xref: /openbmc/linux/kernel/fork.c (revision a1e58bbd)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/memcontrol.h>
44 #include <linux/profile.h>
45 #include <linux/rmap.h>
46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h>
49 #include <linux/freezer.h>
50 #include <linux/delayacct.h>
51 #include <linux/taskstats_kern.h>
52 #include <linux/random.h>
53 #include <linux/tty.h>
54 #include <linux/proc_fs.h>
55 #include <linux/blkdev.h>
56 
57 #include <asm/pgtable.h>
58 #include <asm/pgalloc.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/cacheflush.h>
62 #include <asm/tlbflush.h>
63 
64 /*
65  * Protected counters by write_lock_irq(&tasklist_lock)
66  */
67 unsigned long total_forks;	/* Handle normal Linux uptimes. */
68 int nr_threads; 		/* The idle threads do not count.. */
69 
70 int max_threads;		/* tunable limit on nr_threads */
71 
72 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
73 
74 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
75 
76 int nr_processes(void)
77 {
78 	int cpu;
79 	int total = 0;
80 
81 	for_each_online_cpu(cpu)
82 		total += per_cpu(process_counts, cpu);
83 
84 	return total;
85 }
86 
87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
88 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
89 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
90 static struct kmem_cache *task_struct_cachep;
91 #endif
92 
93 /* SLAB cache for signal_struct structures (tsk->signal) */
94 static struct kmem_cache *signal_cachep;
95 
96 /* SLAB cache for sighand_struct structures (tsk->sighand) */
97 struct kmem_cache *sighand_cachep;
98 
99 /* SLAB cache for files_struct structures (tsk->files) */
100 struct kmem_cache *files_cachep;
101 
102 /* SLAB cache for fs_struct structures (tsk->fs) */
103 struct kmem_cache *fs_cachep;
104 
105 /* SLAB cache for vm_area_struct structures */
106 struct kmem_cache *vm_area_cachep;
107 
108 /* SLAB cache for mm_struct structures (tsk->mm) */
109 static struct kmem_cache *mm_cachep;
110 
111 void free_task(struct task_struct *tsk)
112 {
113 	prop_local_destroy_single(&tsk->dirties);
114 	free_thread_info(tsk->stack);
115 	rt_mutex_debug_task_free(tsk);
116 	free_task_struct(tsk);
117 }
118 EXPORT_SYMBOL(free_task);
119 
120 void __put_task_struct(struct task_struct *tsk)
121 {
122 	WARN_ON(!tsk->exit_state);
123 	WARN_ON(atomic_read(&tsk->usage));
124 	WARN_ON(tsk == current);
125 
126 	security_task_free(tsk);
127 	free_uid(tsk->user);
128 	put_group_info(tsk->group_info);
129 	delayacct_tsk_free(tsk);
130 
131 	if (!profile_handoff_task(tsk))
132 		free_task(tsk);
133 }
134 
135 void __init fork_init(unsigned long mempages)
136 {
137 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
138 #ifndef ARCH_MIN_TASKALIGN
139 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
140 #endif
141 	/* create a slab on which task_structs can be allocated */
142 	task_struct_cachep =
143 		kmem_cache_create("task_struct", sizeof(struct task_struct),
144 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
145 #endif
146 
147 	/*
148 	 * The default maximum number of threads is set to a safe
149 	 * value: the thread structures can take up at most half
150 	 * of memory.
151 	 */
152 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
153 
154 	/*
155 	 * we need to allow at least 20 threads to boot a system
156 	 */
157 	if(max_threads < 20)
158 		max_threads = 20;
159 
160 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
161 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
162 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
163 		init_task.signal->rlim[RLIMIT_NPROC];
164 }
165 
166 static struct task_struct *dup_task_struct(struct task_struct *orig)
167 {
168 	struct task_struct *tsk;
169 	struct thread_info *ti;
170 	int err;
171 
172 	prepare_to_copy(orig);
173 
174 	tsk = alloc_task_struct();
175 	if (!tsk)
176 		return NULL;
177 
178 	ti = alloc_thread_info(tsk);
179 	if (!ti) {
180 		free_task_struct(tsk);
181 		return NULL;
182 	}
183 
184 	*tsk = *orig;
185 	tsk->stack = ti;
186 
187 	err = prop_local_init_single(&tsk->dirties);
188 	if (err) {
189 		free_thread_info(ti);
190 		free_task_struct(tsk);
191 		return NULL;
192 	}
193 
194 	setup_thread_stack(tsk, orig);
195 
196 #ifdef CONFIG_CC_STACKPROTECTOR
197 	tsk->stack_canary = get_random_int();
198 #endif
199 
200 	/* One for us, one for whoever does the "release_task()" (usually parent) */
201 	atomic_set(&tsk->usage,2);
202 	atomic_set(&tsk->fs_excl, 0);
203 #ifdef CONFIG_BLK_DEV_IO_TRACE
204 	tsk->btrace_seq = 0;
205 #endif
206 	tsk->splice_pipe = NULL;
207 	return tsk;
208 }
209 
210 #ifdef CONFIG_MMU
211 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
212 {
213 	struct vm_area_struct *mpnt, *tmp, **pprev;
214 	struct rb_node **rb_link, *rb_parent;
215 	int retval;
216 	unsigned long charge;
217 	struct mempolicy *pol;
218 
219 	down_write(&oldmm->mmap_sem);
220 	flush_cache_dup_mm(oldmm);
221 	/*
222 	 * Not linked in yet - no deadlock potential:
223 	 */
224 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
225 
226 	mm->locked_vm = 0;
227 	mm->mmap = NULL;
228 	mm->mmap_cache = NULL;
229 	mm->free_area_cache = oldmm->mmap_base;
230 	mm->cached_hole_size = ~0UL;
231 	mm->map_count = 0;
232 	cpus_clear(mm->cpu_vm_mask);
233 	mm->mm_rb = RB_ROOT;
234 	rb_link = &mm->mm_rb.rb_node;
235 	rb_parent = NULL;
236 	pprev = &mm->mmap;
237 
238 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
239 		struct file *file;
240 
241 		if (mpnt->vm_flags & VM_DONTCOPY) {
242 			long pages = vma_pages(mpnt);
243 			mm->total_vm -= pages;
244 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
245 								-pages);
246 			continue;
247 		}
248 		charge = 0;
249 		if (mpnt->vm_flags & VM_ACCOUNT) {
250 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
251 			if (security_vm_enough_memory(len))
252 				goto fail_nomem;
253 			charge = len;
254 		}
255 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
256 		if (!tmp)
257 			goto fail_nomem;
258 		*tmp = *mpnt;
259 		pol = mpol_copy(vma_policy(mpnt));
260 		retval = PTR_ERR(pol);
261 		if (IS_ERR(pol))
262 			goto fail_nomem_policy;
263 		vma_set_policy(tmp, pol);
264 		tmp->vm_flags &= ~VM_LOCKED;
265 		tmp->vm_mm = mm;
266 		tmp->vm_next = NULL;
267 		anon_vma_link(tmp);
268 		file = tmp->vm_file;
269 		if (file) {
270 			struct inode *inode = file->f_path.dentry->d_inode;
271 			get_file(file);
272 			if (tmp->vm_flags & VM_DENYWRITE)
273 				atomic_dec(&inode->i_writecount);
274 
275 			/* insert tmp into the share list, just after mpnt */
276 			spin_lock(&file->f_mapping->i_mmap_lock);
277 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
278 			flush_dcache_mmap_lock(file->f_mapping);
279 			vma_prio_tree_add(tmp, mpnt);
280 			flush_dcache_mmap_unlock(file->f_mapping);
281 			spin_unlock(&file->f_mapping->i_mmap_lock);
282 		}
283 
284 		/*
285 		 * Link in the new vma and copy the page table entries.
286 		 */
287 		*pprev = tmp;
288 		pprev = &tmp->vm_next;
289 
290 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
291 		rb_link = &tmp->vm_rb.rb_right;
292 		rb_parent = &tmp->vm_rb;
293 
294 		mm->map_count++;
295 		retval = copy_page_range(mm, oldmm, mpnt);
296 
297 		if (tmp->vm_ops && tmp->vm_ops->open)
298 			tmp->vm_ops->open(tmp);
299 
300 		if (retval)
301 			goto out;
302 	}
303 	/* a new mm has just been created */
304 	arch_dup_mmap(oldmm, mm);
305 	retval = 0;
306 out:
307 	up_write(&mm->mmap_sem);
308 	flush_tlb_mm(oldmm);
309 	up_write(&oldmm->mmap_sem);
310 	return retval;
311 fail_nomem_policy:
312 	kmem_cache_free(vm_area_cachep, tmp);
313 fail_nomem:
314 	retval = -ENOMEM;
315 	vm_unacct_memory(charge);
316 	goto out;
317 }
318 
319 static inline int mm_alloc_pgd(struct mm_struct * mm)
320 {
321 	mm->pgd = pgd_alloc(mm);
322 	if (unlikely(!mm->pgd))
323 		return -ENOMEM;
324 	return 0;
325 }
326 
327 static inline void mm_free_pgd(struct mm_struct * mm)
328 {
329 	pgd_free(mm, mm->pgd);
330 }
331 #else
332 #define dup_mmap(mm, oldmm)	(0)
333 #define mm_alloc_pgd(mm)	(0)
334 #define mm_free_pgd(mm)
335 #endif /* CONFIG_MMU */
336 
337 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
338 
339 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
340 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
341 
342 #include <linux/init_task.h>
343 
344 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
345 {
346 	atomic_set(&mm->mm_users, 1);
347 	atomic_set(&mm->mm_count, 1);
348 	init_rwsem(&mm->mmap_sem);
349 	INIT_LIST_HEAD(&mm->mmlist);
350 	mm->flags = (current->mm) ? current->mm->flags
351 				  : MMF_DUMP_FILTER_DEFAULT;
352 	mm->core_waiters = 0;
353 	mm->nr_ptes = 0;
354 	set_mm_counter(mm, file_rss, 0);
355 	set_mm_counter(mm, anon_rss, 0);
356 	spin_lock_init(&mm->page_table_lock);
357 	rwlock_init(&mm->ioctx_list_lock);
358 	mm->ioctx_list = NULL;
359 	mm->free_area_cache = TASK_UNMAPPED_BASE;
360 	mm->cached_hole_size = ~0UL;
361 	mm_init_cgroup(mm, p);
362 
363 	if (likely(!mm_alloc_pgd(mm))) {
364 		mm->def_flags = 0;
365 		return mm;
366 	}
367 
368 	mm_free_cgroup(mm);
369 	free_mm(mm);
370 	return NULL;
371 }
372 
373 /*
374  * Allocate and initialize an mm_struct.
375  */
376 struct mm_struct * mm_alloc(void)
377 {
378 	struct mm_struct * mm;
379 
380 	mm = allocate_mm();
381 	if (mm) {
382 		memset(mm, 0, sizeof(*mm));
383 		mm = mm_init(mm, current);
384 	}
385 	return mm;
386 }
387 
388 /*
389  * Called when the last reference to the mm
390  * is dropped: either by a lazy thread or by
391  * mmput. Free the page directory and the mm.
392  */
393 void __mmdrop(struct mm_struct *mm)
394 {
395 	BUG_ON(mm == &init_mm);
396 	mm_free_pgd(mm);
397 	destroy_context(mm);
398 	free_mm(mm);
399 }
400 EXPORT_SYMBOL_GPL(__mmdrop);
401 
402 /*
403  * Decrement the use count and release all resources for an mm.
404  */
405 void mmput(struct mm_struct *mm)
406 {
407 	might_sleep();
408 
409 	if (atomic_dec_and_test(&mm->mm_users)) {
410 		exit_aio(mm);
411 		exit_mmap(mm);
412 		if (!list_empty(&mm->mmlist)) {
413 			spin_lock(&mmlist_lock);
414 			list_del(&mm->mmlist);
415 			spin_unlock(&mmlist_lock);
416 		}
417 		put_swap_token(mm);
418 		mm_free_cgroup(mm);
419 		mmdrop(mm);
420 	}
421 }
422 EXPORT_SYMBOL_GPL(mmput);
423 
424 /**
425  * get_task_mm - acquire a reference to the task's mm
426  *
427  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
428  * this kernel workthread has transiently adopted a user mm with use_mm,
429  * to do its AIO) is not set and if so returns a reference to it, after
430  * bumping up the use count.  User must release the mm via mmput()
431  * after use.  Typically used by /proc and ptrace.
432  */
433 struct mm_struct *get_task_mm(struct task_struct *task)
434 {
435 	struct mm_struct *mm;
436 
437 	task_lock(task);
438 	mm = task->mm;
439 	if (mm) {
440 		if (task->flags & PF_BORROWED_MM)
441 			mm = NULL;
442 		else
443 			atomic_inc(&mm->mm_users);
444 	}
445 	task_unlock(task);
446 	return mm;
447 }
448 EXPORT_SYMBOL_GPL(get_task_mm);
449 
450 /* Please note the differences between mmput and mm_release.
451  * mmput is called whenever we stop holding onto a mm_struct,
452  * error success whatever.
453  *
454  * mm_release is called after a mm_struct has been removed
455  * from the current process.
456  *
457  * This difference is important for error handling, when we
458  * only half set up a mm_struct for a new process and need to restore
459  * the old one.  Because we mmput the new mm_struct before
460  * restoring the old one. . .
461  * Eric Biederman 10 January 1998
462  */
463 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
464 {
465 	struct completion *vfork_done = tsk->vfork_done;
466 
467 	/* Get rid of any cached register state */
468 	deactivate_mm(tsk, mm);
469 
470 	/* notify parent sleeping on vfork() */
471 	if (vfork_done) {
472 		tsk->vfork_done = NULL;
473 		complete(vfork_done);
474 	}
475 
476 	/*
477 	 * If we're exiting normally, clear a user-space tid field if
478 	 * requested.  We leave this alone when dying by signal, to leave
479 	 * the value intact in a core dump, and to save the unnecessary
480 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
481 	 */
482 	if (tsk->clear_child_tid
483 	    && !(tsk->flags & PF_SIGNALED)
484 	    && atomic_read(&mm->mm_users) > 1) {
485 		u32 __user * tidptr = tsk->clear_child_tid;
486 		tsk->clear_child_tid = NULL;
487 
488 		/*
489 		 * We don't check the error code - if userspace has
490 		 * not set up a proper pointer then tough luck.
491 		 */
492 		put_user(0, tidptr);
493 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
494 	}
495 }
496 
497 /*
498  * Allocate a new mm structure and copy contents from the
499  * mm structure of the passed in task structure.
500  */
501 static struct mm_struct *dup_mm(struct task_struct *tsk)
502 {
503 	struct mm_struct *mm, *oldmm = current->mm;
504 	int err;
505 
506 	if (!oldmm)
507 		return NULL;
508 
509 	mm = allocate_mm();
510 	if (!mm)
511 		goto fail_nomem;
512 
513 	memcpy(mm, oldmm, sizeof(*mm));
514 
515 	/* Initializing for Swap token stuff */
516 	mm->token_priority = 0;
517 	mm->last_interval = 0;
518 
519 	if (!mm_init(mm, tsk))
520 		goto fail_nomem;
521 
522 	if (init_new_context(tsk, mm))
523 		goto fail_nocontext;
524 
525 	err = dup_mmap(mm, oldmm);
526 	if (err)
527 		goto free_pt;
528 
529 	mm->hiwater_rss = get_mm_rss(mm);
530 	mm->hiwater_vm = mm->total_vm;
531 
532 	return mm;
533 
534 free_pt:
535 	mmput(mm);
536 
537 fail_nomem:
538 	return NULL;
539 
540 fail_nocontext:
541 	/*
542 	 * If init_new_context() failed, we cannot use mmput() to free the mm
543 	 * because it calls destroy_context()
544 	 */
545 	mm_free_pgd(mm);
546 	free_mm(mm);
547 	return NULL;
548 }
549 
550 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
551 {
552 	struct mm_struct * mm, *oldmm;
553 	int retval;
554 
555 	tsk->min_flt = tsk->maj_flt = 0;
556 	tsk->nvcsw = tsk->nivcsw = 0;
557 
558 	tsk->mm = NULL;
559 	tsk->active_mm = NULL;
560 
561 	/*
562 	 * Are we cloning a kernel thread?
563 	 *
564 	 * We need to steal a active VM for that..
565 	 */
566 	oldmm = current->mm;
567 	if (!oldmm)
568 		return 0;
569 
570 	if (clone_flags & CLONE_VM) {
571 		atomic_inc(&oldmm->mm_users);
572 		mm = oldmm;
573 		goto good_mm;
574 	}
575 
576 	retval = -ENOMEM;
577 	mm = dup_mm(tsk);
578 	if (!mm)
579 		goto fail_nomem;
580 
581 good_mm:
582 	/* Initializing for Swap token stuff */
583 	mm->token_priority = 0;
584 	mm->last_interval = 0;
585 
586 	tsk->mm = mm;
587 	tsk->active_mm = mm;
588 	return 0;
589 
590 fail_nomem:
591 	return retval;
592 }
593 
594 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
595 {
596 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
597 	/* We don't need to lock fs - think why ;-) */
598 	if (fs) {
599 		atomic_set(&fs->count, 1);
600 		rwlock_init(&fs->lock);
601 		fs->umask = old->umask;
602 		read_lock(&old->lock);
603 		fs->root = old->root;
604 		path_get(&old->root);
605 		fs->pwd = old->pwd;
606 		path_get(&old->pwd);
607 		if (old->altroot.dentry) {
608 			fs->altroot = old->altroot;
609 			path_get(&old->altroot);
610 		} else {
611 			fs->altroot.mnt = NULL;
612 			fs->altroot.dentry = NULL;
613 		}
614 		read_unlock(&old->lock);
615 	}
616 	return fs;
617 }
618 
619 struct fs_struct *copy_fs_struct(struct fs_struct *old)
620 {
621 	return __copy_fs_struct(old);
622 }
623 
624 EXPORT_SYMBOL_GPL(copy_fs_struct);
625 
626 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
627 {
628 	if (clone_flags & CLONE_FS) {
629 		atomic_inc(&current->fs->count);
630 		return 0;
631 	}
632 	tsk->fs = __copy_fs_struct(current->fs);
633 	if (!tsk->fs)
634 		return -ENOMEM;
635 	return 0;
636 }
637 
638 static int count_open_files(struct fdtable *fdt)
639 {
640 	int size = fdt->max_fds;
641 	int i;
642 
643 	/* Find the last open fd */
644 	for (i = size/(8*sizeof(long)); i > 0; ) {
645 		if (fdt->open_fds->fds_bits[--i])
646 			break;
647 	}
648 	i = (i+1) * 8 * sizeof(long);
649 	return i;
650 }
651 
652 static struct files_struct *alloc_files(void)
653 {
654 	struct files_struct *newf;
655 	struct fdtable *fdt;
656 
657 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
658 	if (!newf)
659 		goto out;
660 
661 	atomic_set(&newf->count, 1);
662 
663 	spin_lock_init(&newf->file_lock);
664 	newf->next_fd = 0;
665 	fdt = &newf->fdtab;
666 	fdt->max_fds = NR_OPEN_DEFAULT;
667 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
668 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
669 	fdt->fd = &newf->fd_array[0];
670 	INIT_RCU_HEAD(&fdt->rcu);
671 	fdt->next = NULL;
672 	rcu_assign_pointer(newf->fdt, fdt);
673 out:
674 	return newf;
675 }
676 
677 /*
678  * Allocate a new files structure and copy contents from the
679  * passed in files structure.
680  * errorp will be valid only when the returned files_struct is NULL.
681  */
682 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
683 {
684 	struct files_struct *newf;
685 	struct file **old_fds, **new_fds;
686 	int open_files, size, i;
687 	struct fdtable *old_fdt, *new_fdt;
688 
689 	*errorp = -ENOMEM;
690 	newf = alloc_files();
691 	if (!newf)
692 		goto out;
693 
694 	spin_lock(&oldf->file_lock);
695 	old_fdt = files_fdtable(oldf);
696 	new_fdt = files_fdtable(newf);
697 	open_files = count_open_files(old_fdt);
698 
699 	/*
700 	 * Check whether we need to allocate a larger fd array and fd set.
701 	 * Note: we're not a clone task, so the open count won't change.
702 	 */
703 	if (open_files > new_fdt->max_fds) {
704 		new_fdt->max_fds = 0;
705 		spin_unlock(&oldf->file_lock);
706 		spin_lock(&newf->file_lock);
707 		*errorp = expand_files(newf, open_files-1);
708 		spin_unlock(&newf->file_lock);
709 		if (*errorp < 0)
710 			goto out_release;
711 		new_fdt = files_fdtable(newf);
712 		/*
713 		 * Reacquire the oldf lock and a pointer to its fd table
714 		 * who knows it may have a new bigger fd table. We need
715 		 * the latest pointer.
716 		 */
717 		spin_lock(&oldf->file_lock);
718 		old_fdt = files_fdtable(oldf);
719 	}
720 
721 	old_fds = old_fdt->fd;
722 	new_fds = new_fdt->fd;
723 
724 	memcpy(new_fdt->open_fds->fds_bits,
725 		old_fdt->open_fds->fds_bits, open_files/8);
726 	memcpy(new_fdt->close_on_exec->fds_bits,
727 		old_fdt->close_on_exec->fds_bits, open_files/8);
728 
729 	for (i = open_files; i != 0; i--) {
730 		struct file *f = *old_fds++;
731 		if (f) {
732 			get_file(f);
733 		} else {
734 			/*
735 			 * The fd may be claimed in the fd bitmap but not yet
736 			 * instantiated in the files array if a sibling thread
737 			 * is partway through open().  So make sure that this
738 			 * fd is available to the new process.
739 			 */
740 			FD_CLR(open_files - i, new_fdt->open_fds);
741 		}
742 		rcu_assign_pointer(*new_fds++, f);
743 	}
744 	spin_unlock(&oldf->file_lock);
745 
746 	/* compute the remainder to be cleared */
747 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
748 
749 	/* This is long word aligned thus could use a optimized version */
750 	memset(new_fds, 0, size);
751 
752 	if (new_fdt->max_fds > open_files) {
753 		int left = (new_fdt->max_fds-open_files)/8;
754 		int start = open_files / (8 * sizeof(unsigned long));
755 
756 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
757 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
758 	}
759 
760 	return newf;
761 
762 out_release:
763 	kmem_cache_free(files_cachep, newf);
764 out:
765 	return NULL;
766 }
767 
768 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
769 {
770 	struct files_struct *oldf, *newf;
771 	int error = 0;
772 
773 	/*
774 	 * A background process may not have any files ...
775 	 */
776 	oldf = current->files;
777 	if (!oldf)
778 		goto out;
779 
780 	if (clone_flags & CLONE_FILES) {
781 		atomic_inc(&oldf->count);
782 		goto out;
783 	}
784 
785 	/*
786 	 * Note: we may be using current for both targets (See exec.c)
787 	 * This works because we cache current->files (old) as oldf. Don't
788 	 * break this.
789 	 */
790 	tsk->files = NULL;
791 	newf = dup_fd(oldf, &error);
792 	if (!newf)
793 		goto out;
794 
795 	tsk->files = newf;
796 	error = 0;
797 out:
798 	return error;
799 }
800 
801 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
802 {
803 #ifdef CONFIG_BLOCK
804 	struct io_context *ioc = current->io_context;
805 
806 	if (!ioc)
807 		return 0;
808 	/*
809 	 * Share io context with parent, if CLONE_IO is set
810 	 */
811 	if (clone_flags & CLONE_IO) {
812 		tsk->io_context = ioc_task_link(ioc);
813 		if (unlikely(!tsk->io_context))
814 			return -ENOMEM;
815 	} else if (ioprio_valid(ioc->ioprio)) {
816 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
817 		if (unlikely(!tsk->io_context))
818 			return -ENOMEM;
819 
820 		tsk->io_context->ioprio = ioc->ioprio;
821 	}
822 #endif
823 	return 0;
824 }
825 
826 /*
827  *	Helper to unshare the files of the current task.
828  *	We don't want to expose copy_files internals to
829  *	the exec layer of the kernel.
830  */
831 
832 int unshare_files(void)
833 {
834 	struct files_struct *files  = current->files;
835 	int rc;
836 
837 	BUG_ON(!files);
838 
839 	/* This can race but the race causes us to copy when we don't
840 	   need to and drop the copy */
841 	if(atomic_read(&files->count) == 1)
842 	{
843 		atomic_inc(&files->count);
844 		return 0;
845 	}
846 	rc = copy_files(0, current);
847 	if(rc)
848 		current->files = files;
849 	return rc;
850 }
851 
852 EXPORT_SYMBOL(unshare_files);
853 
854 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
855 {
856 	struct sighand_struct *sig;
857 
858 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
859 		atomic_inc(&current->sighand->count);
860 		return 0;
861 	}
862 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
863 	rcu_assign_pointer(tsk->sighand, sig);
864 	if (!sig)
865 		return -ENOMEM;
866 	atomic_set(&sig->count, 1);
867 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
868 	return 0;
869 }
870 
871 void __cleanup_sighand(struct sighand_struct *sighand)
872 {
873 	if (atomic_dec_and_test(&sighand->count))
874 		kmem_cache_free(sighand_cachep, sighand);
875 }
876 
877 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
878 {
879 	struct signal_struct *sig;
880 	int ret;
881 
882 	if (clone_flags & CLONE_THREAD) {
883 		atomic_inc(&current->signal->count);
884 		atomic_inc(&current->signal->live);
885 		return 0;
886 	}
887 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
888 	tsk->signal = sig;
889 	if (!sig)
890 		return -ENOMEM;
891 
892 	ret = copy_thread_group_keys(tsk);
893 	if (ret < 0) {
894 		kmem_cache_free(signal_cachep, sig);
895 		return ret;
896 	}
897 
898 	atomic_set(&sig->count, 1);
899 	atomic_set(&sig->live, 1);
900 	init_waitqueue_head(&sig->wait_chldexit);
901 	sig->flags = 0;
902 	sig->group_exit_code = 0;
903 	sig->group_exit_task = NULL;
904 	sig->group_stop_count = 0;
905 	sig->curr_target = NULL;
906 	init_sigpending(&sig->shared_pending);
907 	INIT_LIST_HEAD(&sig->posix_timers);
908 
909 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
910 	sig->it_real_incr.tv64 = 0;
911 	sig->real_timer.function = it_real_fn;
912 
913 	sig->it_virt_expires = cputime_zero;
914 	sig->it_virt_incr = cputime_zero;
915 	sig->it_prof_expires = cputime_zero;
916 	sig->it_prof_incr = cputime_zero;
917 
918 	sig->leader = 0;	/* session leadership doesn't inherit */
919 	sig->tty_old_pgrp = NULL;
920 
921 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
922 	sig->gtime = cputime_zero;
923 	sig->cgtime = cputime_zero;
924 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
925 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
926 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
927 	sig->sum_sched_runtime = 0;
928 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
929 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
930 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
931 	taskstats_tgid_init(sig);
932 
933 	task_lock(current->group_leader);
934 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
935 	task_unlock(current->group_leader);
936 
937 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
938 		/*
939 		 * New sole thread in the process gets an expiry time
940 		 * of the whole CPU time limit.
941 		 */
942 		tsk->it_prof_expires =
943 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
944 	}
945 	acct_init_pacct(&sig->pacct);
946 
947 	tty_audit_fork(sig);
948 
949 	return 0;
950 }
951 
952 void __cleanup_signal(struct signal_struct *sig)
953 {
954 	exit_thread_group_keys(sig);
955 	kmem_cache_free(signal_cachep, sig);
956 }
957 
958 static void cleanup_signal(struct task_struct *tsk)
959 {
960 	struct signal_struct *sig = tsk->signal;
961 
962 	atomic_dec(&sig->live);
963 
964 	if (atomic_dec_and_test(&sig->count))
965 		__cleanup_signal(sig);
966 }
967 
968 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
969 {
970 	unsigned long new_flags = p->flags;
971 
972 	new_flags &= ~PF_SUPERPRIV;
973 	new_flags |= PF_FORKNOEXEC;
974 	if (!(clone_flags & CLONE_PTRACE))
975 		p->ptrace = 0;
976 	p->flags = new_flags;
977 	clear_freeze_flag(p);
978 }
979 
980 asmlinkage long sys_set_tid_address(int __user *tidptr)
981 {
982 	current->clear_child_tid = tidptr;
983 
984 	return task_pid_vnr(current);
985 }
986 
987 static void rt_mutex_init_task(struct task_struct *p)
988 {
989 	spin_lock_init(&p->pi_lock);
990 #ifdef CONFIG_RT_MUTEXES
991 	plist_head_init(&p->pi_waiters, &p->pi_lock);
992 	p->pi_blocked_on = NULL;
993 #endif
994 }
995 
996 /*
997  * This creates a new process as a copy of the old one,
998  * but does not actually start it yet.
999  *
1000  * It copies the registers, and all the appropriate
1001  * parts of the process environment (as per the clone
1002  * flags). The actual kick-off is left to the caller.
1003  */
1004 static struct task_struct *copy_process(unsigned long clone_flags,
1005 					unsigned long stack_start,
1006 					struct pt_regs *regs,
1007 					unsigned long stack_size,
1008 					int __user *child_tidptr,
1009 					struct pid *pid)
1010 {
1011 	int retval;
1012 	struct task_struct *p;
1013 	int cgroup_callbacks_done = 0;
1014 
1015 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1016 		return ERR_PTR(-EINVAL);
1017 
1018 	/*
1019 	 * Thread groups must share signals as well, and detached threads
1020 	 * can only be started up within the thread group.
1021 	 */
1022 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1023 		return ERR_PTR(-EINVAL);
1024 
1025 	/*
1026 	 * Shared signal handlers imply shared VM. By way of the above,
1027 	 * thread groups also imply shared VM. Blocking this case allows
1028 	 * for various simplifications in other code.
1029 	 */
1030 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1031 		return ERR_PTR(-EINVAL);
1032 
1033 	retval = security_task_create(clone_flags);
1034 	if (retval)
1035 		goto fork_out;
1036 
1037 	retval = -ENOMEM;
1038 	p = dup_task_struct(current);
1039 	if (!p)
1040 		goto fork_out;
1041 
1042 	rt_mutex_init_task(p);
1043 
1044 #ifdef CONFIG_TRACE_IRQFLAGS
1045 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1046 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1047 #endif
1048 	retval = -EAGAIN;
1049 	if (atomic_read(&p->user->processes) >=
1050 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1051 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1052 		    p->user != current->nsproxy->user_ns->root_user)
1053 			goto bad_fork_free;
1054 	}
1055 
1056 	atomic_inc(&p->user->__count);
1057 	atomic_inc(&p->user->processes);
1058 	get_group_info(p->group_info);
1059 
1060 	/*
1061 	 * If multiple threads are within copy_process(), then this check
1062 	 * triggers too late. This doesn't hurt, the check is only there
1063 	 * to stop root fork bombs.
1064 	 */
1065 	if (nr_threads >= max_threads)
1066 		goto bad_fork_cleanup_count;
1067 
1068 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1069 		goto bad_fork_cleanup_count;
1070 
1071 	if (p->binfmt && !try_module_get(p->binfmt->module))
1072 		goto bad_fork_cleanup_put_domain;
1073 
1074 	p->did_exec = 0;
1075 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1076 	copy_flags(clone_flags, p);
1077 	INIT_LIST_HEAD(&p->children);
1078 	INIT_LIST_HEAD(&p->sibling);
1079 #ifdef CONFIG_PREEMPT_RCU
1080 	p->rcu_read_lock_nesting = 0;
1081 	p->rcu_flipctr_idx = 0;
1082 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1083 	p->vfork_done = NULL;
1084 	spin_lock_init(&p->alloc_lock);
1085 
1086 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1087 	init_sigpending(&p->pending);
1088 
1089 	p->utime = cputime_zero;
1090 	p->stime = cputime_zero;
1091 	p->gtime = cputime_zero;
1092 	p->utimescaled = cputime_zero;
1093 	p->stimescaled = cputime_zero;
1094 	p->prev_utime = cputime_zero;
1095 	p->prev_stime = cputime_zero;
1096 
1097 #ifdef CONFIG_DETECT_SOFTLOCKUP
1098 	p->last_switch_count = 0;
1099 	p->last_switch_timestamp = 0;
1100 #endif
1101 
1102 #ifdef CONFIG_TASK_XACCT
1103 	p->rchar = 0;		/* I/O counter: bytes read */
1104 	p->wchar = 0;		/* I/O counter: bytes written */
1105 	p->syscr = 0;		/* I/O counter: read syscalls */
1106 	p->syscw = 0;		/* I/O counter: write syscalls */
1107 #endif
1108 	task_io_accounting_init(p);
1109 	acct_clear_integrals(p);
1110 
1111 	p->it_virt_expires = cputime_zero;
1112 	p->it_prof_expires = cputime_zero;
1113 	p->it_sched_expires = 0;
1114 	INIT_LIST_HEAD(&p->cpu_timers[0]);
1115 	INIT_LIST_HEAD(&p->cpu_timers[1]);
1116 	INIT_LIST_HEAD(&p->cpu_timers[2]);
1117 
1118 	p->lock_depth = -1;		/* -1 = no lock */
1119 	do_posix_clock_monotonic_gettime(&p->start_time);
1120 	p->real_start_time = p->start_time;
1121 	monotonic_to_bootbased(&p->real_start_time);
1122 #ifdef CONFIG_SECURITY
1123 	p->security = NULL;
1124 #endif
1125 	p->cap_bset = current->cap_bset;
1126 	p->io_context = NULL;
1127 	p->audit_context = NULL;
1128 	cgroup_fork(p);
1129 #ifdef CONFIG_NUMA
1130  	p->mempolicy = mpol_copy(p->mempolicy);
1131  	if (IS_ERR(p->mempolicy)) {
1132  		retval = PTR_ERR(p->mempolicy);
1133  		p->mempolicy = NULL;
1134  		goto bad_fork_cleanup_cgroup;
1135  	}
1136 	mpol_fix_fork_child_flag(p);
1137 #endif
1138 #ifdef CONFIG_TRACE_IRQFLAGS
1139 	p->irq_events = 0;
1140 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1141 	p->hardirqs_enabled = 1;
1142 #else
1143 	p->hardirqs_enabled = 0;
1144 #endif
1145 	p->hardirq_enable_ip = 0;
1146 	p->hardirq_enable_event = 0;
1147 	p->hardirq_disable_ip = _THIS_IP_;
1148 	p->hardirq_disable_event = 0;
1149 	p->softirqs_enabled = 1;
1150 	p->softirq_enable_ip = _THIS_IP_;
1151 	p->softirq_enable_event = 0;
1152 	p->softirq_disable_ip = 0;
1153 	p->softirq_disable_event = 0;
1154 	p->hardirq_context = 0;
1155 	p->softirq_context = 0;
1156 #endif
1157 #ifdef CONFIG_LOCKDEP
1158 	p->lockdep_depth = 0; /* no locks held yet */
1159 	p->curr_chain_key = 0;
1160 	p->lockdep_recursion = 0;
1161 #endif
1162 
1163 #ifdef CONFIG_DEBUG_MUTEXES
1164 	p->blocked_on = NULL; /* not blocked yet */
1165 #endif
1166 
1167 	/* Perform scheduler related setup. Assign this task to a CPU. */
1168 	sched_fork(p, clone_flags);
1169 
1170 	if ((retval = security_task_alloc(p)))
1171 		goto bad_fork_cleanup_policy;
1172 	if ((retval = audit_alloc(p)))
1173 		goto bad_fork_cleanup_security;
1174 	/* copy all the process information */
1175 	if ((retval = copy_semundo(clone_flags, p)))
1176 		goto bad_fork_cleanup_audit;
1177 	if ((retval = copy_files(clone_flags, p)))
1178 		goto bad_fork_cleanup_semundo;
1179 	if ((retval = copy_fs(clone_flags, p)))
1180 		goto bad_fork_cleanup_files;
1181 	if ((retval = copy_sighand(clone_flags, p)))
1182 		goto bad_fork_cleanup_fs;
1183 	if ((retval = copy_signal(clone_flags, p)))
1184 		goto bad_fork_cleanup_sighand;
1185 	if ((retval = copy_mm(clone_flags, p)))
1186 		goto bad_fork_cleanup_signal;
1187 	if ((retval = copy_keys(clone_flags, p)))
1188 		goto bad_fork_cleanup_mm;
1189 	if ((retval = copy_namespaces(clone_flags, p)))
1190 		goto bad_fork_cleanup_keys;
1191 	if ((retval = copy_io(clone_flags, p)))
1192 		goto bad_fork_cleanup_namespaces;
1193 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1194 	if (retval)
1195 		goto bad_fork_cleanup_io;
1196 
1197 	if (pid != &init_struct_pid) {
1198 		retval = -ENOMEM;
1199 		pid = alloc_pid(task_active_pid_ns(p));
1200 		if (!pid)
1201 			goto bad_fork_cleanup_io;
1202 
1203 		if (clone_flags & CLONE_NEWPID) {
1204 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1205 			if (retval < 0)
1206 				goto bad_fork_free_pid;
1207 		}
1208 	}
1209 
1210 	p->pid = pid_nr(pid);
1211 	p->tgid = p->pid;
1212 	if (clone_flags & CLONE_THREAD)
1213 		p->tgid = current->tgid;
1214 
1215 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1216 	/*
1217 	 * Clear TID on mm_release()?
1218 	 */
1219 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1220 #ifdef CONFIG_FUTEX
1221 	p->robust_list = NULL;
1222 #ifdef CONFIG_COMPAT
1223 	p->compat_robust_list = NULL;
1224 #endif
1225 	INIT_LIST_HEAD(&p->pi_state_list);
1226 	p->pi_state_cache = NULL;
1227 #endif
1228 	/*
1229 	 * sigaltstack should be cleared when sharing the same VM
1230 	 */
1231 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1232 		p->sas_ss_sp = p->sas_ss_size = 0;
1233 
1234 	/*
1235 	 * Syscall tracing should be turned off in the child regardless
1236 	 * of CLONE_PTRACE.
1237 	 */
1238 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1239 #ifdef TIF_SYSCALL_EMU
1240 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1241 #endif
1242 	clear_all_latency_tracing(p);
1243 
1244 	/* Our parent execution domain becomes current domain
1245 	   These must match for thread signalling to apply */
1246 	p->parent_exec_id = p->self_exec_id;
1247 
1248 	/* ok, now we should be set up.. */
1249 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1250 	p->pdeath_signal = 0;
1251 	p->exit_state = 0;
1252 
1253 	/*
1254 	 * Ok, make it visible to the rest of the system.
1255 	 * We dont wake it up yet.
1256 	 */
1257 	p->group_leader = p;
1258 	INIT_LIST_HEAD(&p->thread_group);
1259 	INIT_LIST_HEAD(&p->ptrace_children);
1260 	INIT_LIST_HEAD(&p->ptrace_list);
1261 
1262 	/* Now that the task is set up, run cgroup callbacks if
1263 	 * necessary. We need to run them before the task is visible
1264 	 * on the tasklist. */
1265 	cgroup_fork_callbacks(p);
1266 	cgroup_callbacks_done = 1;
1267 
1268 	/* Need tasklist lock for parent etc handling! */
1269 	write_lock_irq(&tasklist_lock);
1270 
1271 	/*
1272 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1273 	 * not be changed, nor will its assigned CPU.
1274 	 *
1275 	 * The cpus_allowed mask of the parent may have changed after it was
1276 	 * copied first time - so re-copy it here, then check the child's CPU
1277 	 * to ensure it is on a valid CPU (and if not, just force it back to
1278 	 * parent's CPU). This avoids alot of nasty races.
1279 	 */
1280 	p->cpus_allowed = current->cpus_allowed;
1281 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1282 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1283 			!cpu_online(task_cpu(p))))
1284 		set_task_cpu(p, smp_processor_id());
1285 
1286 	/* CLONE_PARENT re-uses the old parent */
1287 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1288 		p->real_parent = current->real_parent;
1289 	else
1290 		p->real_parent = current;
1291 	p->parent = p->real_parent;
1292 
1293 	spin_lock(&current->sighand->siglock);
1294 
1295 	/*
1296 	 * Process group and session signals need to be delivered to just the
1297 	 * parent before the fork or both the parent and the child after the
1298 	 * fork. Restart if a signal comes in before we add the new process to
1299 	 * it's process group.
1300 	 * A fatal signal pending means that current will exit, so the new
1301 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1302  	 */
1303 	recalc_sigpending();
1304 	if (signal_pending(current)) {
1305 		spin_unlock(&current->sighand->siglock);
1306 		write_unlock_irq(&tasklist_lock);
1307 		retval = -ERESTARTNOINTR;
1308 		goto bad_fork_free_pid;
1309 	}
1310 
1311 	if (clone_flags & CLONE_THREAD) {
1312 		p->group_leader = current->group_leader;
1313 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1314 
1315 		if (!cputime_eq(current->signal->it_virt_expires,
1316 				cputime_zero) ||
1317 		    !cputime_eq(current->signal->it_prof_expires,
1318 				cputime_zero) ||
1319 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1320 		    !list_empty(&current->signal->cpu_timers[0]) ||
1321 		    !list_empty(&current->signal->cpu_timers[1]) ||
1322 		    !list_empty(&current->signal->cpu_timers[2])) {
1323 			/*
1324 			 * Have child wake up on its first tick to check
1325 			 * for process CPU timers.
1326 			 */
1327 			p->it_prof_expires = jiffies_to_cputime(1);
1328 		}
1329 	}
1330 
1331 	if (likely(p->pid)) {
1332 		add_parent(p);
1333 		if (unlikely(p->ptrace & PT_PTRACED))
1334 			__ptrace_link(p, current->parent);
1335 
1336 		if (thread_group_leader(p)) {
1337 			if (clone_flags & CLONE_NEWPID)
1338 				p->nsproxy->pid_ns->child_reaper = p;
1339 
1340 			p->signal->leader_pid = pid;
1341 			p->signal->tty = current->signal->tty;
1342 			set_task_pgrp(p, task_pgrp_nr(current));
1343 			set_task_session(p, task_session_nr(current));
1344 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1345 			attach_pid(p, PIDTYPE_SID, task_session(current));
1346 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1347 			__get_cpu_var(process_counts)++;
1348 		}
1349 		attach_pid(p, PIDTYPE_PID, pid);
1350 		nr_threads++;
1351 	}
1352 
1353 	total_forks++;
1354 	spin_unlock(&current->sighand->siglock);
1355 	write_unlock_irq(&tasklist_lock);
1356 	proc_fork_connector(p);
1357 	cgroup_post_fork(p);
1358 	return p;
1359 
1360 bad_fork_free_pid:
1361 	if (pid != &init_struct_pid)
1362 		free_pid(pid);
1363 bad_fork_cleanup_io:
1364 	put_io_context(p->io_context);
1365 bad_fork_cleanup_namespaces:
1366 	exit_task_namespaces(p);
1367 bad_fork_cleanup_keys:
1368 	exit_keys(p);
1369 bad_fork_cleanup_mm:
1370 	if (p->mm)
1371 		mmput(p->mm);
1372 bad_fork_cleanup_signal:
1373 	cleanup_signal(p);
1374 bad_fork_cleanup_sighand:
1375 	__cleanup_sighand(p->sighand);
1376 bad_fork_cleanup_fs:
1377 	exit_fs(p); /* blocking */
1378 bad_fork_cleanup_files:
1379 	exit_files(p); /* blocking */
1380 bad_fork_cleanup_semundo:
1381 	exit_sem(p);
1382 bad_fork_cleanup_audit:
1383 	audit_free(p);
1384 bad_fork_cleanup_security:
1385 	security_task_free(p);
1386 bad_fork_cleanup_policy:
1387 #ifdef CONFIG_NUMA
1388 	mpol_free(p->mempolicy);
1389 bad_fork_cleanup_cgroup:
1390 #endif
1391 	cgroup_exit(p, cgroup_callbacks_done);
1392 	delayacct_tsk_free(p);
1393 	if (p->binfmt)
1394 		module_put(p->binfmt->module);
1395 bad_fork_cleanup_put_domain:
1396 	module_put(task_thread_info(p)->exec_domain->module);
1397 bad_fork_cleanup_count:
1398 	put_group_info(p->group_info);
1399 	atomic_dec(&p->user->processes);
1400 	free_uid(p->user);
1401 bad_fork_free:
1402 	free_task(p);
1403 fork_out:
1404 	return ERR_PTR(retval);
1405 }
1406 
1407 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1408 {
1409 	memset(regs, 0, sizeof(struct pt_regs));
1410 	return regs;
1411 }
1412 
1413 struct task_struct * __cpuinit fork_idle(int cpu)
1414 {
1415 	struct task_struct *task;
1416 	struct pt_regs regs;
1417 
1418 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1419 				&init_struct_pid);
1420 	if (!IS_ERR(task))
1421 		init_idle(task, cpu);
1422 
1423 	return task;
1424 }
1425 
1426 static int fork_traceflag(unsigned clone_flags)
1427 {
1428 	if (clone_flags & CLONE_UNTRACED)
1429 		return 0;
1430 	else if (clone_flags & CLONE_VFORK) {
1431 		if (current->ptrace & PT_TRACE_VFORK)
1432 			return PTRACE_EVENT_VFORK;
1433 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1434 		if (current->ptrace & PT_TRACE_CLONE)
1435 			return PTRACE_EVENT_CLONE;
1436 	} else if (current->ptrace & PT_TRACE_FORK)
1437 		return PTRACE_EVENT_FORK;
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  *  Ok, this is the main fork-routine.
1444  *
1445  * It copies the process, and if successful kick-starts
1446  * it and waits for it to finish using the VM if required.
1447  */
1448 long do_fork(unsigned long clone_flags,
1449 	      unsigned long stack_start,
1450 	      struct pt_regs *regs,
1451 	      unsigned long stack_size,
1452 	      int __user *parent_tidptr,
1453 	      int __user *child_tidptr)
1454 {
1455 	struct task_struct *p;
1456 	int trace = 0;
1457 	long nr;
1458 
1459 	/*
1460 	 * We hope to recycle these flags after 2.6.26
1461 	 */
1462 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1463 		static int __read_mostly count = 100;
1464 
1465 		if (count > 0 && printk_ratelimit()) {
1466 			char comm[TASK_COMM_LEN];
1467 
1468 			count--;
1469 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1470 					"clone flags 0x%lx\n",
1471 				get_task_comm(comm, current),
1472 				clone_flags & CLONE_STOPPED);
1473 		}
1474 	}
1475 
1476 	if (unlikely(current->ptrace)) {
1477 		trace = fork_traceflag (clone_flags);
1478 		if (trace)
1479 			clone_flags |= CLONE_PTRACE;
1480 	}
1481 
1482 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1483 			child_tidptr, NULL);
1484 	/*
1485 	 * Do this prior waking up the new thread - the thread pointer
1486 	 * might get invalid after that point, if the thread exits quickly.
1487 	 */
1488 	if (!IS_ERR(p)) {
1489 		struct completion vfork;
1490 
1491 		nr = task_pid_vnr(p);
1492 
1493 		if (clone_flags & CLONE_PARENT_SETTID)
1494 			put_user(nr, parent_tidptr);
1495 
1496 		if (clone_flags & CLONE_VFORK) {
1497 			p->vfork_done = &vfork;
1498 			init_completion(&vfork);
1499 		}
1500 
1501 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1502 			/*
1503 			 * We'll start up with an immediate SIGSTOP.
1504 			 */
1505 			sigaddset(&p->pending.signal, SIGSTOP);
1506 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1507 		}
1508 
1509 		if (!(clone_flags & CLONE_STOPPED))
1510 			wake_up_new_task(p, clone_flags);
1511 		else
1512 			__set_task_state(p, TASK_STOPPED);
1513 
1514 		if (unlikely (trace)) {
1515 			current->ptrace_message = nr;
1516 			ptrace_notify ((trace << 8) | SIGTRAP);
1517 		}
1518 
1519 		if (clone_flags & CLONE_VFORK) {
1520 			freezer_do_not_count();
1521 			wait_for_completion(&vfork);
1522 			freezer_count();
1523 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1524 				current->ptrace_message = nr;
1525 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1526 			}
1527 		}
1528 	} else {
1529 		nr = PTR_ERR(p);
1530 	}
1531 	return nr;
1532 }
1533 
1534 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1535 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1536 #endif
1537 
1538 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1539 {
1540 	struct sighand_struct *sighand = data;
1541 
1542 	spin_lock_init(&sighand->siglock);
1543 	init_waitqueue_head(&sighand->signalfd_wqh);
1544 }
1545 
1546 void __init proc_caches_init(void)
1547 {
1548 	sighand_cachep = kmem_cache_create("sighand_cache",
1549 			sizeof(struct sighand_struct), 0,
1550 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1551 			sighand_ctor);
1552 	signal_cachep = kmem_cache_create("signal_cache",
1553 			sizeof(struct signal_struct), 0,
1554 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1555 	files_cachep = kmem_cache_create("files_cache",
1556 			sizeof(struct files_struct), 0,
1557 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1558 	fs_cachep = kmem_cache_create("fs_cache",
1559 			sizeof(struct fs_struct), 0,
1560 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1561 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1562 			sizeof(struct vm_area_struct), 0,
1563 			SLAB_PANIC, NULL);
1564 	mm_cachep = kmem_cache_create("mm_struct",
1565 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1566 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1567 }
1568 
1569 /*
1570  * Check constraints on flags passed to the unshare system call and
1571  * force unsharing of additional process context as appropriate.
1572  */
1573 static void check_unshare_flags(unsigned long *flags_ptr)
1574 {
1575 	/*
1576 	 * If unsharing a thread from a thread group, must also
1577 	 * unshare vm.
1578 	 */
1579 	if (*flags_ptr & CLONE_THREAD)
1580 		*flags_ptr |= CLONE_VM;
1581 
1582 	/*
1583 	 * If unsharing vm, must also unshare signal handlers.
1584 	 */
1585 	if (*flags_ptr & CLONE_VM)
1586 		*flags_ptr |= CLONE_SIGHAND;
1587 
1588 	/*
1589 	 * If unsharing signal handlers and the task was created
1590 	 * using CLONE_THREAD, then must unshare the thread
1591 	 */
1592 	if ((*flags_ptr & CLONE_SIGHAND) &&
1593 	    (atomic_read(&current->signal->count) > 1))
1594 		*flags_ptr |= CLONE_THREAD;
1595 
1596 	/*
1597 	 * If unsharing namespace, must also unshare filesystem information.
1598 	 */
1599 	if (*flags_ptr & CLONE_NEWNS)
1600 		*flags_ptr |= CLONE_FS;
1601 }
1602 
1603 /*
1604  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1605  */
1606 static int unshare_thread(unsigned long unshare_flags)
1607 {
1608 	if (unshare_flags & CLONE_THREAD)
1609 		return -EINVAL;
1610 
1611 	return 0;
1612 }
1613 
1614 /*
1615  * Unshare the filesystem structure if it is being shared
1616  */
1617 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1618 {
1619 	struct fs_struct *fs = current->fs;
1620 
1621 	if ((unshare_flags & CLONE_FS) &&
1622 	    (fs && atomic_read(&fs->count) > 1)) {
1623 		*new_fsp = __copy_fs_struct(current->fs);
1624 		if (!*new_fsp)
1625 			return -ENOMEM;
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 /*
1632  * Unsharing of sighand is not supported yet
1633  */
1634 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1635 {
1636 	struct sighand_struct *sigh = current->sighand;
1637 
1638 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1639 		return -EINVAL;
1640 	else
1641 		return 0;
1642 }
1643 
1644 /*
1645  * Unshare vm if it is being shared
1646  */
1647 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1648 {
1649 	struct mm_struct *mm = current->mm;
1650 
1651 	if ((unshare_flags & CLONE_VM) &&
1652 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1653 		return -EINVAL;
1654 	}
1655 
1656 	return 0;
1657 }
1658 
1659 /*
1660  * Unshare file descriptor table if it is being shared
1661  */
1662 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1663 {
1664 	struct files_struct *fd = current->files;
1665 	int error = 0;
1666 
1667 	if ((unshare_flags & CLONE_FILES) &&
1668 	    (fd && atomic_read(&fd->count) > 1)) {
1669 		*new_fdp = dup_fd(fd, &error);
1670 		if (!*new_fdp)
1671 			return error;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 /*
1678  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1679  * supported yet
1680  */
1681 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1682 {
1683 	if (unshare_flags & CLONE_SYSVSEM)
1684 		return -EINVAL;
1685 
1686 	return 0;
1687 }
1688 
1689 /*
1690  * unshare allows a process to 'unshare' part of the process
1691  * context which was originally shared using clone.  copy_*
1692  * functions used by do_fork() cannot be used here directly
1693  * because they modify an inactive task_struct that is being
1694  * constructed. Here we are modifying the current, active,
1695  * task_struct.
1696  */
1697 asmlinkage long sys_unshare(unsigned long unshare_flags)
1698 {
1699 	int err = 0;
1700 	struct fs_struct *fs, *new_fs = NULL;
1701 	struct sighand_struct *new_sigh = NULL;
1702 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1703 	struct files_struct *fd, *new_fd = NULL;
1704 	struct sem_undo_list *new_ulist = NULL;
1705 	struct nsproxy *new_nsproxy = NULL;
1706 
1707 	check_unshare_flags(&unshare_flags);
1708 
1709 	/* Return -EINVAL for all unsupported flags */
1710 	err = -EINVAL;
1711 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1712 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1713 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1714 				CLONE_NEWNET))
1715 		goto bad_unshare_out;
1716 
1717 	if ((err = unshare_thread(unshare_flags)))
1718 		goto bad_unshare_out;
1719 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1720 		goto bad_unshare_cleanup_thread;
1721 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1722 		goto bad_unshare_cleanup_fs;
1723 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1724 		goto bad_unshare_cleanup_sigh;
1725 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1726 		goto bad_unshare_cleanup_vm;
1727 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1728 		goto bad_unshare_cleanup_fd;
1729 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1730 			new_fs)))
1731 		goto bad_unshare_cleanup_semundo;
1732 
1733 	if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1734 
1735 		if (new_nsproxy) {
1736 			switch_task_namespaces(current, new_nsproxy);
1737 			new_nsproxy = NULL;
1738 		}
1739 
1740 		task_lock(current);
1741 
1742 		if (new_fs) {
1743 			fs = current->fs;
1744 			current->fs = new_fs;
1745 			new_fs = fs;
1746 		}
1747 
1748 		if (new_mm) {
1749 			mm = current->mm;
1750 			active_mm = current->active_mm;
1751 			current->mm = new_mm;
1752 			current->active_mm = new_mm;
1753 			activate_mm(active_mm, new_mm);
1754 			new_mm = mm;
1755 		}
1756 
1757 		if (new_fd) {
1758 			fd = current->files;
1759 			current->files = new_fd;
1760 			new_fd = fd;
1761 		}
1762 
1763 		task_unlock(current);
1764 	}
1765 
1766 	if (new_nsproxy)
1767 		put_nsproxy(new_nsproxy);
1768 
1769 bad_unshare_cleanup_semundo:
1770 bad_unshare_cleanup_fd:
1771 	if (new_fd)
1772 		put_files_struct(new_fd);
1773 
1774 bad_unshare_cleanup_vm:
1775 	if (new_mm)
1776 		mmput(new_mm);
1777 
1778 bad_unshare_cleanup_sigh:
1779 	if (new_sigh)
1780 		if (atomic_dec_and_test(&new_sigh->count))
1781 			kmem_cache_free(sighand_cachep, new_sigh);
1782 
1783 bad_unshare_cleanup_fs:
1784 	if (new_fs)
1785 		put_fs_struct(new_fs);
1786 
1787 bad_unshare_cleanup_thread:
1788 bad_unshare_out:
1789 	return err;
1790 }
1791