1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/hmm.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/blkdev.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 98 #include <asm/pgtable.h> 99 #include <asm/pgalloc.h> 100 #include <linux/uaccess.h> 101 #include <asm/mmu_context.h> 102 #include <asm/cacheflush.h> 103 #include <asm/tlbflush.h> 104 105 #include <trace/events/sched.h> 106 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/task.h> 109 110 /* 111 * Minimum number of threads to boot the kernel 112 */ 113 #define MIN_THREADS 20 114 115 /* 116 * Maximum number of threads 117 */ 118 #define MAX_THREADS FUTEX_TID_MASK 119 120 /* 121 * Protected counters by write_lock_irq(&tasklist_lock) 122 */ 123 unsigned long total_forks; /* Handle normal Linux uptimes. */ 124 int nr_threads; /* The idle threads do not count.. */ 125 126 static int max_threads; /* tunable limit on nr_threads */ 127 128 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 129 130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 131 132 #ifdef CONFIG_PROVE_RCU 133 int lockdep_tasklist_lock_is_held(void) 134 { 135 return lockdep_is_held(&tasklist_lock); 136 } 137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 138 #endif /* #ifdef CONFIG_PROVE_RCU */ 139 140 int nr_processes(void) 141 { 142 int cpu; 143 int total = 0; 144 145 for_each_possible_cpu(cpu) 146 total += per_cpu(process_counts, cpu); 147 148 return total; 149 } 150 151 void __weak arch_release_task_struct(struct task_struct *tsk) 152 { 153 } 154 155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 156 static struct kmem_cache *task_struct_cachep; 157 158 static inline struct task_struct *alloc_task_struct_node(int node) 159 { 160 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 161 } 162 163 static inline void free_task_struct(struct task_struct *tsk) 164 { 165 kmem_cache_free(task_struct_cachep, tsk); 166 } 167 #endif 168 169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 170 171 /* 172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 173 * kmemcache based allocator. 174 */ 175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 176 177 #ifdef CONFIG_VMAP_STACK 178 /* 179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 180 * flush. Try to minimize the number of calls by caching stacks. 181 */ 182 #define NR_CACHED_STACKS 2 183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 184 185 static int free_vm_stack_cache(unsigned int cpu) 186 { 187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 188 int i; 189 190 for (i = 0; i < NR_CACHED_STACKS; i++) { 191 struct vm_struct *vm_stack = cached_vm_stacks[i]; 192 193 if (!vm_stack) 194 continue; 195 196 vfree(vm_stack->addr); 197 cached_vm_stacks[i] = NULL; 198 } 199 200 return 0; 201 } 202 #endif 203 204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 205 { 206 #ifdef CONFIG_VMAP_STACK 207 void *stack; 208 int i; 209 210 for (i = 0; i < NR_CACHED_STACKS; i++) { 211 struct vm_struct *s; 212 213 s = this_cpu_xchg(cached_stacks[i], NULL); 214 215 if (!s) 216 continue; 217 218 /* Clear stale pointers from reused stack. */ 219 memset(s->addr, 0, THREAD_SIZE); 220 221 tsk->stack_vm_area = s; 222 tsk->stack = s->addr; 223 return s->addr; 224 } 225 226 /* 227 * Allocated stacks are cached and later reused by new threads, 228 * so memcg accounting is performed manually on assigning/releasing 229 * stacks to tasks. Drop __GFP_ACCOUNT. 230 */ 231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 232 VMALLOC_START, VMALLOC_END, 233 THREADINFO_GFP & ~__GFP_ACCOUNT, 234 PAGE_KERNEL, 235 0, node, __builtin_return_address(0)); 236 237 /* 238 * We can't call find_vm_area() in interrupt context, and 239 * free_thread_stack() can be called in interrupt context, 240 * so cache the vm_struct. 241 */ 242 if (stack) { 243 tsk->stack_vm_area = find_vm_area(stack); 244 tsk->stack = stack; 245 } 246 return stack; 247 #else 248 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 249 THREAD_SIZE_ORDER); 250 251 if (likely(page)) { 252 tsk->stack = page_address(page); 253 return tsk->stack; 254 } 255 return NULL; 256 #endif 257 } 258 259 static inline void free_thread_stack(struct task_struct *tsk) 260 { 261 #ifdef CONFIG_VMAP_STACK 262 struct vm_struct *vm = task_stack_vm_area(tsk); 263 264 if (vm) { 265 int i; 266 267 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 268 mod_memcg_page_state(vm->pages[i], 269 MEMCG_KERNEL_STACK_KB, 270 -(int)(PAGE_SIZE / 1024)); 271 272 memcg_kmem_uncharge(vm->pages[i], 0); 273 } 274 275 for (i = 0; i < NR_CACHED_STACKS; i++) { 276 if (this_cpu_cmpxchg(cached_stacks[i], 277 NULL, tsk->stack_vm_area) != NULL) 278 continue; 279 280 return; 281 } 282 283 vfree_atomic(tsk->stack); 284 return; 285 } 286 #endif 287 288 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 289 } 290 # else 291 static struct kmem_cache *thread_stack_cache; 292 293 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 294 int node) 295 { 296 unsigned long *stack; 297 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 298 tsk->stack = stack; 299 return stack; 300 } 301 302 static void free_thread_stack(struct task_struct *tsk) 303 { 304 kmem_cache_free(thread_stack_cache, tsk->stack); 305 } 306 307 void thread_stack_cache_init(void) 308 { 309 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 310 THREAD_SIZE, THREAD_SIZE, 0, 0, 311 THREAD_SIZE, NULL); 312 BUG_ON(thread_stack_cache == NULL); 313 } 314 # endif 315 #endif 316 317 /* SLAB cache for signal_struct structures (tsk->signal) */ 318 static struct kmem_cache *signal_cachep; 319 320 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 321 struct kmem_cache *sighand_cachep; 322 323 /* SLAB cache for files_struct structures (tsk->files) */ 324 struct kmem_cache *files_cachep; 325 326 /* SLAB cache for fs_struct structures (tsk->fs) */ 327 struct kmem_cache *fs_cachep; 328 329 /* SLAB cache for vm_area_struct structures */ 330 static struct kmem_cache *vm_area_cachep; 331 332 /* SLAB cache for mm_struct structures (tsk->mm) */ 333 static struct kmem_cache *mm_cachep; 334 335 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 336 { 337 struct vm_area_struct *vma; 338 339 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 340 if (vma) 341 vma_init(vma, mm); 342 return vma; 343 } 344 345 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 346 { 347 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 348 349 if (new) { 350 *new = *orig; 351 INIT_LIST_HEAD(&new->anon_vma_chain); 352 } 353 return new; 354 } 355 356 void vm_area_free(struct vm_area_struct *vma) 357 { 358 kmem_cache_free(vm_area_cachep, vma); 359 } 360 361 static void account_kernel_stack(struct task_struct *tsk, int account) 362 { 363 void *stack = task_stack_page(tsk); 364 struct vm_struct *vm = task_stack_vm_area(tsk); 365 366 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 367 368 if (vm) { 369 int i; 370 371 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 372 373 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 374 mod_zone_page_state(page_zone(vm->pages[i]), 375 NR_KERNEL_STACK_KB, 376 PAGE_SIZE / 1024 * account); 377 } 378 } else { 379 /* 380 * All stack pages are in the same zone and belong to the 381 * same memcg. 382 */ 383 struct page *first_page = virt_to_page(stack); 384 385 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 386 THREAD_SIZE / 1024 * account); 387 388 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 389 account * (THREAD_SIZE / 1024)); 390 } 391 } 392 393 static int memcg_charge_kernel_stack(struct task_struct *tsk) 394 { 395 #ifdef CONFIG_VMAP_STACK 396 struct vm_struct *vm = task_stack_vm_area(tsk); 397 int ret; 398 399 if (vm) { 400 int i; 401 402 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 403 /* 404 * If memcg_kmem_charge() fails, page->mem_cgroup 405 * pointer is NULL, and both memcg_kmem_uncharge() 406 * and mod_memcg_page_state() in free_thread_stack() 407 * will ignore this page. So it's safe. 408 */ 409 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); 410 if (ret) 411 return ret; 412 413 mod_memcg_page_state(vm->pages[i], 414 MEMCG_KERNEL_STACK_KB, 415 PAGE_SIZE / 1024); 416 } 417 } 418 #endif 419 return 0; 420 } 421 422 static void release_task_stack(struct task_struct *tsk) 423 { 424 if (WARN_ON(tsk->state != TASK_DEAD)) 425 return; /* Better to leak the stack than to free prematurely */ 426 427 account_kernel_stack(tsk, -1); 428 free_thread_stack(tsk); 429 tsk->stack = NULL; 430 #ifdef CONFIG_VMAP_STACK 431 tsk->stack_vm_area = NULL; 432 #endif 433 } 434 435 #ifdef CONFIG_THREAD_INFO_IN_TASK 436 void put_task_stack(struct task_struct *tsk) 437 { 438 if (refcount_dec_and_test(&tsk->stack_refcount)) 439 release_task_stack(tsk); 440 } 441 #endif 442 443 void free_task(struct task_struct *tsk) 444 { 445 #ifndef CONFIG_THREAD_INFO_IN_TASK 446 /* 447 * The task is finally done with both the stack and thread_info, 448 * so free both. 449 */ 450 release_task_stack(tsk); 451 #else 452 /* 453 * If the task had a separate stack allocation, it should be gone 454 * by now. 455 */ 456 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 457 #endif 458 rt_mutex_debug_task_free(tsk); 459 ftrace_graph_exit_task(tsk); 460 put_seccomp_filter(tsk); 461 arch_release_task_struct(tsk); 462 if (tsk->flags & PF_KTHREAD) 463 free_kthread_struct(tsk); 464 free_task_struct(tsk); 465 } 466 EXPORT_SYMBOL(free_task); 467 468 #ifdef CONFIG_MMU 469 static __latent_entropy int dup_mmap(struct mm_struct *mm, 470 struct mm_struct *oldmm) 471 { 472 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 473 struct rb_node **rb_link, *rb_parent; 474 int retval; 475 unsigned long charge; 476 LIST_HEAD(uf); 477 478 uprobe_start_dup_mmap(); 479 if (down_write_killable(&oldmm->mmap_sem)) { 480 retval = -EINTR; 481 goto fail_uprobe_end; 482 } 483 flush_cache_dup_mm(oldmm); 484 uprobe_dup_mmap(oldmm, mm); 485 /* 486 * Not linked in yet - no deadlock potential: 487 */ 488 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 489 490 /* No ordering required: file already has been exposed. */ 491 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 492 493 mm->total_vm = oldmm->total_vm; 494 mm->data_vm = oldmm->data_vm; 495 mm->exec_vm = oldmm->exec_vm; 496 mm->stack_vm = oldmm->stack_vm; 497 498 rb_link = &mm->mm_rb.rb_node; 499 rb_parent = NULL; 500 pprev = &mm->mmap; 501 retval = ksm_fork(mm, oldmm); 502 if (retval) 503 goto out; 504 retval = khugepaged_fork(mm, oldmm); 505 if (retval) 506 goto out; 507 508 prev = NULL; 509 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 510 struct file *file; 511 512 if (mpnt->vm_flags & VM_DONTCOPY) { 513 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 514 continue; 515 } 516 charge = 0; 517 /* 518 * Don't duplicate many vmas if we've been oom-killed (for 519 * example) 520 */ 521 if (fatal_signal_pending(current)) { 522 retval = -EINTR; 523 goto out; 524 } 525 if (mpnt->vm_flags & VM_ACCOUNT) { 526 unsigned long len = vma_pages(mpnt); 527 528 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 529 goto fail_nomem; 530 charge = len; 531 } 532 tmp = vm_area_dup(mpnt); 533 if (!tmp) 534 goto fail_nomem; 535 retval = vma_dup_policy(mpnt, tmp); 536 if (retval) 537 goto fail_nomem_policy; 538 tmp->vm_mm = mm; 539 retval = dup_userfaultfd(tmp, &uf); 540 if (retval) 541 goto fail_nomem_anon_vma_fork; 542 if (tmp->vm_flags & VM_WIPEONFORK) { 543 /* VM_WIPEONFORK gets a clean slate in the child. */ 544 tmp->anon_vma = NULL; 545 if (anon_vma_prepare(tmp)) 546 goto fail_nomem_anon_vma_fork; 547 } else if (anon_vma_fork(tmp, mpnt)) 548 goto fail_nomem_anon_vma_fork; 549 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 550 tmp->vm_next = tmp->vm_prev = NULL; 551 file = tmp->vm_file; 552 if (file) { 553 struct inode *inode = file_inode(file); 554 struct address_space *mapping = file->f_mapping; 555 556 get_file(file); 557 if (tmp->vm_flags & VM_DENYWRITE) 558 atomic_dec(&inode->i_writecount); 559 i_mmap_lock_write(mapping); 560 if (tmp->vm_flags & VM_SHARED) 561 atomic_inc(&mapping->i_mmap_writable); 562 flush_dcache_mmap_lock(mapping); 563 /* insert tmp into the share list, just after mpnt */ 564 vma_interval_tree_insert_after(tmp, mpnt, 565 &mapping->i_mmap); 566 flush_dcache_mmap_unlock(mapping); 567 i_mmap_unlock_write(mapping); 568 } 569 570 /* 571 * Clear hugetlb-related page reserves for children. This only 572 * affects MAP_PRIVATE mappings. Faults generated by the child 573 * are not guaranteed to succeed, even if read-only 574 */ 575 if (is_vm_hugetlb_page(tmp)) 576 reset_vma_resv_huge_pages(tmp); 577 578 /* 579 * Link in the new vma and copy the page table entries. 580 */ 581 *pprev = tmp; 582 pprev = &tmp->vm_next; 583 tmp->vm_prev = prev; 584 prev = tmp; 585 586 __vma_link_rb(mm, tmp, rb_link, rb_parent); 587 rb_link = &tmp->vm_rb.rb_right; 588 rb_parent = &tmp->vm_rb; 589 590 mm->map_count++; 591 if (!(tmp->vm_flags & VM_WIPEONFORK)) 592 retval = copy_page_range(mm, oldmm, mpnt); 593 594 if (tmp->vm_ops && tmp->vm_ops->open) 595 tmp->vm_ops->open(tmp); 596 597 if (retval) 598 goto out; 599 } 600 /* a new mm has just been created */ 601 retval = arch_dup_mmap(oldmm, mm); 602 out: 603 up_write(&mm->mmap_sem); 604 flush_tlb_mm(oldmm); 605 up_write(&oldmm->mmap_sem); 606 dup_userfaultfd_complete(&uf); 607 fail_uprobe_end: 608 uprobe_end_dup_mmap(); 609 return retval; 610 fail_nomem_anon_vma_fork: 611 mpol_put(vma_policy(tmp)); 612 fail_nomem_policy: 613 vm_area_free(tmp); 614 fail_nomem: 615 retval = -ENOMEM; 616 vm_unacct_memory(charge); 617 goto out; 618 } 619 620 static inline int mm_alloc_pgd(struct mm_struct *mm) 621 { 622 mm->pgd = pgd_alloc(mm); 623 if (unlikely(!mm->pgd)) 624 return -ENOMEM; 625 return 0; 626 } 627 628 static inline void mm_free_pgd(struct mm_struct *mm) 629 { 630 pgd_free(mm, mm->pgd); 631 } 632 #else 633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 634 { 635 down_write(&oldmm->mmap_sem); 636 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 637 up_write(&oldmm->mmap_sem); 638 return 0; 639 } 640 #define mm_alloc_pgd(mm) (0) 641 #define mm_free_pgd(mm) 642 #endif /* CONFIG_MMU */ 643 644 static void check_mm(struct mm_struct *mm) 645 { 646 int i; 647 648 for (i = 0; i < NR_MM_COUNTERS; i++) { 649 long x = atomic_long_read(&mm->rss_stat.count[i]); 650 651 if (unlikely(x)) 652 printk(KERN_ALERT "BUG: Bad rss-counter state " 653 "mm:%p idx:%d val:%ld\n", mm, i, x); 654 } 655 656 if (mm_pgtables_bytes(mm)) 657 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 658 mm_pgtables_bytes(mm)); 659 660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 661 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 662 #endif 663 } 664 665 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 666 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 667 668 /* 669 * Called when the last reference to the mm 670 * is dropped: either by a lazy thread or by 671 * mmput. Free the page directory and the mm. 672 */ 673 void __mmdrop(struct mm_struct *mm) 674 { 675 BUG_ON(mm == &init_mm); 676 WARN_ON_ONCE(mm == current->mm); 677 WARN_ON_ONCE(mm == current->active_mm); 678 mm_free_pgd(mm); 679 destroy_context(mm); 680 mmu_notifier_mm_destroy(mm); 681 check_mm(mm); 682 put_user_ns(mm->user_ns); 683 free_mm(mm); 684 } 685 EXPORT_SYMBOL_GPL(__mmdrop); 686 687 static void mmdrop_async_fn(struct work_struct *work) 688 { 689 struct mm_struct *mm; 690 691 mm = container_of(work, struct mm_struct, async_put_work); 692 __mmdrop(mm); 693 } 694 695 static void mmdrop_async(struct mm_struct *mm) 696 { 697 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 698 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 699 schedule_work(&mm->async_put_work); 700 } 701 } 702 703 static inline void free_signal_struct(struct signal_struct *sig) 704 { 705 taskstats_tgid_free(sig); 706 sched_autogroup_exit(sig); 707 /* 708 * __mmdrop is not safe to call from softirq context on x86 due to 709 * pgd_dtor so postpone it to the async context 710 */ 711 if (sig->oom_mm) 712 mmdrop_async(sig->oom_mm); 713 kmem_cache_free(signal_cachep, sig); 714 } 715 716 static inline void put_signal_struct(struct signal_struct *sig) 717 { 718 if (refcount_dec_and_test(&sig->sigcnt)) 719 free_signal_struct(sig); 720 } 721 722 void __put_task_struct(struct task_struct *tsk) 723 { 724 WARN_ON(!tsk->exit_state); 725 WARN_ON(refcount_read(&tsk->usage)); 726 WARN_ON(tsk == current); 727 728 cgroup_free(tsk); 729 task_numa_free(tsk, true); 730 security_task_free(tsk); 731 exit_creds(tsk); 732 delayacct_tsk_free(tsk); 733 put_signal_struct(tsk->signal); 734 735 if (!profile_handoff_task(tsk)) 736 free_task(tsk); 737 } 738 EXPORT_SYMBOL_GPL(__put_task_struct); 739 740 void __init __weak arch_task_cache_init(void) { } 741 742 /* 743 * set_max_threads 744 */ 745 static void set_max_threads(unsigned int max_threads_suggested) 746 { 747 u64 threads; 748 unsigned long nr_pages = totalram_pages(); 749 750 /* 751 * The number of threads shall be limited such that the thread 752 * structures may only consume a small part of the available memory. 753 */ 754 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 755 threads = MAX_THREADS; 756 else 757 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 758 (u64) THREAD_SIZE * 8UL); 759 760 if (threads > max_threads_suggested) 761 threads = max_threads_suggested; 762 763 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 764 } 765 766 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 767 /* Initialized by the architecture: */ 768 int arch_task_struct_size __read_mostly; 769 #endif 770 771 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 772 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 773 { 774 /* Fetch thread_struct whitelist for the architecture. */ 775 arch_thread_struct_whitelist(offset, size); 776 777 /* 778 * Handle zero-sized whitelist or empty thread_struct, otherwise 779 * adjust offset to position of thread_struct in task_struct. 780 */ 781 if (unlikely(*size == 0)) 782 *offset = 0; 783 else 784 *offset += offsetof(struct task_struct, thread); 785 } 786 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 787 788 void __init fork_init(void) 789 { 790 int i; 791 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 792 #ifndef ARCH_MIN_TASKALIGN 793 #define ARCH_MIN_TASKALIGN 0 794 #endif 795 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 796 unsigned long useroffset, usersize; 797 798 /* create a slab on which task_structs can be allocated */ 799 task_struct_whitelist(&useroffset, &usersize); 800 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 801 arch_task_struct_size, align, 802 SLAB_PANIC|SLAB_ACCOUNT, 803 useroffset, usersize, NULL); 804 #endif 805 806 /* do the arch specific task caches init */ 807 arch_task_cache_init(); 808 809 set_max_threads(MAX_THREADS); 810 811 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 812 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 813 init_task.signal->rlim[RLIMIT_SIGPENDING] = 814 init_task.signal->rlim[RLIMIT_NPROC]; 815 816 for (i = 0; i < UCOUNT_COUNTS; i++) { 817 init_user_ns.ucount_max[i] = max_threads/2; 818 } 819 820 #ifdef CONFIG_VMAP_STACK 821 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 822 NULL, free_vm_stack_cache); 823 #endif 824 825 lockdep_init_task(&init_task); 826 uprobes_init(); 827 } 828 829 int __weak arch_dup_task_struct(struct task_struct *dst, 830 struct task_struct *src) 831 { 832 *dst = *src; 833 return 0; 834 } 835 836 void set_task_stack_end_magic(struct task_struct *tsk) 837 { 838 unsigned long *stackend; 839 840 stackend = end_of_stack(tsk); 841 *stackend = STACK_END_MAGIC; /* for overflow detection */ 842 } 843 844 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 845 { 846 struct task_struct *tsk; 847 unsigned long *stack; 848 struct vm_struct *stack_vm_area __maybe_unused; 849 int err; 850 851 if (node == NUMA_NO_NODE) 852 node = tsk_fork_get_node(orig); 853 tsk = alloc_task_struct_node(node); 854 if (!tsk) 855 return NULL; 856 857 stack = alloc_thread_stack_node(tsk, node); 858 if (!stack) 859 goto free_tsk; 860 861 if (memcg_charge_kernel_stack(tsk)) 862 goto free_stack; 863 864 stack_vm_area = task_stack_vm_area(tsk); 865 866 err = arch_dup_task_struct(tsk, orig); 867 868 /* 869 * arch_dup_task_struct() clobbers the stack-related fields. Make 870 * sure they're properly initialized before using any stack-related 871 * functions again. 872 */ 873 tsk->stack = stack; 874 #ifdef CONFIG_VMAP_STACK 875 tsk->stack_vm_area = stack_vm_area; 876 #endif 877 #ifdef CONFIG_THREAD_INFO_IN_TASK 878 refcount_set(&tsk->stack_refcount, 1); 879 #endif 880 881 if (err) 882 goto free_stack; 883 884 #ifdef CONFIG_SECCOMP 885 /* 886 * We must handle setting up seccomp filters once we're under 887 * the sighand lock in case orig has changed between now and 888 * then. Until then, filter must be NULL to avoid messing up 889 * the usage counts on the error path calling free_task. 890 */ 891 tsk->seccomp.filter = NULL; 892 #endif 893 894 setup_thread_stack(tsk, orig); 895 clear_user_return_notifier(tsk); 896 clear_tsk_need_resched(tsk); 897 set_task_stack_end_magic(tsk); 898 899 #ifdef CONFIG_STACKPROTECTOR 900 tsk->stack_canary = get_random_canary(); 901 #endif 902 if (orig->cpus_ptr == &orig->cpus_mask) 903 tsk->cpus_ptr = &tsk->cpus_mask; 904 905 /* 906 * One for us, one for whoever does the "release_task()" (usually 907 * parent) 908 */ 909 refcount_set(&tsk->usage, 2); 910 #ifdef CONFIG_BLK_DEV_IO_TRACE 911 tsk->btrace_seq = 0; 912 #endif 913 tsk->splice_pipe = NULL; 914 tsk->task_frag.page = NULL; 915 tsk->wake_q.next = NULL; 916 917 account_kernel_stack(tsk, 1); 918 919 kcov_task_init(tsk); 920 921 #ifdef CONFIG_FAULT_INJECTION 922 tsk->fail_nth = 0; 923 #endif 924 925 #ifdef CONFIG_BLK_CGROUP 926 tsk->throttle_queue = NULL; 927 tsk->use_memdelay = 0; 928 #endif 929 930 #ifdef CONFIG_MEMCG 931 tsk->active_memcg = NULL; 932 #endif 933 return tsk; 934 935 free_stack: 936 free_thread_stack(tsk); 937 free_tsk: 938 free_task_struct(tsk); 939 return NULL; 940 } 941 942 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 943 944 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 945 946 static int __init coredump_filter_setup(char *s) 947 { 948 default_dump_filter = 949 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 950 MMF_DUMP_FILTER_MASK; 951 return 1; 952 } 953 954 __setup("coredump_filter=", coredump_filter_setup); 955 956 #include <linux/init_task.h> 957 958 static void mm_init_aio(struct mm_struct *mm) 959 { 960 #ifdef CONFIG_AIO 961 spin_lock_init(&mm->ioctx_lock); 962 mm->ioctx_table = NULL; 963 #endif 964 } 965 966 static __always_inline void mm_clear_owner(struct mm_struct *mm, 967 struct task_struct *p) 968 { 969 #ifdef CONFIG_MEMCG 970 if (mm->owner == p) 971 WRITE_ONCE(mm->owner, NULL); 972 #endif 973 } 974 975 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 976 { 977 #ifdef CONFIG_MEMCG 978 mm->owner = p; 979 #endif 980 } 981 982 static void mm_init_uprobes_state(struct mm_struct *mm) 983 { 984 #ifdef CONFIG_UPROBES 985 mm->uprobes_state.xol_area = NULL; 986 #endif 987 } 988 989 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 990 struct user_namespace *user_ns) 991 { 992 mm->mmap = NULL; 993 mm->mm_rb = RB_ROOT; 994 mm->vmacache_seqnum = 0; 995 atomic_set(&mm->mm_users, 1); 996 atomic_set(&mm->mm_count, 1); 997 init_rwsem(&mm->mmap_sem); 998 INIT_LIST_HEAD(&mm->mmlist); 999 mm->core_state = NULL; 1000 mm_pgtables_bytes_init(mm); 1001 mm->map_count = 0; 1002 mm->locked_vm = 0; 1003 atomic64_set(&mm->pinned_vm, 0); 1004 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1005 spin_lock_init(&mm->page_table_lock); 1006 spin_lock_init(&mm->arg_lock); 1007 mm_init_cpumask(mm); 1008 mm_init_aio(mm); 1009 mm_init_owner(mm, p); 1010 RCU_INIT_POINTER(mm->exe_file, NULL); 1011 mmu_notifier_mm_init(mm); 1012 hmm_mm_init(mm); 1013 init_tlb_flush_pending(mm); 1014 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1015 mm->pmd_huge_pte = NULL; 1016 #endif 1017 mm_init_uprobes_state(mm); 1018 1019 if (current->mm) { 1020 mm->flags = current->mm->flags & MMF_INIT_MASK; 1021 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1022 } else { 1023 mm->flags = default_dump_filter; 1024 mm->def_flags = 0; 1025 } 1026 1027 if (mm_alloc_pgd(mm)) 1028 goto fail_nopgd; 1029 1030 if (init_new_context(p, mm)) 1031 goto fail_nocontext; 1032 1033 mm->user_ns = get_user_ns(user_ns); 1034 return mm; 1035 1036 fail_nocontext: 1037 mm_free_pgd(mm); 1038 fail_nopgd: 1039 free_mm(mm); 1040 return NULL; 1041 } 1042 1043 /* 1044 * Allocate and initialize an mm_struct. 1045 */ 1046 struct mm_struct *mm_alloc(void) 1047 { 1048 struct mm_struct *mm; 1049 1050 mm = allocate_mm(); 1051 if (!mm) 1052 return NULL; 1053 1054 memset(mm, 0, sizeof(*mm)); 1055 return mm_init(mm, current, current_user_ns()); 1056 } 1057 1058 static inline void __mmput(struct mm_struct *mm) 1059 { 1060 VM_BUG_ON(atomic_read(&mm->mm_users)); 1061 1062 uprobe_clear_state(mm); 1063 exit_aio(mm); 1064 ksm_exit(mm); 1065 khugepaged_exit(mm); /* must run before exit_mmap */ 1066 exit_mmap(mm); 1067 mm_put_huge_zero_page(mm); 1068 set_mm_exe_file(mm, NULL); 1069 if (!list_empty(&mm->mmlist)) { 1070 spin_lock(&mmlist_lock); 1071 list_del(&mm->mmlist); 1072 spin_unlock(&mmlist_lock); 1073 } 1074 if (mm->binfmt) 1075 module_put(mm->binfmt->module); 1076 mmdrop(mm); 1077 } 1078 1079 /* 1080 * Decrement the use count and release all resources for an mm. 1081 */ 1082 void mmput(struct mm_struct *mm) 1083 { 1084 might_sleep(); 1085 1086 if (atomic_dec_and_test(&mm->mm_users)) 1087 __mmput(mm); 1088 } 1089 EXPORT_SYMBOL_GPL(mmput); 1090 1091 #ifdef CONFIG_MMU 1092 static void mmput_async_fn(struct work_struct *work) 1093 { 1094 struct mm_struct *mm = container_of(work, struct mm_struct, 1095 async_put_work); 1096 1097 __mmput(mm); 1098 } 1099 1100 void mmput_async(struct mm_struct *mm) 1101 { 1102 if (atomic_dec_and_test(&mm->mm_users)) { 1103 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1104 schedule_work(&mm->async_put_work); 1105 } 1106 } 1107 #endif 1108 1109 /** 1110 * set_mm_exe_file - change a reference to the mm's executable file 1111 * 1112 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1113 * 1114 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1115 * invocations: in mmput() nobody alive left, in execve task is single 1116 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1117 * mm->exe_file, but does so without using set_mm_exe_file() in order 1118 * to do avoid the need for any locks. 1119 */ 1120 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1121 { 1122 struct file *old_exe_file; 1123 1124 /* 1125 * It is safe to dereference the exe_file without RCU as 1126 * this function is only called if nobody else can access 1127 * this mm -- see comment above for justification. 1128 */ 1129 old_exe_file = rcu_dereference_raw(mm->exe_file); 1130 1131 if (new_exe_file) 1132 get_file(new_exe_file); 1133 rcu_assign_pointer(mm->exe_file, new_exe_file); 1134 if (old_exe_file) 1135 fput(old_exe_file); 1136 } 1137 1138 /** 1139 * get_mm_exe_file - acquire a reference to the mm's executable file 1140 * 1141 * Returns %NULL if mm has no associated executable file. 1142 * User must release file via fput(). 1143 */ 1144 struct file *get_mm_exe_file(struct mm_struct *mm) 1145 { 1146 struct file *exe_file; 1147 1148 rcu_read_lock(); 1149 exe_file = rcu_dereference(mm->exe_file); 1150 if (exe_file && !get_file_rcu(exe_file)) 1151 exe_file = NULL; 1152 rcu_read_unlock(); 1153 return exe_file; 1154 } 1155 EXPORT_SYMBOL(get_mm_exe_file); 1156 1157 /** 1158 * get_task_exe_file - acquire a reference to the task's executable file 1159 * 1160 * Returns %NULL if task's mm (if any) has no associated executable file or 1161 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1162 * User must release file via fput(). 1163 */ 1164 struct file *get_task_exe_file(struct task_struct *task) 1165 { 1166 struct file *exe_file = NULL; 1167 struct mm_struct *mm; 1168 1169 task_lock(task); 1170 mm = task->mm; 1171 if (mm) { 1172 if (!(task->flags & PF_KTHREAD)) 1173 exe_file = get_mm_exe_file(mm); 1174 } 1175 task_unlock(task); 1176 return exe_file; 1177 } 1178 EXPORT_SYMBOL(get_task_exe_file); 1179 1180 /** 1181 * get_task_mm - acquire a reference to the task's mm 1182 * 1183 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1184 * this kernel workthread has transiently adopted a user mm with use_mm, 1185 * to do its AIO) is not set and if so returns a reference to it, after 1186 * bumping up the use count. User must release the mm via mmput() 1187 * after use. Typically used by /proc and ptrace. 1188 */ 1189 struct mm_struct *get_task_mm(struct task_struct *task) 1190 { 1191 struct mm_struct *mm; 1192 1193 task_lock(task); 1194 mm = task->mm; 1195 if (mm) { 1196 if (task->flags & PF_KTHREAD) 1197 mm = NULL; 1198 else 1199 mmget(mm); 1200 } 1201 task_unlock(task); 1202 return mm; 1203 } 1204 EXPORT_SYMBOL_GPL(get_task_mm); 1205 1206 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1207 { 1208 struct mm_struct *mm; 1209 int err; 1210 1211 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1212 if (err) 1213 return ERR_PTR(err); 1214 1215 mm = get_task_mm(task); 1216 if (mm && mm != current->mm && 1217 !ptrace_may_access(task, mode)) { 1218 mmput(mm); 1219 mm = ERR_PTR(-EACCES); 1220 } 1221 mutex_unlock(&task->signal->cred_guard_mutex); 1222 1223 return mm; 1224 } 1225 1226 static void complete_vfork_done(struct task_struct *tsk) 1227 { 1228 struct completion *vfork; 1229 1230 task_lock(tsk); 1231 vfork = tsk->vfork_done; 1232 if (likely(vfork)) { 1233 tsk->vfork_done = NULL; 1234 complete(vfork); 1235 } 1236 task_unlock(tsk); 1237 } 1238 1239 static int wait_for_vfork_done(struct task_struct *child, 1240 struct completion *vfork) 1241 { 1242 int killed; 1243 1244 freezer_do_not_count(); 1245 cgroup_enter_frozen(); 1246 killed = wait_for_completion_killable(vfork); 1247 cgroup_leave_frozen(false); 1248 freezer_count(); 1249 1250 if (killed) { 1251 task_lock(child); 1252 child->vfork_done = NULL; 1253 task_unlock(child); 1254 } 1255 1256 put_task_struct(child); 1257 return killed; 1258 } 1259 1260 /* Please note the differences between mmput and mm_release. 1261 * mmput is called whenever we stop holding onto a mm_struct, 1262 * error success whatever. 1263 * 1264 * mm_release is called after a mm_struct has been removed 1265 * from the current process. 1266 * 1267 * This difference is important for error handling, when we 1268 * only half set up a mm_struct for a new process and need to restore 1269 * the old one. Because we mmput the new mm_struct before 1270 * restoring the old one. . . 1271 * Eric Biederman 10 January 1998 1272 */ 1273 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1274 { 1275 /* Get rid of any futexes when releasing the mm */ 1276 #ifdef CONFIG_FUTEX 1277 if (unlikely(tsk->robust_list)) { 1278 exit_robust_list(tsk); 1279 tsk->robust_list = NULL; 1280 } 1281 #ifdef CONFIG_COMPAT 1282 if (unlikely(tsk->compat_robust_list)) { 1283 compat_exit_robust_list(tsk); 1284 tsk->compat_robust_list = NULL; 1285 } 1286 #endif 1287 if (unlikely(!list_empty(&tsk->pi_state_list))) 1288 exit_pi_state_list(tsk); 1289 #endif 1290 1291 uprobe_free_utask(tsk); 1292 1293 /* Get rid of any cached register state */ 1294 deactivate_mm(tsk, mm); 1295 1296 /* 1297 * Signal userspace if we're not exiting with a core dump 1298 * because we want to leave the value intact for debugging 1299 * purposes. 1300 */ 1301 if (tsk->clear_child_tid) { 1302 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1303 atomic_read(&mm->mm_users) > 1) { 1304 /* 1305 * We don't check the error code - if userspace has 1306 * not set up a proper pointer then tough luck. 1307 */ 1308 put_user(0, tsk->clear_child_tid); 1309 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1310 1, NULL, NULL, 0, 0); 1311 } 1312 tsk->clear_child_tid = NULL; 1313 } 1314 1315 /* 1316 * All done, finally we can wake up parent and return this mm to him. 1317 * Also kthread_stop() uses this completion for synchronization. 1318 */ 1319 if (tsk->vfork_done) 1320 complete_vfork_done(tsk); 1321 } 1322 1323 /** 1324 * dup_mm() - duplicates an existing mm structure 1325 * @tsk: the task_struct with which the new mm will be associated. 1326 * @oldmm: the mm to duplicate. 1327 * 1328 * Allocates a new mm structure and duplicates the provided @oldmm structure 1329 * content into it. 1330 * 1331 * Return: the duplicated mm or NULL on failure. 1332 */ 1333 static struct mm_struct *dup_mm(struct task_struct *tsk, 1334 struct mm_struct *oldmm) 1335 { 1336 struct mm_struct *mm; 1337 int err; 1338 1339 mm = allocate_mm(); 1340 if (!mm) 1341 goto fail_nomem; 1342 1343 memcpy(mm, oldmm, sizeof(*mm)); 1344 1345 if (!mm_init(mm, tsk, mm->user_ns)) 1346 goto fail_nomem; 1347 1348 err = dup_mmap(mm, oldmm); 1349 if (err) 1350 goto free_pt; 1351 1352 mm->hiwater_rss = get_mm_rss(mm); 1353 mm->hiwater_vm = mm->total_vm; 1354 1355 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1356 goto free_pt; 1357 1358 return mm; 1359 1360 free_pt: 1361 /* don't put binfmt in mmput, we haven't got module yet */ 1362 mm->binfmt = NULL; 1363 mm_init_owner(mm, NULL); 1364 mmput(mm); 1365 1366 fail_nomem: 1367 return NULL; 1368 } 1369 1370 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1371 { 1372 struct mm_struct *mm, *oldmm; 1373 int retval; 1374 1375 tsk->min_flt = tsk->maj_flt = 0; 1376 tsk->nvcsw = tsk->nivcsw = 0; 1377 #ifdef CONFIG_DETECT_HUNG_TASK 1378 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1379 tsk->last_switch_time = 0; 1380 #endif 1381 1382 tsk->mm = NULL; 1383 tsk->active_mm = NULL; 1384 1385 /* 1386 * Are we cloning a kernel thread? 1387 * 1388 * We need to steal a active VM for that.. 1389 */ 1390 oldmm = current->mm; 1391 if (!oldmm) 1392 return 0; 1393 1394 /* initialize the new vmacache entries */ 1395 vmacache_flush(tsk); 1396 1397 if (clone_flags & CLONE_VM) { 1398 mmget(oldmm); 1399 mm = oldmm; 1400 goto good_mm; 1401 } 1402 1403 retval = -ENOMEM; 1404 mm = dup_mm(tsk, current->mm); 1405 if (!mm) 1406 goto fail_nomem; 1407 1408 good_mm: 1409 tsk->mm = mm; 1410 tsk->active_mm = mm; 1411 return 0; 1412 1413 fail_nomem: 1414 return retval; 1415 } 1416 1417 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1418 { 1419 struct fs_struct *fs = current->fs; 1420 if (clone_flags & CLONE_FS) { 1421 /* tsk->fs is already what we want */ 1422 spin_lock(&fs->lock); 1423 if (fs->in_exec) { 1424 spin_unlock(&fs->lock); 1425 return -EAGAIN; 1426 } 1427 fs->users++; 1428 spin_unlock(&fs->lock); 1429 return 0; 1430 } 1431 tsk->fs = copy_fs_struct(fs); 1432 if (!tsk->fs) 1433 return -ENOMEM; 1434 return 0; 1435 } 1436 1437 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1438 { 1439 struct files_struct *oldf, *newf; 1440 int error = 0; 1441 1442 /* 1443 * A background process may not have any files ... 1444 */ 1445 oldf = current->files; 1446 if (!oldf) 1447 goto out; 1448 1449 if (clone_flags & CLONE_FILES) { 1450 atomic_inc(&oldf->count); 1451 goto out; 1452 } 1453 1454 newf = dup_fd(oldf, &error); 1455 if (!newf) 1456 goto out; 1457 1458 tsk->files = newf; 1459 error = 0; 1460 out: 1461 return error; 1462 } 1463 1464 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1465 { 1466 #ifdef CONFIG_BLOCK 1467 struct io_context *ioc = current->io_context; 1468 struct io_context *new_ioc; 1469 1470 if (!ioc) 1471 return 0; 1472 /* 1473 * Share io context with parent, if CLONE_IO is set 1474 */ 1475 if (clone_flags & CLONE_IO) { 1476 ioc_task_link(ioc); 1477 tsk->io_context = ioc; 1478 } else if (ioprio_valid(ioc->ioprio)) { 1479 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1480 if (unlikely(!new_ioc)) 1481 return -ENOMEM; 1482 1483 new_ioc->ioprio = ioc->ioprio; 1484 put_io_context(new_ioc); 1485 } 1486 #endif 1487 return 0; 1488 } 1489 1490 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1491 { 1492 struct sighand_struct *sig; 1493 1494 if (clone_flags & CLONE_SIGHAND) { 1495 refcount_inc(¤t->sighand->count); 1496 return 0; 1497 } 1498 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1499 rcu_assign_pointer(tsk->sighand, sig); 1500 if (!sig) 1501 return -ENOMEM; 1502 1503 refcount_set(&sig->count, 1); 1504 spin_lock_irq(¤t->sighand->siglock); 1505 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1506 spin_unlock_irq(¤t->sighand->siglock); 1507 return 0; 1508 } 1509 1510 void __cleanup_sighand(struct sighand_struct *sighand) 1511 { 1512 if (refcount_dec_and_test(&sighand->count)) { 1513 signalfd_cleanup(sighand); 1514 /* 1515 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1516 * without an RCU grace period, see __lock_task_sighand(). 1517 */ 1518 kmem_cache_free(sighand_cachep, sighand); 1519 } 1520 } 1521 1522 #ifdef CONFIG_POSIX_TIMERS 1523 /* 1524 * Initialize POSIX timer handling for a thread group. 1525 */ 1526 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1527 { 1528 unsigned long cpu_limit; 1529 1530 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1531 if (cpu_limit != RLIM_INFINITY) { 1532 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC; 1533 sig->cputimer.running = true; 1534 } 1535 1536 /* The timer lists. */ 1537 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1538 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1539 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1540 } 1541 #else 1542 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { } 1543 #endif 1544 1545 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1546 { 1547 struct signal_struct *sig; 1548 1549 if (clone_flags & CLONE_THREAD) 1550 return 0; 1551 1552 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1553 tsk->signal = sig; 1554 if (!sig) 1555 return -ENOMEM; 1556 1557 sig->nr_threads = 1; 1558 atomic_set(&sig->live, 1); 1559 refcount_set(&sig->sigcnt, 1); 1560 1561 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1562 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1563 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1564 1565 init_waitqueue_head(&sig->wait_chldexit); 1566 sig->curr_target = tsk; 1567 init_sigpending(&sig->shared_pending); 1568 INIT_HLIST_HEAD(&sig->multiprocess); 1569 seqlock_init(&sig->stats_lock); 1570 prev_cputime_init(&sig->prev_cputime); 1571 1572 #ifdef CONFIG_POSIX_TIMERS 1573 INIT_LIST_HEAD(&sig->posix_timers); 1574 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1575 sig->real_timer.function = it_real_fn; 1576 #endif 1577 1578 task_lock(current->group_leader); 1579 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1580 task_unlock(current->group_leader); 1581 1582 posix_cpu_timers_init_group(sig); 1583 1584 tty_audit_fork(sig); 1585 sched_autogroup_fork(sig); 1586 1587 sig->oom_score_adj = current->signal->oom_score_adj; 1588 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1589 1590 mutex_init(&sig->cred_guard_mutex); 1591 1592 return 0; 1593 } 1594 1595 static void copy_seccomp(struct task_struct *p) 1596 { 1597 #ifdef CONFIG_SECCOMP 1598 /* 1599 * Must be called with sighand->lock held, which is common to 1600 * all threads in the group. Holding cred_guard_mutex is not 1601 * needed because this new task is not yet running and cannot 1602 * be racing exec. 1603 */ 1604 assert_spin_locked(¤t->sighand->siglock); 1605 1606 /* Ref-count the new filter user, and assign it. */ 1607 get_seccomp_filter(current); 1608 p->seccomp = current->seccomp; 1609 1610 /* 1611 * Explicitly enable no_new_privs here in case it got set 1612 * between the task_struct being duplicated and holding the 1613 * sighand lock. The seccomp state and nnp must be in sync. 1614 */ 1615 if (task_no_new_privs(current)) 1616 task_set_no_new_privs(p); 1617 1618 /* 1619 * If the parent gained a seccomp mode after copying thread 1620 * flags and between before we held the sighand lock, we have 1621 * to manually enable the seccomp thread flag here. 1622 */ 1623 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1624 set_tsk_thread_flag(p, TIF_SECCOMP); 1625 #endif 1626 } 1627 1628 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1629 { 1630 current->clear_child_tid = tidptr; 1631 1632 return task_pid_vnr(current); 1633 } 1634 1635 static void rt_mutex_init_task(struct task_struct *p) 1636 { 1637 raw_spin_lock_init(&p->pi_lock); 1638 #ifdef CONFIG_RT_MUTEXES 1639 p->pi_waiters = RB_ROOT_CACHED; 1640 p->pi_top_task = NULL; 1641 p->pi_blocked_on = NULL; 1642 #endif 1643 } 1644 1645 #ifdef CONFIG_POSIX_TIMERS 1646 /* 1647 * Initialize POSIX timer handling for a single task. 1648 */ 1649 static void posix_cpu_timers_init(struct task_struct *tsk) 1650 { 1651 tsk->cputime_expires.prof_exp = 0; 1652 tsk->cputime_expires.virt_exp = 0; 1653 tsk->cputime_expires.sched_exp = 0; 1654 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1655 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1656 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1657 } 1658 #else 1659 static inline void posix_cpu_timers_init(struct task_struct *tsk) { } 1660 #endif 1661 1662 static inline void init_task_pid_links(struct task_struct *task) 1663 { 1664 enum pid_type type; 1665 1666 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1667 INIT_HLIST_NODE(&task->pid_links[type]); 1668 } 1669 } 1670 1671 static inline void 1672 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1673 { 1674 if (type == PIDTYPE_PID) 1675 task->thread_pid = pid; 1676 else 1677 task->signal->pids[type] = pid; 1678 } 1679 1680 static inline void rcu_copy_process(struct task_struct *p) 1681 { 1682 #ifdef CONFIG_PREEMPT_RCU 1683 p->rcu_read_lock_nesting = 0; 1684 p->rcu_read_unlock_special.s = 0; 1685 p->rcu_blocked_node = NULL; 1686 INIT_LIST_HEAD(&p->rcu_node_entry); 1687 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1688 #ifdef CONFIG_TASKS_RCU 1689 p->rcu_tasks_holdout = false; 1690 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1691 p->rcu_tasks_idle_cpu = -1; 1692 #endif /* #ifdef CONFIG_TASKS_RCU */ 1693 } 1694 1695 static int pidfd_release(struct inode *inode, struct file *file) 1696 { 1697 struct pid *pid = file->private_data; 1698 1699 file->private_data = NULL; 1700 put_pid(pid); 1701 return 0; 1702 } 1703 1704 #ifdef CONFIG_PROC_FS 1705 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1706 { 1707 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file)); 1708 struct pid *pid = f->private_data; 1709 1710 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns)); 1711 seq_putc(m, '\n'); 1712 } 1713 #endif 1714 1715 /* 1716 * Poll support for process exit notification. 1717 */ 1718 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts) 1719 { 1720 struct task_struct *task; 1721 struct pid *pid = file->private_data; 1722 int poll_flags = 0; 1723 1724 poll_wait(file, &pid->wait_pidfd, pts); 1725 1726 rcu_read_lock(); 1727 task = pid_task(pid, PIDTYPE_PID); 1728 /* 1729 * Inform pollers only when the whole thread group exits. 1730 * If the thread group leader exits before all other threads in the 1731 * group, then poll(2) should block, similar to the wait(2) family. 1732 */ 1733 if (!task || (task->exit_state && thread_group_empty(task))) 1734 poll_flags = POLLIN | POLLRDNORM; 1735 rcu_read_unlock(); 1736 1737 return poll_flags; 1738 } 1739 1740 const struct file_operations pidfd_fops = { 1741 .release = pidfd_release, 1742 .poll = pidfd_poll, 1743 #ifdef CONFIG_PROC_FS 1744 .show_fdinfo = pidfd_show_fdinfo, 1745 #endif 1746 }; 1747 1748 static void __delayed_free_task(struct rcu_head *rhp) 1749 { 1750 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1751 1752 free_task(tsk); 1753 } 1754 1755 static __always_inline void delayed_free_task(struct task_struct *tsk) 1756 { 1757 if (IS_ENABLED(CONFIG_MEMCG)) 1758 call_rcu(&tsk->rcu, __delayed_free_task); 1759 else 1760 free_task(tsk); 1761 } 1762 1763 /* 1764 * This creates a new process as a copy of the old one, 1765 * but does not actually start it yet. 1766 * 1767 * It copies the registers, and all the appropriate 1768 * parts of the process environment (as per the clone 1769 * flags). The actual kick-off is left to the caller. 1770 */ 1771 static __latent_entropy struct task_struct *copy_process( 1772 struct pid *pid, 1773 int trace, 1774 int node, 1775 struct kernel_clone_args *args) 1776 { 1777 int pidfd = -1, retval; 1778 struct task_struct *p; 1779 struct multiprocess_signals delayed; 1780 struct file *pidfile = NULL; 1781 u64 clone_flags = args->flags; 1782 1783 /* 1784 * Don't allow sharing the root directory with processes in a different 1785 * namespace 1786 */ 1787 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1788 return ERR_PTR(-EINVAL); 1789 1790 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1791 return ERR_PTR(-EINVAL); 1792 1793 /* 1794 * Thread groups must share signals as well, and detached threads 1795 * can only be started up within the thread group. 1796 */ 1797 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1798 return ERR_PTR(-EINVAL); 1799 1800 /* 1801 * Shared signal handlers imply shared VM. By way of the above, 1802 * thread groups also imply shared VM. Blocking this case allows 1803 * for various simplifications in other code. 1804 */ 1805 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1806 return ERR_PTR(-EINVAL); 1807 1808 /* 1809 * Siblings of global init remain as zombies on exit since they are 1810 * not reaped by their parent (swapper). To solve this and to avoid 1811 * multi-rooted process trees, prevent global and container-inits 1812 * from creating siblings. 1813 */ 1814 if ((clone_flags & CLONE_PARENT) && 1815 current->signal->flags & SIGNAL_UNKILLABLE) 1816 return ERR_PTR(-EINVAL); 1817 1818 /* 1819 * If the new process will be in a different pid or user namespace 1820 * do not allow it to share a thread group with the forking task. 1821 */ 1822 if (clone_flags & CLONE_THREAD) { 1823 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1824 (task_active_pid_ns(current) != 1825 current->nsproxy->pid_ns_for_children)) 1826 return ERR_PTR(-EINVAL); 1827 } 1828 1829 if (clone_flags & CLONE_PIDFD) { 1830 /* 1831 * - CLONE_DETACHED is blocked so that we can potentially 1832 * reuse it later for CLONE_PIDFD. 1833 * - CLONE_THREAD is blocked until someone really needs it. 1834 */ 1835 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1836 return ERR_PTR(-EINVAL); 1837 } 1838 1839 /* 1840 * Force any signals received before this point to be delivered 1841 * before the fork happens. Collect up signals sent to multiple 1842 * processes that happen during the fork and delay them so that 1843 * they appear to happen after the fork. 1844 */ 1845 sigemptyset(&delayed.signal); 1846 INIT_HLIST_NODE(&delayed.node); 1847 1848 spin_lock_irq(¤t->sighand->siglock); 1849 if (!(clone_flags & CLONE_THREAD)) 1850 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1851 recalc_sigpending(); 1852 spin_unlock_irq(¤t->sighand->siglock); 1853 retval = -ERESTARTNOINTR; 1854 if (signal_pending(current)) 1855 goto fork_out; 1856 1857 retval = -ENOMEM; 1858 p = dup_task_struct(current, node); 1859 if (!p) 1860 goto fork_out; 1861 1862 /* 1863 * This _must_ happen before we call free_task(), i.e. before we jump 1864 * to any of the bad_fork_* labels. This is to avoid freeing 1865 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1866 * kernel threads (PF_KTHREAD). 1867 */ 1868 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1869 /* 1870 * Clear TID on mm_release()? 1871 */ 1872 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1873 1874 ftrace_graph_init_task(p); 1875 1876 rt_mutex_init_task(p); 1877 1878 #ifdef CONFIG_PROVE_LOCKING 1879 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1880 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1881 #endif 1882 retval = -EAGAIN; 1883 if (atomic_read(&p->real_cred->user->processes) >= 1884 task_rlimit(p, RLIMIT_NPROC)) { 1885 if (p->real_cred->user != INIT_USER && 1886 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1887 goto bad_fork_free; 1888 } 1889 current->flags &= ~PF_NPROC_EXCEEDED; 1890 1891 retval = copy_creds(p, clone_flags); 1892 if (retval < 0) 1893 goto bad_fork_free; 1894 1895 /* 1896 * If multiple threads are within copy_process(), then this check 1897 * triggers too late. This doesn't hurt, the check is only there 1898 * to stop root fork bombs. 1899 */ 1900 retval = -EAGAIN; 1901 if (nr_threads >= max_threads) 1902 goto bad_fork_cleanup_count; 1903 1904 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1905 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1906 p->flags |= PF_FORKNOEXEC; 1907 INIT_LIST_HEAD(&p->children); 1908 INIT_LIST_HEAD(&p->sibling); 1909 rcu_copy_process(p); 1910 p->vfork_done = NULL; 1911 spin_lock_init(&p->alloc_lock); 1912 1913 init_sigpending(&p->pending); 1914 1915 p->utime = p->stime = p->gtime = 0; 1916 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1917 p->utimescaled = p->stimescaled = 0; 1918 #endif 1919 prev_cputime_init(&p->prev_cputime); 1920 1921 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1922 seqcount_init(&p->vtime.seqcount); 1923 p->vtime.starttime = 0; 1924 p->vtime.state = VTIME_INACTIVE; 1925 #endif 1926 1927 #if defined(SPLIT_RSS_COUNTING) 1928 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1929 #endif 1930 1931 p->default_timer_slack_ns = current->timer_slack_ns; 1932 1933 #ifdef CONFIG_PSI 1934 p->psi_flags = 0; 1935 #endif 1936 1937 task_io_accounting_init(&p->ioac); 1938 acct_clear_integrals(p); 1939 1940 posix_cpu_timers_init(p); 1941 1942 p->io_context = NULL; 1943 audit_set_context(p, NULL); 1944 cgroup_fork(p); 1945 #ifdef CONFIG_NUMA 1946 p->mempolicy = mpol_dup(p->mempolicy); 1947 if (IS_ERR(p->mempolicy)) { 1948 retval = PTR_ERR(p->mempolicy); 1949 p->mempolicy = NULL; 1950 goto bad_fork_cleanup_threadgroup_lock; 1951 } 1952 #endif 1953 #ifdef CONFIG_CPUSETS 1954 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1955 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1956 seqcount_init(&p->mems_allowed_seq); 1957 #endif 1958 #ifdef CONFIG_TRACE_IRQFLAGS 1959 p->irq_events = 0; 1960 p->hardirqs_enabled = 0; 1961 p->hardirq_enable_ip = 0; 1962 p->hardirq_enable_event = 0; 1963 p->hardirq_disable_ip = _THIS_IP_; 1964 p->hardirq_disable_event = 0; 1965 p->softirqs_enabled = 1; 1966 p->softirq_enable_ip = _THIS_IP_; 1967 p->softirq_enable_event = 0; 1968 p->softirq_disable_ip = 0; 1969 p->softirq_disable_event = 0; 1970 p->hardirq_context = 0; 1971 p->softirq_context = 0; 1972 #endif 1973 1974 p->pagefault_disabled = 0; 1975 1976 #ifdef CONFIG_LOCKDEP 1977 lockdep_init_task(p); 1978 #endif 1979 1980 #ifdef CONFIG_DEBUG_MUTEXES 1981 p->blocked_on = NULL; /* not blocked yet */ 1982 #endif 1983 #ifdef CONFIG_BCACHE 1984 p->sequential_io = 0; 1985 p->sequential_io_avg = 0; 1986 #endif 1987 1988 /* Perform scheduler related setup. Assign this task to a CPU. */ 1989 retval = sched_fork(clone_flags, p); 1990 if (retval) 1991 goto bad_fork_cleanup_policy; 1992 1993 retval = perf_event_init_task(p); 1994 if (retval) 1995 goto bad_fork_cleanup_policy; 1996 retval = audit_alloc(p); 1997 if (retval) 1998 goto bad_fork_cleanup_perf; 1999 /* copy all the process information */ 2000 shm_init_task(p); 2001 retval = security_task_alloc(p, clone_flags); 2002 if (retval) 2003 goto bad_fork_cleanup_audit; 2004 retval = copy_semundo(clone_flags, p); 2005 if (retval) 2006 goto bad_fork_cleanup_security; 2007 retval = copy_files(clone_flags, p); 2008 if (retval) 2009 goto bad_fork_cleanup_semundo; 2010 retval = copy_fs(clone_flags, p); 2011 if (retval) 2012 goto bad_fork_cleanup_files; 2013 retval = copy_sighand(clone_flags, p); 2014 if (retval) 2015 goto bad_fork_cleanup_fs; 2016 retval = copy_signal(clone_flags, p); 2017 if (retval) 2018 goto bad_fork_cleanup_sighand; 2019 retval = copy_mm(clone_flags, p); 2020 if (retval) 2021 goto bad_fork_cleanup_signal; 2022 retval = copy_namespaces(clone_flags, p); 2023 if (retval) 2024 goto bad_fork_cleanup_mm; 2025 retval = copy_io(clone_flags, p); 2026 if (retval) 2027 goto bad_fork_cleanup_namespaces; 2028 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p, 2029 args->tls); 2030 if (retval) 2031 goto bad_fork_cleanup_io; 2032 2033 stackleak_task_init(p); 2034 2035 if (pid != &init_struct_pid) { 2036 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 2037 if (IS_ERR(pid)) { 2038 retval = PTR_ERR(pid); 2039 goto bad_fork_cleanup_thread; 2040 } 2041 } 2042 2043 /* 2044 * This has to happen after we've potentially unshared the file 2045 * descriptor table (so that the pidfd doesn't leak into the child 2046 * if the fd table isn't shared). 2047 */ 2048 if (clone_flags & CLONE_PIDFD) { 2049 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2050 if (retval < 0) 2051 goto bad_fork_free_pid; 2052 2053 pidfd = retval; 2054 2055 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2056 O_RDWR | O_CLOEXEC); 2057 if (IS_ERR(pidfile)) { 2058 put_unused_fd(pidfd); 2059 retval = PTR_ERR(pidfile); 2060 goto bad_fork_free_pid; 2061 } 2062 get_pid(pid); /* held by pidfile now */ 2063 2064 retval = put_user(pidfd, args->pidfd); 2065 if (retval) 2066 goto bad_fork_put_pidfd; 2067 } 2068 2069 #ifdef CONFIG_BLOCK 2070 p->plug = NULL; 2071 #endif 2072 #ifdef CONFIG_FUTEX 2073 p->robust_list = NULL; 2074 #ifdef CONFIG_COMPAT 2075 p->compat_robust_list = NULL; 2076 #endif 2077 INIT_LIST_HEAD(&p->pi_state_list); 2078 p->pi_state_cache = NULL; 2079 #endif 2080 /* 2081 * sigaltstack should be cleared when sharing the same VM 2082 */ 2083 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2084 sas_ss_reset(p); 2085 2086 /* 2087 * Syscall tracing and stepping should be turned off in the 2088 * child regardless of CLONE_PTRACE. 2089 */ 2090 user_disable_single_step(p); 2091 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2092 #ifdef TIF_SYSCALL_EMU 2093 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2094 #endif 2095 clear_tsk_latency_tracing(p); 2096 2097 /* ok, now we should be set up.. */ 2098 p->pid = pid_nr(pid); 2099 if (clone_flags & CLONE_THREAD) { 2100 p->exit_signal = -1; 2101 p->group_leader = current->group_leader; 2102 p->tgid = current->tgid; 2103 } else { 2104 if (clone_flags & CLONE_PARENT) 2105 p->exit_signal = current->group_leader->exit_signal; 2106 else 2107 p->exit_signal = args->exit_signal; 2108 p->group_leader = p; 2109 p->tgid = p->pid; 2110 } 2111 2112 p->nr_dirtied = 0; 2113 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2114 p->dirty_paused_when = 0; 2115 2116 p->pdeath_signal = 0; 2117 INIT_LIST_HEAD(&p->thread_group); 2118 p->task_works = NULL; 2119 2120 cgroup_threadgroup_change_begin(current); 2121 /* 2122 * Ensure that the cgroup subsystem policies allow the new process to be 2123 * forked. It should be noted the the new process's css_set can be changed 2124 * between here and cgroup_post_fork() if an organisation operation is in 2125 * progress. 2126 */ 2127 retval = cgroup_can_fork(p); 2128 if (retval) 2129 goto bad_fork_cgroup_threadgroup_change_end; 2130 2131 /* 2132 * From this point on we must avoid any synchronous user-space 2133 * communication until we take the tasklist-lock. In particular, we do 2134 * not want user-space to be able to predict the process start-time by 2135 * stalling fork(2) after we recorded the start_time but before it is 2136 * visible to the system. 2137 */ 2138 2139 p->start_time = ktime_get_ns(); 2140 p->real_start_time = ktime_get_boottime_ns(); 2141 2142 /* 2143 * Make it visible to the rest of the system, but dont wake it up yet. 2144 * Need tasklist lock for parent etc handling! 2145 */ 2146 write_lock_irq(&tasklist_lock); 2147 2148 /* CLONE_PARENT re-uses the old parent */ 2149 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2150 p->real_parent = current->real_parent; 2151 p->parent_exec_id = current->parent_exec_id; 2152 } else { 2153 p->real_parent = current; 2154 p->parent_exec_id = current->self_exec_id; 2155 } 2156 2157 klp_copy_process(p); 2158 2159 spin_lock(¤t->sighand->siglock); 2160 2161 /* 2162 * Copy seccomp details explicitly here, in case they were changed 2163 * before holding sighand lock. 2164 */ 2165 copy_seccomp(p); 2166 2167 rseq_fork(p, clone_flags); 2168 2169 /* Don't start children in a dying pid namespace */ 2170 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2171 retval = -ENOMEM; 2172 goto bad_fork_cancel_cgroup; 2173 } 2174 2175 /* Let kill terminate clone/fork in the middle */ 2176 if (fatal_signal_pending(current)) { 2177 retval = -EINTR; 2178 goto bad_fork_cancel_cgroup; 2179 } 2180 2181 /* past the last point of failure */ 2182 if (pidfile) 2183 fd_install(pidfd, pidfile); 2184 2185 init_task_pid_links(p); 2186 if (likely(p->pid)) { 2187 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2188 2189 init_task_pid(p, PIDTYPE_PID, pid); 2190 if (thread_group_leader(p)) { 2191 init_task_pid(p, PIDTYPE_TGID, pid); 2192 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2193 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2194 2195 if (is_child_reaper(pid)) { 2196 ns_of_pid(pid)->child_reaper = p; 2197 p->signal->flags |= SIGNAL_UNKILLABLE; 2198 } 2199 p->signal->shared_pending.signal = delayed.signal; 2200 p->signal->tty = tty_kref_get(current->signal->tty); 2201 /* 2202 * Inherit has_child_subreaper flag under the same 2203 * tasklist_lock with adding child to the process tree 2204 * for propagate_has_child_subreaper optimization. 2205 */ 2206 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2207 p->real_parent->signal->is_child_subreaper; 2208 list_add_tail(&p->sibling, &p->real_parent->children); 2209 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2210 attach_pid(p, PIDTYPE_TGID); 2211 attach_pid(p, PIDTYPE_PGID); 2212 attach_pid(p, PIDTYPE_SID); 2213 __this_cpu_inc(process_counts); 2214 } else { 2215 current->signal->nr_threads++; 2216 atomic_inc(¤t->signal->live); 2217 refcount_inc(¤t->signal->sigcnt); 2218 task_join_group_stop(p); 2219 list_add_tail_rcu(&p->thread_group, 2220 &p->group_leader->thread_group); 2221 list_add_tail_rcu(&p->thread_node, 2222 &p->signal->thread_head); 2223 } 2224 attach_pid(p, PIDTYPE_PID); 2225 nr_threads++; 2226 } 2227 total_forks++; 2228 hlist_del_init(&delayed.node); 2229 spin_unlock(¤t->sighand->siglock); 2230 syscall_tracepoint_update(p); 2231 write_unlock_irq(&tasklist_lock); 2232 2233 proc_fork_connector(p); 2234 cgroup_post_fork(p); 2235 cgroup_threadgroup_change_end(current); 2236 perf_event_fork(p); 2237 2238 trace_task_newtask(p, clone_flags); 2239 uprobe_copy_process(p, clone_flags); 2240 2241 return p; 2242 2243 bad_fork_cancel_cgroup: 2244 spin_unlock(¤t->sighand->siglock); 2245 write_unlock_irq(&tasklist_lock); 2246 cgroup_cancel_fork(p); 2247 bad_fork_cgroup_threadgroup_change_end: 2248 cgroup_threadgroup_change_end(current); 2249 bad_fork_put_pidfd: 2250 if (clone_flags & CLONE_PIDFD) { 2251 fput(pidfile); 2252 put_unused_fd(pidfd); 2253 } 2254 bad_fork_free_pid: 2255 if (pid != &init_struct_pid) 2256 free_pid(pid); 2257 bad_fork_cleanup_thread: 2258 exit_thread(p); 2259 bad_fork_cleanup_io: 2260 if (p->io_context) 2261 exit_io_context(p); 2262 bad_fork_cleanup_namespaces: 2263 exit_task_namespaces(p); 2264 bad_fork_cleanup_mm: 2265 if (p->mm) { 2266 mm_clear_owner(p->mm, p); 2267 mmput(p->mm); 2268 } 2269 bad_fork_cleanup_signal: 2270 if (!(clone_flags & CLONE_THREAD)) 2271 free_signal_struct(p->signal); 2272 bad_fork_cleanup_sighand: 2273 __cleanup_sighand(p->sighand); 2274 bad_fork_cleanup_fs: 2275 exit_fs(p); /* blocking */ 2276 bad_fork_cleanup_files: 2277 exit_files(p); /* blocking */ 2278 bad_fork_cleanup_semundo: 2279 exit_sem(p); 2280 bad_fork_cleanup_security: 2281 security_task_free(p); 2282 bad_fork_cleanup_audit: 2283 audit_free(p); 2284 bad_fork_cleanup_perf: 2285 perf_event_free_task(p); 2286 bad_fork_cleanup_policy: 2287 lockdep_free_task(p); 2288 #ifdef CONFIG_NUMA 2289 mpol_put(p->mempolicy); 2290 bad_fork_cleanup_threadgroup_lock: 2291 #endif 2292 delayacct_tsk_free(p); 2293 bad_fork_cleanup_count: 2294 atomic_dec(&p->cred->user->processes); 2295 exit_creds(p); 2296 bad_fork_free: 2297 p->state = TASK_DEAD; 2298 put_task_stack(p); 2299 delayed_free_task(p); 2300 fork_out: 2301 spin_lock_irq(¤t->sighand->siglock); 2302 hlist_del_init(&delayed.node); 2303 spin_unlock_irq(¤t->sighand->siglock); 2304 return ERR_PTR(retval); 2305 } 2306 2307 static inline void init_idle_pids(struct task_struct *idle) 2308 { 2309 enum pid_type type; 2310 2311 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2312 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2313 init_task_pid(idle, type, &init_struct_pid); 2314 } 2315 } 2316 2317 struct task_struct *fork_idle(int cpu) 2318 { 2319 struct task_struct *task; 2320 struct kernel_clone_args args = { 2321 .flags = CLONE_VM, 2322 }; 2323 2324 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2325 if (!IS_ERR(task)) { 2326 init_idle_pids(task); 2327 init_idle(task, cpu); 2328 } 2329 2330 return task; 2331 } 2332 2333 struct mm_struct *copy_init_mm(void) 2334 { 2335 return dup_mm(NULL, &init_mm); 2336 } 2337 2338 /* 2339 * Ok, this is the main fork-routine. 2340 * 2341 * It copies the process, and if successful kick-starts 2342 * it and waits for it to finish using the VM if required. 2343 */ 2344 long _do_fork(struct kernel_clone_args *args) 2345 { 2346 u64 clone_flags = args->flags; 2347 struct completion vfork; 2348 struct pid *pid; 2349 struct task_struct *p; 2350 int trace = 0; 2351 long nr; 2352 2353 /* 2354 * Determine whether and which event to report to ptracer. When 2355 * called from kernel_thread or CLONE_UNTRACED is explicitly 2356 * requested, no event is reported; otherwise, report if the event 2357 * for the type of forking is enabled. 2358 */ 2359 if (!(clone_flags & CLONE_UNTRACED)) { 2360 if (clone_flags & CLONE_VFORK) 2361 trace = PTRACE_EVENT_VFORK; 2362 else if (args->exit_signal != SIGCHLD) 2363 trace = PTRACE_EVENT_CLONE; 2364 else 2365 trace = PTRACE_EVENT_FORK; 2366 2367 if (likely(!ptrace_event_enabled(current, trace))) 2368 trace = 0; 2369 } 2370 2371 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2372 add_latent_entropy(); 2373 2374 if (IS_ERR(p)) 2375 return PTR_ERR(p); 2376 2377 /* 2378 * Do this prior waking up the new thread - the thread pointer 2379 * might get invalid after that point, if the thread exits quickly. 2380 */ 2381 trace_sched_process_fork(current, p); 2382 2383 pid = get_task_pid(p, PIDTYPE_PID); 2384 nr = pid_vnr(pid); 2385 2386 if (clone_flags & CLONE_PARENT_SETTID) 2387 put_user(nr, args->parent_tid); 2388 2389 if (clone_flags & CLONE_VFORK) { 2390 p->vfork_done = &vfork; 2391 init_completion(&vfork); 2392 get_task_struct(p); 2393 } 2394 2395 wake_up_new_task(p); 2396 2397 /* forking complete and child started to run, tell ptracer */ 2398 if (unlikely(trace)) 2399 ptrace_event_pid(trace, pid); 2400 2401 if (clone_flags & CLONE_VFORK) { 2402 if (!wait_for_vfork_done(p, &vfork)) 2403 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2404 } 2405 2406 put_pid(pid); 2407 return nr; 2408 } 2409 2410 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs) 2411 { 2412 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */ 2413 if ((kargs->flags & CLONE_PIDFD) && 2414 (kargs->flags & CLONE_PARENT_SETTID)) 2415 return false; 2416 2417 return true; 2418 } 2419 2420 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2421 /* For compatibility with architectures that call do_fork directly rather than 2422 * using the syscall entry points below. */ 2423 long do_fork(unsigned long clone_flags, 2424 unsigned long stack_start, 2425 unsigned long stack_size, 2426 int __user *parent_tidptr, 2427 int __user *child_tidptr) 2428 { 2429 struct kernel_clone_args args = { 2430 .flags = (clone_flags & ~CSIGNAL), 2431 .pidfd = parent_tidptr, 2432 .child_tid = child_tidptr, 2433 .parent_tid = parent_tidptr, 2434 .exit_signal = (clone_flags & CSIGNAL), 2435 .stack = stack_start, 2436 .stack_size = stack_size, 2437 }; 2438 2439 if (!legacy_clone_args_valid(&args)) 2440 return -EINVAL; 2441 2442 return _do_fork(&args); 2443 } 2444 #endif 2445 2446 /* 2447 * Create a kernel thread. 2448 */ 2449 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2450 { 2451 struct kernel_clone_args args = { 2452 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), 2453 .exit_signal = (flags & CSIGNAL), 2454 .stack = (unsigned long)fn, 2455 .stack_size = (unsigned long)arg, 2456 }; 2457 2458 return _do_fork(&args); 2459 } 2460 2461 #ifdef __ARCH_WANT_SYS_FORK 2462 SYSCALL_DEFINE0(fork) 2463 { 2464 #ifdef CONFIG_MMU 2465 struct kernel_clone_args args = { 2466 .exit_signal = SIGCHLD, 2467 }; 2468 2469 return _do_fork(&args); 2470 #else 2471 /* can not support in nommu mode */ 2472 return -EINVAL; 2473 #endif 2474 } 2475 #endif 2476 2477 #ifdef __ARCH_WANT_SYS_VFORK 2478 SYSCALL_DEFINE0(vfork) 2479 { 2480 struct kernel_clone_args args = { 2481 .flags = CLONE_VFORK | CLONE_VM, 2482 .exit_signal = SIGCHLD, 2483 }; 2484 2485 return _do_fork(&args); 2486 } 2487 #endif 2488 2489 #ifdef __ARCH_WANT_SYS_CLONE 2490 #ifdef CONFIG_CLONE_BACKWARDS 2491 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2492 int __user *, parent_tidptr, 2493 unsigned long, tls, 2494 int __user *, child_tidptr) 2495 #elif defined(CONFIG_CLONE_BACKWARDS2) 2496 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2497 int __user *, parent_tidptr, 2498 int __user *, child_tidptr, 2499 unsigned long, tls) 2500 #elif defined(CONFIG_CLONE_BACKWARDS3) 2501 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2502 int, stack_size, 2503 int __user *, parent_tidptr, 2504 int __user *, child_tidptr, 2505 unsigned long, tls) 2506 #else 2507 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2508 int __user *, parent_tidptr, 2509 int __user *, child_tidptr, 2510 unsigned long, tls) 2511 #endif 2512 { 2513 struct kernel_clone_args args = { 2514 .flags = (clone_flags & ~CSIGNAL), 2515 .pidfd = parent_tidptr, 2516 .child_tid = child_tidptr, 2517 .parent_tid = parent_tidptr, 2518 .exit_signal = (clone_flags & CSIGNAL), 2519 .stack = newsp, 2520 .tls = tls, 2521 }; 2522 2523 if (!legacy_clone_args_valid(&args)) 2524 return -EINVAL; 2525 2526 return _do_fork(&args); 2527 } 2528 #endif 2529 2530 #ifdef __ARCH_WANT_SYS_CLONE3 2531 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2532 struct clone_args __user *uargs, 2533 size_t size) 2534 { 2535 struct clone_args args; 2536 2537 if (unlikely(size > PAGE_SIZE)) 2538 return -E2BIG; 2539 2540 if (unlikely(size < sizeof(struct clone_args))) 2541 return -EINVAL; 2542 2543 if (unlikely(!access_ok(uargs, size))) 2544 return -EFAULT; 2545 2546 if (size > sizeof(struct clone_args)) { 2547 unsigned char __user *addr; 2548 unsigned char __user *end; 2549 unsigned char val; 2550 2551 addr = (void __user *)uargs + sizeof(struct clone_args); 2552 end = (void __user *)uargs + size; 2553 2554 for (; addr < end; addr++) { 2555 if (get_user(val, addr)) 2556 return -EFAULT; 2557 if (val) 2558 return -E2BIG; 2559 } 2560 2561 size = sizeof(struct clone_args); 2562 } 2563 2564 if (copy_from_user(&args, uargs, size)) 2565 return -EFAULT; 2566 2567 *kargs = (struct kernel_clone_args){ 2568 .flags = args.flags, 2569 .pidfd = u64_to_user_ptr(args.pidfd), 2570 .child_tid = u64_to_user_ptr(args.child_tid), 2571 .parent_tid = u64_to_user_ptr(args.parent_tid), 2572 .exit_signal = args.exit_signal, 2573 .stack = args.stack, 2574 .stack_size = args.stack_size, 2575 .tls = args.tls, 2576 }; 2577 2578 return 0; 2579 } 2580 2581 static bool clone3_args_valid(const struct kernel_clone_args *kargs) 2582 { 2583 /* 2584 * All lower bits of the flag word are taken. 2585 * Verify that no other unknown flags are passed along. 2586 */ 2587 if (kargs->flags & ~CLONE_LEGACY_FLAGS) 2588 return false; 2589 2590 /* 2591 * - make the CLONE_DETACHED bit reuseable for clone3 2592 * - make the CSIGNAL bits reuseable for clone3 2593 */ 2594 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2595 return false; 2596 2597 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2598 kargs->exit_signal) 2599 return false; 2600 2601 return true; 2602 } 2603 2604 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2605 { 2606 int err; 2607 2608 struct kernel_clone_args kargs; 2609 2610 err = copy_clone_args_from_user(&kargs, uargs, size); 2611 if (err) 2612 return err; 2613 2614 if (!clone3_args_valid(&kargs)) 2615 return -EINVAL; 2616 2617 return _do_fork(&kargs); 2618 } 2619 #endif 2620 2621 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2622 { 2623 struct task_struct *leader, *parent, *child; 2624 int res; 2625 2626 read_lock(&tasklist_lock); 2627 leader = top = top->group_leader; 2628 down: 2629 for_each_thread(leader, parent) { 2630 list_for_each_entry(child, &parent->children, sibling) { 2631 res = visitor(child, data); 2632 if (res) { 2633 if (res < 0) 2634 goto out; 2635 leader = child; 2636 goto down; 2637 } 2638 up: 2639 ; 2640 } 2641 } 2642 2643 if (leader != top) { 2644 child = leader; 2645 parent = child->real_parent; 2646 leader = parent->group_leader; 2647 goto up; 2648 } 2649 out: 2650 read_unlock(&tasklist_lock); 2651 } 2652 2653 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2654 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2655 #endif 2656 2657 static void sighand_ctor(void *data) 2658 { 2659 struct sighand_struct *sighand = data; 2660 2661 spin_lock_init(&sighand->siglock); 2662 init_waitqueue_head(&sighand->signalfd_wqh); 2663 } 2664 2665 void __init proc_caches_init(void) 2666 { 2667 unsigned int mm_size; 2668 2669 sighand_cachep = kmem_cache_create("sighand_cache", 2670 sizeof(struct sighand_struct), 0, 2671 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2672 SLAB_ACCOUNT, sighand_ctor); 2673 signal_cachep = kmem_cache_create("signal_cache", 2674 sizeof(struct signal_struct), 0, 2675 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2676 NULL); 2677 files_cachep = kmem_cache_create("files_cache", 2678 sizeof(struct files_struct), 0, 2679 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2680 NULL); 2681 fs_cachep = kmem_cache_create("fs_cache", 2682 sizeof(struct fs_struct), 0, 2683 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2684 NULL); 2685 2686 /* 2687 * The mm_cpumask is located at the end of mm_struct, and is 2688 * dynamically sized based on the maximum CPU number this system 2689 * can have, taking hotplug into account (nr_cpu_ids). 2690 */ 2691 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2692 2693 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2694 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2695 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2696 offsetof(struct mm_struct, saved_auxv), 2697 sizeof_field(struct mm_struct, saved_auxv), 2698 NULL); 2699 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2700 mmap_init(); 2701 nsproxy_cache_init(); 2702 } 2703 2704 /* 2705 * Check constraints on flags passed to the unshare system call. 2706 */ 2707 static int check_unshare_flags(unsigned long unshare_flags) 2708 { 2709 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2710 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2711 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2712 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2713 return -EINVAL; 2714 /* 2715 * Not implemented, but pretend it works if there is nothing 2716 * to unshare. Note that unsharing the address space or the 2717 * signal handlers also need to unshare the signal queues (aka 2718 * CLONE_THREAD). 2719 */ 2720 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2721 if (!thread_group_empty(current)) 2722 return -EINVAL; 2723 } 2724 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2725 if (refcount_read(¤t->sighand->count) > 1) 2726 return -EINVAL; 2727 } 2728 if (unshare_flags & CLONE_VM) { 2729 if (!current_is_single_threaded()) 2730 return -EINVAL; 2731 } 2732 2733 return 0; 2734 } 2735 2736 /* 2737 * Unshare the filesystem structure if it is being shared 2738 */ 2739 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2740 { 2741 struct fs_struct *fs = current->fs; 2742 2743 if (!(unshare_flags & CLONE_FS) || !fs) 2744 return 0; 2745 2746 /* don't need lock here; in the worst case we'll do useless copy */ 2747 if (fs->users == 1) 2748 return 0; 2749 2750 *new_fsp = copy_fs_struct(fs); 2751 if (!*new_fsp) 2752 return -ENOMEM; 2753 2754 return 0; 2755 } 2756 2757 /* 2758 * Unshare file descriptor table if it is being shared 2759 */ 2760 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2761 { 2762 struct files_struct *fd = current->files; 2763 int error = 0; 2764 2765 if ((unshare_flags & CLONE_FILES) && 2766 (fd && atomic_read(&fd->count) > 1)) { 2767 *new_fdp = dup_fd(fd, &error); 2768 if (!*new_fdp) 2769 return error; 2770 } 2771 2772 return 0; 2773 } 2774 2775 /* 2776 * unshare allows a process to 'unshare' part of the process 2777 * context which was originally shared using clone. copy_* 2778 * functions used by do_fork() cannot be used here directly 2779 * because they modify an inactive task_struct that is being 2780 * constructed. Here we are modifying the current, active, 2781 * task_struct. 2782 */ 2783 int ksys_unshare(unsigned long unshare_flags) 2784 { 2785 struct fs_struct *fs, *new_fs = NULL; 2786 struct files_struct *fd, *new_fd = NULL; 2787 struct cred *new_cred = NULL; 2788 struct nsproxy *new_nsproxy = NULL; 2789 int do_sysvsem = 0; 2790 int err; 2791 2792 /* 2793 * If unsharing a user namespace must also unshare the thread group 2794 * and unshare the filesystem root and working directories. 2795 */ 2796 if (unshare_flags & CLONE_NEWUSER) 2797 unshare_flags |= CLONE_THREAD | CLONE_FS; 2798 /* 2799 * If unsharing vm, must also unshare signal handlers. 2800 */ 2801 if (unshare_flags & CLONE_VM) 2802 unshare_flags |= CLONE_SIGHAND; 2803 /* 2804 * If unsharing a signal handlers, must also unshare the signal queues. 2805 */ 2806 if (unshare_flags & CLONE_SIGHAND) 2807 unshare_flags |= CLONE_THREAD; 2808 /* 2809 * If unsharing namespace, must also unshare filesystem information. 2810 */ 2811 if (unshare_flags & CLONE_NEWNS) 2812 unshare_flags |= CLONE_FS; 2813 2814 err = check_unshare_flags(unshare_flags); 2815 if (err) 2816 goto bad_unshare_out; 2817 /* 2818 * CLONE_NEWIPC must also detach from the undolist: after switching 2819 * to a new ipc namespace, the semaphore arrays from the old 2820 * namespace are unreachable. 2821 */ 2822 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2823 do_sysvsem = 1; 2824 err = unshare_fs(unshare_flags, &new_fs); 2825 if (err) 2826 goto bad_unshare_out; 2827 err = unshare_fd(unshare_flags, &new_fd); 2828 if (err) 2829 goto bad_unshare_cleanup_fs; 2830 err = unshare_userns(unshare_flags, &new_cred); 2831 if (err) 2832 goto bad_unshare_cleanup_fd; 2833 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2834 new_cred, new_fs); 2835 if (err) 2836 goto bad_unshare_cleanup_cred; 2837 2838 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2839 if (do_sysvsem) { 2840 /* 2841 * CLONE_SYSVSEM is equivalent to sys_exit(). 2842 */ 2843 exit_sem(current); 2844 } 2845 if (unshare_flags & CLONE_NEWIPC) { 2846 /* Orphan segments in old ns (see sem above). */ 2847 exit_shm(current); 2848 shm_init_task(current); 2849 } 2850 2851 if (new_nsproxy) 2852 switch_task_namespaces(current, new_nsproxy); 2853 2854 task_lock(current); 2855 2856 if (new_fs) { 2857 fs = current->fs; 2858 spin_lock(&fs->lock); 2859 current->fs = new_fs; 2860 if (--fs->users) 2861 new_fs = NULL; 2862 else 2863 new_fs = fs; 2864 spin_unlock(&fs->lock); 2865 } 2866 2867 if (new_fd) { 2868 fd = current->files; 2869 current->files = new_fd; 2870 new_fd = fd; 2871 } 2872 2873 task_unlock(current); 2874 2875 if (new_cred) { 2876 /* Install the new user namespace */ 2877 commit_creds(new_cred); 2878 new_cred = NULL; 2879 } 2880 } 2881 2882 perf_event_namespaces(current); 2883 2884 bad_unshare_cleanup_cred: 2885 if (new_cred) 2886 put_cred(new_cred); 2887 bad_unshare_cleanup_fd: 2888 if (new_fd) 2889 put_files_struct(new_fd); 2890 2891 bad_unshare_cleanup_fs: 2892 if (new_fs) 2893 free_fs_struct(new_fs); 2894 2895 bad_unshare_out: 2896 return err; 2897 } 2898 2899 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2900 { 2901 return ksys_unshare(unshare_flags); 2902 } 2903 2904 /* 2905 * Helper to unshare the files of the current task. 2906 * We don't want to expose copy_files internals to 2907 * the exec layer of the kernel. 2908 */ 2909 2910 int unshare_files(struct files_struct **displaced) 2911 { 2912 struct task_struct *task = current; 2913 struct files_struct *copy = NULL; 2914 int error; 2915 2916 error = unshare_fd(CLONE_FILES, ©); 2917 if (error || !copy) { 2918 *displaced = NULL; 2919 return error; 2920 } 2921 *displaced = task->files; 2922 task_lock(task); 2923 task->files = copy; 2924 task_unlock(task); 2925 return 0; 2926 } 2927 2928 int sysctl_max_threads(struct ctl_table *table, int write, 2929 void __user *buffer, size_t *lenp, loff_t *ppos) 2930 { 2931 struct ctl_table t; 2932 int ret; 2933 int threads = max_threads; 2934 int min = MIN_THREADS; 2935 int max = MAX_THREADS; 2936 2937 t = *table; 2938 t.data = &threads; 2939 t.extra1 = &min; 2940 t.extra2 = &max; 2941 2942 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2943 if (ret || !write) 2944 return ret; 2945 2946 set_max_threads(threads); 2947 2948 return 0; 2949 } 2950