xref: /openbmc/linux/kernel/fork.c (revision 9fa48a24)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 struct vm_stack {
197 	struct rcu_head rcu;
198 	struct vm_struct *stack_vm_area;
199 };
200 
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < NR_CACHED_STACKS; i++) {
206 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 			continue;
208 		return true;
209 	}
210 	return false;
211 }
212 
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216 
217 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 		return;
219 
220 	vfree(vm_stack);
221 }
222 
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225 	struct vm_stack *vm_stack = tsk->stack;
226 
227 	vm_stack->stack_vm_area = tsk->stack_vm_area;
228 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230 
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 	int i;
235 
236 	for (i = 0; i < NR_CACHED_STACKS; i++) {
237 		struct vm_struct *vm_stack = cached_vm_stacks[i];
238 
239 		if (!vm_stack)
240 			continue;
241 
242 		vfree(vm_stack->addr);
243 		cached_vm_stacks[i] = NULL;
244 	}
245 
246 	return 0;
247 }
248 
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251 	int i;
252 	int ret;
253 
254 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256 
257 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 		if (ret)
260 			goto err;
261 	}
262 	return 0;
263 err:
264 	/*
265 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 	 * ignore this page.
268 	 */
269 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 		memcg_kmem_uncharge_page(vm->pages[i], 0);
271 	return ret;
272 }
273 
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276 	struct vm_struct *vm;
277 	void *stack;
278 	int i;
279 
280 	for (i = 0; i < NR_CACHED_STACKS; i++) {
281 		struct vm_struct *s;
282 
283 		s = this_cpu_xchg(cached_stacks[i], NULL);
284 
285 		if (!s)
286 			continue;
287 
288 		/* Reset stack metadata. */
289 		kasan_unpoison_range(s->addr, THREAD_SIZE);
290 
291 		stack = kasan_reset_tag(s->addr);
292 
293 		/* Clear stale pointers from reused stack. */
294 		memset(stack, 0, THREAD_SIZE);
295 
296 		if (memcg_charge_kernel_stack(s)) {
297 			vfree(s->addr);
298 			return -ENOMEM;
299 		}
300 
301 		tsk->stack_vm_area = s;
302 		tsk->stack = stack;
303 		return 0;
304 	}
305 
306 	/*
307 	 * Allocated stacks are cached and later reused by new threads,
308 	 * so memcg accounting is performed manually on assigning/releasing
309 	 * stacks to tasks. Drop __GFP_ACCOUNT.
310 	 */
311 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312 				     VMALLOC_START, VMALLOC_END,
313 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
314 				     PAGE_KERNEL,
315 				     0, node, __builtin_return_address(0));
316 	if (!stack)
317 		return -ENOMEM;
318 
319 	vm = find_vm_area(stack);
320 	if (memcg_charge_kernel_stack(vm)) {
321 		vfree(stack);
322 		return -ENOMEM;
323 	}
324 	/*
325 	 * We can't call find_vm_area() in interrupt context, and
326 	 * free_thread_stack() can be called in interrupt context,
327 	 * so cache the vm_struct.
328 	 */
329 	tsk->stack_vm_area = vm;
330 	stack = kasan_reset_tag(stack);
331 	tsk->stack = stack;
332 	return 0;
333 }
334 
335 static void free_thread_stack(struct task_struct *tsk)
336 {
337 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 		thread_stack_delayed_free(tsk);
339 
340 	tsk->stack = NULL;
341 	tsk->stack_vm_area = NULL;
342 }
343 
344 #  else /* !CONFIG_VMAP_STACK */
345 
346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350 
351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353 	struct rcu_head *rh = tsk->stack;
354 
355 	call_rcu(rh, thread_stack_free_rcu);
356 }
357 
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 					     THREAD_SIZE_ORDER);
362 
363 	if (likely(page)) {
364 		tsk->stack = kasan_reset_tag(page_address(page));
365 		return 0;
366 	}
367 	return -ENOMEM;
368 }
369 
370 static void free_thread_stack(struct task_struct *tsk)
371 {
372 	thread_stack_delayed_free(tsk);
373 	tsk->stack = NULL;
374 }
375 
376 #  endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378 
379 static struct kmem_cache *thread_stack_cache;
380 
381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383 	kmem_cache_free(thread_stack_cache, rh);
384 }
385 
386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388 	struct rcu_head *rh = tsk->stack;
389 
390 	call_rcu(rh, thread_stack_free_rcu);
391 }
392 
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395 	unsigned long *stack;
396 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397 	stack = kasan_reset_tag(stack);
398 	tsk->stack = stack;
399 	return stack ? 0 : -ENOMEM;
400 }
401 
402 static void free_thread_stack(struct task_struct *tsk)
403 {
404 	thread_stack_delayed_free(tsk);
405 	tsk->stack = NULL;
406 }
407 
408 void thread_stack_cache_init(void)
409 {
410 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 					THREAD_SIZE, THREAD_SIZE, 0, 0,
412 					THREAD_SIZE, NULL);
413 	BUG_ON(thread_stack_cache == NULL);
414 }
415 
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418 
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421 	unsigned long *stack;
422 
423 	stack = arch_alloc_thread_stack_node(tsk, node);
424 	tsk->stack = stack;
425 	return stack ? 0 : -ENOMEM;
426 }
427 
428 static void free_thread_stack(struct task_struct *tsk)
429 {
430 	arch_free_thread_stack(tsk);
431 	tsk->stack = NULL;
432 }
433 
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435 
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438 
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441 
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444 
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447 
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450 
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453 
454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
455 {
456 	struct vm_area_struct *vma;
457 
458 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 	if (vma)
460 		vma_init(vma, mm);
461 	return vma;
462 }
463 
464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465 {
466 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467 
468 	if (new) {
469 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 		/*
472 		 * orig->shared.rb may be modified concurrently, but the clone
473 		 * will be reinitialized.
474 		 */
475 		data_race(memcpy(new, orig, sizeof(*new)));
476 		INIT_LIST_HEAD(&new->anon_vma_chain);
477 		dup_anon_vma_name(orig, new);
478 	}
479 	return new;
480 }
481 
482 void vm_area_free(struct vm_area_struct *vma)
483 {
484 	free_anon_vma_name(vma);
485 	kmem_cache_free(vm_area_cachep, vma);
486 }
487 
488 static void account_kernel_stack(struct task_struct *tsk, int account)
489 {
490 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 		struct vm_struct *vm = task_stack_vm_area(tsk);
492 		int i;
493 
494 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 					      account * (PAGE_SIZE / 1024));
497 	} else {
498 		void *stack = task_stack_page(tsk);
499 
500 		/* All stack pages are in the same node. */
501 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502 				      account * (THREAD_SIZE / 1024));
503 	}
504 }
505 
506 void exit_task_stack_account(struct task_struct *tsk)
507 {
508 	account_kernel_stack(tsk, -1);
509 
510 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 		struct vm_struct *vm;
512 		int i;
513 
514 		vm = task_stack_vm_area(tsk);
515 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 			memcg_kmem_uncharge_page(vm->pages[i], 0);
517 	}
518 }
519 
520 static void release_task_stack(struct task_struct *tsk)
521 {
522 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523 		return;  /* Better to leak the stack than to free prematurely */
524 
525 	free_thread_stack(tsk);
526 }
527 
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
529 void put_task_stack(struct task_struct *tsk)
530 {
531 	if (refcount_dec_and_test(&tsk->stack_refcount))
532 		release_task_stack(tsk);
533 }
534 #endif
535 
536 void free_task(struct task_struct *tsk)
537 {
538 #ifdef CONFIG_SECCOMP
539 	WARN_ON_ONCE(tsk->seccomp.filter);
540 #endif
541 	release_user_cpus_ptr(tsk);
542 	scs_release(tsk);
543 
544 #ifndef CONFIG_THREAD_INFO_IN_TASK
545 	/*
546 	 * The task is finally done with both the stack and thread_info,
547 	 * so free both.
548 	 */
549 	release_task_stack(tsk);
550 #else
551 	/*
552 	 * If the task had a separate stack allocation, it should be gone
553 	 * by now.
554 	 */
555 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
556 #endif
557 	rt_mutex_debug_task_free(tsk);
558 	ftrace_graph_exit_task(tsk);
559 	arch_release_task_struct(tsk);
560 	if (tsk->flags & PF_KTHREAD)
561 		free_kthread_struct(tsk);
562 	free_task_struct(tsk);
563 }
564 EXPORT_SYMBOL(free_task);
565 
566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567 {
568 	struct file *exe_file;
569 
570 	exe_file = get_mm_exe_file(oldmm);
571 	RCU_INIT_POINTER(mm->exe_file, exe_file);
572 	/*
573 	 * We depend on the oldmm having properly denied write access to the
574 	 * exe_file already.
575 	 */
576 	if (exe_file && deny_write_access(exe_file))
577 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
578 }
579 
580 #ifdef CONFIG_MMU
581 static __latent_entropy int dup_mmap(struct mm_struct *mm,
582 					struct mm_struct *oldmm)
583 {
584 	struct vm_area_struct *mpnt, *tmp;
585 	int retval;
586 	unsigned long charge = 0;
587 	LIST_HEAD(uf);
588 	VMA_ITERATOR(old_vmi, oldmm, 0);
589 	VMA_ITERATOR(vmi, mm, 0);
590 
591 	uprobe_start_dup_mmap();
592 	if (mmap_write_lock_killable(oldmm)) {
593 		retval = -EINTR;
594 		goto fail_uprobe_end;
595 	}
596 	flush_cache_dup_mm(oldmm);
597 	uprobe_dup_mmap(oldmm, mm);
598 	/*
599 	 * Not linked in yet - no deadlock potential:
600 	 */
601 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
602 
603 	/* No ordering required: file already has been exposed. */
604 	dup_mm_exe_file(mm, oldmm);
605 
606 	mm->total_vm = oldmm->total_vm;
607 	mm->data_vm = oldmm->data_vm;
608 	mm->exec_vm = oldmm->exec_vm;
609 	mm->stack_vm = oldmm->stack_vm;
610 
611 	retval = ksm_fork(mm, oldmm);
612 	if (retval)
613 		goto out;
614 	khugepaged_fork(mm, oldmm);
615 
616 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
617 	if (retval)
618 		goto out;
619 
620 	mt_clear_in_rcu(vmi.mas.tree);
621 	for_each_vma(old_vmi, mpnt) {
622 		struct file *file;
623 
624 		if (mpnt->vm_flags & VM_DONTCOPY) {
625 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
626 			continue;
627 		}
628 		charge = 0;
629 		/*
630 		 * Don't duplicate many vmas if we've been oom-killed (for
631 		 * example)
632 		 */
633 		if (fatal_signal_pending(current)) {
634 			retval = -EINTR;
635 			goto loop_out;
636 		}
637 		if (mpnt->vm_flags & VM_ACCOUNT) {
638 			unsigned long len = vma_pages(mpnt);
639 
640 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
641 				goto fail_nomem;
642 			charge = len;
643 		}
644 		tmp = vm_area_dup(mpnt);
645 		if (!tmp)
646 			goto fail_nomem;
647 		retval = vma_dup_policy(mpnt, tmp);
648 		if (retval)
649 			goto fail_nomem_policy;
650 		tmp->vm_mm = mm;
651 		retval = dup_userfaultfd(tmp, &uf);
652 		if (retval)
653 			goto fail_nomem_anon_vma_fork;
654 		if (tmp->vm_flags & VM_WIPEONFORK) {
655 			/*
656 			 * VM_WIPEONFORK gets a clean slate in the child.
657 			 * Don't prepare anon_vma until fault since we don't
658 			 * copy page for current vma.
659 			 */
660 			tmp->anon_vma = NULL;
661 		} else if (anon_vma_fork(tmp, mpnt))
662 			goto fail_nomem_anon_vma_fork;
663 		vm_flags_clear(tmp, VM_LOCKED_MASK);
664 		file = tmp->vm_file;
665 		if (file) {
666 			struct address_space *mapping = file->f_mapping;
667 
668 			get_file(file);
669 			i_mmap_lock_write(mapping);
670 			if (tmp->vm_flags & VM_SHARED)
671 				mapping_allow_writable(mapping);
672 			flush_dcache_mmap_lock(mapping);
673 			/* insert tmp into the share list, just after mpnt */
674 			vma_interval_tree_insert_after(tmp, mpnt,
675 					&mapping->i_mmap);
676 			flush_dcache_mmap_unlock(mapping);
677 			i_mmap_unlock_write(mapping);
678 		}
679 
680 		/*
681 		 * Copy/update hugetlb private vma information.
682 		 */
683 		if (is_vm_hugetlb_page(tmp))
684 			hugetlb_dup_vma_private(tmp);
685 
686 		/* Link the vma into the MT */
687 		if (vma_iter_bulk_store(&vmi, tmp))
688 			goto fail_nomem_vmi_store;
689 
690 		mm->map_count++;
691 		if (!(tmp->vm_flags & VM_WIPEONFORK))
692 			retval = copy_page_range(tmp, mpnt);
693 
694 		if (tmp->vm_ops && tmp->vm_ops->open)
695 			tmp->vm_ops->open(tmp);
696 
697 		if (retval)
698 			goto loop_out;
699 	}
700 	/* a new mm has just been created */
701 	retval = arch_dup_mmap(oldmm, mm);
702 loop_out:
703 	vma_iter_free(&vmi);
704 	if (!retval)
705 		mt_set_in_rcu(vmi.mas.tree);
706 out:
707 	mmap_write_unlock(mm);
708 	flush_tlb_mm(oldmm);
709 	mmap_write_unlock(oldmm);
710 	dup_userfaultfd_complete(&uf);
711 fail_uprobe_end:
712 	uprobe_end_dup_mmap();
713 	return retval;
714 
715 fail_nomem_vmi_store:
716 	unlink_anon_vmas(tmp);
717 fail_nomem_anon_vma_fork:
718 	mpol_put(vma_policy(tmp));
719 fail_nomem_policy:
720 	vm_area_free(tmp);
721 fail_nomem:
722 	retval = -ENOMEM;
723 	vm_unacct_memory(charge);
724 	goto loop_out;
725 }
726 
727 static inline int mm_alloc_pgd(struct mm_struct *mm)
728 {
729 	mm->pgd = pgd_alloc(mm);
730 	if (unlikely(!mm->pgd))
731 		return -ENOMEM;
732 	return 0;
733 }
734 
735 static inline void mm_free_pgd(struct mm_struct *mm)
736 {
737 	pgd_free(mm, mm->pgd);
738 }
739 #else
740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
741 {
742 	mmap_write_lock(oldmm);
743 	dup_mm_exe_file(mm, oldmm);
744 	mmap_write_unlock(oldmm);
745 	return 0;
746 }
747 #define mm_alloc_pgd(mm)	(0)
748 #define mm_free_pgd(mm)
749 #endif /* CONFIG_MMU */
750 
751 static void check_mm(struct mm_struct *mm)
752 {
753 	int i;
754 
755 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
756 			 "Please make sure 'struct resident_page_types[]' is updated as well");
757 
758 	for (i = 0; i < NR_MM_COUNTERS; i++) {
759 		long x = percpu_counter_sum(&mm->rss_stat[i]);
760 
761 		if (unlikely(x))
762 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
763 				 mm, resident_page_types[i], x);
764 	}
765 
766 	if (mm_pgtables_bytes(mm))
767 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
768 				mm_pgtables_bytes(mm));
769 
770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
771 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
772 #endif
773 }
774 
775 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
776 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
777 
778 /*
779  * Called when the last reference to the mm
780  * is dropped: either by a lazy thread or by
781  * mmput. Free the page directory and the mm.
782  */
783 void __mmdrop(struct mm_struct *mm)
784 {
785 	int i;
786 
787 	BUG_ON(mm == &init_mm);
788 	WARN_ON_ONCE(mm == current->mm);
789 	WARN_ON_ONCE(mm == current->active_mm);
790 	mm_free_pgd(mm);
791 	destroy_context(mm);
792 	mmu_notifier_subscriptions_destroy(mm);
793 	check_mm(mm);
794 	put_user_ns(mm->user_ns);
795 	mm_pasid_drop(mm);
796 
797 	for (i = 0; i < NR_MM_COUNTERS; i++)
798 		percpu_counter_destroy(&mm->rss_stat[i]);
799 	free_mm(mm);
800 }
801 EXPORT_SYMBOL_GPL(__mmdrop);
802 
803 static void mmdrop_async_fn(struct work_struct *work)
804 {
805 	struct mm_struct *mm;
806 
807 	mm = container_of(work, struct mm_struct, async_put_work);
808 	__mmdrop(mm);
809 }
810 
811 static void mmdrop_async(struct mm_struct *mm)
812 {
813 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
814 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
815 		schedule_work(&mm->async_put_work);
816 	}
817 }
818 
819 static inline void free_signal_struct(struct signal_struct *sig)
820 {
821 	taskstats_tgid_free(sig);
822 	sched_autogroup_exit(sig);
823 	/*
824 	 * __mmdrop is not safe to call from softirq context on x86 due to
825 	 * pgd_dtor so postpone it to the async context
826 	 */
827 	if (sig->oom_mm)
828 		mmdrop_async(sig->oom_mm);
829 	kmem_cache_free(signal_cachep, sig);
830 }
831 
832 static inline void put_signal_struct(struct signal_struct *sig)
833 {
834 	if (refcount_dec_and_test(&sig->sigcnt))
835 		free_signal_struct(sig);
836 }
837 
838 void __put_task_struct(struct task_struct *tsk)
839 {
840 	WARN_ON(!tsk->exit_state);
841 	WARN_ON(refcount_read(&tsk->usage));
842 	WARN_ON(tsk == current);
843 
844 	io_uring_free(tsk);
845 	cgroup_free(tsk);
846 	task_numa_free(tsk, true);
847 	security_task_free(tsk);
848 	bpf_task_storage_free(tsk);
849 	exit_creds(tsk);
850 	delayacct_tsk_free(tsk);
851 	put_signal_struct(tsk->signal);
852 	sched_core_free(tsk);
853 	free_task(tsk);
854 }
855 EXPORT_SYMBOL_GPL(__put_task_struct);
856 
857 void __init __weak arch_task_cache_init(void) { }
858 
859 /*
860  * set_max_threads
861  */
862 static void set_max_threads(unsigned int max_threads_suggested)
863 {
864 	u64 threads;
865 	unsigned long nr_pages = totalram_pages();
866 
867 	/*
868 	 * The number of threads shall be limited such that the thread
869 	 * structures may only consume a small part of the available memory.
870 	 */
871 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
872 		threads = MAX_THREADS;
873 	else
874 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
875 				    (u64) THREAD_SIZE * 8UL);
876 
877 	if (threads > max_threads_suggested)
878 		threads = max_threads_suggested;
879 
880 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
881 }
882 
883 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
884 /* Initialized by the architecture: */
885 int arch_task_struct_size __read_mostly;
886 #endif
887 
888 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
889 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
890 {
891 	/* Fetch thread_struct whitelist for the architecture. */
892 	arch_thread_struct_whitelist(offset, size);
893 
894 	/*
895 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
896 	 * adjust offset to position of thread_struct in task_struct.
897 	 */
898 	if (unlikely(*size == 0))
899 		*offset = 0;
900 	else
901 		*offset += offsetof(struct task_struct, thread);
902 }
903 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
904 
905 void __init fork_init(void)
906 {
907 	int i;
908 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
909 #ifndef ARCH_MIN_TASKALIGN
910 #define ARCH_MIN_TASKALIGN	0
911 #endif
912 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
913 	unsigned long useroffset, usersize;
914 
915 	/* create a slab on which task_structs can be allocated */
916 	task_struct_whitelist(&useroffset, &usersize);
917 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
918 			arch_task_struct_size, align,
919 			SLAB_PANIC|SLAB_ACCOUNT,
920 			useroffset, usersize, NULL);
921 #endif
922 
923 	/* do the arch specific task caches init */
924 	arch_task_cache_init();
925 
926 	set_max_threads(MAX_THREADS);
927 
928 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
929 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
930 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
931 		init_task.signal->rlim[RLIMIT_NPROC];
932 
933 	for (i = 0; i < UCOUNT_COUNTS; i++)
934 		init_user_ns.ucount_max[i] = max_threads/2;
935 
936 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
937 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
938 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
939 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
940 
941 #ifdef CONFIG_VMAP_STACK
942 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
943 			  NULL, free_vm_stack_cache);
944 #endif
945 
946 	scs_init();
947 
948 	lockdep_init_task(&init_task);
949 	uprobes_init();
950 }
951 
952 int __weak arch_dup_task_struct(struct task_struct *dst,
953 					       struct task_struct *src)
954 {
955 	*dst = *src;
956 	return 0;
957 }
958 
959 void set_task_stack_end_magic(struct task_struct *tsk)
960 {
961 	unsigned long *stackend;
962 
963 	stackend = end_of_stack(tsk);
964 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
965 }
966 
967 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
968 {
969 	struct task_struct *tsk;
970 	int err;
971 
972 	if (node == NUMA_NO_NODE)
973 		node = tsk_fork_get_node(orig);
974 	tsk = alloc_task_struct_node(node);
975 	if (!tsk)
976 		return NULL;
977 
978 	err = arch_dup_task_struct(tsk, orig);
979 	if (err)
980 		goto free_tsk;
981 
982 	err = alloc_thread_stack_node(tsk, node);
983 	if (err)
984 		goto free_tsk;
985 
986 #ifdef CONFIG_THREAD_INFO_IN_TASK
987 	refcount_set(&tsk->stack_refcount, 1);
988 #endif
989 	account_kernel_stack(tsk, 1);
990 
991 	err = scs_prepare(tsk, node);
992 	if (err)
993 		goto free_stack;
994 
995 #ifdef CONFIG_SECCOMP
996 	/*
997 	 * We must handle setting up seccomp filters once we're under
998 	 * the sighand lock in case orig has changed between now and
999 	 * then. Until then, filter must be NULL to avoid messing up
1000 	 * the usage counts on the error path calling free_task.
1001 	 */
1002 	tsk->seccomp.filter = NULL;
1003 #endif
1004 
1005 	setup_thread_stack(tsk, orig);
1006 	clear_user_return_notifier(tsk);
1007 	clear_tsk_need_resched(tsk);
1008 	set_task_stack_end_magic(tsk);
1009 	clear_syscall_work_syscall_user_dispatch(tsk);
1010 
1011 #ifdef CONFIG_STACKPROTECTOR
1012 	tsk->stack_canary = get_random_canary();
1013 #endif
1014 	if (orig->cpus_ptr == &orig->cpus_mask)
1015 		tsk->cpus_ptr = &tsk->cpus_mask;
1016 	dup_user_cpus_ptr(tsk, orig, node);
1017 
1018 	/*
1019 	 * One for the user space visible state that goes away when reaped.
1020 	 * One for the scheduler.
1021 	 */
1022 	refcount_set(&tsk->rcu_users, 2);
1023 	/* One for the rcu users */
1024 	refcount_set(&tsk->usage, 1);
1025 #ifdef CONFIG_BLK_DEV_IO_TRACE
1026 	tsk->btrace_seq = 0;
1027 #endif
1028 	tsk->splice_pipe = NULL;
1029 	tsk->task_frag.page = NULL;
1030 	tsk->wake_q.next = NULL;
1031 	tsk->worker_private = NULL;
1032 
1033 	kcov_task_init(tsk);
1034 	kmsan_task_create(tsk);
1035 	kmap_local_fork(tsk);
1036 
1037 #ifdef CONFIG_FAULT_INJECTION
1038 	tsk->fail_nth = 0;
1039 #endif
1040 
1041 #ifdef CONFIG_BLK_CGROUP
1042 	tsk->throttle_disk = NULL;
1043 	tsk->use_memdelay = 0;
1044 #endif
1045 
1046 #ifdef CONFIG_IOMMU_SVA
1047 	tsk->pasid_activated = 0;
1048 #endif
1049 
1050 #ifdef CONFIG_MEMCG
1051 	tsk->active_memcg = NULL;
1052 #endif
1053 
1054 #ifdef CONFIG_CPU_SUP_INTEL
1055 	tsk->reported_split_lock = 0;
1056 #endif
1057 
1058 #ifdef CONFIG_SCHED_MM_CID
1059 	tsk->mm_cid = -1;
1060 	tsk->mm_cid_active = 0;
1061 #endif
1062 	return tsk;
1063 
1064 free_stack:
1065 	exit_task_stack_account(tsk);
1066 	free_thread_stack(tsk);
1067 free_tsk:
1068 	free_task_struct(tsk);
1069 	return NULL;
1070 }
1071 
1072 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1073 
1074 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1075 
1076 static int __init coredump_filter_setup(char *s)
1077 {
1078 	default_dump_filter =
1079 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1080 		MMF_DUMP_FILTER_MASK;
1081 	return 1;
1082 }
1083 
1084 __setup("coredump_filter=", coredump_filter_setup);
1085 
1086 #include <linux/init_task.h>
1087 
1088 static void mm_init_aio(struct mm_struct *mm)
1089 {
1090 #ifdef CONFIG_AIO
1091 	spin_lock_init(&mm->ioctx_lock);
1092 	mm->ioctx_table = NULL;
1093 #endif
1094 }
1095 
1096 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1097 					   struct task_struct *p)
1098 {
1099 #ifdef CONFIG_MEMCG
1100 	if (mm->owner == p)
1101 		WRITE_ONCE(mm->owner, NULL);
1102 #endif
1103 }
1104 
1105 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1106 {
1107 #ifdef CONFIG_MEMCG
1108 	mm->owner = p;
1109 #endif
1110 }
1111 
1112 static void mm_init_uprobes_state(struct mm_struct *mm)
1113 {
1114 #ifdef CONFIG_UPROBES
1115 	mm->uprobes_state.xol_area = NULL;
1116 #endif
1117 }
1118 
1119 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1120 	struct user_namespace *user_ns)
1121 {
1122 	int i;
1123 
1124 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1125 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1126 	atomic_set(&mm->mm_users, 1);
1127 	atomic_set(&mm->mm_count, 1);
1128 	seqcount_init(&mm->write_protect_seq);
1129 	mmap_init_lock(mm);
1130 	INIT_LIST_HEAD(&mm->mmlist);
1131 	mm_pgtables_bytes_init(mm);
1132 	mm->map_count = 0;
1133 	mm->locked_vm = 0;
1134 	atomic64_set(&mm->pinned_vm, 0);
1135 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1136 	spin_lock_init(&mm->page_table_lock);
1137 	spin_lock_init(&mm->arg_lock);
1138 	mm_init_cpumask(mm);
1139 	mm_init_aio(mm);
1140 	mm_init_owner(mm, p);
1141 	mm_pasid_init(mm);
1142 	RCU_INIT_POINTER(mm->exe_file, NULL);
1143 	mmu_notifier_subscriptions_init(mm);
1144 	init_tlb_flush_pending(mm);
1145 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1146 	mm->pmd_huge_pte = NULL;
1147 #endif
1148 	mm_init_uprobes_state(mm);
1149 	hugetlb_count_init(mm);
1150 
1151 	if (current->mm) {
1152 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1153 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1154 	} else {
1155 		mm->flags = default_dump_filter;
1156 		mm->def_flags = 0;
1157 	}
1158 
1159 	if (mm_alloc_pgd(mm))
1160 		goto fail_nopgd;
1161 
1162 	if (init_new_context(p, mm))
1163 		goto fail_nocontext;
1164 
1165 	for (i = 0; i < NR_MM_COUNTERS; i++)
1166 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1167 			goto fail_pcpu;
1168 
1169 	mm->user_ns = get_user_ns(user_ns);
1170 	lru_gen_init_mm(mm);
1171 	mm_init_cid(mm);
1172 	return mm;
1173 
1174 fail_pcpu:
1175 	while (i > 0)
1176 		percpu_counter_destroy(&mm->rss_stat[--i]);
1177 fail_nocontext:
1178 	mm_free_pgd(mm);
1179 fail_nopgd:
1180 	free_mm(mm);
1181 	return NULL;
1182 }
1183 
1184 /*
1185  * Allocate and initialize an mm_struct.
1186  */
1187 struct mm_struct *mm_alloc(void)
1188 {
1189 	struct mm_struct *mm;
1190 
1191 	mm = allocate_mm();
1192 	if (!mm)
1193 		return NULL;
1194 
1195 	memset(mm, 0, sizeof(*mm));
1196 	return mm_init(mm, current, current_user_ns());
1197 }
1198 
1199 static inline void __mmput(struct mm_struct *mm)
1200 {
1201 	VM_BUG_ON(atomic_read(&mm->mm_users));
1202 
1203 	uprobe_clear_state(mm);
1204 	exit_aio(mm);
1205 	ksm_exit(mm);
1206 	khugepaged_exit(mm); /* must run before exit_mmap */
1207 	exit_mmap(mm);
1208 	mm_put_huge_zero_page(mm);
1209 	set_mm_exe_file(mm, NULL);
1210 	if (!list_empty(&mm->mmlist)) {
1211 		spin_lock(&mmlist_lock);
1212 		list_del(&mm->mmlist);
1213 		spin_unlock(&mmlist_lock);
1214 	}
1215 	if (mm->binfmt)
1216 		module_put(mm->binfmt->module);
1217 	lru_gen_del_mm(mm);
1218 	mmdrop(mm);
1219 }
1220 
1221 /*
1222  * Decrement the use count and release all resources for an mm.
1223  */
1224 void mmput(struct mm_struct *mm)
1225 {
1226 	might_sleep();
1227 
1228 	if (atomic_dec_and_test(&mm->mm_users))
1229 		__mmput(mm);
1230 }
1231 EXPORT_SYMBOL_GPL(mmput);
1232 
1233 #ifdef CONFIG_MMU
1234 static void mmput_async_fn(struct work_struct *work)
1235 {
1236 	struct mm_struct *mm = container_of(work, struct mm_struct,
1237 					    async_put_work);
1238 
1239 	__mmput(mm);
1240 }
1241 
1242 void mmput_async(struct mm_struct *mm)
1243 {
1244 	if (atomic_dec_and_test(&mm->mm_users)) {
1245 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1246 		schedule_work(&mm->async_put_work);
1247 	}
1248 }
1249 EXPORT_SYMBOL_GPL(mmput_async);
1250 #endif
1251 
1252 /**
1253  * set_mm_exe_file - change a reference to the mm's executable file
1254  *
1255  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1256  *
1257  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1258  * invocations: in mmput() nobody alive left, in execve task is single
1259  * threaded.
1260  *
1261  * Can only fail if new_exe_file != NULL.
1262  */
1263 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1264 {
1265 	struct file *old_exe_file;
1266 
1267 	/*
1268 	 * It is safe to dereference the exe_file without RCU as
1269 	 * this function is only called if nobody else can access
1270 	 * this mm -- see comment above for justification.
1271 	 */
1272 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1273 
1274 	if (new_exe_file) {
1275 		/*
1276 		 * We expect the caller (i.e., sys_execve) to already denied
1277 		 * write access, so this is unlikely to fail.
1278 		 */
1279 		if (unlikely(deny_write_access(new_exe_file)))
1280 			return -EACCES;
1281 		get_file(new_exe_file);
1282 	}
1283 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1284 	if (old_exe_file) {
1285 		allow_write_access(old_exe_file);
1286 		fput(old_exe_file);
1287 	}
1288 	return 0;
1289 }
1290 
1291 /**
1292  * replace_mm_exe_file - replace a reference to the mm's executable file
1293  *
1294  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1295  * dealing with concurrent invocation and without grabbing the mmap lock in
1296  * write mode.
1297  *
1298  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1299  */
1300 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1301 {
1302 	struct vm_area_struct *vma;
1303 	struct file *old_exe_file;
1304 	int ret = 0;
1305 
1306 	/* Forbid mm->exe_file change if old file still mapped. */
1307 	old_exe_file = get_mm_exe_file(mm);
1308 	if (old_exe_file) {
1309 		VMA_ITERATOR(vmi, mm, 0);
1310 		mmap_read_lock(mm);
1311 		for_each_vma(vmi, vma) {
1312 			if (!vma->vm_file)
1313 				continue;
1314 			if (path_equal(&vma->vm_file->f_path,
1315 				       &old_exe_file->f_path)) {
1316 				ret = -EBUSY;
1317 				break;
1318 			}
1319 		}
1320 		mmap_read_unlock(mm);
1321 		fput(old_exe_file);
1322 		if (ret)
1323 			return ret;
1324 	}
1325 
1326 	/* set the new file, lockless */
1327 	ret = deny_write_access(new_exe_file);
1328 	if (ret)
1329 		return -EACCES;
1330 	get_file(new_exe_file);
1331 
1332 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1333 	if (old_exe_file) {
1334 		/*
1335 		 * Don't race with dup_mmap() getting the file and disallowing
1336 		 * write access while someone might open the file writable.
1337 		 */
1338 		mmap_read_lock(mm);
1339 		allow_write_access(old_exe_file);
1340 		fput(old_exe_file);
1341 		mmap_read_unlock(mm);
1342 	}
1343 	return 0;
1344 }
1345 
1346 /**
1347  * get_mm_exe_file - acquire a reference to the mm's executable file
1348  *
1349  * Returns %NULL if mm has no associated executable file.
1350  * User must release file via fput().
1351  */
1352 struct file *get_mm_exe_file(struct mm_struct *mm)
1353 {
1354 	struct file *exe_file;
1355 
1356 	rcu_read_lock();
1357 	exe_file = rcu_dereference(mm->exe_file);
1358 	if (exe_file && !get_file_rcu(exe_file))
1359 		exe_file = NULL;
1360 	rcu_read_unlock();
1361 	return exe_file;
1362 }
1363 
1364 /**
1365  * get_task_exe_file - acquire a reference to the task's executable file
1366  *
1367  * Returns %NULL if task's mm (if any) has no associated executable file or
1368  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1369  * User must release file via fput().
1370  */
1371 struct file *get_task_exe_file(struct task_struct *task)
1372 {
1373 	struct file *exe_file = NULL;
1374 	struct mm_struct *mm;
1375 
1376 	task_lock(task);
1377 	mm = task->mm;
1378 	if (mm) {
1379 		if (!(task->flags & PF_KTHREAD))
1380 			exe_file = get_mm_exe_file(mm);
1381 	}
1382 	task_unlock(task);
1383 	return exe_file;
1384 }
1385 
1386 /**
1387  * get_task_mm - acquire a reference to the task's mm
1388  *
1389  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1390  * this kernel workthread has transiently adopted a user mm with use_mm,
1391  * to do its AIO) is not set and if so returns a reference to it, after
1392  * bumping up the use count.  User must release the mm via mmput()
1393  * after use.  Typically used by /proc and ptrace.
1394  */
1395 struct mm_struct *get_task_mm(struct task_struct *task)
1396 {
1397 	struct mm_struct *mm;
1398 
1399 	task_lock(task);
1400 	mm = task->mm;
1401 	if (mm) {
1402 		if (task->flags & PF_KTHREAD)
1403 			mm = NULL;
1404 		else
1405 			mmget(mm);
1406 	}
1407 	task_unlock(task);
1408 	return mm;
1409 }
1410 EXPORT_SYMBOL_GPL(get_task_mm);
1411 
1412 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1413 {
1414 	struct mm_struct *mm;
1415 	int err;
1416 
1417 	err =  down_read_killable(&task->signal->exec_update_lock);
1418 	if (err)
1419 		return ERR_PTR(err);
1420 
1421 	mm = get_task_mm(task);
1422 	if (mm && mm != current->mm &&
1423 			!ptrace_may_access(task, mode)) {
1424 		mmput(mm);
1425 		mm = ERR_PTR(-EACCES);
1426 	}
1427 	up_read(&task->signal->exec_update_lock);
1428 
1429 	return mm;
1430 }
1431 
1432 static void complete_vfork_done(struct task_struct *tsk)
1433 {
1434 	struct completion *vfork;
1435 
1436 	task_lock(tsk);
1437 	vfork = tsk->vfork_done;
1438 	if (likely(vfork)) {
1439 		tsk->vfork_done = NULL;
1440 		complete(vfork);
1441 	}
1442 	task_unlock(tsk);
1443 }
1444 
1445 static int wait_for_vfork_done(struct task_struct *child,
1446 				struct completion *vfork)
1447 {
1448 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1449 	int killed;
1450 
1451 	cgroup_enter_frozen();
1452 	killed = wait_for_completion_state(vfork, state);
1453 	cgroup_leave_frozen(false);
1454 
1455 	if (killed) {
1456 		task_lock(child);
1457 		child->vfork_done = NULL;
1458 		task_unlock(child);
1459 	}
1460 
1461 	put_task_struct(child);
1462 	return killed;
1463 }
1464 
1465 /* Please note the differences between mmput and mm_release.
1466  * mmput is called whenever we stop holding onto a mm_struct,
1467  * error success whatever.
1468  *
1469  * mm_release is called after a mm_struct has been removed
1470  * from the current process.
1471  *
1472  * This difference is important for error handling, when we
1473  * only half set up a mm_struct for a new process and need to restore
1474  * the old one.  Because we mmput the new mm_struct before
1475  * restoring the old one. . .
1476  * Eric Biederman 10 January 1998
1477  */
1478 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1479 {
1480 	uprobe_free_utask(tsk);
1481 
1482 	/* Get rid of any cached register state */
1483 	deactivate_mm(tsk, mm);
1484 
1485 	/*
1486 	 * Signal userspace if we're not exiting with a core dump
1487 	 * because we want to leave the value intact for debugging
1488 	 * purposes.
1489 	 */
1490 	if (tsk->clear_child_tid) {
1491 		if (atomic_read(&mm->mm_users) > 1) {
1492 			/*
1493 			 * We don't check the error code - if userspace has
1494 			 * not set up a proper pointer then tough luck.
1495 			 */
1496 			put_user(0, tsk->clear_child_tid);
1497 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1498 					1, NULL, NULL, 0, 0);
1499 		}
1500 		tsk->clear_child_tid = NULL;
1501 	}
1502 
1503 	/*
1504 	 * All done, finally we can wake up parent and return this mm to him.
1505 	 * Also kthread_stop() uses this completion for synchronization.
1506 	 */
1507 	if (tsk->vfork_done)
1508 		complete_vfork_done(tsk);
1509 }
1510 
1511 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1512 {
1513 	futex_exit_release(tsk);
1514 	mm_release(tsk, mm);
1515 }
1516 
1517 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1518 {
1519 	futex_exec_release(tsk);
1520 	mm_release(tsk, mm);
1521 }
1522 
1523 /**
1524  * dup_mm() - duplicates an existing mm structure
1525  * @tsk: the task_struct with which the new mm will be associated.
1526  * @oldmm: the mm to duplicate.
1527  *
1528  * Allocates a new mm structure and duplicates the provided @oldmm structure
1529  * content into it.
1530  *
1531  * Return: the duplicated mm or NULL on failure.
1532  */
1533 static struct mm_struct *dup_mm(struct task_struct *tsk,
1534 				struct mm_struct *oldmm)
1535 {
1536 	struct mm_struct *mm;
1537 	int err;
1538 
1539 	mm = allocate_mm();
1540 	if (!mm)
1541 		goto fail_nomem;
1542 
1543 	memcpy(mm, oldmm, sizeof(*mm));
1544 
1545 	if (!mm_init(mm, tsk, mm->user_ns))
1546 		goto fail_nomem;
1547 
1548 	err = dup_mmap(mm, oldmm);
1549 	if (err)
1550 		goto free_pt;
1551 
1552 	mm->hiwater_rss = get_mm_rss(mm);
1553 	mm->hiwater_vm = mm->total_vm;
1554 
1555 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1556 		goto free_pt;
1557 
1558 	return mm;
1559 
1560 free_pt:
1561 	/* don't put binfmt in mmput, we haven't got module yet */
1562 	mm->binfmt = NULL;
1563 	mm_init_owner(mm, NULL);
1564 	mmput(mm);
1565 
1566 fail_nomem:
1567 	return NULL;
1568 }
1569 
1570 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1571 {
1572 	struct mm_struct *mm, *oldmm;
1573 
1574 	tsk->min_flt = tsk->maj_flt = 0;
1575 	tsk->nvcsw = tsk->nivcsw = 0;
1576 #ifdef CONFIG_DETECT_HUNG_TASK
1577 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1578 	tsk->last_switch_time = 0;
1579 #endif
1580 
1581 	tsk->mm = NULL;
1582 	tsk->active_mm = NULL;
1583 
1584 	/*
1585 	 * Are we cloning a kernel thread?
1586 	 *
1587 	 * We need to steal a active VM for that..
1588 	 */
1589 	oldmm = current->mm;
1590 	if (!oldmm)
1591 		return 0;
1592 
1593 	if (clone_flags & CLONE_VM) {
1594 		mmget(oldmm);
1595 		mm = oldmm;
1596 	} else {
1597 		mm = dup_mm(tsk, current->mm);
1598 		if (!mm)
1599 			return -ENOMEM;
1600 	}
1601 
1602 	tsk->mm = mm;
1603 	tsk->active_mm = mm;
1604 	sched_mm_cid_fork(tsk);
1605 	return 0;
1606 }
1607 
1608 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1609 {
1610 	struct fs_struct *fs = current->fs;
1611 	if (clone_flags & CLONE_FS) {
1612 		/* tsk->fs is already what we want */
1613 		spin_lock(&fs->lock);
1614 		if (fs->in_exec) {
1615 			spin_unlock(&fs->lock);
1616 			return -EAGAIN;
1617 		}
1618 		fs->users++;
1619 		spin_unlock(&fs->lock);
1620 		return 0;
1621 	}
1622 	tsk->fs = copy_fs_struct(fs);
1623 	if (!tsk->fs)
1624 		return -ENOMEM;
1625 	return 0;
1626 }
1627 
1628 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1629 {
1630 	struct files_struct *oldf, *newf;
1631 	int error = 0;
1632 
1633 	/*
1634 	 * A background process may not have any files ...
1635 	 */
1636 	oldf = current->files;
1637 	if (!oldf)
1638 		goto out;
1639 
1640 	if (clone_flags & CLONE_FILES) {
1641 		atomic_inc(&oldf->count);
1642 		goto out;
1643 	}
1644 
1645 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1646 	if (!newf)
1647 		goto out;
1648 
1649 	tsk->files = newf;
1650 	error = 0;
1651 out:
1652 	return error;
1653 }
1654 
1655 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1656 {
1657 	struct sighand_struct *sig;
1658 
1659 	if (clone_flags & CLONE_SIGHAND) {
1660 		refcount_inc(&current->sighand->count);
1661 		return 0;
1662 	}
1663 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1664 	RCU_INIT_POINTER(tsk->sighand, sig);
1665 	if (!sig)
1666 		return -ENOMEM;
1667 
1668 	refcount_set(&sig->count, 1);
1669 	spin_lock_irq(&current->sighand->siglock);
1670 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1671 	spin_unlock_irq(&current->sighand->siglock);
1672 
1673 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1674 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1675 		flush_signal_handlers(tsk, 0);
1676 
1677 	return 0;
1678 }
1679 
1680 void __cleanup_sighand(struct sighand_struct *sighand)
1681 {
1682 	if (refcount_dec_and_test(&sighand->count)) {
1683 		signalfd_cleanup(sighand);
1684 		/*
1685 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1686 		 * without an RCU grace period, see __lock_task_sighand().
1687 		 */
1688 		kmem_cache_free(sighand_cachep, sighand);
1689 	}
1690 }
1691 
1692 /*
1693  * Initialize POSIX timer handling for a thread group.
1694  */
1695 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1696 {
1697 	struct posix_cputimers *pct = &sig->posix_cputimers;
1698 	unsigned long cpu_limit;
1699 
1700 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1701 	posix_cputimers_group_init(pct, cpu_limit);
1702 }
1703 
1704 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1705 {
1706 	struct signal_struct *sig;
1707 
1708 	if (clone_flags & CLONE_THREAD)
1709 		return 0;
1710 
1711 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1712 	tsk->signal = sig;
1713 	if (!sig)
1714 		return -ENOMEM;
1715 
1716 	sig->nr_threads = 1;
1717 	sig->quick_threads = 1;
1718 	atomic_set(&sig->live, 1);
1719 	refcount_set(&sig->sigcnt, 1);
1720 
1721 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1722 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1723 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1724 
1725 	init_waitqueue_head(&sig->wait_chldexit);
1726 	sig->curr_target = tsk;
1727 	init_sigpending(&sig->shared_pending);
1728 	INIT_HLIST_HEAD(&sig->multiprocess);
1729 	seqlock_init(&sig->stats_lock);
1730 	prev_cputime_init(&sig->prev_cputime);
1731 
1732 #ifdef CONFIG_POSIX_TIMERS
1733 	INIT_LIST_HEAD(&sig->posix_timers);
1734 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1735 	sig->real_timer.function = it_real_fn;
1736 #endif
1737 
1738 	task_lock(current->group_leader);
1739 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1740 	task_unlock(current->group_leader);
1741 
1742 	posix_cpu_timers_init_group(sig);
1743 
1744 	tty_audit_fork(sig);
1745 	sched_autogroup_fork(sig);
1746 
1747 	sig->oom_score_adj = current->signal->oom_score_adj;
1748 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1749 
1750 	mutex_init(&sig->cred_guard_mutex);
1751 	init_rwsem(&sig->exec_update_lock);
1752 
1753 	return 0;
1754 }
1755 
1756 static void copy_seccomp(struct task_struct *p)
1757 {
1758 #ifdef CONFIG_SECCOMP
1759 	/*
1760 	 * Must be called with sighand->lock held, which is common to
1761 	 * all threads in the group. Holding cred_guard_mutex is not
1762 	 * needed because this new task is not yet running and cannot
1763 	 * be racing exec.
1764 	 */
1765 	assert_spin_locked(&current->sighand->siglock);
1766 
1767 	/* Ref-count the new filter user, and assign it. */
1768 	get_seccomp_filter(current);
1769 	p->seccomp = current->seccomp;
1770 
1771 	/*
1772 	 * Explicitly enable no_new_privs here in case it got set
1773 	 * between the task_struct being duplicated and holding the
1774 	 * sighand lock. The seccomp state and nnp must be in sync.
1775 	 */
1776 	if (task_no_new_privs(current))
1777 		task_set_no_new_privs(p);
1778 
1779 	/*
1780 	 * If the parent gained a seccomp mode after copying thread
1781 	 * flags and between before we held the sighand lock, we have
1782 	 * to manually enable the seccomp thread flag here.
1783 	 */
1784 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1785 		set_task_syscall_work(p, SECCOMP);
1786 #endif
1787 }
1788 
1789 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1790 {
1791 	current->clear_child_tid = tidptr;
1792 
1793 	return task_pid_vnr(current);
1794 }
1795 
1796 static void rt_mutex_init_task(struct task_struct *p)
1797 {
1798 	raw_spin_lock_init(&p->pi_lock);
1799 #ifdef CONFIG_RT_MUTEXES
1800 	p->pi_waiters = RB_ROOT_CACHED;
1801 	p->pi_top_task = NULL;
1802 	p->pi_blocked_on = NULL;
1803 #endif
1804 }
1805 
1806 static inline void init_task_pid_links(struct task_struct *task)
1807 {
1808 	enum pid_type type;
1809 
1810 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1811 		INIT_HLIST_NODE(&task->pid_links[type]);
1812 }
1813 
1814 static inline void
1815 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1816 {
1817 	if (type == PIDTYPE_PID)
1818 		task->thread_pid = pid;
1819 	else
1820 		task->signal->pids[type] = pid;
1821 }
1822 
1823 static inline void rcu_copy_process(struct task_struct *p)
1824 {
1825 #ifdef CONFIG_PREEMPT_RCU
1826 	p->rcu_read_lock_nesting = 0;
1827 	p->rcu_read_unlock_special.s = 0;
1828 	p->rcu_blocked_node = NULL;
1829 	INIT_LIST_HEAD(&p->rcu_node_entry);
1830 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1831 #ifdef CONFIG_TASKS_RCU
1832 	p->rcu_tasks_holdout = false;
1833 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1834 	p->rcu_tasks_idle_cpu = -1;
1835 #endif /* #ifdef CONFIG_TASKS_RCU */
1836 #ifdef CONFIG_TASKS_TRACE_RCU
1837 	p->trc_reader_nesting = 0;
1838 	p->trc_reader_special.s = 0;
1839 	INIT_LIST_HEAD(&p->trc_holdout_list);
1840 	INIT_LIST_HEAD(&p->trc_blkd_node);
1841 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1842 }
1843 
1844 struct pid *pidfd_pid(const struct file *file)
1845 {
1846 	if (file->f_op == &pidfd_fops)
1847 		return file->private_data;
1848 
1849 	return ERR_PTR(-EBADF);
1850 }
1851 
1852 static int pidfd_release(struct inode *inode, struct file *file)
1853 {
1854 	struct pid *pid = file->private_data;
1855 
1856 	file->private_data = NULL;
1857 	put_pid(pid);
1858 	return 0;
1859 }
1860 
1861 #ifdef CONFIG_PROC_FS
1862 /**
1863  * pidfd_show_fdinfo - print information about a pidfd
1864  * @m: proc fdinfo file
1865  * @f: file referencing a pidfd
1866  *
1867  * Pid:
1868  * This function will print the pid that a given pidfd refers to in the
1869  * pid namespace of the procfs instance.
1870  * If the pid namespace of the process is not a descendant of the pid
1871  * namespace of the procfs instance 0 will be shown as its pid. This is
1872  * similar to calling getppid() on a process whose parent is outside of
1873  * its pid namespace.
1874  *
1875  * NSpid:
1876  * If pid namespaces are supported then this function will also print
1877  * the pid of a given pidfd refers to for all descendant pid namespaces
1878  * starting from the current pid namespace of the instance, i.e. the
1879  * Pid field and the first entry in the NSpid field will be identical.
1880  * If the pid namespace of the process is not a descendant of the pid
1881  * namespace of the procfs instance 0 will be shown as its first NSpid
1882  * entry and no others will be shown.
1883  * Note that this differs from the Pid and NSpid fields in
1884  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1885  * the  pid namespace of the procfs instance. The difference becomes
1886  * obvious when sending around a pidfd between pid namespaces from a
1887  * different branch of the tree, i.e. where no ancestral relation is
1888  * present between the pid namespaces:
1889  * - create two new pid namespaces ns1 and ns2 in the initial pid
1890  *   namespace (also take care to create new mount namespaces in the
1891  *   new pid namespace and mount procfs)
1892  * - create a process with a pidfd in ns1
1893  * - send pidfd from ns1 to ns2
1894  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1895  *   have exactly one entry, which is 0
1896  */
1897 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1898 {
1899 	struct pid *pid = f->private_data;
1900 	struct pid_namespace *ns;
1901 	pid_t nr = -1;
1902 
1903 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1904 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1905 		nr = pid_nr_ns(pid, ns);
1906 	}
1907 
1908 	seq_put_decimal_ll(m, "Pid:\t", nr);
1909 
1910 #ifdef CONFIG_PID_NS
1911 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1912 	if (nr > 0) {
1913 		int i;
1914 
1915 		/* If nr is non-zero it means that 'pid' is valid and that
1916 		 * ns, i.e. the pid namespace associated with the procfs
1917 		 * instance, is in the pid namespace hierarchy of pid.
1918 		 * Start at one below the already printed level.
1919 		 */
1920 		for (i = ns->level + 1; i <= pid->level; i++)
1921 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1922 	}
1923 #endif
1924 	seq_putc(m, '\n');
1925 }
1926 #endif
1927 
1928 /*
1929  * Poll support for process exit notification.
1930  */
1931 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1932 {
1933 	struct pid *pid = file->private_data;
1934 	__poll_t poll_flags = 0;
1935 
1936 	poll_wait(file, &pid->wait_pidfd, pts);
1937 
1938 	/*
1939 	 * Inform pollers only when the whole thread group exits.
1940 	 * If the thread group leader exits before all other threads in the
1941 	 * group, then poll(2) should block, similar to the wait(2) family.
1942 	 */
1943 	if (thread_group_exited(pid))
1944 		poll_flags = EPOLLIN | EPOLLRDNORM;
1945 
1946 	return poll_flags;
1947 }
1948 
1949 const struct file_operations pidfd_fops = {
1950 	.release = pidfd_release,
1951 	.poll = pidfd_poll,
1952 #ifdef CONFIG_PROC_FS
1953 	.show_fdinfo = pidfd_show_fdinfo,
1954 #endif
1955 };
1956 
1957 static void __delayed_free_task(struct rcu_head *rhp)
1958 {
1959 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1960 
1961 	free_task(tsk);
1962 }
1963 
1964 static __always_inline void delayed_free_task(struct task_struct *tsk)
1965 {
1966 	if (IS_ENABLED(CONFIG_MEMCG))
1967 		call_rcu(&tsk->rcu, __delayed_free_task);
1968 	else
1969 		free_task(tsk);
1970 }
1971 
1972 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1973 {
1974 	/* Skip if kernel thread */
1975 	if (!tsk->mm)
1976 		return;
1977 
1978 	/* Skip if spawning a thread or using vfork */
1979 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1980 		return;
1981 
1982 	/* We need to synchronize with __set_oom_adj */
1983 	mutex_lock(&oom_adj_mutex);
1984 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1985 	/* Update the values in case they were changed after copy_signal */
1986 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1987 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1988 	mutex_unlock(&oom_adj_mutex);
1989 }
1990 
1991 #ifdef CONFIG_RV
1992 static void rv_task_fork(struct task_struct *p)
1993 {
1994 	int i;
1995 
1996 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1997 		p->rv[i].da_mon.monitoring = false;
1998 }
1999 #else
2000 #define rv_task_fork(p) do {} while (0)
2001 #endif
2002 
2003 /*
2004  * This creates a new process as a copy of the old one,
2005  * but does not actually start it yet.
2006  *
2007  * It copies the registers, and all the appropriate
2008  * parts of the process environment (as per the clone
2009  * flags). The actual kick-off is left to the caller.
2010  */
2011 static __latent_entropy struct task_struct *copy_process(
2012 					struct pid *pid,
2013 					int trace,
2014 					int node,
2015 					struct kernel_clone_args *args)
2016 {
2017 	int pidfd = -1, retval;
2018 	struct task_struct *p;
2019 	struct multiprocess_signals delayed;
2020 	struct file *pidfile = NULL;
2021 	const u64 clone_flags = args->flags;
2022 	struct nsproxy *nsp = current->nsproxy;
2023 
2024 	/*
2025 	 * Don't allow sharing the root directory with processes in a different
2026 	 * namespace
2027 	 */
2028 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2029 		return ERR_PTR(-EINVAL);
2030 
2031 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2032 		return ERR_PTR(-EINVAL);
2033 
2034 	/*
2035 	 * Thread groups must share signals as well, and detached threads
2036 	 * can only be started up within the thread group.
2037 	 */
2038 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2039 		return ERR_PTR(-EINVAL);
2040 
2041 	/*
2042 	 * Shared signal handlers imply shared VM. By way of the above,
2043 	 * thread groups also imply shared VM. Blocking this case allows
2044 	 * for various simplifications in other code.
2045 	 */
2046 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2047 		return ERR_PTR(-EINVAL);
2048 
2049 	/*
2050 	 * Siblings of global init remain as zombies on exit since they are
2051 	 * not reaped by their parent (swapper). To solve this and to avoid
2052 	 * multi-rooted process trees, prevent global and container-inits
2053 	 * from creating siblings.
2054 	 */
2055 	if ((clone_flags & CLONE_PARENT) &&
2056 				current->signal->flags & SIGNAL_UNKILLABLE)
2057 		return ERR_PTR(-EINVAL);
2058 
2059 	/*
2060 	 * If the new process will be in a different pid or user namespace
2061 	 * do not allow it to share a thread group with the forking task.
2062 	 */
2063 	if (clone_flags & CLONE_THREAD) {
2064 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2065 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2066 			return ERR_PTR(-EINVAL);
2067 	}
2068 
2069 	if (clone_flags & CLONE_PIDFD) {
2070 		/*
2071 		 * - CLONE_DETACHED is blocked so that we can potentially
2072 		 *   reuse it later for CLONE_PIDFD.
2073 		 * - CLONE_THREAD is blocked until someone really needs it.
2074 		 */
2075 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2076 			return ERR_PTR(-EINVAL);
2077 	}
2078 
2079 	/*
2080 	 * Force any signals received before this point to be delivered
2081 	 * before the fork happens.  Collect up signals sent to multiple
2082 	 * processes that happen during the fork and delay them so that
2083 	 * they appear to happen after the fork.
2084 	 */
2085 	sigemptyset(&delayed.signal);
2086 	INIT_HLIST_NODE(&delayed.node);
2087 
2088 	spin_lock_irq(&current->sighand->siglock);
2089 	if (!(clone_flags & CLONE_THREAD))
2090 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2091 	recalc_sigpending();
2092 	spin_unlock_irq(&current->sighand->siglock);
2093 	retval = -ERESTARTNOINTR;
2094 	if (task_sigpending(current))
2095 		goto fork_out;
2096 
2097 	retval = -ENOMEM;
2098 	p = dup_task_struct(current, node);
2099 	if (!p)
2100 		goto fork_out;
2101 	p->flags &= ~PF_KTHREAD;
2102 	if (args->kthread)
2103 		p->flags |= PF_KTHREAD;
2104 	if (args->io_thread) {
2105 		/*
2106 		 * Mark us an IO worker, and block any signal that isn't
2107 		 * fatal or STOP
2108 		 */
2109 		p->flags |= PF_IO_WORKER;
2110 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2111 	}
2112 
2113 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2114 	/*
2115 	 * Clear TID on mm_release()?
2116 	 */
2117 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2118 
2119 	ftrace_graph_init_task(p);
2120 
2121 	rt_mutex_init_task(p);
2122 
2123 	lockdep_assert_irqs_enabled();
2124 #ifdef CONFIG_PROVE_LOCKING
2125 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2126 #endif
2127 	retval = copy_creds(p, clone_flags);
2128 	if (retval < 0)
2129 		goto bad_fork_free;
2130 
2131 	retval = -EAGAIN;
2132 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2133 		if (p->real_cred->user != INIT_USER &&
2134 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2135 			goto bad_fork_cleanup_count;
2136 	}
2137 	current->flags &= ~PF_NPROC_EXCEEDED;
2138 
2139 	/*
2140 	 * If multiple threads are within copy_process(), then this check
2141 	 * triggers too late. This doesn't hurt, the check is only there
2142 	 * to stop root fork bombs.
2143 	 */
2144 	retval = -EAGAIN;
2145 	if (data_race(nr_threads >= max_threads))
2146 		goto bad_fork_cleanup_count;
2147 
2148 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2149 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2150 	p->flags |= PF_FORKNOEXEC;
2151 	INIT_LIST_HEAD(&p->children);
2152 	INIT_LIST_HEAD(&p->sibling);
2153 	rcu_copy_process(p);
2154 	p->vfork_done = NULL;
2155 	spin_lock_init(&p->alloc_lock);
2156 
2157 	init_sigpending(&p->pending);
2158 
2159 	p->utime = p->stime = p->gtime = 0;
2160 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2161 	p->utimescaled = p->stimescaled = 0;
2162 #endif
2163 	prev_cputime_init(&p->prev_cputime);
2164 
2165 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2166 	seqcount_init(&p->vtime.seqcount);
2167 	p->vtime.starttime = 0;
2168 	p->vtime.state = VTIME_INACTIVE;
2169 #endif
2170 
2171 #ifdef CONFIG_IO_URING
2172 	p->io_uring = NULL;
2173 #endif
2174 
2175 #if defined(SPLIT_RSS_COUNTING)
2176 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2177 #endif
2178 
2179 	p->default_timer_slack_ns = current->timer_slack_ns;
2180 
2181 #ifdef CONFIG_PSI
2182 	p->psi_flags = 0;
2183 #endif
2184 
2185 	task_io_accounting_init(&p->ioac);
2186 	acct_clear_integrals(p);
2187 
2188 	posix_cputimers_init(&p->posix_cputimers);
2189 
2190 	p->io_context = NULL;
2191 	audit_set_context(p, NULL);
2192 	cgroup_fork(p);
2193 	if (args->kthread) {
2194 		if (!set_kthread_struct(p))
2195 			goto bad_fork_cleanup_delayacct;
2196 	}
2197 #ifdef CONFIG_NUMA
2198 	p->mempolicy = mpol_dup(p->mempolicy);
2199 	if (IS_ERR(p->mempolicy)) {
2200 		retval = PTR_ERR(p->mempolicy);
2201 		p->mempolicy = NULL;
2202 		goto bad_fork_cleanup_delayacct;
2203 	}
2204 #endif
2205 #ifdef CONFIG_CPUSETS
2206 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2207 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2208 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2209 #endif
2210 #ifdef CONFIG_TRACE_IRQFLAGS
2211 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2212 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2213 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2214 	p->softirqs_enabled		= 1;
2215 	p->softirq_context		= 0;
2216 #endif
2217 
2218 	p->pagefault_disabled = 0;
2219 
2220 #ifdef CONFIG_LOCKDEP
2221 	lockdep_init_task(p);
2222 #endif
2223 
2224 #ifdef CONFIG_DEBUG_MUTEXES
2225 	p->blocked_on = NULL; /* not blocked yet */
2226 #endif
2227 #ifdef CONFIG_BCACHE
2228 	p->sequential_io	= 0;
2229 	p->sequential_io_avg	= 0;
2230 #endif
2231 #ifdef CONFIG_BPF_SYSCALL
2232 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2233 	p->bpf_ctx = NULL;
2234 #endif
2235 
2236 	/* Perform scheduler related setup. Assign this task to a CPU. */
2237 	retval = sched_fork(clone_flags, p);
2238 	if (retval)
2239 		goto bad_fork_cleanup_policy;
2240 
2241 	retval = perf_event_init_task(p, clone_flags);
2242 	if (retval)
2243 		goto bad_fork_cleanup_policy;
2244 	retval = audit_alloc(p);
2245 	if (retval)
2246 		goto bad_fork_cleanup_perf;
2247 	/* copy all the process information */
2248 	shm_init_task(p);
2249 	retval = security_task_alloc(p, clone_flags);
2250 	if (retval)
2251 		goto bad_fork_cleanup_audit;
2252 	retval = copy_semundo(clone_flags, p);
2253 	if (retval)
2254 		goto bad_fork_cleanup_security;
2255 	retval = copy_files(clone_flags, p);
2256 	if (retval)
2257 		goto bad_fork_cleanup_semundo;
2258 	retval = copy_fs(clone_flags, p);
2259 	if (retval)
2260 		goto bad_fork_cleanup_files;
2261 	retval = copy_sighand(clone_flags, p);
2262 	if (retval)
2263 		goto bad_fork_cleanup_fs;
2264 	retval = copy_signal(clone_flags, p);
2265 	if (retval)
2266 		goto bad_fork_cleanup_sighand;
2267 	retval = copy_mm(clone_flags, p);
2268 	if (retval)
2269 		goto bad_fork_cleanup_signal;
2270 	retval = copy_namespaces(clone_flags, p);
2271 	if (retval)
2272 		goto bad_fork_cleanup_mm;
2273 	retval = copy_io(clone_flags, p);
2274 	if (retval)
2275 		goto bad_fork_cleanup_namespaces;
2276 	retval = copy_thread(p, args);
2277 	if (retval)
2278 		goto bad_fork_cleanup_io;
2279 
2280 	stackleak_task_init(p);
2281 
2282 	if (pid != &init_struct_pid) {
2283 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2284 				args->set_tid_size);
2285 		if (IS_ERR(pid)) {
2286 			retval = PTR_ERR(pid);
2287 			goto bad_fork_cleanup_thread;
2288 		}
2289 	}
2290 
2291 	/*
2292 	 * This has to happen after we've potentially unshared the file
2293 	 * descriptor table (so that the pidfd doesn't leak into the child
2294 	 * if the fd table isn't shared).
2295 	 */
2296 	if (clone_flags & CLONE_PIDFD) {
2297 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2298 		if (retval < 0)
2299 			goto bad_fork_free_pid;
2300 
2301 		pidfd = retval;
2302 
2303 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2304 					      O_RDWR | O_CLOEXEC);
2305 		if (IS_ERR(pidfile)) {
2306 			put_unused_fd(pidfd);
2307 			retval = PTR_ERR(pidfile);
2308 			goto bad_fork_free_pid;
2309 		}
2310 		get_pid(pid);	/* held by pidfile now */
2311 
2312 		retval = put_user(pidfd, args->pidfd);
2313 		if (retval)
2314 			goto bad_fork_put_pidfd;
2315 	}
2316 
2317 #ifdef CONFIG_BLOCK
2318 	p->plug = NULL;
2319 #endif
2320 	futex_init_task(p);
2321 
2322 	/*
2323 	 * sigaltstack should be cleared when sharing the same VM
2324 	 */
2325 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2326 		sas_ss_reset(p);
2327 
2328 	/*
2329 	 * Syscall tracing and stepping should be turned off in the
2330 	 * child regardless of CLONE_PTRACE.
2331 	 */
2332 	user_disable_single_step(p);
2333 	clear_task_syscall_work(p, SYSCALL_TRACE);
2334 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2335 	clear_task_syscall_work(p, SYSCALL_EMU);
2336 #endif
2337 	clear_tsk_latency_tracing(p);
2338 
2339 	/* ok, now we should be set up.. */
2340 	p->pid = pid_nr(pid);
2341 	if (clone_flags & CLONE_THREAD) {
2342 		p->group_leader = current->group_leader;
2343 		p->tgid = current->tgid;
2344 	} else {
2345 		p->group_leader = p;
2346 		p->tgid = p->pid;
2347 	}
2348 
2349 	p->nr_dirtied = 0;
2350 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2351 	p->dirty_paused_when = 0;
2352 
2353 	p->pdeath_signal = 0;
2354 	INIT_LIST_HEAD(&p->thread_group);
2355 	p->task_works = NULL;
2356 	clear_posix_cputimers_work(p);
2357 
2358 #ifdef CONFIG_KRETPROBES
2359 	p->kretprobe_instances.first = NULL;
2360 #endif
2361 #ifdef CONFIG_RETHOOK
2362 	p->rethooks.first = NULL;
2363 #endif
2364 
2365 	/*
2366 	 * Ensure that the cgroup subsystem policies allow the new process to be
2367 	 * forked. It should be noted that the new process's css_set can be changed
2368 	 * between here and cgroup_post_fork() if an organisation operation is in
2369 	 * progress.
2370 	 */
2371 	retval = cgroup_can_fork(p, args);
2372 	if (retval)
2373 		goto bad_fork_put_pidfd;
2374 
2375 	/*
2376 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2377 	 * the new task on the correct runqueue. All this *before* the task
2378 	 * becomes visible.
2379 	 *
2380 	 * This isn't part of ->can_fork() because while the re-cloning is
2381 	 * cgroup specific, it unconditionally needs to place the task on a
2382 	 * runqueue.
2383 	 */
2384 	sched_cgroup_fork(p, args);
2385 
2386 	/*
2387 	 * From this point on we must avoid any synchronous user-space
2388 	 * communication until we take the tasklist-lock. In particular, we do
2389 	 * not want user-space to be able to predict the process start-time by
2390 	 * stalling fork(2) after we recorded the start_time but before it is
2391 	 * visible to the system.
2392 	 */
2393 
2394 	p->start_time = ktime_get_ns();
2395 	p->start_boottime = ktime_get_boottime_ns();
2396 
2397 	/*
2398 	 * Make it visible to the rest of the system, but dont wake it up yet.
2399 	 * Need tasklist lock for parent etc handling!
2400 	 */
2401 	write_lock_irq(&tasklist_lock);
2402 
2403 	/* CLONE_PARENT re-uses the old parent */
2404 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2405 		p->real_parent = current->real_parent;
2406 		p->parent_exec_id = current->parent_exec_id;
2407 		if (clone_flags & CLONE_THREAD)
2408 			p->exit_signal = -1;
2409 		else
2410 			p->exit_signal = current->group_leader->exit_signal;
2411 	} else {
2412 		p->real_parent = current;
2413 		p->parent_exec_id = current->self_exec_id;
2414 		p->exit_signal = args->exit_signal;
2415 	}
2416 
2417 	klp_copy_process(p);
2418 
2419 	sched_core_fork(p);
2420 
2421 	spin_lock(&current->sighand->siglock);
2422 
2423 	rv_task_fork(p);
2424 
2425 	rseq_fork(p, clone_flags);
2426 
2427 	/* Don't start children in a dying pid namespace */
2428 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2429 		retval = -ENOMEM;
2430 		goto bad_fork_cancel_cgroup;
2431 	}
2432 
2433 	/* Let kill terminate clone/fork in the middle */
2434 	if (fatal_signal_pending(current)) {
2435 		retval = -EINTR;
2436 		goto bad_fork_cancel_cgroup;
2437 	}
2438 
2439 	/* No more failure paths after this point. */
2440 
2441 	/*
2442 	 * Copy seccomp details explicitly here, in case they were changed
2443 	 * before holding sighand lock.
2444 	 */
2445 	copy_seccomp(p);
2446 
2447 	init_task_pid_links(p);
2448 	if (likely(p->pid)) {
2449 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2450 
2451 		init_task_pid(p, PIDTYPE_PID, pid);
2452 		if (thread_group_leader(p)) {
2453 			init_task_pid(p, PIDTYPE_TGID, pid);
2454 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2455 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2456 
2457 			if (is_child_reaper(pid)) {
2458 				ns_of_pid(pid)->child_reaper = p;
2459 				p->signal->flags |= SIGNAL_UNKILLABLE;
2460 			}
2461 			p->signal->shared_pending.signal = delayed.signal;
2462 			p->signal->tty = tty_kref_get(current->signal->tty);
2463 			/*
2464 			 * Inherit has_child_subreaper flag under the same
2465 			 * tasklist_lock with adding child to the process tree
2466 			 * for propagate_has_child_subreaper optimization.
2467 			 */
2468 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2469 							 p->real_parent->signal->is_child_subreaper;
2470 			list_add_tail(&p->sibling, &p->real_parent->children);
2471 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2472 			attach_pid(p, PIDTYPE_TGID);
2473 			attach_pid(p, PIDTYPE_PGID);
2474 			attach_pid(p, PIDTYPE_SID);
2475 			__this_cpu_inc(process_counts);
2476 		} else {
2477 			current->signal->nr_threads++;
2478 			current->signal->quick_threads++;
2479 			atomic_inc(&current->signal->live);
2480 			refcount_inc(&current->signal->sigcnt);
2481 			task_join_group_stop(p);
2482 			list_add_tail_rcu(&p->thread_group,
2483 					  &p->group_leader->thread_group);
2484 			list_add_tail_rcu(&p->thread_node,
2485 					  &p->signal->thread_head);
2486 		}
2487 		attach_pid(p, PIDTYPE_PID);
2488 		nr_threads++;
2489 	}
2490 	total_forks++;
2491 	hlist_del_init(&delayed.node);
2492 	spin_unlock(&current->sighand->siglock);
2493 	syscall_tracepoint_update(p);
2494 	write_unlock_irq(&tasklist_lock);
2495 
2496 	if (pidfile)
2497 		fd_install(pidfd, pidfile);
2498 
2499 	proc_fork_connector(p);
2500 	sched_post_fork(p);
2501 	cgroup_post_fork(p, args);
2502 	perf_event_fork(p);
2503 
2504 	trace_task_newtask(p, clone_flags);
2505 	uprobe_copy_process(p, clone_flags);
2506 
2507 	copy_oom_score_adj(clone_flags, p);
2508 
2509 	return p;
2510 
2511 bad_fork_cancel_cgroup:
2512 	sched_core_free(p);
2513 	spin_unlock(&current->sighand->siglock);
2514 	write_unlock_irq(&tasklist_lock);
2515 	cgroup_cancel_fork(p, args);
2516 bad_fork_put_pidfd:
2517 	if (clone_flags & CLONE_PIDFD) {
2518 		fput(pidfile);
2519 		put_unused_fd(pidfd);
2520 	}
2521 bad_fork_free_pid:
2522 	if (pid != &init_struct_pid)
2523 		free_pid(pid);
2524 bad_fork_cleanup_thread:
2525 	exit_thread(p);
2526 bad_fork_cleanup_io:
2527 	if (p->io_context)
2528 		exit_io_context(p);
2529 bad_fork_cleanup_namespaces:
2530 	exit_task_namespaces(p);
2531 bad_fork_cleanup_mm:
2532 	if (p->mm) {
2533 		mm_clear_owner(p->mm, p);
2534 		mmput(p->mm);
2535 	}
2536 bad_fork_cleanup_signal:
2537 	if (!(clone_flags & CLONE_THREAD))
2538 		free_signal_struct(p->signal);
2539 bad_fork_cleanup_sighand:
2540 	__cleanup_sighand(p->sighand);
2541 bad_fork_cleanup_fs:
2542 	exit_fs(p); /* blocking */
2543 bad_fork_cleanup_files:
2544 	exit_files(p); /* blocking */
2545 bad_fork_cleanup_semundo:
2546 	exit_sem(p);
2547 bad_fork_cleanup_security:
2548 	security_task_free(p);
2549 bad_fork_cleanup_audit:
2550 	audit_free(p);
2551 bad_fork_cleanup_perf:
2552 	perf_event_free_task(p);
2553 bad_fork_cleanup_policy:
2554 	lockdep_free_task(p);
2555 #ifdef CONFIG_NUMA
2556 	mpol_put(p->mempolicy);
2557 #endif
2558 bad_fork_cleanup_delayacct:
2559 	delayacct_tsk_free(p);
2560 bad_fork_cleanup_count:
2561 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2562 	exit_creds(p);
2563 bad_fork_free:
2564 	WRITE_ONCE(p->__state, TASK_DEAD);
2565 	exit_task_stack_account(p);
2566 	put_task_stack(p);
2567 	delayed_free_task(p);
2568 fork_out:
2569 	spin_lock_irq(&current->sighand->siglock);
2570 	hlist_del_init(&delayed.node);
2571 	spin_unlock_irq(&current->sighand->siglock);
2572 	return ERR_PTR(retval);
2573 }
2574 
2575 static inline void init_idle_pids(struct task_struct *idle)
2576 {
2577 	enum pid_type type;
2578 
2579 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2580 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2581 		init_task_pid(idle, type, &init_struct_pid);
2582 	}
2583 }
2584 
2585 static int idle_dummy(void *dummy)
2586 {
2587 	/* This function is never called */
2588 	return 0;
2589 }
2590 
2591 struct task_struct * __init fork_idle(int cpu)
2592 {
2593 	struct task_struct *task;
2594 	struct kernel_clone_args args = {
2595 		.flags		= CLONE_VM,
2596 		.fn		= &idle_dummy,
2597 		.fn_arg		= NULL,
2598 		.kthread	= 1,
2599 		.idle		= 1,
2600 	};
2601 
2602 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2603 	if (!IS_ERR(task)) {
2604 		init_idle_pids(task);
2605 		init_idle(task, cpu);
2606 	}
2607 
2608 	return task;
2609 }
2610 
2611 /*
2612  * This is like kernel_clone(), but shaved down and tailored to just
2613  * creating io_uring workers. It returns a created task, or an error pointer.
2614  * The returned task is inactive, and the caller must fire it up through
2615  * wake_up_new_task(p). All signals are blocked in the created task.
2616  */
2617 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2618 {
2619 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2620 				CLONE_IO;
2621 	struct kernel_clone_args args = {
2622 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2623 				    CLONE_UNTRACED) & ~CSIGNAL),
2624 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2625 		.fn		= fn,
2626 		.fn_arg		= arg,
2627 		.io_thread	= 1,
2628 	};
2629 
2630 	return copy_process(NULL, 0, node, &args);
2631 }
2632 
2633 /*
2634  *  Ok, this is the main fork-routine.
2635  *
2636  * It copies the process, and if successful kick-starts
2637  * it and waits for it to finish using the VM if required.
2638  *
2639  * args->exit_signal is expected to be checked for sanity by the caller.
2640  */
2641 pid_t kernel_clone(struct kernel_clone_args *args)
2642 {
2643 	u64 clone_flags = args->flags;
2644 	struct completion vfork;
2645 	struct pid *pid;
2646 	struct task_struct *p;
2647 	int trace = 0;
2648 	pid_t nr;
2649 
2650 	/*
2651 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2652 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2653 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2654 	 * field in struct clone_args and it still doesn't make sense to have
2655 	 * them both point at the same memory location. Performing this check
2656 	 * here has the advantage that we don't need to have a separate helper
2657 	 * to check for legacy clone().
2658 	 */
2659 	if ((args->flags & CLONE_PIDFD) &&
2660 	    (args->flags & CLONE_PARENT_SETTID) &&
2661 	    (args->pidfd == args->parent_tid))
2662 		return -EINVAL;
2663 
2664 	/*
2665 	 * Determine whether and which event to report to ptracer.  When
2666 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2667 	 * requested, no event is reported; otherwise, report if the event
2668 	 * for the type of forking is enabled.
2669 	 */
2670 	if (!(clone_flags & CLONE_UNTRACED)) {
2671 		if (clone_flags & CLONE_VFORK)
2672 			trace = PTRACE_EVENT_VFORK;
2673 		else if (args->exit_signal != SIGCHLD)
2674 			trace = PTRACE_EVENT_CLONE;
2675 		else
2676 			trace = PTRACE_EVENT_FORK;
2677 
2678 		if (likely(!ptrace_event_enabled(current, trace)))
2679 			trace = 0;
2680 	}
2681 
2682 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2683 	add_latent_entropy();
2684 
2685 	if (IS_ERR(p))
2686 		return PTR_ERR(p);
2687 
2688 	/*
2689 	 * Do this prior waking up the new thread - the thread pointer
2690 	 * might get invalid after that point, if the thread exits quickly.
2691 	 */
2692 	trace_sched_process_fork(current, p);
2693 
2694 	pid = get_task_pid(p, PIDTYPE_PID);
2695 	nr = pid_vnr(pid);
2696 
2697 	if (clone_flags & CLONE_PARENT_SETTID)
2698 		put_user(nr, args->parent_tid);
2699 
2700 	if (clone_flags & CLONE_VFORK) {
2701 		p->vfork_done = &vfork;
2702 		init_completion(&vfork);
2703 		get_task_struct(p);
2704 	}
2705 
2706 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2707 		/* lock the task to synchronize with memcg migration */
2708 		task_lock(p);
2709 		lru_gen_add_mm(p->mm);
2710 		task_unlock(p);
2711 	}
2712 
2713 	wake_up_new_task(p);
2714 
2715 	/* forking complete and child started to run, tell ptracer */
2716 	if (unlikely(trace))
2717 		ptrace_event_pid(trace, pid);
2718 
2719 	if (clone_flags & CLONE_VFORK) {
2720 		if (!wait_for_vfork_done(p, &vfork))
2721 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2722 	}
2723 
2724 	put_pid(pid);
2725 	return nr;
2726 }
2727 
2728 /*
2729  * Create a kernel thread.
2730  */
2731 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2732 {
2733 	struct kernel_clone_args args = {
2734 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2735 				    CLONE_UNTRACED) & ~CSIGNAL),
2736 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2737 		.fn		= fn,
2738 		.fn_arg		= arg,
2739 		.kthread	= 1,
2740 	};
2741 
2742 	return kernel_clone(&args);
2743 }
2744 
2745 /*
2746  * Create a user mode thread.
2747  */
2748 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2749 {
2750 	struct kernel_clone_args args = {
2751 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2752 				    CLONE_UNTRACED) & ~CSIGNAL),
2753 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2754 		.fn		= fn,
2755 		.fn_arg		= arg,
2756 	};
2757 
2758 	return kernel_clone(&args);
2759 }
2760 
2761 #ifdef __ARCH_WANT_SYS_FORK
2762 SYSCALL_DEFINE0(fork)
2763 {
2764 #ifdef CONFIG_MMU
2765 	struct kernel_clone_args args = {
2766 		.exit_signal = SIGCHLD,
2767 	};
2768 
2769 	return kernel_clone(&args);
2770 #else
2771 	/* can not support in nommu mode */
2772 	return -EINVAL;
2773 #endif
2774 }
2775 #endif
2776 
2777 #ifdef __ARCH_WANT_SYS_VFORK
2778 SYSCALL_DEFINE0(vfork)
2779 {
2780 	struct kernel_clone_args args = {
2781 		.flags		= CLONE_VFORK | CLONE_VM,
2782 		.exit_signal	= SIGCHLD,
2783 	};
2784 
2785 	return kernel_clone(&args);
2786 }
2787 #endif
2788 
2789 #ifdef __ARCH_WANT_SYS_CLONE
2790 #ifdef CONFIG_CLONE_BACKWARDS
2791 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2792 		 int __user *, parent_tidptr,
2793 		 unsigned long, tls,
2794 		 int __user *, child_tidptr)
2795 #elif defined(CONFIG_CLONE_BACKWARDS2)
2796 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2797 		 int __user *, parent_tidptr,
2798 		 int __user *, child_tidptr,
2799 		 unsigned long, tls)
2800 #elif defined(CONFIG_CLONE_BACKWARDS3)
2801 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2802 		int, stack_size,
2803 		int __user *, parent_tidptr,
2804 		int __user *, child_tidptr,
2805 		unsigned long, tls)
2806 #else
2807 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2808 		 int __user *, parent_tidptr,
2809 		 int __user *, child_tidptr,
2810 		 unsigned long, tls)
2811 #endif
2812 {
2813 	struct kernel_clone_args args = {
2814 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2815 		.pidfd		= parent_tidptr,
2816 		.child_tid	= child_tidptr,
2817 		.parent_tid	= parent_tidptr,
2818 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2819 		.stack		= newsp,
2820 		.tls		= tls,
2821 	};
2822 
2823 	return kernel_clone(&args);
2824 }
2825 #endif
2826 
2827 #ifdef __ARCH_WANT_SYS_CLONE3
2828 
2829 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2830 					      struct clone_args __user *uargs,
2831 					      size_t usize)
2832 {
2833 	int err;
2834 	struct clone_args args;
2835 	pid_t *kset_tid = kargs->set_tid;
2836 
2837 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2838 		     CLONE_ARGS_SIZE_VER0);
2839 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2840 		     CLONE_ARGS_SIZE_VER1);
2841 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2842 		     CLONE_ARGS_SIZE_VER2);
2843 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2844 
2845 	if (unlikely(usize > PAGE_SIZE))
2846 		return -E2BIG;
2847 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2848 		return -EINVAL;
2849 
2850 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2851 	if (err)
2852 		return err;
2853 
2854 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2855 		return -EINVAL;
2856 
2857 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2858 		return -EINVAL;
2859 
2860 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2861 		return -EINVAL;
2862 
2863 	/*
2864 	 * Verify that higher 32bits of exit_signal are unset and that
2865 	 * it is a valid signal
2866 	 */
2867 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2868 		     !valid_signal(args.exit_signal)))
2869 		return -EINVAL;
2870 
2871 	if ((args.flags & CLONE_INTO_CGROUP) &&
2872 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2873 		return -EINVAL;
2874 
2875 	*kargs = (struct kernel_clone_args){
2876 		.flags		= args.flags,
2877 		.pidfd		= u64_to_user_ptr(args.pidfd),
2878 		.child_tid	= u64_to_user_ptr(args.child_tid),
2879 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2880 		.exit_signal	= args.exit_signal,
2881 		.stack		= args.stack,
2882 		.stack_size	= args.stack_size,
2883 		.tls		= args.tls,
2884 		.set_tid_size	= args.set_tid_size,
2885 		.cgroup		= args.cgroup,
2886 	};
2887 
2888 	if (args.set_tid &&
2889 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2890 			(kargs->set_tid_size * sizeof(pid_t))))
2891 		return -EFAULT;
2892 
2893 	kargs->set_tid = kset_tid;
2894 
2895 	return 0;
2896 }
2897 
2898 /**
2899  * clone3_stack_valid - check and prepare stack
2900  * @kargs: kernel clone args
2901  *
2902  * Verify that the stack arguments userspace gave us are sane.
2903  * In addition, set the stack direction for userspace since it's easy for us to
2904  * determine.
2905  */
2906 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2907 {
2908 	if (kargs->stack == 0) {
2909 		if (kargs->stack_size > 0)
2910 			return false;
2911 	} else {
2912 		if (kargs->stack_size == 0)
2913 			return false;
2914 
2915 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2916 			return false;
2917 
2918 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2919 		kargs->stack += kargs->stack_size;
2920 #endif
2921 	}
2922 
2923 	return true;
2924 }
2925 
2926 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2927 {
2928 	/* Verify that no unknown flags are passed along. */
2929 	if (kargs->flags &
2930 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2931 		return false;
2932 
2933 	/*
2934 	 * - make the CLONE_DETACHED bit reusable for clone3
2935 	 * - make the CSIGNAL bits reusable for clone3
2936 	 */
2937 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2938 		return false;
2939 
2940 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2941 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2942 		return false;
2943 
2944 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2945 	    kargs->exit_signal)
2946 		return false;
2947 
2948 	if (!clone3_stack_valid(kargs))
2949 		return false;
2950 
2951 	return true;
2952 }
2953 
2954 /**
2955  * clone3 - create a new process with specific properties
2956  * @uargs: argument structure
2957  * @size:  size of @uargs
2958  *
2959  * clone3() is the extensible successor to clone()/clone2().
2960  * It takes a struct as argument that is versioned by its size.
2961  *
2962  * Return: On success, a positive PID for the child process.
2963  *         On error, a negative errno number.
2964  */
2965 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2966 {
2967 	int err;
2968 
2969 	struct kernel_clone_args kargs;
2970 	pid_t set_tid[MAX_PID_NS_LEVEL];
2971 
2972 	kargs.set_tid = set_tid;
2973 
2974 	err = copy_clone_args_from_user(&kargs, uargs, size);
2975 	if (err)
2976 		return err;
2977 
2978 	if (!clone3_args_valid(&kargs))
2979 		return -EINVAL;
2980 
2981 	return kernel_clone(&kargs);
2982 }
2983 #endif
2984 
2985 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2986 {
2987 	struct task_struct *leader, *parent, *child;
2988 	int res;
2989 
2990 	read_lock(&tasklist_lock);
2991 	leader = top = top->group_leader;
2992 down:
2993 	for_each_thread(leader, parent) {
2994 		list_for_each_entry(child, &parent->children, sibling) {
2995 			res = visitor(child, data);
2996 			if (res) {
2997 				if (res < 0)
2998 					goto out;
2999 				leader = child;
3000 				goto down;
3001 			}
3002 up:
3003 			;
3004 		}
3005 	}
3006 
3007 	if (leader != top) {
3008 		child = leader;
3009 		parent = child->real_parent;
3010 		leader = parent->group_leader;
3011 		goto up;
3012 	}
3013 out:
3014 	read_unlock(&tasklist_lock);
3015 }
3016 
3017 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3018 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3019 #endif
3020 
3021 static void sighand_ctor(void *data)
3022 {
3023 	struct sighand_struct *sighand = data;
3024 
3025 	spin_lock_init(&sighand->siglock);
3026 	init_waitqueue_head(&sighand->signalfd_wqh);
3027 }
3028 
3029 void __init mm_cache_init(void)
3030 {
3031 	unsigned int mm_size;
3032 
3033 	/*
3034 	 * The mm_cpumask is located at the end of mm_struct, and is
3035 	 * dynamically sized based on the maximum CPU number this system
3036 	 * can have, taking hotplug into account (nr_cpu_ids).
3037 	 */
3038 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3039 
3040 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3041 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3042 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3043 			offsetof(struct mm_struct, saved_auxv),
3044 			sizeof_field(struct mm_struct, saved_auxv),
3045 			NULL);
3046 }
3047 
3048 void __init proc_caches_init(void)
3049 {
3050 	sighand_cachep = kmem_cache_create("sighand_cache",
3051 			sizeof(struct sighand_struct), 0,
3052 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3053 			SLAB_ACCOUNT, sighand_ctor);
3054 	signal_cachep = kmem_cache_create("signal_cache",
3055 			sizeof(struct signal_struct), 0,
3056 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3057 			NULL);
3058 	files_cachep = kmem_cache_create("files_cache",
3059 			sizeof(struct files_struct), 0,
3060 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3061 			NULL);
3062 	fs_cachep = kmem_cache_create("fs_cache",
3063 			sizeof(struct fs_struct), 0,
3064 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3065 			NULL);
3066 
3067 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3068 	mmap_init();
3069 	nsproxy_cache_init();
3070 }
3071 
3072 /*
3073  * Check constraints on flags passed to the unshare system call.
3074  */
3075 static int check_unshare_flags(unsigned long unshare_flags)
3076 {
3077 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3078 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3079 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3080 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3081 				CLONE_NEWTIME))
3082 		return -EINVAL;
3083 	/*
3084 	 * Not implemented, but pretend it works if there is nothing
3085 	 * to unshare.  Note that unsharing the address space or the
3086 	 * signal handlers also need to unshare the signal queues (aka
3087 	 * CLONE_THREAD).
3088 	 */
3089 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3090 		if (!thread_group_empty(current))
3091 			return -EINVAL;
3092 	}
3093 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3094 		if (refcount_read(&current->sighand->count) > 1)
3095 			return -EINVAL;
3096 	}
3097 	if (unshare_flags & CLONE_VM) {
3098 		if (!current_is_single_threaded())
3099 			return -EINVAL;
3100 	}
3101 
3102 	return 0;
3103 }
3104 
3105 /*
3106  * Unshare the filesystem structure if it is being shared
3107  */
3108 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3109 {
3110 	struct fs_struct *fs = current->fs;
3111 
3112 	if (!(unshare_flags & CLONE_FS) || !fs)
3113 		return 0;
3114 
3115 	/* don't need lock here; in the worst case we'll do useless copy */
3116 	if (fs->users == 1)
3117 		return 0;
3118 
3119 	*new_fsp = copy_fs_struct(fs);
3120 	if (!*new_fsp)
3121 		return -ENOMEM;
3122 
3123 	return 0;
3124 }
3125 
3126 /*
3127  * Unshare file descriptor table if it is being shared
3128  */
3129 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3130 	       struct files_struct **new_fdp)
3131 {
3132 	struct files_struct *fd = current->files;
3133 	int error = 0;
3134 
3135 	if ((unshare_flags & CLONE_FILES) &&
3136 	    (fd && atomic_read(&fd->count) > 1)) {
3137 		*new_fdp = dup_fd(fd, max_fds, &error);
3138 		if (!*new_fdp)
3139 			return error;
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 /*
3146  * unshare allows a process to 'unshare' part of the process
3147  * context which was originally shared using clone.  copy_*
3148  * functions used by kernel_clone() cannot be used here directly
3149  * because they modify an inactive task_struct that is being
3150  * constructed. Here we are modifying the current, active,
3151  * task_struct.
3152  */
3153 int ksys_unshare(unsigned long unshare_flags)
3154 {
3155 	struct fs_struct *fs, *new_fs = NULL;
3156 	struct files_struct *new_fd = NULL;
3157 	struct cred *new_cred = NULL;
3158 	struct nsproxy *new_nsproxy = NULL;
3159 	int do_sysvsem = 0;
3160 	int err;
3161 
3162 	/*
3163 	 * If unsharing a user namespace must also unshare the thread group
3164 	 * and unshare the filesystem root and working directories.
3165 	 */
3166 	if (unshare_flags & CLONE_NEWUSER)
3167 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3168 	/*
3169 	 * If unsharing vm, must also unshare signal handlers.
3170 	 */
3171 	if (unshare_flags & CLONE_VM)
3172 		unshare_flags |= CLONE_SIGHAND;
3173 	/*
3174 	 * If unsharing a signal handlers, must also unshare the signal queues.
3175 	 */
3176 	if (unshare_flags & CLONE_SIGHAND)
3177 		unshare_flags |= CLONE_THREAD;
3178 	/*
3179 	 * If unsharing namespace, must also unshare filesystem information.
3180 	 */
3181 	if (unshare_flags & CLONE_NEWNS)
3182 		unshare_flags |= CLONE_FS;
3183 
3184 	err = check_unshare_flags(unshare_flags);
3185 	if (err)
3186 		goto bad_unshare_out;
3187 	/*
3188 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3189 	 * to a new ipc namespace, the semaphore arrays from the old
3190 	 * namespace are unreachable.
3191 	 */
3192 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3193 		do_sysvsem = 1;
3194 	err = unshare_fs(unshare_flags, &new_fs);
3195 	if (err)
3196 		goto bad_unshare_out;
3197 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3198 	if (err)
3199 		goto bad_unshare_cleanup_fs;
3200 	err = unshare_userns(unshare_flags, &new_cred);
3201 	if (err)
3202 		goto bad_unshare_cleanup_fd;
3203 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3204 					 new_cred, new_fs);
3205 	if (err)
3206 		goto bad_unshare_cleanup_cred;
3207 
3208 	if (new_cred) {
3209 		err = set_cred_ucounts(new_cred);
3210 		if (err)
3211 			goto bad_unshare_cleanup_cred;
3212 	}
3213 
3214 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3215 		if (do_sysvsem) {
3216 			/*
3217 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3218 			 */
3219 			exit_sem(current);
3220 		}
3221 		if (unshare_flags & CLONE_NEWIPC) {
3222 			/* Orphan segments in old ns (see sem above). */
3223 			exit_shm(current);
3224 			shm_init_task(current);
3225 		}
3226 
3227 		if (new_nsproxy)
3228 			switch_task_namespaces(current, new_nsproxy);
3229 
3230 		task_lock(current);
3231 
3232 		if (new_fs) {
3233 			fs = current->fs;
3234 			spin_lock(&fs->lock);
3235 			current->fs = new_fs;
3236 			if (--fs->users)
3237 				new_fs = NULL;
3238 			else
3239 				new_fs = fs;
3240 			spin_unlock(&fs->lock);
3241 		}
3242 
3243 		if (new_fd)
3244 			swap(current->files, new_fd);
3245 
3246 		task_unlock(current);
3247 
3248 		if (new_cred) {
3249 			/* Install the new user namespace */
3250 			commit_creds(new_cred);
3251 			new_cred = NULL;
3252 		}
3253 	}
3254 
3255 	perf_event_namespaces(current);
3256 
3257 bad_unshare_cleanup_cred:
3258 	if (new_cred)
3259 		put_cred(new_cred);
3260 bad_unshare_cleanup_fd:
3261 	if (new_fd)
3262 		put_files_struct(new_fd);
3263 
3264 bad_unshare_cleanup_fs:
3265 	if (new_fs)
3266 		free_fs_struct(new_fs);
3267 
3268 bad_unshare_out:
3269 	return err;
3270 }
3271 
3272 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3273 {
3274 	return ksys_unshare(unshare_flags);
3275 }
3276 
3277 /*
3278  *	Helper to unshare the files of the current task.
3279  *	We don't want to expose copy_files internals to
3280  *	the exec layer of the kernel.
3281  */
3282 
3283 int unshare_files(void)
3284 {
3285 	struct task_struct *task = current;
3286 	struct files_struct *old, *copy = NULL;
3287 	int error;
3288 
3289 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3290 	if (error || !copy)
3291 		return error;
3292 
3293 	old = task->files;
3294 	task_lock(task);
3295 	task->files = copy;
3296 	task_unlock(task);
3297 	put_files_struct(old);
3298 	return 0;
3299 }
3300 
3301 int sysctl_max_threads(struct ctl_table *table, int write,
3302 		       void *buffer, size_t *lenp, loff_t *ppos)
3303 {
3304 	struct ctl_table t;
3305 	int ret;
3306 	int threads = max_threads;
3307 	int min = 1;
3308 	int max = MAX_THREADS;
3309 
3310 	t = *table;
3311 	t.data = &threads;
3312 	t.extra1 = &min;
3313 	t.extra2 = &max;
3314 
3315 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3316 	if (ret || !write)
3317 		return ret;
3318 
3319 	max_threads = threads;
3320 
3321 	return 0;
3322 }
3323