1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/sched/autogroup.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/coredump.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/numa_balancing.h> 20 #include <linux/sched/stat.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/task_stack.h> 23 #include <linux/sched/cputime.h> 24 #include <linux/rtmutex.h> 25 #include <linux/init.h> 26 #include <linux/unistd.h> 27 #include <linux/module.h> 28 #include <linux/vmalloc.h> 29 #include <linux/completion.h> 30 #include <linux/personality.h> 31 #include <linux/mempolicy.h> 32 #include <linux/sem.h> 33 #include <linux/file.h> 34 #include <linux/fdtable.h> 35 #include <linux/iocontext.h> 36 #include <linux/key.h> 37 #include <linux/binfmts.h> 38 #include <linux/mman.h> 39 #include <linux/mmu_notifier.h> 40 #include <linux/hmm.h> 41 #include <linux/fs.h> 42 #include <linux/mm.h> 43 #include <linux/vmacache.h> 44 #include <linux/nsproxy.h> 45 #include <linux/capability.h> 46 #include <linux/cpu.h> 47 #include <linux/cgroup.h> 48 #include <linux/security.h> 49 #include <linux/hugetlb.h> 50 #include <linux/seccomp.h> 51 #include <linux/swap.h> 52 #include <linux/syscalls.h> 53 #include <linux/jiffies.h> 54 #include <linux/futex.h> 55 #include <linux/compat.h> 56 #include <linux/kthread.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/rcupdate.h> 59 #include <linux/ptrace.h> 60 #include <linux/mount.h> 61 #include <linux/audit.h> 62 #include <linux/memcontrol.h> 63 #include <linux/ftrace.h> 64 #include <linux/proc_fs.h> 65 #include <linux/profile.h> 66 #include <linux/rmap.h> 67 #include <linux/ksm.h> 68 #include <linux/acct.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/tsacct_kern.h> 71 #include <linux/cn_proc.h> 72 #include <linux/freezer.h> 73 #include <linux/delayacct.h> 74 #include <linux/taskstats_kern.h> 75 #include <linux/random.h> 76 #include <linux/tty.h> 77 #include <linux/blkdev.h> 78 #include <linux/fs_struct.h> 79 #include <linux/magic.h> 80 #include <linux/sched/mm.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 95 #include <asm/pgtable.h> 96 #include <asm/pgalloc.h> 97 #include <linux/uaccess.h> 98 #include <asm/mmu_context.h> 99 #include <asm/cacheflush.h> 100 #include <asm/tlbflush.h> 101 102 #include <trace/events/sched.h> 103 104 #define CREATE_TRACE_POINTS 105 #include <trace/events/task.h> 106 107 /* 108 * Minimum number of threads to boot the kernel 109 */ 110 #define MIN_THREADS 20 111 112 /* 113 * Maximum number of threads 114 */ 115 #define MAX_THREADS FUTEX_TID_MASK 116 117 /* 118 * Protected counters by write_lock_irq(&tasklist_lock) 119 */ 120 unsigned long total_forks; /* Handle normal Linux uptimes. */ 121 int nr_threads; /* The idle threads do not count.. */ 122 123 int max_threads; /* tunable limit on nr_threads */ 124 125 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 126 127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 128 129 #ifdef CONFIG_PROVE_RCU 130 int lockdep_tasklist_lock_is_held(void) 131 { 132 return lockdep_is_held(&tasklist_lock); 133 } 134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 135 #endif /* #ifdef CONFIG_PROVE_RCU */ 136 137 int nr_processes(void) 138 { 139 int cpu; 140 int total = 0; 141 142 for_each_possible_cpu(cpu) 143 total += per_cpu(process_counts, cpu); 144 145 return total; 146 } 147 148 void __weak arch_release_task_struct(struct task_struct *tsk) 149 { 150 } 151 152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 153 static struct kmem_cache *task_struct_cachep; 154 155 static inline struct task_struct *alloc_task_struct_node(int node) 156 { 157 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 158 } 159 160 static inline void free_task_struct(struct task_struct *tsk) 161 { 162 kmem_cache_free(task_struct_cachep, tsk); 163 } 164 #endif 165 166 void __weak arch_release_thread_stack(unsigned long *stack) 167 { 168 } 169 170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 171 172 /* 173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 174 * kmemcache based allocator. 175 */ 176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 177 178 #ifdef CONFIG_VMAP_STACK 179 /* 180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 181 * flush. Try to minimize the number of calls by caching stacks. 182 */ 183 #define NR_CACHED_STACKS 2 184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 185 186 static int free_vm_stack_cache(unsigned int cpu) 187 { 188 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 189 int i; 190 191 for (i = 0; i < NR_CACHED_STACKS; i++) { 192 struct vm_struct *vm_stack = cached_vm_stacks[i]; 193 194 if (!vm_stack) 195 continue; 196 197 vfree(vm_stack->addr); 198 cached_vm_stacks[i] = NULL; 199 } 200 201 return 0; 202 } 203 #endif 204 205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 206 { 207 #ifdef CONFIG_VMAP_STACK 208 void *stack; 209 int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *s; 213 214 s = this_cpu_xchg(cached_stacks[i], NULL); 215 216 if (!s) 217 continue; 218 219 /* Clear stale pointers from reused stack. */ 220 memset(s->addr, 0, THREAD_SIZE); 221 222 tsk->stack_vm_area = s; 223 return s->addr; 224 } 225 226 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 227 VMALLOC_START, VMALLOC_END, 228 THREADINFO_GFP, 229 PAGE_KERNEL, 230 0, node, __builtin_return_address(0)); 231 232 /* 233 * We can't call find_vm_area() in interrupt context, and 234 * free_thread_stack() can be called in interrupt context, 235 * so cache the vm_struct. 236 */ 237 if (stack) 238 tsk->stack_vm_area = find_vm_area(stack); 239 return stack; 240 #else 241 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 242 THREAD_SIZE_ORDER); 243 244 return page ? page_address(page) : NULL; 245 #endif 246 } 247 248 static inline void free_thread_stack(struct task_struct *tsk) 249 { 250 #ifdef CONFIG_VMAP_STACK 251 if (task_stack_vm_area(tsk)) { 252 int i; 253 254 for (i = 0; i < NR_CACHED_STACKS; i++) { 255 if (this_cpu_cmpxchg(cached_stacks[i], 256 NULL, tsk->stack_vm_area) != NULL) 257 continue; 258 259 return; 260 } 261 262 vfree_atomic(tsk->stack); 263 return; 264 } 265 #endif 266 267 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 268 } 269 # else 270 static struct kmem_cache *thread_stack_cache; 271 272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 273 int node) 274 { 275 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 276 } 277 278 static void free_thread_stack(struct task_struct *tsk) 279 { 280 kmem_cache_free(thread_stack_cache, tsk->stack); 281 } 282 283 void thread_stack_cache_init(void) 284 { 285 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 286 THREAD_SIZE, THREAD_SIZE, 0, 0, 287 THREAD_SIZE, NULL); 288 BUG_ON(thread_stack_cache == NULL); 289 } 290 # endif 291 #endif 292 293 /* SLAB cache for signal_struct structures (tsk->signal) */ 294 static struct kmem_cache *signal_cachep; 295 296 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 297 struct kmem_cache *sighand_cachep; 298 299 /* SLAB cache for files_struct structures (tsk->files) */ 300 struct kmem_cache *files_cachep; 301 302 /* SLAB cache for fs_struct structures (tsk->fs) */ 303 struct kmem_cache *fs_cachep; 304 305 /* SLAB cache for vm_area_struct structures */ 306 static struct kmem_cache *vm_area_cachep; 307 308 /* SLAB cache for mm_struct structures (tsk->mm) */ 309 static struct kmem_cache *mm_cachep; 310 311 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 312 { 313 struct vm_area_struct *vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 314 315 if (vma) { 316 vma->vm_mm = mm; 317 INIT_LIST_HEAD(&vma->anon_vma_chain); 318 } 319 return vma; 320 } 321 322 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 323 { 324 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 325 326 if (new) { 327 *new = *orig; 328 INIT_LIST_HEAD(&new->anon_vma_chain); 329 } 330 return new; 331 } 332 333 void vm_area_free(struct vm_area_struct *vma) 334 { 335 kmem_cache_free(vm_area_cachep, vma); 336 } 337 338 static void account_kernel_stack(struct task_struct *tsk, int account) 339 { 340 void *stack = task_stack_page(tsk); 341 struct vm_struct *vm = task_stack_vm_area(tsk); 342 343 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 344 345 if (vm) { 346 int i; 347 348 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 349 350 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 351 mod_zone_page_state(page_zone(vm->pages[i]), 352 NR_KERNEL_STACK_KB, 353 PAGE_SIZE / 1024 * account); 354 } 355 356 /* All stack pages belong to the same memcg. */ 357 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB, 358 account * (THREAD_SIZE / 1024)); 359 } else { 360 /* 361 * All stack pages are in the same zone and belong to the 362 * same memcg. 363 */ 364 struct page *first_page = virt_to_page(stack); 365 366 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 367 THREAD_SIZE / 1024 * account); 368 369 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 370 account * (THREAD_SIZE / 1024)); 371 } 372 } 373 374 static void release_task_stack(struct task_struct *tsk) 375 { 376 if (WARN_ON(tsk->state != TASK_DEAD)) 377 return; /* Better to leak the stack than to free prematurely */ 378 379 account_kernel_stack(tsk, -1); 380 arch_release_thread_stack(tsk->stack); 381 free_thread_stack(tsk); 382 tsk->stack = NULL; 383 #ifdef CONFIG_VMAP_STACK 384 tsk->stack_vm_area = NULL; 385 #endif 386 } 387 388 #ifdef CONFIG_THREAD_INFO_IN_TASK 389 void put_task_stack(struct task_struct *tsk) 390 { 391 if (atomic_dec_and_test(&tsk->stack_refcount)) 392 release_task_stack(tsk); 393 } 394 #endif 395 396 void free_task(struct task_struct *tsk) 397 { 398 #ifndef CONFIG_THREAD_INFO_IN_TASK 399 /* 400 * The task is finally done with both the stack and thread_info, 401 * so free both. 402 */ 403 release_task_stack(tsk); 404 #else 405 /* 406 * If the task had a separate stack allocation, it should be gone 407 * by now. 408 */ 409 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0); 410 #endif 411 rt_mutex_debug_task_free(tsk); 412 ftrace_graph_exit_task(tsk); 413 put_seccomp_filter(tsk); 414 arch_release_task_struct(tsk); 415 if (tsk->flags & PF_KTHREAD) 416 free_kthread_struct(tsk); 417 free_task_struct(tsk); 418 } 419 EXPORT_SYMBOL(free_task); 420 421 #ifdef CONFIG_MMU 422 static __latent_entropy int dup_mmap(struct mm_struct *mm, 423 struct mm_struct *oldmm) 424 { 425 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 426 struct rb_node **rb_link, *rb_parent; 427 int retval; 428 unsigned long charge; 429 LIST_HEAD(uf); 430 431 uprobe_start_dup_mmap(); 432 if (down_write_killable(&oldmm->mmap_sem)) { 433 retval = -EINTR; 434 goto fail_uprobe_end; 435 } 436 flush_cache_dup_mm(oldmm); 437 uprobe_dup_mmap(oldmm, mm); 438 /* 439 * Not linked in yet - no deadlock potential: 440 */ 441 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 442 443 /* No ordering required: file already has been exposed. */ 444 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 445 446 mm->total_vm = oldmm->total_vm; 447 mm->data_vm = oldmm->data_vm; 448 mm->exec_vm = oldmm->exec_vm; 449 mm->stack_vm = oldmm->stack_vm; 450 451 rb_link = &mm->mm_rb.rb_node; 452 rb_parent = NULL; 453 pprev = &mm->mmap; 454 retval = ksm_fork(mm, oldmm); 455 if (retval) 456 goto out; 457 retval = khugepaged_fork(mm, oldmm); 458 if (retval) 459 goto out; 460 461 prev = NULL; 462 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 463 struct file *file; 464 465 if (mpnt->vm_flags & VM_DONTCOPY) { 466 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 467 continue; 468 } 469 charge = 0; 470 /* 471 * Don't duplicate many vmas if we've been oom-killed (for 472 * example) 473 */ 474 if (fatal_signal_pending(current)) { 475 retval = -EINTR; 476 goto out; 477 } 478 if (mpnt->vm_flags & VM_ACCOUNT) { 479 unsigned long len = vma_pages(mpnt); 480 481 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 482 goto fail_nomem; 483 charge = len; 484 } 485 tmp = vm_area_dup(mpnt); 486 if (!tmp) 487 goto fail_nomem; 488 retval = vma_dup_policy(mpnt, tmp); 489 if (retval) 490 goto fail_nomem_policy; 491 tmp->vm_mm = mm; 492 retval = dup_userfaultfd(tmp, &uf); 493 if (retval) 494 goto fail_nomem_anon_vma_fork; 495 if (tmp->vm_flags & VM_WIPEONFORK) { 496 /* VM_WIPEONFORK gets a clean slate in the child. */ 497 tmp->anon_vma = NULL; 498 if (anon_vma_prepare(tmp)) 499 goto fail_nomem_anon_vma_fork; 500 } else if (anon_vma_fork(tmp, mpnt)) 501 goto fail_nomem_anon_vma_fork; 502 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 503 tmp->vm_next = tmp->vm_prev = NULL; 504 file = tmp->vm_file; 505 if (file) { 506 struct inode *inode = file_inode(file); 507 struct address_space *mapping = file->f_mapping; 508 509 get_file(file); 510 if (tmp->vm_flags & VM_DENYWRITE) 511 atomic_dec(&inode->i_writecount); 512 i_mmap_lock_write(mapping); 513 if (tmp->vm_flags & VM_SHARED) 514 atomic_inc(&mapping->i_mmap_writable); 515 flush_dcache_mmap_lock(mapping); 516 /* insert tmp into the share list, just after mpnt */ 517 vma_interval_tree_insert_after(tmp, mpnt, 518 &mapping->i_mmap); 519 flush_dcache_mmap_unlock(mapping); 520 i_mmap_unlock_write(mapping); 521 } 522 523 /* 524 * Clear hugetlb-related page reserves for children. This only 525 * affects MAP_PRIVATE mappings. Faults generated by the child 526 * are not guaranteed to succeed, even if read-only 527 */ 528 if (is_vm_hugetlb_page(tmp)) 529 reset_vma_resv_huge_pages(tmp); 530 531 /* 532 * Link in the new vma and copy the page table entries. 533 */ 534 *pprev = tmp; 535 pprev = &tmp->vm_next; 536 tmp->vm_prev = prev; 537 prev = tmp; 538 539 __vma_link_rb(mm, tmp, rb_link, rb_parent); 540 rb_link = &tmp->vm_rb.rb_right; 541 rb_parent = &tmp->vm_rb; 542 543 mm->map_count++; 544 if (!(tmp->vm_flags & VM_WIPEONFORK)) 545 retval = copy_page_range(mm, oldmm, mpnt); 546 547 if (tmp->vm_ops && tmp->vm_ops->open) 548 tmp->vm_ops->open(tmp); 549 550 if (retval) 551 goto out; 552 } 553 /* a new mm has just been created */ 554 arch_dup_mmap(oldmm, mm); 555 retval = 0; 556 out: 557 up_write(&mm->mmap_sem); 558 flush_tlb_mm(oldmm); 559 up_write(&oldmm->mmap_sem); 560 dup_userfaultfd_complete(&uf); 561 fail_uprobe_end: 562 uprobe_end_dup_mmap(); 563 return retval; 564 fail_nomem_anon_vma_fork: 565 mpol_put(vma_policy(tmp)); 566 fail_nomem_policy: 567 vm_area_free(tmp); 568 fail_nomem: 569 retval = -ENOMEM; 570 vm_unacct_memory(charge); 571 goto out; 572 } 573 574 static inline int mm_alloc_pgd(struct mm_struct *mm) 575 { 576 mm->pgd = pgd_alloc(mm); 577 if (unlikely(!mm->pgd)) 578 return -ENOMEM; 579 return 0; 580 } 581 582 static inline void mm_free_pgd(struct mm_struct *mm) 583 { 584 pgd_free(mm, mm->pgd); 585 } 586 #else 587 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 588 { 589 down_write(&oldmm->mmap_sem); 590 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 591 up_write(&oldmm->mmap_sem); 592 return 0; 593 } 594 #define mm_alloc_pgd(mm) (0) 595 #define mm_free_pgd(mm) 596 #endif /* CONFIG_MMU */ 597 598 static void check_mm(struct mm_struct *mm) 599 { 600 int i; 601 602 for (i = 0; i < NR_MM_COUNTERS; i++) { 603 long x = atomic_long_read(&mm->rss_stat.count[i]); 604 605 if (unlikely(x)) 606 printk(KERN_ALERT "BUG: Bad rss-counter state " 607 "mm:%p idx:%d val:%ld\n", mm, i, x); 608 } 609 610 if (mm_pgtables_bytes(mm)) 611 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 612 mm_pgtables_bytes(mm)); 613 614 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 615 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 616 #endif 617 } 618 619 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 620 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 621 622 /* 623 * Called when the last reference to the mm 624 * is dropped: either by a lazy thread or by 625 * mmput. Free the page directory and the mm. 626 */ 627 void __mmdrop(struct mm_struct *mm) 628 { 629 BUG_ON(mm == &init_mm); 630 WARN_ON_ONCE(mm == current->mm); 631 WARN_ON_ONCE(mm == current->active_mm); 632 mm_free_pgd(mm); 633 destroy_context(mm); 634 hmm_mm_destroy(mm); 635 mmu_notifier_mm_destroy(mm); 636 check_mm(mm); 637 put_user_ns(mm->user_ns); 638 free_mm(mm); 639 } 640 EXPORT_SYMBOL_GPL(__mmdrop); 641 642 static void mmdrop_async_fn(struct work_struct *work) 643 { 644 struct mm_struct *mm; 645 646 mm = container_of(work, struct mm_struct, async_put_work); 647 __mmdrop(mm); 648 } 649 650 static void mmdrop_async(struct mm_struct *mm) 651 { 652 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 653 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 654 schedule_work(&mm->async_put_work); 655 } 656 } 657 658 static inline void free_signal_struct(struct signal_struct *sig) 659 { 660 taskstats_tgid_free(sig); 661 sched_autogroup_exit(sig); 662 /* 663 * __mmdrop is not safe to call from softirq context on x86 due to 664 * pgd_dtor so postpone it to the async context 665 */ 666 if (sig->oom_mm) 667 mmdrop_async(sig->oom_mm); 668 kmem_cache_free(signal_cachep, sig); 669 } 670 671 static inline void put_signal_struct(struct signal_struct *sig) 672 { 673 if (atomic_dec_and_test(&sig->sigcnt)) 674 free_signal_struct(sig); 675 } 676 677 void __put_task_struct(struct task_struct *tsk) 678 { 679 WARN_ON(!tsk->exit_state); 680 WARN_ON(atomic_read(&tsk->usage)); 681 WARN_ON(tsk == current); 682 683 cgroup_free(tsk); 684 task_numa_free(tsk); 685 security_task_free(tsk); 686 exit_creds(tsk); 687 delayacct_tsk_free(tsk); 688 put_signal_struct(tsk->signal); 689 690 if (!profile_handoff_task(tsk)) 691 free_task(tsk); 692 } 693 EXPORT_SYMBOL_GPL(__put_task_struct); 694 695 void __init __weak arch_task_cache_init(void) { } 696 697 /* 698 * set_max_threads 699 */ 700 static void set_max_threads(unsigned int max_threads_suggested) 701 { 702 u64 threads; 703 704 /* 705 * The number of threads shall be limited such that the thread 706 * structures may only consume a small part of the available memory. 707 */ 708 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64) 709 threads = MAX_THREADS; 710 else 711 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE, 712 (u64) THREAD_SIZE * 8UL); 713 714 if (threads > max_threads_suggested) 715 threads = max_threads_suggested; 716 717 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 718 } 719 720 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 721 /* Initialized by the architecture: */ 722 int arch_task_struct_size __read_mostly; 723 #endif 724 725 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 726 { 727 /* Fetch thread_struct whitelist for the architecture. */ 728 arch_thread_struct_whitelist(offset, size); 729 730 /* 731 * Handle zero-sized whitelist or empty thread_struct, otherwise 732 * adjust offset to position of thread_struct in task_struct. 733 */ 734 if (unlikely(*size == 0)) 735 *offset = 0; 736 else 737 *offset += offsetof(struct task_struct, thread); 738 } 739 740 void __init fork_init(void) 741 { 742 int i; 743 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 744 #ifndef ARCH_MIN_TASKALIGN 745 #define ARCH_MIN_TASKALIGN 0 746 #endif 747 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 748 unsigned long useroffset, usersize; 749 750 /* create a slab on which task_structs can be allocated */ 751 task_struct_whitelist(&useroffset, &usersize); 752 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 753 arch_task_struct_size, align, 754 SLAB_PANIC|SLAB_ACCOUNT, 755 useroffset, usersize, NULL); 756 #endif 757 758 /* do the arch specific task caches init */ 759 arch_task_cache_init(); 760 761 set_max_threads(MAX_THREADS); 762 763 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 764 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 765 init_task.signal->rlim[RLIMIT_SIGPENDING] = 766 init_task.signal->rlim[RLIMIT_NPROC]; 767 768 for (i = 0; i < UCOUNT_COUNTS; i++) { 769 init_user_ns.ucount_max[i] = max_threads/2; 770 } 771 772 #ifdef CONFIG_VMAP_STACK 773 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 774 NULL, free_vm_stack_cache); 775 #endif 776 777 lockdep_init_task(&init_task); 778 } 779 780 int __weak arch_dup_task_struct(struct task_struct *dst, 781 struct task_struct *src) 782 { 783 *dst = *src; 784 return 0; 785 } 786 787 void set_task_stack_end_magic(struct task_struct *tsk) 788 { 789 unsigned long *stackend; 790 791 stackend = end_of_stack(tsk); 792 *stackend = STACK_END_MAGIC; /* for overflow detection */ 793 } 794 795 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 796 { 797 struct task_struct *tsk; 798 unsigned long *stack; 799 struct vm_struct *stack_vm_area; 800 int err; 801 802 if (node == NUMA_NO_NODE) 803 node = tsk_fork_get_node(orig); 804 tsk = alloc_task_struct_node(node); 805 if (!tsk) 806 return NULL; 807 808 stack = alloc_thread_stack_node(tsk, node); 809 if (!stack) 810 goto free_tsk; 811 812 stack_vm_area = task_stack_vm_area(tsk); 813 814 err = arch_dup_task_struct(tsk, orig); 815 816 /* 817 * arch_dup_task_struct() clobbers the stack-related fields. Make 818 * sure they're properly initialized before using any stack-related 819 * functions again. 820 */ 821 tsk->stack = stack; 822 #ifdef CONFIG_VMAP_STACK 823 tsk->stack_vm_area = stack_vm_area; 824 #endif 825 #ifdef CONFIG_THREAD_INFO_IN_TASK 826 atomic_set(&tsk->stack_refcount, 1); 827 #endif 828 829 if (err) 830 goto free_stack; 831 832 #ifdef CONFIG_SECCOMP 833 /* 834 * We must handle setting up seccomp filters once we're under 835 * the sighand lock in case orig has changed between now and 836 * then. Until then, filter must be NULL to avoid messing up 837 * the usage counts on the error path calling free_task. 838 */ 839 tsk->seccomp.filter = NULL; 840 #endif 841 842 setup_thread_stack(tsk, orig); 843 clear_user_return_notifier(tsk); 844 clear_tsk_need_resched(tsk); 845 set_task_stack_end_magic(tsk); 846 847 #ifdef CONFIG_STACKPROTECTOR 848 tsk->stack_canary = get_random_canary(); 849 #endif 850 851 /* 852 * One for us, one for whoever does the "release_task()" (usually 853 * parent) 854 */ 855 atomic_set(&tsk->usage, 2); 856 #ifdef CONFIG_BLK_DEV_IO_TRACE 857 tsk->btrace_seq = 0; 858 #endif 859 tsk->splice_pipe = NULL; 860 tsk->task_frag.page = NULL; 861 tsk->wake_q.next = NULL; 862 863 account_kernel_stack(tsk, 1); 864 865 kcov_task_init(tsk); 866 867 #ifdef CONFIG_FAULT_INJECTION 868 tsk->fail_nth = 0; 869 #endif 870 871 return tsk; 872 873 free_stack: 874 free_thread_stack(tsk); 875 free_tsk: 876 free_task_struct(tsk); 877 return NULL; 878 } 879 880 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 881 882 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 883 884 static int __init coredump_filter_setup(char *s) 885 { 886 default_dump_filter = 887 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 888 MMF_DUMP_FILTER_MASK; 889 return 1; 890 } 891 892 __setup("coredump_filter=", coredump_filter_setup); 893 894 #include <linux/init_task.h> 895 896 static void mm_init_aio(struct mm_struct *mm) 897 { 898 #ifdef CONFIG_AIO 899 spin_lock_init(&mm->ioctx_lock); 900 mm->ioctx_table = NULL; 901 #endif 902 } 903 904 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 905 { 906 #ifdef CONFIG_MEMCG 907 mm->owner = p; 908 #endif 909 } 910 911 static void mm_init_uprobes_state(struct mm_struct *mm) 912 { 913 #ifdef CONFIG_UPROBES 914 mm->uprobes_state.xol_area = NULL; 915 #endif 916 } 917 918 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 919 struct user_namespace *user_ns) 920 { 921 mm->mmap = NULL; 922 mm->mm_rb = RB_ROOT; 923 mm->vmacache_seqnum = 0; 924 atomic_set(&mm->mm_users, 1); 925 atomic_set(&mm->mm_count, 1); 926 init_rwsem(&mm->mmap_sem); 927 INIT_LIST_HEAD(&mm->mmlist); 928 mm->core_state = NULL; 929 mm_pgtables_bytes_init(mm); 930 mm->map_count = 0; 931 mm->locked_vm = 0; 932 mm->pinned_vm = 0; 933 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 934 spin_lock_init(&mm->page_table_lock); 935 spin_lock_init(&mm->arg_lock); 936 mm_init_cpumask(mm); 937 mm_init_aio(mm); 938 mm_init_owner(mm, p); 939 RCU_INIT_POINTER(mm->exe_file, NULL); 940 mmu_notifier_mm_init(mm); 941 hmm_mm_init(mm); 942 init_tlb_flush_pending(mm); 943 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 944 mm->pmd_huge_pte = NULL; 945 #endif 946 mm_init_uprobes_state(mm); 947 948 if (current->mm) { 949 mm->flags = current->mm->flags & MMF_INIT_MASK; 950 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 951 } else { 952 mm->flags = default_dump_filter; 953 mm->def_flags = 0; 954 } 955 956 if (mm_alloc_pgd(mm)) 957 goto fail_nopgd; 958 959 if (init_new_context(p, mm)) 960 goto fail_nocontext; 961 962 mm->user_ns = get_user_ns(user_ns); 963 return mm; 964 965 fail_nocontext: 966 mm_free_pgd(mm); 967 fail_nopgd: 968 free_mm(mm); 969 return NULL; 970 } 971 972 /* 973 * Allocate and initialize an mm_struct. 974 */ 975 struct mm_struct *mm_alloc(void) 976 { 977 struct mm_struct *mm; 978 979 mm = allocate_mm(); 980 if (!mm) 981 return NULL; 982 983 memset(mm, 0, sizeof(*mm)); 984 return mm_init(mm, current, current_user_ns()); 985 } 986 987 static inline void __mmput(struct mm_struct *mm) 988 { 989 VM_BUG_ON(atomic_read(&mm->mm_users)); 990 991 uprobe_clear_state(mm); 992 exit_aio(mm); 993 ksm_exit(mm); 994 khugepaged_exit(mm); /* must run before exit_mmap */ 995 exit_mmap(mm); 996 mm_put_huge_zero_page(mm); 997 set_mm_exe_file(mm, NULL); 998 if (!list_empty(&mm->mmlist)) { 999 spin_lock(&mmlist_lock); 1000 list_del(&mm->mmlist); 1001 spin_unlock(&mmlist_lock); 1002 } 1003 if (mm->binfmt) 1004 module_put(mm->binfmt->module); 1005 mmdrop(mm); 1006 } 1007 1008 /* 1009 * Decrement the use count and release all resources for an mm. 1010 */ 1011 void mmput(struct mm_struct *mm) 1012 { 1013 might_sleep(); 1014 1015 if (atomic_dec_and_test(&mm->mm_users)) 1016 __mmput(mm); 1017 } 1018 EXPORT_SYMBOL_GPL(mmput); 1019 1020 #ifdef CONFIG_MMU 1021 static void mmput_async_fn(struct work_struct *work) 1022 { 1023 struct mm_struct *mm = container_of(work, struct mm_struct, 1024 async_put_work); 1025 1026 __mmput(mm); 1027 } 1028 1029 void mmput_async(struct mm_struct *mm) 1030 { 1031 if (atomic_dec_and_test(&mm->mm_users)) { 1032 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1033 schedule_work(&mm->async_put_work); 1034 } 1035 } 1036 #endif 1037 1038 /** 1039 * set_mm_exe_file - change a reference to the mm's executable file 1040 * 1041 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1042 * 1043 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1044 * invocations: in mmput() nobody alive left, in execve task is single 1045 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1046 * mm->exe_file, but does so without using set_mm_exe_file() in order 1047 * to do avoid the need for any locks. 1048 */ 1049 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1050 { 1051 struct file *old_exe_file; 1052 1053 /* 1054 * It is safe to dereference the exe_file without RCU as 1055 * this function is only called if nobody else can access 1056 * this mm -- see comment above for justification. 1057 */ 1058 old_exe_file = rcu_dereference_raw(mm->exe_file); 1059 1060 if (new_exe_file) 1061 get_file(new_exe_file); 1062 rcu_assign_pointer(mm->exe_file, new_exe_file); 1063 if (old_exe_file) 1064 fput(old_exe_file); 1065 } 1066 1067 /** 1068 * get_mm_exe_file - acquire a reference to the mm's executable file 1069 * 1070 * Returns %NULL if mm has no associated executable file. 1071 * User must release file via fput(). 1072 */ 1073 struct file *get_mm_exe_file(struct mm_struct *mm) 1074 { 1075 struct file *exe_file; 1076 1077 rcu_read_lock(); 1078 exe_file = rcu_dereference(mm->exe_file); 1079 if (exe_file && !get_file_rcu(exe_file)) 1080 exe_file = NULL; 1081 rcu_read_unlock(); 1082 return exe_file; 1083 } 1084 EXPORT_SYMBOL(get_mm_exe_file); 1085 1086 /** 1087 * get_task_exe_file - acquire a reference to the task's executable file 1088 * 1089 * Returns %NULL if task's mm (if any) has no associated executable file or 1090 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1091 * User must release file via fput(). 1092 */ 1093 struct file *get_task_exe_file(struct task_struct *task) 1094 { 1095 struct file *exe_file = NULL; 1096 struct mm_struct *mm; 1097 1098 task_lock(task); 1099 mm = task->mm; 1100 if (mm) { 1101 if (!(task->flags & PF_KTHREAD)) 1102 exe_file = get_mm_exe_file(mm); 1103 } 1104 task_unlock(task); 1105 return exe_file; 1106 } 1107 EXPORT_SYMBOL(get_task_exe_file); 1108 1109 /** 1110 * get_task_mm - acquire a reference to the task's mm 1111 * 1112 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1113 * this kernel workthread has transiently adopted a user mm with use_mm, 1114 * to do its AIO) is not set and if so returns a reference to it, after 1115 * bumping up the use count. User must release the mm via mmput() 1116 * after use. Typically used by /proc and ptrace. 1117 */ 1118 struct mm_struct *get_task_mm(struct task_struct *task) 1119 { 1120 struct mm_struct *mm; 1121 1122 task_lock(task); 1123 mm = task->mm; 1124 if (mm) { 1125 if (task->flags & PF_KTHREAD) 1126 mm = NULL; 1127 else 1128 mmget(mm); 1129 } 1130 task_unlock(task); 1131 return mm; 1132 } 1133 EXPORT_SYMBOL_GPL(get_task_mm); 1134 1135 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1136 { 1137 struct mm_struct *mm; 1138 int err; 1139 1140 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1141 if (err) 1142 return ERR_PTR(err); 1143 1144 mm = get_task_mm(task); 1145 if (mm && mm != current->mm && 1146 !ptrace_may_access(task, mode)) { 1147 mmput(mm); 1148 mm = ERR_PTR(-EACCES); 1149 } 1150 mutex_unlock(&task->signal->cred_guard_mutex); 1151 1152 return mm; 1153 } 1154 1155 static void complete_vfork_done(struct task_struct *tsk) 1156 { 1157 struct completion *vfork; 1158 1159 task_lock(tsk); 1160 vfork = tsk->vfork_done; 1161 if (likely(vfork)) { 1162 tsk->vfork_done = NULL; 1163 complete(vfork); 1164 } 1165 task_unlock(tsk); 1166 } 1167 1168 static int wait_for_vfork_done(struct task_struct *child, 1169 struct completion *vfork) 1170 { 1171 int killed; 1172 1173 freezer_do_not_count(); 1174 killed = wait_for_completion_killable(vfork); 1175 freezer_count(); 1176 1177 if (killed) { 1178 task_lock(child); 1179 child->vfork_done = NULL; 1180 task_unlock(child); 1181 } 1182 1183 put_task_struct(child); 1184 return killed; 1185 } 1186 1187 /* Please note the differences between mmput and mm_release. 1188 * mmput is called whenever we stop holding onto a mm_struct, 1189 * error success whatever. 1190 * 1191 * mm_release is called after a mm_struct has been removed 1192 * from the current process. 1193 * 1194 * This difference is important for error handling, when we 1195 * only half set up a mm_struct for a new process and need to restore 1196 * the old one. Because we mmput the new mm_struct before 1197 * restoring the old one. . . 1198 * Eric Biederman 10 January 1998 1199 */ 1200 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1201 { 1202 /* Get rid of any futexes when releasing the mm */ 1203 #ifdef CONFIG_FUTEX 1204 if (unlikely(tsk->robust_list)) { 1205 exit_robust_list(tsk); 1206 tsk->robust_list = NULL; 1207 } 1208 #ifdef CONFIG_COMPAT 1209 if (unlikely(tsk->compat_robust_list)) { 1210 compat_exit_robust_list(tsk); 1211 tsk->compat_robust_list = NULL; 1212 } 1213 #endif 1214 if (unlikely(!list_empty(&tsk->pi_state_list))) 1215 exit_pi_state_list(tsk); 1216 #endif 1217 1218 uprobe_free_utask(tsk); 1219 1220 /* Get rid of any cached register state */ 1221 deactivate_mm(tsk, mm); 1222 1223 /* 1224 * Signal userspace if we're not exiting with a core dump 1225 * because we want to leave the value intact for debugging 1226 * purposes. 1227 */ 1228 if (tsk->clear_child_tid) { 1229 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1230 atomic_read(&mm->mm_users) > 1) { 1231 /* 1232 * We don't check the error code - if userspace has 1233 * not set up a proper pointer then tough luck. 1234 */ 1235 put_user(0, tsk->clear_child_tid); 1236 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1237 1, NULL, NULL, 0, 0); 1238 } 1239 tsk->clear_child_tid = NULL; 1240 } 1241 1242 /* 1243 * All done, finally we can wake up parent and return this mm to him. 1244 * Also kthread_stop() uses this completion for synchronization. 1245 */ 1246 if (tsk->vfork_done) 1247 complete_vfork_done(tsk); 1248 } 1249 1250 /* 1251 * Allocate a new mm structure and copy contents from the 1252 * mm structure of the passed in task structure. 1253 */ 1254 static struct mm_struct *dup_mm(struct task_struct *tsk) 1255 { 1256 struct mm_struct *mm, *oldmm = current->mm; 1257 int err; 1258 1259 mm = allocate_mm(); 1260 if (!mm) 1261 goto fail_nomem; 1262 1263 memcpy(mm, oldmm, sizeof(*mm)); 1264 1265 if (!mm_init(mm, tsk, mm->user_ns)) 1266 goto fail_nomem; 1267 1268 err = dup_mmap(mm, oldmm); 1269 if (err) 1270 goto free_pt; 1271 1272 mm->hiwater_rss = get_mm_rss(mm); 1273 mm->hiwater_vm = mm->total_vm; 1274 1275 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1276 goto free_pt; 1277 1278 return mm; 1279 1280 free_pt: 1281 /* don't put binfmt in mmput, we haven't got module yet */ 1282 mm->binfmt = NULL; 1283 mmput(mm); 1284 1285 fail_nomem: 1286 return NULL; 1287 } 1288 1289 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1290 { 1291 struct mm_struct *mm, *oldmm; 1292 int retval; 1293 1294 tsk->min_flt = tsk->maj_flt = 0; 1295 tsk->nvcsw = tsk->nivcsw = 0; 1296 #ifdef CONFIG_DETECT_HUNG_TASK 1297 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1298 #endif 1299 1300 tsk->mm = NULL; 1301 tsk->active_mm = NULL; 1302 1303 /* 1304 * Are we cloning a kernel thread? 1305 * 1306 * We need to steal a active VM for that.. 1307 */ 1308 oldmm = current->mm; 1309 if (!oldmm) 1310 return 0; 1311 1312 /* initialize the new vmacache entries */ 1313 vmacache_flush(tsk); 1314 1315 if (clone_flags & CLONE_VM) { 1316 mmget(oldmm); 1317 mm = oldmm; 1318 goto good_mm; 1319 } 1320 1321 retval = -ENOMEM; 1322 mm = dup_mm(tsk); 1323 if (!mm) 1324 goto fail_nomem; 1325 1326 good_mm: 1327 tsk->mm = mm; 1328 tsk->active_mm = mm; 1329 return 0; 1330 1331 fail_nomem: 1332 return retval; 1333 } 1334 1335 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1336 { 1337 struct fs_struct *fs = current->fs; 1338 if (clone_flags & CLONE_FS) { 1339 /* tsk->fs is already what we want */ 1340 spin_lock(&fs->lock); 1341 if (fs->in_exec) { 1342 spin_unlock(&fs->lock); 1343 return -EAGAIN; 1344 } 1345 fs->users++; 1346 spin_unlock(&fs->lock); 1347 return 0; 1348 } 1349 tsk->fs = copy_fs_struct(fs); 1350 if (!tsk->fs) 1351 return -ENOMEM; 1352 return 0; 1353 } 1354 1355 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1356 { 1357 struct files_struct *oldf, *newf; 1358 int error = 0; 1359 1360 /* 1361 * A background process may not have any files ... 1362 */ 1363 oldf = current->files; 1364 if (!oldf) 1365 goto out; 1366 1367 if (clone_flags & CLONE_FILES) { 1368 atomic_inc(&oldf->count); 1369 goto out; 1370 } 1371 1372 newf = dup_fd(oldf, &error); 1373 if (!newf) 1374 goto out; 1375 1376 tsk->files = newf; 1377 error = 0; 1378 out: 1379 return error; 1380 } 1381 1382 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1383 { 1384 #ifdef CONFIG_BLOCK 1385 struct io_context *ioc = current->io_context; 1386 struct io_context *new_ioc; 1387 1388 if (!ioc) 1389 return 0; 1390 /* 1391 * Share io context with parent, if CLONE_IO is set 1392 */ 1393 if (clone_flags & CLONE_IO) { 1394 ioc_task_link(ioc); 1395 tsk->io_context = ioc; 1396 } else if (ioprio_valid(ioc->ioprio)) { 1397 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1398 if (unlikely(!new_ioc)) 1399 return -ENOMEM; 1400 1401 new_ioc->ioprio = ioc->ioprio; 1402 put_io_context(new_ioc); 1403 } 1404 #endif 1405 return 0; 1406 } 1407 1408 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1409 { 1410 struct sighand_struct *sig; 1411 1412 if (clone_flags & CLONE_SIGHAND) { 1413 atomic_inc(¤t->sighand->count); 1414 return 0; 1415 } 1416 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1417 rcu_assign_pointer(tsk->sighand, sig); 1418 if (!sig) 1419 return -ENOMEM; 1420 1421 atomic_set(&sig->count, 1); 1422 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1423 return 0; 1424 } 1425 1426 void __cleanup_sighand(struct sighand_struct *sighand) 1427 { 1428 if (atomic_dec_and_test(&sighand->count)) { 1429 signalfd_cleanup(sighand); 1430 /* 1431 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1432 * without an RCU grace period, see __lock_task_sighand(). 1433 */ 1434 kmem_cache_free(sighand_cachep, sighand); 1435 } 1436 } 1437 1438 #ifdef CONFIG_POSIX_TIMERS 1439 /* 1440 * Initialize POSIX timer handling for a thread group. 1441 */ 1442 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1443 { 1444 unsigned long cpu_limit; 1445 1446 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1447 if (cpu_limit != RLIM_INFINITY) { 1448 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC; 1449 sig->cputimer.running = true; 1450 } 1451 1452 /* The timer lists. */ 1453 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1454 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1455 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1456 } 1457 #else 1458 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { } 1459 #endif 1460 1461 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1462 { 1463 struct signal_struct *sig; 1464 1465 if (clone_flags & CLONE_THREAD) 1466 return 0; 1467 1468 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1469 tsk->signal = sig; 1470 if (!sig) 1471 return -ENOMEM; 1472 1473 sig->nr_threads = 1; 1474 atomic_set(&sig->live, 1); 1475 atomic_set(&sig->sigcnt, 1); 1476 1477 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1478 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1479 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1480 1481 init_waitqueue_head(&sig->wait_chldexit); 1482 sig->curr_target = tsk; 1483 init_sigpending(&sig->shared_pending); 1484 seqlock_init(&sig->stats_lock); 1485 prev_cputime_init(&sig->prev_cputime); 1486 1487 #ifdef CONFIG_POSIX_TIMERS 1488 INIT_LIST_HEAD(&sig->posix_timers); 1489 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1490 sig->real_timer.function = it_real_fn; 1491 #endif 1492 1493 task_lock(current->group_leader); 1494 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1495 task_unlock(current->group_leader); 1496 1497 posix_cpu_timers_init_group(sig); 1498 1499 tty_audit_fork(sig); 1500 sched_autogroup_fork(sig); 1501 1502 sig->oom_score_adj = current->signal->oom_score_adj; 1503 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1504 1505 mutex_init(&sig->cred_guard_mutex); 1506 1507 return 0; 1508 } 1509 1510 static void copy_seccomp(struct task_struct *p) 1511 { 1512 #ifdef CONFIG_SECCOMP 1513 /* 1514 * Must be called with sighand->lock held, which is common to 1515 * all threads in the group. Holding cred_guard_mutex is not 1516 * needed because this new task is not yet running and cannot 1517 * be racing exec. 1518 */ 1519 assert_spin_locked(¤t->sighand->siglock); 1520 1521 /* Ref-count the new filter user, and assign it. */ 1522 get_seccomp_filter(current); 1523 p->seccomp = current->seccomp; 1524 1525 /* 1526 * Explicitly enable no_new_privs here in case it got set 1527 * between the task_struct being duplicated and holding the 1528 * sighand lock. The seccomp state and nnp must be in sync. 1529 */ 1530 if (task_no_new_privs(current)) 1531 task_set_no_new_privs(p); 1532 1533 /* 1534 * If the parent gained a seccomp mode after copying thread 1535 * flags and between before we held the sighand lock, we have 1536 * to manually enable the seccomp thread flag here. 1537 */ 1538 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1539 set_tsk_thread_flag(p, TIF_SECCOMP); 1540 #endif 1541 } 1542 1543 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1544 { 1545 current->clear_child_tid = tidptr; 1546 1547 return task_pid_vnr(current); 1548 } 1549 1550 static void rt_mutex_init_task(struct task_struct *p) 1551 { 1552 raw_spin_lock_init(&p->pi_lock); 1553 #ifdef CONFIG_RT_MUTEXES 1554 p->pi_waiters = RB_ROOT_CACHED; 1555 p->pi_top_task = NULL; 1556 p->pi_blocked_on = NULL; 1557 #endif 1558 } 1559 1560 #ifdef CONFIG_POSIX_TIMERS 1561 /* 1562 * Initialize POSIX timer handling for a single task. 1563 */ 1564 static void posix_cpu_timers_init(struct task_struct *tsk) 1565 { 1566 tsk->cputime_expires.prof_exp = 0; 1567 tsk->cputime_expires.virt_exp = 0; 1568 tsk->cputime_expires.sched_exp = 0; 1569 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1570 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1571 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1572 } 1573 #else 1574 static inline void posix_cpu_timers_init(struct task_struct *tsk) { } 1575 #endif 1576 1577 static inline void 1578 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1579 { 1580 task->pids[type].pid = pid; 1581 } 1582 1583 static inline void rcu_copy_process(struct task_struct *p) 1584 { 1585 #ifdef CONFIG_PREEMPT_RCU 1586 p->rcu_read_lock_nesting = 0; 1587 p->rcu_read_unlock_special.s = 0; 1588 p->rcu_blocked_node = NULL; 1589 INIT_LIST_HEAD(&p->rcu_node_entry); 1590 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1591 #ifdef CONFIG_TASKS_RCU 1592 p->rcu_tasks_holdout = false; 1593 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1594 p->rcu_tasks_idle_cpu = -1; 1595 #endif /* #ifdef CONFIG_TASKS_RCU */ 1596 } 1597 1598 /* 1599 * This creates a new process as a copy of the old one, 1600 * but does not actually start it yet. 1601 * 1602 * It copies the registers, and all the appropriate 1603 * parts of the process environment (as per the clone 1604 * flags). The actual kick-off is left to the caller. 1605 */ 1606 static __latent_entropy struct task_struct *copy_process( 1607 unsigned long clone_flags, 1608 unsigned long stack_start, 1609 unsigned long stack_size, 1610 int __user *child_tidptr, 1611 struct pid *pid, 1612 int trace, 1613 unsigned long tls, 1614 int node) 1615 { 1616 int retval; 1617 struct task_struct *p; 1618 1619 /* 1620 * Don't allow sharing the root directory with processes in a different 1621 * namespace 1622 */ 1623 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1624 return ERR_PTR(-EINVAL); 1625 1626 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1627 return ERR_PTR(-EINVAL); 1628 1629 /* 1630 * Thread groups must share signals as well, and detached threads 1631 * can only be started up within the thread group. 1632 */ 1633 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1634 return ERR_PTR(-EINVAL); 1635 1636 /* 1637 * Shared signal handlers imply shared VM. By way of the above, 1638 * thread groups also imply shared VM. Blocking this case allows 1639 * for various simplifications in other code. 1640 */ 1641 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1642 return ERR_PTR(-EINVAL); 1643 1644 /* 1645 * Siblings of global init remain as zombies on exit since they are 1646 * not reaped by their parent (swapper). To solve this and to avoid 1647 * multi-rooted process trees, prevent global and container-inits 1648 * from creating siblings. 1649 */ 1650 if ((clone_flags & CLONE_PARENT) && 1651 current->signal->flags & SIGNAL_UNKILLABLE) 1652 return ERR_PTR(-EINVAL); 1653 1654 /* 1655 * If the new process will be in a different pid or user namespace 1656 * do not allow it to share a thread group with the forking task. 1657 */ 1658 if (clone_flags & CLONE_THREAD) { 1659 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1660 (task_active_pid_ns(current) != 1661 current->nsproxy->pid_ns_for_children)) 1662 return ERR_PTR(-EINVAL); 1663 } 1664 1665 retval = -ENOMEM; 1666 p = dup_task_struct(current, node); 1667 if (!p) 1668 goto fork_out; 1669 1670 /* 1671 * This _must_ happen before we call free_task(), i.e. before we jump 1672 * to any of the bad_fork_* labels. This is to avoid freeing 1673 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1674 * kernel threads (PF_KTHREAD). 1675 */ 1676 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1677 /* 1678 * Clear TID on mm_release()? 1679 */ 1680 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1681 1682 ftrace_graph_init_task(p); 1683 1684 rt_mutex_init_task(p); 1685 1686 #ifdef CONFIG_PROVE_LOCKING 1687 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1688 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1689 #endif 1690 retval = -EAGAIN; 1691 if (atomic_read(&p->real_cred->user->processes) >= 1692 task_rlimit(p, RLIMIT_NPROC)) { 1693 if (p->real_cred->user != INIT_USER && 1694 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1695 goto bad_fork_free; 1696 } 1697 current->flags &= ~PF_NPROC_EXCEEDED; 1698 1699 retval = copy_creds(p, clone_flags); 1700 if (retval < 0) 1701 goto bad_fork_free; 1702 1703 /* 1704 * If multiple threads are within copy_process(), then this check 1705 * triggers too late. This doesn't hurt, the check is only there 1706 * to stop root fork bombs. 1707 */ 1708 retval = -EAGAIN; 1709 if (nr_threads >= max_threads) 1710 goto bad_fork_cleanup_count; 1711 1712 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1713 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1714 p->flags |= PF_FORKNOEXEC; 1715 INIT_LIST_HEAD(&p->children); 1716 INIT_LIST_HEAD(&p->sibling); 1717 rcu_copy_process(p); 1718 p->vfork_done = NULL; 1719 spin_lock_init(&p->alloc_lock); 1720 1721 init_sigpending(&p->pending); 1722 1723 p->utime = p->stime = p->gtime = 0; 1724 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1725 p->utimescaled = p->stimescaled = 0; 1726 #endif 1727 prev_cputime_init(&p->prev_cputime); 1728 1729 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1730 seqcount_init(&p->vtime.seqcount); 1731 p->vtime.starttime = 0; 1732 p->vtime.state = VTIME_INACTIVE; 1733 #endif 1734 1735 #if defined(SPLIT_RSS_COUNTING) 1736 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1737 #endif 1738 1739 p->default_timer_slack_ns = current->timer_slack_ns; 1740 1741 task_io_accounting_init(&p->ioac); 1742 acct_clear_integrals(p); 1743 1744 posix_cpu_timers_init(p); 1745 1746 p->start_time = ktime_get_ns(); 1747 p->real_start_time = ktime_get_boot_ns(); 1748 p->io_context = NULL; 1749 audit_set_context(p, NULL); 1750 cgroup_fork(p); 1751 #ifdef CONFIG_NUMA 1752 p->mempolicy = mpol_dup(p->mempolicy); 1753 if (IS_ERR(p->mempolicy)) { 1754 retval = PTR_ERR(p->mempolicy); 1755 p->mempolicy = NULL; 1756 goto bad_fork_cleanup_threadgroup_lock; 1757 } 1758 #endif 1759 #ifdef CONFIG_CPUSETS 1760 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1761 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1762 seqcount_init(&p->mems_allowed_seq); 1763 #endif 1764 #ifdef CONFIG_TRACE_IRQFLAGS 1765 p->irq_events = 0; 1766 p->hardirqs_enabled = 0; 1767 p->hardirq_enable_ip = 0; 1768 p->hardirq_enable_event = 0; 1769 p->hardirq_disable_ip = _THIS_IP_; 1770 p->hardirq_disable_event = 0; 1771 p->softirqs_enabled = 1; 1772 p->softirq_enable_ip = _THIS_IP_; 1773 p->softirq_enable_event = 0; 1774 p->softirq_disable_ip = 0; 1775 p->softirq_disable_event = 0; 1776 p->hardirq_context = 0; 1777 p->softirq_context = 0; 1778 #endif 1779 1780 p->pagefault_disabled = 0; 1781 1782 #ifdef CONFIG_LOCKDEP 1783 p->lockdep_depth = 0; /* no locks held yet */ 1784 p->curr_chain_key = 0; 1785 p->lockdep_recursion = 0; 1786 lockdep_init_task(p); 1787 #endif 1788 1789 #ifdef CONFIG_DEBUG_MUTEXES 1790 p->blocked_on = NULL; /* not blocked yet */ 1791 #endif 1792 #ifdef CONFIG_BCACHE 1793 p->sequential_io = 0; 1794 p->sequential_io_avg = 0; 1795 #endif 1796 1797 /* Perform scheduler related setup. Assign this task to a CPU. */ 1798 retval = sched_fork(clone_flags, p); 1799 if (retval) 1800 goto bad_fork_cleanup_policy; 1801 1802 retval = perf_event_init_task(p); 1803 if (retval) 1804 goto bad_fork_cleanup_policy; 1805 retval = audit_alloc(p); 1806 if (retval) 1807 goto bad_fork_cleanup_perf; 1808 /* copy all the process information */ 1809 shm_init_task(p); 1810 retval = security_task_alloc(p, clone_flags); 1811 if (retval) 1812 goto bad_fork_cleanup_audit; 1813 retval = copy_semundo(clone_flags, p); 1814 if (retval) 1815 goto bad_fork_cleanup_security; 1816 retval = copy_files(clone_flags, p); 1817 if (retval) 1818 goto bad_fork_cleanup_semundo; 1819 retval = copy_fs(clone_flags, p); 1820 if (retval) 1821 goto bad_fork_cleanup_files; 1822 retval = copy_sighand(clone_flags, p); 1823 if (retval) 1824 goto bad_fork_cleanup_fs; 1825 retval = copy_signal(clone_flags, p); 1826 if (retval) 1827 goto bad_fork_cleanup_sighand; 1828 retval = copy_mm(clone_flags, p); 1829 if (retval) 1830 goto bad_fork_cleanup_signal; 1831 retval = copy_namespaces(clone_flags, p); 1832 if (retval) 1833 goto bad_fork_cleanup_mm; 1834 retval = copy_io(clone_flags, p); 1835 if (retval) 1836 goto bad_fork_cleanup_namespaces; 1837 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls); 1838 if (retval) 1839 goto bad_fork_cleanup_io; 1840 1841 if (pid != &init_struct_pid) { 1842 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 1843 if (IS_ERR(pid)) { 1844 retval = PTR_ERR(pid); 1845 goto bad_fork_cleanup_thread; 1846 } 1847 } 1848 1849 #ifdef CONFIG_BLOCK 1850 p->plug = NULL; 1851 #endif 1852 #ifdef CONFIG_FUTEX 1853 p->robust_list = NULL; 1854 #ifdef CONFIG_COMPAT 1855 p->compat_robust_list = NULL; 1856 #endif 1857 INIT_LIST_HEAD(&p->pi_state_list); 1858 p->pi_state_cache = NULL; 1859 #endif 1860 /* 1861 * sigaltstack should be cleared when sharing the same VM 1862 */ 1863 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1864 sas_ss_reset(p); 1865 1866 /* 1867 * Syscall tracing and stepping should be turned off in the 1868 * child regardless of CLONE_PTRACE. 1869 */ 1870 user_disable_single_step(p); 1871 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1872 #ifdef TIF_SYSCALL_EMU 1873 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1874 #endif 1875 clear_all_latency_tracing(p); 1876 1877 /* ok, now we should be set up.. */ 1878 p->pid = pid_nr(pid); 1879 if (clone_flags & CLONE_THREAD) { 1880 p->exit_signal = -1; 1881 p->group_leader = current->group_leader; 1882 p->tgid = current->tgid; 1883 } else { 1884 if (clone_flags & CLONE_PARENT) 1885 p->exit_signal = current->group_leader->exit_signal; 1886 else 1887 p->exit_signal = (clone_flags & CSIGNAL); 1888 p->group_leader = p; 1889 p->tgid = p->pid; 1890 } 1891 1892 p->nr_dirtied = 0; 1893 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1894 p->dirty_paused_when = 0; 1895 1896 p->pdeath_signal = 0; 1897 INIT_LIST_HEAD(&p->thread_group); 1898 p->task_works = NULL; 1899 1900 cgroup_threadgroup_change_begin(current); 1901 /* 1902 * Ensure that the cgroup subsystem policies allow the new process to be 1903 * forked. It should be noted the the new process's css_set can be changed 1904 * between here and cgroup_post_fork() if an organisation operation is in 1905 * progress. 1906 */ 1907 retval = cgroup_can_fork(p); 1908 if (retval) 1909 goto bad_fork_free_pid; 1910 1911 /* 1912 * Make it visible to the rest of the system, but dont wake it up yet. 1913 * Need tasklist lock for parent etc handling! 1914 */ 1915 write_lock_irq(&tasklist_lock); 1916 1917 /* CLONE_PARENT re-uses the old parent */ 1918 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1919 p->real_parent = current->real_parent; 1920 p->parent_exec_id = current->parent_exec_id; 1921 } else { 1922 p->real_parent = current; 1923 p->parent_exec_id = current->self_exec_id; 1924 } 1925 1926 klp_copy_process(p); 1927 1928 spin_lock(¤t->sighand->siglock); 1929 1930 /* 1931 * Copy seccomp details explicitly here, in case they were changed 1932 * before holding sighand lock. 1933 */ 1934 copy_seccomp(p); 1935 1936 rseq_fork(p, clone_flags); 1937 1938 /* 1939 * Process group and session signals need to be delivered to just the 1940 * parent before the fork or both the parent and the child after the 1941 * fork. Restart if a signal comes in before we add the new process to 1942 * it's process group. 1943 * A fatal signal pending means that current will exit, so the new 1944 * thread can't slip out of an OOM kill (or normal SIGKILL). 1945 */ 1946 recalc_sigpending(); 1947 if (signal_pending(current)) { 1948 retval = -ERESTARTNOINTR; 1949 goto bad_fork_cancel_cgroup; 1950 } 1951 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 1952 retval = -ENOMEM; 1953 goto bad_fork_cancel_cgroup; 1954 } 1955 1956 if (likely(p->pid)) { 1957 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1958 1959 init_task_pid(p, PIDTYPE_PID, pid); 1960 if (thread_group_leader(p)) { 1961 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1962 init_task_pid(p, PIDTYPE_SID, task_session(current)); 1963 1964 if (is_child_reaper(pid)) { 1965 ns_of_pid(pid)->child_reaper = p; 1966 p->signal->flags |= SIGNAL_UNKILLABLE; 1967 } 1968 1969 p->signal->leader_pid = pid; 1970 p->signal->tty = tty_kref_get(current->signal->tty); 1971 /* 1972 * Inherit has_child_subreaper flag under the same 1973 * tasklist_lock with adding child to the process tree 1974 * for propagate_has_child_subreaper optimization. 1975 */ 1976 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 1977 p->real_parent->signal->is_child_subreaper; 1978 list_add_tail(&p->sibling, &p->real_parent->children); 1979 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1980 attach_pid(p, PIDTYPE_PGID); 1981 attach_pid(p, PIDTYPE_SID); 1982 __this_cpu_inc(process_counts); 1983 } else { 1984 current->signal->nr_threads++; 1985 atomic_inc(¤t->signal->live); 1986 atomic_inc(¤t->signal->sigcnt); 1987 list_add_tail_rcu(&p->thread_group, 1988 &p->group_leader->thread_group); 1989 list_add_tail_rcu(&p->thread_node, 1990 &p->signal->thread_head); 1991 } 1992 attach_pid(p, PIDTYPE_PID); 1993 nr_threads++; 1994 } 1995 1996 total_forks++; 1997 spin_unlock(¤t->sighand->siglock); 1998 syscall_tracepoint_update(p); 1999 write_unlock_irq(&tasklist_lock); 2000 2001 proc_fork_connector(p); 2002 cgroup_post_fork(p); 2003 cgroup_threadgroup_change_end(current); 2004 perf_event_fork(p); 2005 2006 trace_task_newtask(p, clone_flags); 2007 uprobe_copy_process(p, clone_flags); 2008 2009 return p; 2010 2011 bad_fork_cancel_cgroup: 2012 spin_unlock(¤t->sighand->siglock); 2013 write_unlock_irq(&tasklist_lock); 2014 cgroup_cancel_fork(p); 2015 bad_fork_free_pid: 2016 cgroup_threadgroup_change_end(current); 2017 if (pid != &init_struct_pid) 2018 free_pid(pid); 2019 bad_fork_cleanup_thread: 2020 exit_thread(p); 2021 bad_fork_cleanup_io: 2022 if (p->io_context) 2023 exit_io_context(p); 2024 bad_fork_cleanup_namespaces: 2025 exit_task_namespaces(p); 2026 bad_fork_cleanup_mm: 2027 if (p->mm) 2028 mmput(p->mm); 2029 bad_fork_cleanup_signal: 2030 if (!(clone_flags & CLONE_THREAD)) 2031 free_signal_struct(p->signal); 2032 bad_fork_cleanup_sighand: 2033 __cleanup_sighand(p->sighand); 2034 bad_fork_cleanup_fs: 2035 exit_fs(p); /* blocking */ 2036 bad_fork_cleanup_files: 2037 exit_files(p); /* blocking */ 2038 bad_fork_cleanup_semundo: 2039 exit_sem(p); 2040 bad_fork_cleanup_security: 2041 security_task_free(p); 2042 bad_fork_cleanup_audit: 2043 audit_free(p); 2044 bad_fork_cleanup_perf: 2045 perf_event_free_task(p); 2046 bad_fork_cleanup_policy: 2047 lockdep_free_task(p); 2048 #ifdef CONFIG_NUMA 2049 mpol_put(p->mempolicy); 2050 bad_fork_cleanup_threadgroup_lock: 2051 #endif 2052 delayacct_tsk_free(p); 2053 bad_fork_cleanup_count: 2054 atomic_dec(&p->cred->user->processes); 2055 exit_creds(p); 2056 bad_fork_free: 2057 p->state = TASK_DEAD; 2058 put_task_stack(p); 2059 free_task(p); 2060 fork_out: 2061 return ERR_PTR(retval); 2062 } 2063 2064 static inline void init_idle_pids(struct pid_link *links) 2065 { 2066 enum pid_type type; 2067 2068 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2069 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 2070 links[type].pid = &init_struct_pid; 2071 } 2072 } 2073 2074 struct task_struct *fork_idle(int cpu) 2075 { 2076 struct task_struct *task; 2077 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0, 2078 cpu_to_node(cpu)); 2079 if (!IS_ERR(task)) { 2080 init_idle_pids(task->pids); 2081 init_idle(task, cpu); 2082 } 2083 2084 return task; 2085 } 2086 2087 /* 2088 * Ok, this is the main fork-routine. 2089 * 2090 * It copies the process, and if successful kick-starts 2091 * it and waits for it to finish using the VM if required. 2092 */ 2093 long _do_fork(unsigned long clone_flags, 2094 unsigned long stack_start, 2095 unsigned long stack_size, 2096 int __user *parent_tidptr, 2097 int __user *child_tidptr, 2098 unsigned long tls) 2099 { 2100 struct completion vfork; 2101 struct pid *pid; 2102 struct task_struct *p; 2103 int trace = 0; 2104 long nr; 2105 2106 /* 2107 * Determine whether and which event to report to ptracer. When 2108 * called from kernel_thread or CLONE_UNTRACED is explicitly 2109 * requested, no event is reported; otherwise, report if the event 2110 * for the type of forking is enabled. 2111 */ 2112 if (!(clone_flags & CLONE_UNTRACED)) { 2113 if (clone_flags & CLONE_VFORK) 2114 trace = PTRACE_EVENT_VFORK; 2115 else if ((clone_flags & CSIGNAL) != SIGCHLD) 2116 trace = PTRACE_EVENT_CLONE; 2117 else 2118 trace = PTRACE_EVENT_FORK; 2119 2120 if (likely(!ptrace_event_enabled(current, trace))) 2121 trace = 0; 2122 } 2123 2124 p = copy_process(clone_flags, stack_start, stack_size, 2125 child_tidptr, NULL, trace, tls, NUMA_NO_NODE); 2126 add_latent_entropy(); 2127 2128 if (IS_ERR(p)) 2129 return PTR_ERR(p); 2130 2131 /* 2132 * Do this prior waking up the new thread - the thread pointer 2133 * might get invalid after that point, if the thread exits quickly. 2134 */ 2135 trace_sched_process_fork(current, p); 2136 2137 pid = get_task_pid(p, PIDTYPE_PID); 2138 nr = pid_vnr(pid); 2139 2140 if (clone_flags & CLONE_PARENT_SETTID) 2141 put_user(nr, parent_tidptr); 2142 2143 if (clone_flags & CLONE_VFORK) { 2144 p->vfork_done = &vfork; 2145 init_completion(&vfork); 2146 get_task_struct(p); 2147 } 2148 2149 wake_up_new_task(p); 2150 2151 /* forking complete and child started to run, tell ptracer */ 2152 if (unlikely(trace)) 2153 ptrace_event_pid(trace, pid); 2154 2155 if (clone_flags & CLONE_VFORK) { 2156 if (!wait_for_vfork_done(p, &vfork)) 2157 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2158 } 2159 2160 put_pid(pid); 2161 return nr; 2162 } 2163 2164 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2165 /* For compatibility with architectures that call do_fork directly rather than 2166 * using the syscall entry points below. */ 2167 long do_fork(unsigned long clone_flags, 2168 unsigned long stack_start, 2169 unsigned long stack_size, 2170 int __user *parent_tidptr, 2171 int __user *child_tidptr) 2172 { 2173 return _do_fork(clone_flags, stack_start, stack_size, 2174 parent_tidptr, child_tidptr, 0); 2175 } 2176 #endif 2177 2178 /* 2179 * Create a kernel thread. 2180 */ 2181 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2182 { 2183 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 2184 (unsigned long)arg, NULL, NULL, 0); 2185 } 2186 2187 #ifdef __ARCH_WANT_SYS_FORK 2188 SYSCALL_DEFINE0(fork) 2189 { 2190 #ifdef CONFIG_MMU 2191 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0); 2192 #else 2193 /* can not support in nommu mode */ 2194 return -EINVAL; 2195 #endif 2196 } 2197 #endif 2198 2199 #ifdef __ARCH_WANT_SYS_VFORK 2200 SYSCALL_DEFINE0(vfork) 2201 { 2202 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 2203 0, NULL, NULL, 0); 2204 } 2205 #endif 2206 2207 #ifdef __ARCH_WANT_SYS_CLONE 2208 #ifdef CONFIG_CLONE_BACKWARDS 2209 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2210 int __user *, parent_tidptr, 2211 unsigned long, tls, 2212 int __user *, child_tidptr) 2213 #elif defined(CONFIG_CLONE_BACKWARDS2) 2214 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2215 int __user *, parent_tidptr, 2216 int __user *, child_tidptr, 2217 unsigned long, tls) 2218 #elif defined(CONFIG_CLONE_BACKWARDS3) 2219 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2220 int, stack_size, 2221 int __user *, parent_tidptr, 2222 int __user *, child_tidptr, 2223 unsigned long, tls) 2224 #else 2225 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2226 int __user *, parent_tidptr, 2227 int __user *, child_tidptr, 2228 unsigned long, tls) 2229 #endif 2230 { 2231 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls); 2232 } 2233 #endif 2234 2235 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2236 { 2237 struct task_struct *leader, *parent, *child; 2238 int res; 2239 2240 read_lock(&tasklist_lock); 2241 leader = top = top->group_leader; 2242 down: 2243 for_each_thread(leader, parent) { 2244 list_for_each_entry(child, &parent->children, sibling) { 2245 res = visitor(child, data); 2246 if (res) { 2247 if (res < 0) 2248 goto out; 2249 leader = child; 2250 goto down; 2251 } 2252 up: 2253 ; 2254 } 2255 } 2256 2257 if (leader != top) { 2258 child = leader; 2259 parent = child->real_parent; 2260 leader = parent->group_leader; 2261 goto up; 2262 } 2263 out: 2264 read_unlock(&tasklist_lock); 2265 } 2266 2267 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2268 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2269 #endif 2270 2271 static void sighand_ctor(void *data) 2272 { 2273 struct sighand_struct *sighand = data; 2274 2275 spin_lock_init(&sighand->siglock); 2276 init_waitqueue_head(&sighand->signalfd_wqh); 2277 } 2278 2279 void __init proc_caches_init(void) 2280 { 2281 sighand_cachep = kmem_cache_create("sighand_cache", 2282 sizeof(struct sighand_struct), 0, 2283 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2284 SLAB_ACCOUNT, sighand_ctor); 2285 signal_cachep = kmem_cache_create("signal_cache", 2286 sizeof(struct signal_struct), 0, 2287 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2288 NULL); 2289 files_cachep = kmem_cache_create("files_cache", 2290 sizeof(struct files_struct), 0, 2291 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2292 NULL); 2293 fs_cachep = kmem_cache_create("fs_cache", 2294 sizeof(struct fs_struct), 0, 2295 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2296 NULL); 2297 /* 2298 * FIXME! The "sizeof(struct mm_struct)" currently includes the 2299 * whole struct cpumask for the OFFSTACK case. We could change 2300 * this to *only* allocate as much of it as required by the 2301 * maximum number of CPU's we can ever have. The cpumask_allocation 2302 * is at the end of the structure, exactly for that reason. 2303 */ 2304 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2305 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 2306 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2307 offsetof(struct mm_struct, saved_auxv), 2308 sizeof_field(struct mm_struct, saved_auxv), 2309 NULL); 2310 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2311 mmap_init(); 2312 nsproxy_cache_init(); 2313 } 2314 2315 /* 2316 * Check constraints on flags passed to the unshare system call. 2317 */ 2318 static int check_unshare_flags(unsigned long unshare_flags) 2319 { 2320 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2321 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2322 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2323 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2324 return -EINVAL; 2325 /* 2326 * Not implemented, but pretend it works if there is nothing 2327 * to unshare. Note that unsharing the address space or the 2328 * signal handlers also need to unshare the signal queues (aka 2329 * CLONE_THREAD). 2330 */ 2331 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2332 if (!thread_group_empty(current)) 2333 return -EINVAL; 2334 } 2335 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2336 if (atomic_read(¤t->sighand->count) > 1) 2337 return -EINVAL; 2338 } 2339 if (unshare_flags & CLONE_VM) { 2340 if (!current_is_single_threaded()) 2341 return -EINVAL; 2342 } 2343 2344 return 0; 2345 } 2346 2347 /* 2348 * Unshare the filesystem structure if it is being shared 2349 */ 2350 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2351 { 2352 struct fs_struct *fs = current->fs; 2353 2354 if (!(unshare_flags & CLONE_FS) || !fs) 2355 return 0; 2356 2357 /* don't need lock here; in the worst case we'll do useless copy */ 2358 if (fs->users == 1) 2359 return 0; 2360 2361 *new_fsp = copy_fs_struct(fs); 2362 if (!*new_fsp) 2363 return -ENOMEM; 2364 2365 return 0; 2366 } 2367 2368 /* 2369 * Unshare file descriptor table if it is being shared 2370 */ 2371 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2372 { 2373 struct files_struct *fd = current->files; 2374 int error = 0; 2375 2376 if ((unshare_flags & CLONE_FILES) && 2377 (fd && atomic_read(&fd->count) > 1)) { 2378 *new_fdp = dup_fd(fd, &error); 2379 if (!*new_fdp) 2380 return error; 2381 } 2382 2383 return 0; 2384 } 2385 2386 /* 2387 * unshare allows a process to 'unshare' part of the process 2388 * context which was originally shared using clone. copy_* 2389 * functions used by do_fork() cannot be used here directly 2390 * because they modify an inactive task_struct that is being 2391 * constructed. Here we are modifying the current, active, 2392 * task_struct. 2393 */ 2394 int ksys_unshare(unsigned long unshare_flags) 2395 { 2396 struct fs_struct *fs, *new_fs = NULL; 2397 struct files_struct *fd, *new_fd = NULL; 2398 struct cred *new_cred = NULL; 2399 struct nsproxy *new_nsproxy = NULL; 2400 int do_sysvsem = 0; 2401 int err; 2402 2403 /* 2404 * If unsharing a user namespace must also unshare the thread group 2405 * and unshare the filesystem root and working directories. 2406 */ 2407 if (unshare_flags & CLONE_NEWUSER) 2408 unshare_flags |= CLONE_THREAD | CLONE_FS; 2409 /* 2410 * If unsharing vm, must also unshare signal handlers. 2411 */ 2412 if (unshare_flags & CLONE_VM) 2413 unshare_flags |= CLONE_SIGHAND; 2414 /* 2415 * If unsharing a signal handlers, must also unshare the signal queues. 2416 */ 2417 if (unshare_flags & CLONE_SIGHAND) 2418 unshare_flags |= CLONE_THREAD; 2419 /* 2420 * If unsharing namespace, must also unshare filesystem information. 2421 */ 2422 if (unshare_flags & CLONE_NEWNS) 2423 unshare_flags |= CLONE_FS; 2424 2425 err = check_unshare_flags(unshare_flags); 2426 if (err) 2427 goto bad_unshare_out; 2428 /* 2429 * CLONE_NEWIPC must also detach from the undolist: after switching 2430 * to a new ipc namespace, the semaphore arrays from the old 2431 * namespace are unreachable. 2432 */ 2433 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2434 do_sysvsem = 1; 2435 err = unshare_fs(unshare_flags, &new_fs); 2436 if (err) 2437 goto bad_unshare_out; 2438 err = unshare_fd(unshare_flags, &new_fd); 2439 if (err) 2440 goto bad_unshare_cleanup_fs; 2441 err = unshare_userns(unshare_flags, &new_cred); 2442 if (err) 2443 goto bad_unshare_cleanup_fd; 2444 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2445 new_cred, new_fs); 2446 if (err) 2447 goto bad_unshare_cleanup_cred; 2448 2449 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2450 if (do_sysvsem) { 2451 /* 2452 * CLONE_SYSVSEM is equivalent to sys_exit(). 2453 */ 2454 exit_sem(current); 2455 } 2456 if (unshare_flags & CLONE_NEWIPC) { 2457 /* Orphan segments in old ns (see sem above). */ 2458 exit_shm(current); 2459 shm_init_task(current); 2460 } 2461 2462 if (new_nsproxy) 2463 switch_task_namespaces(current, new_nsproxy); 2464 2465 task_lock(current); 2466 2467 if (new_fs) { 2468 fs = current->fs; 2469 spin_lock(&fs->lock); 2470 current->fs = new_fs; 2471 if (--fs->users) 2472 new_fs = NULL; 2473 else 2474 new_fs = fs; 2475 spin_unlock(&fs->lock); 2476 } 2477 2478 if (new_fd) { 2479 fd = current->files; 2480 current->files = new_fd; 2481 new_fd = fd; 2482 } 2483 2484 task_unlock(current); 2485 2486 if (new_cred) { 2487 /* Install the new user namespace */ 2488 commit_creds(new_cred); 2489 new_cred = NULL; 2490 } 2491 } 2492 2493 perf_event_namespaces(current); 2494 2495 bad_unshare_cleanup_cred: 2496 if (new_cred) 2497 put_cred(new_cred); 2498 bad_unshare_cleanup_fd: 2499 if (new_fd) 2500 put_files_struct(new_fd); 2501 2502 bad_unshare_cleanup_fs: 2503 if (new_fs) 2504 free_fs_struct(new_fs); 2505 2506 bad_unshare_out: 2507 return err; 2508 } 2509 2510 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2511 { 2512 return ksys_unshare(unshare_flags); 2513 } 2514 2515 /* 2516 * Helper to unshare the files of the current task. 2517 * We don't want to expose copy_files internals to 2518 * the exec layer of the kernel. 2519 */ 2520 2521 int unshare_files(struct files_struct **displaced) 2522 { 2523 struct task_struct *task = current; 2524 struct files_struct *copy = NULL; 2525 int error; 2526 2527 error = unshare_fd(CLONE_FILES, ©); 2528 if (error || !copy) { 2529 *displaced = NULL; 2530 return error; 2531 } 2532 *displaced = task->files; 2533 task_lock(task); 2534 task->files = copy; 2535 task_unlock(task); 2536 return 0; 2537 } 2538 2539 int sysctl_max_threads(struct ctl_table *table, int write, 2540 void __user *buffer, size_t *lenp, loff_t *ppos) 2541 { 2542 struct ctl_table t; 2543 int ret; 2544 int threads = max_threads; 2545 int min = MIN_THREADS; 2546 int max = MAX_THREADS; 2547 2548 t = *table; 2549 t.data = &threads; 2550 t.extra1 = &min; 2551 t.extra2 = &max; 2552 2553 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2554 if (ret || !write) 2555 return ret; 2556 2557 set_max_threads(threads); 2558 2559 return 0; 2560 } 2561