1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 100 #include <asm/pgalloc.h> 101 #include <linux/uaccess.h> 102 #include <asm/mmu_context.h> 103 #include <asm/cacheflush.h> 104 #include <asm/tlbflush.h> 105 106 #include <trace/events/sched.h> 107 108 #define CREATE_TRACE_POINTS 109 #include <trace/events/task.h> 110 111 /* 112 * Minimum number of threads to boot the kernel 113 */ 114 #define MIN_THREADS 20 115 116 /* 117 * Maximum number of threads 118 */ 119 #define MAX_THREADS FUTEX_TID_MASK 120 121 /* 122 * Protected counters by write_lock_irq(&tasklist_lock) 123 */ 124 unsigned long total_forks; /* Handle normal Linux uptimes. */ 125 int nr_threads; /* The idle threads do not count.. */ 126 127 static int max_threads; /* tunable limit on nr_threads */ 128 129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 130 131 static const char * const resident_page_types[] = { 132 NAMED_ARRAY_INDEX(MM_FILEPAGES), 133 NAMED_ARRAY_INDEX(MM_ANONPAGES), 134 NAMED_ARRAY_INDEX(MM_SWAPENTS), 135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 136 }; 137 138 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 139 140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 141 142 #ifdef CONFIG_PROVE_RCU 143 int lockdep_tasklist_lock_is_held(void) 144 { 145 return lockdep_is_held(&tasklist_lock); 146 } 147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 148 #endif /* #ifdef CONFIG_PROVE_RCU */ 149 150 int nr_processes(void) 151 { 152 int cpu; 153 int total = 0; 154 155 for_each_possible_cpu(cpu) 156 total += per_cpu(process_counts, cpu); 157 158 return total; 159 } 160 161 void __weak arch_release_task_struct(struct task_struct *tsk) 162 { 163 } 164 165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 166 static struct kmem_cache *task_struct_cachep; 167 168 static inline struct task_struct *alloc_task_struct_node(int node) 169 { 170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 171 } 172 173 static inline void free_task_struct(struct task_struct *tsk) 174 { 175 kmem_cache_free(task_struct_cachep, tsk); 176 } 177 #endif 178 179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 180 181 /* 182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 183 * kmemcache based allocator. 184 */ 185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 186 187 #ifdef CONFIG_VMAP_STACK 188 /* 189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 190 * flush. Try to minimize the number of calls by caching stacks. 191 */ 192 #define NR_CACHED_STACKS 2 193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 194 195 static int free_vm_stack_cache(unsigned int cpu) 196 { 197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 198 int i; 199 200 for (i = 0; i < NR_CACHED_STACKS; i++) { 201 struct vm_struct *vm_stack = cached_vm_stacks[i]; 202 203 if (!vm_stack) 204 continue; 205 206 vfree(vm_stack->addr); 207 cached_vm_stacks[i] = NULL; 208 } 209 210 return 0; 211 } 212 #endif 213 214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 215 { 216 #ifdef CONFIG_VMAP_STACK 217 void *stack; 218 int i; 219 220 for (i = 0; i < NR_CACHED_STACKS; i++) { 221 struct vm_struct *s; 222 223 s = this_cpu_xchg(cached_stacks[i], NULL); 224 225 if (!s) 226 continue; 227 228 /* Mark stack accessible for KASAN. */ 229 kasan_unpoison_range(s->addr, THREAD_SIZE); 230 231 /* Clear stale pointers from reused stack. */ 232 memset(s->addr, 0, THREAD_SIZE); 233 234 tsk->stack_vm_area = s; 235 tsk->stack = s->addr; 236 return s->addr; 237 } 238 239 /* 240 * Allocated stacks are cached and later reused by new threads, 241 * so memcg accounting is performed manually on assigning/releasing 242 * stacks to tasks. Drop __GFP_ACCOUNT. 243 */ 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 245 VMALLOC_START, VMALLOC_END, 246 THREADINFO_GFP & ~__GFP_ACCOUNT, 247 PAGE_KERNEL, 248 0, node, __builtin_return_address(0)); 249 250 /* 251 * We can't call find_vm_area() in interrupt context, and 252 * free_thread_stack() can be called in interrupt context, 253 * so cache the vm_struct. 254 */ 255 if (stack) { 256 tsk->stack_vm_area = find_vm_area(stack); 257 tsk->stack = stack; 258 } 259 return stack; 260 #else 261 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 262 THREAD_SIZE_ORDER); 263 264 if (likely(page)) { 265 tsk->stack = kasan_reset_tag(page_address(page)); 266 return tsk->stack; 267 } 268 return NULL; 269 #endif 270 } 271 272 static inline void free_thread_stack(struct task_struct *tsk) 273 { 274 #ifdef CONFIG_VMAP_STACK 275 struct vm_struct *vm = task_stack_vm_area(tsk); 276 277 if (vm) { 278 int i; 279 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 281 memcg_kmem_uncharge_page(vm->pages[i], 0); 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 if (this_cpu_cmpxchg(cached_stacks[i], 285 NULL, tsk->stack_vm_area) != NULL) 286 continue; 287 288 return; 289 } 290 291 vfree_atomic(tsk->stack); 292 return; 293 } 294 #endif 295 296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 297 } 298 # else 299 static struct kmem_cache *thread_stack_cache; 300 301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 302 int node) 303 { 304 unsigned long *stack; 305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 306 stack = kasan_reset_tag(stack); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 361 /* 362 * orig->shared.rb may be modified concurrently, but the clone 363 * will be reinitialized. 364 */ 365 *new = data_race(*orig); 366 INIT_LIST_HEAD(&new->anon_vma_chain); 367 new->vm_next = new->vm_prev = NULL; 368 } 369 return new; 370 } 371 372 void vm_area_free(struct vm_area_struct *vma) 373 { 374 kmem_cache_free(vm_area_cachep, vma); 375 } 376 377 static void account_kernel_stack(struct task_struct *tsk, int account) 378 { 379 void *stack = task_stack_page(tsk); 380 struct vm_struct *vm = task_stack_vm_area(tsk); 381 382 383 /* All stack pages are in the same node. */ 384 if (vm) 385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 386 account * (THREAD_SIZE / 1024)); 387 else 388 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 389 account * (THREAD_SIZE / 1024)); 390 } 391 392 static int memcg_charge_kernel_stack(struct task_struct *tsk) 393 { 394 #ifdef CONFIG_VMAP_STACK 395 struct vm_struct *vm = task_stack_vm_area(tsk); 396 int ret; 397 398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 399 400 if (vm) { 401 int i; 402 403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 404 405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 406 /* 407 * If memcg_kmem_charge_page() fails, page's 408 * memory cgroup pointer is NULL, and 409 * memcg_kmem_uncharge_page() in free_thread_stack() 410 * will ignore this page. 411 */ 412 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 413 0); 414 if (ret) 415 return ret; 416 } 417 } 418 #endif 419 return 0; 420 } 421 422 static void release_task_stack(struct task_struct *tsk) 423 { 424 if (WARN_ON(tsk->state != TASK_DEAD)) 425 return; /* Better to leak the stack than to free prematurely */ 426 427 account_kernel_stack(tsk, -1); 428 free_thread_stack(tsk); 429 tsk->stack = NULL; 430 #ifdef CONFIG_VMAP_STACK 431 tsk->stack_vm_area = NULL; 432 #endif 433 } 434 435 #ifdef CONFIG_THREAD_INFO_IN_TASK 436 void put_task_stack(struct task_struct *tsk) 437 { 438 if (refcount_dec_and_test(&tsk->stack_refcount)) 439 release_task_stack(tsk); 440 } 441 #endif 442 443 void free_task(struct task_struct *tsk) 444 { 445 scs_release(tsk); 446 447 #ifndef CONFIG_THREAD_INFO_IN_TASK 448 /* 449 * The task is finally done with both the stack and thread_info, 450 * so free both. 451 */ 452 release_task_stack(tsk); 453 #else 454 /* 455 * If the task had a separate stack allocation, it should be gone 456 * by now. 457 */ 458 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 459 #endif 460 rt_mutex_debug_task_free(tsk); 461 ftrace_graph_exit_task(tsk); 462 arch_release_task_struct(tsk); 463 if (tsk->flags & PF_KTHREAD) 464 free_kthread_struct(tsk); 465 free_task_struct(tsk); 466 } 467 EXPORT_SYMBOL(free_task); 468 469 #ifdef CONFIG_MMU 470 static __latent_entropy int dup_mmap(struct mm_struct *mm, 471 struct mm_struct *oldmm) 472 { 473 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 474 struct rb_node **rb_link, *rb_parent; 475 int retval; 476 unsigned long charge; 477 LIST_HEAD(uf); 478 479 uprobe_start_dup_mmap(); 480 if (mmap_write_lock_killable(oldmm)) { 481 retval = -EINTR; 482 goto fail_uprobe_end; 483 } 484 flush_cache_dup_mm(oldmm); 485 uprobe_dup_mmap(oldmm, mm); 486 /* 487 * Not linked in yet - no deadlock potential: 488 */ 489 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 490 491 /* No ordering required: file already has been exposed. */ 492 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 493 494 mm->total_vm = oldmm->total_vm; 495 mm->data_vm = oldmm->data_vm; 496 mm->exec_vm = oldmm->exec_vm; 497 mm->stack_vm = oldmm->stack_vm; 498 499 rb_link = &mm->mm_rb.rb_node; 500 rb_parent = NULL; 501 pprev = &mm->mmap; 502 retval = ksm_fork(mm, oldmm); 503 if (retval) 504 goto out; 505 retval = khugepaged_fork(mm, oldmm); 506 if (retval) 507 goto out; 508 509 prev = NULL; 510 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 511 struct file *file; 512 513 if (mpnt->vm_flags & VM_DONTCOPY) { 514 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 515 continue; 516 } 517 charge = 0; 518 /* 519 * Don't duplicate many vmas if we've been oom-killed (for 520 * example) 521 */ 522 if (fatal_signal_pending(current)) { 523 retval = -EINTR; 524 goto out; 525 } 526 if (mpnt->vm_flags & VM_ACCOUNT) { 527 unsigned long len = vma_pages(mpnt); 528 529 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 530 goto fail_nomem; 531 charge = len; 532 } 533 tmp = vm_area_dup(mpnt); 534 if (!tmp) 535 goto fail_nomem; 536 retval = vma_dup_policy(mpnt, tmp); 537 if (retval) 538 goto fail_nomem_policy; 539 tmp->vm_mm = mm; 540 retval = dup_userfaultfd(tmp, &uf); 541 if (retval) 542 goto fail_nomem_anon_vma_fork; 543 if (tmp->vm_flags & VM_WIPEONFORK) { 544 /* 545 * VM_WIPEONFORK gets a clean slate in the child. 546 * Don't prepare anon_vma until fault since we don't 547 * copy page for current vma. 548 */ 549 tmp->anon_vma = NULL; 550 } else if (anon_vma_fork(tmp, mpnt)) 551 goto fail_nomem_anon_vma_fork; 552 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 553 file = tmp->vm_file; 554 if (file) { 555 struct inode *inode = file_inode(file); 556 struct address_space *mapping = file->f_mapping; 557 558 get_file(file); 559 if (tmp->vm_flags & VM_DENYWRITE) 560 put_write_access(inode); 561 i_mmap_lock_write(mapping); 562 if (tmp->vm_flags & VM_SHARED) 563 mapping_allow_writable(mapping); 564 flush_dcache_mmap_lock(mapping); 565 /* insert tmp into the share list, just after mpnt */ 566 vma_interval_tree_insert_after(tmp, mpnt, 567 &mapping->i_mmap); 568 flush_dcache_mmap_unlock(mapping); 569 i_mmap_unlock_write(mapping); 570 } 571 572 /* 573 * Clear hugetlb-related page reserves for children. This only 574 * affects MAP_PRIVATE mappings. Faults generated by the child 575 * are not guaranteed to succeed, even if read-only 576 */ 577 if (is_vm_hugetlb_page(tmp)) 578 reset_vma_resv_huge_pages(tmp); 579 580 /* 581 * Link in the new vma and copy the page table entries. 582 */ 583 *pprev = tmp; 584 pprev = &tmp->vm_next; 585 tmp->vm_prev = prev; 586 prev = tmp; 587 588 __vma_link_rb(mm, tmp, rb_link, rb_parent); 589 rb_link = &tmp->vm_rb.rb_right; 590 rb_parent = &tmp->vm_rb; 591 592 mm->map_count++; 593 if (!(tmp->vm_flags & VM_WIPEONFORK)) 594 retval = copy_page_range(tmp, mpnt); 595 596 if (tmp->vm_ops && tmp->vm_ops->open) 597 tmp->vm_ops->open(tmp); 598 599 if (retval) 600 goto out; 601 } 602 /* a new mm has just been created */ 603 retval = arch_dup_mmap(oldmm, mm); 604 out: 605 mmap_write_unlock(mm); 606 flush_tlb_mm(oldmm); 607 mmap_write_unlock(oldmm); 608 dup_userfaultfd_complete(&uf); 609 fail_uprobe_end: 610 uprobe_end_dup_mmap(); 611 return retval; 612 fail_nomem_anon_vma_fork: 613 mpol_put(vma_policy(tmp)); 614 fail_nomem_policy: 615 vm_area_free(tmp); 616 fail_nomem: 617 retval = -ENOMEM; 618 vm_unacct_memory(charge); 619 goto out; 620 } 621 622 static inline int mm_alloc_pgd(struct mm_struct *mm) 623 { 624 mm->pgd = pgd_alloc(mm); 625 if (unlikely(!mm->pgd)) 626 return -ENOMEM; 627 return 0; 628 } 629 630 static inline void mm_free_pgd(struct mm_struct *mm) 631 { 632 pgd_free(mm, mm->pgd); 633 } 634 #else 635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 636 { 637 mmap_write_lock(oldmm); 638 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 639 mmap_write_unlock(oldmm); 640 return 0; 641 } 642 #define mm_alloc_pgd(mm) (0) 643 #define mm_free_pgd(mm) 644 #endif /* CONFIG_MMU */ 645 646 static void check_mm(struct mm_struct *mm) 647 { 648 int i; 649 650 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 651 "Please make sure 'struct resident_page_types[]' is updated as well"); 652 653 for (i = 0; i < NR_MM_COUNTERS; i++) { 654 long x = atomic_long_read(&mm->rss_stat.count[i]); 655 656 if (unlikely(x)) 657 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 658 mm, resident_page_types[i], x); 659 } 660 661 if (mm_pgtables_bytes(mm)) 662 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 663 mm_pgtables_bytes(mm)); 664 665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 667 #endif 668 } 669 670 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 671 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 672 673 /* 674 * Called when the last reference to the mm 675 * is dropped: either by a lazy thread or by 676 * mmput. Free the page directory and the mm. 677 */ 678 void __mmdrop(struct mm_struct *mm) 679 { 680 BUG_ON(mm == &init_mm); 681 WARN_ON_ONCE(mm == current->mm); 682 WARN_ON_ONCE(mm == current->active_mm); 683 mm_free_pgd(mm); 684 destroy_context(mm); 685 mmu_notifier_subscriptions_destroy(mm); 686 check_mm(mm); 687 put_user_ns(mm->user_ns); 688 free_mm(mm); 689 } 690 EXPORT_SYMBOL_GPL(__mmdrop); 691 692 static void mmdrop_async_fn(struct work_struct *work) 693 { 694 struct mm_struct *mm; 695 696 mm = container_of(work, struct mm_struct, async_put_work); 697 __mmdrop(mm); 698 } 699 700 static void mmdrop_async(struct mm_struct *mm) 701 { 702 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 703 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 704 schedule_work(&mm->async_put_work); 705 } 706 } 707 708 static inline void free_signal_struct(struct signal_struct *sig) 709 { 710 taskstats_tgid_free(sig); 711 sched_autogroup_exit(sig); 712 /* 713 * __mmdrop is not safe to call from softirq context on x86 due to 714 * pgd_dtor so postpone it to the async context 715 */ 716 if (sig->oom_mm) 717 mmdrop_async(sig->oom_mm); 718 kmem_cache_free(signal_cachep, sig); 719 } 720 721 static inline void put_signal_struct(struct signal_struct *sig) 722 { 723 if (refcount_dec_and_test(&sig->sigcnt)) 724 free_signal_struct(sig); 725 } 726 727 void __put_task_struct(struct task_struct *tsk) 728 { 729 WARN_ON(!tsk->exit_state); 730 WARN_ON(refcount_read(&tsk->usage)); 731 WARN_ON(tsk == current); 732 733 io_uring_free(tsk); 734 cgroup_free(tsk); 735 task_numa_free(tsk, true); 736 security_task_free(tsk); 737 exit_creds(tsk); 738 delayacct_tsk_free(tsk); 739 put_signal_struct(tsk->signal); 740 741 if (!profile_handoff_task(tsk)) 742 free_task(tsk); 743 } 744 EXPORT_SYMBOL_GPL(__put_task_struct); 745 746 void __init __weak arch_task_cache_init(void) { } 747 748 /* 749 * set_max_threads 750 */ 751 static void set_max_threads(unsigned int max_threads_suggested) 752 { 753 u64 threads; 754 unsigned long nr_pages = totalram_pages(); 755 756 /* 757 * The number of threads shall be limited such that the thread 758 * structures may only consume a small part of the available memory. 759 */ 760 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 761 threads = MAX_THREADS; 762 else 763 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 764 (u64) THREAD_SIZE * 8UL); 765 766 if (threads > max_threads_suggested) 767 threads = max_threads_suggested; 768 769 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 770 } 771 772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 773 /* Initialized by the architecture: */ 774 int arch_task_struct_size __read_mostly; 775 #endif 776 777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 779 { 780 /* Fetch thread_struct whitelist for the architecture. */ 781 arch_thread_struct_whitelist(offset, size); 782 783 /* 784 * Handle zero-sized whitelist or empty thread_struct, otherwise 785 * adjust offset to position of thread_struct in task_struct. 786 */ 787 if (unlikely(*size == 0)) 788 *offset = 0; 789 else 790 *offset += offsetof(struct task_struct, thread); 791 } 792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 793 794 void __init fork_init(void) 795 { 796 int i; 797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 798 #ifndef ARCH_MIN_TASKALIGN 799 #define ARCH_MIN_TASKALIGN 0 800 #endif 801 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 802 unsigned long useroffset, usersize; 803 804 /* create a slab on which task_structs can be allocated */ 805 task_struct_whitelist(&useroffset, &usersize); 806 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 807 arch_task_struct_size, align, 808 SLAB_PANIC|SLAB_ACCOUNT, 809 useroffset, usersize, NULL); 810 #endif 811 812 /* do the arch specific task caches init */ 813 arch_task_cache_init(); 814 815 set_max_threads(MAX_THREADS); 816 817 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 818 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 819 init_task.signal->rlim[RLIMIT_SIGPENDING] = 820 init_task.signal->rlim[RLIMIT_NPROC]; 821 822 for (i = 0; i < UCOUNT_COUNTS; i++) 823 init_user_ns.ucount_max[i] = max_threads/2; 824 825 #ifdef CONFIG_VMAP_STACK 826 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 827 NULL, free_vm_stack_cache); 828 #endif 829 830 scs_init(); 831 832 lockdep_init_task(&init_task); 833 uprobes_init(); 834 } 835 836 int __weak arch_dup_task_struct(struct task_struct *dst, 837 struct task_struct *src) 838 { 839 *dst = *src; 840 return 0; 841 } 842 843 void set_task_stack_end_magic(struct task_struct *tsk) 844 { 845 unsigned long *stackend; 846 847 stackend = end_of_stack(tsk); 848 *stackend = STACK_END_MAGIC; /* for overflow detection */ 849 } 850 851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 852 { 853 struct task_struct *tsk; 854 unsigned long *stack; 855 struct vm_struct *stack_vm_area __maybe_unused; 856 int err; 857 858 if (node == NUMA_NO_NODE) 859 node = tsk_fork_get_node(orig); 860 tsk = alloc_task_struct_node(node); 861 if (!tsk) 862 return NULL; 863 864 stack = alloc_thread_stack_node(tsk, node); 865 if (!stack) 866 goto free_tsk; 867 868 if (memcg_charge_kernel_stack(tsk)) 869 goto free_stack; 870 871 stack_vm_area = task_stack_vm_area(tsk); 872 873 err = arch_dup_task_struct(tsk, orig); 874 875 /* 876 * arch_dup_task_struct() clobbers the stack-related fields. Make 877 * sure they're properly initialized before using any stack-related 878 * functions again. 879 */ 880 tsk->stack = stack; 881 #ifdef CONFIG_VMAP_STACK 882 tsk->stack_vm_area = stack_vm_area; 883 #endif 884 #ifdef CONFIG_THREAD_INFO_IN_TASK 885 refcount_set(&tsk->stack_refcount, 1); 886 #endif 887 888 if (err) 889 goto free_stack; 890 891 err = scs_prepare(tsk, node); 892 if (err) 893 goto free_stack; 894 895 #ifdef CONFIG_SECCOMP 896 /* 897 * We must handle setting up seccomp filters once we're under 898 * the sighand lock in case orig has changed between now and 899 * then. Until then, filter must be NULL to avoid messing up 900 * the usage counts on the error path calling free_task. 901 */ 902 tsk->seccomp.filter = NULL; 903 #endif 904 905 setup_thread_stack(tsk, orig); 906 clear_user_return_notifier(tsk); 907 clear_tsk_need_resched(tsk); 908 set_task_stack_end_magic(tsk); 909 clear_syscall_work_syscall_user_dispatch(tsk); 910 911 #ifdef CONFIG_STACKPROTECTOR 912 tsk->stack_canary = get_random_canary(); 913 #endif 914 if (orig->cpus_ptr == &orig->cpus_mask) 915 tsk->cpus_ptr = &tsk->cpus_mask; 916 917 /* 918 * One for the user space visible state that goes away when reaped. 919 * One for the scheduler. 920 */ 921 refcount_set(&tsk->rcu_users, 2); 922 /* One for the rcu users */ 923 refcount_set(&tsk->usage, 1); 924 #ifdef CONFIG_BLK_DEV_IO_TRACE 925 tsk->btrace_seq = 0; 926 #endif 927 tsk->splice_pipe = NULL; 928 tsk->task_frag.page = NULL; 929 tsk->wake_q.next = NULL; 930 931 account_kernel_stack(tsk, 1); 932 933 kcov_task_init(tsk); 934 kmap_local_fork(tsk); 935 936 #ifdef CONFIG_FAULT_INJECTION 937 tsk->fail_nth = 0; 938 #endif 939 940 #ifdef CONFIG_BLK_CGROUP 941 tsk->throttle_queue = NULL; 942 tsk->use_memdelay = 0; 943 #endif 944 945 #ifdef CONFIG_MEMCG 946 tsk->active_memcg = NULL; 947 #endif 948 return tsk; 949 950 free_stack: 951 free_thread_stack(tsk); 952 free_tsk: 953 free_task_struct(tsk); 954 return NULL; 955 } 956 957 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 958 959 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 960 961 static int __init coredump_filter_setup(char *s) 962 { 963 default_dump_filter = 964 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 965 MMF_DUMP_FILTER_MASK; 966 return 1; 967 } 968 969 __setup("coredump_filter=", coredump_filter_setup); 970 971 #include <linux/init_task.h> 972 973 static void mm_init_aio(struct mm_struct *mm) 974 { 975 #ifdef CONFIG_AIO 976 spin_lock_init(&mm->ioctx_lock); 977 mm->ioctx_table = NULL; 978 #endif 979 } 980 981 static __always_inline void mm_clear_owner(struct mm_struct *mm, 982 struct task_struct *p) 983 { 984 #ifdef CONFIG_MEMCG 985 if (mm->owner == p) 986 WRITE_ONCE(mm->owner, NULL); 987 #endif 988 } 989 990 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 991 { 992 #ifdef CONFIG_MEMCG 993 mm->owner = p; 994 #endif 995 } 996 997 static void mm_init_pasid(struct mm_struct *mm) 998 { 999 #ifdef CONFIG_IOMMU_SUPPORT 1000 mm->pasid = INIT_PASID; 1001 #endif 1002 } 1003 1004 static void mm_init_uprobes_state(struct mm_struct *mm) 1005 { 1006 #ifdef CONFIG_UPROBES 1007 mm->uprobes_state.xol_area = NULL; 1008 #endif 1009 } 1010 1011 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1012 struct user_namespace *user_ns) 1013 { 1014 mm->mmap = NULL; 1015 mm->mm_rb = RB_ROOT; 1016 mm->vmacache_seqnum = 0; 1017 atomic_set(&mm->mm_users, 1); 1018 atomic_set(&mm->mm_count, 1); 1019 seqcount_init(&mm->write_protect_seq); 1020 mmap_init_lock(mm); 1021 INIT_LIST_HEAD(&mm->mmlist); 1022 mm->core_state = NULL; 1023 mm_pgtables_bytes_init(mm); 1024 mm->map_count = 0; 1025 mm->locked_vm = 0; 1026 atomic_set(&mm->has_pinned, 0); 1027 atomic64_set(&mm->pinned_vm, 0); 1028 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1029 spin_lock_init(&mm->page_table_lock); 1030 spin_lock_init(&mm->arg_lock); 1031 mm_init_cpumask(mm); 1032 mm_init_aio(mm); 1033 mm_init_owner(mm, p); 1034 mm_init_pasid(mm); 1035 RCU_INIT_POINTER(mm->exe_file, NULL); 1036 mmu_notifier_subscriptions_init(mm); 1037 init_tlb_flush_pending(mm); 1038 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1039 mm->pmd_huge_pte = NULL; 1040 #endif 1041 mm_init_uprobes_state(mm); 1042 1043 if (current->mm) { 1044 mm->flags = current->mm->flags & MMF_INIT_MASK; 1045 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1046 } else { 1047 mm->flags = default_dump_filter; 1048 mm->def_flags = 0; 1049 } 1050 1051 if (mm_alloc_pgd(mm)) 1052 goto fail_nopgd; 1053 1054 if (init_new_context(p, mm)) 1055 goto fail_nocontext; 1056 1057 mm->user_ns = get_user_ns(user_ns); 1058 return mm; 1059 1060 fail_nocontext: 1061 mm_free_pgd(mm); 1062 fail_nopgd: 1063 free_mm(mm); 1064 return NULL; 1065 } 1066 1067 /* 1068 * Allocate and initialize an mm_struct. 1069 */ 1070 struct mm_struct *mm_alloc(void) 1071 { 1072 struct mm_struct *mm; 1073 1074 mm = allocate_mm(); 1075 if (!mm) 1076 return NULL; 1077 1078 memset(mm, 0, sizeof(*mm)); 1079 return mm_init(mm, current, current_user_ns()); 1080 } 1081 1082 static inline void __mmput(struct mm_struct *mm) 1083 { 1084 VM_BUG_ON(atomic_read(&mm->mm_users)); 1085 1086 uprobe_clear_state(mm); 1087 exit_aio(mm); 1088 ksm_exit(mm); 1089 khugepaged_exit(mm); /* must run before exit_mmap */ 1090 exit_mmap(mm); 1091 mm_put_huge_zero_page(mm); 1092 set_mm_exe_file(mm, NULL); 1093 if (!list_empty(&mm->mmlist)) { 1094 spin_lock(&mmlist_lock); 1095 list_del(&mm->mmlist); 1096 spin_unlock(&mmlist_lock); 1097 } 1098 if (mm->binfmt) 1099 module_put(mm->binfmt->module); 1100 mmdrop(mm); 1101 } 1102 1103 /* 1104 * Decrement the use count and release all resources for an mm. 1105 */ 1106 void mmput(struct mm_struct *mm) 1107 { 1108 might_sleep(); 1109 1110 if (atomic_dec_and_test(&mm->mm_users)) 1111 __mmput(mm); 1112 } 1113 EXPORT_SYMBOL_GPL(mmput); 1114 1115 #ifdef CONFIG_MMU 1116 static void mmput_async_fn(struct work_struct *work) 1117 { 1118 struct mm_struct *mm = container_of(work, struct mm_struct, 1119 async_put_work); 1120 1121 __mmput(mm); 1122 } 1123 1124 void mmput_async(struct mm_struct *mm) 1125 { 1126 if (atomic_dec_and_test(&mm->mm_users)) { 1127 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1128 schedule_work(&mm->async_put_work); 1129 } 1130 } 1131 #endif 1132 1133 /** 1134 * set_mm_exe_file - change a reference to the mm's executable file 1135 * 1136 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1137 * 1138 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1139 * invocations: in mmput() nobody alive left, in execve task is single 1140 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1141 * mm->exe_file, but does so without using set_mm_exe_file() in order 1142 * to do avoid the need for any locks. 1143 */ 1144 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1145 { 1146 struct file *old_exe_file; 1147 1148 /* 1149 * It is safe to dereference the exe_file without RCU as 1150 * this function is only called if nobody else can access 1151 * this mm -- see comment above for justification. 1152 */ 1153 old_exe_file = rcu_dereference_raw(mm->exe_file); 1154 1155 if (new_exe_file) 1156 get_file(new_exe_file); 1157 rcu_assign_pointer(mm->exe_file, new_exe_file); 1158 if (old_exe_file) 1159 fput(old_exe_file); 1160 } 1161 1162 /** 1163 * get_mm_exe_file - acquire a reference to the mm's executable file 1164 * 1165 * Returns %NULL if mm has no associated executable file. 1166 * User must release file via fput(). 1167 */ 1168 struct file *get_mm_exe_file(struct mm_struct *mm) 1169 { 1170 struct file *exe_file; 1171 1172 rcu_read_lock(); 1173 exe_file = rcu_dereference(mm->exe_file); 1174 if (exe_file && !get_file_rcu(exe_file)) 1175 exe_file = NULL; 1176 rcu_read_unlock(); 1177 return exe_file; 1178 } 1179 EXPORT_SYMBOL(get_mm_exe_file); 1180 1181 /** 1182 * get_task_exe_file - acquire a reference to the task's executable file 1183 * 1184 * Returns %NULL if task's mm (if any) has no associated executable file or 1185 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1186 * User must release file via fput(). 1187 */ 1188 struct file *get_task_exe_file(struct task_struct *task) 1189 { 1190 struct file *exe_file = NULL; 1191 struct mm_struct *mm; 1192 1193 task_lock(task); 1194 mm = task->mm; 1195 if (mm) { 1196 if (!(task->flags & PF_KTHREAD)) 1197 exe_file = get_mm_exe_file(mm); 1198 } 1199 task_unlock(task); 1200 return exe_file; 1201 } 1202 EXPORT_SYMBOL(get_task_exe_file); 1203 1204 /** 1205 * get_task_mm - acquire a reference to the task's mm 1206 * 1207 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1208 * this kernel workthread has transiently adopted a user mm with use_mm, 1209 * to do its AIO) is not set and if so returns a reference to it, after 1210 * bumping up the use count. User must release the mm via mmput() 1211 * after use. Typically used by /proc and ptrace. 1212 */ 1213 struct mm_struct *get_task_mm(struct task_struct *task) 1214 { 1215 struct mm_struct *mm; 1216 1217 task_lock(task); 1218 mm = task->mm; 1219 if (mm) { 1220 if (task->flags & PF_KTHREAD) 1221 mm = NULL; 1222 else 1223 mmget(mm); 1224 } 1225 task_unlock(task); 1226 return mm; 1227 } 1228 EXPORT_SYMBOL_GPL(get_task_mm); 1229 1230 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1231 { 1232 struct mm_struct *mm; 1233 int err; 1234 1235 err = down_read_killable(&task->signal->exec_update_lock); 1236 if (err) 1237 return ERR_PTR(err); 1238 1239 mm = get_task_mm(task); 1240 if (mm && mm != current->mm && 1241 !ptrace_may_access(task, mode)) { 1242 mmput(mm); 1243 mm = ERR_PTR(-EACCES); 1244 } 1245 up_read(&task->signal->exec_update_lock); 1246 1247 return mm; 1248 } 1249 1250 static void complete_vfork_done(struct task_struct *tsk) 1251 { 1252 struct completion *vfork; 1253 1254 task_lock(tsk); 1255 vfork = tsk->vfork_done; 1256 if (likely(vfork)) { 1257 tsk->vfork_done = NULL; 1258 complete(vfork); 1259 } 1260 task_unlock(tsk); 1261 } 1262 1263 static int wait_for_vfork_done(struct task_struct *child, 1264 struct completion *vfork) 1265 { 1266 int killed; 1267 1268 freezer_do_not_count(); 1269 cgroup_enter_frozen(); 1270 killed = wait_for_completion_killable(vfork); 1271 cgroup_leave_frozen(false); 1272 freezer_count(); 1273 1274 if (killed) { 1275 task_lock(child); 1276 child->vfork_done = NULL; 1277 task_unlock(child); 1278 } 1279 1280 put_task_struct(child); 1281 return killed; 1282 } 1283 1284 /* Please note the differences between mmput and mm_release. 1285 * mmput is called whenever we stop holding onto a mm_struct, 1286 * error success whatever. 1287 * 1288 * mm_release is called after a mm_struct has been removed 1289 * from the current process. 1290 * 1291 * This difference is important for error handling, when we 1292 * only half set up a mm_struct for a new process and need to restore 1293 * the old one. Because we mmput the new mm_struct before 1294 * restoring the old one. . . 1295 * Eric Biederman 10 January 1998 1296 */ 1297 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1298 { 1299 uprobe_free_utask(tsk); 1300 1301 /* Get rid of any cached register state */ 1302 deactivate_mm(tsk, mm); 1303 1304 /* 1305 * Signal userspace if we're not exiting with a core dump 1306 * because we want to leave the value intact for debugging 1307 * purposes. 1308 */ 1309 if (tsk->clear_child_tid) { 1310 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1311 atomic_read(&mm->mm_users) > 1) { 1312 /* 1313 * We don't check the error code - if userspace has 1314 * not set up a proper pointer then tough luck. 1315 */ 1316 put_user(0, tsk->clear_child_tid); 1317 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1318 1, NULL, NULL, 0, 0); 1319 } 1320 tsk->clear_child_tid = NULL; 1321 } 1322 1323 /* 1324 * All done, finally we can wake up parent and return this mm to him. 1325 * Also kthread_stop() uses this completion for synchronization. 1326 */ 1327 if (tsk->vfork_done) 1328 complete_vfork_done(tsk); 1329 } 1330 1331 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1332 { 1333 futex_exit_release(tsk); 1334 mm_release(tsk, mm); 1335 } 1336 1337 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1338 { 1339 futex_exec_release(tsk); 1340 mm_release(tsk, mm); 1341 } 1342 1343 /** 1344 * dup_mm() - duplicates an existing mm structure 1345 * @tsk: the task_struct with which the new mm will be associated. 1346 * @oldmm: the mm to duplicate. 1347 * 1348 * Allocates a new mm structure and duplicates the provided @oldmm structure 1349 * content into it. 1350 * 1351 * Return: the duplicated mm or NULL on failure. 1352 */ 1353 static struct mm_struct *dup_mm(struct task_struct *tsk, 1354 struct mm_struct *oldmm) 1355 { 1356 struct mm_struct *mm; 1357 int err; 1358 1359 mm = allocate_mm(); 1360 if (!mm) 1361 goto fail_nomem; 1362 1363 memcpy(mm, oldmm, sizeof(*mm)); 1364 1365 if (!mm_init(mm, tsk, mm->user_ns)) 1366 goto fail_nomem; 1367 1368 err = dup_mmap(mm, oldmm); 1369 if (err) 1370 goto free_pt; 1371 1372 mm->hiwater_rss = get_mm_rss(mm); 1373 mm->hiwater_vm = mm->total_vm; 1374 1375 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1376 goto free_pt; 1377 1378 return mm; 1379 1380 free_pt: 1381 /* don't put binfmt in mmput, we haven't got module yet */ 1382 mm->binfmt = NULL; 1383 mm_init_owner(mm, NULL); 1384 mmput(mm); 1385 1386 fail_nomem: 1387 return NULL; 1388 } 1389 1390 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1391 { 1392 struct mm_struct *mm, *oldmm; 1393 int retval; 1394 1395 tsk->min_flt = tsk->maj_flt = 0; 1396 tsk->nvcsw = tsk->nivcsw = 0; 1397 #ifdef CONFIG_DETECT_HUNG_TASK 1398 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1399 tsk->last_switch_time = 0; 1400 #endif 1401 1402 tsk->mm = NULL; 1403 tsk->active_mm = NULL; 1404 1405 /* 1406 * Are we cloning a kernel thread? 1407 * 1408 * We need to steal a active VM for that.. 1409 */ 1410 oldmm = current->mm; 1411 if (!oldmm) 1412 return 0; 1413 1414 /* initialize the new vmacache entries */ 1415 vmacache_flush(tsk); 1416 1417 if (clone_flags & CLONE_VM) { 1418 mmget(oldmm); 1419 mm = oldmm; 1420 goto good_mm; 1421 } 1422 1423 retval = -ENOMEM; 1424 mm = dup_mm(tsk, current->mm); 1425 if (!mm) 1426 goto fail_nomem; 1427 1428 good_mm: 1429 tsk->mm = mm; 1430 tsk->active_mm = mm; 1431 return 0; 1432 1433 fail_nomem: 1434 return retval; 1435 } 1436 1437 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1438 { 1439 struct fs_struct *fs = current->fs; 1440 if (clone_flags & CLONE_FS) { 1441 /* tsk->fs is already what we want */ 1442 spin_lock(&fs->lock); 1443 if (fs->in_exec) { 1444 spin_unlock(&fs->lock); 1445 return -EAGAIN; 1446 } 1447 fs->users++; 1448 spin_unlock(&fs->lock); 1449 return 0; 1450 } 1451 tsk->fs = copy_fs_struct(fs); 1452 if (!tsk->fs) 1453 return -ENOMEM; 1454 return 0; 1455 } 1456 1457 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1458 { 1459 struct files_struct *oldf, *newf; 1460 int error = 0; 1461 1462 /* 1463 * A background process may not have any files ... 1464 */ 1465 oldf = current->files; 1466 if (!oldf) 1467 goto out; 1468 1469 if (clone_flags & CLONE_FILES) { 1470 atomic_inc(&oldf->count); 1471 goto out; 1472 } 1473 1474 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1475 if (!newf) 1476 goto out; 1477 1478 tsk->files = newf; 1479 error = 0; 1480 out: 1481 return error; 1482 } 1483 1484 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1485 { 1486 #ifdef CONFIG_BLOCK 1487 struct io_context *ioc = current->io_context; 1488 struct io_context *new_ioc; 1489 1490 if (!ioc) 1491 return 0; 1492 /* 1493 * Share io context with parent, if CLONE_IO is set 1494 */ 1495 if (clone_flags & CLONE_IO) { 1496 ioc_task_link(ioc); 1497 tsk->io_context = ioc; 1498 } else if (ioprio_valid(ioc->ioprio)) { 1499 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1500 if (unlikely(!new_ioc)) 1501 return -ENOMEM; 1502 1503 new_ioc->ioprio = ioc->ioprio; 1504 put_io_context(new_ioc); 1505 } 1506 #endif 1507 return 0; 1508 } 1509 1510 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1511 { 1512 struct sighand_struct *sig; 1513 1514 if (clone_flags & CLONE_SIGHAND) { 1515 refcount_inc(¤t->sighand->count); 1516 return 0; 1517 } 1518 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1519 RCU_INIT_POINTER(tsk->sighand, sig); 1520 if (!sig) 1521 return -ENOMEM; 1522 1523 refcount_set(&sig->count, 1); 1524 spin_lock_irq(¤t->sighand->siglock); 1525 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1526 spin_unlock_irq(¤t->sighand->siglock); 1527 1528 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1529 if (clone_flags & CLONE_CLEAR_SIGHAND) 1530 flush_signal_handlers(tsk, 0); 1531 1532 return 0; 1533 } 1534 1535 void __cleanup_sighand(struct sighand_struct *sighand) 1536 { 1537 if (refcount_dec_and_test(&sighand->count)) { 1538 signalfd_cleanup(sighand); 1539 /* 1540 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1541 * without an RCU grace period, see __lock_task_sighand(). 1542 */ 1543 kmem_cache_free(sighand_cachep, sighand); 1544 } 1545 } 1546 1547 /* 1548 * Initialize POSIX timer handling for a thread group. 1549 */ 1550 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1551 { 1552 struct posix_cputimers *pct = &sig->posix_cputimers; 1553 unsigned long cpu_limit; 1554 1555 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1556 posix_cputimers_group_init(pct, cpu_limit); 1557 } 1558 1559 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1560 { 1561 struct signal_struct *sig; 1562 1563 if (clone_flags & CLONE_THREAD) 1564 return 0; 1565 1566 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1567 tsk->signal = sig; 1568 if (!sig) 1569 return -ENOMEM; 1570 1571 sig->nr_threads = 1; 1572 atomic_set(&sig->live, 1); 1573 refcount_set(&sig->sigcnt, 1); 1574 1575 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1576 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1577 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1578 1579 init_waitqueue_head(&sig->wait_chldexit); 1580 sig->curr_target = tsk; 1581 init_sigpending(&sig->shared_pending); 1582 INIT_HLIST_HEAD(&sig->multiprocess); 1583 seqlock_init(&sig->stats_lock); 1584 prev_cputime_init(&sig->prev_cputime); 1585 1586 #ifdef CONFIG_POSIX_TIMERS 1587 INIT_LIST_HEAD(&sig->posix_timers); 1588 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1589 sig->real_timer.function = it_real_fn; 1590 #endif 1591 1592 task_lock(current->group_leader); 1593 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1594 task_unlock(current->group_leader); 1595 1596 posix_cpu_timers_init_group(sig); 1597 1598 tty_audit_fork(sig); 1599 sched_autogroup_fork(sig); 1600 1601 sig->oom_score_adj = current->signal->oom_score_adj; 1602 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1603 1604 mutex_init(&sig->cred_guard_mutex); 1605 init_rwsem(&sig->exec_update_lock); 1606 1607 return 0; 1608 } 1609 1610 static void copy_seccomp(struct task_struct *p) 1611 { 1612 #ifdef CONFIG_SECCOMP 1613 /* 1614 * Must be called with sighand->lock held, which is common to 1615 * all threads in the group. Holding cred_guard_mutex is not 1616 * needed because this new task is not yet running and cannot 1617 * be racing exec. 1618 */ 1619 assert_spin_locked(¤t->sighand->siglock); 1620 1621 /* Ref-count the new filter user, and assign it. */ 1622 get_seccomp_filter(current); 1623 p->seccomp = current->seccomp; 1624 1625 /* 1626 * Explicitly enable no_new_privs here in case it got set 1627 * between the task_struct being duplicated and holding the 1628 * sighand lock. The seccomp state and nnp must be in sync. 1629 */ 1630 if (task_no_new_privs(current)) 1631 task_set_no_new_privs(p); 1632 1633 /* 1634 * If the parent gained a seccomp mode after copying thread 1635 * flags and between before we held the sighand lock, we have 1636 * to manually enable the seccomp thread flag here. 1637 */ 1638 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1639 set_task_syscall_work(p, SECCOMP); 1640 #endif 1641 } 1642 1643 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1644 { 1645 current->clear_child_tid = tidptr; 1646 1647 return task_pid_vnr(current); 1648 } 1649 1650 static void rt_mutex_init_task(struct task_struct *p) 1651 { 1652 raw_spin_lock_init(&p->pi_lock); 1653 #ifdef CONFIG_RT_MUTEXES 1654 p->pi_waiters = RB_ROOT_CACHED; 1655 p->pi_top_task = NULL; 1656 p->pi_blocked_on = NULL; 1657 #endif 1658 } 1659 1660 static inline void init_task_pid_links(struct task_struct *task) 1661 { 1662 enum pid_type type; 1663 1664 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1665 INIT_HLIST_NODE(&task->pid_links[type]); 1666 } 1667 1668 static inline void 1669 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1670 { 1671 if (type == PIDTYPE_PID) 1672 task->thread_pid = pid; 1673 else 1674 task->signal->pids[type] = pid; 1675 } 1676 1677 static inline void rcu_copy_process(struct task_struct *p) 1678 { 1679 #ifdef CONFIG_PREEMPT_RCU 1680 p->rcu_read_lock_nesting = 0; 1681 p->rcu_read_unlock_special.s = 0; 1682 p->rcu_blocked_node = NULL; 1683 INIT_LIST_HEAD(&p->rcu_node_entry); 1684 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1685 #ifdef CONFIG_TASKS_RCU 1686 p->rcu_tasks_holdout = false; 1687 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1688 p->rcu_tasks_idle_cpu = -1; 1689 #endif /* #ifdef CONFIG_TASKS_RCU */ 1690 #ifdef CONFIG_TASKS_TRACE_RCU 1691 p->trc_reader_nesting = 0; 1692 p->trc_reader_special.s = 0; 1693 INIT_LIST_HEAD(&p->trc_holdout_list); 1694 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1695 } 1696 1697 struct pid *pidfd_pid(const struct file *file) 1698 { 1699 if (file->f_op == &pidfd_fops) 1700 return file->private_data; 1701 1702 return ERR_PTR(-EBADF); 1703 } 1704 1705 static int pidfd_release(struct inode *inode, struct file *file) 1706 { 1707 struct pid *pid = file->private_data; 1708 1709 file->private_data = NULL; 1710 put_pid(pid); 1711 return 0; 1712 } 1713 1714 #ifdef CONFIG_PROC_FS 1715 /** 1716 * pidfd_show_fdinfo - print information about a pidfd 1717 * @m: proc fdinfo file 1718 * @f: file referencing a pidfd 1719 * 1720 * Pid: 1721 * This function will print the pid that a given pidfd refers to in the 1722 * pid namespace of the procfs instance. 1723 * If the pid namespace of the process is not a descendant of the pid 1724 * namespace of the procfs instance 0 will be shown as its pid. This is 1725 * similar to calling getppid() on a process whose parent is outside of 1726 * its pid namespace. 1727 * 1728 * NSpid: 1729 * If pid namespaces are supported then this function will also print 1730 * the pid of a given pidfd refers to for all descendant pid namespaces 1731 * starting from the current pid namespace of the instance, i.e. the 1732 * Pid field and the first entry in the NSpid field will be identical. 1733 * If the pid namespace of the process is not a descendant of the pid 1734 * namespace of the procfs instance 0 will be shown as its first NSpid 1735 * entry and no others will be shown. 1736 * Note that this differs from the Pid and NSpid fields in 1737 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1738 * the pid namespace of the procfs instance. The difference becomes 1739 * obvious when sending around a pidfd between pid namespaces from a 1740 * different branch of the tree, i.e. where no ancestoral relation is 1741 * present between the pid namespaces: 1742 * - create two new pid namespaces ns1 and ns2 in the initial pid 1743 * namespace (also take care to create new mount namespaces in the 1744 * new pid namespace and mount procfs) 1745 * - create a process with a pidfd in ns1 1746 * - send pidfd from ns1 to ns2 1747 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1748 * have exactly one entry, which is 0 1749 */ 1750 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1751 { 1752 struct pid *pid = f->private_data; 1753 struct pid_namespace *ns; 1754 pid_t nr = -1; 1755 1756 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1757 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1758 nr = pid_nr_ns(pid, ns); 1759 } 1760 1761 seq_put_decimal_ll(m, "Pid:\t", nr); 1762 1763 #ifdef CONFIG_PID_NS 1764 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1765 if (nr > 0) { 1766 int i; 1767 1768 /* If nr is non-zero it means that 'pid' is valid and that 1769 * ns, i.e. the pid namespace associated with the procfs 1770 * instance, is in the pid namespace hierarchy of pid. 1771 * Start at one below the already printed level. 1772 */ 1773 for (i = ns->level + 1; i <= pid->level; i++) 1774 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1775 } 1776 #endif 1777 seq_putc(m, '\n'); 1778 } 1779 #endif 1780 1781 /* 1782 * Poll support for process exit notification. 1783 */ 1784 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1785 { 1786 struct pid *pid = file->private_data; 1787 __poll_t poll_flags = 0; 1788 1789 poll_wait(file, &pid->wait_pidfd, pts); 1790 1791 /* 1792 * Inform pollers only when the whole thread group exits. 1793 * If the thread group leader exits before all other threads in the 1794 * group, then poll(2) should block, similar to the wait(2) family. 1795 */ 1796 if (thread_group_exited(pid)) 1797 poll_flags = EPOLLIN | EPOLLRDNORM; 1798 1799 return poll_flags; 1800 } 1801 1802 const struct file_operations pidfd_fops = { 1803 .release = pidfd_release, 1804 .poll = pidfd_poll, 1805 #ifdef CONFIG_PROC_FS 1806 .show_fdinfo = pidfd_show_fdinfo, 1807 #endif 1808 }; 1809 1810 static void __delayed_free_task(struct rcu_head *rhp) 1811 { 1812 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1813 1814 free_task(tsk); 1815 } 1816 1817 static __always_inline void delayed_free_task(struct task_struct *tsk) 1818 { 1819 if (IS_ENABLED(CONFIG_MEMCG)) 1820 call_rcu(&tsk->rcu, __delayed_free_task); 1821 else 1822 free_task(tsk); 1823 } 1824 1825 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1826 { 1827 /* Skip if kernel thread */ 1828 if (!tsk->mm) 1829 return; 1830 1831 /* Skip if spawning a thread or using vfork */ 1832 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1833 return; 1834 1835 /* We need to synchronize with __set_oom_adj */ 1836 mutex_lock(&oom_adj_mutex); 1837 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1838 /* Update the values in case they were changed after copy_signal */ 1839 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1840 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1841 mutex_unlock(&oom_adj_mutex); 1842 } 1843 1844 /* 1845 * This creates a new process as a copy of the old one, 1846 * but does not actually start it yet. 1847 * 1848 * It copies the registers, and all the appropriate 1849 * parts of the process environment (as per the clone 1850 * flags). The actual kick-off is left to the caller. 1851 */ 1852 static __latent_entropy struct task_struct *copy_process( 1853 struct pid *pid, 1854 int trace, 1855 int node, 1856 struct kernel_clone_args *args) 1857 { 1858 int pidfd = -1, retval; 1859 struct task_struct *p; 1860 struct multiprocess_signals delayed; 1861 struct file *pidfile = NULL; 1862 u64 clone_flags = args->flags; 1863 struct nsproxy *nsp = current->nsproxy; 1864 1865 /* 1866 * Don't allow sharing the root directory with processes in a different 1867 * namespace 1868 */ 1869 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1870 return ERR_PTR(-EINVAL); 1871 1872 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1873 return ERR_PTR(-EINVAL); 1874 1875 /* 1876 * Thread groups must share signals as well, and detached threads 1877 * can only be started up within the thread group. 1878 */ 1879 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1880 return ERR_PTR(-EINVAL); 1881 1882 /* 1883 * Shared signal handlers imply shared VM. By way of the above, 1884 * thread groups also imply shared VM. Blocking this case allows 1885 * for various simplifications in other code. 1886 */ 1887 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1888 return ERR_PTR(-EINVAL); 1889 1890 /* 1891 * Siblings of global init remain as zombies on exit since they are 1892 * not reaped by their parent (swapper). To solve this and to avoid 1893 * multi-rooted process trees, prevent global and container-inits 1894 * from creating siblings. 1895 */ 1896 if ((clone_flags & CLONE_PARENT) && 1897 current->signal->flags & SIGNAL_UNKILLABLE) 1898 return ERR_PTR(-EINVAL); 1899 1900 /* 1901 * If the new process will be in a different pid or user namespace 1902 * do not allow it to share a thread group with the forking task. 1903 */ 1904 if (clone_flags & CLONE_THREAD) { 1905 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1906 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1907 return ERR_PTR(-EINVAL); 1908 } 1909 1910 /* 1911 * If the new process will be in a different time namespace 1912 * do not allow it to share VM or a thread group with the forking task. 1913 */ 1914 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1915 if (nsp->time_ns != nsp->time_ns_for_children) 1916 return ERR_PTR(-EINVAL); 1917 } 1918 1919 if (clone_flags & CLONE_PIDFD) { 1920 /* 1921 * - CLONE_DETACHED is blocked so that we can potentially 1922 * reuse it later for CLONE_PIDFD. 1923 * - CLONE_THREAD is blocked until someone really needs it. 1924 */ 1925 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1926 return ERR_PTR(-EINVAL); 1927 } 1928 1929 /* 1930 * Force any signals received before this point to be delivered 1931 * before the fork happens. Collect up signals sent to multiple 1932 * processes that happen during the fork and delay them so that 1933 * they appear to happen after the fork. 1934 */ 1935 sigemptyset(&delayed.signal); 1936 INIT_HLIST_NODE(&delayed.node); 1937 1938 spin_lock_irq(¤t->sighand->siglock); 1939 if (!(clone_flags & CLONE_THREAD)) 1940 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1941 recalc_sigpending(); 1942 spin_unlock_irq(¤t->sighand->siglock); 1943 retval = -ERESTARTNOINTR; 1944 if (signal_pending(current)) 1945 goto fork_out; 1946 1947 retval = -ENOMEM; 1948 p = dup_task_struct(current, node); 1949 if (!p) 1950 goto fork_out; 1951 if (args->io_thread) { 1952 /* 1953 * Mark us an IO worker, and block any signal that isn't 1954 * fatal or STOP 1955 */ 1956 p->flags |= PF_IO_WORKER; 1957 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1958 } 1959 1960 /* 1961 * This _must_ happen before we call free_task(), i.e. before we jump 1962 * to any of the bad_fork_* labels. This is to avoid freeing 1963 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1964 * kernel threads (PF_KTHREAD). 1965 */ 1966 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1967 /* 1968 * Clear TID on mm_release()? 1969 */ 1970 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1971 1972 ftrace_graph_init_task(p); 1973 1974 rt_mutex_init_task(p); 1975 1976 lockdep_assert_irqs_enabled(); 1977 #ifdef CONFIG_PROVE_LOCKING 1978 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1979 #endif 1980 retval = -EAGAIN; 1981 if (atomic_read(&p->real_cred->user->processes) >= 1982 task_rlimit(p, RLIMIT_NPROC)) { 1983 if (p->real_cred->user != INIT_USER && 1984 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1985 goto bad_fork_free; 1986 } 1987 current->flags &= ~PF_NPROC_EXCEEDED; 1988 1989 retval = copy_creds(p, clone_flags); 1990 if (retval < 0) 1991 goto bad_fork_free; 1992 1993 /* 1994 * If multiple threads are within copy_process(), then this check 1995 * triggers too late. This doesn't hurt, the check is only there 1996 * to stop root fork bombs. 1997 */ 1998 retval = -EAGAIN; 1999 if (data_race(nr_threads >= max_threads)) 2000 goto bad_fork_cleanup_count; 2001 2002 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2003 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 2004 p->flags |= PF_FORKNOEXEC; 2005 INIT_LIST_HEAD(&p->children); 2006 INIT_LIST_HEAD(&p->sibling); 2007 rcu_copy_process(p); 2008 p->vfork_done = NULL; 2009 spin_lock_init(&p->alloc_lock); 2010 2011 init_sigpending(&p->pending); 2012 2013 p->utime = p->stime = p->gtime = 0; 2014 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2015 p->utimescaled = p->stimescaled = 0; 2016 #endif 2017 prev_cputime_init(&p->prev_cputime); 2018 2019 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2020 seqcount_init(&p->vtime.seqcount); 2021 p->vtime.starttime = 0; 2022 p->vtime.state = VTIME_INACTIVE; 2023 #endif 2024 2025 #ifdef CONFIG_IO_URING 2026 p->io_uring = NULL; 2027 #endif 2028 2029 #if defined(SPLIT_RSS_COUNTING) 2030 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2031 #endif 2032 2033 p->default_timer_slack_ns = current->timer_slack_ns; 2034 2035 #ifdef CONFIG_PSI 2036 p->psi_flags = 0; 2037 #endif 2038 2039 task_io_accounting_init(&p->ioac); 2040 acct_clear_integrals(p); 2041 2042 posix_cputimers_init(&p->posix_cputimers); 2043 2044 p->io_context = NULL; 2045 audit_set_context(p, NULL); 2046 cgroup_fork(p); 2047 #ifdef CONFIG_NUMA 2048 p->mempolicy = mpol_dup(p->mempolicy); 2049 if (IS_ERR(p->mempolicy)) { 2050 retval = PTR_ERR(p->mempolicy); 2051 p->mempolicy = NULL; 2052 goto bad_fork_cleanup_threadgroup_lock; 2053 } 2054 #endif 2055 #ifdef CONFIG_CPUSETS 2056 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2057 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2058 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2059 #endif 2060 #ifdef CONFIG_TRACE_IRQFLAGS 2061 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2062 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2063 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2064 p->softirqs_enabled = 1; 2065 p->softirq_context = 0; 2066 #endif 2067 2068 p->pagefault_disabled = 0; 2069 2070 #ifdef CONFIG_LOCKDEP 2071 lockdep_init_task(p); 2072 #endif 2073 2074 #ifdef CONFIG_DEBUG_MUTEXES 2075 p->blocked_on = NULL; /* not blocked yet */ 2076 #endif 2077 #ifdef CONFIG_BCACHE 2078 p->sequential_io = 0; 2079 p->sequential_io_avg = 0; 2080 #endif 2081 2082 /* Perform scheduler related setup. Assign this task to a CPU. */ 2083 retval = sched_fork(clone_flags, p); 2084 if (retval) 2085 goto bad_fork_cleanup_policy; 2086 2087 retval = perf_event_init_task(p); 2088 if (retval) 2089 goto bad_fork_cleanup_policy; 2090 retval = audit_alloc(p); 2091 if (retval) 2092 goto bad_fork_cleanup_perf; 2093 /* copy all the process information */ 2094 shm_init_task(p); 2095 retval = security_task_alloc(p, clone_flags); 2096 if (retval) 2097 goto bad_fork_cleanup_audit; 2098 retval = copy_semundo(clone_flags, p); 2099 if (retval) 2100 goto bad_fork_cleanup_security; 2101 retval = copy_files(clone_flags, p); 2102 if (retval) 2103 goto bad_fork_cleanup_semundo; 2104 retval = copy_fs(clone_flags, p); 2105 if (retval) 2106 goto bad_fork_cleanup_files; 2107 retval = copy_sighand(clone_flags, p); 2108 if (retval) 2109 goto bad_fork_cleanup_fs; 2110 retval = copy_signal(clone_flags, p); 2111 if (retval) 2112 goto bad_fork_cleanup_sighand; 2113 retval = copy_mm(clone_flags, p); 2114 if (retval) 2115 goto bad_fork_cleanup_signal; 2116 retval = copy_namespaces(clone_flags, p); 2117 if (retval) 2118 goto bad_fork_cleanup_mm; 2119 retval = copy_io(clone_flags, p); 2120 if (retval) 2121 goto bad_fork_cleanup_namespaces; 2122 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2123 if (retval) 2124 goto bad_fork_cleanup_io; 2125 2126 stackleak_task_init(p); 2127 2128 if (pid != &init_struct_pid) { 2129 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2130 args->set_tid_size); 2131 if (IS_ERR(pid)) { 2132 retval = PTR_ERR(pid); 2133 goto bad_fork_cleanup_thread; 2134 } 2135 } 2136 2137 /* 2138 * This has to happen after we've potentially unshared the file 2139 * descriptor table (so that the pidfd doesn't leak into the child 2140 * if the fd table isn't shared). 2141 */ 2142 if (clone_flags & CLONE_PIDFD) { 2143 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2144 if (retval < 0) 2145 goto bad_fork_free_pid; 2146 2147 pidfd = retval; 2148 2149 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2150 O_RDWR | O_CLOEXEC); 2151 if (IS_ERR(pidfile)) { 2152 put_unused_fd(pidfd); 2153 retval = PTR_ERR(pidfile); 2154 goto bad_fork_free_pid; 2155 } 2156 get_pid(pid); /* held by pidfile now */ 2157 2158 retval = put_user(pidfd, args->pidfd); 2159 if (retval) 2160 goto bad_fork_put_pidfd; 2161 } 2162 2163 #ifdef CONFIG_BLOCK 2164 p->plug = NULL; 2165 #endif 2166 futex_init_task(p); 2167 2168 /* 2169 * sigaltstack should be cleared when sharing the same VM 2170 */ 2171 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2172 sas_ss_reset(p); 2173 2174 /* 2175 * Syscall tracing and stepping should be turned off in the 2176 * child regardless of CLONE_PTRACE. 2177 */ 2178 user_disable_single_step(p); 2179 clear_task_syscall_work(p, SYSCALL_TRACE); 2180 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2181 clear_task_syscall_work(p, SYSCALL_EMU); 2182 #endif 2183 clear_tsk_latency_tracing(p); 2184 2185 /* ok, now we should be set up.. */ 2186 p->pid = pid_nr(pid); 2187 if (clone_flags & CLONE_THREAD) { 2188 p->group_leader = current->group_leader; 2189 p->tgid = current->tgid; 2190 } else { 2191 p->group_leader = p; 2192 p->tgid = p->pid; 2193 } 2194 2195 p->nr_dirtied = 0; 2196 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2197 p->dirty_paused_when = 0; 2198 2199 p->pdeath_signal = 0; 2200 INIT_LIST_HEAD(&p->thread_group); 2201 p->task_works = NULL; 2202 2203 #ifdef CONFIG_KRETPROBES 2204 p->kretprobe_instances.first = NULL; 2205 #endif 2206 2207 /* 2208 * Ensure that the cgroup subsystem policies allow the new process to be 2209 * forked. It should be noted that the new process's css_set can be changed 2210 * between here and cgroup_post_fork() if an organisation operation is in 2211 * progress. 2212 */ 2213 retval = cgroup_can_fork(p, args); 2214 if (retval) 2215 goto bad_fork_put_pidfd; 2216 2217 /* 2218 * From this point on we must avoid any synchronous user-space 2219 * communication until we take the tasklist-lock. In particular, we do 2220 * not want user-space to be able to predict the process start-time by 2221 * stalling fork(2) after we recorded the start_time but before it is 2222 * visible to the system. 2223 */ 2224 2225 p->start_time = ktime_get_ns(); 2226 p->start_boottime = ktime_get_boottime_ns(); 2227 2228 /* 2229 * Make it visible to the rest of the system, but dont wake it up yet. 2230 * Need tasklist lock for parent etc handling! 2231 */ 2232 write_lock_irq(&tasklist_lock); 2233 2234 /* CLONE_PARENT re-uses the old parent */ 2235 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2236 p->real_parent = current->real_parent; 2237 p->parent_exec_id = current->parent_exec_id; 2238 if (clone_flags & CLONE_THREAD) 2239 p->exit_signal = -1; 2240 else 2241 p->exit_signal = current->group_leader->exit_signal; 2242 } else { 2243 p->real_parent = current; 2244 p->parent_exec_id = current->self_exec_id; 2245 p->exit_signal = args->exit_signal; 2246 } 2247 2248 klp_copy_process(p); 2249 2250 spin_lock(¤t->sighand->siglock); 2251 2252 /* 2253 * Copy seccomp details explicitly here, in case they were changed 2254 * before holding sighand lock. 2255 */ 2256 copy_seccomp(p); 2257 2258 rseq_fork(p, clone_flags); 2259 2260 /* Don't start children in a dying pid namespace */ 2261 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2262 retval = -ENOMEM; 2263 goto bad_fork_cancel_cgroup; 2264 } 2265 2266 /* Let kill terminate clone/fork in the middle */ 2267 if (fatal_signal_pending(current)) { 2268 retval = -EINTR; 2269 goto bad_fork_cancel_cgroup; 2270 } 2271 2272 /* past the last point of failure */ 2273 if (pidfile) 2274 fd_install(pidfd, pidfile); 2275 2276 init_task_pid_links(p); 2277 if (likely(p->pid)) { 2278 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2279 2280 init_task_pid(p, PIDTYPE_PID, pid); 2281 if (thread_group_leader(p)) { 2282 init_task_pid(p, PIDTYPE_TGID, pid); 2283 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2284 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2285 2286 if (is_child_reaper(pid)) { 2287 ns_of_pid(pid)->child_reaper = p; 2288 p->signal->flags |= SIGNAL_UNKILLABLE; 2289 } 2290 p->signal->shared_pending.signal = delayed.signal; 2291 p->signal->tty = tty_kref_get(current->signal->tty); 2292 /* 2293 * Inherit has_child_subreaper flag under the same 2294 * tasklist_lock with adding child to the process tree 2295 * for propagate_has_child_subreaper optimization. 2296 */ 2297 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2298 p->real_parent->signal->is_child_subreaper; 2299 list_add_tail(&p->sibling, &p->real_parent->children); 2300 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2301 attach_pid(p, PIDTYPE_TGID); 2302 attach_pid(p, PIDTYPE_PGID); 2303 attach_pid(p, PIDTYPE_SID); 2304 __this_cpu_inc(process_counts); 2305 } else { 2306 current->signal->nr_threads++; 2307 atomic_inc(¤t->signal->live); 2308 refcount_inc(¤t->signal->sigcnt); 2309 task_join_group_stop(p); 2310 list_add_tail_rcu(&p->thread_group, 2311 &p->group_leader->thread_group); 2312 list_add_tail_rcu(&p->thread_node, 2313 &p->signal->thread_head); 2314 } 2315 attach_pid(p, PIDTYPE_PID); 2316 nr_threads++; 2317 } 2318 total_forks++; 2319 hlist_del_init(&delayed.node); 2320 spin_unlock(¤t->sighand->siglock); 2321 syscall_tracepoint_update(p); 2322 write_unlock_irq(&tasklist_lock); 2323 2324 proc_fork_connector(p); 2325 sched_post_fork(p); 2326 cgroup_post_fork(p, args); 2327 perf_event_fork(p); 2328 2329 trace_task_newtask(p, clone_flags); 2330 uprobe_copy_process(p, clone_flags); 2331 2332 copy_oom_score_adj(clone_flags, p); 2333 2334 return p; 2335 2336 bad_fork_cancel_cgroup: 2337 spin_unlock(¤t->sighand->siglock); 2338 write_unlock_irq(&tasklist_lock); 2339 cgroup_cancel_fork(p, args); 2340 bad_fork_put_pidfd: 2341 if (clone_flags & CLONE_PIDFD) { 2342 fput(pidfile); 2343 put_unused_fd(pidfd); 2344 } 2345 bad_fork_free_pid: 2346 if (pid != &init_struct_pid) 2347 free_pid(pid); 2348 bad_fork_cleanup_thread: 2349 exit_thread(p); 2350 bad_fork_cleanup_io: 2351 if (p->io_context) 2352 exit_io_context(p); 2353 bad_fork_cleanup_namespaces: 2354 exit_task_namespaces(p); 2355 bad_fork_cleanup_mm: 2356 if (p->mm) { 2357 mm_clear_owner(p->mm, p); 2358 mmput(p->mm); 2359 } 2360 bad_fork_cleanup_signal: 2361 if (!(clone_flags & CLONE_THREAD)) 2362 free_signal_struct(p->signal); 2363 bad_fork_cleanup_sighand: 2364 __cleanup_sighand(p->sighand); 2365 bad_fork_cleanup_fs: 2366 exit_fs(p); /* blocking */ 2367 bad_fork_cleanup_files: 2368 exit_files(p); /* blocking */ 2369 bad_fork_cleanup_semundo: 2370 exit_sem(p); 2371 bad_fork_cleanup_security: 2372 security_task_free(p); 2373 bad_fork_cleanup_audit: 2374 audit_free(p); 2375 bad_fork_cleanup_perf: 2376 perf_event_free_task(p); 2377 bad_fork_cleanup_policy: 2378 lockdep_free_task(p); 2379 #ifdef CONFIG_NUMA 2380 mpol_put(p->mempolicy); 2381 bad_fork_cleanup_threadgroup_lock: 2382 #endif 2383 delayacct_tsk_free(p); 2384 bad_fork_cleanup_count: 2385 atomic_dec(&p->cred->user->processes); 2386 exit_creds(p); 2387 bad_fork_free: 2388 p->state = TASK_DEAD; 2389 put_task_stack(p); 2390 delayed_free_task(p); 2391 fork_out: 2392 spin_lock_irq(¤t->sighand->siglock); 2393 hlist_del_init(&delayed.node); 2394 spin_unlock_irq(¤t->sighand->siglock); 2395 return ERR_PTR(retval); 2396 } 2397 2398 static inline void init_idle_pids(struct task_struct *idle) 2399 { 2400 enum pid_type type; 2401 2402 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2403 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2404 init_task_pid(idle, type, &init_struct_pid); 2405 } 2406 } 2407 2408 struct task_struct *fork_idle(int cpu) 2409 { 2410 struct task_struct *task; 2411 struct kernel_clone_args args = { 2412 .flags = CLONE_VM, 2413 }; 2414 2415 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2416 if (!IS_ERR(task)) { 2417 init_idle_pids(task); 2418 init_idle(task, cpu); 2419 } 2420 2421 return task; 2422 } 2423 2424 struct mm_struct *copy_init_mm(void) 2425 { 2426 return dup_mm(NULL, &init_mm); 2427 } 2428 2429 /* 2430 * This is like kernel_clone(), but shaved down and tailored to just 2431 * creating io_uring workers. It returns a created task, or an error pointer. 2432 * The returned task is inactive, and the caller must fire it up through 2433 * wake_up_new_task(p). All signals are blocked in the created task. 2434 */ 2435 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2436 { 2437 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2438 CLONE_IO; 2439 struct kernel_clone_args args = { 2440 .flags = ((lower_32_bits(flags) | CLONE_VM | 2441 CLONE_UNTRACED) & ~CSIGNAL), 2442 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2443 .stack = (unsigned long)fn, 2444 .stack_size = (unsigned long)arg, 2445 .io_thread = 1, 2446 }; 2447 2448 return copy_process(NULL, 0, node, &args); 2449 } 2450 2451 /* 2452 * Ok, this is the main fork-routine. 2453 * 2454 * It copies the process, and if successful kick-starts 2455 * it and waits for it to finish using the VM if required. 2456 * 2457 * args->exit_signal is expected to be checked for sanity by the caller. 2458 */ 2459 pid_t kernel_clone(struct kernel_clone_args *args) 2460 { 2461 u64 clone_flags = args->flags; 2462 struct completion vfork; 2463 struct pid *pid; 2464 struct task_struct *p; 2465 int trace = 0; 2466 pid_t nr; 2467 2468 /* 2469 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2470 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2471 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2472 * field in struct clone_args and it still doesn't make sense to have 2473 * them both point at the same memory location. Performing this check 2474 * here has the advantage that we don't need to have a separate helper 2475 * to check for legacy clone(). 2476 */ 2477 if ((args->flags & CLONE_PIDFD) && 2478 (args->flags & CLONE_PARENT_SETTID) && 2479 (args->pidfd == args->parent_tid)) 2480 return -EINVAL; 2481 2482 /* 2483 * Determine whether and which event to report to ptracer. When 2484 * called from kernel_thread or CLONE_UNTRACED is explicitly 2485 * requested, no event is reported; otherwise, report if the event 2486 * for the type of forking is enabled. 2487 */ 2488 if (!(clone_flags & CLONE_UNTRACED)) { 2489 if (clone_flags & CLONE_VFORK) 2490 trace = PTRACE_EVENT_VFORK; 2491 else if (args->exit_signal != SIGCHLD) 2492 trace = PTRACE_EVENT_CLONE; 2493 else 2494 trace = PTRACE_EVENT_FORK; 2495 2496 if (likely(!ptrace_event_enabled(current, trace))) 2497 trace = 0; 2498 } 2499 2500 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2501 add_latent_entropy(); 2502 2503 if (IS_ERR(p)) 2504 return PTR_ERR(p); 2505 2506 /* 2507 * Do this prior waking up the new thread - the thread pointer 2508 * might get invalid after that point, if the thread exits quickly. 2509 */ 2510 trace_sched_process_fork(current, p); 2511 2512 pid = get_task_pid(p, PIDTYPE_PID); 2513 nr = pid_vnr(pid); 2514 2515 if (clone_flags & CLONE_PARENT_SETTID) 2516 put_user(nr, args->parent_tid); 2517 2518 if (clone_flags & CLONE_VFORK) { 2519 p->vfork_done = &vfork; 2520 init_completion(&vfork); 2521 get_task_struct(p); 2522 } 2523 2524 wake_up_new_task(p); 2525 2526 /* forking complete and child started to run, tell ptracer */ 2527 if (unlikely(trace)) 2528 ptrace_event_pid(trace, pid); 2529 2530 if (clone_flags & CLONE_VFORK) { 2531 if (!wait_for_vfork_done(p, &vfork)) 2532 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2533 } 2534 2535 put_pid(pid); 2536 return nr; 2537 } 2538 2539 /* 2540 * Create a kernel thread. 2541 */ 2542 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2543 { 2544 struct kernel_clone_args args = { 2545 .flags = ((lower_32_bits(flags) | CLONE_VM | 2546 CLONE_UNTRACED) & ~CSIGNAL), 2547 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2548 .stack = (unsigned long)fn, 2549 .stack_size = (unsigned long)arg, 2550 }; 2551 2552 return kernel_clone(&args); 2553 } 2554 2555 #ifdef __ARCH_WANT_SYS_FORK 2556 SYSCALL_DEFINE0(fork) 2557 { 2558 #ifdef CONFIG_MMU 2559 struct kernel_clone_args args = { 2560 .exit_signal = SIGCHLD, 2561 }; 2562 2563 return kernel_clone(&args); 2564 #else 2565 /* can not support in nommu mode */ 2566 return -EINVAL; 2567 #endif 2568 } 2569 #endif 2570 2571 #ifdef __ARCH_WANT_SYS_VFORK 2572 SYSCALL_DEFINE0(vfork) 2573 { 2574 struct kernel_clone_args args = { 2575 .flags = CLONE_VFORK | CLONE_VM, 2576 .exit_signal = SIGCHLD, 2577 }; 2578 2579 return kernel_clone(&args); 2580 } 2581 #endif 2582 2583 #ifdef __ARCH_WANT_SYS_CLONE 2584 #ifdef CONFIG_CLONE_BACKWARDS 2585 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2586 int __user *, parent_tidptr, 2587 unsigned long, tls, 2588 int __user *, child_tidptr) 2589 #elif defined(CONFIG_CLONE_BACKWARDS2) 2590 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2591 int __user *, parent_tidptr, 2592 int __user *, child_tidptr, 2593 unsigned long, tls) 2594 #elif defined(CONFIG_CLONE_BACKWARDS3) 2595 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2596 int, stack_size, 2597 int __user *, parent_tidptr, 2598 int __user *, child_tidptr, 2599 unsigned long, tls) 2600 #else 2601 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2602 int __user *, parent_tidptr, 2603 int __user *, child_tidptr, 2604 unsigned long, tls) 2605 #endif 2606 { 2607 struct kernel_clone_args args = { 2608 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2609 .pidfd = parent_tidptr, 2610 .child_tid = child_tidptr, 2611 .parent_tid = parent_tidptr, 2612 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2613 .stack = newsp, 2614 .tls = tls, 2615 }; 2616 2617 return kernel_clone(&args); 2618 } 2619 #endif 2620 2621 #ifdef __ARCH_WANT_SYS_CLONE3 2622 2623 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2624 struct clone_args __user *uargs, 2625 size_t usize) 2626 { 2627 int err; 2628 struct clone_args args; 2629 pid_t *kset_tid = kargs->set_tid; 2630 2631 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2632 CLONE_ARGS_SIZE_VER0); 2633 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2634 CLONE_ARGS_SIZE_VER1); 2635 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2636 CLONE_ARGS_SIZE_VER2); 2637 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2638 2639 if (unlikely(usize > PAGE_SIZE)) 2640 return -E2BIG; 2641 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2642 return -EINVAL; 2643 2644 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2645 if (err) 2646 return err; 2647 2648 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2649 return -EINVAL; 2650 2651 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2652 return -EINVAL; 2653 2654 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2655 return -EINVAL; 2656 2657 /* 2658 * Verify that higher 32bits of exit_signal are unset and that 2659 * it is a valid signal 2660 */ 2661 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2662 !valid_signal(args.exit_signal))) 2663 return -EINVAL; 2664 2665 if ((args.flags & CLONE_INTO_CGROUP) && 2666 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2667 return -EINVAL; 2668 2669 *kargs = (struct kernel_clone_args){ 2670 .flags = args.flags, 2671 .pidfd = u64_to_user_ptr(args.pidfd), 2672 .child_tid = u64_to_user_ptr(args.child_tid), 2673 .parent_tid = u64_to_user_ptr(args.parent_tid), 2674 .exit_signal = args.exit_signal, 2675 .stack = args.stack, 2676 .stack_size = args.stack_size, 2677 .tls = args.tls, 2678 .set_tid_size = args.set_tid_size, 2679 .cgroup = args.cgroup, 2680 }; 2681 2682 if (args.set_tid && 2683 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2684 (kargs->set_tid_size * sizeof(pid_t)))) 2685 return -EFAULT; 2686 2687 kargs->set_tid = kset_tid; 2688 2689 return 0; 2690 } 2691 2692 /** 2693 * clone3_stack_valid - check and prepare stack 2694 * @kargs: kernel clone args 2695 * 2696 * Verify that the stack arguments userspace gave us are sane. 2697 * In addition, set the stack direction for userspace since it's easy for us to 2698 * determine. 2699 */ 2700 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2701 { 2702 if (kargs->stack == 0) { 2703 if (kargs->stack_size > 0) 2704 return false; 2705 } else { 2706 if (kargs->stack_size == 0) 2707 return false; 2708 2709 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2710 return false; 2711 2712 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2713 kargs->stack += kargs->stack_size; 2714 #endif 2715 } 2716 2717 return true; 2718 } 2719 2720 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2721 { 2722 /* Verify that no unknown flags are passed along. */ 2723 if (kargs->flags & 2724 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2725 return false; 2726 2727 /* 2728 * - make the CLONE_DETACHED bit reuseable for clone3 2729 * - make the CSIGNAL bits reuseable for clone3 2730 */ 2731 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2732 return false; 2733 2734 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2735 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2736 return false; 2737 2738 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2739 kargs->exit_signal) 2740 return false; 2741 2742 if (!clone3_stack_valid(kargs)) 2743 return false; 2744 2745 return true; 2746 } 2747 2748 /** 2749 * clone3 - create a new process with specific properties 2750 * @uargs: argument structure 2751 * @size: size of @uargs 2752 * 2753 * clone3() is the extensible successor to clone()/clone2(). 2754 * It takes a struct as argument that is versioned by its size. 2755 * 2756 * Return: On success, a positive PID for the child process. 2757 * On error, a negative errno number. 2758 */ 2759 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2760 { 2761 int err; 2762 2763 struct kernel_clone_args kargs; 2764 pid_t set_tid[MAX_PID_NS_LEVEL]; 2765 2766 kargs.set_tid = set_tid; 2767 2768 err = copy_clone_args_from_user(&kargs, uargs, size); 2769 if (err) 2770 return err; 2771 2772 if (!clone3_args_valid(&kargs)) 2773 return -EINVAL; 2774 2775 return kernel_clone(&kargs); 2776 } 2777 #endif 2778 2779 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2780 { 2781 struct task_struct *leader, *parent, *child; 2782 int res; 2783 2784 read_lock(&tasklist_lock); 2785 leader = top = top->group_leader; 2786 down: 2787 for_each_thread(leader, parent) { 2788 list_for_each_entry(child, &parent->children, sibling) { 2789 res = visitor(child, data); 2790 if (res) { 2791 if (res < 0) 2792 goto out; 2793 leader = child; 2794 goto down; 2795 } 2796 up: 2797 ; 2798 } 2799 } 2800 2801 if (leader != top) { 2802 child = leader; 2803 parent = child->real_parent; 2804 leader = parent->group_leader; 2805 goto up; 2806 } 2807 out: 2808 read_unlock(&tasklist_lock); 2809 } 2810 2811 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2812 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2813 #endif 2814 2815 static void sighand_ctor(void *data) 2816 { 2817 struct sighand_struct *sighand = data; 2818 2819 spin_lock_init(&sighand->siglock); 2820 init_waitqueue_head(&sighand->signalfd_wqh); 2821 } 2822 2823 void __init proc_caches_init(void) 2824 { 2825 unsigned int mm_size; 2826 2827 sighand_cachep = kmem_cache_create("sighand_cache", 2828 sizeof(struct sighand_struct), 0, 2829 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2830 SLAB_ACCOUNT, sighand_ctor); 2831 signal_cachep = kmem_cache_create("signal_cache", 2832 sizeof(struct signal_struct), 0, 2833 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2834 NULL); 2835 files_cachep = kmem_cache_create("files_cache", 2836 sizeof(struct files_struct), 0, 2837 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2838 NULL); 2839 fs_cachep = kmem_cache_create("fs_cache", 2840 sizeof(struct fs_struct), 0, 2841 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2842 NULL); 2843 2844 /* 2845 * The mm_cpumask is located at the end of mm_struct, and is 2846 * dynamically sized based on the maximum CPU number this system 2847 * can have, taking hotplug into account (nr_cpu_ids). 2848 */ 2849 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2850 2851 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2852 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2853 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2854 offsetof(struct mm_struct, saved_auxv), 2855 sizeof_field(struct mm_struct, saved_auxv), 2856 NULL); 2857 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2858 mmap_init(); 2859 nsproxy_cache_init(); 2860 } 2861 2862 /* 2863 * Check constraints on flags passed to the unshare system call. 2864 */ 2865 static int check_unshare_flags(unsigned long unshare_flags) 2866 { 2867 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2868 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2869 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2870 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2871 CLONE_NEWTIME)) 2872 return -EINVAL; 2873 /* 2874 * Not implemented, but pretend it works if there is nothing 2875 * to unshare. Note that unsharing the address space or the 2876 * signal handlers also need to unshare the signal queues (aka 2877 * CLONE_THREAD). 2878 */ 2879 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2880 if (!thread_group_empty(current)) 2881 return -EINVAL; 2882 } 2883 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2884 if (refcount_read(¤t->sighand->count) > 1) 2885 return -EINVAL; 2886 } 2887 if (unshare_flags & CLONE_VM) { 2888 if (!current_is_single_threaded()) 2889 return -EINVAL; 2890 } 2891 2892 return 0; 2893 } 2894 2895 /* 2896 * Unshare the filesystem structure if it is being shared 2897 */ 2898 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2899 { 2900 struct fs_struct *fs = current->fs; 2901 2902 if (!(unshare_flags & CLONE_FS) || !fs) 2903 return 0; 2904 2905 /* don't need lock here; in the worst case we'll do useless copy */ 2906 if (fs->users == 1) 2907 return 0; 2908 2909 *new_fsp = copy_fs_struct(fs); 2910 if (!*new_fsp) 2911 return -ENOMEM; 2912 2913 return 0; 2914 } 2915 2916 /* 2917 * Unshare file descriptor table if it is being shared 2918 */ 2919 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2920 struct files_struct **new_fdp) 2921 { 2922 struct files_struct *fd = current->files; 2923 int error = 0; 2924 2925 if ((unshare_flags & CLONE_FILES) && 2926 (fd && atomic_read(&fd->count) > 1)) { 2927 *new_fdp = dup_fd(fd, max_fds, &error); 2928 if (!*new_fdp) 2929 return error; 2930 } 2931 2932 return 0; 2933 } 2934 2935 /* 2936 * unshare allows a process to 'unshare' part of the process 2937 * context which was originally shared using clone. copy_* 2938 * functions used by kernel_clone() cannot be used here directly 2939 * because they modify an inactive task_struct that is being 2940 * constructed. Here we are modifying the current, active, 2941 * task_struct. 2942 */ 2943 int ksys_unshare(unsigned long unshare_flags) 2944 { 2945 struct fs_struct *fs, *new_fs = NULL; 2946 struct files_struct *fd, *new_fd = NULL; 2947 struct cred *new_cred = NULL; 2948 struct nsproxy *new_nsproxy = NULL; 2949 int do_sysvsem = 0; 2950 int err; 2951 2952 /* 2953 * If unsharing a user namespace must also unshare the thread group 2954 * and unshare the filesystem root and working directories. 2955 */ 2956 if (unshare_flags & CLONE_NEWUSER) 2957 unshare_flags |= CLONE_THREAD | CLONE_FS; 2958 /* 2959 * If unsharing vm, must also unshare signal handlers. 2960 */ 2961 if (unshare_flags & CLONE_VM) 2962 unshare_flags |= CLONE_SIGHAND; 2963 /* 2964 * If unsharing a signal handlers, must also unshare the signal queues. 2965 */ 2966 if (unshare_flags & CLONE_SIGHAND) 2967 unshare_flags |= CLONE_THREAD; 2968 /* 2969 * If unsharing namespace, must also unshare filesystem information. 2970 */ 2971 if (unshare_flags & CLONE_NEWNS) 2972 unshare_flags |= CLONE_FS; 2973 2974 err = check_unshare_flags(unshare_flags); 2975 if (err) 2976 goto bad_unshare_out; 2977 /* 2978 * CLONE_NEWIPC must also detach from the undolist: after switching 2979 * to a new ipc namespace, the semaphore arrays from the old 2980 * namespace are unreachable. 2981 */ 2982 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2983 do_sysvsem = 1; 2984 err = unshare_fs(unshare_flags, &new_fs); 2985 if (err) 2986 goto bad_unshare_out; 2987 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2988 if (err) 2989 goto bad_unshare_cleanup_fs; 2990 err = unshare_userns(unshare_flags, &new_cred); 2991 if (err) 2992 goto bad_unshare_cleanup_fd; 2993 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2994 new_cred, new_fs); 2995 if (err) 2996 goto bad_unshare_cleanup_cred; 2997 2998 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2999 if (do_sysvsem) { 3000 /* 3001 * CLONE_SYSVSEM is equivalent to sys_exit(). 3002 */ 3003 exit_sem(current); 3004 } 3005 if (unshare_flags & CLONE_NEWIPC) { 3006 /* Orphan segments in old ns (see sem above). */ 3007 exit_shm(current); 3008 shm_init_task(current); 3009 } 3010 3011 if (new_nsproxy) 3012 switch_task_namespaces(current, new_nsproxy); 3013 3014 task_lock(current); 3015 3016 if (new_fs) { 3017 fs = current->fs; 3018 spin_lock(&fs->lock); 3019 current->fs = new_fs; 3020 if (--fs->users) 3021 new_fs = NULL; 3022 else 3023 new_fs = fs; 3024 spin_unlock(&fs->lock); 3025 } 3026 3027 if (new_fd) { 3028 fd = current->files; 3029 current->files = new_fd; 3030 new_fd = fd; 3031 } 3032 3033 task_unlock(current); 3034 3035 if (new_cred) { 3036 /* Install the new user namespace */ 3037 commit_creds(new_cred); 3038 new_cred = NULL; 3039 } 3040 } 3041 3042 perf_event_namespaces(current); 3043 3044 bad_unshare_cleanup_cred: 3045 if (new_cred) 3046 put_cred(new_cred); 3047 bad_unshare_cleanup_fd: 3048 if (new_fd) 3049 put_files_struct(new_fd); 3050 3051 bad_unshare_cleanup_fs: 3052 if (new_fs) 3053 free_fs_struct(new_fs); 3054 3055 bad_unshare_out: 3056 return err; 3057 } 3058 3059 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3060 { 3061 return ksys_unshare(unshare_flags); 3062 } 3063 3064 /* 3065 * Helper to unshare the files of the current task. 3066 * We don't want to expose copy_files internals to 3067 * the exec layer of the kernel. 3068 */ 3069 3070 int unshare_files(void) 3071 { 3072 struct task_struct *task = current; 3073 struct files_struct *old, *copy = NULL; 3074 int error; 3075 3076 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3077 if (error || !copy) 3078 return error; 3079 3080 old = task->files; 3081 task_lock(task); 3082 task->files = copy; 3083 task_unlock(task); 3084 put_files_struct(old); 3085 return 0; 3086 } 3087 3088 int sysctl_max_threads(struct ctl_table *table, int write, 3089 void *buffer, size_t *lenp, loff_t *ppos) 3090 { 3091 struct ctl_table t; 3092 int ret; 3093 int threads = max_threads; 3094 int min = 1; 3095 int max = MAX_THREADS; 3096 3097 t = *table; 3098 t.data = &threads; 3099 t.extra1 = &min; 3100 t.extra2 = &max; 3101 3102 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3103 if (ret || !write) 3104 return ret; 3105 3106 max_threads = threads; 3107 3108 return 0; 3109 } 3110