 291 292 static struct task_struct *dup_task_struct(struct task_struct *orig) 293 { 294 struct task_struct *tsk; 295 struct thread_info *ti; 296 unsigned long *stackend; 297 int node = tsk_fork_get_node(orig); 298 int err; 299 300 tsk = alloc_task_struct_node(node); 301 if (!tsk) 302 return NULL; 303 304 ti = alloc_thread_info_node(tsk, node); 305 if (!ti) 306 goto free_tsk; 307 308 err = arch_dup_task_struct(tsk, orig); 309 if (err) 310 goto free_ti; 311 312 tsk->stack = ti; 313 314 setup_thread_stack(tsk, orig); 315 clear_user_return_notifier(tsk); 316 clear_tsk_need_resched(tsk); 317 stackend = end_of_stack(tsk); 318 *stackend = STACK_END_MAGIC; /* for overflow detection */ 319 320 #ifdef CONFIG_CC_STACKPROTECTOR 321 tsk->stack_canary = get_random_int(); 322 #endif 323 324 /* 325 * One for us, one for whoever does the "release_task()" (usually 326 * parent) 327 */ 328 atomic_set(&tsk->usage, 2); 329 #ifdef CONFIG_BLK_DEV_IO_TRACE 330 tsk->btrace_seq = 0; 331 #endif 332 tsk->splice_pipe = NULL; 333 tsk->task_frag.page = NULL; 334 335 account_kernel_stack(ti, 1); 336 337 return tsk; 338 339 free_ti: 340 free_thread_info(ti); 341 free_tsk: 342 free_task_struct(tsk); 343 return NULL; 344 } 345 346 #ifdef CONFIG_MMU 347 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 348 { 349 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 350 struct rb_node **rb_link, *rb_parent; 351 int retval; 352 unsigned long charge; 353 struct mempolicy *pol; 354 355 uprobe_start_dup_mmap(); 356 down_write(&oldmm->mmap_sem); 357 flush_cache_dup_mm(oldmm); 358 uprobe_dup_mmap(oldmm, mm); 359 /* 360 * Not linked in yet - no deadlock potential: 361 */ 362 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 363 364 mm->locked_vm = 0; 365 mm->mmap = NULL; 366 mm->mmap_cache = NULL; 367 mm->free_area_cache = oldmm->mmap_base; 368 mm->cached_hole_size = ~0UL; 369 mm->map_count = 0; 370 cpumask_clear(mm_cpumask(mm)); 371 mm->mm_rb = RB_ROOT; 372 rb_link = &mm->mm_rb.rb_node; 373 rb_parent = NULL; 374 pprev = &mm->mmap; 375 retval = ksm_fork(mm, oldmm); 376 if (retval) 377 goto out; 378 retval = khugepaged_fork(mm, oldmm); 379 if (retval) 380 goto out; 381 382 prev = NULL; 383 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 384 struct file *file; 385 386 if (mpnt->vm_flags & VM_DONTCOPY) { 387 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 388 -vma_pages(mpnt)); 389 continue; 390 } 391 charge = 0; 392 if (mpnt->vm_flags & VM_ACCOUNT) { 393 unsigned long len = vma_pages(mpnt); 394 395 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 396 goto fail_nomem; 397 charge = len; 398 } 399 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 400 if (!tmp) 401 goto fail_nomem; 402 *tmp = *mpnt; 403 INIT_LIST_HEAD(&tmp->anon_vma_chain); 404 pol = mpol_dup(vma_policy(mpnt)); 405 retval = PTR_ERR(pol); 406 if (IS_ERR(pol)) 407 goto fail_nomem_policy; 408 vma_set_policy(tmp, pol); 409 tmp->vm_mm = mm; 410 if (anon_vma_fork(tmp, mpnt)) 411 goto fail_nomem_anon_vma_fork; 412 tmp->vm_flags &= ~VM_LOCKED; 413 tmp->vm_next = tmp->vm_prev = NULL; 414 file = tmp->vm_file; 415 if (file) { 416 struct inode *inode = file->f_path.dentry->d_inode; 417 struct address_space *mapping = file->f_mapping; 418 419 get_file(file); 420 if (tmp->vm_flags & VM_DENYWRITE) 421 atomic_dec(&inode->i_writecount); 422 mutex_lock(&mapping->i_mmap_mutex); 423 if (tmp->vm_flags & VM_SHARED) 424 mapping->i_mmap_writable++; 425 flush_dcache_mmap_lock(mapping); 426 /* insert tmp into the share list, just after mpnt */ 427 if (unlikely(tmp->vm_flags & VM_NONLINEAR)) 428 vma_nonlinear_insert(tmp, 429 &mapping->i_mmap_nonlinear); 430 else 431 vma_interval_tree_insert_after(tmp, mpnt, 432 &mapping->i_mmap); 433 flush_dcache_mmap_unlock(mapping); 434 mutex_unlock(&mapping->i_mmap_mutex); 435 } 436 437 /* 438 * Clear hugetlb-related page reserves for children. This only 439 * affects MAP_PRIVATE mappings. Faults generated by the child 440 * are not guaranteed to succeed, even if read-only 441 */ 442 if (is_vm_hugetlb_page(tmp)) 443 reset_vma_resv_huge_pages(tmp); 444 445 /* 446 * Link in the new vma and copy the page table entries. 447 */ 448 *pprev = tmp; 449 pprev = &tmp->vm_next; 450 tmp->vm_prev = prev; 451 prev = tmp; 452 453 __vma_link_rb(mm, tmp, rb_link, rb_parent); 454 rb_link = &tmp->vm_rb.rb_right; 455 rb_parent = &tmp->vm_rb; 456 457 mm->map_count++; 458 retval = copy_page_range(mm, oldmm, mpnt); 459 460 if (tmp->vm_ops && tmp->vm_ops->open) 461 tmp->vm_ops->open(tmp); 462 463 if (retval) 464 goto out; 465 } 466 /* a new mm has just been created */ 467 arch_dup_mmap(oldmm, mm); 468 retval = 0; 469 out: 470 up_write(&mm->mmap_sem); 471 flush_tlb_mm(oldmm); 472 up_write(&oldmm->mmap_sem); 473 uprobe_end_dup_mmap(); 474 return retval; 475 fail_nomem_anon_vma_fork: 476 mpol_put(pol); 477 fail_nomem_policy: 478 kmem_cache_free(vm_area_cachep, tmp); 479 fail_nomem: 480 retval = -ENOMEM; 481 vm_unacct_memory(charge); 482 goto out; 483 } 484 485 static inline int mm_alloc_pgd(struct mm_struct *mm) 486 { 487 mm->pgd = pgd_alloc(mm); 488 if (unlikely(!mm->pgd)) 489 return -ENOMEM; 490 return 0; 491 } 492 493 static inline void mm_free_pgd(struct mm_struct *mm) 494 { 495 pgd_free(mm, mm->pgd); 496 } 497 #else 498 #define dup_mmap(mm, oldmm) (0) 499 #define mm_alloc_pgd(mm) (0) 500 #define mm_free_pgd(mm) 501 #endif /* CONFIG_MMU */ 502 503 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 504 505 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 506 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 507 508 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 509 510 static int __init coredump_filter_setup(char *s) 511 { 512 default_dump_filter = 513 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 514 MMF_DUMP_FILTER_MASK; 515 return 1; 516 } 517 518 __setup("coredump_filter=", coredump_filter_setup); 519 520 #include <linux/init_task.h> 521 522 static void mm_init_aio(struct mm_struct *mm) 523 { 524 #ifdef CONFIG_AIO 525 spin_lock_init(&mm->ioctx_lock); 526 INIT_HLIST_HEAD(&mm->ioctx_list); 527 #endif 528 } 529 530 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 531 { 532 atomic_set(&mm->mm_users, 1); 533 atomic_set(&mm->mm_count, 1); 534 init_rwsem(&mm->mmap_sem); 535 INIT_LIST_HEAD(&mm->mmlist); 536 mm->flags = (current->mm) ? 537 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 538 mm->core_state = NULL; 539 mm->nr_ptes = 0; 540 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 541 spin_lock_init(&mm->page_table_lock); 542 mm->free_area_cache = TASK_UNMAPPED_BASE; 543 mm->cached_hole_size = ~0UL; 544 mm_init_aio(mm); 545 mm_init_owner(mm, p); 546 547 if (likely(!mm_alloc_pgd(mm))) { 548 mm->def_flags = 0; 549 mmu_notifier_mm_init(mm); 550 return mm; 551 } 552 553 free_mm(mm); 554 return NULL; 555 } 556 557 static void check_mm(struct mm_struct *mm) 558 { 559 int i; 560 561 for (i = 0; i < NR_MM_COUNTERS; i++) { 562 long x = atomic_long_read(&mm->rss_stat.count[i]); 563 564 if (unlikely(x)) 565 printk(KERN_ALERT "BUG: Bad rss-counter state " 566 "mm:%p idx:%d val:%ld\n", mm, i, x); 567 } 568 569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 570 VM_BUG_ON(mm->pmd_huge_pte); 571 #endif 572 } 573 574 /* 575 * Allocate and initialize an mm_struct. 576 */ 577 struct mm_struct *mm_alloc(void) 578 { 579 struct mm_struct *mm; 580 581 mm = allocate_mm(); 582 if (!mm) 583 return NULL; 584 585 memset(mm, 0, sizeof(*mm)); 586 mm_init_cpumask(mm); 587 return mm_init(mm, current); 588 } 589 590 /* 591 * Called when the last reference to the mm 592 * is dropped: either by a lazy thread or by 593 * mmput. Free the page directory and the mm. 594 */ 595 void __mmdrop(struct mm_struct *mm) 596 { 597 BUG_ON(mm == &init_mm); 598 mm_free_pgd(mm); 599 destroy_context(mm); 600 mmu_notifier_mm_destroy(mm); 601 check_mm(mm); 602 free_mm(mm); 603 } 604 EXPORT_SYMBOL_GPL(__mmdrop); 605 606 /* 607 * Decrement the use count and release all resources for an mm. 608 */ 609 void mmput(struct mm_struct *mm) 610 { 611 might_sleep(); 612 613 if (atomic_dec_and_test(&mm->mm_users)) { 614 uprobe_clear_state(mm); 615 exit_aio(mm); 616 ksm_exit(mm); 617 khugepaged_exit(mm); /* must run before exit_mmap */ 618 exit_mmap(mm); 619 set_mm_exe_file(mm, NULL); 620 if (!list_empty(&mm->mmlist)) { 621 spin_lock(&mmlist_lock); 622 list_del(&mm->mmlist); 623 spin_unlock(&mmlist_lock); 624 } 625 if (mm->binfmt) 626 module_put(mm->binfmt->module); 627 mmdrop(mm); 628 } 629 } 630 EXPORT_SYMBOL_GPL(mmput); 631 632 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 633 { 634 if (new_exe_file) 635 get_file(new_exe_file); 636 if (mm->exe_file) 637 fput(mm->exe_file); 638 mm->exe_file = new_exe_file; 639 } 640 641 struct file *get_mm_exe_file(struct mm_struct *mm) 642 { 643 struct file *exe_file; 644 645 /* We need mmap_sem to protect against races with removal of exe_file */ 646 down_read(&mm->mmap_sem); 647 exe_file = mm->exe_file; 648 if (exe_file) 649 get_file(exe_file); 650 up_read(&mm->mmap_sem); 651 return exe_file; 652 } 653 654 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 655 { 656 /* It's safe to write the exe_file pointer without exe_file_lock because 657 * this is called during fork when the task is not yet in /proc */ 658 newmm->exe_file = get_mm_exe_file(oldmm); 659 } 660 661 /** 662 * get_task_mm - acquire a reference to the task's mm 663 * 664 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 665 * this kernel workthread has transiently adopted a user mm with use_mm, 666 * to do its AIO) is not set and if so returns a reference to it, after 667 * bumping up the use count. User must release the mm via mmput() 668 * after use. Typically used by /proc and ptrace. 669 */ 670 struct mm_struct *get_task_mm(struct task_struct *task) 671 { 672 struct mm_struct *mm; 673 674 task_lock(task); 675 mm = task->mm; 676 if (mm) { 677 if (task->flags & PF_KTHREAD) 678 mm = NULL; 679 else 680 atomic_inc(&mm->mm_users); 681 } 682 task_unlock(task); 683 return mm; 684 } 685 EXPORT_SYMBOL_GPL(get_task_mm); 686 687 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 688 { 689 struct mm_struct *mm; 690 int err; 691 692 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 693 if (err) 694 return ERR_PTR(err); 695 696 mm = get_task_mm(task); 697 if (mm && mm != current->mm && 698 !ptrace_may_access(task, mode)) { 699 mmput(mm); 700 mm = ERR_PTR(-EACCES); 701 } 702 mutex_unlock(&task->signal->cred_guard_mutex); 703 704 return mm; 705 } 706 707 static void complete_vfork_done(struct task_struct *tsk) 708 { 709 struct completion *vfork; 710 711 task_lock(tsk); 712 vfork = tsk->vfork_done; 713 if (likely(vfork)) { 714 tsk->vfork_done = NULL; 715 complete(vfork); 716 } 717 task_unlock(tsk); 718 } 719 720 static int wait_for_vfork_done(struct task_struct *child, 721 struct completion *vfork) 722 { 723 int killed; 724 725 freezer_do_not_count(); 726 killed = wait_for_completion_killable(vfork); 727 freezer_count(); 728 729 if (killed) { 730 task_lock(child); 731 child->vfork_done = NULL; 732 task_unlock(child); 733 } 734 735 put_task_struct(child); 736 return killed; 737 } 738 739 /* Please note the differences between mmput and mm_release. 740 * mmput is called whenever we stop holding onto a mm_struct, 741 * error success whatever. 742 * 743 * mm_release is called after a mm_struct has been removed 744 * from the current process. 745 * 746 * This difference is important for error handling, when we 747 * only half set up a mm_struct for a new process and need to restore 748 * the old one. Because we mmput the new mm_struct before 749 * restoring the old one. . . 750 * Eric Biederman 10 January 1998 751 */ 752 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 753 { 754 /* Get rid of any futexes when releasing the mm */ 755 #ifdef CONFIG_FUTEX 756 if (unlikely(tsk->robust_list)) { 757 exit_robust_list(tsk); 758 tsk->robust_list = NULL; 759 } 760 #ifdef CONFIG_COMPAT 761 if (unlikely(tsk->compat_robust_list)) { 762 compat_exit_robust_list(tsk); 763 tsk->compat_robust_list = NULL; 764 } 765 #endif 766 if (unlikely(!list_empty(&tsk->pi_state_list))) 767 exit_pi_state_list(tsk); 768 #endif 769 770 uprobe_free_utask(tsk); 771 772 /* Get rid of any cached register state */ 773 deactivate_mm(tsk, mm); 774 775 /* 776 * If we're exiting normally, clear a user-space tid field if 777 * requested. We leave this alone when dying by signal, to leave 778 * the value intact in a core dump, and to save the unnecessary 779 * trouble, say, a killed vfork parent shouldn't touch this mm. 780 * Userland only wants this done for a sys_exit. 781 */ 782 if (tsk->clear_child_tid) { 783 if (!(tsk->flags & PF_SIGNALED) && 784 atomic_read(&mm->mm_users) > 1) { 785 /* 786 * We don't check the error code - if userspace has 787 * not set up a proper pointer then tough luck. 788 */ 789 put_user(0, tsk->clear_child_tid); 790 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 791 1, NULL, NULL, 0); 792 } 793 tsk->clear_child_tid = NULL; 794 } 795 796 /* 797 * All done, finally we can wake up parent and return this mm to him. 798 * Also kthread_stop() uses this completion for synchronization. 799 */ 800 if (tsk->vfork_done) 801 complete_vfork_done(tsk); 802 } 803 804 /* 805 * Allocate a new mm structure and copy contents from the 806 * mm structure of the passed in task structure. 807 */ 808 struct mm_struct *dup_mm(struct task_struct *tsk) 809 { 810 struct mm_struct *mm, *oldmm = current->mm; 811 int err; 812 813 if (!oldmm) 814 return NULL; 815 816 mm = allocate_mm(); 817 if (!mm) 818 goto fail_nomem; 819 820 memcpy(mm, oldmm, sizeof(*mm)); 821 mm_init_cpumask(mm); 822 823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 824 mm->pmd_huge_pte = NULL; 825 #endif 826 #ifdef CONFIG_NUMA_BALANCING 827 mm->first_nid = NUMA_PTE_SCAN_INIT; 828 #endif 829 if (!mm_init(mm, tsk)) 830 goto fail_nomem; 831 832 if (init_new_context(tsk, mm)) 833 goto fail_nocontext; 834 835 dup_mm_exe_file(oldmm, mm); 836 837 err = dup_mmap(mm, oldmm); 838 if (err) 839 goto free_pt; 840 841 mm->hiwater_rss = get_mm_rss(mm); 842 mm->hiwater_vm = mm->total_vm; 843 844 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 845 goto free_pt; 846 847 return mm; 848 849 free_pt: 850 /* don't put binfmt in mmput, we haven't got module yet */ 851 mm->binfmt = NULL; 852 mmput(mm); 853 854 fail_nomem: 855 return NULL; 856 857 fail_nocontext: 858 /* 859 * If init_new_context() failed, we cannot use mmput() to free the mm 860 * because it calls destroy_context() 861 */ 862 mm_free_pgd(mm); 863 free_mm(mm); 864 return NULL; 865 } 866 867 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 868 { 869 struct mm_struct *mm, *oldmm; 870 int retval; 871 872 tsk->min_flt = tsk->maj_flt = 0; 873 tsk->nvcsw = tsk->nivcsw = 0; 874 #ifdef CONFIG_DETECT_HUNG_TASK 875 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 876 #endif 877 878 tsk->mm = NULL; 879 tsk->active_mm = NULL; 880 881 /* 882 * Are we cloning a kernel thread? 883 * 884 * We need to steal a active VM for that.. 885 */ 886 oldmm = current->mm; 887 if (!oldmm) 888 return 0; 889 890 if (clone_flags & CLONE_VM) { 891 atomic_inc(&oldmm->mm_users); 892 mm = oldmm; 893 goto good_mm; 894 } 895 896 retval = -ENOMEM; 897 mm = dup_mm(tsk); 898 if (!mm) 899 goto fail_nomem; 900 901 good_mm: 902 tsk->mm = mm; 903 tsk->active_mm = mm; 904 return 0; 905 906 fail_nomem: 907 return retval; 908 } 909 910 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 911 { 912 struct fs_struct *fs = current->fs; 913 if (clone_flags & CLONE_FS) { 914 /* tsk->fs is already what we want */ 915 spin_lock(&fs->lock); 916 if (fs->in_exec) { 917 spin_unlock(&fs->lock); 918 return -EAGAIN; 919 } 920 fs->users++; 921 spin_unlock(&fs->lock); 922 return 0; 923 } 924 tsk->fs = copy_fs_struct(fs); 925 if (!tsk->fs) 926 return -ENOMEM; 927 return 0; 928 } 929 930 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 931 { 932 struct files_struct *oldf, *newf; 933 int error = 0; 934 935 /* 936 * A background process may not have any files ... 937 */ 938 oldf = current->files; 939 if (!oldf) 940 goto out; 941 942 if (clone_flags & CLONE_FILES) { 943 atomic_inc(&oldf->count); 944 goto out; 945 } 946 947 newf = dup_fd(oldf, &error); 948 if (!newf) 949 goto out; 950 951 tsk->files = newf; 952 error = 0; 953 out: 954 return error; 955 } 956 957 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 958 { 959 #ifdef CONFIG_BLOCK 960 struct io_context *ioc = current->io_context; 961 struct io_context *new_ioc; 962 963 if (!ioc) 964 return 0; 965 /* 966 * Share io context with parent, if CLONE_IO is set 967 */ 968 if (clone_flags & CLONE_IO) { 969 ioc_task_link(ioc); 970 tsk->io_context = ioc; 971 } else if (ioprio_valid(ioc->ioprio)) { 972 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 973 if (unlikely(!new_ioc)) 974 return -ENOMEM; 975 976 new_ioc->ioprio = ioc->ioprio; 977 put_io_context(new_ioc); 978 } 979 #endif 980 return 0; 981 } 982 983 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 984 { 985 struct sighand_struct *sig; 986 987 if (clone_flags & CLONE_SIGHAND) { 988 atomic_inc(¤t->sighand->count); 989 return 0; 990 } 991 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 992 rcu_assign_pointer(tsk->sighand, sig); 993 if (!sig) 994 return -ENOMEM; 995 atomic_set(&sig->count, 1); 996 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 997 return 0; 998 } 999 1000 void __cleanup_sighand(struct sighand_struct *sighand) 1001 { 1002 if (atomic_dec_and_test(&sighand->count)) { 1003 signalfd_cleanup(sighand); 1004 kmem_cache_free(sighand_cachep, sighand); 1005 } 1006 } 1007 1008 1009 /* 1010 * Initialize POSIX timer handling for a thread group. 1011 */ 1012 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1013 { 1014 unsigned long cpu_limit; 1015 1016 /* Thread group counters. */ 1017 thread_group_cputime_init(sig); 1018 1019 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1020 if (cpu_limit != RLIM_INFINITY) { 1021 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1022 sig->cputimer.running = 1; 1023 } 1024 1025 /* The timer lists. */ 1026 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1027 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1028 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1029 } 1030 1031 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1032 { 1033 struct signal_struct *sig; 1034 1035 if (clone_flags & CLONE_THREAD) 1036 return 0; 1037 1038 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1039 tsk->signal = sig; 1040 if (!sig) 1041 return -ENOMEM; 1042 1043 sig->nr_threads = 1; 1044 atomic_set(&sig->live, 1); 1045 atomic_set(&sig->sigcnt, 1); 1046 init_waitqueue_head(&sig->wait_chldexit); 1047 sig->curr_target = tsk; 1048 init_sigpending(&sig->shared_pending); 1049 INIT_LIST_HEAD(&sig->posix_timers); 1050 1051 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1052 sig->real_timer.function = it_real_fn; 1053 1054 task_lock(current->group_leader); 1055 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1056 task_unlock(current->group_leader); 1057 1058 posix_cpu_timers_init_group(sig); 1059 1060 tty_audit_fork(sig); 1061 sched_autogroup_fork(sig); 1062 1063 #ifdef CONFIG_CGROUPS 1064 init_rwsem(&sig->group_rwsem); 1065 #endif 1066 1067 sig->oom_score_adj = current->signal->oom_score_adj; 1068 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1069 1070 sig->has_child_subreaper = current->signal->has_child_subreaper || 1071 current->signal->is_child_subreaper; 1072 1073 mutex_init(&sig->cred_guard_mutex); 1074 1075 return 0; 1076 } 1077 1078 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 1079 { 1080 unsigned long new_flags = p->flags; 1081 1082 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1083 new_flags |= PF_FORKNOEXEC; 1084 p->flags = new_flags; 1085 } 1086 1087 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1088 { 1089 current->clear_child_tid = tidptr; 1090 1091 return task_pid_vnr(current); 1092 } 1093 1094 static void rt_mutex_init_task(struct task_struct *p) 1095 { 1096 raw_spin_lock_init(&p->pi_lock); 1097 #ifdef CONFIG_RT_MUTEXES 1098 plist_head_init(&p->pi_waiters); 1099 p->pi_blocked_on = NULL; 1100 #endif 1101 } 1102 1103 #ifdef CONFIG_MM_OWNER 1104 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1105 { 1106 mm->owner = p; 1107 } 1108 #endif /* CONFIG_MM_OWNER */ 1109 1110 /* 1111 * Initialize POSIX timer handling for a single task. 1112 */ 1113 static void posix_cpu_timers_init(struct task_struct *tsk) 1114 { 1115 tsk->cputime_expires.prof_exp = 0; 1116 tsk->cputime_expires.virt_exp = 0; 1117 tsk->cputime_expires.sched_exp = 0; 1118 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1119 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1120 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1121 } 1122 1123 /* 1124 * This creates a new process as a copy of the old one, 1125 * but does not actually start it yet. 1126 * 1127 * It copies the registers, and all the appropriate 1128 * parts of the process environment (as per the clone 1129 * flags). The actual kick-off is left to the caller. 1130 */ 1131 static struct task_struct *copy_process(unsigned long clone_flags, 1132 unsigned long stack_start, 1133 unsigned long stack_size, 1134 int __user *child_tidptr, 1135 struct pid *pid, 1136 int trace) 1137 { 1138 int retval; 1139 struct task_struct *p; 1140 1141 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1142 return ERR_PTR(-EINVAL); 1143 1144 /* 1145 * Thread groups must share signals as well, and detached threads 1146 * can only be started up within the thread group. 1147 */ 1148 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1149 return ERR_PTR(-EINVAL); 1150 1151 /* 1152 * Shared signal handlers imply shared VM. By way of the above, 1153 * thread groups also imply shared VM. Blocking this case allows 1154 * for various simplifications in other code. 1155 */ 1156 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1157 return ERR_PTR(-EINVAL); 1158 1159 /* 1160 * Siblings of global init remain as zombies on exit since they are 1161 * not reaped by their parent (swapper). To solve this and to avoid 1162 * multi-rooted process trees, prevent global and container-inits 1163 * from creating siblings. 1164 */ 1165 if ((clone_flags & CLONE_PARENT) && 1166 current->signal->flags & SIGNAL_UNKILLABLE) 1167 return ERR_PTR(-EINVAL); 1168 1169 /* 1170 * If the new process will be in a different pid namespace 1171 * don't allow the creation of threads. 1172 */ 1173 if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) && 1174 (task_active_pid_ns(current) != current->nsproxy->pid_ns)) 1175 return ERR_PTR(-EINVAL); 1176 1177 retval = security_task_create(clone_flags); 1178 if (retval) 1179 goto fork_out; 1180 1181 retval = -ENOMEM; 1182 p = dup_task_struct(current); 1183 if (!p) 1184 goto fork_out; 1185 1186 ftrace_graph_init_task(p); 1187 get_seccomp_filter(p); 1188 1189 rt_mutex_init_task(p); 1190 1191 #ifdef CONFIG_PROVE_LOCKING 1192 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1193 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1194 #endif 1195 retval = -EAGAIN; 1196 if (atomic_read(&p->real_cred->user->processes) >= 1197 task_rlimit(p, RLIMIT_NPROC)) { 1198 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1199 p->real_cred->user != INIT_USER) 1200 goto bad_fork_free; 1201 } 1202 current->flags &= ~PF_NPROC_EXCEEDED; 1203 1204 retval = copy_creds(p, clone_flags); 1205 if (retval < 0) 1206 goto bad_fork_free; 1207 1208 /* 1209 * If multiple threads are within copy_process(), then this check 1210 * triggers too late. This doesn't hurt, the check is only there 1211 * to stop root fork bombs. 1212 */ 1213 retval = -EAGAIN; 1214 if (nr_threads >= max_threads) 1215 goto bad_fork_cleanup_count; 1216 1217 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1218 goto bad_fork_cleanup_count; 1219 1220 p->did_exec = 0; 1221 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1222 copy_flags(clone_flags, p); 1223 INIT_LIST_HEAD(&p->children); 1224 INIT_LIST_HEAD(&p->sibling); 1225 rcu_copy_process(p); 1226 p->vfork_done = NULL; 1227 spin_lock_init(&p->alloc_lock); 1228 1229 init_sigpending(&p->pending); 1230 1231 p->utime = p->stime = p->gtime = 0; 1232 p->utimescaled = p->stimescaled = 0; 1233 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1234 p->prev_cputime.utime = p->prev_cputime.stime = 0; 1235 #endif 1236 #if defined(SPLIT_RSS_COUNTING) 1237 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1238 #endif 1239 1240 p->default_timer_slack_ns = current->timer_slack_ns; 1241 1242 task_io_accounting_init(&p->ioac); 1243 acct_clear_integrals(p); 1244 1245 posix_cpu_timers_init(p); 1246 1247 do_posix_clock_monotonic_gettime(&p->start_time); 1248 p->real_start_time = p->start_time; 1249 monotonic_to_bootbased(&p->real_start_time); 1250 p->io_context = NULL; 1251 p->audit_context = NULL; 1252 if (clone_flags & CLONE_THREAD) 1253 threadgroup_change_begin(current); 1254 cgroup_fork(p); 1255 #ifdef CONFIG_NUMA 1256 p->mempolicy = mpol_dup(p->mempolicy); 1257 if (IS_ERR(p->mempolicy)) { 1258 retval = PTR_ERR(p->mempolicy); 1259 p->mempolicy = NULL; 1260 goto bad_fork_cleanup_cgroup; 1261 } 1262 mpol_fix_fork_child_flag(p); 1263 #endif 1264 #ifdef CONFIG_CPUSETS 1265 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1266 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1267 seqcount_init(&p->mems_allowed_seq); 1268 #endif 1269 #ifdef CONFIG_TRACE_IRQFLAGS 1270 p->irq_events = 0; 1271 p->hardirqs_enabled = 0; 1272 p->hardirq_enable_ip = 0; 1273 p->hardirq_enable_event = 0; 1274 p->hardirq_disable_ip = _THIS_IP_; 1275 p->hardirq_disable_event = 0; 1276 p->softirqs_enabled = 1; 1277 p->softirq_enable_ip = _THIS_IP_; 1278 p->softirq_enable_event = 0; 1279 p->softirq_disable_ip = 0; 1280 p->softirq_disable_event = 0; 1281 p->hardirq_context = 0; 1282 p->softirq_context = 0; 1283 #endif 1284 #ifdef CONFIG_LOCKDEP 1285 p->lockdep_depth = 0; /* no locks held yet */ 1286 p->curr_chain_key = 0; 1287 p->lockdep_recursion = 0; 1288 #endif 1289 1290 #ifdef CONFIG_DEBUG_MUTEXES 1291 p->blocked_on = NULL; /* not blocked yet */ 1292 #endif 1293 #ifdef CONFIG_MEMCG 1294 p->memcg_batch.do_batch = 0; 1295 p->memcg_batch.memcg = NULL; 1296 #endif 1297 1298 /* Perform scheduler related setup. Assign this task to a CPU. */ 1299 sched_fork(p); 1300 1301 retval = perf_event_init_task(p); 1302 if (retval) 1303 goto bad_fork_cleanup_policy; 1304 retval = audit_alloc(p); 1305 if (retval) 1306 goto bad_fork_cleanup_policy; 1307 /* copy all the process information */ 1308 retval = copy_semundo(clone_flags, p); 1309 if (retval) 1310 goto bad_fork_cleanup_audit; 1311 retval = copy_files(clone_flags, p); 1312 if (retval) 1313 goto bad_fork_cleanup_semundo; 1314 retval = copy_fs(clone_flags, p); 1315 if (retval) 1316 goto bad_fork_cleanup_files; 1317 retval = copy_sighand(clone_flags, p); 1318 if (retval) 1319 goto bad_fork_cleanup_fs; 1320 retval = copy_signal(clone_flags, p); 1321 if (retval) 1322 goto bad_fork_cleanup_sighand; 1323 retval = copy_mm(clone_flags, p); 1324 if (retval) 1325 goto bad_fork_cleanup_signal; 1326 retval = copy_namespaces(clone_flags, p); 1327 if (retval) 1328 goto bad_fork_cleanup_mm; 1329 retval = copy_io(clone_flags, p); 1330 if (retval) 1331 goto bad_fork_cleanup_namespaces; 1332 retval = copy_thread(clone_flags, stack_start, stack_size, p); 1333 if (retval) 1334 goto bad_fork_cleanup_io; 1335 1336 if (pid != &init_struct_pid) { 1337 retval = -ENOMEM; 1338 pid = alloc_pid(p->nsproxy->pid_ns); 1339 if (!pid) 1340 goto bad_fork_cleanup_io; 1341 } 1342 1343 p->pid = pid_nr(pid); 1344 p->tgid = p->pid; 1345 if (clone_flags & CLONE_THREAD) 1346 p->tgid = current->tgid; 1347 1348 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1349 /* 1350 * Clear TID on mm_release()? 1351 */ 1352 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1353 #ifdef CONFIG_BLOCK 1354 p->plug = NULL; 1355 #endif 1356 #ifdef CONFIG_FUTEX 1357 p->robust_list = NULL; 1358 #ifdef CONFIG_COMPAT 1359 p->compat_robust_list = NULL; 1360 #endif 1361 INIT_LIST_HEAD(&p->pi_state_list); 1362 p->pi_state_cache = NULL; 1363 #endif 1364 uprobe_copy_process(p); 1365 /* 1366 * sigaltstack should be cleared when sharing the same VM 1367 */ 1368 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1369 p->sas_ss_sp = p->sas_ss_size = 0; 1370 1371 /* 1372 * Syscall tracing and stepping should be turned off in the 1373 * child regardless of CLONE_PTRACE. 1374 */ 1375 user_disable_single_step(p); 1376 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1377 #ifdef TIF_SYSCALL_EMU 1378 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1379 #endif 1380 clear_all_latency_tracing(p); 1381 1382 /* ok, now we should be set up.. */ 1383 if (clone_flags & CLONE_THREAD) 1384 p->exit_signal = -1; 1385 else if (clone_flags & CLONE_PARENT) 1386 p->exit_signal = current->group_leader->exit_signal; 1387 else 1388 p->exit_signal = (clone_flags & CSIGNAL); 1389 1390 p->pdeath_signal = 0; 1391 p->exit_state = 0; 1392 1393 p->nr_dirtied = 0; 1394 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1395 p->dirty_paused_when = 0; 1396 1397 /* 1398 * Ok, make it visible to the rest of the system. 1399 * We dont wake it up yet. 1400 */ 1401 p->group_leader = p; 1402 INIT_LIST_HEAD(&p->thread_group); 1403 p->task_works = NULL; 1404 1405 /* Need tasklist lock for parent etc handling! */ 1406 write_lock_irq(&tasklist_lock); 1407 1408 /* CLONE_PARENT re-uses the old parent */ 1409 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1410 p->real_parent = current->real_parent; 1411 p->parent_exec_id = current->parent_exec_id; 1412 } else { 1413 p->real_parent = current; 1414 p->parent_exec_id = current->self_exec_id; 1415 } 1416 1417 spin_lock(¤t->sighand->siglock); 1418 1419 /* 1420 * Process group and session signals need to be delivered to just the 1421 * parent before the fork or both the parent and the child after the 1422 * fork. Restart if a signal comes in before we add the new process to 1423 * it's process group. 1424 * A fatal signal pending means that current will exit, so the new 1425 * thread can't slip out of an OOM kill (or normal SIGKILL). 1426 */ 1427 recalc_sigpending(); 1428 if (signal_pending(current)) { 1429 spin_unlock(¤t->sighand->siglock); 1430 write_unlock_irq(&tasklist_lock); 1431 retval = -ERESTARTNOINTR; 1432 goto bad_fork_free_pid; 1433 } 1434 1435 if (clone_flags & CLONE_THREAD) { 1436 current->signal->nr_threads++; 1437 atomic_inc(¤t->signal->live); 1438 atomic_inc(¤t->signal->sigcnt); 1439 p->group_leader = current->group_leader; 1440 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1441 } 1442 1443 if (likely(p->pid)) { 1444 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1445 1446 if (thread_group_leader(p)) { 1447 if (is_child_reaper(pid)) { 1448 ns_of_pid(pid)->child_reaper = p; 1449 p->signal->flags |= SIGNAL_UNKILLABLE; 1450 } 1451 1452 p->signal->leader_pid = pid; 1453 p->signal->tty = tty_kref_get(current->signal->tty); 1454 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1455 attach_pid(p, PIDTYPE_SID, task_session(current)); 1456 list_add_tail(&p->sibling, &p->real_parent->children); 1457 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1458 __this_cpu_inc(process_counts); 1459 } 1460 attach_pid(p, PIDTYPE_PID, pid); 1461 nr_threads++; 1462 } 1463 1464 total_forks++; 1465 spin_unlock(¤t->sighand->siglock); 1466 write_unlock_irq(&tasklist_lock); 1467 proc_fork_connector(p); 1468 cgroup_post_fork(p); 1469 if (clone_flags & CLONE_THREAD) 1470 threadgroup_change_end(current); 1471 perf_event_fork(p); 1472 1473 trace_task_newtask(p, clone_flags); 1474 1475 return p; 1476 1477 bad_fork_free_pid: 1478 if (pid != &init_struct_pid) 1479 free_pid(pid); 1480 bad_fork_cleanup_io: 1481 if (p->io_context) 1482 exit_io_context(p); 1483 bad_fork_cleanup_namespaces: 1484 exit_task_namespaces(p); 1485 bad_fork_cleanup_mm: 1486 if (p->mm) 1487 mmput(p->mm); 1488 bad_fork_cleanup_signal: 1489 if (!(clone_flags & CLONE_THREAD)) 1490 free_signal_struct(p->signal); 1491 bad_fork_cleanup_sighand: 1492 __cleanup_sighand(p->sighand); 1493 bad_fork_cleanup_fs: 1494 exit_fs(p); /* blocking */ 1495 bad_fork_cleanup_files: 1496 exit_files(p); /* blocking */ 1497 bad_fork_cleanup_semundo: 1498 exit_sem(p); 1499 bad_fork_cleanup_audit: 1500 audit_free(p); 1501 bad_fork_cleanup_policy: 1502 perf_event_free_task(p); 1503 #ifdef CONFIG_NUMA 1504 mpol_put(p->mempolicy); 1505 bad_fork_cleanup_cgroup: 1506 #endif 1507 if (clone_flags & CLONE_THREAD) 1508 threadgroup_change_end(current); 1509 cgroup_exit(p, 0); 1510 delayacct_tsk_free(p); 1511 module_put(task_thread_info(p)->exec_domain->module); 1512 bad_fork_cleanup_count: 1513 atomic_dec(&p->cred->user->processes); 1514 exit_creds(p); 1515 bad_fork_free: 1516 free_task(p); 1517 fork_out: 1518 return ERR_PTR(retval); 1519 } 1520 1521 static inline void init_idle_pids(struct pid_link *links) 1522 { 1523 enum pid_type type; 1524 1525 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1526 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1527 links[type].pid = &init_struct_pid; 1528 } 1529 } 1530 1531 struct task_struct * __cpuinit fork_idle(int cpu) 1532 { 1533 struct task_struct *task; 1534 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0); 1535 if (!IS_ERR(task)) { 1536 init_idle_pids(task->pids); 1537 init_idle(task, cpu); 1538 } 1539 1540 return task; 1541 } 1542 1543 /* 1544 * Ok, this is the main fork-routine. 1545 * 1546 * It copies the process, and if successful kick-starts 1547 * it and waits for it to finish using the VM if required. 1548 */ 1549 long do_fork(unsigned long clone_flags, 1550 unsigned long stack_start, 1551 unsigned long stack_size, 1552 int __user *parent_tidptr, 1553 int __user *child_tidptr) 1554 { 1555 struct task_struct *p; 1556 int trace = 0; 1557 long nr; 1558 1559 /* 1560 * Do some preliminary argument and permissions checking before we 1561 * actually start allocating stuff 1562 */ 1563 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) { 1564 if (clone_flags & (CLONE_THREAD|CLONE_PARENT)) 1565 return -EINVAL; 1566 } 1567 1568 /* 1569 * Determine whether and which event to report to ptracer. When 1570 * called from kernel_thread or CLONE_UNTRACED is explicitly 1571 * requested, no event is reported; otherwise, report if the event 1572 * for the type of forking is enabled. 1573 */ 1574 if (!(clone_flags & CLONE_UNTRACED)) { 1575 if (clone_flags & CLONE_VFORK) 1576 trace = PTRACE_EVENT_VFORK; 1577 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1578 trace = PTRACE_EVENT_CLONE; 1579 else 1580 trace = PTRACE_EVENT_FORK; 1581 1582 if (likely(!ptrace_event_enabled(current, trace))) 1583 trace = 0; 1584 } 1585 1586 p = copy_process(clone_flags, stack_start, stack_size, 1587 child_tidptr, NULL, trace); 1588 /* 1589 * Do this prior waking up the new thread - the thread pointer 1590 * might get invalid after that point, if the thread exits quickly. 1591 */ 1592 if (!IS_ERR(p)) { 1593 struct completion vfork; 1594 1595 trace_sched_process_fork(current, p); 1596 1597 nr = task_pid_vnr(p); 1598 1599 if (clone_flags & CLONE_PARENT_SETTID) 1600 put_user(nr, parent_tidptr); 1601 1602 if (clone_flags & CLONE_VFORK) { 1603 p->vfork_done = &vfork; 1604 init_completion(&vfork); 1605 get_task_struct(p); 1606 } 1607 1608 wake_up_new_task(p); 1609 1610 /* forking complete and child started to run, tell ptracer */ 1611 if (unlikely(trace)) 1612 ptrace_event(trace, nr); 1613 1614 if (clone_flags & CLONE_VFORK) { 1615 if (!wait_for_vfork_done(p, &vfork)) 1616 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); 1617 } 1618 } else { 1619 nr = PTR_ERR(p); 1620 } 1621 return nr; 1622 } 1623 1624 /* 1625 * Create a kernel thread. 1626 */ 1627 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 1628 { 1629 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 1630 (unsigned long)arg, NULL, NULL); 1631 } 1632 1633 #ifdef __ARCH_WANT_SYS_FORK 1634 SYSCALL_DEFINE0(fork) 1635 { 1636 #ifdef CONFIG_MMU 1637 return do_fork(SIGCHLD, 0, 0, NULL, NULL); 1638 #else 1639 /* can not support in nommu mode */ 1640 return(-EINVAL); 1641 #endif 1642 } 1643 #endif 1644 1645 #ifdef __ARCH_WANT_SYS_VFORK 1646 SYSCALL_DEFINE0(vfork) 1647 { 1648 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 1649 0, NULL, NULL); 1650 } 1651 #endif 1652 1653 #ifdef __ARCH_WANT_SYS_CLONE 1654 #ifdef CONFIG_CLONE_BACKWARDS 1655 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1656 int __user *, parent_tidptr, 1657 int, tls_val, 1658 int __user *, child_tidptr) 1659 #elif defined(CONFIG_CLONE_BACKWARDS2) 1660 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 1661 int __user *, parent_tidptr, 1662 int __user *, child_tidptr, 1663 int, tls_val) 1664 #else 1665 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1666 int __user *, parent_tidptr, 1667 int __user *, child_tidptr, 1668 int, tls_val) 1669 #endif 1670 { 1671 long ret = do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr); 1672 asmlinkage_protect(5, ret, clone_flags, newsp, 1673 parent_tidptr, child_tidptr, tls_val); 1674 return ret; 1675 } 1676 #endif 1677 1678 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1679 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1680 #endif 1681 1682 static void sighand_ctor(void *data) 1683 { 1684 struct sighand_struct *sighand = data; 1685 1686 spin_lock_init(&sighand->siglock); 1687 init_waitqueue_head(&sighand->signalfd_wqh); 1688 } 1689 1690 void __init proc_caches_init(void) 1691 { 1692 sighand_cachep = kmem_cache_create("sighand_cache", 1693 sizeof(struct sighand_struct), 0, 1694 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1695 SLAB_NOTRACK, sighand_ctor); 1696 signal_cachep = kmem_cache_create("signal_cache", 1697 sizeof(struct signal_struct), 0, 1698 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1699 files_cachep = kmem_cache_create("files_cache", 1700 sizeof(struct files_struct), 0, 1701 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1702 fs_cachep = kmem_cache_create("fs_cache", 1703 sizeof(struct fs_struct), 0, 1704 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1705 /* 1706 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1707 * whole struct cpumask for the OFFSTACK case. We could change 1708 * this to *only* allocate as much of it as required by the 1709 * maximum number of CPU's we can ever have. The cpumask_allocation 1710 * is at the end of the structure, exactly for that reason. 1711 */ 1712 mm_cachep = kmem_cache_create("mm_struct", 1713 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1714 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1715 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1716 mmap_init(); 1717 nsproxy_cache_init(); 1718 } 1719 1720 /* 1721 * Check constraints on flags passed to the unshare system call. 1722 */ 1723 static int check_unshare_flags(unsigned long unshare_flags) 1724 { 1725 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1726 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1727 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 1728 CLONE_NEWUSER|CLONE_NEWPID)) 1729 return -EINVAL; 1730 /* 1731 * Not implemented, but pretend it works if there is nothing to 1732 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1733 * needs to unshare vm. 1734 */ 1735 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1736 /* FIXME: get_task_mm() increments ->mm_users */ 1737 if (atomic_read(¤t->mm->mm_users) > 1) 1738 return -EINVAL; 1739 } 1740 1741 return 0; 1742 } 1743 1744 /* 1745 * Unshare the filesystem structure if it is being shared 1746 */ 1747 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1748 { 1749 struct fs_struct *fs = current->fs; 1750 1751 if (!(unshare_flags & CLONE_FS) || !fs) 1752 return 0; 1753 1754 /* don't need lock here; in the worst case we'll do useless copy */ 1755 if (fs->users == 1) 1756 return 0; 1757 1758 *new_fsp = copy_fs_struct(fs); 1759 if (!*new_fsp) 1760 return -ENOMEM; 1761 1762 return 0; 1763 } 1764 1765 /* 1766 * Unshare file descriptor table if it is being shared 1767 */ 1768 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1769 { 1770 struct files_struct *fd = current->files; 1771 int error = 0; 1772 1773 if ((unshare_flags & CLONE_FILES) && 1774 (fd && atomic_read(&fd->count) > 1)) { 1775 *new_fdp = dup_fd(fd, &error); 1776 if (!*new_fdp) 1777 return error; 1778 } 1779 1780 return 0; 1781 } 1782 1783 /* 1784 * unshare allows a process to 'unshare' part of the process 1785 * context which was originally shared using clone. copy_* 1786 * functions used by do_fork() cannot be used here directly 1787 * because they modify an inactive task_struct that is being 1788 * constructed. Here we are modifying the current, active, 1789 * task_struct. 1790 */ 1791 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1792 { 1793 struct fs_struct *fs, *new_fs = NULL; 1794 struct files_struct *fd, *new_fd = NULL; 1795 struct cred *new_cred = NULL; 1796 struct nsproxy *new_nsproxy = NULL; 1797 int do_sysvsem = 0; 1798 int err; 1799 1800 /* 1801 * If unsharing a user namespace must also unshare the thread. 1802 */ 1803 if (unshare_flags & CLONE_NEWUSER) 1804 unshare_flags |= CLONE_THREAD; 1805 /* 1806 * If unsharing a pid namespace must also unshare the thread. 1807 */ 1808 if (unshare_flags & CLONE_NEWPID) 1809 unshare_flags |= CLONE_THREAD; 1810 /* 1811 * If unsharing a thread from a thread group, must also unshare vm. 1812 */ 1813 if (unshare_flags & CLONE_THREAD) 1814 unshare_flags |= CLONE_VM; 1815 /* 1816 * If unsharing vm, must also unshare signal handlers. 1817 */ 1818 if (unshare_flags & CLONE_VM) 1819 unshare_flags |= CLONE_SIGHAND; 1820 /* 1821 * If unsharing namespace, must also unshare filesystem information. 1822 */ 1823 if (unshare_flags & CLONE_NEWNS) 1824 unshare_flags |= CLONE_FS; 1825 1826 err = check_unshare_flags(unshare_flags); 1827 if (err) 1828 goto bad_unshare_out; 1829 /* 1830 * CLONE_NEWIPC must also detach from the undolist: after switching 1831 * to a new ipc namespace, the semaphore arrays from the old 1832 * namespace are unreachable. 1833 */ 1834 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1835 do_sysvsem = 1; 1836 err = unshare_fs(unshare_flags, &new_fs); 1837 if (err) 1838 goto bad_unshare_out; 1839 err = unshare_fd(unshare_flags, &new_fd); 1840 if (err) 1841 goto bad_unshare_cleanup_fs; 1842 err = unshare_userns(unshare_flags, &new_cred); 1843 if (err) 1844 goto bad_unshare_cleanup_fd; 1845 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1846 new_cred, new_fs); 1847 if (err) 1848 goto bad_unshare_cleanup_cred; 1849 1850 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 1851 if (do_sysvsem) { 1852 /* 1853 * CLONE_SYSVSEM is equivalent to sys_exit(). 1854 */ 1855 exit_sem(current); 1856 } 1857 1858 if (new_nsproxy) { 1859 switch_task_namespaces(current, new_nsproxy); 1860 new_nsproxy = NULL; 1861 } 1862 1863 task_lock(current); 1864 1865 if (new_fs) { 1866 fs = current->fs; 1867 spin_lock(&fs->lock); 1868 current->fs = new_fs; 1869 if (--fs->users) 1870 new_fs = NULL; 1871 else 1872 new_fs = fs; 1873 spin_unlock(&fs->lock); 1874 } 1875 1876 if (new_fd) { 1877 fd = current->files; 1878 current->files = new_fd; 1879 new_fd = fd; 1880 } 1881 1882 task_unlock(current); 1883 1884 if (new_cred) { 1885 /* Install the new user namespace */ 1886 commit_creds(new_cred); 1887 new_cred = NULL; 1888 } 1889 } 1890 1891 if (new_nsproxy) 1892 put_nsproxy(new_nsproxy); 1893 1894 bad_unshare_cleanup_cred: 1895 if (new_cred) 1896 put_cred(new_cred); 1897 bad_unshare_cleanup_fd: 1898 if (new_fd) 1899 put_files_struct(new_fd); 1900 1901 bad_unshare_cleanup_fs: 1902 if (new_fs) 1903 free_fs_struct(new_fs); 1904 1905 bad_unshare_out: 1906 return err; 1907 } 1908 1909 /* 1910 * Helper to unshare the files of the current task. 1911 * We don't want to expose copy_files internals to 1912 * the exec layer of the kernel. 1913 */ 1914 1915 int unshare_files(struct files_struct **displaced) 1916 { 1917 struct task_struct *task = current; 1918 struct files_struct *copy = NULL; 1919 int error; 1920 1921 error = unshare_fd(CLONE_FILES, ©); 1922 if (error || !copy) { 1923 *displaced = NULL; 1924 return error; 1925 } 1926 *displaced = task->files; 1927 task_lock(task); 1928 task->files = copy; 1929 task_unlock(task); 1930 return 0; 1931 } 1932