1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/seccomp.h> 38 #include <linux/swap.h> 39 #include <linux/syscalls.h> 40 #include <linux/jiffies.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/kthread.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/rmap.h> 54 #include <linux/ksm.h> 55 #include <linux/acct.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/freezer.h> 59 #include <linux/delayacct.h> 60 #include <linux/taskstats_kern.h> 61 #include <linux/random.h> 62 #include <linux/tty.h> 63 #include <linux/blkdev.h> 64 #include <linux/fs_struct.h> 65 #include <linux/magic.h> 66 #include <linux/perf_event.h> 67 #include <linux/posix-timers.h> 68 #include <linux/user-return-notifier.h> 69 #include <linux/oom.h> 70 #include <linux/khugepaged.h> 71 #include <linux/signalfd.h> 72 #include <linux/uprobes.h> 73 74 #include <asm/pgtable.h> 75 #include <asm/pgalloc.h> 76 #include <asm/uaccess.h> 77 #include <asm/mmu_context.h> 78 #include <asm/cacheflush.h> 79 #include <asm/tlbflush.h> 80 81 #include <trace/events/sched.h> 82 83 #define CREATE_TRACE_POINTS 84 #include <trace/events/task.h> 85 86 /* 87 * Protected counters by write_lock_irq(&tasklist_lock) 88 */ 89 unsigned long total_forks; /* Handle normal Linux uptimes. */ 90 int nr_threads; /* The idle threads do not count.. */ 91 92 int max_threads; /* tunable limit on nr_threads */ 93 94 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 95 96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 97 98 #ifdef CONFIG_PROVE_RCU 99 int lockdep_tasklist_lock_is_held(void) 100 { 101 return lockdep_is_held(&tasklist_lock); 102 } 103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 104 #endif /* #ifdef CONFIG_PROVE_RCU */ 105 106 int nr_processes(void) 107 { 108 int cpu; 109 int total = 0; 110 111 for_each_possible_cpu(cpu) 112 total += per_cpu(process_counts, cpu); 113 114 return total; 115 } 116 117 void __weak arch_release_task_struct(struct task_struct *tsk) 118 { 119 } 120 121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 122 static struct kmem_cache *task_struct_cachep; 123 124 static inline struct task_struct *alloc_task_struct_node(int node) 125 { 126 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 127 } 128 129 static inline void free_task_struct(struct task_struct *tsk) 130 { 131 kmem_cache_free(task_struct_cachep, tsk); 132 } 133 #endif 134 135 void __weak arch_release_thread_info(struct thread_info *ti) 136 { 137 } 138 139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 140 141 /* 142 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 143 * kmemcache based allocator. 144 */ 145 # if THREAD_SIZE >= PAGE_SIZE 146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 147 int node) 148 { 149 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 150 THREAD_SIZE_ORDER); 151 152 return page ? page_address(page) : NULL; 153 } 154 155 static inline void free_thread_info(struct thread_info *ti) 156 { 157 free_pages((unsigned long)ti, THREAD_SIZE_ORDER); 158 } 159 # else 160 static struct kmem_cache *thread_info_cache; 161 162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 163 int node) 164 { 165 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 166 } 167 168 static void free_thread_info(struct thread_info *ti) 169 { 170 kmem_cache_free(thread_info_cache, ti); 171 } 172 173 void thread_info_cache_init(void) 174 { 175 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 176 THREAD_SIZE, 0, NULL); 177 BUG_ON(thread_info_cache == NULL); 178 } 179 # endif 180 #endif 181 182 /* SLAB cache for signal_struct structures (tsk->signal) */ 183 static struct kmem_cache *signal_cachep; 184 185 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 186 struct kmem_cache *sighand_cachep; 187 188 /* SLAB cache for files_struct structures (tsk->files) */ 189 struct kmem_cache *files_cachep; 190 191 /* SLAB cache for fs_struct structures (tsk->fs) */ 192 struct kmem_cache *fs_cachep; 193 194 /* SLAB cache for vm_area_struct structures */ 195 struct kmem_cache *vm_area_cachep; 196 197 /* SLAB cache for mm_struct structures (tsk->mm) */ 198 static struct kmem_cache *mm_cachep; 199 200 static void account_kernel_stack(struct thread_info *ti, int account) 201 { 202 struct zone *zone = page_zone(virt_to_page(ti)); 203 204 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 205 } 206 207 void free_task(struct task_struct *tsk) 208 { 209 account_kernel_stack(tsk->stack, -1); 210 arch_release_thread_info(tsk->stack); 211 free_thread_info(tsk->stack); 212 rt_mutex_debug_task_free(tsk); 213 ftrace_graph_exit_task(tsk); 214 put_seccomp_filter(tsk); 215 arch_release_task_struct(tsk); 216 free_task_struct(tsk); 217 } 218 EXPORT_SYMBOL(free_task); 219 220 static inline void free_signal_struct(struct signal_struct *sig) 221 { 222 taskstats_tgid_free(sig); 223 sched_autogroup_exit(sig); 224 kmem_cache_free(signal_cachep, sig); 225 } 226 227 static inline void put_signal_struct(struct signal_struct *sig) 228 { 229 if (atomic_dec_and_test(&sig->sigcnt)) 230 free_signal_struct(sig); 231 } 232 233 void __put_task_struct(struct task_struct *tsk) 234 { 235 WARN_ON(!tsk->exit_state); 236 WARN_ON(atomic_read(&tsk->usage)); 237 WARN_ON(tsk == current); 238 239 security_task_free(tsk); 240 exit_creds(tsk); 241 delayacct_tsk_free(tsk); 242 put_signal_struct(tsk->signal); 243 244 if (!profile_handoff_task(tsk)) 245 free_task(tsk); 246 } 247 EXPORT_SYMBOL_GPL(__put_task_struct); 248 249 void __init __weak arch_task_cache_init(void) { } 250 251 void __init fork_init(unsigned long mempages) 252 { 253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 254 #ifndef ARCH_MIN_TASKALIGN 255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 256 #endif 257 /* create a slab on which task_structs can be allocated */ 258 task_struct_cachep = 259 kmem_cache_create("task_struct", sizeof(struct task_struct), 260 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 261 #endif 262 263 /* do the arch specific task caches init */ 264 arch_task_cache_init(); 265 266 /* 267 * The default maximum number of threads is set to a safe 268 * value: the thread structures can take up at most half 269 * of memory. 270 */ 271 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 272 273 /* 274 * we need to allow at least 20 threads to boot a system 275 */ 276 if (max_threads < 20) 277 max_threads = 20; 278 279 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 280 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 281 init_task.signal->rlim[RLIMIT_SIGPENDING] = 282 init_task.signal->rlim[RLIMIT_NPROC]; 283 } 284 285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 286 struct task_struct *src) 287 { 288 *dst = *src; 289 return 0; 290 } 291 292 static struct task_struct *dup_task_struct(struct task_struct *orig) 293 { 294 struct task_struct *tsk; 295 struct thread_info *ti; 296 unsigned long *stackend; 297 int node = tsk_fork_get_node(orig); 298 int err; 299 300 tsk = alloc_task_struct_node(node); 301 if (!tsk) 302 return NULL; 303 304 ti = alloc_thread_info_node(tsk, node); 305 if (!ti) 306 goto free_tsk; 307 308 err = arch_dup_task_struct(tsk, orig); 309 if (err) 310 goto free_ti; 311 312 tsk->stack = ti; 313 314 setup_thread_stack(tsk, orig); 315 clear_user_return_notifier(tsk); 316 clear_tsk_need_resched(tsk); 317 stackend = end_of_stack(tsk); 318 *stackend = STACK_END_MAGIC; /* for overflow detection */ 319 320 #ifdef CONFIG_CC_STACKPROTECTOR 321 tsk->stack_canary = get_random_int(); 322 #endif 323 324 /* 325 * One for us, one for whoever does the "release_task()" (usually 326 * parent) 327 */ 328 atomic_set(&tsk->usage, 2); 329 #ifdef CONFIG_BLK_DEV_IO_TRACE 330 tsk->btrace_seq = 0; 331 #endif 332 tsk->splice_pipe = NULL; 333 334 account_kernel_stack(ti, 1); 335 336 return tsk; 337 338 free_ti: 339 free_thread_info(ti); 340 free_tsk: 341 free_task_struct(tsk); 342 return NULL; 343 } 344 345 #ifdef CONFIG_MMU 346 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 347 { 348 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 349 struct rb_node **rb_link, *rb_parent; 350 int retval; 351 unsigned long charge; 352 struct mempolicy *pol; 353 354 down_write(&oldmm->mmap_sem); 355 flush_cache_dup_mm(oldmm); 356 /* 357 * Not linked in yet - no deadlock potential: 358 */ 359 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 360 361 mm->locked_vm = 0; 362 mm->mmap = NULL; 363 mm->mmap_cache = NULL; 364 mm->free_area_cache = oldmm->mmap_base; 365 mm->cached_hole_size = ~0UL; 366 mm->map_count = 0; 367 cpumask_clear(mm_cpumask(mm)); 368 mm->mm_rb = RB_ROOT; 369 rb_link = &mm->mm_rb.rb_node; 370 rb_parent = NULL; 371 pprev = &mm->mmap; 372 retval = ksm_fork(mm, oldmm); 373 if (retval) 374 goto out; 375 retval = khugepaged_fork(mm, oldmm); 376 if (retval) 377 goto out; 378 379 prev = NULL; 380 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 381 struct file *file; 382 383 if (mpnt->vm_flags & VM_DONTCOPY) { 384 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 385 -vma_pages(mpnt)); 386 continue; 387 } 388 charge = 0; 389 if (mpnt->vm_flags & VM_ACCOUNT) { 390 unsigned long len = vma_pages(mpnt); 391 392 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 393 goto fail_nomem; 394 charge = len; 395 } 396 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 397 if (!tmp) 398 goto fail_nomem; 399 *tmp = *mpnt; 400 INIT_LIST_HEAD(&tmp->anon_vma_chain); 401 pol = mpol_dup(vma_policy(mpnt)); 402 retval = PTR_ERR(pol); 403 if (IS_ERR(pol)) 404 goto fail_nomem_policy; 405 vma_set_policy(tmp, pol); 406 tmp->vm_mm = mm; 407 if (anon_vma_fork(tmp, mpnt)) 408 goto fail_nomem_anon_vma_fork; 409 tmp->vm_flags &= ~VM_LOCKED; 410 tmp->vm_next = tmp->vm_prev = NULL; 411 file = tmp->vm_file; 412 if (file) { 413 struct inode *inode = file->f_path.dentry->d_inode; 414 struct address_space *mapping = file->f_mapping; 415 416 get_file(file); 417 if (tmp->vm_flags & VM_DENYWRITE) 418 atomic_dec(&inode->i_writecount); 419 mutex_lock(&mapping->i_mmap_mutex); 420 if (tmp->vm_flags & VM_SHARED) 421 mapping->i_mmap_writable++; 422 flush_dcache_mmap_lock(mapping); 423 /* insert tmp into the share list, just after mpnt */ 424 vma_prio_tree_add(tmp, mpnt); 425 flush_dcache_mmap_unlock(mapping); 426 mutex_unlock(&mapping->i_mmap_mutex); 427 } 428 429 /* 430 * Clear hugetlb-related page reserves for children. This only 431 * affects MAP_PRIVATE mappings. Faults generated by the child 432 * are not guaranteed to succeed, even if read-only 433 */ 434 if (is_vm_hugetlb_page(tmp)) 435 reset_vma_resv_huge_pages(tmp); 436 437 /* 438 * Link in the new vma and copy the page table entries. 439 */ 440 *pprev = tmp; 441 pprev = &tmp->vm_next; 442 tmp->vm_prev = prev; 443 prev = tmp; 444 445 __vma_link_rb(mm, tmp, rb_link, rb_parent); 446 rb_link = &tmp->vm_rb.rb_right; 447 rb_parent = &tmp->vm_rb; 448 449 mm->map_count++; 450 retval = copy_page_range(mm, oldmm, mpnt); 451 452 if (tmp->vm_ops && tmp->vm_ops->open) 453 tmp->vm_ops->open(tmp); 454 455 if (retval) 456 goto out; 457 458 if (file) 459 uprobe_mmap(tmp); 460 } 461 /* a new mm has just been created */ 462 arch_dup_mmap(oldmm, mm); 463 retval = 0; 464 out: 465 up_write(&mm->mmap_sem); 466 flush_tlb_mm(oldmm); 467 up_write(&oldmm->mmap_sem); 468 return retval; 469 fail_nomem_anon_vma_fork: 470 mpol_put(pol); 471 fail_nomem_policy: 472 kmem_cache_free(vm_area_cachep, tmp); 473 fail_nomem: 474 retval = -ENOMEM; 475 vm_unacct_memory(charge); 476 goto out; 477 } 478 479 static inline int mm_alloc_pgd(struct mm_struct *mm) 480 { 481 mm->pgd = pgd_alloc(mm); 482 if (unlikely(!mm->pgd)) 483 return -ENOMEM; 484 return 0; 485 } 486 487 static inline void mm_free_pgd(struct mm_struct *mm) 488 { 489 pgd_free(mm, mm->pgd); 490 } 491 #else 492 #define dup_mmap(mm, oldmm) (0) 493 #define mm_alloc_pgd(mm) (0) 494 #define mm_free_pgd(mm) 495 #endif /* CONFIG_MMU */ 496 497 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 498 499 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 500 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 501 502 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 503 504 static int __init coredump_filter_setup(char *s) 505 { 506 default_dump_filter = 507 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 508 MMF_DUMP_FILTER_MASK; 509 return 1; 510 } 511 512 __setup("coredump_filter=", coredump_filter_setup); 513 514 #include <linux/init_task.h> 515 516 static void mm_init_aio(struct mm_struct *mm) 517 { 518 #ifdef CONFIG_AIO 519 spin_lock_init(&mm->ioctx_lock); 520 INIT_HLIST_HEAD(&mm->ioctx_list); 521 #endif 522 } 523 524 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 525 { 526 atomic_set(&mm->mm_users, 1); 527 atomic_set(&mm->mm_count, 1); 528 init_rwsem(&mm->mmap_sem); 529 INIT_LIST_HEAD(&mm->mmlist); 530 mm->flags = (current->mm) ? 531 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 532 mm->core_state = NULL; 533 mm->nr_ptes = 0; 534 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 535 spin_lock_init(&mm->page_table_lock); 536 mm->free_area_cache = TASK_UNMAPPED_BASE; 537 mm->cached_hole_size = ~0UL; 538 mm_init_aio(mm); 539 mm_init_owner(mm, p); 540 541 if (likely(!mm_alloc_pgd(mm))) { 542 mm->def_flags = 0; 543 mmu_notifier_mm_init(mm); 544 return mm; 545 } 546 547 free_mm(mm); 548 return NULL; 549 } 550 551 static void check_mm(struct mm_struct *mm) 552 { 553 int i; 554 555 for (i = 0; i < NR_MM_COUNTERS; i++) { 556 long x = atomic_long_read(&mm->rss_stat.count[i]); 557 558 if (unlikely(x)) 559 printk(KERN_ALERT "BUG: Bad rss-counter state " 560 "mm:%p idx:%d val:%ld\n", mm, i, x); 561 } 562 563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 564 VM_BUG_ON(mm->pmd_huge_pte); 565 #endif 566 } 567 568 /* 569 * Allocate and initialize an mm_struct. 570 */ 571 struct mm_struct *mm_alloc(void) 572 { 573 struct mm_struct *mm; 574 575 mm = allocate_mm(); 576 if (!mm) 577 return NULL; 578 579 memset(mm, 0, sizeof(*mm)); 580 mm_init_cpumask(mm); 581 return mm_init(mm, current); 582 } 583 584 /* 585 * Called when the last reference to the mm 586 * is dropped: either by a lazy thread or by 587 * mmput. Free the page directory and the mm. 588 */ 589 void __mmdrop(struct mm_struct *mm) 590 { 591 BUG_ON(mm == &init_mm); 592 mm_free_pgd(mm); 593 destroy_context(mm); 594 mmu_notifier_mm_destroy(mm); 595 check_mm(mm); 596 free_mm(mm); 597 } 598 EXPORT_SYMBOL_GPL(__mmdrop); 599 600 /* 601 * Decrement the use count and release all resources for an mm. 602 */ 603 void mmput(struct mm_struct *mm) 604 { 605 might_sleep(); 606 607 if (atomic_dec_and_test(&mm->mm_users)) { 608 uprobe_clear_state(mm); 609 exit_aio(mm); 610 ksm_exit(mm); 611 khugepaged_exit(mm); /* must run before exit_mmap */ 612 exit_mmap(mm); 613 set_mm_exe_file(mm, NULL); 614 if (!list_empty(&mm->mmlist)) { 615 spin_lock(&mmlist_lock); 616 list_del(&mm->mmlist); 617 spin_unlock(&mmlist_lock); 618 } 619 if (mm->binfmt) 620 module_put(mm->binfmt->module); 621 mmdrop(mm); 622 } 623 } 624 EXPORT_SYMBOL_GPL(mmput); 625 626 /* 627 * We added or removed a vma mapping the executable. The vmas are only mapped 628 * during exec and are not mapped with the mmap system call. 629 * Callers must hold down_write() on the mm's mmap_sem for these 630 */ 631 void added_exe_file_vma(struct mm_struct *mm) 632 { 633 mm->num_exe_file_vmas++; 634 } 635 636 void removed_exe_file_vma(struct mm_struct *mm) 637 { 638 mm->num_exe_file_vmas--; 639 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) { 640 fput(mm->exe_file); 641 mm->exe_file = NULL; 642 } 643 644 } 645 646 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 647 { 648 if (new_exe_file) 649 get_file(new_exe_file); 650 if (mm->exe_file) 651 fput(mm->exe_file); 652 mm->exe_file = new_exe_file; 653 mm->num_exe_file_vmas = 0; 654 } 655 656 struct file *get_mm_exe_file(struct mm_struct *mm) 657 { 658 struct file *exe_file; 659 660 /* We need mmap_sem to protect against races with removal of 661 * VM_EXECUTABLE vmas */ 662 down_read(&mm->mmap_sem); 663 exe_file = mm->exe_file; 664 if (exe_file) 665 get_file(exe_file); 666 up_read(&mm->mmap_sem); 667 return exe_file; 668 } 669 670 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 671 { 672 /* It's safe to write the exe_file pointer without exe_file_lock because 673 * this is called during fork when the task is not yet in /proc */ 674 newmm->exe_file = get_mm_exe_file(oldmm); 675 } 676 677 /** 678 * get_task_mm - acquire a reference to the task's mm 679 * 680 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 681 * this kernel workthread has transiently adopted a user mm with use_mm, 682 * to do its AIO) is not set and if so returns a reference to it, after 683 * bumping up the use count. User must release the mm via mmput() 684 * after use. Typically used by /proc and ptrace. 685 */ 686 struct mm_struct *get_task_mm(struct task_struct *task) 687 { 688 struct mm_struct *mm; 689 690 task_lock(task); 691 mm = task->mm; 692 if (mm) { 693 if (task->flags & PF_KTHREAD) 694 mm = NULL; 695 else 696 atomic_inc(&mm->mm_users); 697 } 698 task_unlock(task); 699 return mm; 700 } 701 EXPORT_SYMBOL_GPL(get_task_mm); 702 703 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 704 { 705 struct mm_struct *mm; 706 int err; 707 708 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 709 if (err) 710 return ERR_PTR(err); 711 712 mm = get_task_mm(task); 713 if (mm && mm != current->mm && 714 !ptrace_may_access(task, mode)) { 715 mmput(mm); 716 mm = ERR_PTR(-EACCES); 717 } 718 mutex_unlock(&task->signal->cred_guard_mutex); 719 720 return mm; 721 } 722 723 static void complete_vfork_done(struct task_struct *tsk) 724 { 725 struct completion *vfork; 726 727 task_lock(tsk); 728 vfork = tsk->vfork_done; 729 if (likely(vfork)) { 730 tsk->vfork_done = NULL; 731 complete(vfork); 732 } 733 task_unlock(tsk); 734 } 735 736 static int wait_for_vfork_done(struct task_struct *child, 737 struct completion *vfork) 738 { 739 int killed; 740 741 freezer_do_not_count(); 742 killed = wait_for_completion_killable(vfork); 743 freezer_count(); 744 745 if (killed) { 746 task_lock(child); 747 child->vfork_done = NULL; 748 task_unlock(child); 749 } 750 751 put_task_struct(child); 752 return killed; 753 } 754 755 /* Please note the differences between mmput and mm_release. 756 * mmput is called whenever we stop holding onto a mm_struct, 757 * error success whatever. 758 * 759 * mm_release is called after a mm_struct has been removed 760 * from the current process. 761 * 762 * This difference is important for error handling, when we 763 * only half set up a mm_struct for a new process and need to restore 764 * the old one. Because we mmput the new mm_struct before 765 * restoring the old one. . . 766 * Eric Biederman 10 January 1998 767 */ 768 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 769 { 770 /* Get rid of any futexes when releasing the mm */ 771 #ifdef CONFIG_FUTEX 772 if (unlikely(tsk->robust_list)) { 773 exit_robust_list(tsk); 774 tsk->robust_list = NULL; 775 } 776 #ifdef CONFIG_COMPAT 777 if (unlikely(tsk->compat_robust_list)) { 778 compat_exit_robust_list(tsk); 779 tsk->compat_robust_list = NULL; 780 } 781 #endif 782 if (unlikely(!list_empty(&tsk->pi_state_list))) 783 exit_pi_state_list(tsk); 784 #endif 785 786 uprobe_free_utask(tsk); 787 788 /* Get rid of any cached register state */ 789 deactivate_mm(tsk, mm); 790 791 /* 792 * If we're exiting normally, clear a user-space tid field if 793 * requested. We leave this alone when dying by signal, to leave 794 * the value intact in a core dump, and to save the unnecessary 795 * trouble, say, a killed vfork parent shouldn't touch this mm. 796 * Userland only wants this done for a sys_exit. 797 */ 798 if (tsk->clear_child_tid) { 799 if (!(tsk->flags & PF_SIGNALED) && 800 atomic_read(&mm->mm_users) > 1) { 801 /* 802 * We don't check the error code - if userspace has 803 * not set up a proper pointer then tough luck. 804 */ 805 put_user(0, tsk->clear_child_tid); 806 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 807 1, NULL, NULL, 0); 808 } 809 tsk->clear_child_tid = NULL; 810 } 811 812 /* 813 * All done, finally we can wake up parent and return this mm to him. 814 * Also kthread_stop() uses this completion for synchronization. 815 */ 816 if (tsk->vfork_done) 817 complete_vfork_done(tsk); 818 } 819 820 /* 821 * Allocate a new mm structure and copy contents from the 822 * mm structure of the passed in task structure. 823 */ 824 struct mm_struct *dup_mm(struct task_struct *tsk) 825 { 826 struct mm_struct *mm, *oldmm = current->mm; 827 int err; 828 829 if (!oldmm) 830 return NULL; 831 832 mm = allocate_mm(); 833 if (!mm) 834 goto fail_nomem; 835 836 memcpy(mm, oldmm, sizeof(*mm)); 837 mm_init_cpumask(mm); 838 839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 840 mm->pmd_huge_pte = NULL; 841 #endif 842 uprobe_reset_state(mm); 843 844 if (!mm_init(mm, tsk)) 845 goto fail_nomem; 846 847 if (init_new_context(tsk, mm)) 848 goto fail_nocontext; 849 850 dup_mm_exe_file(oldmm, mm); 851 852 err = dup_mmap(mm, oldmm); 853 if (err) 854 goto free_pt; 855 856 mm->hiwater_rss = get_mm_rss(mm); 857 mm->hiwater_vm = mm->total_vm; 858 859 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 860 goto free_pt; 861 862 return mm; 863 864 free_pt: 865 /* don't put binfmt in mmput, we haven't got module yet */ 866 mm->binfmt = NULL; 867 mmput(mm); 868 869 fail_nomem: 870 return NULL; 871 872 fail_nocontext: 873 /* 874 * If init_new_context() failed, we cannot use mmput() to free the mm 875 * because it calls destroy_context() 876 */ 877 mm_free_pgd(mm); 878 free_mm(mm); 879 return NULL; 880 } 881 882 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 883 { 884 struct mm_struct *mm, *oldmm; 885 int retval; 886 887 tsk->min_flt = tsk->maj_flt = 0; 888 tsk->nvcsw = tsk->nivcsw = 0; 889 #ifdef CONFIG_DETECT_HUNG_TASK 890 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 891 #endif 892 893 tsk->mm = NULL; 894 tsk->active_mm = NULL; 895 896 /* 897 * Are we cloning a kernel thread? 898 * 899 * We need to steal a active VM for that.. 900 */ 901 oldmm = current->mm; 902 if (!oldmm) 903 return 0; 904 905 if (clone_flags & CLONE_VM) { 906 atomic_inc(&oldmm->mm_users); 907 mm = oldmm; 908 goto good_mm; 909 } 910 911 retval = -ENOMEM; 912 mm = dup_mm(tsk); 913 if (!mm) 914 goto fail_nomem; 915 916 good_mm: 917 tsk->mm = mm; 918 tsk->active_mm = mm; 919 return 0; 920 921 fail_nomem: 922 return retval; 923 } 924 925 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 926 { 927 struct fs_struct *fs = current->fs; 928 if (clone_flags & CLONE_FS) { 929 /* tsk->fs is already what we want */ 930 spin_lock(&fs->lock); 931 if (fs->in_exec) { 932 spin_unlock(&fs->lock); 933 return -EAGAIN; 934 } 935 fs->users++; 936 spin_unlock(&fs->lock); 937 return 0; 938 } 939 tsk->fs = copy_fs_struct(fs); 940 if (!tsk->fs) 941 return -ENOMEM; 942 return 0; 943 } 944 945 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 946 { 947 struct files_struct *oldf, *newf; 948 int error = 0; 949 950 /* 951 * A background process may not have any files ... 952 */ 953 oldf = current->files; 954 if (!oldf) 955 goto out; 956 957 if (clone_flags & CLONE_FILES) { 958 atomic_inc(&oldf->count); 959 goto out; 960 } 961 962 newf = dup_fd(oldf, &error); 963 if (!newf) 964 goto out; 965 966 tsk->files = newf; 967 error = 0; 968 out: 969 return error; 970 } 971 972 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 973 { 974 #ifdef CONFIG_BLOCK 975 struct io_context *ioc = current->io_context; 976 struct io_context *new_ioc; 977 978 if (!ioc) 979 return 0; 980 /* 981 * Share io context with parent, if CLONE_IO is set 982 */ 983 if (clone_flags & CLONE_IO) { 984 ioc_task_link(ioc); 985 tsk->io_context = ioc; 986 } else if (ioprio_valid(ioc->ioprio)) { 987 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 988 if (unlikely(!new_ioc)) 989 return -ENOMEM; 990 991 new_ioc->ioprio = ioc->ioprio; 992 put_io_context(new_ioc); 993 } 994 #endif 995 return 0; 996 } 997 998 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 999 { 1000 struct sighand_struct *sig; 1001 1002 if (clone_flags & CLONE_SIGHAND) { 1003 atomic_inc(¤t->sighand->count); 1004 return 0; 1005 } 1006 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1007 rcu_assign_pointer(tsk->sighand, sig); 1008 if (!sig) 1009 return -ENOMEM; 1010 atomic_set(&sig->count, 1); 1011 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1012 return 0; 1013 } 1014 1015 void __cleanup_sighand(struct sighand_struct *sighand) 1016 { 1017 if (atomic_dec_and_test(&sighand->count)) { 1018 signalfd_cleanup(sighand); 1019 kmem_cache_free(sighand_cachep, sighand); 1020 } 1021 } 1022 1023 1024 /* 1025 * Initialize POSIX timer handling for a thread group. 1026 */ 1027 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1028 { 1029 unsigned long cpu_limit; 1030 1031 /* Thread group counters. */ 1032 thread_group_cputime_init(sig); 1033 1034 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1035 if (cpu_limit != RLIM_INFINITY) { 1036 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1037 sig->cputimer.running = 1; 1038 } 1039 1040 /* The timer lists. */ 1041 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1042 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1043 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1044 } 1045 1046 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1047 { 1048 struct signal_struct *sig; 1049 1050 if (clone_flags & CLONE_THREAD) 1051 return 0; 1052 1053 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1054 tsk->signal = sig; 1055 if (!sig) 1056 return -ENOMEM; 1057 1058 sig->nr_threads = 1; 1059 atomic_set(&sig->live, 1); 1060 atomic_set(&sig->sigcnt, 1); 1061 init_waitqueue_head(&sig->wait_chldexit); 1062 if (clone_flags & CLONE_NEWPID) 1063 sig->flags |= SIGNAL_UNKILLABLE; 1064 sig->curr_target = tsk; 1065 init_sigpending(&sig->shared_pending); 1066 INIT_LIST_HEAD(&sig->posix_timers); 1067 1068 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1069 sig->real_timer.function = it_real_fn; 1070 1071 task_lock(current->group_leader); 1072 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1073 task_unlock(current->group_leader); 1074 1075 posix_cpu_timers_init_group(sig); 1076 1077 tty_audit_fork(sig); 1078 sched_autogroup_fork(sig); 1079 1080 #ifdef CONFIG_CGROUPS 1081 init_rwsem(&sig->group_rwsem); 1082 #endif 1083 1084 sig->oom_adj = current->signal->oom_adj; 1085 sig->oom_score_adj = current->signal->oom_score_adj; 1086 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1087 1088 sig->has_child_subreaper = current->signal->has_child_subreaper || 1089 current->signal->is_child_subreaper; 1090 1091 mutex_init(&sig->cred_guard_mutex); 1092 1093 return 0; 1094 } 1095 1096 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 1097 { 1098 unsigned long new_flags = p->flags; 1099 1100 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1101 new_flags |= PF_FORKNOEXEC; 1102 p->flags = new_flags; 1103 } 1104 1105 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1106 { 1107 current->clear_child_tid = tidptr; 1108 1109 return task_pid_vnr(current); 1110 } 1111 1112 static void rt_mutex_init_task(struct task_struct *p) 1113 { 1114 raw_spin_lock_init(&p->pi_lock); 1115 #ifdef CONFIG_RT_MUTEXES 1116 plist_head_init(&p->pi_waiters); 1117 p->pi_blocked_on = NULL; 1118 #endif 1119 } 1120 1121 #ifdef CONFIG_MM_OWNER 1122 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1123 { 1124 mm->owner = p; 1125 } 1126 #endif /* CONFIG_MM_OWNER */ 1127 1128 /* 1129 * Initialize POSIX timer handling for a single task. 1130 */ 1131 static void posix_cpu_timers_init(struct task_struct *tsk) 1132 { 1133 tsk->cputime_expires.prof_exp = 0; 1134 tsk->cputime_expires.virt_exp = 0; 1135 tsk->cputime_expires.sched_exp = 0; 1136 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1137 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1138 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1139 } 1140 1141 /* 1142 * This creates a new process as a copy of the old one, 1143 * but does not actually start it yet. 1144 * 1145 * It copies the registers, and all the appropriate 1146 * parts of the process environment (as per the clone 1147 * flags). The actual kick-off is left to the caller. 1148 */ 1149 static struct task_struct *copy_process(unsigned long clone_flags, 1150 unsigned long stack_start, 1151 struct pt_regs *regs, 1152 unsigned long stack_size, 1153 int __user *child_tidptr, 1154 struct pid *pid, 1155 int trace) 1156 { 1157 int retval; 1158 struct task_struct *p; 1159 int cgroup_callbacks_done = 0; 1160 1161 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1162 return ERR_PTR(-EINVAL); 1163 1164 /* 1165 * Thread groups must share signals as well, and detached threads 1166 * can only be started up within the thread group. 1167 */ 1168 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1169 return ERR_PTR(-EINVAL); 1170 1171 /* 1172 * Shared signal handlers imply shared VM. By way of the above, 1173 * thread groups also imply shared VM. Blocking this case allows 1174 * for various simplifications in other code. 1175 */ 1176 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1177 return ERR_PTR(-EINVAL); 1178 1179 /* 1180 * Siblings of global init remain as zombies on exit since they are 1181 * not reaped by their parent (swapper). To solve this and to avoid 1182 * multi-rooted process trees, prevent global and container-inits 1183 * from creating siblings. 1184 */ 1185 if ((clone_flags & CLONE_PARENT) && 1186 current->signal->flags & SIGNAL_UNKILLABLE) 1187 return ERR_PTR(-EINVAL); 1188 1189 retval = security_task_create(clone_flags); 1190 if (retval) 1191 goto fork_out; 1192 1193 retval = -ENOMEM; 1194 p = dup_task_struct(current); 1195 if (!p) 1196 goto fork_out; 1197 1198 ftrace_graph_init_task(p); 1199 get_seccomp_filter(p); 1200 1201 rt_mutex_init_task(p); 1202 1203 #ifdef CONFIG_PROVE_LOCKING 1204 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1205 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1206 #endif 1207 retval = -EAGAIN; 1208 if (atomic_read(&p->real_cred->user->processes) >= 1209 task_rlimit(p, RLIMIT_NPROC)) { 1210 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1211 p->real_cred->user != INIT_USER) 1212 goto bad_fork_free; 1213 } 1214 current->flags &= ~PF_NPROC_EXCEEDED; 1215 1216 retval = copy_creds(p, clone_flags); 1217 if (retval < 0) 1218 goto bad_fork_free; 1219 1220 /* 1221 * If multiple threads are within copy_process(), then this check 1222 * triggers too late. This doesn't hurt, the check is only there 1223 * to stop root fork bombs. 1224 */ 1225 retval = -EAGAIN; 1226 if (nr_threads >= max_threads) 1227 goto bad_fork_cleanup_count; 1228 1229 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1230 goto bad_fork_cleanup_count; 1231 1232 p->did_exec = 0; 1233 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1234 copy_flags(clone_flags, p); 1235 INIT_LIST_HEAD(&p->children); 1236 INIT_LIST_HEAD(&p->sibling); 1237 rcu_copy_process(p); 1238 p->vfork_done = NULL; 1239 spin_lock_init(&p->alloc_lock); 1240 1241 init_sigpending(&p->pending); 1242 1243 p->utime = p->stime = p->gtime = 0; 1244 p->utimescaled = p->stimescaled = 0; 1245 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1246 p->prev_utime = p->prev_stime = 0; 1247 #endif 1248 #if defined(SPLIT_RSS_COUNTING) 1249 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1250 #endif 1251 1252 p->default_timer_slack_ns = current->timer_slack_ns; 1253 1254 task_io_accounting_init(&p->ioac); 1255 acct_clear_integrals(p); 1256 1257 posix_cpu_timers_init(p); 1258 1259 do_posix_clock_monotonic_gettime(&p->start_time); 1260 p->real_start_time = p->start_time; 1261 monotonic_to_bootbased(&p->real_start_time); 1262 p->io_context = NULL; 1263 p->audit_context = NULL; 1264 if (clone_flags & CLONE_THREAD) 1265 threadgroup_change_begin(current); 1266 cgroup_fork(p); 1267 #ifdef CONFIG_NUMA 1268 p->mempolicy = mpol_dup(p->mempolicy); 1269 if (IS_ERR(p->mempolicy)) { 1270 retval = PTR_ERR(p->mempolicy); 1271 p->mempolicy = NULL; 1272 goto bad_fork_cleanup_cgroup; 1273 } 1274 mpol_fix_fork_child_flag(p); 1275 #endif 1276 #ifdef CONFIG_CPUSETS 1277 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1278 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1279 seqcount_init(&p->mems_allowed_seq); 1280 #endif 1281 #ifdef CONFIG_TRACE_IRQFLAGS 1282 p->irq_events = 0; 1283 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1284 p->hardirqs_enabled = 1; 1285 #else 1286 p->hardirqs_enabled = 0; 1287 #endif 1288 p->hardirq_enable_ip = 0; 1289 p->hardirq_enable_event = 0; 1290 p->hardirq_disable_ip = _THIS_IP_; 1291 p->hardirq_disable_event = 0; 1292 p->softirqs_enabled = 1; 1293 p->softirq_enable_ip = _THIS_IP_; 1294 p->softirq_enable_event = 0; 1295 p->softirq_disable_ip = 0; 1296 p->softirq_disable_event = 0; 1297 p->hardirq_context = 0; 1298 p->softirq_context = 0; 1299 #endif 1300 #ifdef CONFIG_LOCKDEP 1301 p->lockdep_depth = 0; /* no locks held yet */ 1302 p->curr_chain_key = 0; 1303 p->lockdep_recursion = 0; 1304 #endif 1305 1306 #ifdef CONFIG_DEBUG_MUTEXES 1307 p->blocked_on = NULL; /* not blocked yet */ 1308 #endif 1309 #ifdef CONFIG_MEMCG 1310 p->memcg_batch.do_batch = 0; 1311 p->memcg_batch.memcg = NULL; 1312 #endif 1313 1314 /* Perform scheduler related setup. Assign this task to a CPU. */ 1315 sched_fork(p); 1316 1317 retval = perf_event_init_task(p); 1318 if (retval) 1319 goto bad_fork_cleanup_policy; 1320 retval = audit_alloc(p); 1321 if (retval) 1322 goto bad_fork_cleanup_policy; 1323 /* copy all the process information */ 1324 retval = copy_semundo(clone_flags, p); 1325 if (retval) 1326 goto bad_fork_cleanup_audit; 1327 retval = copy_files(clone_flags, p); 1328 if (retval) 1329 goto bad_fork_cleanup_semundo; 1330 retval = copy_fs(clone_flags, p); 1331 if (retval) 1332 goto bad_fork_cleanup_files; 1333 retval = copy_sighand(clone_flags, p); 1334 if (retval) 1335 goto bad_fork_cleanup_fs; 1336 retval = copy_signal(clone_flags, p); 1337 if (retval) 1338 goto bad_fork_cleanup_sighand; 1339 retval = copy_mm(clone_flags, p); 1340 if (retval) 1341 goto bad_fork_cleanup_signal; 1342 retval = copy_namespaces(clone_flags, p); 1343 if (retval) 1344 goto bad_fork_cleanup_mm; 1345 retval = copy_io(clone_flags, p); 1346 if (retval) 1347 goto bad_fork_cleanup_namespaces; 1348 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); 1349 if (retval) 1350 goto bad_fork_cleanup_io; 1351 1352 if (pid != &init_struct_pid) { 1353 retval = -ENOMEM; 1354 pid = alloc_pid(p->nsproxy->pid_ns); 1355 if (!pid) 1356 goto bad_fork_cleanup_io; 1357 } 1358 1359 p->pid = pid_nr(pid); 1360 p->tgid = p->pid; 1361 if (clone_flags & CLONE_THREAD) 1362 p->tgid = current->tgid; 1363 1364 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1365 /* 1366 * Clear TID on mm_release()? 1367 */ 1368 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1369 #ifdef CONFIG_BLOCK 1370 p->plug = NULL; 1371 #endif 1372 #ifdef CONFIG_FUTEX 1373 p->robust_list = NULL; 1374 #ifdef CONFIG_COMPAT 1375 p->compat_robust_list = NULL; 1376 #endif 1377 INIT_LIST_HEAD(&p->pi_state_list); 1378 p->pi_state_cache = NULL; 1379 #endif 1380 uprobe_copy_process(p); 1381 /* 1382 * sigaltstack should be cleared when sharing the same VM 1383 */ 1384 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1385 p->sas_ss_sp = p->sas_ss_size = 0; 1386 1387 /* 1388 * Syscall tracing and stepping should be turned off in the 1389 * child regardless of CLONE_PTRACE. 1390 */ 1391 user_disable_single_step(p); 1392 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1393 #ifdef TIF_SYSCALL_EMU 1394 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1395 #endif 1396 clear_all_latency_tracing(p); 1397 1398 /* ok, now we should be set up.. */ 1399 if (clone_flags & CLONE_THREAD) 1400 p->exit_signal = -1; 1401 else if (clone_flags & CLONE_PARENT) 1402 p->exit_signal = current->group_leader->exit_signal; 1403 else 1404 p->exit_signal = (clone_flags & CSIGNAL); 1405 1406 p->pdeath_signal = 0; 1407 p->exit_state = 0; 1408 1409 p->nr_dirtied = 0; 1410 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1411 p->dirty_paused_when = 0; 1412 1413 /* 1414 * Ok, make it visible to the rest of the system. 1415 * We dont wake it up yet. 1416 */ 1417 p->group_leader = p; 1418 INIT_LIST_HEAD(&p->thread_group); 1419 p->task_works = NULL; 1420 1421 /* Now that the task is set up, run cgroup callbacks if 1422 * necessary. We need to run them before the task is visible 1423 * on the tasklist. */ 1424 cgroup_fork_callbacks(p); 1425 cgroup_callbacks_done = 1; 1426 1427 /* Need tasklist lock for parent etc handling! */ 1428 write_lock_irq(&tasklist_lock); 1429 1430 /* CLONE_PARENT re-uses the old parent */ 1431 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1432 p->real_parent = current->real_parent; 1433 p->parent_exec_id = current->parent_exec_id; 1434 } else { 1435 p->real_parent = current; 1436 p->parent_exec_id = current->self_exec_id; 1437 } 1438 1439 spin_lock(¤t->sighand->siglock); 1440 1441 /* 1442 * Process group and session signals need to be delivered to just the 1443 * parent before the fork or both the parent and the child after the 1444 * fork. Restart if a signal comes in before we add the new process to 1445 * it's process group. 1446 * A fatal signal pending means that current will exit, so the new 1447 * thread can't slip out of an OOM kill (or normal SIGKILL). 1448 */ 1449 recalc_sigpending(); 1450 if (signal_pending(current)) { 1451 spin_unlock(¤t->sighand->siglock); 1452 write_unlock_irq(&tasklist_lock); 1453 retval = -ERESTARTNOINTR; 1454 goto bad_fork_free_pid; 1455 } 1456 1457 if (clone_flags & CLONE_THREAD) { 1458 current->signal->nr_threads++; 1459 atomic_inc(¤t->signal->live); 1460 atomic_inc(¤t->signal->sigcnt); 1461 p->group_leader = current->group_leader; 1462 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1463 } 1464 1465 if (likely(p->pid)) { 1466 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1467 1468 if (thread_group_leader(p)) { 1469 if (is_child_reaper(pid)) 1470 p->nsproxy->pid_ns->child_reaper = p; 1471 1472 p->signal->leader_pid = pid; 1473 p->signal->tty = tty_kref_get(current->signal->tty); 1474 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1475 attach_pid(p, PIDTYPE_SID, task_session(current)); 1476 list_add_tail(&p->sibling, &p->real_parent->children); 1477 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1478 __this_cpu_inc(process_counts); 1479 } 1480 attach_pid(p, PIDTYPE_PID, pid); 1481 nr_threads++; 1482 } 1483 1484 total_forks++; 1485 spin_unlock(¤t->sighand->siglock); 1486 write_unlock_irq(&tasklist_lock); 1487 proc_fork_connector(p); 1488 cgroup_post_fork(p); 1489 if (clone_flags & CLONE_THREAD) 1490 threadgroup_change_end(current); 1491 perf_event_fork(p); 1492 1493 trace_task_newtask(p, clone_flags); 1494 1495 return p; 1496 1497 bad_fork_free_pid: 1498 if (pid != &init_struct_pid) 1499 free_pid(pid); 1500 bad_fork_cleanup_io: 1501 if (p->io_context) 1502 exit_io_context(p); 1503 bad_fork_cleanup_namespaces: 1504 if (unlikely(clone_flags & CLONE_NEWPID)) 1505 pid_ns_release_proc(p->nsproxy->pid_ns); 1506 exit_task_namespaces(p); 1507 bad_fork_cleanup_mm: 1508 if (p->mm) 1509 mmput(p->mm); 1510 bad_fork_cleanup_signal: 1511 if (!(clone_flags & CLONE_THREAD)) 1512 free_signal_struct(p->signal); 1513 bad_fork_cleanup_sighand: 1514 __cleanup_sighand(p->sighand); 1515 bad_fork_cleanup_fs: 1516 exit_fs(p); /* blocking */ 1517 bad_fork_cleanup_files: 1518 exit_files(p); /* blocking */ 1519 bad_fork_cleanup_semundo: 1520 exit_sem(p); 1521 bad_fork_cleanup_audit: 1522 audit_free(p); 1523 bad_fork_cleanup_policy: 1524 perf_event_free_task(p); 1525 #ifdef CONFIG_NUMA 1526 mpol_put(p->mempolicy); 1527 bad_fork_cleanup_cgroup: 1528 #endif 1529 if (clone_flags & CLONE_THREAD) 1530 threadgroup_change_end(current); 1531 cgroup_exit(p, cgroup_callbacks_done); 1532 delayacct_tsk_free(p); 1533 module_put(task_thread_info(p)->exec_domain->module); 1534 bad_fork_cleanup_count: 1535 atomic_dec(&p->cred->user->processes); 1536 exit_creds(p); 1537 bad_fork_free: 1538 free_task(p); 1539 fork_out: 1540 return ERR_PTR(retval); 1541 } 1542 1543 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1544 { 1545 memset(regs, 0, sizeof(struct pt_regs)); 1546 return regs; 1547 } 1548 1549 static inline void init_idle_pids(struct pid_link *links) 1550 { 1551 enum pid_type type; 1552 1553 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1554 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1555 links[type].pid = &init_struct_pid; 1556 } 1557 } 1558 1559 struct task_struct * __cpuinit fork_idle(int cpu) 1560 { 1561 struct task_struct *task; 1562 struct pt_regs regs; 1563 1564 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1565 &init_struct_pid, 0); 1566 if (!IS_ERR(task)) { 1567 init_idle_pids(task->pids); 1568 init_idle(task, cpu); 1569 } 1570 1571 return task; 1572 } 1573 1574 /* 1575 * Ok, this is the main fork-routine. 1576 * 1577 * It copies the process, and if successful kick-starts 1578 * it and waits for it to finish using the VM if required. 1579 */ 1580 long do_fork(unsigned long clone_flags, 1581 unsigned long stack_start, 1582 struct pt_regs *regs, 1583 unsigned long stack_size, 1584 int __user *parent_tidptr, 1585 int __user *child_tidptr) 1586 { 1587 struct task_struct *p; 1588 int trace = 0; 1589 long nr; 1590 1591 /* 1592 * Do some preliminary argument and permissions checking before we 1593 * actually start allocating stuff 1594 */ 1595 if (clone_flags & CLONE_NEWUSER) { 1596 if (clone_flags & CLONE_THREAD) 1597 return -EINVAL; 1598 /* hopefully this check will go away when userns support is 1599 * complete 1600 */ 1601 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || 1602 !capable(CAP_SETGID)) 1603 return -EPERM; 1604 } 1605 1606 /* 1607 * Determine whether and which event to report to ptracer. When 1608 * called from kernel_thread or CLONE_UNTRACED is explicitly 1609 * requested, no event is reported; otherwise, report if the event 1610 * for the type of forking is enabled. 1611 */ 1612 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) { 1613 if (clone_flags & CLONE_VFORK) 1614 trace = PTRACE_EVENT_VFORK; 1615 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1616 trace = PTRACE_EVENT_CLONE; 1617 else 1618 trace = PTRACE_EVENT_FORK; 1619 1620 if (likely(!ptrace_event_enabled(current, trace))) 1621 trace = 0; 1622 } 1623 1624 p = copy_process(clone_flags, stack_start, regs, stack_size, 1625 child_tidptr, NULL, trace); 1626 /* 1627 * Do this prior waking up the new thread - the thread pointer 1628 * might get invalid after that point, if the thread exits quickly. 1629 */ 1630 if (!IS_ERR(p)) { 1631 struct completion vfork; 1632 1633 trace_sched_process_fork(current, p); 1634 1635 nr = task_pid_vnr(p); 1636 1637 if (clone_flags & CLONE_PARENT_SETTID) 1638 put_user(nr, parent_tidptr); 1639 1640 if (clone_flags & CLONE_VFORK) { 1641 p->vfork_done = &vfork; 1642 init_completion(&vfork); 1643 get_task_struct(p); 1644 } 1645 1646 wake_up_new_task(p); 1647 1648 /* forking complete and child started to run, tell ptracer */ 1649 if (unlikely(trace)) 1650 ptrace_event(trace, nr); 1651 1652 if (clone_flags & CLONE_VFORK) { 1653 if (!wait_for_vfork_done(p, &vfork)) 1654 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); 1655 } 1656 } else { 1657 nr = PTR_ERR(p); 1658 } 1659 return nr; 1660 } 1661 1662 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1663 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1664 #endif 1665 1666 static void sighand_ctor(void *data) 1667 { 1668 struct sighand_struct *sighand = data; 1669 1670 spin_lock_init(&sighand->siglock); 1671 init_waitqueue_head(&sighand->signalfd_wqh); 1672 } 1673 1674 void __init proc_caches_init(void) 1675 { 1676 sighand_cachep = kmem_cache_create("sighand_cache", 1677 sizeof(struct sighand_struct), 0, 1678 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1679 SLAB_NOTRACK, sighand_ctor); 1680 signal_cachep = kmem_cache_create("signal_cache", 1681 sizeof(struct signal_struct), 0, 1682 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1683 files_cachep = kmem_cache_create("files_cache", 1684 sizeof(struct files_struct), 0, 1685 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1686 fs_cachep = kmem_cache_create("fs_cache", 1687 sizeof(struct fs_struct), 0, 1688 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1689 /* 1690 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1691 * whole struct cpumask for the OFFSTACK case. We could change 1692 * this to *only* allocate as much of it as required by the 1693 * maximum number of CPU's we can ever have. The cpumask_allocation 1694 * is at the end of the structure, exactly for that reason. 1695 */ 1696 mm_cachep = kmem_cache_create("mm_struct", 1697 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1698 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1699 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1700 mmap_init(); 1701 nsproxy_cache_init(); 1702 } 1703 1704 /* 1705 * Check constraints on flags passed to the unshare system call. 1706 */ 1707 static int check_unshare_flags(unsigned long unshare_flags) 1708 { 1709 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1710 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1711 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET)) 1712 return -EINVAL; 1713 /* 1714 * Not implemented, but pretend it works if there is nothing to 1715 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1716 * needs to unshare vm. 1717 */ 1718 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1719 /* FIXME: get_task_mm() increments ->mm_users */ 1720 if (atomic_read(¤t->mm->mm_users) > 1) 1721 return -EINVAL; 1722 } 1723 1724 return 0; 1725 } 1726 1727 /* 1728 * Unshare the filesystem structure if it is being shared 1729 */ 1730 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1731 { 1732 struct fs_struct *fs = current->fs; 1733 1734 if (!(unshare_flags & CLONE_FS) || !fs) 1735 return 0; 1736 1737 /* don't need lock here; in the worst case we'll do useless copy */ 1738 if (fs->users == 1) 1739 return 0; 1740 1741 *new_fsp = copy_fs_struct(fs); 1742 if (!*new_fsp) 1743 return -ENOMEM; 1744 1745 return 0; 1746 } 1747 1748 /* 1749 * Unshare file descriptor table if it is being shared 1750 */ 1751 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1752 { 1753 struct files_struct *fd = current->files; 1754 int error = 0; 1755 1756 if ((unshare_flags & CLONE_FILES) && 1757 (fd && atomic_read(&fd->count) > 1)) { 1758 *new_fdp = dup_fd(fd, &error); 1759 if (!*new_fdp) 1760 return error; 1761 } 1762 1763 return 0; 1764 } 1765 1766 /* 1767 * unshare allows a process to 'unshare' part of the process 1768 * context which was originally shared using clone. copy_* 1769 * functions used by do_fork() cannot be used here directly 1770 * because they modify an inactive task_struct that is being 1771 * constructed. Here we are modifying the current, active, 1772 * task_struct. 1773 */ 1774 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1775 { 1776 struct fs_struct *fs, *new_fs = NULL; 1777 struct files_struct *fd, *new_fd = NULL; 1778 struct nsproxy *new_nsproxy = NULL; 1779 int do_sysvsem = 0; 1780 int err; 1781 1782 err = check_unshare_flags(unshare_flags); 1783 if (err) 1784 goto bad_unshare_out; 1785 1786 /* 1787 * If unsharing namespace, must also unshare filesystem information. 1788 */ 1789 if (unshare_flags & CLONE_NEWNS) 1790 unshare_flags |= CLONE_FS; 1791 /* 1792 * CLONE_NEWIPC must also detach from the undolist: after switching 1793 * to a new ipc namespace, the semaphore arrays from the old 1794 * namespace are unreachable. 1795 */ 1796 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1797 do_sysvsem = 1; 1798 err = unshare_fs(unshare_flags, &new_fs); 1799 if (err) 1800 goto bad_unshare_out; 1801 err = unshare_fd(unshare_flags, &new_fd); 1802 if (err) 1803 goto bad_unshare_cleanup_fs; 1804 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs); 1805 if (err) 1806 goto bad_unshare_cleanup_fd; 1807 1808 if (new_fs || new_fd || do_sysvsem || new_nsproxy) { 1809 if (do_sysvsem) { 1810 /* 1811 * CLONE_SYSVSEM is equivalent to sys_exit(). 1812 */ 1813 exit_sem(current); 1814 } 1815 1816 if (new_nsproxy) { 1817 switch_task_namespaces(current, new_nsproxy); 1818 new_nsproxy = NULL; 1819 } 1820 1821 task_lock(current); 1822 1823 if (new_fs) { 1824 fs = current->fs; 1825 spin_lock(&fs->lock); 1826 current->fs = new_fs; 1827 if (--fs->users) 1828 new_fs = NULL; 1829 else 1830 new_fs = fs; 1831 spin_unlock(&fs->lock); 1832 } 1833 1834 if (new_fd) { 1835 fd = current->files; 1836 current->files = new_fd; 1837 new_fd = fd; 1838 } 1839 1840 task_unlock(current); 1841 } 1842 1843 if (new_nsproxy) 1844 put_nsproxy(new_nsproxy); 1845 1846 bad_unshare_cleanup_fd: 1847 if (new_fd) 1848 put_files_struct(new_fd); 1849 1850 bad_unshare_cleanup_fs: 1851 if (new_fs) 1852 free_fs_struct(new_fs); 1853 1854 bad_unshare_out: 1855 return err; 1856 } 1857 1858 /* 1859 * Helper to unshare the files of the current task. 1860 * We don't want to expose copy_files internals to 1861 * the exec layer of the kernel. 1862 */ 1863 1864 int unshare_files(struct files_struct **displaced) 1865 { 1866 struct task_struct *task = current; 1867 struct files_struct *copy = NULL; 1868 int error; 1869 1870 error = unshare_fd(CLONE_FILES, ©); 1871 if (error || !copy) { 1872 *displaced = NULL; 1873 return error; 1874 } 1875 *displaced = task->files; 1876 task_lock(task); 1877 task->files = copy; 1878 task_unlock(task); 1879 return 0; 1880 } 1881