1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 99 #include <asm/pgalloc.h> 100 #include <linux/uaccess.h> 101 #include <asm/mmu_context.h> 102 #include <asm/cacheflush.h> 103 #include <asm/tlbflush.h> 104 105 #include <trace/events/sched.h> 106 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/task.h> 109 110 /* 111 * Minimum number of threads to boot the kernel 112 */ 113 #define MIN_THREADS 20 114 115 /* 116 * Maximum number of threads 117 */ 118 #define MAX_THREADS FUTEX_TID_MASK 119 120 /* 121 * Protected counters by write_lock_irq(&tasklist_lock) 122 */ 123 unsigned long total_forks; /* Handle normal Linux uptimes. */ 124 int nr_threads; /* The idle threads do not count.. */ 125 126 static int max_threads; /* tunable limit on nr_threads */ 127 128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 129 130 static const char * const resident_page_types[] = { 131 NAMED_ARRAY_INDEX(MM_FILEPAGES), 132 NAMED_ARRAY_INDEX(MM_ANONPAGES), 133 NAMED_ARRAY_INDEX(MM_SWAPENTS), 134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 135 }; 136 137 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 138 139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 140 141 #ifdef CONFIG_PROVE_RCU 142 int lockdep_tasklist_lock_is_held(void) 143 { 144 return lockdep_is_held(&tasklist_lock); 145 } 146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 147 #endif /* #ifdef CONFIG_PROVE_RCU */ 148 149 int nr_processes(void) 150 { 151 int cpu; 152 int total = 0; 153 154 for_each_possible_cpu(cpu) 155 total += per_cpu(process_counts, cpu); 156 157 return total; 158 } 159 160 void __weak arch_release_task_struct(struct task_struct *tsk) 161 { 162 } 163 164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 165 static struct kmem_cache *task_struct_cachep; 166 167 static inline struct task_struct *alloc_task_struct_node(int node) 168 { 169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 170 } 171 172 static inline void free_task_struct(struct task_struct *tsk) 173 { 174 kmem_cache_free(task_struct_cachep, tsk); 175 } 176 #endif 177 178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 179 180 /* 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 182 * kmemcache based allocator. 183 */ 184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 185 186 #ifdef CONFIG_VMAP_STACK 187 /* 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 189 * flush. Try to minimize the number of calls by caching stacks. 190 */ 191 #define NR_CACHED_STACKS 2 192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 193 194 static int free_vm_stack_cache(unsigned int cpu) 195 { 196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 197 int i; 198 199 for (i = 0; i < NR_CACHED_STACKS; i++) { 200 struct vm_struct *vm_stack = cached_vm_stacks[i]; 201 202 if (!vm_stack) 203 continue; 204 205 vfree(vm_stack->addr); 206 cached_vm_stacks[i] = NULL; 207 } 208 209 return 0; 210 } 211 #endif 212 213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 214 { 215 #ifdef CONFIG_VMAP_STACK 216 void *stack; 217 int i; 218 219 for (i = 0; i < NR_CACHED_STACKS; i++) { 220 struct vm_struct *s; 221 222 s = this_cpu_xchg(cached_stacks[i], NULL); 223 224 if (!s) 225 continue; 226 227 /* Clear the KASAN shadow of the stack. */ 228 kasan_unpoison_shadow(s->addr, THREAD_SIZE); 229 230 /* Clear stale pointers from reused stack. */ 231 memset(s->addr, 0, THREAD_SIZE); 232 233 tsk->stack_vm_area = s; 234 tsk->stack = s->addr; 235 return s->addr; 236 } 237 238 /* 239 * Allocated stacks are cached and later reused by new threads, 240 * so memcg accounting is performed manually on assigning/releasing 241 * stacks to tasks. Drop __GFP_ACCOUNT. 242 */ 243 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 244 VMALLOC_START, VMALLOC_END, 245 THREADINFO_GFP & ~__GFP_ACCOUNT, 246 PAGE_KERNEL, 247 0, node, __builtin_return_address(0)); 248 249 /* 250 * We can't call find_vm_area() in interrupt context, and 251 * free_thread_stack() can be called in interrupt context, 252 * so cache the vm_struct. 253 */ 254 if (stack) { 255 tsk->stack_vm_area = find_vm_area(stack); 256 tsk->stack = stack; 257 } 258 return stack; 259 #else 260 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 261 THREAD_SIZE_ORDER); 262 263 if (likely(page)) { 264 tsk->stack = page_address(page); 265 return tsk->stack; 266 } 267 return NULL; 268 #endif 269 } 270 271 static inline void free_thread_stack(struct task_struct *tsk) 272 { 273 #ifdef CONFIG_VMAP_STACK 274 struct vm_struct *vm = task_stack_vm_area(tsk); 275 276 if (vm) { 277 int i; 278 279 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 280 mod_memcg_page_state(vm->pages[i], 281 MEMCG_KERNEL_STACK_KB, 282 -(int)(PAGE_SIZE / 1024)); 283 284 memcg_kmem_uncharge_page(vm->pages[i], 0); 285 } 286 287 for (i = 0; i < NR_CACHED_STACKS; i++) { 288 if (this_cpu_cmpxchg(cached_stacks[i], 289 NULL, tsk->stack_vm_area) != NULL) 290 continue; 291 292 return; 293 } 294 295 vfree_atomic(tsk->stack); 296 return; 297 } 298 #endif 299 300 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 301 } 302 # else 303 static struct kmem_cache *thread_stack_cache; 304 305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 306 int node) 307 { 308 unsigned long *stack; 309 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 310 tsk->stack = stack; 311 return stack; 312 } 313 314 static void free_thread_stack(struct task_struct *tsk) 315 { 316 kmem_cache_free(thread_stack_cache, tsk->stack); 317 } 318 319 void thread_stack_cache_init(void) 320 { 321 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 322 THREAD_SIZE, THREAD_SIZE, 0, 0, 323 THREAD_SIZE, NULL); 324 BUG_ON(thread_stack_cache == NULL); 325 } 326 # endif 327 #endif 328 329 /* SLAB cache for signal_struct structures (tsk->signal) */ 330 static struct kmem_cache *signal_cachep; 331 332 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 333 struct kmem_cache *sighand_cachep; 334 335 /* SLAB cache for files_struct structures (tsk->files) */ 336 struct kmem_cache *files_cachep; 337 338 /* SLAB cache for fs_struct structures (tsk->fs) */ 339 struct kmem_cache *fs_cachep; 340 341 /* SLAB cache for vm_area_struct structures */ 342 static struct kmem_cache *vm_area_cachep; 343 344 /* SLAB cache for mm_struct structures (tsk->mm) */ 345 static struct kmem_cache *mm_cachep; 346 347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 348 { 349 struct vm_area_struct *vma; 350 351 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 352 if (vma) 353 vma_init(vma, mm); 354 return vma; 355 } 356 357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 358 { 359 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 360 361 if (new) { 362 *new = *orig; 363 INIT_LIST_HEAD(&new->anon_vma_chain); 364 new->vm_next = new->vm_prev = NULL; 365 } 366 return new; 367 } 368 369 void vm_area_free(struct vm_area_struct *vma) 370 { 371 kmem_cache_free(vm_area_cachep, vma); 372 } 373 374 static void account_kernel_stack(struct task_struct *tsk, int account) 375 { 376 void *stack = task_stack_page(tsk); 377 struct vm_struct *vm = task_stack_vm_area(tsk); 378 379 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 380 381 if (vm) { 382 int i; 383 384 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 385 386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 387 mod_zone_page_state(page_zone(vm->pages[i]), 388 NR_KERNEL_STACK_KB, 389 PAGE_SIZE / 1024 * account); 390 } 391 } else { 392 /* 393 * All stack pages are in the same zone and belong to the 394 * same memcg. 395 */ 396 struct page *first_page = virt_to_page(stack); 397 398 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 399 THREAD_SIZE / 1024 * account); 400 401 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB, 402 account * (THREAD_SIZE / 1024)); 403 } 404 } 405 406 static int memcg_charge_kernel_stack(struct task_struct *tsk) 407 { 408 #ifdef CONFIG_VMAP_STACK 409 struct vm_struct *vm = task_stack_vm_area(tsk); 410 int ret; 411 412 if (vm) { 413 int i; 414 415 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 416 /* 417 * If memcg_kmem_charge_page() fails, page->mem_cgroup 418 * pointer is NULL, and both memcg_kmem_uncharge_page() 419 * and mod_memcg_page_state() in free_thread_stack() 420 * will ignore this page. So it's safe. 421 */ 422 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 423 0); 424 if (ret) 425 return ret; 426 427 mod_memcg_page_state(vm->pages[i], 428 MEMCG_KERNEL_STACK_KB, 429 PAGE_SIZE / 1024); 430 } 431 } 432 #endif 433 return 0; 434 } 435 436 static void release_task_stack(struct task_struct *tsk) 437 { 438 if (WARN_ON(tsk->state != TASK_DEAD)) 439 return; /* Better to leak the stack than to free prematurely */ 440 441 account_kernel_stack(tsk, -1); 442 free_thread_stack(tsk); 443 tsk->stack = NULL; 444 #ifdef CONFIG_VMAP_STACK 445 tsk->stack_vm_area = NULL; 446 #endif 447 } 448 449 #ifdef CONFIG_THREAD_INFO_IN_TASK 450 void put_task_stack(struct task_struct *tsk) 451 { 452 if (refcount_dec_and_test(&tsk->stack_refcount)) 453 release_task_stack(tsk); 454 } 455 #endif 456 457 void free_task(struct task_struct *tsk) 458 { 459 scs_release(tsk); 460 461 #ifndef CONFIG_THREAD_INFO_IN_TASK 462 /* 463 * The task is finally done with both the stack and thread_info, 464 * so free both. 465 */ 466 release_task_stack(tsk); 467 #else 468 /* 469 * If the task had a separate stack allocation, it should be gone 470 * by now. 471 */ 472 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 473 #endif 474 rt_mutex_debug_task_free(tsk); 475 ftrace_graph_exit_task(tsk); 476 put_seccomp_filter(tsk); 477 arch_release_task_struct(tsk); 478 if (tsk->flags & PF_KTHREAD) 479 free_kthread_struct(tsk); 480 free_task_struct(tsk); 481 } 482 EXPORT_SYMBOL(free_task); 483 484 #ifdef CONFIG_MMU 485 static __latent_entropy int dup_mmap(struct mm_struct *mm, 486 struct mm_struct *oldmm) 487 { 488 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 489 struct rb_node **rb_link, *rb_parent; 490 int retval; 491 unsigned long charge; 492 LIST_HEAD(uf); 493 494 uprobe_start_dup_mmap(); 495 if (mmap_write_lock_killable(oldmm)) { 496 retval = -EINTR; 497 goto fail_uprobe_end; 498 } 499 flush_cache_dup_mm(oldmm); 500 uprobe_dup_mmap(oldmm, mm); 501 /* 502 * Not linked in yet - no deadlock potential: 503 */ 504 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 505 506 /* No ordering required: file already has been exposed. */ 507 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 508 509 mm->total_vm = oldmm->total_vm; 510 mm->data_vm = oldmm->data_vm; 511 mm->exec_vm = oldmm->exec_vm; 512 mm->stack_vm = oldmm->stack_vm; 513 514 rb_link = &mm->mm_rb.rb_node; 515 rb_parent = NULL; 516 pprev = &mm->mmap; 517 retval = ksm_fork(mm, oldmm); 518 if (retval) 519 goto out; 520 retval = khugepaged_fork(mm, oldmm); 521 if (retval) 522 goto out; 523 524 prev = NULL; 525 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 526 struct file *file; 527 528 if (mpnt->vm_flags & VM_DONTCOPY) { 529 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 530 continue; 531 } 532 charge = 0; 533 /* 534 * Don't duplicate many vmas if we've been oom-killed (for 535 * example) 536 */ 537 if (fatal_signal_pending(current)) { 538 retval = -EINTR; 539 goto out; 540 } 541 if (mpnt->vm_flags & VM_ACCOUNT) { 542 unsigned long len = vma_pages(mpnt); 543 544 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 545 goto fail_nomem; 546 charge = len; 547 } 548 tmp = vm_area_dup(mpnt); 549 if (!tmp) 550 goto fail_nomem; 551 retval = vma_dup_policy(mpnt, tmp); 552 if (retval) 553 goto fail_nomem_policy; 554 tmp->vm_mm = mm; 555 retval = dup_userfaultfd(tmp, &uf); 556 if (retval) 557 goto fail_nomem_anon_vma_fork; 558 if (tmp->vm_flags & VM_WIPEONFORK) { 559 /* 560 * VM_WIPEONFORK gets a clean slate in the child. 561 * Don't prepare anon_vma until fault since we don't 562 * copy page for current vma. 563 */ 564 tmp->anon_vma = NULL; 565 } else if (anon_vma_fork(tmp, mpnt)) 566 goto fail_nomem_anon_vma_fork; 567 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 568 file = tmp->vm_file; 569 if (file) { 570 struct inode *inode = file_inode(file); 571 struct address_space *mapping = file->f_mapping; 572 573 get_file(file); 574 if (tmp->vm_flags & VM_DENYWRITE) 575 atomic_dec(&inode->i_writecount); 576 i_mmap_lock_write(mapping); 577 if (tmp->vm_flags & VM_SHARED) 578 atomic_inc(&mapping->i_mmap_writable); 579 flush_dcache_mmap_lock(mapping); 580 /* insert tmp into the share list, just after mpnt */ 581 vma_interval_tree_insert_after(tmp, mpnt, 582 &mapping->i_mmap); 583 flush_dcache_mmap_unlock(mapping); 584 i_mmap_unlock_write(mapping); 585 } 586 587 /* 588 * Clear hugetlb-related page reserves for children. This only 589 * affects MAP_PRIVATE mappings. Faults generated by the child 590 * are not guaranteed to succeed, even if read-only 591 */ 592 if (is_vm_hugetlb_page(tmp)) 593 reset_vma_resv_huge_pages(tmp); 594 595 /* 596 * Link in the new vma and copy the page table entries. 597 */ 598 *pprev = tmp; 599 pprev = &tmp->vm_next; 600 tmp->vm_prev = prev; 601 prev = tmp; 602 603 __vma_link_rb(mm, tmp, rb_link, rb_parent); 604 rb_link = &tmp->vm_rb.rb_right; 605 rb_parent = &tmp->vm_rb; 606 607 mm->map_count++; 608 if (!(tmp->vm_flags & VM_WIPEONFORK)) 609 retval = copy_page_range(mm, oldmm, mpnt); 610 611 if (tmp->vm_ops && tmp->vm_ops->open) 612 tmp->vm_ops->open(tmp); 613 614 if (retval) 615 goto out; 616 } 617 /* a new mm has just been created */ 618 retval = arch_dup_mmap(oldmm, mm); 619 out: 620 mmap_write_unlock(mm); 621 flush_tlb_mm(oldmm); 622 mmap_write_unlock(oldmm); 623 dup_userfaultfd_complete(&uf); 624 fail_uprobe_end: 625 uprobe_end_dup_mmap(); 626 return retval; 627 fail_nomem_anon_vma_fork: 628 mpol_put(vma_policy(tmp)); 629 fail_nomem_policy: 630 vm_area_free(tmp); 631 fail_nomem: 632 retval = -ENOMEM; 633 vm_unacct_memory(charge); 634 goto out; 635 } 636 637 static inline int mm_alloc_pgd(struct mm_struct *mm) 638 { 639 mm->pgd = pgd_alloc(mm); 640 if (unlikely(!mm->pgd)) 641 return -ENOMEM; 642 return 0; 643 } 644 645 static inline void mm_free_pgd(struct mm_struct *mm) 646 { 647 pgd_free(mm, mm->pgd); 648 } 649 #else 650 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 651 { 652 mmap_write_lock(oldmm); 653 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 654 mmap_write_unlock(oldmm); 655 return 0; 656 } 657 #define mm_alloc_pgd(mm) (0) 658 #define mm_free_pgd(mm) 659 #endif /* CONFIG_MMU */ 660 661 static void check_mm(struct mm_struct *mm) 662 { 663 int i; 664 665 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 666 "Please make sure 'struct resident_page_types[]' is updated as well"); 667 668 for (i = 0; i < NR_MM_COUNTERS; i++) { 669 long x = atomic_long_read(&mm->rss_stat.count[i]); 670 671 if (unlikely(x)) 672 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 673 mm, resident_page_types[i], x); 674 } 675 676 if (mm_pgtables_bytes(mm)) 677 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 678 mm_pgtables_bytes(mm)); 679 680 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 681 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 682 #endif 683 } 684 685 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 686 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 687 688 /* 689 * Called when the last reference to the mm 690 * is dropped: either by a lazy thread or by 691 * mmput. Free the page directory and the mm. 692 */ 693 void __mmdrop(struct mm_struct *mm) 694 { 695 BUG_ON(mm == &init_mm); 696 WARN_ON_ONCE(mm == current->mm); 697 WARN_ON_ONCE(mm == current->active_mm); 698 mm_free_pgd(mm); 699 destroy_context(mm); 700 mmu_notifier_subscriptions_destroy(mm); 701 check_mm(mm); 702 put_user_ns(mm->user_ns); 703 free_mm(mm); 704 } 705 EXPORT_SYMBOL_GPL(__mmdrop); 706 707 static void mmdrop_async_fn(struct work_struct *work) 708 { 709 struct mm_struct *mm; 710 711 mm = container_of(work, struct mm_struct, async_put_work); 712 __mmdrop(mm); 713 } 714 715 static void mmdrop_async(struct mm_struct *mm) 716 { 717 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 718 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 719 schedule_work(&mm->async_put_work); 720 } 721 } 722 723 static inline void free_signal_struct(struct signal_struct *sig) 724 { 725 taskstats_tgid_free(sig); 726 sched_autogroup_exit(sig); 727 /* 728 * __mmdrop is not safe to call from softirq context on x86 due to 729 * pgd_dtor so postpone it to the async context 730 */ 731 if (sig->oom_mm) 732 mmdrop_async(sig->oom_mm); 733 kmem_cache_free(signal_cachep, sig); 734 } 735 736 static inline void put_signal_struct(struct signal_struct *sig) 737 { 738 if (refcount_dec_and_test(&sig->sigcnt)) 739 free_signal_struct(sig); 740 } 741 742 void __put_task_struct(struct task_struct *tsk) 743 { 744 WARN_ON(!tsk->exit_state); 745 WARN_ON(refcount_read(&tsk->usage)); 746 WARN_ON(tsk == current); 747 748 cgroup_free(tsk); 749 task_numa_free(tsk, true); 750 security_task_free(tsk); 751 exit_creds(tsk); 752 delayacct_tsk_free(tsk); 753 put_signal_struct(tsk->signal); 754 755 if (!profile_handoff_task(tsk)) 756 free_task(tsk); 757 } 758 EXPORT_SYMBOL_GPL(__put_task_struct); 759 760 void __init __weak arch_task_cache_init(void) { } 761 762 /* 763 * set_max_threads 764 */ 765 static void set_max_threads(unsigned int max_threads_suggested) 766 { 767 u64 threads; 768 unsigned long nr_pages = totalram_pages(); 769 770 /* 771 * The number of threads shall be limited such that the thread 772 * structures may only consume a small part of the available memory. 773 */ 774 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 775 threads = MAX_THREADS; 776 else 777 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 778 (u64) THREAD_SIZE * 8UL); 779 780 if (threads > max_threads_suggested) 781 threads = max_threads_suggested; 782 783 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 784 } 785 786 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 787 /* Initialized by the architecture: */ 788 int arch_task_struct_size __read_mostly; 789 #endif 790 791 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 792 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 793 { 794 /* Fetch thread_struct whitelist for the architecture. */ 795 arch_thread_struct_whitelist(offset, size); 796 797 /* 798 * Handle zero-sized whitelist or empty thread_struct, otherwise 799 * adjust offset to position of thread_struct in task_struct. 800 */ 801 if (unlikely(*size == 0)) 802 *offset = 0; 803 else 804 *offset += offsetof(struct task_struct, thread); 805 } 806 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 807 808 void __init fork_init(void) 809 { 810 int i; 811 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 812 #ifndef ARCH_MIN_TASKALIGN 813 #define ARCH_MIN_TASKALIGN 0 814 #endif 815 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 816 unsigned long useroffset, usersize; 817 818 /* create a slab on which task_structs can be allocated */ 819 task_struct_whitelist(&useroffset, &usersize); 820 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 821 arch_task_struct_size, align, 822 SLAB_PANIC|SLAB_ACCOUNT, 823 useroffset, usersize, NULL); 824 #endif 825 826 /* do the arch specific task caches init */ 827 arch_task_cache_init(); 828 829 set_max_threads(MAX_THREADS); 830 831 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 832 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 833 init_task.signal->rlim[RLIMIT_SIGPENDING] = 834 init_task.signal->rlim[RLIMIT_NPROC]; 835 836 for (i = 0; i < UCOUNT_COUNTS; i++) { 837 init_user_ns.ucount_max[i] = max_threads/2; 838 } 839 840 #ifdef CONFIG_VMAP_STACK 841 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 842 NULL, free_vm_stack_cache); 843 #endif 844 845 scs_init(); 846 847 lockdep_init_task(&init_task); 848 uprobes_init(); 849 } 850 851 int __weak arch_dup_task_struct(struct task_struct *dst, 852 struct task_struct *src) 853 { 854 *dst = *src; 855 return 0; 856 } 857 858 void set_task_stack_end_magic(struct task_struct *tsk) 859 { 860 unsigned long *stackend; 861 862 stackend = end_of_stack(tsk); 863 *stackend = STACK_END_MAGIC; /* for overflow detection */ 864 } 865 866 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 867 { 868 struct task_struct *tsk; 869 unsigned long *stack; 870 struct vm_struct *stack_vm_area __maybe_unused; 871 int err; 872 873 if (node == NUMA_NO_NODE) 874 node = tsk_fork_get_node(orig); 875 tsk = alloc_task_struct_node(node); 876 if (!tsk) 877 return NULL; 878 879 stack = alloc_thread_stack_node(tsk, node); 880 if (!stack) 881 goto free_tsk; 882 883 if (memcg_charge_kernel_stack(tsk)) 884 goto free_stack; 885 886 stack_vm_area = task_stack_vm_area(tsk); 887 888 err = arch_dup_task_struct(tsk, orig); 889 890 /* 891 * arch_dup_task_struct() clobbers the stack-related fields. Make 892 * sure they're properly initialized before using any stack-related 893 * functions again. 894 */ 895 tsk->stack = stack; 896 #ifdef CONFIG_VMAP_STACK 897 tsk->stack_vm_area = stack_vm_area; 898 #endif 899 #ifdef CONFIG_THREAD_INFO_IN_TASK 900 refcount_set(&tsk->stack_refcount, 1); 901 #endif 902 903 if (err) 904 goto free_stack; 905 906 err = scs_prepare(tsk, node); 907 if (err) 908 goto free_stack; 909 910 #ifdef CONFIG_SECCOMP 911 /* 912 * We must handle setting up seccomp filters once we're under 913 * the sighand lock in case orig has changed between now and 914 * then. Until then, filter must be NULL to avoid messing up 915 * the usage counts on the error path calling free_task. 916 */ 917 tsk->seccomp.filter = NULL; 918 #endif 919 920 setup_thread_stack(tsk, orig); 921 clear_user_return_notifier(tsk); 922 clear_tsk_need_resched(tsk); 923 set_task_stack_end_magic(tsk); 924 925 #ifdef CONFIG_STACKPROTECTOR 926 tsk->stack_canary = get_random_canary(); 927 #endif 928 if (orig->cpus_ptr == &orig->cpus_mask) 929 tsk->cpus_ptr = &tsk->cpus_mask; 930 931 /* 932 * One for the user space visible state that goes away when reaped. 933 * One for the scheduler. 934 */ 935 refcount_set(&tsk->rcu_users, 2); 936 /* One for the rcu users */ 937 refcount_set(&tsk->usage, 1); 938 #ifdef CONFIG_BLK_DEV_IO_TRACE 939 tsk->btrace_seq = 0; 940 #endif 941 tsk->splice_pipe = NULL; 942 tsk->task_frag.page = NULL; 943 tsk->wake_q.next = NULL; 944 945 account_kernel_stack(tsk, 1); 946 947 kcov_task_init(tsk); 948 949 #ifdef CONFIG_FAULT_INJECTION 950 tsk->fail_nth = 0; 951 #endif 952 953 #ifdef CONFIG_BLK_CGROUP 954 tsk->throttle_queue = NULL; 955 tsk->use_memdelay = 0; 956 #endif 957 958 #ifdef CONFIG_MEMCG 959 tsk->active_memcg = NULL; 960 #endif 961 return tsk; 962 963 free_stack: 964 free_thread_stack(tsk); 965 free_tsk: 966 free_task_struct(tsk); 967 return NULL; 968 } 969 970 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 971 972 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 973 974 static int __init coredump_filter_setup(char *s) 975 { 976 default_dump_filter = 977 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 978 MMF_DUMP_FILTER_MASK; 979 return 1; 980 } 981 982 __setup("coredump_filter=", coredump_filter_setup); 983 984 #include <linux/init_task.h> 985 986 static void mm_init_aio(struct mm_struct *mm) 987 { 988 #ifdef CONFIG_AIO 989 spin_lock_init(&mm->ioctx_lock); 990 mm->ioctx_table = NULL; 991 #endif 992 } 993 994 static __always_inline void mm_clear_owner(struct mm_struct *mm, 995 struct task_struct *p) 996 { 997 #ifdef CONFIG_MEMCG 998 if (mm->owner == p) 999 WRITE_ONCE(mm->owner, NULL); 1000 #endif 1001 } 1002 1003 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1004 { 1005 #ifdef CONFIG_MEMCG 1006 mm->owner = p; 1007 #endif 1008 } 1009 1010 static void mm_init_uprobes_state(struct mm_struct *mm) 1011 { 1012 #ifdef CONFIG_UPROBES 1013 mm->uprobes_state.xol_area = NULL; 1014 #endif 1015 } 1016 1017 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1018 struct user_namespace *user_ns) 1019 { 1020 mm->mmap = NULL; 1021 mm->mm_rb = RB_ROOT; 1022 mm->vmacache_seqnum = 0; 1023 atomic_set(&mm->mm_users, 1); 1024 atomic_set(&mm->mm_count, 1); 1025 mmap_init_lock(mm); 1026 INIT_LIST_HEAD(&mm->mmlist); 1027 mm->core_state = NULL; 1028 mm_pgtables_bytes_init(mm); 1029 mm->map_count = 0; 1030 mm->locked_vm = 0; 1031 atomic64_set(&mm->pinned_vm, 0); 1032 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1033 spin_lock_init(&mm->page_table_lock); 1034 spin_lock_init(&mm->arg_lock); 1035 mm_init_cpumask(mm); 1036 mm_init_aio(mm); 1037 mm_init_owner(mm, p); 1038 RCU_INIT_POINTER(mm->exe_file, NULL); 1039 mmu_notifier_subscriptions_init(mm); 1040 init_tlb_flush_pending(mm); 1041 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1042 mm->pmd_huge_pte = NULL; 1043 #endif 1044 mm_init_uprobes_state(mm); 1045 1046 if (current->mm) { 1047 mm->flags = current->mm->flags & MMF_INIT_MASK; 1048 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1049 } else { 1050 mm->flags = default_dump_filter; 1051 mm->def_flags = 0; 1052 } 1053 1054 if (mm_alloc_pgd(mm)) 1055 goto fail_nopgd; 1056 1057 if (init_new_context(p, mm)) 1058 goto fail_nocontext; 1059 1060 mm->user_ns = get_user_ns(user_ns); 1061 return mm; 1062 1063 fail_nocontext: 1064 mm_free_pgd(mm); 1065 fail_nopgd: 1066 free_mm(mm); 1067 return NULL; 1068 } 1069 1070 /* 1071 * Allocate and initialize an mm_struct. 1072 */ 1073 struct mm_struct *mm_alloc(void) 1074 { 1075 struct mm_struct *mm; 1076 1077 mm = allocate_mm(); 1078 if (!mm) 1079 return NULL; 1080 1081 memset(mm, 0, sizeof(*mm)); 1082 return mm_init(mm, current, current_user_ns()); 1083 } 1084 1085 static inline void __mmput(struct mm_struct *mm) 1086 { 1087 VM_BUG_ON(atomic_read(&mm->mm_users)); 1088 1089 uprobe_clear_state(mm); 1090 exit_aio(mm); 1091 ksm_exit(mm); 1092 khugepaged_exit(mm); /* must run before exit_mmap */ 1093 exit_mmap(mm); 1094 mm_put_huge_zero_page(mm); 1095 set_mm_exe_file(mm, NULL); 1096 if (!list_empty(&mm->mmlist)) { 1097 spin_lock(&mmlist_lock); 1098 list_del(&mm->mmlist); 1099 spin_unlock(&mmlist_lock); 1100 } 1101 if (mm->binfmt) 1102 module_put(mm->binfmt->module); 1103 mmdrop(mm); 1104 } 1105 1106 /* 1107 * Decrement the use count and release all resources for an mm. 1108 */ 1109 void mmput(struct mm_struct *mm) 1110 { 1111 might_sleep(); 1112 1113 if (atomic_dec_and_test(&mm->mm_users)) 1114 __mmput(mm); 1115 } 1116 EXPORT_SYMBOL_GPL(mmput); 1117 1118 #ifdef CONFIG_MMU 1119 static void mmput_async_fn(struct work_struct *work) 1120 { 1121 struct mm_struct *mm = container_of(work, struct mm_struct, 1122 async_put_work); 1123 1124 __mmput(mm); 1125 } 1126 1127 void mmput_async(struct mm_struct *mm) 1128 { 1129 if (atomic_dec_and_test(&mm->mm_users)) { 1130 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1131 schedule_work(&mm->async_put_work); 1132 } 1133 } 1134 #endif 1135 1136 /** 1137 * set_mm_exe_file - change a reference to the mm's executable file 1138 * 1139 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1140 * 1141 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1142 * invocations: in mmput() nobody alive left, in execve task is single 1143 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1144 * mm->exe_file, but does so without using set_mm_exe_file() in order 1145 * to do avoid the need for any locks. 1146 */ 1147 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1148 { 1149 struct file *old_exe_file; 1150 1151 /* 1152 * It is safe to dereference the exe_file without RCU as 1153 * this function is only called if nobody else can access 1154 * this mm -- see comment above for justification. 1155 */ 1156 old_exe_file = rcu_dereference_raw(mm->exe_file); 1157 1158 if (new_exe_file) 1159 get_file(new_exe_file); 1160 rcu_assign_pointer(mm->exe_file, new_exe_file); 1161 if (old_exe_file) 1162 fput(old_exe_file); 1163 } 1164 1165 /** 1166 * get_mm_exe_file - acquire a reference to the mm's executable file 1167 * 1168 * Returns %NULL if mm has no associated executable file. 1169 * User must release file via fput(). 1170 */ 1171 struct file *get_mm_exe_file(struct mm_struct *mm) 1172 { 1173 struct file *exe_file; 1174 1175 rcu_read_lock(); 1176 exe_file = rcu_dereference(mm->exe_file); 1177 if (exe_file && !get_file_rcu(exe_file)) 1178 exe_file = NULL; 1179 rcu_read_unlock(); 1180 return exe_file; 1181 } 1182 EXPORT_SYMBOL(get_mm_exe_file); 1183 1184 /** 1185 * get_task_exe_file - acquire a reference to the task's executable file 1186 * 1187 * Returns %NULL if task's mm (if any) has no associated executable file or 1188 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1189 * User must release file via fput(). 1190 */ 1191 struct file *get_task_exe_file(struct task_struct *task) 1192 { 1193 struct file *exe_file = NULL; 1194 struct mm_struct *mm; 1195 1196 task_lock(task); 1197 mm = task->mm; 1198 if (mm) { 1199 if (!(task->flags & PF_KTHREAD)) 1200 exe_file = get_mm_exe_file(mm); 1201 } 1202 task_unlock(task); 1203 return exe_file; 1204 } 1205 EXPORT_SYMBOL(get_task_exe_file); 1206 1207 /** 1208 * get_task_mm - acquire a reference to the task's mm 1209 * 1210 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1211 * this kernel workthread has transiently adopted a user mm with use_mm, 1212 * to do its AIO) is not set and if so returns a reference to it, after 1213 * bumping up the use count. User must release the mm via mmput() 1214 * after use. Typically used by /proc and ptrace. 1215 */ 1216 struct mm_struct *get_task_mm(struct task_struct *task) 1217 { 1218 struct mm_struct *mm; 1219 1220 task_lock(task); 1221 mm = task->mm; 1222 if (mm) { 1223 if (task->flags & PF_KTHREAD) 1224 mm = NULL; 1225 else 1226 mmget(mm); 1227 } 1228 task_unlock(task); 1229 return mm; 1230 } 1231 EXPORT_SYMBOL_GPL(get_task_mm); 1232 1233 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1234 { 1235 struct mm_struct *mm; 1236 int err; 1237 1238 err = mutex_lock_killable(&task->signal->exec_update_mutex); 1239 if (err) 1240 return ERR_PTR(err); 1241 1242 mm = get_task_mm(task); 1243 if (mm && mm != current->mm && 1244 !ptrace_may_access(task, mode)) { 1245 mmput(mm); 1246 mm = ERR_PTR(-EACCES); 1247 } 1248 mutex_unlock(&task->signal->exec_update_mutex); 1249 1250 return mm; 1251 } 1252 1253 static void complete_vfork_done(struct task_struct *tsk) 1254 { 1255 struct completion *vfork; 1256 1257 task_lock(tsk); 1258 vfork = tsk->vfork_done; 1259 if (likely(vfork)) { 1260 tsk->vfork_done = NULL; 1261 complete(vfork); 1262 } 1263 task_unlock(tsk); 1264 } 1265 1266 static int wait_for_vfork_done(struct task_struct *child, 1267 struct completion *vfork) 1268 { 1269 int killed; 1270 1271 freezer_do_not_count(); 1272 cgroup_enter_frozen(); 1273 killed = wait_for_completion_killable(vfork); 1274 cgroup_leave_frozen(false); 1275 freezer_count(); 1276 1277 if (killed) { 1278 task_lock(child); 1279 child->vfork_done = NULL; 1280 task_unlock(child); 1281 } 1282 1283 put_task_struct(child); 1284 return killed; 1285 } 1286 1287 /* Please note the differences between mmput and mm_release. 1288 * mmput is called whenever we stop holding onto a mm_struct, 1289 * error success whatever. 1290 * 1291 * mm_release is called after a mm_struct has been removed 1292 * from the current process. 1293 * 1294 * This difference is important for error handling, when we 1295 * only half set up a mm_struct for a new process and need to restore 1296 * the old one. Because we mmput the new mm_struct before 1297 * restoring the old one. . . 1298 * Eric Biederman 10 January 1998 1299 */ 1300 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1301 { 1302 uprobe_free_utask(tsk); 1303 1304 /* Get rid of any cached register state */ 1305 deactivate_mm(tsk, mm); 1306 1307 /* 1308 * Signal userspace if we're not exiting with a core dump 1309 * because we want to leave the value intact for debugging 1310 * purposes. 1311 */ 1312 if (tsk->clear_child_tid) { 1313 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1314 atomic_read(&mm->mm_users) > 1) { 1315 /* 1316 * We don't check the error code - if userspace has 1317 * not set up a proper pointer then tough luck. 1318 */ 1319 put_user(0, tsk->clear_child_tid); 1320 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1321 1, NULL, NULL, 0, 0); 1322 } 1323 tsk->clear_child_tid = NULL; 1324 } 1325 1326 /* 1327 * All done, finally we can wake up parent and return this mm to him. 1328 * Also kthread_stop() uses this completion for synchronization. 1329 */ 1330 if (tsk->vfork_done) 1331 complete_vfork_done(tsk); 1332 } 1333 1334 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1335 { 1336 futex_exit_release(tsk); 1337 mm_release(tsk, mm); 1338 } 1339 1340 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1341 { 1342 futex_exec_release(tsk); 1343 mm_release(tsk, mm); 1344 } 1345 1346 /** 1347 * dup_mm() - duplicates an existing mm structure 1348 * @tsk: the task_struct with which the new mm will be associated. 1349 * @oldmm: the mm to duplicate. 1350 * 1351 * Allocates a new mm structure and duplicates the provided @oldmm structure 1352 * content into it. 1353 * 1354 * Return: the duplicated mm or NULL on failure. 1355 */ 1356 static struct mm_struct *dup_mm(struct task_struct *tsk, 1357 struct mm_struct *oldmm) 1358 { 1359 struct mm_struct *mm; 1360 int err; 1361 1362 mm = allocate_mm(); 1363 if (!mm) 1364 goto fail_nomem; 1365 1366 memcpy(mm, oldmm, sizeof(*mm)); 1367 1368 if (!mm_init(mm, tsk, mm->user_ns)) 1369 goto fail_nomem; 1370 1371 err = dup_mmap(mm, oldmm); 1372 if (err) 1373 goto free_pt; 1374 1375 mm->hiwater_rss = get_mm_rss(mm); 1376 mm->hiwater_vm = mm->total_vm; 1377 1378 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1379 goto free_pt; 1380 1381 return mm; 1382 1383 free_pt: 1384 /* don't put binfmt in mmput, we haven't got module yet */ 1385 mm->binfmt = NULL; 1386 mm_init_owner(mm, NULL); 1387 mmput(mm); 1388 1389 fail_nomem: 1390 return NULL; 1391 } 1392 1393 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1394 { 1395 struct mm_struct *mm, *oldmm; 1396 int retval; 1397 1398 tsk->min_flt = tsk->maj_flt = 0; 1399 tsk->nvcsw = tsk->nivcsw = 0; 1400 #ifdef CONFIG_DETECT_HUNG_TASK 1401 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1402 tsk->last_switch_time = 0; 1403 #endif 1404 1405 tsk->mm = NULL; 1406 tsk->active_mm = NULL; 1407 1408 /* 1409 * Are we cloning a kernel thread? 1410 * 1411 * We need to steal a active VM for that.. 1412 */ 1413 oldmm = current->mm; 1414 if (!oldmm) 1415 return 0; 1416 1417 /* initialize the new vmacache entries */ 1418 vmacache_flush(tsk); 1419 1420 if (clone_flags & CLONE_VM) { 1421 mmget(oldmm); 1422 mm = oldmm; 1423 goto good_mm; 1424 } 1425 1426 retval = -ENOMEM; 1427 mm = dup_mm(tsk, current->mm); 1428 if (!mm) 1429 goto fail_nomem; 1430 1431 good_mm: 1432 tsk->mm = mm; 1433 tsk->active_mm = mm; 1434 return 0; 1435 1436 fail_nomem: 1437 return retval; 1438 } 1439 1440 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1441 { 1442 struct fs_struct *fs = current->fs; 1443 if (clone_flags & CLONE_FS) { 1444 /* tsk->fs is already what we want */ 1445 spin_lock(&fs->lock); 1446 if (fs->in_exec) { 1447 spin_unlock(&fs->lock); 1448 return -EAGAIN; 1449 } 1450 fs->users++; 1451 spin_unlock(&fs->lock); 1452 return 0; 1453 } 1454 tsk->fs = copy_fs_struct(fs); 1455 if (!tsk->fs) 1456 return -ENOMEM; 1457 return 0; 1458 } 1459 1460 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1461 { 1462 struct files_struct *oldf, *newf; 1463 int error = 0; 1464 1465 /* 1466 * A background process may not have any files ... 1467 */ 1468 oldf = current->files; 1469 if (!oldf) 1470 goto out; 1471 1472 if (clone_flags & CLONE_FILES) { 1473 atomic_inc(&oldf->count); 1474 goto out; 1475 } 1476 1477 newf = dup_fd(oldf, &error); 1478 if (!newf) 1479 goto out; 1480 1481 tsk->files = newf; 1482 error = 0; 1483 out: 1484 return error; 1485 } 1486 1487 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1488 { 1489 #ifdef CONFIG_BLOCK 1490 struct io_context *ioc = current->io_context; 1491 struct io_context *new_ioc; 1492 1493 if (!ioc) 1494 return 0; 1495 /* 1496 * Share io context with parent, if CLONE_IO is set 1497 */ 1498 if (clone_flags & CLONE_IO) { 1499 ioc_task_link(ioc); 1500 tsk->io_context = ioc; 1501 } else if (ioprio_valid(ioc->ioprio)) { 1502 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1503 if (unlikely(!new_ioc)) 1504 return -ENOMEM; 1505 1506 new_ioc->ioprio = ioc->ioprio; 1507 put_io_context(new_ioc); 1508 } 1509 #endif 1510 return 0; 1511 } 1512 1513 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1514 { 1515 struct sighand_struct *sig; 1516 1517 if (clone_flags & CLONE_SIGHAND) { 1518 refcount_inc(¤t->sighand->count); 1519 return 0; 1520 } 1521 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1522 RCU_INIT_POINTER(tsk->sighand, sig); 1523 if (!sig) 1524 return -ENOMEM; 1525 1526 refcount_set(&sig->count, 1); 1527 spin_lock_irq(¤t->sighand->siglock); 1528 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1529 spin_unlock_irq(¤t->sighand->siglock); 1530 1531 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1532 if (clone_flags & CLONE_CLEAR_SIGHAND) 1533 flush_signal_handlers(tsk, 0); 1534 1535 return 0; 1536 } 1537 1538 void __cleanup_sighand(struct sighand_struct *sighand) 1539 { 1540 if (refcount_dec_and_test(&sighand->count)) { 1541 signalfd_cleanup(sighand); 1542 /* 1543 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1544 * without an RCU grace period, see __lock_task_sighand(). 1545 */ 1546 kmem_cache_free(sighand_cachep, sighand); 1547 } 1548 } 1549 1550 /* 1551 * Initialize POSIX timer handling for a thread group. 1552 */ 1553 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1554 { 1555 struct posix_cputimers *pct = &sig->posix_cputimers; 1556 unsigned long cpu_limit; 1557 1558 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1559 posix_cputimers_group_init(pct, cpu_limit); 1560 } 1561 1562 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1563 { 1564 struct signal_struct *sig; 1565 1566 if (clone_flags & CLONE_THREAD) 1567 return 0; 1568 1569 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1570 tsk->signal = sig; 1571 if (!sig) 1572 return -ENOMEM; 1573 1574 sig->nr_threads = 1; 1575 atomic_set(&sig->live, 1); 1576 refcount_set(&sig->sigcnt, 1); 1577 1578 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1579 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1580 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1581 1582 init_waitqueue_head(&sig->wait_chldexit); 1583 sig->curr_target = tsk; 1584 init_sigpending(&sig->shared_pending); 1585 INIT_HLIST_HEAD(&sig->multiprocess); 1586 seqlock_init(&sig->stats_lock); 1587 prev_cputime_init(&sig->prev_cputime); 1588 1589 #ifdef CONFIG_POSIX_TIMERS 1590 INIT_LIST_HEAD(&sig->posix_timers); 1591 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1592 sig->real_timer.function = it_real_fn; 1593 #endif 1594 1595 task_lock(current->group_leader); 1596 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1597 task_unlock(current->group_leader); 1598 1599 posix_cpu_timers_init_group(sig); 1600 1601 tty_audit_fork(sig); 1602 sched_autogroup_fork(sig); 1603 1604 sig->oom_score_adj = current->signal->oom_score_adj; 1605 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1606 1607 mutex_init(&sig->cred_guard_mutex); 1608 mutex_init(&sig->exec_update_mutex); 1609 1610 return 0; 1611 } 1612 1613 static void copy_seccomp(struct task_struct *p) 1614 { 1615 #ifdef CONFIG_SECCOMP 1616 /* 1617 * Must be called with sighand->lock held, which is common to 1618 * all threads in the group. Holding cred_guard_mutex is not 1619 * needed because this new task is not yet running and cannot 1620 * be racing exec. 1621 */ 1622 assert_spin_locked(¤t->sighand->siglock); 1623 1624 /* Ref-count the new filter user, and assign it. */ 1625 get_seccomp_filter(current); 1626 p->seccomp = current->seccomp; 1627 1628 /* 1629 * Explicitly enable no_new_privs here in case it got set 1630 * between the task_struct being duplicated and holding the 1631 * sighand lock. The seccomp state and nnp must be in sync. 1632 */ 1633 if (task_no_new_privs(current)) 1634 task_set_no_new_privs(p); 1635 1636 /* 1637 * If the parent gained a seccomp mode after copying thread 1638 * flags and between before we held the sighand lock, we have 1639 * to manually enable the seccomp thread flag here. 1640 */ 1641 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1642 set_tsk_thread_flag(p, TIF_SECCOMP); 1643 #endif 1644 } 1645 1646 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1647 { 1648 current->clear_child_tid = tidptr; 1649 1650 return task_pid_vnr(current); 1651 } 1652 1653 static void rt_mutex_init_task(struct task_struct *p) 1654 { 1655 raw_spin_lock_init(&p->pi_lock); 1656 #ifdef CONFIG_RT_MUTEXES 1657 p->pi_waiters = RB_ROOT_CACHED; 1658 p->pi_top_task = NULL; 1659 p->pi_blocked_on = NULL; 1660 #endif 1661 } 1662 1663 static inline void init_task_pid_links(struct task_struct *task) 1664 { 1665 enum pid_type type; 1666 1667 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1668 INIT_HLIST_NODE(&task->pid_links[type]); 1669 } 1670 } 1671 1672 static inline void 1673 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1674 { 1675 if (type == PIDTYPE_PID) 1676 task->thread_pid = pid; 1677 else 1678 task->signal->pids[type] = pid; 1679 } 1680 1681 static inline void rcu_copy_process(struct task_struct *p) 1682 { 1683 #ifdef CONFIG_PREEMPT_RCU 1684 p->rcu_read_lock_nesting = 0; 1685 p->rcu_read_unlock_special.s = 0; 1686 p->rcu_blocked_node = NULL; 1687 INIT_LIST_HEAD(&p->rcu_node_entry); 1688 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1689 #ifdef CONFIG_TASKS_RCU 1690 p->rcu_tasks_holdout = false; 1691 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1692 p->rcu_tasks_idle_cpu = -1; 1693 #endif /* #ifdef CONFIG_TASKS_RCU */ 1694 #ifdef CONFIG_TASKS_TRACE_RCU 1695 p->trc_reader_nesting = 0; 1696 p->trc_reader_special.s = 0; 1697 INIT_LIST_HEAD(&p->trc_holdout_list); 1698 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1699 } 1700 1701 struct pid *pidfd_pid(const struct file *file) 1702 { 1703 if (file->f_op == &pidfd_fops) 1704 return file->private_data; 1705 1706 return ERR_PTR(-EBADF); 1707 } 1708 1709 static int pidfd_release(struct inode *inode, struct file *file) 1710 { 1711 struct pid *pid = file->private_data; 1712 1713 file->private_data = NULL; 1714 put_pid(pid); 1715 return 0; 1716 } 1717 1718 #ifdef CONFIG_PROC_FS 1719 /** 1720 * pidfd_show_fdinfo - print information about a pidfd 1721 * @m: proc fdinfo file 1722 * @f: file referencing a pidfd 1723 * 1724 * Pid: 1725 * This function will print the pid that a given pidfd refers to in the 1726 * pid namespace of the procfs instance. 1727 * If the pid namespace of the process is not a descendant of the pid 1728 * namespace of the procfs instance 0 will be shown as its pid. This is 1729 * similar to calling getppid() on a process whose parent is outside of 1730 * its pid namespace. 1731 * 1732 * NSpid: 1733 * If pid namespaces are supported then this function will also print 1734 * the pid of a given pidfd refers to for all descendant pid namespaces 1735 * starting from the current pid namespace of the instance, i.e. the 1736 * Pid field and the first entry in the NSpid field will be identical. 1737 * If the pid namespace of the process is not a descendant of the pid 1738 * namespace of the procfs instance 0 will be shown as its first NSpid 1739 * entry and no others will be shown. 1740 * Note that this differs from the Pid and NSpid fields in 1741 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1742 * the pid namespace of the procfs instance. The difference becomes 1743 * obvious when sending around a pidfd between pid namespaces from a 1744 * different branch of the tree, i.e. where no ancestoral relation is 1745 * present between the pid namespaces: 1746 * - create two new pid namespaces ns1 and ns2 in the initial pid 1747 * namespace (also take care to create new mount namespaces in the 1748 * new pid namespace and mount procfs) 1749 * - create a process with a pidfd in ns1 1750 * - send pidfd from ns1 to ns2 1751 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1752 * have exactly one entry, which is 0 1753 */ 1754 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1755 { 1756 struct pid *pid = f->private_data; 1757 struct pid_namespace *ns; 1758 pid_t nr = -1; 1759 1760 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1761 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1762 nr = pid_nr_ns(pid, ns); 1763 } 1764 1765 seq_put_decimal_ll(m, "Pid:\t", nr); 1766 1767 #ifdef CONFIG_PID_NS 1768 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1769 if (nr > 0) { 1770 int i; 1771 1772 /* If nr is non-zero it means that 'pid' is valid and that 1773 * ns, i.e. the pid namespace associated with the procfs 1774 * instance, is in the pid namespace hierarchy of pid. 1775 * Start at one below the already printed level. 1776 */ 1777 for (i = ns->level + 1; i <= pid->level; i++) 1778 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1779 } 1780 #endif 1781 seq_putc(m, '\n'); 1782 } 1783 #endif 1784 1785 /* 1786 * Poll support for process exit notification. 1787 */ 1788 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1789 { 1790 struct task_struct *task; 1791 struct pid *pid = file->private_data; 1792 __poll_t poll_flags = 0; 1793 1794 poll_wait(file, &pid->wait_pidfd, pts); 1795 1796 rcu_read_lock(); 1797 task = pid_task(pid, PIDTYPE_PID); 1798 /* 1799 * Inform pollers only when the whole thread group exits. 1800 * If the thread group leader exits before all other threads in the 1801 * group, then poll(2) should block, similar to the wait(2) family. 1802 */ 1803 if (!task || (task->exit_state && thread_group_empty(task))) 1804 poll_flags = EPOLLIN | EPOLLRDNORM; 1805 rcu_read_unlock(); 1806 1807 return poll_flags; 1808 } 1809 1810 const struct file_operations pidfd_fops = { 1811 .release = pidfd_release, 1812 .poll = pidfd_poll, 1813 #ifdef CONFIG_PROC_FS 1814 .show_fdinfo = pidfd_show_fdinfo, 1815 #endif 1816 }; 1817 1818 static void __delayed_free_task(struct rcu_head *rhp) 1819 { 1820 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1821 1822 free_task(tsk); 1823 } 1824 1825 static __always_inline void delayed_free_task(struct task_struct *tsk) 1826 { 1827 if (IS_ENABLED(CONFIG_MEMCG)) 1828 call_rcu(&tsk->rcu, __delayed_free_task); 1829 else 1830 free_task(tsk); 1831 } 1832 1833 /* 1834 * This creates a new process as a copy of the old one, 1835 * but does not actually start it yet. 1836 * 1837 * It copies the registers, and all the appropriate 1838 * parts of the process environment (as per the clone 1839 * flags). The actual kick-off is left to the caller. 1840 */ 1841 static __latent_entropy struct task_struct *copy_process( 1842 struct pid *pid, 1843 int trace, 1844 int node, 1845 struct kernel_clone_args *args) 1846 { 1847 int pidfd = -1, retval; 1848 struct task_struct *p; 1849 struct multiprocess_signals delayed; 1850 struct file *pidfile = NULL; 1851 u64 clone_flags = args->flags; 1852 struct nsproxy *nsp = current->nsproxy; 1853 1854 /* 1855 * Don't allow sharing the root directory with processes in a different 1856 * namespace 1857 */ 1858 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1859 return ERR_PTR(-EINVAL); 1860 1861 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1862 return ERR_PTR(-EINVAL); 1863 1864 /* 1865 * Thread groups must share signals as well, and detached threads 1866 * can only be started up within the thread group. 1867 */ 1868 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1869 return ERR_PTR(-EINVAL); 1870 1871 /* 1872 * Shared signal handlers imply shared VM. By way of the above, 1873 * thread groups also imply shared VM. Blocking this case allows 1874 * for various simplifications in other code. 1875 */ 1876 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1877 return ERR_PTR(-EINVAL); 1878 1879 /* 1880 * Siblings of global init remain as zombies on exit since they are 1881 * not reaped by their parent (swapper). To solve this and to avoid 1882 * multi-rooted process trees, prevent global and container-inits 1883 * from creating siblings. 1884 */ 1885 if ((clone_flags & CLONE_PARENT) && 1886 current->signal->flags & SIGNAL_UNKILLABLE) 1887 return ERR_PTR(-EINVAL); 1888 1889 /* 1890 * If the new process will be in a different pid or user namespace 1891 * do not allow it to share a thread group with the forking task. 1892 */ 1893 if (clone_flags & CLONE_THREAD) { 1894 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1895 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1896 return ERR_PTR(-EINVAL); 1897 } 1898 1899 /* 1900 * If the new process will be in a different time namespace 1901 * do not allow it to share VM or a thread group with the forking task. 1902 */ 1903 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1904 if (nsp->time_ns != nsp->time_ns_for_children) 1905 return ERR_PTR(-EINVAL); 1906 } 1907 1908 if (clone_flags & CLONE_PIDFD) { 1909 /* 1910 * - CLONE_DETACHED is blocked so that we can potentially 1911 * reuse it later for CLONE_PIDFD. 1912 * - CLONE_THREAD is blocked until someone really needs it. 1913 */ 1914 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1915 return ERR_PTR(-EINVAL); 1916 } 1917 1918 /* 1919 * Force any signals received before this point to be delivered 1920 * before the fork happens. Collect up signals sent to multiple 1921 * processes that happen during the fork and delay them so that 1922 * they appear to happen after the fork. 1923 */ 1924 sigemptyset(&delayed.signal); 1925 INIT_HLIST_NODE(&delayed.node); 1926 1927 spin_lock_irq(¤t->sighand->siglock); 1928 if (!(clone_flags & CLONE_THREAD)) 1929 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1930 recalc_sigpending(); 1931 spin_unlock_irq(¤t->sighand->siglock); 1932 retval = -ERESTARTNOINTR; 1933 if (signal_pending(current)) 1934 goto fork_out; 1935 1936 retval = -ENOMEM; 1937 p = dup_task_struct(current, node); 1938 if (!p) 1939 goto fork_out; 1940 1941 /* 1942 * This _must_ happen before we call free_task(), i.e. before we jump 1943 * to any of the bad_fork_* labels. This is to avoid freeing 1944 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1945 * kernel threads (PF_KTHREAD). 1946 */ 1947 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1948 /* 1949 * Clear TID on mm_release()? 1950 */ 1951 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1952 1953 ftrace_graph_init_task(p); 1954 1955 rt_mutex_init_task(p); 1956 1957 #ifdef CONFIG_PROVE_LOCKING 1958 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1959 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1960 #endif 1961 retval = -EAGAIN; 1962 if (atomic_read(&p->real_cred->user->processes) >= 1963 task_rlimit(p, RLIMIT_NPROC)) { 1964 if (p->real_cred->user != INIT_USER && 1965 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1966 goto bad_fork_free; 1967 } 1968 current->flags &= ~PF_NPROC_EXCEEDED; 1969 1970 retval = copy_creds(p, clone_flags); 1971 if (retval < 0) 1972 goto bad_fork_free; 1973 1974 /* 1975 * If multiple threads are within copy_process(), then this check 1976 * triggers too late. This doesn't hurt, the check is only there 1977 * to stop root fork bombs. 1978 */ 1979 retval = -EAGAIN; 1980 if (nr_threads >= max_threads) 1981 goto bad_fork_cleanup_count; 1982 1983 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1984 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1985 p->flags |= PF_FORKNOEXEC; 1986 INIT_LIST_HEAD(&p->children); 1987 INIT_LIST_HEAD(&p->sibling); 1988 rcu_copy_process(p); 1989 p->vfork_done = NULL; 1990 spin_lock_init(&p->alloc_lock); 1991 1992 init_sigpending(&p->pending); 1993 1994 p->utime = p->stime = p->gtime = 0; 1995 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1996 p->utimescaled = p->stimescaled = 0; 1997 #endif 1998 prev_cputime_init(&p->prev_cputime); 1999 2000 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2001 seqcount_init(&p->vtime.seqcount); 2002 p->vtime.starttime = 0; 2003 p->vtime.state = VTIME_INACTIVE; 2004 #endif 2005 2006 #if defined(SPLIT_RSS_COUNTING) 2007 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2008 #endif 2009 2010 p->default_timer_slack_ns = current->timer_slack_ns; 2011 2012 #ifdef CONFIG_PSI 2013 p->psi_flags = 0; 2014 #endif 2015 2016 task_io_accounting_init(&p->ioac); 2017 acct_clear_integrals(p); 2018 2019 posix_cputimers_init(&p->posix_cputimers); 2020 2021 p->io_context = NULL; 2022 audit_set_context(p, NULL); 2023 cgroup_fork(p); 2024 #ifdef CONFIG_NUMA 2025 p->mempolicy = mpol_dup(p->mempolicy); 2026 if (IS_ERR(p->mempolicy)) { 2027 retval = PTR_ERR(p->mempolicy); 2028 p->mempolicy = NULL; 2029 goto bad_fork_cleanup_threadgroup_lock; 2030 } 2031 #endif 2032 #ifdef CONFIG_CPUSETS 2033 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2034 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2035 seqcount_init(&p->mems_allowed_seq); 2036 #endif 2037 #ifdef CONFIG_TRACE_IRQFLAGS 2038 p->irq_events = 0; 2039 p->hardirqs_enabled = 0; 2040 p->hardirq_enable_ip = 0; 2041 p->hardirq_enable_event = 0; 2042 p->hardirq_disable_ip = _THIS_IP_; 2043 p->hardirq_disable_event = 0; 2044 p->softirqs_enabled = 1; 2045 p->softirq_enable_ip = _THIS_IP_; 2046 p->softirq_enable_event = 0; 2047 p->softirq_disable_ip = 0; 2048 p->softirq_disable_event = 0; 2049 p->hardirq_context = 0; 2050 p->softirq_context = 0; 2051 #endif 2052 2053 p->pagefault_disabled = 0; 2054 2055 #ifdef CONFIG_LOCKDEP 2056 lockdep_init_task(p); 2057 #endif 2058 2059 #ifdef CONFIG_DEBUG_MUTEXES 2060 p->blocked_on = NULL; /* not blocked yet */ 2061 #endif 2062 #ifdef CONFIG_BCACHE 2063 p->sequential_io = 0; 2064 p->sequential_io_avg = 0; 2065 #endif 2066 2067 /* Perform scheduler related setup. Assign this task to a CPU. */ 2068 retval = sched_fork(clone_flags, p); 2069 if (retval) 2070 goto bad_fork_cleanup_policy; 2071 2072 retval = perf_event_init_task(p); 2073 if (retval) 2074 goto bad_fork_cleanup_policy; 2075 retval = audit_alloc(p); 2076 if (retval) 2077 goto bad_fork_cleanup_perf; 2078 /* copy all the process information */ 2079 shm_init_task(p); 2080 retval = security_task_alloc(p, clone_flags); 2081 if (retval) 2082 goto bad_fork_cleanup_audit; 2083 retval = copy_semundo(clone_flags, p); 2084 if (retval) 2085 goto bad_fork_cleanup_security; 2086 retval = copy_files(clone_flags, p); 2087 if (retval) 2088 goto bad_fork_cleanup_semundo; 2089 retval = copy_fs(clone_flags, p); 2090 if (retval) 2091 goto bad_fork_cleanup_files; 2092 retval = copy_sighand(clone_flags, p); 2093 if (retval) 2094 goto bad_fork_cleanup_fs; 2095 retval = copy_signal(clone_flags, p); 2096 if (retval) 2097 goto bad_fork_cleanup_sighand; 2098 retval = copy_mm(clone_flags, p); 2099 if (retval) 2100 goto bad_fork_cleanup_signal; 2101 retval = copy_namespaces(clone_flags, p); 2102 if (retval) 2103 goto bad_fork_cleanup_mm; 2104 retval = copy_io(clone_flags, p); 2105 if (retval) 2106 goto bad_fork_cleanup_namespaces; 2107 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p, 2108 args->tls); 2109 if (retval) 2110 goto bad_fork_cleanup_io; 2111 2112 stackleak_task_init(p); 2113 2114 if (pid != &init_struct_pid) { 2115 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2116 args->set_tid_size); 2117 if (IS_ERR(pid)) { 2118 retval = PTR_ERR(pid); 2119 goto bad_fork_cleanup_thread; 2120 } 2121 } 2122 2123 /* 2124 * This has to happen after we've potentially unshared the file 2125 * descriptor table (so that the pidfd doesn't leak into the child 2126 * if the fd table isn't shared). 2127 */ 2128 if (clone_flags & CLONE_PIDFD) { 2129 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2130 if (retval < 0) 2131 goto bad_fork_free_pid; 2132 2133 pidfd = retval; 2134 2135 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2136 O_RDWR | O_CLOEXEC); 2137 if (IS_ERR(pidfile)) { 2138 put_unused_fd(pidfd); 2139 retval = PTR_ERR(pidfile); 2140 goto bad_fork_free_pid; 2141 } 2142 get_pid(pid); /* held by pidfile now */ 2143 2144 retval = put_user(pidfd, args->pidfd); 2145 if (retval) 2146 goto bad_fork_put_pidfd; 2147 } 2148 2149 #ifdef CONFIG_BLOCK 2150 p->plug = NULL; 2151 #endif 2152 futex_init_task(p); 2153 2154 /* 2155 * sigaltstack should be cleared when sharing the same VM 2156 */ 2157 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2158 sas_ss_reset(p); 2159 2160 /* 2161 * Syscall tracing and stepping should be turned off in the 2162 * child regardless of CLONE_PTRACE. 2163 */ 2164 user_disable_single_step(p); 2165 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2166 #ifdef TIF_SYSCALL_EMU 2167 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2168 #endif 2169 clear_tsk_latency_tracing(p); 2170 2171 /* ok, now we should be set up.. */ 2172 p->pid = pid_nr(pid); 2173 if (clone_flags & CLONE_THREAD) { 2174 p->exit_signal = -1; 2175 p->group_leader = current->group_leader; 2176 p->tgid = current->tgid; 2177 } else { 2178 if (clone_flags & CLONE_PARENT) 2179 p->exit_signal = current->group_leader->exit_signal; 2180 else 2181 p->exit_signal = args->exit_signal; 2182 p->group_leader = p; 2183 p->tgid = p->pid; 2184 } 2185 2186 p->nr_dirtied = 0; 2187 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2188 p->dirty_paused_when = 0; 2189 2190 p->pdeath_signal = 0; 2191 INIT_LIST_HEAD(&p->thread_group); 2192 p->task_works = NULL; 2193 2194 /* 2195 * Ensure that the cgroup subsystem policies allow the new process to be 2196 * forked. It should be noted the the new process's css_set can be changed 2197 * between here and cgroup_post_fork() if an organisation operation is in 2198 * progress. 2199 */ 2200 retval = cgroup_can_fork(p, args); 2201 if (retval) 2202 goto bad_fork_put_pidfd; 2203 2204 /* 2205 * From this point on we must avoid any synchronous user-space 2206 * communication until we take the tasklist-lock. In particular, we do 2207 * not want user-space to be able to predict the process start-time by 2208 * stalling fork(2) after we recorded the start_time but before it is 2209 * visible to the system. 2210 */ 2211 2212 p->start_time = ktime_get_ns(); 2213 p->start_boottime = ktime_get_boottime_ns(); 2214 2215 /* 2216 * Make it visible to the rest of the system, but dont wake it up yet. 2217 * Need tasklist lock for parent etc handling! 2218 */ 2219 write_lock_irq(&tasklist_lock); 2220 2221 /* CLONE_PARENT re-uses the old parent */ 2222 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2223 p->real_parent = current->real_parent; 2224 p->parent_exec_id = current->parent_exec_id; 2225 } else { 2226 p->real_parent = current; 2227 p->parent_exec_id = current->self_exec_id; 2228 } 2229 2230 klp_copy_process(p); 2231 2232 spin_lock(¤t->sighand->siglock); 2233 2234 /* 2235 * Copy seccomp details explicitly here, in case they were changed 2236 * before holding sighand lock. 2237 */ 2238 copy_seccomp(p); 2239 2240 rseq_fork(p, clone_flags); 2241 2242 /* Don't start children in a dying pid namespace */ 2243 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2244 retval = -ENOMEM; 2245 goto bad_fork_cancel_cgroup; 2246 } 2247 2248 /* Let kill terminate clone/fork in the middle */ 2249 if (fatal_signal_pending(current)) { 2250 retval = -EINTR; 2251 goto bad_fork_cancel_cgroup; 2252 } 2253 2254 /* past the last point of failure */ 2255 if (pidfile) 2256 fd_install(pidfd, pidfile); 2257 2258 init_task_pid_links(p); 2259 if (likely(p->pid)) { 2260 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2261 2262 init_task_pid(p, PIDTYPE_PID, pid); 2263 if (thread_group_leader(p)) { 2264 init_task_pid(p, PIDTYPE_TGID, pid); 2265 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2266 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2267 2268 if (is_child_reaper(pid)) { 2269 ns_of_pid(pid)->child_reaper = p; 2270 p->signal->flags |= SIGNAL_UNKILLABLE; 2271 } 2272 p->signal->shared_pending.signal = delayed.signal; 2273 p->signal->tty = tty_kref_get(current->signal->tty); 2274 /* 2275 * Inherit has_child_subreaper flag under the same 2276 * tasklist_lock with adding child to the process tree 2277 * for propagate_has_child_subreaper optimization. 2278 */ 2279 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2280 p->real_parent->signal->is_child_subreaper; 2281 list_add_tail(&p->sibling, &p->real_parent->children); 2282 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2283 attach_pid(p, PIDTYPE_TGID); 2284 attach_pid(p, PIDTYPE_PGID); 2285 attach_pid(p, PIDTYPE_SID); 2286 __this_cpu_inc(process_counts); 2287 } else { 2288 current->signal->nr_threads++; 2289 atomic_inc(¤t->signal->live); 2290 refcount_inc(¤t->signal->sigcnt); 2291 task_join_group_stop(p); 2292 list_add_tail_rcu(&p->thread_group, 2293 &p->group_leader->thread_group); 2294 list_add_tail_rcu(&p->thread_node, 2295 &p->signal->thread_head); 2296 } 2297 attach_pid(p, PIDTYPE_PID); 2298 nr_threads++; 2299 } 2300 total_forks++; 2301 hlist_del_init(&delayed.node); 2302 spin_unlock(¤t->sighand->siglock); 2303 syscall_tracepoint_update(p); 2304 write_unlock_irq(&tasklist_lock); 2305 2306 proc_fork_connector(p); 2307 cgroup_post_fork(p, args); 2308 perf_event_fork(p); 2309 2310 trace_task_newtask(p, clone_flags); 2311 uprobe_copy_process(p, clone_flags); 2312 2313 return p; 2314 2315 bad_fork_cancel_cgroup: 2316 spin_unlock(¤t->sighand->siglock); 2317 write_unlock_irq(&tasklist_lock); 2318 cgroup_cancel_fork(p, args); 2319 bad_fork_put_pidfd: 2320 if (clone_flags & CLONE_PIDFD) { 2321 fput(pidfile); 2322 put_unused_fd(pidfd); 2323 } 2324 bad_fork_free_pid: 2325 if (pid != &init_struct_pid) 2326 free_pid(pid); 2327 bad_fork_cleanup_thread: 2328 exit_thread(p); 2329 bad_fork_cleanup_io: 2330 if (p->io_context) 2331 exit_io_context(p); 2332 bad_fork_cleanup_namespaces: 2333 exit_task_namespaces(p); 2334 bad_fork_cleanup_mm: 2335 if (p->mm) { 2336 mm_clear_owner(p->mm, p); 2337 mmput(p->mm); 2338 } 2339 bad_fork_cleanup_signal: 2340 if (!(clone_flags & CLONE_THREAD)) 2341 free_signal_struct(p->signal); 2342 bad_fork_cleanup_sighand: 2343 __cleanup_sighand(p->sighand); 2344 bad_fork_cleanup_fs: 2345 exit_fs(p); /* blocking */ 2346 bad_fork_cleanup_files: 2347 exit_files(p); /* blocking */ 2348 bad_fork_cleanup_semundo: 2349 exit_sem(p); 2350 bad_fork_cleanup_security: 2351 security_task_free(p); 2352 bad_fork_cleanup_audit: 2353 audit_free(p); 2354 bad_fork_cleanup_perf: 2355 perf_event_free_task(p); 2356 bad_fork_cleanup_policy: 2357 lockdep_free_task(p); 2358 #ifdef CONFIG_NUMA 2359 mpol_put(p->mempolicy); 2360 bad_fork_cleanup_threadgroup_lock: 2361 #endif 2362 delayacct_tsk_free(p); 2363 bad_fork_cleanup_count: 2364 atomic_dec(&p->cred->user->processes); 2365 exit_creds(p); 2366 bad_fork_free: 2367 p->state = TASK_DEAD; 2368 put_task_stack(p); 2369 delayed_free_task(p); 2370 fork_out: 2371 spin_lock_irq(¤t->sighand->siglock); 2372 hlist_del_init(&delayed.node); 2373 spin_unlock_irq(¤t->sighand->siglock); 2374 return ERR_PTR(retval); 2375 } 2376 2377 static inline void init_idle_pids(struct task_struct *idle) 2378 { 2379 enum pid_type type; 2380 2381 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2382 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2383 init_task_pid(idle, type, &init_struct_pid); 2384 } 2385 } 2386 2387 struct task_struct *fork_idle(int cpu) 2388 { 2389 struct task_struct *task; 2390 struct kernel_clone_args args = { 2391 .flags = CLONE_VM, 2392 }; 2393 2394 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2395 if (!IS_ERR(task)) { 2396 init_idle_pids(task); 2397 init_idle(task, cpu); 2398 } 2399 2400 return task; 2401 } 2402 2403 struct mm_struct *copy_init_mm(void) 2404 { 2405 return dup_mm(NULL, &init_mm); 2406 } 2407 2408 /* 2409 * Ok, this is the main fork-routine. 2410 * 2411 * It copies the process, and if successful kick-starts 2412 * it and waits for it to finish using the VM if required. 2413 * 2414 * args->exit_signal is expected to be checked for sanity by the caller. 2415 */ 2416 long _do_fork(struct kernel_clone_args *args) 2417 { 2418 u64 clone_flags = args->flags; 2419 struct completion vfork; 2420 struct pid *pid; 2421 struct task_struct *p; 2422 int trace = 0; 2423 long nr; 2424 2425 /* 2426 * Determine whether and which event to report to ptracer. When 2427 * called from kernel_thread or CLONE_UNTRACED is explicitly 2428 * requested, no event is reported; otherwise, report if the event 2429 * for the type of forking is enabled. 2430 */ 2431 if (!(clone_flags & CLONE_UNTRACED)) { 2432 if (clone_flags & CLONE_VFORK) 2433 trace = PTRACE_EVENT_VFORK; 2434 else if (args->exit_signal != SIGCHLD) 2435 trace = PTRACE_EVENT_CLONE; 2436 else 2437 trace = PTRACE_EVENT_FORK; 2438 2439 if (likely(!ptrace_event_enabled(current, trace))) 2440 trace = 0; 2441 } 2442 2443 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2444 add_latent_entropy(); 2445 2446 if (IS_ERR(p)) 2447 return PTR_ERR(p); 2448 2449 /* 2450 * Do this prior waking up the new thread - the thread pointer 2451 * might get invalid after that point, if the thread exits quickly. 2452 */ 2453 trace_sched_process_fork(current, p); 2454 2455 pid = get_task_pid(p, PIDTYPE_PID); 2456 nr = pid_vnr(pid); 2457 2458 if (clone_flags & CLONE_PARENT_SETTID) 2459 put_user(nr, args->parent_tid); 2460 2461 if (clone_flags & CLONE_VFORK) { 2462 p->vfork_done = &vfork; 2463 init_completion(&vfork); 2464 get_task_struct(p); 2465 } 2466 2467 wake_up_new_task(p); 2468 2469 /* forking complete and child started to run, tell ptracer */ 2470 if (unlikely(trace)) 2471 ptrace_event_pid(trace, pid); 2472 2473 if (clone_flags & CLONE_VFORK) { 2474 if (!wait_for_vfork_done(p, &vfork)) 2475 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2476 } 2477 2478 put_pid(pid); 2479 return nr; 2480 } 2481 2482 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs) 2483 { 2484 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */ 2485 if ((kargs->flags & CLONE_PIDFD) && 2486 (kargs->flags & CLONE_PARENT_SETTID)) 2487 return false; 2488 2489 return true; 2490 } 2491 2492 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2493 /* For compatibility with architectures that call do_fork directly rather than 2494 * using the syscall entry points below. */ 2495 long do_fork(unsigned long clone_flags, 2496 unsigned long stack_start, 2497 unsigned long stack_size, 2498 int __user *parent_tidptr, 2499 int __user *child_tidptr) 2500 { 2501 struct kernel_clone_args args = { 2502 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2503 .pidfd = parent_tidptr, 2504 .child_tid = child_tidptr, 2505 .parent_tid = parent_tidptr, 2506 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2507 .stack = stack_start, 2508 .stack_size = stack_size, 2509 }; 2510 2511 if (!legacy_clone_args_valid(&args)) 2512 return -EINVAL; 2513 2514 return _do_fork(&args); 2515 } 2516 #endif 2517 2518 /* 2519 * Create a kernel thread. 2520 */ 2521 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2522 { 2523 struct kernel_clone_args args = { 2524 .flags = ((lower_32_bits(flags) | CLONE_VM | 2525 CLONE_UNTRACED) & ~CSIGNAL), 2526 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2527 .stack = (unsigned long)fn, 2528 .stack_size = (unsigned long)arg, 2529 }; 2530 2531 return _do_fork(&args); 2532 } 2533 2534 #ifdef __ARCH_WANT_SYS_FORK 2535 SYSCALL_DEFINE0(fork) 2536 { 2537 #ifdef CONFIG_MMU 2538 struct kernel_clone_args args = { 2539 .exit_signal = SIGCHLD, 2540 }; 2541 2542 return _do_fork(&args); 2543 #else 2544 /* can not support in nommu mode */ 2545 return -EINVAL; 2546 #endif 2547 } 2548 #endif 2549 2550 #ifdef __ARCH_WANT_SYS_VFORK 2551 SYSCALL_DEFINE0(vfork) 2552 { 2553 struct kernel_clone_args args = { 2554 .flags = CLONE_VFORK | CLONE_VM, 2555 .exit_signal = SIGCHLD, 2556 }; 2557 2558 return _do_fork(&args); 2559 } 2560 #endif 2561 2562 #ifdef __ARCH_WANT_SYS_CLONE 2563 #ifdef CONFIG_CLONE_BACKWARDS 2564 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2565 int __user *, parent_tidptr, 2566 unsigned long, tls, 2567 int __user *, child_tidptr) 2568 #elif defined(CONFIG_CLONE_BACKWARDS2) 2569 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2570 int __user *, parent_tidptr, 2571 int __user *, child_tidptr, 2572 unsigned long, tls) 2573 #elif defined(CONFIG_CLONE_BACKWARDS3) 2574 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2575 int, stack_size, 2576 int __user *, parent_tidptr, 2577 int __user *, child_tidptr, 2578 unsigned long, tls) 2579 #else 2580 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2581 int __user *, parent_tidptr, 2582 int __user *, child_tidptr, 2583 unsigned long, tls) 2584 #endif 2585 { 2586 struct kernel_clone_args args = { 2587 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2588 .pidfd = parent_tidptr, 2589 .child_tid = child_tidptr, 2590 .parent_tid = parent_tidptr, 2591 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2592 .stack = newsp, 2593 .tls = tls, 2594 }; 2595 2596 if (!legacy_clone_args_valid(&args)) 2597 return -EINVAL; 2598 2599 return _do_fork(&args); 2600 } 2601 #endif 2602 2603 #ifdef __ARCH_WANT_SYS_CLONE3 2604 2605 /* 2606 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from 2607 * the registers containing the syscall arguments for clone. This doesn't work 2608 * with clone3 since the TLS value is passed in clone_args instead. 2609 */ 2610 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2611 #error clone3 requires copy_thread_tls support in arch 2612 #endif 2613 2614 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2615 struct clone_args __user *uargs, 2616 size_t usize) 2617 { 2618 int err; 2619 struct clone_args args; 2620 pid_t *kset_tid = kargs->set_tid; 2621 2622 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2623 CLONE_ARGS_SIZE_VER0); 2624 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2625 CLONE_ARGS_SIZE_VER1); 2626 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2627 CLONE_ARGS_SIZE_VER2); 2628 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2629 2630 if (unlikely(usize > PAGE_SIZE)) 2631 return -E2BIG; 2632 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2633 return -EINVAL; 2634 2635 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2636 if (err) 2637 return err; 2638 2639 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2640 return -EINVAL; 2641 2642 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2643 return -EINVAL; 2644 2645 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2646 return -EINVAL; 2647 2648 /* 2649 * Verify that higher 32bits of exit_signal are unset and that 2650 * it is a valid signal 2651 */ 2652 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2653 !valid_signal(args.exit_signal))) 2654 return -EINVAL; 2655 2656 if ((args.flags & CLONE_INTO_CGROUP) && 2657 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2658 return -EINVAL; 2659 2660 *kargs = (struct kernel_clone_args){ 2661 .flags = args.flags, 2662 .pidfd = u64_to_user_ptr(args.pidfd), 2663 .child_tid = u64_to_user_ptr(args.child_tid), 2664 .parent_tid = u64_to_user_ptr(args.parent_tid), 2665 .exit_signal = args.exit_signal, 2666 .stack = args.stack, 2667 .stack_size = args.stack_size, 2668 .tls = args.tls, 2669 .set_tid_size = args.set_tid_size, 2670 .cgroup = args.cgroup, 2671 }; 2672 2673 if (args.set_tid && 2674 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2675 (kargs->set_tid_size * sizeof(pid_t)))) 2676 return -EFAULT; 2677 2678 kargs->set_tid = kset_tid; 2679 2680 return 0; 2681 } 2682 2683 /** 2684 * clone3_stack_valid - check and prepare stack 2685 * @kargs: kernel clone args 2686 * 2687 * Verify that the stack arguments userspace gave us are sane. 2688 * In addition, set the stack direction for userspace since it's easy for us to 2689 * determine. 2690 */ 2691 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2692 { 2693 if (kargs->stack == 0) { 2694 if (kargs->stack_size > 0) 2695 return false; 2696 } else { 2697 if (kargs->stack_size == 0) 2698 return false; 2699 2700 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2701 return false; 2702 2703 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2704 kargs->stack += kargs->stack_size; 2705 #endif 2706 } 2707 2708 return true; 2709 } 2710 2711 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2712 { 2713 /* Verify that no unknown flags are passed along. */ 2714 if (kargs->flags & 2715 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2716 return false; 2717 2718 /* 2719 * - make the CLONE_DETACHED bit reuseable for clone3 2720 * - make the CSIGNAL bits reuseable for clone3 2721 */ 2722 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2723 return false; 2724 2725 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2726 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2727 return false; 2728 2729 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2730 kargs->exit_signal) 2731 return false; 2732 2733 if (!clone3_stack_valid(kargs)) 2734 return false; 2735 2736 return true; 2737 } 2738 2739 /** 2740 * clone3 - create a new process with specific properties 2741 * @uargs: argument structure 2742 * @size: size of @uargs 2743 * 2744 * clone3() is the extensible successor to clone()/clone2(). 2745 * It takes a struct as argument that is versioned by its size. 2746 * 2747 * Return: On success, a positive PID for the child process. 2748 * On error, a negative errno number. 2749 */ 2750 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2751 { 2752 int err; 2753 2754 struct kernel_clone_args kargs; 2755 pid_t set_tid[MAX_PID_NS_LEVEL]; 2756 2757 kargs.set_tid = set_tid; 2758 2759 err = copy_clone_args_from_user(&kargs, uargs, size); 2760 if (err) 2761 return err; 2762 2763 if (!clone3_args_valid(&kargs)) 2764 return -EINVAL; 2765 2766 return _do_fork(&kargs); 2767 } 2768 #endif 2769 2770 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2771 { 2772 struct task_struct *leader, *parent, *child; 2773 int res; 2774 2775 read_lock(&tasklist_lock); 2776 leader = top = top->group_leader; 2777 down: 2778 for_each_thread(leader, parent) { 2779 list_for_each_entry(child, &parent->children, sibling) { 2780 res = visitor(child, data); 2781 if (res) { 2782 if (res < 0) 2783 goto out; 2784 leader = child; 2785 goto down; 2786 } 2787 up: 2788 ; 2789 } 2790 } 2791 2792 if (leader != top) { 2793 child = leader; 2794 parent = child->real_parent; 2795 leader = parent->group_leader; 2796 goto up; 2797 } 2798 out: 2799 read_unlock(&tasklist_lock); 2800 } 2801 2802 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2803 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2804 #endif 2805 2806 static void sighand_ctor(void *data) 2807 { 2808 struct sighand_struct *sighand = data; 2809 2810 spin_lock_init(&sighand->siglock); 2811 init_waitqueue_head(&sighand->signalfd_wqh); 2812 } 2813 2814 void __init proc_caches_init(void) 2815 { 2816 unsigned int mm_size; 2817 2818 sighand_cachep = kmem_cache_create("sighand_cache", 2819 sizeof(struct sighand_struct), 0, 2820 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2821 SLAB_ACCOUNT, sighand_ctor); 2822 signal_cachep = kmem_cache_create("signal_cache", 2823 sizeof(struct signal_struct), 0, 2824 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2825 NULL); 2826 files_cachep = kmem_cache_create("files_cache", 2827 sizeof(struct files_struct), 0, 2828 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2829 NULL); 2830 fs_cachep = kmem_cache_create("fs_cache", 2831 sizeof(struct fs_struct), 0, 2832 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2833 NULL); 2834 2835 /* 2836 * The mm_cpumask is located at the end of mm_struct, and is 2837 * dynamically sized based on the maximum CPU number this system 2838 * can have, taking hotplug into account (nr_cpu_ids). 2839 */ 2840 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2841 2842 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2843 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2844 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2845 offsetof(struct mm_struct, saved_auxv), 2846 sizeof_field(struct mm_struct, saved_auxv), 2847 NULL); 2848 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2849 mmap_init(); 2850 nsproxy_cache_init(); 2851 } 2852 2853 /* 2854 * Check constraints on flags passed to the unshare system call. 2855 */ 2856 static int check_unshare_flags(unsigned long unshare_flags) 2857 { 2858 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2859 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2860 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2861 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2862 CLONE_NEWTIME)) 2863 return -EINVAL; 2864 /* 2865 * Not implemented, but pretend it works if there is nothing 2866 * to unshare. Note that unsharing the address space or the 2867 * signal handlers also need to unshare the signal queues (aka 2868 * CLONE_THREAD). 2869 */ 2870 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2871 if (!thread_group_empty(current)) 2872 return -EINVAL; 2873 } 2874 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2875 if (refcount_read(¤t->sighand->count) > 1) 2876 return -EINVAL; 2877 } 2878 if (unshare_flags & CLONE_VM) { 2879 if (!current_is_single_threaded()) 2880 return -EINVAL; 2881 } 2882 2883 return 0; 2884 } 2885 2886 /* 2887 * Unshare the filesystem structure if it is being shared 2888 */ 2889 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2890 { 2891 struct fs_struct *fs = current->fs; 2892 2893 if (!(unshare_flags & CLONE_FS) || !fs) 2894 return 0; 2895 2896 /* don't need lock here; in the worst case we'll do useless copy */ 2897 if (fs->users == 1) 2898 return 0; 2899 2900 *new_fsp = copy_fs_struct(fs); 2901 if (!*new_fsp) 2902 return -ENOMEM; 2903 2904 return 0; 2905 } 2906 2907 /* 2908 * Unshare file descriptor table if it is being shared 2909 */ 2910 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2911 { 2912 struct files_struct *fd = current->files; 2913 int error = 0; 2914 2915 if ((unshare_flags & CLONE_FILES) && 2916 (fd && atomic_read(&fd->count) > 1)) { 2917 *new_fdp = dup_fd(fd, &error); 2918 if (!*new_fdp) 2919 return error; 2920 } 2921 2922 return 0; 2923 } 2924 2925 /* 2926 * unshare allows a process to 'unshare' part of the process 2927 * context which was originally shared using clone. copy_* 2928 * functions used by do_fork() cannot be used here directly 2929 * because they modify an inactive task_struct that is being 2930 * constructed. Here we are modifying the current, active, 2931 * task_struct. 2932 */ 2933 int ksys_unshare(unsigned long unshare_flags) 2934 { 2935 struct fs_struct *fs, *new_fs = NULL; 2936 struct files_struct *fd, *new_fd = NULL; 2937 struct cred *new_cred = NULL; 2938 struct nsproxy *new_nsproxy = NULL; 2939 int do_sysvsem = 0; 2940 int err; 2941 2942 /* 2943 * If unsharing a user namespace must also unshare the thread group 2944 * and unshare the filesystem root and working directories. 2945 */ 2946 if (unshare_flags & CLONE_NEWUSER) 2947 unshare_flags |= CLONE_THREAD | CLONE_FS; 2948 /* 2949 * If unsharing vm, must also unshare signal handlers. 2950 */ 2951 if (unshare_flags & CLONE_VM) 2952 unshare_flags |= CLONE_SIGHAND; 2953 /* 2954 * If unsharing a signal handlers, must also unshare the signal queues. 2955 */ 2956 if (unshare_flags & CLONE_SIGHAND) 2957 unshare_flags |= CLONE_THREAD; 2958 /* 2959 * If unsharing namespace, must also unshare filesystem information. 2960 */ 2961 if (unshare_flags & CLONE_NEWNS) 2962 unshare_flags |= CLONE_FS; 2963 2964 err = check_unshare_flags(unshare_flags); 2965 if (err) 2966 goto bad_unshare_out; 2967 /* 2968 * CLONE_NEWIPC must also detach from the undolist: after switching 2969 * to a new ipc namespace, the semaphore arrays from the old 2970 * namespace are unreachable. 2971 */ 2972 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2973 do_sysvsem = 1; 2974 err = unshare_fs(unshare_flags, &new_fs); 2975 if (err) 2976 goto bad_unshare_out; 2977 err = unshare_fd(unshare_flags, &new_fd); 2978 if (err) 2979 goto bad_unshare_cleanup_fs; 2980 err = unshare_userns(unshare_flags, &new_cred); 2981 if (err) 2982 goto bad_unshare_cleanup_fd; 2983 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2984 new_cred, new_fs); 2985 if (err) 2986 goto bad_unshare_cleanup_cred; 2987 2988 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2989 if (do_sysvsem) { 2990 /* 2991 * CLONE_SYSVSEM is equivalent to sys_exit(). 2992 */ 2993 exit_sem(current); 2994 } 2995 if (unshare_flags & CLONE_NEWIPC) { 2996 /* Orphan segments in old ns (see sem above). */ 2997 exit_shm(current); 2998 shm_init_task(current); 2999 } 3000 3001 if (new_nsproxy) 3002 switch_task_namespaces(current, new_nsproxy); 3003 3004 task_lock(current); 3005 3006 if (new_fs) { 3007 fs = current->fs; 3008 spin_lock(&fs->lock); 3009 current->fs = new_fs; 3010 if (--fs->users) 3011 new_fs = NULL; 3012 else 3013 new_fs = fs; 3014 spin_unlock(&fs->lock); 3015 } 3016 3017 if (new_fd) { 3018 fd = current->files; 3019 current->files = new_fd; 3020 new_fd = fd; 3021 } 3022 3023 task_unlock(current); 3024 3025 if (new_cred) { 3026 /* Install the new user namespace */ 3027 commit_creds(new_cred); 3028 new_cred = NULL; 3029 } 3030 } 3031 3032 perf_event_namespaces(current); 3033 3034 bad_unshare_cleanup_cred: 3035 if (new_cred) 3036 put_cred(new_cred); 3037 bad_unshare_cleanup_fd: 3038 if (new_fd) 3039 put_files_struct(new_fd); 3040 3041 bad_unshare_cleanup_fs: 3042 if (new_fs) 3043 free_fs_struct(new_fs); 3044 3045 bad_unshare_out: 3046 return err; 3047 } 3048 3049 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3050 { 3051 return ksys_unshare(unshare_flags); 3052 } 3053 3054 /* 3055 * Helper to unshare the files of the current task. 3056 * We don't want to expose copy_files internals to 3057 * the exec layer of the kernel. 3058 */ 3059 3060 int unshare_files(struct files_struct **displaced) 3061 { 3062 struct task_struct *task = current; 3063 struct files_struct *copy = NULL; 3064 int error; 3065 3066 error = unshare_fd(CLONE_FILES, ©); 3067 if (error || !copy) { 3068 *displaced = NULL; 3069 return error; 3070 } 3071 *displaced = task->files; 3072 task_lock(task); 3073 task->files = copy; 3074 task_unlock(task); 3075 return 0; 3076 } 3077 3078 int sysctl_max_threads(struct ctl_table *table, int write, 3079 void __user *buffer, size_t *lenp, loff_t *ppos) 3080 { 3081 struct ctl_table t; 3082 int ret; 3083 int threads = max_threads; 3084 int min = 1; 3085 int max = MAX_THREADS; 3086 3087 t = *table; 3088 t.data = &threads; 3089 t.extra1 = &min; 3090 t.extra2 = &max; 3091 3092 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3093 if (ret || !write) 3094 return ret; 3095 3096 max_threads = threads; 3097 3098 return 0; 3099 } 3100