xref: /openbmc/linux/kernel/fork.c (revision 95e9fd10)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80 
81 #include <trace/events/sched.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85 
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks;	/* Handle normal Linux uptimes. */
90 int nr_threads;			/* The idle threads do not count.. */
91 
92 int max_threads;		/* tunable limit on nr_threads */
93 
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95 
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
97 
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 	return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105 
106 int nr_processes(void)
107 {
108 	int cpu;
109 	int total = 0;
110 
111 	for_each_possible_cpu(cpu)
112 		total += per_cpu(process_counts, cpu);
113 
114 	return total;
115 }
116 
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120 
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123 
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128 
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 	kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134 
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138 
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140 
141 /*
142  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143  * kmemcache based allocator.
144  */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 						  int node)
148 {
149 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
150 					     THREAD_SIZE_ORDER);
151 
152 	return page ? page_address(page) : NULL;
153 }
154 
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161 
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 						  int node)
164 {
165 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167 
168 static void free_thread_info(struct thread_info *ti)
169 {
170 	kmem_cache_free(thread_info_cache, ti);
171 }
172 
173 void thread_info_cache_init(void)
174 {
175 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 					      THREAD_SIZE, 0, NULL);
177 	BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181 
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184 
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187 
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190 
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193 
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196 
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199 
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 	struct zone *zone = page_zone(virt_to_page(ti));
203 
204 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206 
207 void free_task(struct task_struct *tsk)
208 {
209 	account_kernel_stack(tsk->stack, -1);
210 	arch_release_thread_info(tsk->stack);
211 	free_thread_info(tsk->stack);
212 	rt_mutex_debug_task_free(tsk);
213 	ftrace_graph_exit_task(tsk);
214 	put_seccomp_filter(tsk);
215 	arch_release_task_struct(tsk);
216 	free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219 
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 	taskstats_tgid_free(sig);
223 	sched_autogroup_exit(sig);
224 	kmem_cache_free(signal_cachep, sig);
225 }
226 
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 	if (atomic_dec_and_test(&sig->sigcnt))
230 		free_signal_struct(sig);
231 }
232 
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 	WARN_ON(!tsk->exit_state);
236 	WARN_ON(atomic_read(&tsk->usage));
237 	WARN_ON(tsk == current);
238 
239 	security_task_free(tsk);
240 	exit_creds(tsk);
241 	delayacct_tsk_free(tsk);
242 	put_signal_struct(tsk->signal);
243 
244 	if (!profile_handoff_task(tsk))
245 		free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248 
249 void __init __weak arch_task_cache_init(void) { }
250 
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
256 #endif
257 	/* create a slab on which task_structs can be allocated */
258 	task_struct_cachep =
259 		kmem_cache_create("task_struct", sizeof(struct task_struct),
260 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262 
263 	/* do the arch specific task caches init */
264 	arch_task_cache_init();
265 
266 	/*
267 	 * The default maximum number of threads is set to a safe
268 	 * value: the thread structures can take up at most half
269 	 * of memory.
270 	 */
271 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272 
273 	/*
274 	 * we need to allow at least 20 threads to boot a system
275 	 */
276 	if (max_threads < 20)
277 		max_threads = 20;
278 
279 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 		init_task.signal->rlim[RLIMIT_NPROC];
283 }
284 
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 					       struct task_struct *src)
287 {
288 	*dst = *src;
289 	return 0;
290 }
291 
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 	struct task_struct *tsk;
295 	struct thread_info *ti;
296 	unsigned long *stackend;
297 	int node = tsk_fork_get_node(orig);
298 	int err;
299 
300 	tsk = alloc_task_struct_node(node);
301 	if (!tsk)
302 		return NULL;
303 
304 	ti = alloc_thread_info_node(tsk, node);
305 	if (!ti)
306 		goto free_tsk;
307 
308 	err = arch_dup_task_struct(tsk, orig);
309 	if (err)
310 		goto free_ti;
311 
312 	tsk->stack = ti;
313 
314 	setup_thread_stack(tsk, orig);
315 	clear_user_return_notifier(tsk);
316 	clear_tsk_need_resched(tsk);
317 	stackend = end_of_stack(tsk);
318 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
319 
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 	tsk->stack_canary = get_random_int();
322 #endif
323 
324 	/*
325 	 * One for us, one for whoever does the "release_task()" (usually
326 	 * parent)
327 	 */
328 	atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 	tsk->btrace_seq = 0;
331 #endif
332 	tsk->splice_pipe = NULL;
333 
334 	account_kernel_stack(ti, 1);
335 
336 	return tsk;
337 
338 free_ti:
339 	free_thread_info(ti);
340 free_tsk:
341 	free_task_struct(tsk);
342 	return NULL;
343 }
344 
345 #ifdef CONFIG_MMU
346 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
347 {
348 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
349 	struct rb_node **rb_link, *rb_parent;
350 	int retval;
351 	unsigned long charge;
352 	struct mempolicy *pol;
353 
354 	down_write(&oldmm->mmap_sem);
355 	flush_cache_dup_mm(oldmm);
356 	/*
357 	 * Not linked in yet - no deadlock potential:
358 	 */
359 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
360 
361 	mm->locked_vm = 0;
362 	mm->mmap = NULL;
363 	mm->mmap_cache = NULL;
364 	mm->free_area_cache = oldmm->mmap_base;
365 	mm->cached_hole_size = ~0UL;
366 	mm->map_count = 0;
367 	cpumask_clear(mm_cpumask(mm));
368 	mm->mm_rb = RB_ROOT;
369 	rb_link = &mm->mm_rb.rb_node;
370 	rb_parent = NULL;
371 	pprev = &mm->mmap;
372 	retval = ksm_fork(mm, oldmm);
373 	if (retval)
374 		goto out;
375 	retval = khugepaged_fork(mm, oldmm);
376 	if (retval)
377 		goto out;
378 
379 	prev = NULL;
380 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
381 		struct file *file;
382 
383 		if (mpnt->vm_flags & VM_DONTCOPY) {
384 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
385 							-vma_pages(mpnt));
386 			continue;
387 		}
388 		charge = 0;
389 		if (mpnt->vm_flags & VM_ACCOUNT) {
390 			unsigned long len = vma_pages(mpnt);
391 
392 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
393 				goto fail_nomem;
394 			charge = len;
395 		}
396 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
397 		if (!tmp)
398 			goto fail_nomem;
399 		*tmp = *mpnt;
400 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
401 		pol = mpol_dup(vma_policy(mpnt));
402 		retval = PTR_ERR(pol);
403 		if (IS_ERR(pol))
404 			goto fail_nomem_policy;
405 		vma_set_policy(tmp, pol);
406 		tmp->vm_mm = mm;
407 		if (anon_vma_fork(tmp, mpnt))
408 			goto fail_nomem_anon_vma_fork;
409 		tmp->vm_flags &= ~VM_LOCKED;
410 		tmp->vm_next = tmp->vm_prev = NULL;
411 		file = tmp->vm_file;
412 		if (file) {
413 			struct inode *inode = file->f_path.dentry->d_inode;
414 			struct address_space *mapping = file->f_mapping;
415 
416 			get_file(file);
417 			if (tmp->vm_flags & VM_DENYWRITE)
418 				atomic_dec(&inode->i_writecount);
419 			mutex_lock(&mapping->i_mmap_mutex);
420 			if (tmp->vm_flags & VM_SHARED)
421 				mapping->i_mmap_writable++;
422 			flush_dcache_mmap_lock(mapping);
423 			/* insert tmp into the share list, just after mpnt */
424 			vma_prio_tree_add(tmp, mpnt);
425 			flush_dcache_mmap_unlock(mapping);
426 			mutex_unlock(&mapping->i_mmap_mutex);
427 		}
428 
429 		/*
430 		 * Clear hugetlb-related page reserves for children. This only
431 		 * affects MAP_PRIVATE mappings. Faults generated by the child
432 		 * are not guaranteed to succeed, even if read-only
433 		 */
434 		if (is_vm_hugetlb_page(tmp))
435 			reset_vma_resv_huge_pages(tmp);
436 
437 		/*
438 		 * Link in the new vma and copy the page table entries.
439 		 */
440 		*pprev = tmp;
441 		pprev = &tmp->vm_next;
442 		tmp->vm_prev = prev;
443 		prev = tmp;
444 
445 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
446 		rb_link = &tmp->vm_rb.rb_right;
447 		rb_parent = &tmp->vm_rb;
448 
449 		mm->map_count++;
450 		retval = copy_page_range(mm, oldmm, mpnt);
451 
452 		if (tmp->vm_ops && tmp->vm_ops->open)
453 			tmp->vm_ops->open(tmp);
454 
455 		if (retval)
456 			goto out;
457 
458 		if (file)
459 			uprobe_mmap(tmp);
460 	}
461 	/* a new mm has just been created */
462 	arch_dup_mmap(oldmm, mm);
463 	retval = 0;
464 out:
465 	up_write(&mm->mmap_sem);
466 	flush_tlb_mm(oldmm);
467 	up_write(&oldmm->mmap_sem);
468 	return retval;
469 fail_nomem_anon_vma_fork:
470 	mpol_put(pol);
471 fail_nomem_policy:
472 	kmem_cache_free(vm_area_cachep, tmp);
473 fail_nomem:
474 	retval = -ENOMEM;
475 	vm_unacct_memory(charge);
476 	goto out;
477 }
478 
479 static inline int mm_alloc_pgd(struct mm_struct *mm)
480 {
481 	mm->pgd = pgd_alloc(mm);
482 	if (unlikely(!mm->pgd))
483 		return -ENOMEM;
484 	return 0;
485 }
486 
487 static inline void mm_free_pgd(struct mm_struct *mm)
488 {
489 	pgd_free(mm, mm->pgd);
490 }
491 #else
492 #define dup_mmap(mm, oldmm)	(0)
493 #define mm_alloc_pgd(mm)	(0)
494 #define mm_free_pgd(mm)
495 #endif /* CONFIG_MMU */
496 
497 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
498 
499 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
500 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
501 
502 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
503 
504 static int __init coredump_filter_setup(char *s)
505 {
506 	default_dump_filter =
507 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
508 		MMF_DUMP_FILTER_MASK;
509 	return 1;
510 }
511 
512 __setup("coredump_filter=", coredump_filter_setup);
513 
514 #include <linux/init_task.h>
515 
516 static void mm_init_aio(struct mm_struct *mm)
517 {
518 #ifdef CONFIG_AIO
519 	spin_lock_init(&mm->ioctx_lock);
520 	INIT_HLIST_HEAD(&mm->ioctx_list);
521 #endif
522 }
523 
524 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
525 {
526 	atomic_set(&mm->mm_users, 1);
527 	atomic_set(&mm->mm_count, 1);
528 	init_rwsem(&mm->mmap_sem);
529 	INIT_LIST_HEAD(&mm->mmlist);
530 	mm->flags = (current->mm) ?
531 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
532 	mm->core_state = NULL;
533 	mm->nr_ptes = 0;
534 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
535 	spin_lock_init(&mm->page_table_lock);
536 	mm->free_area_cache = TASK_UNMAPPED_BASE;
537 	mm->cached_hole_size = ~0UL;
538 	mm_init_aio(mm);
539 	mm_init_owner(mm, p);
540 
541 	if (likely(!mm_alloc_pgd(mm))) {
542 		mm->def_flags = 0;
543 		mmu_notifier_mm_init(mm);
544 		return mm;
545 	}
546 
547 	free_mm(mm);
548 	return NULL;
549 }
550 
551 static void check_mm(struct mm_struct *mm)
552 {
553 	int i;
554 
555 	for (i = 0; i < NR_MM_COUNTERS; i++) {
556 		long x = atomic_long_read(&mm->rss_stat.count[i]);
557 
558 		if (unlikely(x))
559 			printk(KERN_ALERT "BUG: Bad rss-counter state "
560 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
561 	}
562 
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 	VM_BUG_ON(mm->pmd_huge_pte);
565 #endif
566 }
567 
568 /*
569  * Allocate and initialize an mm_struct.
570  */
571 struct mm_struct *mm_alloc(void)
572 {
573 	struct mm_struct *mm;
574 
575 	mm = allocate_mm();
576 	if (!mm)
577 		return NULL;
578 
579 	memset(mm, 0, sizeof(*mm));
580 	mm_init_cpumask(mm);
581 	return mm_init(mm, current);
582 }
583 
584 /*
585  * Called when the last reference to the mm
586  * is dropped: either by a lazy thread or by
587  * mmput. Free the page directory and the mm.
588  */
589 void __mmdrop(struct mm_struct *mm)
590 {
591 	BUG_ON(mm == &init_mm);
592 	mm_free_pgd(mm);
593 	destroy_context(mm);
594 	mmu_notifier_mm_destroy(mm);
595 	check_mm(mm);
596 	free_mm(mm);
597 }
598 EXPORT_SYMBOL_GPL(__mmdrop);
599 
600 /*
601  * Decrement the use count and release all resources for an mm.
602  */
603 void mmput(struct mm_struct *mm)
604 {
605 	might_sleep();
606 
607 	if (atomic_dec_and_test(&mm->mm_users)) {
608 		uprobe_clear_state(mm);
609 		exit_aio(mm);
610 		ksm_exit(mm);
611 		khugepaged_exit(mm); /* must run before exit_mmap */
612 		exit_mmap(mm);
613 		set_mm_exe_file(mm, NULL);
614 		if (!list_empty(&mm->mmlist)) {
615 			spin_lock(&mmlist_lock);
616 			list_del(&mm->mmlist);
617 			spin_unlock(&mmlist_lock);
618 		}
619 		if (mm->binfmt)
620 			module_put(mm->binfmt->module);
621 		mmdrop(mm);
622 	}
623 }
624 EXPORT_SYMBOL_GPL(mmput);
625 
626 /*
627  * We added or removed a vma mapping the executable. The vmas are only mapped
628  * during exec and are not mapped with the mmap system call.
629  * Callers must hold down_write() on the mm's mmap_sem for these
630  */
631 void added_exe_file_vma(struct mm_struct *mm)
632 {
633 	mm->num_exe_file_vmas++;
634 }
635 
636 void removed_exe_file_vma(struct mm_struct *mm)
637 {
638 	mm->num_exe_file_vmas--;
639 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
640 		fput(mm->exe_file);
641 		mm->exe_file = NULL;
642 	}
643 
644 }
645 
646 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
647 {
648 	if (new_exe_file)
649 		get_file(new_exe_file);
650 	if (mm->exe_file)
651 		fput(mm->exe_file);
652 	mm->exe_file = new_exe_file;
653 	mm->num_exe_file_vmas = 0;
654 }
655 
656 struct file *get_mm_exe_file(struct mm_struct *mm)
657 {
658 	struct file *exe_file;
659 
660 	/* We need mmap_sem to protect against races with removal of
661 	 * VM_EXECUTABLE vmas */
662 	down_read(&mm->mmap_sem);
663 	exe_file = mm->exe_file;
664 	if (exe_file)
665 		get_file(exe_file);
666 	up_read(&mm->mmap_sem);
667 	return exe_file;
668 }
669 
670 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
671 {
672 	/* It's safe to write the exe_file pointer without exe_file_lock because
673 	 * this is called during fork when the task is not yet in /proc */
674 	newmm->exe_file = get_mm_exe_file(oldmm);
675 }
676 
677 /**
678  * get_task_mm - acquire a reference to the task's mm
679  *
680  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
681  * this kernel workthread has transiently adopted a user mm with use_mm,
682  * to do its AIO) is not set and if so returns a reference to it, after
683  * bumping up the use count.  User must release the mm via mmput()
684  * after use.  Typically used by /proc and ptrace.
685  */
686 struct mm_struct *get_task_mm(struct task_struct *task)
687 {
688 	struct mm_struct *mm;
689 
690 	task_lock(task);
691 	mm = task->mm;
692 	if (mm) {
693 		if (task->flags & PF_KTHREAD)
694 			mm = NULL;
695 		else
696 			atomic_inc(&mm->mm_users);
697 	}
698 	task_unlock(task);
699 	return mm;
700 }
701 EXPORT_SYMBOL_GPL(get_task_mm);
702 
703 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
704 {
705 	struct mm_struct *mm;
706 	int err;
707 
708 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
709 	if (err)
710 		return ERR_PTR(err);
711 
712 	mm = get_task_mm(task);
713 	if (mm && mm != current->mm &&
714 			!ptrace_may_access(task, mode)) {
715 		mmput(mm);
716 		mm = ERR_PTR(-EACCES);
717 	}
718 	mutex_unlock(&task->signal->cred_guard_mutex);
719 
720 	return mm;
721 }
722 
723 static void complete_vfork_done(struct task_struct *tsk)
724 {
725 	struct completion *vfork;
726 
727 	task_lock(tsk);
728 	vfork = tsk->vfork_done;
729 	if (likely(vfork)) {
730 		tsk->vfork_done = NULL;
731 		complete(vfork);
732 	}
733 	task_unlock(tsk);
734 }
735 
736 static int wait_for_vfork_done(struct task_struct *child,
737 				struct completion *vfork)
738 {
739 	int killed;
740 
741 	freezer_do_not_count();
742 	killed = wait_for_completion_killable(vfork);
743 	freezer_count();
744 
745 	if (killed) {
746 		task_lock(child);
747 		child->vfork_done = NULL;
748 		task_unlock(child);
749 	}
750 
751 	put_task_struct(child);
752 	return killed;
753 }
754 
755 /* Please note the differences between mmput and mm_release.
756  * mmput is called whenever we stop holding onto a mm_struct,
757  * error success whatever.
758  *
759  * mm_release is called after a mm_struct has been removed
760  * from the current process.
761  *
762  * This difference is important for error handling, when we
763  * only half set up a mm_struct for a new process and need to restore
764  * the old one.  Because we mmput the new mm_struct before
765  * restoring the old one. . .
766  * Eric Biederman 10 January 1998
767  */
768 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
769 {
770 	/* Get rid of any futexes when releasing the mm */
771 #ifdef CONFIG_FUTEX
772 	if (unlikely(tsk->robust_list)) {
773 		exit_robust_list(tsk);
774 		tsk->robust_list = NULL;
775 	}
776 #ifdef CONFIG_COMPAT
777 	if (unlikely(tsk->compat_robust_list)) {
778 		compat_exit_robust_list(tsk);
779 		tsk->compat_robust_list = NULL;
780 	}
781 #endif
782 	if (unlikely(!list_empty(&tsk->pi_state_list)))
783 		exit_pi_state_list(tsk);
784 #endif
785 
786 	uprobe_free_utask(tsk);
787 
788 	/* Get rid of any cached register state */
789 	deactivate_mm(tsk, mm);
790 
791 	/*
792 	 * If we're exiting normally, clear a user-space tid field if
793 	 * requested.  We leave this alone when dying by signal, to leave
794 	 * the value intact in a core dump, and to save the unnecessary
795 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
796 	 * Userland only wants this done for a sys_exit.
797 	 */
798 	if (tsk->clear_child_tid) {
799 		if (!(tsk->flags & PF_SIGNALED) &&
800 		    atomic_read(&mm->mm_users) > 1) {
801 			/*
802 			 * We don't check the error code - if userspace has
803 			 * not set up a proper pointer then tough luck.
804 			 */
805 			put_user(0, tsk->clear_child_tid);
806 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
807 					1, NULL, NULL, 0);
808 		}
809 		tsk->clear_child_tid = NULL;
810 	}
811 
812 	/*
813 	 * All done, finally we can wake up parent and return this mm to him.
814 	 * Also kthread_stop() uses this completion for synchronization.
815 	 */
816 	if (tsk->vfork_done)
817 		complete_vfork_done(tsk);
818 }
819 
820 /*
821  * Allocate a new mm structure and copy contents from the
822  * mm structure of the passed in task structure.
823  */
824 struct mm_struct *dup_mm(struct task_struct *tsk)
825 {
826 	struct mm_struct *mm, *oldmm = current->mm;
827 	int err;
828 
829 	if (!oldmm)
830 		return NULL;
831 
832 	mm = allocate_mm();
833 	if (!mm)
834 		goto fail_nomem;
835 
836 	memcpy(mm, oldmm, sizeof(*mm));
837 	mm_init_cpumask(mm);
838 
839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
840 	mm->pmd_huge_pte = NULL;
841 #endif
842 	uprobe_reset_state(mm);
843 
844 	if (!mm_init(mm, tsk))
845 		goto fail_nomem;
846 
847 	if (init_new_context(tsk, mm))
848 		goto fail_nocontext;
849 
850 	dup_mm_exe_file(oldmm, mm);
851 
852 	err = dup_mmap(mm, oldmm);
853 	if (err)
854 		goto free_pt;
855 
856 	mm->hiwater_rss = get_mm_rss(mm);
857 	mm->hiwater_vm = mm->total_vm;
858 
859 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
860 		goto free_pt;
861 
862 	return mm;
863 
864 free_pt:
865 	/* don't put binfmt in mmput, we haven't got module yet */
866 	mm->binfmt = NULL;
867 	mmput(mm);
868 
869 fail_nomem:
870 	return NULL;
871 
872 fail_nocontext:
873 	/*
874 	 * If init_new_context() failed, we cannot use mmput() to free the mm
875 	 * because it calls destroy_context()
876 	 */
877 	mm_free_pgd(mm);
878 	free_mm(mm);
879 	return NULL;
880 }
881 
882 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
883 {
884 	struct mm_struct *mm, *oldmm;
885 	int retval;
886 
887 	tsk->min_flt = tsk->maj_flt = 0;
888 	tsk->nvcsw = tsk->nivcsw = 0;
889 #ifdef CONFIG_DETECT_HUNG_TASK
890 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
891 #endif
892 
893 	tsk->mm = NULL;
894 	tsk->active_mm = NULL;
895 
896 	/*
897 	 * Are we cloning a kernel thread?
898 	 *
899 	 * We need to steal a active VM for that..
900 	 */
901 	oldmm = current->mm;
902 	if (!oldmm)
903 		return 0;
904 
905 	if (clone_flags & CLONE_VM) {
906 		atomic_inc(&oldmm->mm_users);
907 		mm = oldmm;
908 		goto good_mm;
909 	}
910 
911 	retval = -ENOMEM;
912 	mm = dup_mm(tsk);
913 	if (!mm)
914 		goto fail_nomem;
915 
916 good_mm:
917 	tsk->mm = mm;
918 	tsk->active_mm = mm;
919 	return 0;
920 
921 fail_nomem:
922 	return retval;
923 }
924 
925 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
926 {
927 	struct fs_struct *fs = current->fs;
928 	if (clone_flags & CLONE_FS) {
929 		/* tsk->fs is already what we want */
930 		spin_lock(&fs->lock);
931 		if (fs->in_exec) {
932 			spin_unlock(&fs->lock);
933 			return -EAGAIN;
934 		}
935 		fs->users++;
936 		spin_unlock(&fs->lock);
937 		return 0;
938 	}
939 	tsk->fs = copy_fs_struct(fs);
940 	if (!tsk->fs)
941 		return -ENOMEM;
942 	return 0;
943 }
944 
945 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
946 {
947 	struct files_struct *oldf, *newf;
948 	int error = 0;
949 
950 	/*
951 	 * A background process may not have any files ...
952 	 */
953 	oldf = current->files;
954 	if (!oldf)
955 		goto out;
956 
957 	if (clone_flags & CLONE_FILES) {
958 		atomic_inc(&oldf->count);
959 		goto out;
960 	}
961 
962 	newf = dup_fd(oldf, &error);
963 	if (!newf)
964 		goto out;
965 
966 	tsk->files = newf;
967 	error = 0;
968 out:
969 	return error;
970 }
971 
972 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
973 {
974 #ifdef CONFIG_BLOCK
975 	struct io_context *ioc = current->io_context;
976 	struct io_context *new_ioc;
977 
978 	if (!ioc)
979 		return 0;
980 	/*
981 	 * Share io context with parent, if CLONE_IO is set
982 	 */
983 	if (clone_flags & CLONE_IO) {
984 		ioc_task_link(ioc);
985 		tsk->io_context = ioc;
986 	} else if (ioprio_valid(ioc->ioprio)) {
987 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
988 		if (unlikely(!new_ioc))
989 			return -ENOMEM;
990 
991 		new_ioc->ioprio = ioc->ioprio;
992 		put_io_context(new_ioc);
993 	}
994 #endif
995 	return 0;
996 }
997 
998 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
999 {
1000 	struct sighand_struct *sig;
1001 
1002 	if (clone_flags & CLONE_SIGHAND) {
1003 		atomic_inc(&current->sighand->count);
1004 		return 0;
1005 	}
1006 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1007 	rcu_assign_pointer(tsk->sighand, sig);
1008 	if (!sig)
1009 		return -ENOMEM;
1010 	atomic_set(&sig->count, 1);
1011 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1012 	return 0;
1013 }
1014 
1015 void __cleanup_sighand(struct sighand_struct *sighand)
1016 {
1017 	if (atomic_dec_and_test(&sighand->count)) {
1018 		signalfd_cleanup(sighand);
1019 		kmem_cache_free(sighand_cachep, sighand);
1020 	}
1021 }
1022 
1023 
1024 /*
1025  * Initialize POSIX timer handling for a thread group.
1026  */
1027 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1028 {
1029 	unsigned long cpu_limit;
1030 
1031 	/* Thread group counters. */
1032 	thread_group_cputime_init(sig);
1033 
1034 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1035 	if (cpu_limit != RLIM_INFINITY) {
1036 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1037 		sig->cputimer.running = 1;
1038 	}
1039 
1040 	/* The timer lists. */
1041 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1042 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1043 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1044 }
1045 
1046 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1047 {
1048 	struct signal_struct *sig;
1049 
1050 	if (clone_flags & CLONE_THREAD)
1051 		return 0;
1052 
1053 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1054 	tsk->signal = sig;
1055 	if (!sig)
1056 		return -ENOMEM;
1057 
1058 	sig->nr_threads = 1;
1059 	atomic_set(&sig->live, 1);
1060 	atomic_set(&sig->sigcnt, 1);
1061 	init_waitqueue_head(&sig->wait_chldexit);
1062 	if (clone_flags & CLONE_NEWPID)
1063 		sig->flags |= SIGNAL_UNKILLABLE;
1064 	sig->curr_target = tsk;
1065 	init_sigpending(&sig->shared_pending);
1066 	INIT_LIST_HEAD(&sig->posix_timers);
1067 
1068 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1069 	sig->real_timer.function = it_real_fn;
1070 
1071 	task_lock(current->group_leader);
1072 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1073 	task_unlock(current->group_leader);
1074 
1075 	posix_cpu_timers_init_group(sig);
1076 
1077 	tty_audit_fork(sig);
1078 	sched_autogroup_fork(sig);
1079 
1080 #ifdef CONFIG_CGROUPS
1081 	init_rwsem(&sig->group_rwsem);
1082 #endif
1083 
1084 	sig->oom_adj = current->signal->oom_adj;
1085 	sig->oom_score_adj = current->signal->oom_score_adj;
1086 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1087 
1088 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1089 				   current->signal->is_child_subreaper;
1090 
1091 	mutex_init(&sig->cred_guard_mutex);
1092 
1093 	return 0;
1094 }
1095 
1096 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1097 {
1098 	unsigned long new_flags = p->flags;
1099 
1100 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1101 	new_flags |= PF_FORKNOEXEC;
1102 	p->flags = new_flags;
1103 }
1104 
1105 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1106 {
1107 	current->clear_child_tid = tidptr;
1108 
1109 	return task_pid_vnr(current);
1110 }
1111 
1112 static void rt_mutex_init_task(struct task_struct *p)
1113 {
1114 	raw_spin_lock_init(&p->pi_lock);
1115 #ifdef CONFIG_RT_MUTEXES
1116 	plist_head_init(&p->pi_waiters);
1117 	p->pi_blocked_on = NULL;
1118 #endif
1119 }
1120 
1121 #ifdef CONFIG_MM_OWNER
1122 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1123 {
1124 	mm->owner = p;
1125 }
1126 #endif /* CONFIG_MM_OWNER */
1127 
1128 /*
1129  * Initialize POSIX timer handling for a single task.
1130  */
1131 static void posix_cpu_timers_init(struct task_struct *tsk)
1132 {
1133 	tsk->cputime_expires.prof_exp = 0;
1134 	tsk->cputime_expires.virt_exp = 0;
1135 	tsk->cputime_expires.sched_exp = 0;
1136 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1137 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1138 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1139 }
1140 
1141 /*
1142  * This creates a new process as a copy of the old one,
1143  * but does not actually start it yet.
1144  *
1145  * It copies the registers, and all the appropriate
1146  * parts of the process environment (as per the clone
1147  * flags). The actual kick-off is left to the caller.
1148  */
1149 static struct task_struct *copy_process(unsigned long clone_flags,
1150 					unsigned long stack_start,
1151 					struct pt_regs *regs,
1152 					unsigned long stack_size,
1153 					int __user *child_tidptr,
1154 					struct pid *pid,
1155 					int trace)
1156 {
1157 	int retval;
1158 	struct task_struct *p;
1159 	int cgroup_callbacks_done = 0;
1160 
1161 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1162 		return ERR_PTR(-EINVAL);
1163 
1164 	/*
1165 	 * Thread groups must share signals as well, and detached threads
1166 	 * can only be started up within the thread group.
1167 	 */
1168 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1169 		return ERR_PTR(-EINVAL);
1170 
1171 	/*
1172 	 * Shared signal handlers imply shared VM. By way of the above,
1173 	 * thread groups also imply shared VM. Blocking this case allows
1174 	 * for various simplifications in other code.
1175 	 */
1176 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1177 		return ERR_PTR(-EINVAL);
1178 
1179 	/*
1180 	 * Siblings of global init remain as zombies on exit since they are
1181 	 * not reaped by their parent (swapper). To solve this and to avoid
1182 	 * multi-rooted process trees, prevent global and container-inits
1183 	 * from creating siblings.
1184 	 */
1185 	if ((clone_flags & CLONE_PARENT) &&
1186 				current->signal->flags & SIGNAL_UNKILLABLE)
1187 		return ERR_PTR(-EINVAL);
1188 
1189 	retval = security_task_create(clone_flags);
1190 	if (retval)
1191 		goto fork_out;
1192 
1193 	retval = -ENOMEM;
1194 	p = dup_task_struct(current);
1195 	if (!p)
1196 		goto fork_out;
1197 
1198 	ftrace_graph_init_task(p);
1199 	get_seccomp_filter(p);
1200 
1201 	rt_mutex_init_task(p);
1202 
1203 #ifdef CONFIG_PROVE_LOCKING
1204 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1205 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1206 #endif
1207 	retval = -EAGAIN;
1208 	if (atomic_read(&p->real_cred->user->processes) >=
1209 			task_rlimit(p, RLIMIT_NPROC)) {
1210 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1211 		    p->real_cred->user != INIT_USER)
1212 			goto bad_fork_free;
1213 	}
1214 	current->flags &= ~PF_NPROC_EXCEEDED;
1215 
1216 	retval = copy_creds(p, clone_flags);
1217 	if (retval < 0)
1218 		goto bad_fork_free;
1219 
1220 	/*
1221 	 * If multiple threads are within copy_process(), then this check
1222 	 * triggers too late. This doesn't hurt, the check is only there
1223 	 * to stop root fork bombs.
1224 	 */
1225 	retval = -EAGAIN;
1226 	if (nr_threads >= max_threads)
1227 		goto bad_fork_cleanup_count;
1228 
1229 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1230 		goto bad_fork_cleanup_count;
1231 
1232 	p->did_exec = 0;
1233 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1234 	copy_flags(clone_flags, p);
1235 	INIT_LIST_HEAD(&p->children);
1236 	INIT_LIST_HEAD(&p->sibling);
1237 	rcu_copy_process(p);
1238 	p->vfork_done = NULL;
1239 	spin_lock_init(&p->alloc_lock);
1240 
1241 	init_sigpending(&p->pending);
1242 
1243 	p->utime = p->stime = p->gtime = 0;
1244 	p->utimescaled = p->stimescaled = 0;
1245 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1246 	p->prev_utime = p->prev_stime = 0;
1247 #endif
1248 #if defined(SPLIT_RSS_COUNTING)
1249 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1250 #endif
1251 
1252 	p->default_timer_slack_ns = current->timer_slack_ns;
1253 
1254 	task_io_accounting_init(&p->ioac);
1255 	acct_clear_integrals(p);
1256 
1257 	posix_cpu_timers_init(p);
1258 
1259 	do_posix_clock_monotonic_gettime(&p->start_time);
1260 	p->real_start_time = p->start_time;
1261 	monotonic_to_bootbased(&p->real_start_time);
1262 	p->io_context = NULL;
1263 	p->audit_context = NULL;
1264 	if (clone_flags & CLONE_THREAD)
1265 		threadgroup_change_begin(current);
1266 	cgroup_fork(p);
1267 #ifdef CONFIG_NUMA
1268 	p->mempolicy = mpol_dup(p->mempolicy);
1269 	if (IS_ERR(p->mempolicy)) {
1270 		retval = PTR_ERR(p->mempolicy);
1271 		p->mempolicy = NULL;
1272 		goto bad_fork_cleanup_cgroup;
1273 	}
1274 	mpol_fix_fork_child_flag(p);
1275 #endif
1276 #ifdef CONFIG_CPUSETS
1277 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1278 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1279 	seqcount_init(&p->mems_allowed_seq);
1280 #endif
1281 #ifdef CONFIG_TRACE_IRQFLAGS
1282 	p->irq_events = 0;
1283 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1284 	p->hardirqs_enabled = 1;
1285 #else
1286 	p->hardirqs_enabled = 0;
1287 #endif
1288 	p->hardirq_enable_ip = 0;
1289 	p->hardirq_enable_event = 0;
1290 	p->hardirq_disable_ip = _THIS_IP_;
1291 	p->hardirq_disable_event = 0;
1292 	p->softirqs_enabled = 1;
1293 	p->softirq_enable_ip = _THIS_IP_;
1294 	p->softirq_enable_event = 0;
1295 	p->softirq_disable_ip = 0;
1296 	p->softirq_disable_event = 0;
1297 	p->hardirq_context = 0;
1298 	p->softirq_context = 0;
1299 #endif
1300 #ifdef CONFIG_LOCKDEP
1301 	p->lockdep_depth = 0; /* no locks held yet */
1302 	p->curr_chain_key = 0;
1303 	p->lockdep_recursion = 0;
1304 #endif
1305 
1306 #ifdef CONFIG_DEBUG_MUTEXES
1307 	p->blocked_on = NULL; /* not blocked yet */
1308 #endif
1309 #ifdef CONFIG_MEMCG
1310 	p->memcg_batch.do_batch = 0;
1311 	p->memcg_batch.memcg = NULL;
1312 #endif
1313 
1314 	/* Perform scheduler related setup. Assign this task to a CPU. */
1315 	sched_fork(p);
1316 
1317 	retval = perf_event_init_task(p);
1318 	if (retval)
1319 		goto bad_fork_cleanup_policy;
1320 	retval = audit_alloc(p);
1321 	if (retval)
1322 		goto bad_fork_cleanup_policy;
1323 	/* copy all the process information */
1324 	retval = copy_semundo(clone_flags, p);
1325 	if (retval)
1326 		goto bad_fork_cleanup_audit;
1327 	retval = copy_files(clone_flags, p);
1328 	if (retval)
1329 		goto bad_fork_cleanup_semundo;
1330 	retval = copy_fs(clone_flags, p);
1331 	if (retval)
1332 		goto bad_fork_cleanup_files;
1333 	retval = copy_sighand(clone_flags, p);
1334 	if (retval)
1335 		goto bad_fork_cleanup_fs;
1336 	retval = copy_signal(clone_flags, p);
1337 	if (retval)
1338 		goto bad_fork_cleanup_sighand;
1339 	retval = copy_mm(clone_flags, p);
1340 	if (retval)
1341 		goto bad_fork_cleanup_signal;
1342 	retval = copy_namespaces(clone_flags, p);
1343 	if (retval)
1344 		goto bad_fork_cleanup_mm;
1345 	retval = copy_io(clone_flags, p);
1346 	if (retval)
1347 		goto bad_fork_cleanup_namespaces;
1348 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1349 	if (retval)
1350 		goto bad_fork_cleanup_io;
1351 
1352 	if (pid != &init_struct_pid) {
1353 		retval = -ENOMEM;
1354 		pid = alloc_pid(p->nsproxy->pid_ns);
1355 		if (!pid)
1356 			goto bad_fork_cleanup_io;
1357 	}
1358 
1359 	p->pid = pid_nr(pid);
1360 	p->tgid = p->pid;
1361 	if (clone_flags & CLONE_THREAD)
1362 		p->tgid = current->tgid;
1363 
1364 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1365 	/*
1366 	 * Clear TID on mm_release()?
1367 	 */
1368 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1369 #ifdef CONFIG_BLOCK
1370 	p->plug = NULL;
1371 #endif
1372 #ifdef CONFIG_FUTEX
1373 	p->robust_list = NULL;
1374 #ifdef CONFIG_COMPAT
1375 	p->compat_robust_list = NULL;
1376 #endif
1377 	INIT_LIST_HEAD(&p->pi_state_list);
1378 	p->pi_state_cache = NULL;
1379 #endif
1380 	uprobe_copy_process(p);
1381 	/*
1382 	 * sigaltstack should be cleared when sharing the same VM
1383 	 */
1384 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1385 		p->sas_ss_sp = p->sas_ss_size = 0;
1386 
1387 	/*
1388 	 * Syscall tracing and stepping should be turned off in the
1389 	 * child regardless of CLONE_PTRACE.
1390 	 */
1391 	user_disable_single_step(p);
1392 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1393 #ifdef TIF_SYSCALL_EMU
1394 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1395 #endif
1396 	clear_all_latency_tracing(p);
1397 
1398 	/* ok, now we should be set up.. */
1399 	if (clone_flags & CLONE_THREAD)
1400 		p->exit_signal = -1;
1401 	else if (clone_flags & CLONE_PARENT)
1402 		p->exit_signal = current->group_leader->exit_signal;
1403 	else
1404 		p->exit_signal = (clone_flags & CSIGNAL);
1405 
1406 	p->pdeath_signal = 0;
1407 	p->exit_state = 0;
1408 
1409 	p->nr_dirtied = 0;
1410 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1411 	p->dirty_paused_when = 0;
1412 
1413 	/*
1414 	 * Ok, make it visible to the rest of the system.
1415 	 * We dont wake it up yet.
1416 	 */
1417 	p->group_leader = p;
1418 	INIT_LIST_HEAD(&p->thread_group);
1419 	p->task_works = NULL;
1420 
1421 	/* Now that the task is set up, run cgroup callbacks if
1422 	 * necessary. We need to run them before the task is visible
1423 	 * on the tasklist. */
1424 	cgroup_fork_callbacks(p);
1425 	cgroup_callbacks_done = 1;
1426 
1427 	/* Need tasklist lock for parent etc handling! */
1428 	write_lock_irq(&tasklist_lock);
1429 
1430 	/* CLONE_PARENT re-uses the old parent */
1431 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1432 		p->real_parent = current->real_parent;
1433 		p->parent_exec_id = current->parent_exec_id;
1434 	} else {
1435 		p->real_parent = current;
1436 		p->parent_exec_id = current->self_exec_id;
1437 	}
1438 
1439 	spin_lock(&current->sighand->siglock);
1440 
1441 	/*
1442 	 * Process group and session signals need to be delivered to just the
1443 	 * parent before the fork or both the parent and the child after the
1444 	 * fork. Restart if a signal comes in before we add the new process to
1445 	 * it's process group.
1446 	 * A fatal signal pending means that current will exit, so the new
1447 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1448 	*/
1449 	recalc_sigpending();
1450 	if (signal_pending(current)) {
1451 		spin_unlock(&current->sighand->siglock);
1452 		write_unlock_irq(&tasklist_lock);
1453 		retval = -ERESTARTNOINTR;
1454 		goto bad_fork_free_pid;
1455 	}
1456 
1457 	if (clone_flags & CLONE_THREAD) {
1458 		current->signal->nr_threads++;
1459 		atomic_inc(&current->signal->live);
1460 		atomic_inc(&current->signal->sigcnt);
1461 		p->group_leader = current->group_leader;
1462 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1463 	}
1464 
1465 	if (likely(p->pid)) {
1466 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1467 
1468 		if (thread_group_leader(p)) {
1469 			if (is_child_reaper(pid))
1470 				p->nsproxy->pid_ns->child_reaper = p;
1471 
1472 			p->signal->leader_pid = pid;
1473 			p->signal->tty = tty_kref_get(current->signal->tty);
1474 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1475 			attach_pid(p, PIDTYPE_SID, task_session(current));
1476 			list_add_tail(&p->sibling, &p->real_parent->children);
1477 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1478 			__this_cpu_inc(process_counts);
1479 		}
1480 		attach_pid(p, PIDTYPE_PID, pid);
1481 		nr_threads++;
1482 	}
1483 
1484 	total_forks++;
1485 	spin_unlock(&current->sighand->siglock);
1486 	write_unlock_irq(&tasklist_lock);
1487 	proc_fork_connector(p);
1488 	cgroup_post_fork(p);
1489 	if (clone_flags & CLONE_THREAD)
1490 		threadgroup_change_end(current);
1491 	perf_event_fork(p);
1492 
1493 	trace_task_newtask(p, clone_flags);
1494 
1495 	return p;
1496 
1497 bad_fork_free_pid:
1498 	if (pid != &init_struct_pid)
1499 		free_pid(pid);
1500 bad_fork_cleanup_io:
1501 	if (p->io_context)
1502 		exit_io_context(p);
1503 bad_fork_cleanup_namespaces:
1504 	if (unlikely(clone_flags & CLONE_NEWPID))
1505 		pid_ns_release_proc(p->nsproxy->pid_ns);
1506 	exit_task_namespaces(p);
1507 bad_fork_cleanup_mm:
1508 	if (p->mm)
1509 		mmput(p->mm);
1510 bad_fork_cleanup_signal:
1511 	if (!(clone_flags & CLONE_THREAD))
1512 		free_signal_struct(p->signal);
1513 bad_fork_cleanup_sighand:
1514 	__cleanup_sighand(p->sighand);
1515 bad_fork_cleanup_fs:
1516 	exit_fs(p); /* blocking */
1517 bad_fork_cleanup_files:
1518 	exit_files(p); /* blocking */
1519 bad_fork_cleanup_semundo:
1520 	exit_sem(p);
1521 bad_fork_cleanup_audit:
1522 	audit_free(p);
1523 bad_fork_cleanup_policy:
1524 	perf_event_free_task(p);
1525 #ifdef CONFIG_NUMA
1526 	mpol_put(p->mempolicy);
1527 bad_fork_cleanup_cgroup:
1528 #endif
1529 	if (clone_flags & CLONE_THREAD)
1530 		threadgroup_change_end(current);
1531 	cgroup_exit(p, cgroup_callbacks_done);
1532 	delayacct_tsk_free(p);
1533 	module_put(task_thread_info(p)->exec_domain->module);
1534 bad_fork_cleanup_count:
1535 	atomic_dec(&p->cred->user->processes);
1536 	exit_creds(p);
1537 bad_fork_free:
1538 	free_task(p);
1539 fork_out:
1540 	return ERR_PTR(retval);
1541 }
1542 
1543 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1544 {
1545 	memset(regs, 0, sizeof(struct pt_regs));
1546 	return regs;
1547 }
1548 
1549 static inline void init_idle_pids(struct pid_link *links)
1550 {
1551 	enum pid_type type;
1552 
1553 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1554 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1555 		links[type].pid = &init_struct_pid;
1556 	}
1557 }
1558 
1559 struct task_struct * __cpuinit fork_idle(int cpu)
1560 {
1561 	struct task_struct *task;
1562 	struct pt_regs regs;
1563 
1564 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1565 			    &init_struct_pid, 0);
1566 	if (!IS_ERR(task)) {
1567 		init_idle_pids(task->pids);
1568 		init_idle(task, cpu);
1569 	}
1570 
1571 	return task;
1572 }
1573 
1574 /*
1575  *  Ok, this is the main fork-routine.
1576  *
1577  * It copies the process, and if successful kick-starts
1578  * it and waits for it to finish using the VM if required.
1579  */
1580 long do_fork(unsigned long clone_flags,
1581 	      unsigned long stack_start,
1582 	      struct pt_regs *regs,
1583 	      unsigned long stack_size,
1584 	      int __user *parent_tidptr,
1585 	      int __user *child_tidptr)
1586 {
1587 	struct task_struct *p;
1588 	int trace = 0;
1589 	long nr;
1590 
1591 	/*
1592 	 * Do some preliminary argument and permissions checking before we
1593 	 * actually start allocating stuff
1594 	 */
1595 	if (clone_flags & CLONE_NEWUSER) {
1596 		if (clone_flags & CLONE_THREAD)
1597 			return -EINVAL;
1598 		/* hopefully this check will go away when userns support is
1599 		 * complete
1600 		 */
1601 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1602 				!capable(CAP_SETGID))
1603 			return -EPERM;
1604 	}
1605 
1606 	/*
1607 	 * Determine whether and which event to report to ptracer.  When
1608 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1609 	 * requested, no event is reported; otherwise, report if the event
1610 	 * for the type of forking is enabled.
1611 	 */
1612 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1613 		if (clone_flags & CLONE_VFORK)
1614 			trace = PTRACE_EVENT_VFORK;
1615 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1616 			trace = PTRACE_EVENT_CLONE;
1617 		else
1618 			trace = PTRACE_EVENT_FORK;
1619 
1620 		if (likely(!ptrace_event_enabled(current, trace)))
1621 			trace = 0;
1622 	}
1623 
1624 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1625 			 child_tidptr, NULL, trace);
1626 	/*
1627 	 * Do this prior waking up the new thread - the thread pointer
1628 	 * might get invalid after that point, if the thread exits quickly.
1629 	 */
1630 	if (!IS_ERR(p)) {
1631 		struct completion vfork;
1632 
1633 		trace_sched_process_fork(current, p);
1634 
1635 		nr = task_pid_vnr(p);
1636 
1637 		if (clone_flags & CLONE_PARENT_SETTID)
1638 			put_user(nr, parent_tidptr);
1639 
1640 		if (clone_flags & CLONE_VFORK) {
1641 			p->vfork_done = &vfork;
1642 			init_completion(&vfork);
1643 			get_task_struct(p);
1644 		}
1645 
1646 		wake_up_new_task(p);
1647 
1648 		/* forking complete and child started to run, tell ptracer */
1649 		if (unlikely(trace))
1650 			ptrace_event(trace, nr);
1651 
1652 		if (clone_flags & CLONE_VFORK) {
1653 			if (!wait_for_vfork_done(p, &vfork))
1654 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1655 		}
1656 	} else {
1657 		nr = PTR_ERR(p);
1658 	}
1659 	return nr;
1660 }
1661 
1662 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1663 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1664 #endif
1665 
1666 static void sighand_ctor(void *data)
1667 {
1668 	struct sighand_struct *sighand = data;
1669 
1670 	spin_lock_init(&sighand->siglock);
1671 	init_waitqueue_head(&sighand->signalfd_wqh);
1672 }
1673 
1674 void __init proc_caches_init(void)
1675 {
1676 	sighand_cachep = kmem_cache_create("sighand_cache",
1677 			sizeof(struct sighand_struct), 0,
1678 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1679 			SLAB_NOTRACK, sighand_ctor);
1680 	signal_cachep = kmem_cache_create("signal_cache",
1681 			sizeof(struct signal_struct), 0,
1682 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1683 	files_cachep = kmem_cache_create("files_cache",
1684 			sizeof(struct files_struct), 0,
1685 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1686 	fs_cachep = kmem_cache_create("fs_cache",
1687 			sizeof(struct fs_struct), 0,
1688 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1689 	/*
1690 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1691 	 * whole struct cpumask for the OFFSTACK case. We could change
1692 	 * this to *only* allocate as much of it as required by the
1693 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1694 	 * is at the end of the structure, exactly for that reason.
1695 	 */
1696 	mm_cachep = kmem_cache_create("mm_struct",
1697 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1698 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1699 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1700 	mmap_init();
1701 	nsproxy_cache_init();
1702 }
1703 
1704 /*
1705  * Check constraints on flags passed to the unshare system call.
1706  */
1707 static int check_unshare_flags(unsigned long unshare_flags)
1708 {
1709 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1710 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1711 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1712 		return -EINVAL;
1713 	/*
1714 	 * Not implemented, but pretend it works if there is nothing to
1715 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1716 	 * needs to unshare vm.
1717 	 */
1718 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1719 		/* FIXME: get_task_mm() increments ->mm_users */
1720 		if (atomic_read(&current->mm->mm_users) > 1)
1721 			return -EINVAL;
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 /*
1728  * Unshare the filesystem structure if it is being shared
1729  */
1730 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1731 {
1732 	struct fs_struct *fs = current->fs;
1733 
1734 	if (!(unshare_flags & CLONE_FS) || !fs)
1735 		return 0;
1736 
1737 	/* don't need lock here; in the worst case we'll do useless copy */
1738 	if (fs->users == 1)
1739 		return 0;
1740 
1741 	*new_fsp = copy_fs_struct(fs);
1742 	if (!*new_fsp)
1743 		return -ENOMEM;
1744 
1745 	return 0;
1746 }
1747 
1748 /*
1749  * Unshare file descriptor table if it is being shared
1750  */
1751 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1752 {
1753 	struct files_struct *fd = current->files;
1754 	int error = 0;
1755 
1756 	if ((unshare_flags & CLONE_FILES) &&
1757 	    (fd && atomic_read(&fd->count) > 1)) {
1758 		*new_fdp = dup_fd(fd, &error);
1759 		if (!*new_fdp)
1760 			return error;
1761 	}
1762 
1763 	return 0;
1764 }
1765 
1766 /*
1767  * unshare allows a process to 'unshare' part of the process
1768  * context which was originally shared using clone.  copy_*
1769  * functions used by do_fork() cannot be used here directly
1770  * because they modify an inactive task_struct that is being
1771  * constructed. Here we are modifying the current, active,
1772  * task_struct.
1773  */
1774 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1775 {
1776 	struct fs_struct *fs, *new_fs = NULL;
1777 	struct files_struct *fd, *new_fd = NULL;
1778 	struct nsproxy *new_nsproxy = NULL;
1779 	int do_sysvsem = 0;
1780 	int err;
1781 
1782 	err = check_unshare_flags(unshare_flags);
1783 	if (err)
1784 		goto bad_unshare_out;
1785 
1786 	/*
1787 	 * If unsharing namespace, must also unshare filesystem information.
1788 	 */
1789 	if (unshare_flags & CLONE_NEWNS)
1790 		unshare_flags |= CLONE_FS;
1791 	/*
1792 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1793 	 * to a new ipc namespace, the semaphore arrays from the old
1794 	 * namespace are unreachable.
1795 	 */
1796 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1797 		do_sysvsem = 1;
1798 	err = unshare_fs(unshare_flags, &new_fs);
1799 	if (err)
1800 		goto bad_unshare_out;
1801 	err = unshare_fd(unshare_flags, &new_fd);
1802 	if (err)
1803 		goto bad_unshare_cleanup_fs;
1804 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1805 	if (err)
1806 		goto bad_unshare_cleanup_fd;
1807 
1808 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1809 		if (do_sysvsem) {
1810 			/*
1811 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1812 			 */
1813 			exit_sem(current);
1814 		}
1815 
1816 		if (new_nsproxy) {
1817 			switch_task_namespaces(current, new_nsproxy);
1818 			new_nsproxy = NULL;
1819 		}
1820 
1821 		task_lock(current);
1822 
1823 		if (new_fs) {
1824 			fs = current->fs;
1825 			spin_lock(&fs->lock);
1826 			current->fs = new_fs;
1827 			if (--fs->users)
1828 				new_fs = NULL;
1829 			else
1830 				new_fs = fs;
1831 			spin_unlock(&fs->lock);
1832 		}
1833 
1834 		if (new_fd) {
1835 			fd = current->files;
1836 			current->files = new_fd;
1837 			new_fd = fd;
1838 		}
1839 
1840 		task_unlock(current);
1841 	}
1842 
1843 	if (new_nsproxy)
1844 		put_nsproxy(new_nsproxy);
1845 
1846 bad_unshare_cleanup_fd:
1847 	if (new_fd)
1848 		put_files_struct(new_fd);
1849 
1850 bad_unshare_cleanup_fs:
1851 	if (new_fs)
1852 		free_fs_struct(new_fs);
1853 
1854 bad_unshare_out:
1855 	return err;
1856 }
1857 
1858 /*
1859  *	Helper to unshare the files of the current task.
1860  *	We don't want to expose copy_files internals to
1861  *	the exec layer of the kernel.
1862  */
1863 
1864 int unshare_files(struct files_struct **displaced)
1865 {
1866 	struct task_struct *task = current;
1867 	struct files_struct *copy = NULL;
1868 	int error;
1869 
1870 	error = unshare_fd(CLONE_FILES, &copy);
1871 	if (error || !copy) {
1872 		*displaced = NULL;
1873 		return error;
1874 	}
1875 	*displaced = task->files;
1876 	task_lock(task);
1877 	task->files = copy;
1878 	task_unlock(task);
1879 	return 0;
1880 }
1881