1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/swap.h> 38 #include <linux/syscalls.h> 39 #include <linux/jiffies.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/kthread.h> 43 #include <linux/task_io_accounting_ops.h> 44 #include <linux/rcupdate.h> 45 #include <linux/ptrace.h> 46 #include <linux/mount.h> 47 #include <linux/audit.h> 48 #include <linux/memcontrol.h> 49 #include <linux/ftrace.h> 50 #include <linux/profile.h> 51 #include <linux/rmap.h> 52 #include <linux/ksm.h> 53 #include <linux/acct.h> 54 #include <linux/tsacct_kern.h> 55 #include <linux/cn_proc.h> 56 #include <linux/freezer.h> 57 #include <linux/delayacct.h> 58 #include <linux/taskstats_kern.h> 59 #include <linux/random.h> 60 #include <linux/tty.h> 61 #include <linux/blkdev.h> 62 #include <linux/fs_struct.h> 63 #include <linux/magic.h> 64 #include <linux/perf_event.h> 65 #include <linux/posix-timers.h> 66 #include <linux/user-return-notifier.h> 67 #include <linux/oom.h> 68 #include <linux/khugepaged.h> 69 70 #include <asm/pgtable.h> 71 #include <asm/pgalloc.h> 72 #include <asm/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/cacheflush.h> 75 #include <asm/tlbflush.h> 76 77 #include <trace/events/sched.h> 78 79 /* 80 * Protected counters by write_lock_irq(&tasklist_lock) 81 */ 82 unsigned long total_forks; /* Handle normal Linux uptimes. */ 83 int nr_threads; /* The idle threads do not count.. */ 84 85 int max_threads; /* tunable limit on nr_threads */ 86 87 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 88 89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 90 91 #ifdef CONFIG_PROVE_RCU 92 int lockdep_tasklist_lock_is_held(void) 93 { 94 return lockdep_is_held(&tasklist_lock); 95 } 96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 97 #endif /* #ifdef CONFIG_PROVE_RCU */ 98 99 int nr_processes(void) 100 { 101 int cpu; 102 int total = 0; 103 104 for_each_possible_cpu(cpu) 105 total += per_cpu(process_counts, cpu); 106 107 return total; 108 } 109 110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 111 # define alloc_task_struct_node(node) \ 112 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node) 113 # define free_task_struct(tsk) \ 114 kmem_cache_free(task_struct_cachep, (tsk)) 115 static struct kmem_cache *task_struct_cachep; 116 #endif 117 118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR 119 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 120 int node) 121 { 122 #ifdef CONFIG_DEBUG_STACK_USAGE 123 gfp_t mask = GFP_KERNEL | __GFP_ZERO; 124 #else 125 gfp_t mask = GFP_KERNEL; 126 #endif 127 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER); 128 129 return page ? page_address(page) : NULL; 130 } 131 132 static inline void free_thread_info(struct thread_info *ti) 133 { 134 free_pages((unsigned long)ti, THREAD_SIZE_ORDER); 135 } 136 #endif 137 138 /* SLAB cache for signal_struct structures (tsk->signal) */ 139 static struct kmem_cache *signal_cachep; 140 141 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 142 struct kmem_cache *sighand_cachep; 143 144 /* SLAB cache for files_struct structures (tsk->files) */ 145 struct kmem_cache *files_cachep; 146 147 /* SLAB cache for fs_struct structures (tsk->fs) */ 148 struct kmem_cache *fs_cachep; 149 150 /* SLAB cache for vm_area_struct structures */ 151 struct kmem_cache *vm_area_cachep; 152 153 /* SLAB cache for mm_struct structures (tsk->mm) */ 154 static struct kmem_cache *mm_cachep; 155 156 static void account_kernel_stack(struct thread_info *ti, int account) 157 { 158 struct zone *zone = page_zone(virt_to_page(ti)); 159 160 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 161 } 162 163 void free_task(struct task_struct *tsk) 164 { 165 prop_local_destroy_single(&tsk->dirties); 166 account_kernel_stack(tsk->stack, -1); 167 free_thread_info(tsk->stack); 168 rt_mutex_debug_task_free(tsk); 169 ftrace_graph_exit_task(tsk); 170 free_task_struct(tsk); 171 } 172 EXPORT_SYMBOL(free_task); 173 174 static inline void free_signal_struct(struct signal_struct *sig) 175 { 176 taskstats_tgid_free(sig); 177 sched_autogroup_exit(sig); 178 kmem_cache_free(signal_cachep, sig); 179 } 180 181 static inline void put_signal_struct(struct signal_struct *sig) 182 { 183 if (atomic_dec_and_test(&sig->sigcnt)) 184 free_signal_struct(sig); 185 } 186 187 void __put_task_struct(struct task_struct *tsk) 188 { 189 WARN_ON(!tsk->exit_state); 190 WARN_ON(atomic_read(&tsk->usage)); 191 WARN_ON(tsk == current); 192 193 exit_creds(tsk); 194 delayacct_tsk_free(tsk); 195 put_signal_struct(tsk->signal); 196 197 if (!profile_handoff_task(tsk)) 198 free_task(tsk); 199 } 200 EXPORT_SYMBOL_GPL(__put_task_struct); 201 202 /* 203 * macro override instead of weak attribute alias, to workaround 204 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. 205 */ 206 #ifndef arch_task_cache_init 207 #define arch_task_cache_init() 208 #endif 209 210 void __init fork_init(unsigned long mempages) 211 { 212 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 213 #ifndef ARCH_MIN_TASKALIGN 214 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 215 #endif 216 /* create a slab on which task_structs can be allocated */ 217 task_struct_cachep = 218 kmem_cache_create("task_struct", sizeof(struct task_struct), 219 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 220 #endif 221 222 /* do the arch specific task caches init */ 223 arch_task_cache_init(); 224 225 /* 226 * The default maximum number of threads is set to a safe 227 * value: the thread structures can take up at most half 228 * of memory. 229 */ 230 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 231 232 /* 233 * we need to allow at least 20 threads to boot a system 234 */ 235 if (max_threads < 20) 236 max_threads = 20; 237 238 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 239 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 240 init_task.signal->rlim[RLIMIT_SIGPENDING] = 241 init_task.signal->rlim[RLIMIT_NPROC]; 242 } 243 244 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 245 struct task_struct *src) 246 { 247 *dst = *src; 248 return 0; 249 } 250 251 static struct task_struct *dup_task_struct(struct task_struct *orig) 252 { 253 struct task_struct *tsk; 254 struct thread_info *ti; 255 unsigned long *stackend; 256 int node = tsk_fork_get_node(orig); 257 int err; 258 259 prepare_to_copy(orig); 260 261 tsk = alloc_task_struct_node(node); 262 if (!tsk) 263 return NULL; 264 265 ti = alloc_thread_info_node(tsk, node); 266 if (!ti) { 267 free_task_struct(tsk); 268 return NULL; 269 } 270 271 err = arch_dup_task_struct(tsk, orig); 272 if (err) 273 goto out; 274 275 tsk->stack = ti; 276 277 err = prop_local_init_single(&tsk->dirties); 278 if (err) 279 goto out; 280 281 setup_thread_stack(tsk, orig); 282 clear_user_return_notifier(tsk); 283 clear_tsk_need_resched(tsk); 284 stackend = end_of_stack(tsk); 285 *stackend = STACK_END_MAGIC; /* for overflow detection */ 286 287 #ifdef CONFIG_CC_STACKPROTECTOR 288 tsk->stack_canary = get_random_int(); 289 #endif 290 291 /* 292 * One for us, one for whoever does the "release_task()" (usually 293 * parent) 294 */ 295 atomic_set(&tsk->usage, 2); 296 #ifdef CONFIG_BLK_DEV_IO_TRACE 297 tsk->btrace_seq = 0; 298 #endif 299 tsk->splice_pipe = NULL; 300 301 account_kernel_stack(ti, 1); 302 303 return tsk; 304 305 out: 306 free_thread_info(ti); 307 free_task_struct(tsk); 308 return NULL; 309 } 310 311 #ifdef CONFIG_MMU 312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 313 { 314 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 315 struct rb_node **rb_link, *rb_parent; 316 int retval; 317 unsigned long charge; 318 struct mempolicy *pol; 319 320 down_write(&oldmm->mmap_sem); 321 flush_cache_dup_mm(oldmm); 322 /* 323 * Not linked in yet - no deadlock potential: 324 */ 325 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 326 327 mm->locked_vm = 0; 328 mm->mmap = NULL; 329 mm->mmap_cache = NULL; 330 mm->free_area_cache = oldmm->mmap_base; 331 mm->cached_hole_size = ~0UL; 332 mm->map_count = 0; 333 cpumask_clear(mm_cpumask(mm)); 334 mm->mm_rb = RB_ROOT; 335 rb_link = &mm->mm_rb.rb_node; 336 rb_parent = NULL; 337 pprev = &mm->mmap; 338 retval = ksm_fork(mm, oldmm); 339 if (retval) 340 goto out; 341 retval = khugepaged_fork(mm, oldmm); 342 if (retval) 343 goto out; 344 345 prev = NULL; 346 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 347 struct file *file; 348 349 if (mpnt->vm_flags & VM_DONTCOPY) { 350 long pages = vma_pages(mpnt); 351 mm->total_vm -= pages; 352 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 353 -pages); 354 continue; 355 } 356 charge = 0; 357 if (mpnt->vm_flags & VM_ACCOUNT) { 358 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 359 if (security_vm_enough_memory(len)) 360 goto fail_nomem; 361 charge = len; 362 } 363 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 364 if (!tmp) 365 goto fail_nomem; 366 *tmp = *mpnt; 367 INIT_LIST_HEAD(&tmp->anon_vma_chain); 368 pol = mpol_dup(vma_policy(mpnt)); 369 retval = PTR_ERR(pol); 370 if (IS_ERR(pol)) 371 goto fail_nomem_policy; 372 vma_set_policy(tmp, pol); 373 tmp->vm_mm = mm; 374 if (anon_vma_fork(tmp, mpnt)) 375 goto fail_nomem_anon_vma_fork; 376 tmp->vm_flags &= ~VM_LOCKED; 377 tmp->vm_next = tmp->vm_prev = NULL; 378 file = tmp->vm_file; 379 if (file) { 380 struct inode *inode = file->f_path.dentry->d_inode; 381 struct address_space *mapping = file->f_mapping; 382 383 get_file(file); 384 if (tmp->vm_flags & VM_DENYWRITE) 385 atomic_dec(&inode->i_writecount); 386 mutex_lock(&mapping->i_mmap_mutex); 387 if (tmp->vm_flags & VM_SHARED) 388 mapping->i_mmap_writable++; 389 flush_dcache_mmap_lock(mapping); 390 /* insert tmp into the share list, just after mpnt */ 391 vma_prio_tree_add(tmp, mpnt); 392 flush_dcache_mmap_unlock(mapping); 393 mutex_unlock(&mapping->i_mmap_mutex); 394 } 395 396 /* 397 * Clear hugetlb-related page reserves for children. This only 398 * affects MAP_PRIVATE mappings. Faults generated by the child 399 * are not guaranteed to succeed, even if read-only 400 */ 401 if (is_vm_hugetlb_page(tmp)) 402 reset_vma_resv_huge_pages(tmp); 403 404 /* 405 * Link in the new vma and copy the page table entries. 406 */ 407 *pprev = tmp; 408 pprev = &tmp->vm_next; 409 tmp->vm_prev = prev; 410 prev = tmp; 411 412 __vma_link_rb(mm, tmp, rb_link, rb_parent); 413 rb_link = &tmp->vm_rb.rb_right; 414 rb_parent = &tmp->vm_rb; 415 416 mm->map_count++; 417 retval = copy_page_range(mm, oldmm, mpnt); 418 419 if (tmp->vm_ops && tmp->vm_ops->open) 420 tmp->vm_ops->open(tmp); 421 422 if (retval) 423 goto out; 424 } 425 /* a new mm has just been created */ 426 arch_dup_mmap(oldmm, mm); 427 retval = 0; 428 out: 429 up_write(&mm->mmap_sem); 430 flush_tlb_mm(oldmm); 431 up_write(&oldmm->mmap_sem); 432 return retval; 433 fail_nomem_anon_vma_fork: 434 mpol_put(pol); 435 fail_nomem_policy: 436 kmem_cache_free(vm_area_cachep, tmp); 437 fail_nomem: 438 retval = -ENOMEM; 439 vm_unacct_memory(charge); 440 goto out; 441 } 442 443 static inline int mm_alloc_pgd(struct mm_struct *mm) 444 { 445 mm->pgd = pgd_alloc(mm); 446 if (unlikely(!mm->pgd)) 447 return -ENOMEM; 448 return 0; 449 } 450 451 static inline void mm_free_pgd(struct mm_struct *mm) 452 { 453 pgd_free(mm, mm->pgd); 454 } 455 #else 456 #define dup_mmap(mm, oldmm) (0) 457 #define mm_alloc_pgd(mm) (0) 458 #define mm_free_pgd(mm) 459 #endif /* CONFIG_MMU */ 460 461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 462 463 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 464 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 465 466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 467 468 static int __init coredump_filter_setup(char *s) 469 { 470 default_dump_filter = 471 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 472 MMF_DUMP_FILTER_MASK; 473 return 1; 474 } 475 476 __setup("coredump_filter=", coredump_filter_setup); 477 478 #include <linux/init_task.h> 479 480 static void mm_init_aio(struct mm_struct *mm) 481 { 482 #ifdef CONFIG_AIO 483 spin_lock_init(&mm->ioctx_lock); 484 INIT_HLIST_HEAD(&mm->ioctx_list); 485 #endif 486 } 487 488 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 489 { 490 atomic_set(&mm->mm_users, 1); 491 atomic_set(&mm->mm_count, 1); 492 init_rwsem(&mm->mmap_sem); 493 INIT_LIST_HEAD(&mm->mmlist); 494 mm->flags = (current->mm) ? 495 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 496 mm->core_state = NULL; 497 mm->nr_ptes = 0; 498 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 499 spin_lock_init(&mm->page_table_lock); 500 mm->free_area_cache = TASK_UNMAPPED_BASE; 501 mm->cached_hole_size = ~0UL; 502 mm_init_aio(mm); 503 mm_init_owner(mm, p); 504 atomic_set(&mm->oom_disable_count, 0); 505 506 if (likely(!mm_alloc_pgd(mm))) { 507 mm->def_flags = 0; 508 mmu_notifier_mm_init(mm); 509 return mm; 510 } 511 512 free_mm(mm); 513 return NULL; 514 } 515 516 /* 517 * Allocate and initialize an mm_struct. 518 */ 519 struct mm_struct *mm_alloc(void) 520 { 521 struct mm_struct *mm; 522 523 mm = allocate_mm(); 524 if (!mm) 525 return NULL; 526 527 memset(mm, 0, sizeof(*mm)); 528 mm_init_cpumask(mm); 529 return mm_init(mm, current); 530 } 531 532 /* 533 * Called when the last reference to the mm 534 * is dropped: either by a lazy thread or by 535 * mmput. Free the page directory and the mm. 536 */ 537 void __mmdrop(struct mm_struct *mm) 538 { 539 BUG_ON(mm == &init_mm); 540 mm_free_pgd(mm); 541 destroy_context(mm); 542 mmu_notifier_mm_destroy(mm); 543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 544 VM_BUG_ON(mm->pmd_huge_pte); 545 #endif 546 free_mm(mm); 547 } 548 EXPORT_SYMBOL_GPL(__mmdrop); 549 550 /* 551 * Decrement the use count and release all resources for an mm. 552 */ 553 void mmput(struct mm_struct *mm) 554 { 555 might_sleep(); 556 557 if (atomic_dec_and_test(&mm->mm_users)) { 558 exit_aio(mm); 559 ksm_exit(mm); 560 khugepaged_exit(mm); /* must run before exit_mmap */ 561 exit_mmap(mm); 562 set_mm_exe_file(mm, NULL); 563 if (!list_empty(&mm->mmlist)) { 564 spin_lock(&mmlist_lock); 565 list_del(&mm->mmlist); 566 spin_unlock(&mmlist_lock); 567 } 568 put_swap_token(mm); 569 if (mm->binfmt) 570 module_put(mm->binfmt->module); 571 mmdrop(mm); 572 } 573 } 574 EXPORT_SYMBOL_GPL(mmput); 575 576 /* 577 * We added or removed a vma mapping the executable. The vmas are only mapped 578 * during exec and are not mapped with the mmap system call. 579 * Callers must hold down_write() on the mm's mmap_sem for these 580 */ 581 void added_exe_file_vma(struct mm_struct *mm) 582 { 583 mm->num_exe_file_vmas++; 584 } 585 586 void removed_exe_file_vma(struct mm_struct *mm) 587 { 588 mm->num_exe_file_vmas--; 589 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) { 590 fput(mm->exe_file); 591 mm->exe_file = NULL; 592 } 593 594 } 595 596 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 597 { 598 if (new_exe_file) 599 get_file(new_exe_file); 600 if (mm->exe_file) 601 fput(mm->exe_file); 602 mm->exe_file = new_exe_file; 603 mm->num_exe_file_vmas = 0; 604 } 605 606 struct file *get_mm_exe_file(struct mm_struct *mm) 607 { 608 struct file *exe_file; 609 610 /* We need mmap_sem to protect against races with removal of 611 * VM_EXECUTABLE vmas */ 612 down_read(&mm->mmap_sem); 613 exe_file = mm->exe_file; 614 if (exe_file) 615 get_file(exe_file); 616 up_read(&mm->mmap_sem); 617 return exe_file; 618 } 619 620 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 621 { 622 /* It's safe to write the exe_file pointer without exe_file_lock because 623 * this is called during fork when the task is not yet in /proc */ 624 newmm->exe_file = get_mm_exe_file(oldmm); 625 } 626 627 /** 628 * get_task_mm - acquire a reference to the task's mm 629 * 630 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 631 * this kernel workthread has transiently adopted a user mm with use_mm, 632 * to do its AIO) is not set and if so returns a reference to it, after 633 * bumping up the use count. User must release the mm via mmput() 634 * after use. Typically used by /proc and ptrace. 635 */ 636 struct mm_struct *get_task_mm(struct task_struct *task) 637 { 638 struct mm_struct *mm; 639 640 task_lock(task); 641 mm = task->mm; 642 if (mm) { 643 if (task->flags & PF_KTHREAD) 644 mm = NULL; 645 else 646 atomic_inc(&mm->mm_users); 647 } 648 task_unlock(task); 649 return mm; 650 } 651 EXPORT_SYMBOL_GPL(get_task_mm); 652 653 /* Please note the differences between mmput and mm_release. 654 * mmput is called whenever we stop holding onto a mm_struct, 655 * error success whatever. 656 * 657 * mm_release is called after a mm_struct has been removed 658 * from the current process. 659 * 660 * This difference is important for error handling, when we 661 * only half set up a mm_struct for a new process and need to restore 662 * the old one. Because we mmput the new mm_struct before 663 * restoring the old one. . . 664 * Eric Biederman 10 January 1998 665 */ 666 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 667 { 668 struct completion *vfork_done = tsk->vfork_done; 669 670 /* Get rid of any futexes when releasing the mm */ 671 #ifdef CONFIG_FUTEX 672 if (unlikely(tsk->robust_list)) { 673 exit_robust_list(tsk); 674 tsk->robust_list = NULL; 675 } 676 #ifdef CONFIG_COMPAT 677 if (unlikely(tsk->compat_robust_list)) { 678 compat_exit_robust_list(tsk); 679 tsk->compat_robust_list = NULL; 680 } 681 #endif 682 if (unlikely(!list_empty(&tsk->pi_state_list))) 683 exit_pi_state_list(tsk); 684 #endif 685 686 /* Get rid of any cached register state */ 687 deactivate_mm(tsk, mm); 688 689 /* notify parent sleeping on vfork() */ 690 if (vfork_done) { 691 tsk->vfork_done = NULL; 692 complete(vfork_done); 693 } 694 695 /* 696 * If we're exiting normally, clear a user-space tid field if 697 * requested. We leave this alone when dying by signal, to leave 698 * the value intact in a core dump, and to save the unnecessary 699 * trouble otherwise. Userland only wants this done for a sys_exit. 700 */ 701 if (tsk->clear_child_tid) { 702 if (!(tsk->flags & PF_SIGNALED) && 703 atomic_read(&mm->mm_users) > 1) { 704 /* 705 * We don't check the error code - if userspace has 706 * not set up a proper pointer then tough luck. 707 */ 708 put_user(0, tsk->clear_child_tid); 709 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 710 1, NULL, NULL, 0); 711 } 712 tsk->clear_child_tid = NULL; 713 } 714 } 715 716 /* 717 * Allocate a new mm structure and copy contents from the 718 * mm structure of the passed in task structure. 719 */ 720 struct mm_struct *dup_mm(struct task_struct *tsk) 721 { 722 struct mm_struct *mm, *oldmm = current->mm; 723 int err; 724 725 if (!oldmm) 726 return NULL; 727 728 mm = allocate_mm(); 729 if (!mm) 730 goto fail_nomem; 731 732 memcpy(mm, oldmm, sizeof(*mm)); 733 mm_init_cpumask(mm); 734 735 /* Initializing for Swap token stuff */ 736 mm->token_priority = 0; 737 mm->last_interval = 0; 738 739 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 740 mm->pmd_huge_pte = NULL; 741 #endif 742 743 if (!mm_init(mm, tsk)) 744 goto fail_nomem; 745 746 if (init_new_context(tsk, mm)) 747 goto fail_nocontext; 748 749 dup_mm_exe_file(oldmm, mm); 750 751 err = dup_mmap(mm, oldmm); 752 if (err) 753 goto free_pt; 754 755 mm->hiwater_rss = get_mm_rss(mm); 756 mm->hiwater_vm = mm->total_vm; 757 758 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 759 goto free_pt; 760 761 return mm; 762 763 free_pt: 764 /* don't put binfmt in mmput, we haven't got module yet */ 765 mm->binfmt = NULL; 766 mmput(mm); 767 768 fail_nomem: 769 return NULL; 770 771 fail_nocontext: 772 /* 773 * If init_new_context() failed, we cannot use mmput() to free the mm 774 * because it calls destroy_context() 775 */ 776 mm_free_pgd(mm); 777 free_mm(mm); 778 return NULL; 779 } 780 781 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 782 { 783 struct mm_struct *mm, *oldmm; 784 int retval; 785 786 tsk->min_flt = tsk->maj_flt = 0; 787 tsk->nvcsw = tsk->nivcsw = 0; 788 #ifdef CONFIG_DETECT_HUNG_TASK 789 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 790 #endif 791 792 tsk->mm = NULL; 793 tsk->active_mm = NULL; 794 795 /* 796 * Are we cloning a kernel thread? 797 * 798 * We need to steal a active VM for that.. 799 */ 800 oldmm = current->mm; 801 if (!oldmm) 802 return 0; 803 804 if (clone_flags & CLONE_VM) { 805 atomic_inc(&oldmm->mm_users); 806 mm = oldmm; 807 goto good_mm; 808 } 809 810 retval = -ENOMEM; 811 mm = dup_mm(tsk); 812 if (!mm) 813 goto fail_nomem; 814 815 good_mm: 816 /* Initializing for Swap token stuff */ 817 mm->token_priority = 0; 818 mm->last_interval = 0; 819 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 820 atomic_inc(&mm->oom_disable_count); 821 822 tsk->mm = mm; 823 tsk->active_mm = mm; 824 return 0; 825 826 fail_nomem: 827 return retval; 828 } 829 830 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 831 { 832 struct fs_struct *fs = current->fs; 833 if (clone_flags & CLONE_FS) { 834 /* tsk->fs is already what we want */ 835 spin_lock(&fs->lock); 836 if (fs->in_exec) { 837 spin_unlock(&fs->lock); 838 return -EAGAIN; 839 } 840 fs->users++; 841 spin_unlock(&fs->lock); 842 return 0; 843 } 844 tsk->fs = copy_fs_struct(fs); 845 if (!tsk->fs) 846 return -ENOMEM; 847 return 0; 848 } 849 850 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 851 { 852 struct files_struct *oldf, *newf; 853 int error = 0; 854 855 /* 856 * A background process may not have any files ... 857 */ 858 oldf = current->files; 859 if (!oldf) 860 goto out; 861 862 if (clone_flags & CLONE_FILES) { 863 atomic_inc(&oldf->count); 864 goto out; 865 } 866 867 newf = dup_fd(oldf, &error); 868 if (!newf) 869 goto out; 870 871 tsk->files = newf; 872 error = 0; 873 out: 874 return error; 875 } 876 877 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 878 { 879 #ifdef CONFIG_BLOCK 880 struct io_context *ioc = current->io_context; 881 882 if (!ioc) 883 return 0; 884 /* 885 * Share io context with parent, if CLONE_IO is set 886 */ 887 if (clone_flags & CLONE_IO) { 888 tsk->io_context = ioc_task_link(ioc); 889 if (unlikely(!tsk->io_context)) 890 return -ENOMEM; 891 } else if (ioprio_valid(ioc->ioprio)) { 892 tsk->io_context = alloc_io_context(GFP_KERNEL, -1); 893 if (unlikely(!tsk->io_context)) 894 return -ENOMEM; 895 896 tsk->io_context->ioprio = ioc->ioprio; 897 } 898 #endif 899 return 0; 900 } 901 902 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 903 { 904 struct sighand_struct *sig; 905 906 if (clone_flags & CLONE_SIGHAND) { 907 atomic_inc(¤t->sighand->count); 908 return 0; 909 } 910 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 911 rcu_assign_pointer(tsk->sighand, sig); 912 if (!sig) 913 return -ENOMEM; 914 atomic_set(&sig->count, 1); 915 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 916 return 0; 917 } 918 919 void __cleanup_sighand(struct sighand_struct *sighand) 920 { 921 if (atomic_dec_and_test(&sighand->count)) 922 kmem_cache_free(sighand_cachep, sighand); 923 } 924 925 926 /* 927 * Initialize POSIX timer handling for a thread group. 928 */ 929 static void posix_cpu_timers_init_group(struct signal_struct *sig) 930 { 931 unsigned long cpu_limit; 932 933 /* Thread group counters. */ 934 thread_group_cputime_init(sig); 935 936 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 937 if (cpu_limit != RLIM_INFINITY) { 938 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 939 sig->cputimer.running = 1; 940 } 941 942 /* The timer lists. */ 943 INIT_LIST_HEAD(&sig->cpu_timers[0]); 944 INIT_LIST_HEAD(&sig->cpu_timers[1]); 945 INIT_LIST_HEAD(&sig->cpu_timers[2]); 946 } 947 948 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 949 { 950 struct signal_struct *sig; 951 952 if (clone_flags & CLONE_THREAD) 953 return 0; 954 955 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 956 tsk->signal = sig; 957 if (!sig) 958 return -ENOMEM; 959 960 sig->nr_threads = 1; 961 atomic_set(&sig->live, 1); 962 atomic_set(&sig->sigcnt, 1); 963 init_waitqueue_head(&sig->wait_chldexit); 964 if (clone_flags & CLONE_NEWPID) 965 sig->flags |= SIGNAL_UNKILLABLE; 966 sig->curr_target = tsk; 967 init_sigpending(&sig->shared_pending); 968 INIT_LIST_HEAD(&sig->posix_timers); 969 970 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 971 sig->real_timer.function = it_real_fn; 972 973 task_lock(current->group_leader); 974 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 975 task_unlock(current->group_leader); 976 977 posix_cpu_timers_init_group(sig); 978 979 tty_audit_fork(sig); 980 sched_autogroup_fork(sig); 981 982 #ifdef CONFIG_CGROUPS 983 init_rwsem(&sig->threadgroup_fork_lock); 984 #endif 985 986 sig->oom_adj = current->signal->oom_adj; 987 sig->oom_score_adj = current->signal->oom_score_adj; 988 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 989 990 mutex_init(&sig->cred_guard_mutex); 991 992 return 0; 993 } 994 995 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 996 { 997 unsigned long new_flags = p->flags; 998 999 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1000 new_flags |= PF_FORKNOEXEC; 1001 new_flags |= PF_STARTING; 1002 p->flags = new_flags; 1003 clear_freeze_flag(p); 1004 } 1005 1006 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1007 { 1008 current->clear_child_tid = tidptr; 1009 1010 return task_pid_vnr(current); 1011 } 1012 1013 static void rt_mutex_init_task(struct task_struct *p) 1014 { 1015 raw_spin_lock_init(&p->pi_lock); 1016 #ifdef CONFIG_RT_MUTEXES 1017 plist_head_init(&p->pi_waiters); 1018 p->pi_blocked_on = NULL; 1019 #endif 1020 } 1021 1022 #ifdef CONFIG_MM_OWNER 1023 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1024 { 1025 mm->owner = p; 1026 } 1027 #endif /* CONFIG_MM_OWNER */ 1028 1029 /* 1030 * Initialize POSIX timer handling for a single task. 1031 */ 1032 static void posix_cpu_timers_init(struct task_struct *tsk) 1033 { 1034 tsk->cputime_expires.prof_exp = cputime_zero; 1035 tsk->cputime_expires.virt_exp = cputime_zero; 1036 tsk->cputime_expires.sched_exp = 0; 1037 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1038 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1039 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1040 } 1041 1042 /* 1043 * This creates a new process as a copy of the old one, 1044 * but does not actually start it yet. 1045 * 1046 * It copies the registers, and all the appropriate 1047 * parts of the process environment (as per the clone 1048 * flags). The actual kick-off is left to the caller. 1049 */ 1050 static struct task_struct *copy_process(unsigned long clone_flags, 1051 unsigned long stack_start, 1052 struct pt_regs *regs, 1053 unsigned long stack_size, 1054 int __user *child_tidptr, 1055 struct pid *pid, 1056 int trace) 1057 { 1058 int retval; 1059 struct task_struct *p; 1060 int cgroup_callbacks_done = 0; 1061 1062 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1063 return ERR_PTR(-EINVAL); 1064 1065 /* 1066 * Thread groups must share signals as well, and detached threads 1067 * can only be started up within the thread group. 1068 */ 1069 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1070 return ERR_PTR(-EINVAL); 1071 1072 /* 1073 * Shared signal handlers imply shared VM. By way of the above, 1074 * thread groups also imply shared VM. Blocking this case allows 1075 * for various simplifications in other code. 1076 */ 1077 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1078 return ERR_PTR(-EINVAL); 1079 1080 /* 1081 * Siblings of global init remain as zombies on exit since they are 1082 * not reaped by their parent (swapper). To solve this and to avoid 1083 * multi-rooted process trees, prevent global and container-inits 1084 * from creating siblings. 1085 */ 1086 if ((clone_flags & CLONE_PARENT) && 1087 current->signal->flags & SIGNAL_UNKILLABLE) 1088 return ERR_PTR(-EINVAL); 1089 1090 retval = security_task_create(clone_flags); 1091 if (retval) 1092 goto fork_out; 1093 1094 retval = -ENOMEM; 1095 p = dup_task_struct(current); 1096 if (!p) 1097 goto fork_out; 1098 1099 ftrace_graph_init_task(p); 1100 1101 rt_mutex_init_task(p); 1102 1103 #ifdef CONFIG_PROVE_LOCKING 1104 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1105 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1106 #endif 1107 retval = -EAGAIN; 1108 if (atomic_read(&p->real_cred->user->processes) >= 1109 task_rlimit(p, RLIMIT_NPROC)) { 1110 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1111 p->real_cred->user != INIT_USER) 1112 goto bad_fork_free; 1113 } 1114 current->flags &= ~PF_NPROC_EXCEEDED; 1115 1116 retval = copy_creds(p, clone_flags); 1117 if (retval < 0) 1118 goto bad_fork_free; 1119 1120 /* 1121 * If multiple threads are within copy_process(), then this check 1122 * triggers too late. This doesn't hurt, the check is only there 1123 * to stop root fork bombs. 1124 */ 1125 retval = -EAGAIN; 1126 if (nr_threads >= max_threads) 1127 goto bad_fork_cleanup_count; 1128 1129 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1130 goto bad_fork_cleanup_count; 1131 1132 p->did_exec = 0; 1133 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1134 copy_flags(clone_flags, p); 1135 INIT_LIST_HEAD(&p->children); 1136 INIT_LIST_HEAD(&p->sibling); 1137 rcu_copy_process(p); 1138 p->vfork_done = NULL; 1139 spin_lock_init(&p->alloc_lock); 1140 1141 init_sigpending(&p->pending); 1142 1143 p->utime = cputime_zero; 1144 p->stime = cputime_zero; 1145 p->gtime = cputime_zero; 1146 p->utimescaled = cputime_zero; 1147 p->stimescaled = cputime_zero; 1148 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1149 p->prev_utime = cputime_zero; 1150 p->prev_stime = cputime_zero; 1151 #endif 1152 #if defined(SPLIT_RSS_COUNTING) 1153 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1154 #endif 1155 1156 p->default_timer_slack_ns = current->timer_slack_ns; 1157 1158 task_io_accounting_init(&p->ioac); 1159 acct_clear_integrals(p); 1160 1161 posix_cpu_timers_init(p); 1162 1163 do_posix_clock_monotonic_gettime(&p->start_time); 1164 p->real_start_time = p->start_time; 1165 monotonic_to_bootbased(&p->real_start_time); 1166 p->io_context = NULL; 1167 p->audit_context = NULL; 1168 if (clone_flags & CLONE_THREAD) 1169 threadgroup_fork_read_lock(current); 1170 cgroup_fork(p); 1171 #ifdef CONFIG_NUMA 1172 p->mempolicy = mpol_dup(p->mempolicy); 1173 if (IS_ERR(p->mempolicy)) { 1174 retval = PTR_ERR(p->mempolicy); 1175 p->mempolicy = NULL; 1176 goto bad_fork_cleanup_cgroup; 1177 } 1178 mpol_fix_fork_child_flag(p); 1179 #endif 1180 #ifdef CONFIG_CPUSETS 1181 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1182 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1183 #endif 1184 #ifdef CONFIG_TRACE_IRQFLAGS 1185 p->irq_events = 0; 1186 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1187 p->hardirqs_enabled = 1; 1188 #else 1189 p->hardirqs_enabled = 0; 1190 #endif 1191 p->hardirq_enable_ip = 0; 1192 p->hardirq_enable_event = 0; 1193 p->hardirq_disable_ip = _THIS_IP_; 1194 p->hardirq_disable_event = 0; 1195 p->softirqs_enabled = 1; 1196 p->softirq_enable_ip = _THIS_IP_; 1197 p->softirq_enable_event = 0; 1198 p->softirq_disable_ip = 0; 1199 p->softirq_disable_event = 0; 1200 p->hardirq_context = 0; 1201 p->softirq_context = 0; 1202 #endif 1203 #ifdef CONFIG_LOCKDEP 1204 p->lockdep_depth = 0; /* no locks held yet */ 1205 p->curr_chain_key = 0; 1206 p->lockdep_recursion = 0; 1207 #endif 1208 1209 #ifdef CONFIG_DEBUG_MUTEXES 1210 p->blocked_on = NULL; /* not blocked yet */ 1211 #endif 1212 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1213 p->memcg_batch.do_batch = 0; 1214 p->memcg_batch.memcg = NULL; 1215 #endif 1216 1217 /* Perform scheduler related setup. Assign this task to a CPU. */ 1218 sched_fork(p); 1219 1220 retval = perf_event_init_task(p); 1221 if (retval) 1222 goto bad_fork_cleanup_policy; 1223 retval = audit_alloc(p); 1224 if (retval) 1225 goto bad_fork_cleanup_policy; 1226 /* copy all the process information */ 1227 retval = copy_semundo(clone_flags, p); 1228 if (retval) 1229 goto bad_fork_cleanup_audit; 1230 retval = copy_files(clone_flags, p); 1231 if (retval) 1232 goto bad_fork_cleanup_semundo; 1233 retval = copy_fs(clone_flags, p); 1234 if (retval) 1235 goto bad_fork_cleanup_files; 1236 retval = copy_sighand(clone_flags, p); 1237 if (retval) 1238 goto bad_fork_cleanup_fs; 1239 retval = copy_signal(clone_flags, p); 1240 if (retval) 1241 goto bad_fork_cleanup_sighand; 1242 retval = copy_mm(clone_flags, p); 1243 if (retval) 1244 goto bad_fork_cleanup_signal; 1245 retval = copy_namespaces(clone_flags, p); 1246 if (retval) 1247 goto bad_fork_cleanup_mm; 1248 retval = copy_io(clone_flags, p); 1249 if (retval) 1250 goto bad_fork_cleanup_namespaces; 1251 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); 1252 if (retval) 1253 goto bad_fork_cleanup_io; 1254 1255 if (pid != &init_struct_pid) { 1256 retval = -ENOMEM; 1257 pid = alloc_pid(p->nsproxy->pid_ns); 1258 if (!pid) 1259 goto bad_fork_cleanup_io; 1260 } 1261 1262 p->pid = pid_nr(pid); 1263 p->tgid = p->pid; 1264 if (clone_flags & CLONE_THREAD) 1265 p->tgid = current->tgid; 1266 1267 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1268 /* 1269 * Clear TID on mm_release()? 1270 */ 1271 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1272 #ifdef CONFIG_BLOCK 1273 p->plug = NULL; 1274 #endif 1275 #ifdef CONFIG_FUTEX 1276 p->robust_list = NULL; 1277 #ifdef CONFIG_COMPAT 1278 p->compat_robust_list = NULL; 1279 #endif 1280 INIT_LIST_HEAD(&p->pi_state_list); 1281 p->pi_state_cache = NULL; 1282 #endif 1283 /* 1284 * sigaltstack should be cleared when sharing the same VM 1285 */ 1286 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1287 p->sas_ss_sp = p->sas_ss_size = 0; 1288 1289 /* 1290 * Syscall tracing and stepping should be turned off in the 1291 * child regardless of CLONE_PTRACE. 1292 */ 1293 user_disable_single_step(p); 1294 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1295 #ifdef TIF_SYSCALL_EMU 1296 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1297 #endif 1298 clear_all_latency_tracing(p); 1299 1300 /* ok, now we should be set up.. */ 1301 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1302 p->pdeath_signal = 0; 1303 p->exit_state = 0; 1304 1305 /* 1306 * Ok, make it visible to the rest of the system. 1307 * We dont wake it up yet. 1308 */ 1309 p->group_leader = p; 1310 INIT_LIST_HEAD(&p->thread_group); 1311 1312 /* Now that the task is set up, run cgroup callbacks if 1313 * necessary. We need to run them before the task is visible 1314 * on the tasklist. */ 1315 cgroup_fork_callbacks(p); 1316 cgroup_callbacks_done = 1; 1317 1318 /* Need tasklist lock for parent etc handling! */ 1319 write_lock_irq(&tasklist_lock); 1320 1321 /* CLONE_PARENT re-uses the old parent */ 1322 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1323 p->real_parent = current->real_parent; 1324 p->parent_exec_id = current->parent_exec_id; 1325 } else { 1326 p->real_parent = current; 1327 p->parent_exec_id = current->self_exec_id; 1328 } 1329 1330 spin_lock(¤t->sighand->siglock); 1331 1332 /* 1333 * Process group and session signals need to be delivered to just the 1334 * parent before the fork or both the parent and the child after the 1335 * fork. Restart if a signal comes in before we add the new process to 1336 * it's process group. 1337 * A fatal signal pending means that current will exit, so the new 1338 * thread can't slip out of an OOM kill (or normal SIGKILL). 1339 */ 1340 recalc_sigpending(); 1341 if (signal_pending(current)) { 1342 spin_unlock(¤t->sighand->siglock); 1343 write_unlock_irq(&tasklist_lock); 1344 retval = -ERESTARTNOINTR; 1345 goto bad_fork_free_pid; 1346 } 1347 1348 if (clone_flags & CLONE_THREAD) { 1349 current->signal->nr_threads++; 1350 atomic_inc(¤t->signal->live); 1351 atomic_inc(¤t->signal->sigcnt); 1352 p->group_leader = current->group_leader; 1353 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1354 } 1355 1356 if (likely(p->pid)) { 1357 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1358 1359 if (thread_group_leader(p)) { 1360 if (is_child_reaper(pid)) 1361 p->nsproxy->pid_ns->child_reaper = p; 1362 1363 p->signal->leader_pid = pid; 1364 p->signal->tty = tty_kref_get(current->signal->tty); 1365 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1366 attach_pid(p, PIDTYPE_SID, task_session(current)); 1367 list_add_tail(&p->sibling, &p->real_parent->children); 1368 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1369 __this_cpu_inc(process_counts); 1370 } 1371 attach_pid(p, PIDTYPE_PID, pid); 1372 nr_threads++; 1373 } 1374 1375 total_forks++; 1376 spin_unlock(¤t->sighand->siglock); 1377 write_unlock_irq(&tasklist_lock); 1378 proc_fork_connector(p); 1379 cgroup_post_fork(p); 1380 if (clone_flags & CLONE_THREAD) 1381 threadgroup_fork_read_unlock(current); 1382 perf_event_fork(p); 1383 return p; 1384 1385 bad_fork_free_pid: 1386 if (pid != &init_struct_pid) 1387 free_pid(pid); 1388 bad_fork_cleanup_io: 1389 if (p->io_context) 1390 exit_io_context(p); 1391 bad_fork_cleanup_namespaces: 1392 exit_task_namespaces(p); 1393 bad_fork_cleanup_mm: 1394 if (p->mm) { 1395 task_lock(p); 1396 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 1397 atomic_dec(&p->mm->oom_disable_count); 1398 task_unlock(p); 1399 mmput(p->mm); 1400 } 1401 bad_fork_cleanup_signal: 1402 if (!(clone_flags & CLONE_THREAD)) 1403 free_signal_struct(p->signal); 1404 bad_fork_cleanup_sighand: 1405 __cleanup_sighand(p->sighand); 1406 bad_fork_cleanup_fs: 1407 exit_fs(p); /* blocking */ 1408 bad_fork_cleanup_files: 1409 exit_files(p); /* blocking */ 1410 bad_fork_cleanup_semundo: 1411 exit_sem(p); 1412 bad_fork_cleanup_audit: 1413 audit_free(p); 1414 bad_fork_cleanup_policy: 1415 perf_event_free_task(p); 1416 #ifdef CONFIG_NUMA 1417 mpol_put(p->mempolicy); 1418 bad_fork_cleanup_cgroup: 1419 #endif 1420 if (clone_flags & CLONE_THREAD) 1421 threadgroup_fork_read_unlock(current); 1422 cgroup_exit(p, cgroup_callbacks_done); 1423 delayacct_tsk_free(p); 1424 module_put(task_thread_info(p)->exec_domain->module); 1425 bad_fork_cleanup_count: 1426 atomic_dec(&p->cred->user->processes); 1427 exit_creds(p); 1428 bad_fork_free: 1429 free_task(p); 1430 fork_out: 1431 return ERR_PTR(retval); 1432 } 1433 1434 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1435 { 1436 memset(regs, 0, sizeof(struct pt_regs)); 1437 return regs; 1438 } 1439 1440 static inline void init_idle_pids(struct pid_link *links) 1441 { 1442 enum pid_type type; 1443 1444 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1445 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1446 links[type].pid = &init_struct_pid; 1447 } 1448 } 1449 1450 struct task_struct * __cpuinit fork_idle(int cpu) 1451 { 1452 struct task_struct *task; 1453 struct pt_regs regs; 1454 1455 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1456 &init_struct_pid, 0); 1457 if (!IS_ERR(task)) { 1458 init_idle_pids(task->pids); 1459 init_idle(task, cpu); 1460 } 1461 1462 return task; 1463 } 1464 1465 /* 1466 * Ok, this is the main fork-routine. 1467 * 1468 * It copies the process, and if successful kick-starts 1469 * it and waits for it to finish using the VM if required. 1470 */ 1471 long do_fork(unsigned long clone_flags, 1472 unsigned long stack_start, 1473 struct pt_regs *regs, 1474 unsigned long stack_size, 1475 int __user *parent_tidptr, 1476 int __user *child_tidptr) 1477 { 1478 struct task_struct *p; 1479 int trace = 0; 1480 long nr; 1481 1482 /* 1483 * Do some preliminary argument and permissions checking before we 1484 * actually start allocating stuff 1485 */ 1486 if (clone_flags & CLONE_NEWUSER) { 1487 if (clone_flags & CLONE_THREAD) 1488 return -EINVAL; 1489 /* hopefully this check will go away when userns support is 1490 * complete 1491 */ 1492 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || 1493 !capable(CAP_SETGID)) 1494 return -EPERM; 1495 } 1496 1497 /* 1498 * Determine whether and which event to report to ptracer. When 1499 * called from kernel_thread or CLONE_UNTRACED is explicitly 1500 * requested, no event is reported; otherwise, report if the event 1501 * for the type of forking is enabled. 1502 */ 1503 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) { 1504 if (clone_flags & CLONE_VFORK) 1505 trace = PTRACE_EVENT_VFORK; 1506 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1507 trace = PTRACE_EVENT_CLONE; 1508 else 1509 trace = PTRACE_EVENT_FORK; 1510 1511 if (likely(!ptrace_event_enabled(current, trace))) 1512 trace = 0; 1513 } 1514 1515 p = copy_process(clone_flags, stack_start, regs, stack_size, 1516 child_tidptr, NULL, trace); 1517 /* 1518 * Do this prior waking up the new thread - the thread pointer 1519 * might get invalid after that point, if the thread exits quickly. 1520 */ 1521 if (!IS_ERR(p)) { 1522 struct completion vfork; 1523 1524 trace_sched_process_fork(current, p); 1525 1526 nr = task_pid_vnr(p); 1527 1528 if (clone_flags & CLONE_PARENT_SETTID) 1529 put_user(nr, parent_tidptr); 1530 1531 if (clone_flags & CLONE_VFORK) { 1532 p->vfork_done = &vfork; 1533 init_completion(&vfork); 1534 } 1535 1536 audit_finish_fork(p); 1537 1538 /* 1539 * We set PF_STARTING at creation in case tracing wants to 1540 * use this to distinguish a fully live task from one that 1541 * hasn't finished SIGSTOP raising yet. Now we clear it 1542 * and set the child going. 1543 */ 1544 p->flags &= ~PF_STARTING; 1545 1546 wake_up_new_task(p); 1547 1548 /* forking complete and child started to run, tell ptracer */ 1549 if (unlikely(trace)) 1550 ptrace_event(trace, nr); 1551 1552 if (clone_flags & CLONE_VFORK) { 1553 freezer_do_not_count(); 1554 wait_for_completion(&vfork); 1555 freezer_count(); 1556 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); 1557 } 1558 } else { 1559 nr = PTR_ERR(p); 1560 } 1561 return nr; 1562 } 1563 1564 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1565 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1566 #endif 1567 1568 static void sighand_ctor(void *data) 1569 { 1570 struct sighand_struct *sighand = data; 1571 1572 spin_lock_init(&sighand->siglock); 1573 init_waitqueue_head(&sighand->signalfd_wqh); 1574 } 1575 1576 void __init proc_caches_init(void) 1577 { 1578 sighand_cachep = kmem_cache_create("sighand_cache", 1579 sizeof(struct sighand_struct), 0, 1580 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1581 SLAB_NOTRACK, sighand_ctor); 1582 signal_cachep = kmem_cache_create("signal_cache", 1583 sizeof(struct signal_struct), 0, 1584 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1585 files_cachep = kmem_cache_create("files_cache", 1586 sizeof(struct files_struct), 0, 1587 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1588 fs_cachep = kmem_cache_create("fs_cache", 1589 sizeof(struct fs_struct), 0, 1590 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1591 /* 1592 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1593 * whole struct cpumask for the OFFSTACK case. We could change 1594 * this to *only* allocate as much of it as required by the 1595 * maximum number of CPU's we can ever have. The cpumask_allocation 1596 * is at the end of the structure, exactly for that reason. 1597 */ 1598 mm_cachep = kmem_cache_create("mm_struct", 1599 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1600 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1601 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1602 mmap_init(); 1603 nsproxy_cache_init(); 1604 } 1605 1606 /* 1607 * Check constraints on flags passed to the unshare system call. 1608 */ 1609 static int check_unshare_flags(unsigned long unshare_flags) 1610 { 1611 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1612 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1613 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET)) 1614 return -EINVAL; 1615 /* 1616 * Not implemented, but pretend it works if there is nothing to 1617 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1618 * needs to unshare vm. 1619 */ 1620 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1621 /* FIXME: get_task_mm() increments ->mm_users */ 1622 if (atomic_read(¤t->mm->mm_users) > 1) 1623 return -EINVAL; 1624 } 1625 1626 return 0; 1627 } 1628 1629 /* 1630 * Unshare the filesystem structure if it is being shared 1631 */ 1632 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1633 { 1634 struct fs_struct *fs = current->fs; 1635 1636 if (!(unshare_flags & CLONE_FS) || !fs) 1637 return 0; 1638 1639 /* don't need lock here; in the worst case we'll do useless copy */ 1640 if (fs->users == 1) 1641 return 0; 1642 1643 *new_fsp = copy_fs_struct(fs); 1644 if (!*new_fsp) 1645 return -ENOMEM; 1646 1647 return 0; 1648 } 1649 1650 /* 1651 * Unshare file descriptor table if it is being shared 1652 */ 1653 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1654 { 1655 struct files_struct *fd = current->files; 1656 int error = 0; 1657 1658 if ((unshare_flags & CLONE_FILES) && 1659 (fd && atomic_read(&fd->count) > 1)) { 1660 *new_fdp = dup_fd(fd, &error); 1661 if (!*new_fdp) 1662 return error; 1663 } 1664 1665 return 0; 1666 } 1667 1668 /* 1669 * unshare allows a process to 'unshare' part of the process 1670 * context which was originally shared using clone. copy_* 1671 * functions used by do_fork() cannot be used here directly 1672 * because they modify an inactive task_struct that is being 1673 * constructed. Here we are modifying the current, active, 1674 * task_struct. 1675 */ 1676 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1677 { 1678 struct fs_struct *fs, *new_fs = NULL; 1679 struct files_struct *fd, *new_fd = NULL; 1680 struct nsproxy *new_nsproxy = NULL; 1681 int do_sysvsem = 0; 1682 int err; 1683 1684 err = check_unshare_flags(unshare_flags); 1685 if (err) 1686 goto bad_unshare_out; 1687 1688 /* 1689 * If unsharing namespace, must also unshare filesystem information. 1690 */ 1691 if (unshare_flags & CLONE_NEWNS) 1692 unshare_flags |= CLONE_FS; 1693 /* 1694 * CLONE_NEWIPC must also detach from the undolist: after switching 1695 * to a new ipc namespace, the semaphore arrays from the old 1696 * namespace are unreachable. 1697 */ 1698 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1699 do_sysvsem = 1; 1700 err = unshare_fs(unshare_flags, &new_fs); 1701 if (err) 1702 goto bad_unshare_out; 1703 err = unshare_fd(unshare_flags, &new_fd); 1704 if (err) 1705 goto bad_unshare_cleanup_fs; 1706 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs); 1707 if (err) 1708 goto bad_unshare_cleanup_fd; 1709 1710 if (new_fs || new_fd || do_sysvsem || new_nsproxy) { 1711 if (do_sysvsem) { 1712 /* 1713 * CLONE_SYSVSEM is equivalent to sys_exit(). 1714 */ 1715 exit_sem(current); 1716 } 1717 1718 if (new_nsproxy) { 1719 switch_task_namespaces(current, new_nsproxy); 1720 new_nsproxy = NULL; 1721 } 1722 1723 task_lock(current); 1724 1725 if (new_fs) { 1726 fs = current->fs; 1727 spin_lock(&fs->lock); 1728 current->fs = new_fs; 1729 if (--fs->users) 1730 new_fs = NULL; 1731 else 1732 new_fs = fs; 1733 spin_unlock(&fs->lock); 1734 } 1735 1736 if (new_fd) { 1737 fd = current->files; 1738 current->files = new_fd; 1739 new_fd = fd; 1740 } 1741 1742 task_unlock(current); 1743 } 1744 1745 if (new_nsproxy) 1746 put_nsproxy(new_nsproxy); 1747 1748 bad_unshare_cleanup_fd: 1749 if (new_fd) 1750 put_files_struct(new_fd); 1751 1752 bad_unshare_cleanup_fs: 1753 if (new_fs) 1754 free_fs_struct(new_fs); 1755 1756 bad_unshare_out: 1757 return err; 1758 } 1759 1760 /* 1761 * Helper to unshare the files of the current task. 1762 * We don't want to expose copy_files internals to 1763 * the exec layer of the kernel. 1764 */ 1765 1766 int unshare_files(struct files_struct **displaced) 1767 { 1768 struct task_struct *task = current; 1769 struct files_struct *copy = NULL; 1770 int error; 1771 1772 error = unshare_fd(CLONE_FILES, ©); 1773 if (error || !copy) { 1774 *displaced = NULL; 1775 return error; 1776 } 1777 *displaced = task->files; 1778 task_lock(task); 1779 task->files = copy; 1780 task_unlock(task); 1781 return 0; 1782 } 1783