xref: /openbmc/linux/kernel/fork.c (revision 8bd1369b)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169 
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 	int i;
190 
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *vm_stack = cached_vm_stacks[i];
193 
194 		if (!vm_stack)
195 			continue;
196 
197 		vfree(vm_stack->addr);
198 		cached_vm_stacks[i] = NULL;
199 	}
200 
201 	return 0;
202 }
203 #endif
204 
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 	void *stack;
209 	int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *s;
213 
214 		s = this_cpu_xchg(cached_stacks[i], NULL);
215 
216 		if (!s)
217 			continue;
218 
219 		/* Clear stale pointers from reused stack. */
220 		memset(s->addr, 0, THREAD_SIZE);
221 
222 		tsk->stack_vm_area = s;
223 		return s->addr;
224 	}
225 
226 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 				     VMALLOC_START, VMALLOC_END,
228 				     THREADINFO_GFP,
229 				     PAGE_KERNEL,
230 				     0, node, __builtin_return_address(0));
231 
232 	/*
233 	 * We can't call find_vm_area() in interrupt context, and
234 	 * free_thread_stack() can be called in interrupt context,
235 	 * so cache the vm_struct.
236 	 */
237 	if (stack)
238 		tsk->stack_vm_area = find_vm_area(stack);
239 	return stack;
240 #else
241 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 					     THREAD_SIZE_ORDER);
243 
244 	return page ? page_address(page) : NULL;
245 #endif
246 }
247 
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 	if (task_stack_vm_area(tsk)) {
252 		int i;
253 
254 		for (i = 0; i < NR_CACHED_STACKS; i++) {
255 			if (this_cpu_cmpxchg(cached_stacks[i],
256 					NULL, tsk->stack_vm_area) != NULL)
257 				continue;
258 
259 			return;
260 		}
261 
262 		vfree_atomic(tsk->stack);
263 		return;
264 	}
265 #endif
266 
267 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271 
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 						  int node)
274 {
275 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277 
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 	kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282 
283 void thread_stack_cache_init(void)
284 {
285 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286 					THREAD_SIZE, THREAD_SIZE, 0, 0,
287 					THREAD_SIZE, NULL);
288 	BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292 
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295 
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298 
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301 
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304 
305 /* SLAB cache for vm_area_struct structures */
306 static struct kmem_cache *vm_area_cachep;
307 
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310 
311 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
312 {
313 	struct vm_area_struct *vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
314 
315 	if (vma) {
316 		vma->vm_mm = mm;
317 		INIT_LIST_HEAD(&vma->anon_vma_chain);
318 	}
319 	return vma;
320 }
321 
322 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
323 {
324 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
325 
326 	if (new) {
327 		*new = *orig;
328 		INIT_LIST_HEAD(&new->anon_vma_chain);
329 	}
330 	return new;
331 }
332 
333 void vm_area_free(struct vm_area_struct *vma)
334 {
335 	kmem_cache_free(vm_area_cachep, vma);
336 }
337 
338 static void account_kernel_stack(struct task_struct *tsk, int account)
339 {
340 	void *stack = task_stack_page(tsk);
341 	struct vm_struct *vm = task_stack_vm_area(tsk);
342 
343 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
344 
345 	if (vm) {
346 		int i;
347 
348 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
349 
350 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
351 			mod_zone_page_state(page_zone(vm->pages[i]),
352 					    NR_KERNEL_STACK_KB,
353 					    PAGE_SIZE / 1024 * account);
354 		}
355 
356 		/* All stack pages belong to the same memcg. */
357 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
358 				     account * (THREAD_SIZE / 1024));
359 	} else {
360 		/*
361 		 * All stack pages are in the same zone and belong to the
362 		 * same memcg.
363 		 */
364 		struct page *first_page = virt_to_page(stack);
365 
366 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
367 				    THREAD_SIZE / 1024 * account);
368 
369 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
370 				     account * (THREAD_SIZE / 1024));
371 	}
372 }
373 
374 static void release_task_stack(struct task_struct *tsk)
375 {
376 	if (WARN_ON(tsk->state != TASK_DEAD))
377 		return;  /* Better to leak the stack than to free prematurely */
378 
379 	account_kernel_stack(tsk, -1);
380 	arch_release_thread_stack(tsk->stack);
381 	free_thread_stack(tsk);
382 	tsk->stack = NULL;
383 #ifdef CONFIG_VMAP_STACK
384 	tsk->stack_vm_area = NULL;
385 #endif
386 }
387 
388 #ifdef CONFIG_THREAD_INFO_IN_TASK
389 void put_task_stack(struct task_struct *tsk)
390 {
391 	if (atomic_dec_and_test(&tsk->stack_refcount))
392 		release_task_stack(tsk);
393 }
394 #endif
395 
396 void free_task(struct task_struct *tsk)
397 {
398 #ifndef CONFIG_THREAD_INFO_IN_TASK
399 	/*
400 	 * The task is finally done with both the stack and thread_info,
401 	 * so free both.
402 	 */
403 	release_task_stack(tsk);
404 #else
405 	/*
406 	 * If the task had a separate stack allocation, it should be gone
407 	 * by now.
408 	 */
409 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
410 #endif
411 	rt_mutex_debug_task_free(tsk);
412 	ftrace_graph_exit_task(tsk);
413 	put_seccomp_filter(tsk);
414 	arch_release_task_struct(tsk);
415 	if (tsk->flags & PF_KTHREAD)
416 		free_kthread_struct(tsk);
417 	free_task_struct(tsk);
418 }
419 EXPORT_SYMBOL(free_task);
420 
421 #ifdef CONFIG_MMU
422 static __latent_entropy int dup_mmap(struct mm_struct *mm,
423 					struct mm_struct *oldmm)
424 {
425 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
426 	struct rb_node **rb_link, *rb_parent;
427 	int retval;
428 	unsigned long charge;
429 	LIST_HEAD(uf);
430 
431 	uprobe_start_dup_mmap();
432 	if (down_write_killable(&oldmm->mmap_sem)) {
433 		retval = -EINTR;
434 		goto fail_uprobe_end;
435 	}
436 	flush_cache_dup_mm(oldmm);
437 	uprobe_dup_mmap(oldmm, mm);
438 	/*
439 	 * Not linked in yet - no deadlock potential:
440 	 */
441 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
442 
443 	/* No ordering required: file already has been exposed. */
444 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
445 
446 	mm->total_vm = oldmm->total_vm;
447 	mm->data_vm = oldmm->data_vm;
448 	mm->exec_vm = oldmm->exec_vm;
449 	mm->stack_vm = oldmm->stack_vm;
450 
451 	rb_link = &mm->mm_rb.rb_node;
452 	rb_parent = NULL;
453 	pprev = &mm->mmap;
454 	retval = ksm_fork(mm, oldmm);
455 	if (retval)
456 		goto out;
457 	retval = khugepaged_fork(mm, oldmm);
458 	if (retval)
459 		goto out;
460 
461 	prev = NULL;
462 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
463 		struct file *file;
464 
465 		if (mpnt->vm_flags & VM_DONTCOPY) {
466 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
467 			continue;
468 		}
469 		charge = 0;
470 		/*
471 		 * Don't duplicate many vmas if we've been oom-killed (for
472 		 * example)
473 		 */
474 		if (fatal_signal_pending(current)) {
475 			retval = -EINTR;
476 			goto out;
477 		}
478 		if (mpnt->vm_flags & VM_ACCOUNT) {
479 			unsigned long len = vma_pages(mpnt);
480 
481 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
482 				goto fail_nomem;
483 			charge = len;
484 		}
485 		tmp = vm_area_dup(mpnt);
486 		if (!tmp)
487 			goto fail_nomem;
488 		retval = vma_dup_policy(mpnt, tmp);
489 		if (retval)
490 			goto fail_nomem_policy;
491 		tmp->vm_mm = mm;
492 		retval = dup_userfaultfd(tmp, &uf);
493 		if (retval)
494 			goto fail_nomem_anon_vma_fork;
495 		if (tmp->vm_flags & VM_WIPEONFORK) {
496 			/* VM_WIPEONFORK gets a clean slate in the child. */
497 			tmp->anon_vma = NULL;
498 			if (anon_vma_prepare(tmp))
499 				goto fail_nomem_anon_vma_fork;
500 		} else if (anon_vma_fork(tmp, mpnt))
501 			goto fail_nomem_anon_vma_fork;
502 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
503 		tmp->vm_next = tmp->vm_prev = NULL;
504 		file = tmp->vm_file;
505 		if (file) {
506 			struct inode *inode = file_inode(file);
507 			struct address_space *mapping = file->f_mapping;
508 
509 			get_file(file);
510 			if (tmp->vm_flags & VM_DENYWRITE)
511 				atomic_dec(&inode->i_writecount);
512 			i_mmap_lock_write(mapping);
513 			if (tmp->vm_flags & VM_SHARED)
514 				atomic_inc(&mapping->i_mmap_writable);
515 			flush_dcache_mmap_lock(mapping);
516 			/* insert tmp into the share list, just after mpnt */
517 			vma_interval_tree_insert_after(tmp, mpnt,
518 					&mapping->i_mmap);
519 			flush_dcache_mmap_unlock(mapping);
520 			i_mmap_unlock_write(mapping);
521 		}
522 
523 		/*
524 		 * Clear hugetlb-related page reserves for children. This only
525 		 * affects MAP_PRIVATE mappings. Faults generated by the child
526 		 * are not guaranteed to succeed, even if read-only
527 		 */
528 		if (is_vm_hugetlb_page(tmp))
529 			reset_vma_resv_huge_pages(tmp);
530 
531 		/*
532 		 * Link in the new vma and copy the page table entries.
533 		 */
534 		*pprev = tmp;
535 		pprev = &tmp->vm_next;
536 		tmp->vm_prev = prev;
537 		prev = tmp;
538 
539 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
540 		rb_link = &tmp->vm_rb.rb_right;
541 		rb_parent = &tmp->vm_rb;
542 
543 		mm->map_count++;
544 		if (!(tmp->vm_flags & VM_WIPEONFORK))
545 			retval = copy_page_range(mm, oldmm, mpnt);
546 
547 		if (tmp->vm_ops && tmp->vm_ops->open)
548 			tmp->vm_ops->open(tmp);
549 
550 		if (retval)
551 			goto out;
552 	}
553 	/* a new mm has just been created */
554 	arch_dup_mmap(oldmm, mm);
555 	retval = 0;
556 out:
557 	up_write(&mm->mmap_sem);
558 	flush_tlb_mm(oldmm);
559 	up_write(&oldmm->mmap_sem);
560 	dup_userfaultfd_complete(&uf);
561 fail_uprobe_end:
562 	uprobe_end_dup_mmap();
563 	return retval;
564 fail_nomem_anon_vma_fork:
565 	mpol_put(vma_policy(tmp));
566 fail_nomem_policy:
567 	vm_area_free(tmp);
568 fail_nomem:
569 	retval = -ENOMEM;
570 	vm_unacct_memory(charge);
571 	goto out;
572 }
573 
574 static inline int mm_alloc_pgd(struct mm_struct *mm)
575 {
576 	mm->pgd = pgd_alloc(mm);
577 	if (unlikely(!mm->pgd))
578 		return -ENOMEM;
579 	return 0;
580 }
581 
582 static inline void mm_free_pgd(struct mm_struct *mm)
583 {
584 	pgd_free(mm, mm->pgd);
585 }
586 #else
587 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
588 {
589 	down_write(&oldmm->mmap_sem);
590 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
591 	up_write(&oldmm->mmap_sem);
592 	return 0;
593 }
594 #define mm_alloc_pgd(mm)	(0)
595 #define mm_free_pgd(mm)
596 #endif /* CONFIG_MMU */
597 
598 static void check_mm(struct mm_struct *mm)
599 {
600 	int i;
601 
602 	for (i = 0; i < NR_MM_COUNTERS; i++) {
603 		long x = atomic_long_read(&mm->rss_stat.count[i]);
604 
605 		if (unlikely(x))
606 			printk(KERN_ALERT "BUG: Bad rss-counter state "
607 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
608 	}
609 
610 	if (mm_pgtables_bytes(mm))
611 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
612 				mm_pgtables_bytes(mm));
613 
614 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
615 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
616 #endif
617 }
618 
619 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
620 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
621 
622 /*
623  * Called when the last reference to the mm
624  * is dropped: either by a lazy thread or by
625  * mmput. Free the page directory and the mm.
626  */
627 void __mmdrop(struct mm_struct *mm)
628 {
629 	BUG_ON(mm == &init_mm);
630 	WARN_ON_ONCE(mm == current->mm);
631 	WARN_ON_ONCE(mm == current->active_mm);
632 	mm_free_pgd(mm);
633 	destroy_context(mm);
634 	hmm_mm_destroy(mm);
635 	mmu_notifier_mm_destroy(mm);
636 	check_mm(mm);
637 	put_user_ns(mm->user_ns);
638 	free_mm(mm);
639 }
640 EXPORT_SYMBOL_GPL(__mmdrop);
641 
642 static void mmdrop_async_fn(struct work_struct *work)
643 {
644 	struct mm_struct *mm;
645 
646 	mm = container_of(work, struct mm_struct, async_put_work);
647 	__mmdrop(mm);
648 }
649 
650 static void mmdrop_async(struct mm_struct *mm)
651 {
652 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
653 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
654 		schedule_work(&mm->async_put_work);
655 	}
656 }
657 
658 static inline void free_signal_struct(struct signal_struct *sig)
659 {
660 	taskstats_tgid_free(sig);
661 	sched_autogroup_exit(sig);
662 	/*
663 	 * __mmdrop is not safe to call from softirq context on x86 due to
664 	 * pgd_dtor so postpone it to the async context
665 	 */
666 	if (sig->oom_mm)
667 		mmdrop_async(sig->oom_mm);
668 	kmem_cache_free(signal_cachep, sig);
669 }
670 
671 static inline void put_signal_struct(struct signal_struct *sig)
672 {
673 	if (atomic_dec_and_test(&sig->sigcnt))
674 		free_signal_struct(sig);
675 }
676 
677 void __put_task_struct(struct task_struct *tsk)
678 {
679 	WARN_ON(!tsk->exit_state);
680 	WARN_ON(atomic_read(&tsk->usage));
681 	WARN_ON(tsk == current);
682 
683 	cgroup_free(tsk);
684 	task_numa_free(tsk);
685 	security_task_free(tsk);
686 	exit_creds(tsk);
687 	delayacct_tsk_free(tsk);
688 	put_signal_struct(tsk->signal);
689 
690 	if (!profile_handoff_task(tsk))
691 		free_task(tsk);
692 }
693 EXPORT_SYMBOL_GPL(__put_task_struct);
694 
695 void __init __weak arch_task_cache_init(void) { }
696 
697 /*
698  * set_max_threads
699  */
700 static void set_max_threads(unsigned int max_threads_suggested)
701 {
702 	u64 threads;
703 
704 	/*
705 	 * The number of threads shall be limited such that the thread
706 	 * structures may only consume a small part of the available memory.
707 	 */
708 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
709 		threads = MAX_THREADS;
710 	else
711 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
712 				    (u64) THREAD_SIZE * 8UL);
713 
714 	if (threads > max_threads_suggested)
715 		threads = max_threads_suggested;
716 
717 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
718 }
719 
720 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
721 /* Initialized by the architecture: */
722 int arch_task_struct_size __read_mostly;
723 #endif
724 
725 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
726 {
727 	/* Fetch thread_struct whitelist for the architecture. */
728 	arch_thread_struct_whitelist(offset, size);
729 
730 	/*
731 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
732 	 * adjust offset to position of thread_struct in task_struct.
733 	 */
734 	if (unlikely(*size == 0))
735 		*offset = 0;
736 	else
737 		*offset += offsetof(struct task_struct, thread);
738 }
739 
740 void __init fork_init(void)
741 {
742 	int i;
743 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
744 #ifndef ARCH_MIN_TASKALIGN
745 #define ARCH_MIN_TASKALIGN	0
746 #endif
747 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
748 	unsigned long useroffset, usersize;
749 
750 	/* create a slab on which task_structs can be allocated */
751 	task_struct_whitelist(&useroffset, &usersize);
752 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
753 			arch_task_struct_size, align,
754 			SLAB_PANIC|SLAB_ACCOUNT,
755 			useroffset, usersize, NULL);
756 #endif
757 
758 	/* do the arch specific task caches init */
759 	arch_task_cache_init();
760 
761 	set_max_threads(MAX_THREADS);
762 
763 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
764 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
765 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
766 		init_task.signal->rlim[RLIMIT_NPROC];
767 
768 	for (i = 0; i < UCOUNT_COUNTS; i++) {
769 		init_user_ns.ucount_max[i] = max_threads/2;
770 	}
771 
772 #ifdef CONFIG_VMAP_STACK
773 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
774 			  NULL, free_vm_stack_cache);
775 #endif
776 
777 	lockdep_init_task(&init_task);
778 }
779 
780 int __weak arch_dup_task_struct(struct task_struct *dst,
781 					       struct task_struct *src)
782 {
783 	*dst = *src;
784 	return 0;
785 }
786 
787 void set_task_stack_end_magic(struct task_struct *tsk)
788 {
789 	unsigned long *stackend;
790 
791 	stackend = end_of_stack(tsk);
792 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
793 }
794 
795 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
796 {
797 	struct task_struct *tsk;
798 	unsigned long *stack;
799 	struct vm_struct *stack_vm_area;
800 	int err;
801 
802 	if (node == NUMA_NO_NODE)
803 		node = tsk_fork_get_node(orig);
804 	tsk = alloc_task_struct_node(node);
805 	if (!tsk)
806 		return NULL;
807 
808 	stack = alloc_thread_stack_node(tsk, node);
809 	if (!stack)
810 		goto free_tsk;
811 
812 	stack_vm_area = task_stack_vm_area(tsk);
813 
814 	err = arch_dup_task_struct(tsk, orig);
815 
816 	/*
817 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
818 	 * sure they're properly initialized before using any stack-related
819 	 * functions again.
820 	 */
821 	tsk->stack = stack;
822 #ifdef CONFIG_VMAP_STACK
823 	tsk->stack_vm_area = stack_vm_area;
824 #endif
825 #ifdef CONFIG_THREAD_INFO_IN_TASK
826 	atomic_set(&tsk->stack_refcount, 1);
827 #endif
828 
829 	if (err)
830 		goto free_stack;
831 
832 #ifdef CONFIG_SECCOMP
833 	/*
834 	 * We must handle setting up seccomp filters once we're under
835 	 * the sighand lock in case orig has changed between now and
836 	 * then. Until then, filter must be NULL to avoid messing up
837 	 * the usage counts on the error path calling free_task.
838 	 */
839 	tsk->seccomp.filter = NULL;
840 #endif
841 
842 	setup_thread_stack(tsk, orig);
843 	clear_user_return_notifier(tsk);
844 	clear_tsk_need_resched(tsk);
845 	set_task_stack_end_magic(tsk);
846 
847 #ifdef CONFIG_STACKPROTECTOR
848 	tsk->stack_canary = get_random_canary();
849 #endif
850 
851 	/*
852 	 * One for us, one for whoever does the "release_task()" (usually
853 	 * parent)
854 	 */
855 	atomic_set(&tsk->usage, 2);
856 #ifdef CONFIG_BLK_DEV_IO_TRACE
857 	tsk->btrace_seq = 0;
858 #endif
859 	tsk->splice_pipe = NULL;
860 	tsk->task_frag.page = NULL;
861 	tsk->wake_q.next = NULL;
862 
863 	account_kernel_stack(tsk, 1);
864 
865 	kcov_task_init(tsk);
866 
867 #ifdef CONFIG_FAULT_INJECTION
868 	tsk->fail_nth = 0;
869 #endif
870 
871 	return tsk;
872 
873 free_stack:
874 	free_thread_stack(tsk);
875 free_tsk:
876 	free_task_struct(tsk);
877 	return NULL;
878 }
879 
880 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
881 
882 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
883 
884 static int __init coredump_filter_setup(char *s)
885 {
886 	default_dump_filter =
887 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
888 		MMF_DUMP_FILTER_MASK;
889 	return 1;
890 }
891 
892 __setup("coredump_filter=", coredump_filter_setup);
893 
894 #include <linux/init_task.h>
895 
896 static void mm_init_aio(struct mm_struct *mm)
897 {
898 #ifdef CONFIG_AIO
899 	spin_lock_init(&mm->ioctx_lock);
900 	mm->ioctx_table = NULL;
901 #endif
902 }
903 
904 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
905 {
906 #ifdef CONFIG_MEMCG
907 	mm->owner = p;
908 #endif
909 }
910 
911 static void mm_init_uprobes_state(struct mm_struct *mm)
912 {
913 #ifdef CONFIG_UPROBES
914 	mm->uprobes_state.xol_area = NULL;
915 #endif
916 }
917 
918 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
919 	struct user_namespace *user_ns)
920 {
921 	mm->mmap = NULL;
922 	mm->mm_rb = RB_ROOT;
923 	mm->vmacache_seqnum = 0;
924 	atomic_set(&mm->mm_users, 1);
925 	atomic_set(&mm->mm_count, 1);
926 	init_rwsem(&mm->mmap_sem);
927 	INIT_LIST_HEAD(&mm->mmlist);
928 	mm->core_state = NULL;
929 	mm_pgtables_bytes_init(mm);
930 	mm->map_count = 0;
931 	mm->locked_vm = 0;
932 	mm->pinned_vm = 0;
933 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
934 	spin_lock_init(&mm->page_table_lock);
935 	spin_lock_init(&mm->arg_lock);
936 	mm_init_cpumask(mm);
937 	mm_init_aio(mm);
938 	mm_init_owner(mm, p);
939 	RCU_INIT_POINTER(mm->exe_file, NULL);
940 	mmu_notifier_mm_init(mm);
941 	hmm_mm_init(mm);
942 	init_tlb_flush_pending(mm);
943 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
944 	mm->pmd_huge_pte = NULL;
945 #endif
946 	mm_init_uprobes_state(mm);
947 
948 	if (current->mm) {
949 		mm->flags = current->mm->flags & MMF_INIT_MASK;
950 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
951 	} else {
952 		mm->flags = default_dump_filter;
953 		mm->def_flags = 0;
954 	}
955 
956 	if (mm_alloc_pgd(mm))
957 		goto fail_nopgd;
958 
959 	if (init_new_context(p, mm))
960 		goto fail_nocontext;
961 
962 	mm->user_ns = get_user_ns(user_ns);
963 	return mm;
964 
965 fail_nocontext:
966 	mm_free_pgd(mm);
967 fail_nopgd:
968 	free_mm(mm);
969 	return NULL;
970 }
971 
972 /*
973  * Allocate and initialize an mm_struct.
974  */
975 struct mm_struct *mm_alloc(void)
976 {
977 	struct mm_struct *mm;
978 
979 	mm = allocate_mm();
980 	if (!mm)
981 		return NULL;
982 
983 	memset(mm, 0, sizeof(*mm));
984 	return mm_init(mm, current, current_user_ns());
985 }
986 
987 static inline void __mmput(struct mm_struct *mm)
988 {
989 	VM_BUG_ON(atomic_read(&mm->mm_users));
990 
991 	uprobe_clear_state(mm);
992 	exit_aio(mm);
993 	ksm_exit(mm);
994 	khugepaged_exit(mm); /* must run before exit_mmap */
995 	exit_mmap(mm);
996 	mm_put_huge_zero_page(mm);
997 	set_mm_exe_file(mm, NULL);
998 	if (!list_empty(&mm->mmlist)) {
999 		spin_lock(&mmlist_lock);
1000 		list_del(&mm->mmlist);
1001 		spin_unlock(&mmlist_lock);
1002 	}
1003 	if (mm->binfmt)
1004 		module_put(mm->binfmt->module);
1005 	mmdrop(mm);
1006 }
1007 
1008 /*
1009  * Decrement the use count and release all resources for an mm.
1010  */
1011 void mmput(struct mm_struct *mm)
1012 {
1013 	might_sleep();
1014 
1015 	if (atomic_dec_and_test(&mm->mm_users))
1016 		__mmput(mm);
1017 }
1018 EXPORT_SYMBOL_GPL(mmput);
1019 
1020 #ifdef CONFIG_MMU
1021 static void mmput_async_fn(struct work_struct *work)
1022 {
1023 	struct mm_struct *mm = container_of(work, struct mm_struct,
1024 					    async_put_work);
1025 
1026 	__mmput(mm);
1027 }
1028 
1029 void mmput_async(struct mm_struct *mm)
1030 {
1031 	if (atomic_dec_and_test(&mm->mm_users)) {
1032 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1033 		schedule_work(&mm->async_put_work);
1034 	}
1035 }
1036 #endif
1037 
1038 /**
1039  * set_mm_exe_file - change a reference to the mm's executable file
1040  *
1041  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1042  *
1043  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1044  * invocations: in mmput() nobody alive left, in execve task is single
1045  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1046  * mm->exe_file, but does so without using set_mm_exe_file() in order
1047  * to do avoid the need for any locks.
1048  */
1049 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1050 {
1051 	struct file *old_exe_file;
1052 
1053 	/*
1054 	 * It is safe to dereference the exe_file without RCU as
1055 	 * this function is only called if nobody else can access
1056 	 * this mm -- see comment above for justification.
1057 	 */
1058 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1059 
1060 	if (new_exe_file)
1061 		get_file(new_exe_file);
1062 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1063 	if (old_exe_file)
1064 		fput(old_exe_file);
1065 }
1066 
1067 /**
1068  * get_mm_exe_file - acquire a reference to the mm's executable file
1069  *
1070  * Returns %NULL if mm has no associated executable file.
1071  * User must release file via fput().
1072  */
1073 struct file *get_mm_exe_file(struct mm_struct *mm)
1074 {
1075 	struct file *exe_file;
1076 
1077 	rcu_read_lock();
1078 	exe_file = rcu_dereference(mm->exe_file);
1079 	if (exe_file && !get_file_rcu(exe_file))
1080 		exe_file = NULL;
1081 	rcu_read_unlock();
1082 	return exe_file;
1083 }
1084 EXPORT_SYMBOL(get_mm_exe_file);
1085 
1086 /**
1087  * get_task_exe_file - acquire a reference to the task's executable file
1088  *
1089  * Returns %NULL if task's mm (if any) has no associated executable file or
1090  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1091  * User must release file via fput().
1092  */
1093 struct file *get_task_exe_file(struct task_struct *task)
1094 {
1095 	struct file *exe_file = NULL;
1096 	struct mm_struct *mm;
1097 
1098 	task_lock(task);
1099 	mm = task->mm;
1100 	if (mm) {
1101 		if (!(task->flags & PF_KTHREAD))
1102 			exe_file = get_mm_exe_file(mm);
1103 	}
1104 	task_unlock(task);
1105 	return exe_file;
1106 }
1107 EXPORT_SYMBOL(get_task_exe_file);
1108 
1109 /**
1110  * get_task_mm - acquire a reference to the task's mm
1111  *
1112  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1113  * this kernel workthread has transiently adopted a user mm with use_mm,
1114  * to do its AIO) is not set and if so returns a reference to it, after
1115  * bumping up the use count.  User must release the mm via mmput()
1116  * after use.  Typically used by /proc and ptrace.
1117  */
1118 struct mm_struct *get_task_mm(struct task_struct *task)
1119 {
1120 	struct mm_struct *mm;
1121 
1122 	task_lock(task);
1123 	mm = task->mm;
1124 	if (mm) {
1125 		if (task->flags & PF_KTHREAD)
1126 			mm = NULL;
1127 		else
1128 			mmget(mm);
1129 	}
1130 	task_unlock(task);
1131 	return mm;
1132 }
1133 EXPORT_SYMBOL_GPL(get_task_mm);
1134 
1135 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1136 {
1137 	struct mm_struct *mm;
1138 	int err;
1139 
1140 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1141 	if (err)
1142 		return ERR_PTR(err);
1143 
1144 	mm = get_task_mm(task);
1145 	if (mm && mm != current->mm &&
1146 			!ptrace_may_access(task, mode)) {
1147 		mmput(mm);
1148 		mm = ERR_PTR(-EACCES);
1149 	}
1150 	mutex_unlock(&task->signal->cred_guard_mutex);
1151 
1152 	return mm;
1153 }
1154 
1155 static void complete_vfork_done(struct task_struct *tsk)
1156 {
1157 	struct completion *vfork;
1158 
1159 	task_lock(tsk);
1160 	vfork = tsk->vfork_done;
1161 	if (likely(vfork)) {
1162 		tsk->vfork_done = NULL;
1163 		complete(vfork);
1164 	}
1165 	task_unlock(tsk);
1166 }
1167 
1168 static int wait_for_vfork_done(struct task_struct *child,
1169 				struct completion *vfork)
1170 {
1171 	int killed;
1172 
1173 	freezer_do_not_count();
1174 	killed = wait_for_completion_killable(vfork);
1175 	freezer_count();
1176 
1177 	if (killed) {
1178 		task_lock(child);
1179 		child->vfork_done = NULL;
1180 		task_unlock(child);
1181 	}
1182 
1183 	put_task_struct(child);
1184 	return killed;
1185 }
1186 
1187 /* Please note the differences between mmput and mm_release.
1188  * mmput is called whenever we stop holding onto a mm_struct,
1189  * error success whatever.
1190  *
1191  * mm_release is called after a mm_struct has been removed
1192  * from the current process.
1193  *
1194  * This difference is important for error handling, when we
1195  * only half set up a mm_struct for a new process and need to restore
1196  * the old one.  Because we mmput the new mm_struct before
1197  * restoring the old one. . .
1198  * Eric Biederman 10 January 1998
1199  */
1200 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1201 {
1202 	/* Get rid of any futexes when releasing the mm */
1203 #ifdef CONFIG_FUTEX
1204 	if (unlikely(tsk->robust_list)) {
1205 		exit_robust_list(tsk);
1206 		tsk->robust_list = NULL;
1207 	}
1208 #ifdef CONFIG_COMPAT
1209 	if (unlikely(tsk->compat_robust_list)) {
1210 		compat_exit_robust_list(tsk);
1211 		tsk->compat_robust_list = NULL;
1212 	}
1213 #endif
1214 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1215 		exit_pi_state_list(tsk);
1216 #endif
1217 
1218 	uprobe_free_utask(tsk);
1219 
1220 	/* Get rid of any cached register state */
1221 	deactivate_mm(tsk, mm);
1222 
1223 	/*
1224 	 * Signal userspace if we're not exiting with a core dump
1225 	 * because we want to leave the value intact for debugging
1226 	 * purposes.
1227 	 */
1228 	if (tsk->clear_child_tid) {
1229 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1230 		    atomic_read(&mm->mm_users) > 1) {
1231 			/*
1232 			 * We don't check the error code - if userspace has
1233 			 * not set up a proper pointer then tough luck.
1234 			 */
1235 			put_user(0, tsk->clear_child_tid);
1236 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1237 					1, NULL, NULL, 0, 0);
1238 		}
1239 		tsk->clear_child_tid = NULL;
1240 	}
1241 
1242 	/*
1243 	 * All done, finally we can wake up parent and return this mm to him.
1244 	 * Also kthread_stop() uses this completion for synchronization.
1245 	 */
1246 	if (tsk->vfork_done)
1247 		complete_vfork_done(tsk);
1248 }
1249 
1250 /*
1251  * Allocate a new mm structure and copy contents from the
1252  * mm structure of the passed in task structure.
1253  */
1254 static struct mm_struct *dup_mm(struct task_struct *tsk)
1255 {
1256 	struct mm_struct *mm, *oldmm = current->mm;
1257 	int err;
1258 
1259 	mm = allocate_mm();
1260 	if (!mm)
1261 		goto fail_nomem;
1262 
1263 	memcpy(mm, oldmm, sizeof(*mm));
1264 
1265 	if (!mm_init(mm, tsk, mm->user_ns))
1266 		goto fail_nomem;
1267 
1268 	err = dup_mmap(mm, oldmm);
1269 	if (err)
1270 		goto free_pt;
1271 
1272 	mm->hiwater_rss = get_mm_rss(mm);
1273 	mm->hiwater_vm = mm->total_vm;
1274 
1275 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1276 		goto free_pt;
1277 
1278 	return mm;
1279 
1280 free_pt:
1281 	/* don't put binfmt in mmput, we haven't got module yet */
1282 	mm->binfmt = NULL;
1283 	mmput(mm);
1284 
1285 fail_nomem:
1286 	return NULL;
1287 }
1288 
1289 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1290 {
1291 	struct mm_struct *mm, *oldmm;
1292 	int retval;
1293 
1294 	tsk->min_flt = tsk->maj_flt = 0;
1295 	tsk->nvcsw = tsk->nivcsw = 0;
1296 #ifdef CONFIG_DETECT_HUNG_TASK
1297 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1298 #endif
1299 
1300 	tsk->mm = NULL;
1301 	tsk->active_mm = NULL;
1302 
1303 	/*
1304 	 * Are we cloning a kernel thread?
1305 	 *
1306 	 * We need to steal a active VM for that..
1307 	 */
1308 	oldmm = current->mm;
1309 	if (!oldmm)
1310 		return 0;
1311 
1312 	/* initialize the new vmacache entries */
1313 	vmacache_flush(tsk);
1314 
1315 	if (clone_flags & CLONE_VM) {
1316 		mmget(oldmm);
1317 		mm = oldmm;
1318 		goto good_mm;
1319 	}
1320 
1321 	retval = -ENOMEM;
1322 	mm = dup_mm(tsk);
1323 	if (!mm)
1324 		goto fail_nomem;
1325 
1326 good_mm:
1327 	tsk->mm = mm;
1328 	tsk->active_mm = mm;
1329 	return 0;
1330 
1331 fail_nomem:
1332 	return retval;
1333 }
1334 
1335 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1336 {
1337 	struct fs_struct *fs = current->fs;
1338 	if (clone_flags & CLONE_FS) {
1339 		/* tsk->fs is already what we want */
1340 		spin_lock(&fs->lock);
1341 		if (fs->in_exec) {
1342 			spin_unlock(&fs->lock);
1343 			return -EAGAIN;
1344 		}
1345 		fs->users++;
1346 		spin_unlock(&fs->lock);
1347 		return 0;
1348 	}
1349 	tsk->fs = copy_fs_struct(fs);
1350 	if (!tsk->fs)
1351 		return -ENOMEM;
1352 	return 0;
1353 }
1354 
1355 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1356 {
1357 	struct files_struct *oldf, *newf;
1358 	int error = 0;
1359 
1360 	/*
1361 	 * A background process may not have any files ...
1362 	 */
1363 	oldf = current->files;
1364 	if (!oldf)
1365 		goto out;
1366 
1367 	if (clone_flags & CLONE_FILES) {
1368 		atomic_inc(&oldf->count);
1369 		goto out;
1370 	}
1371 
1372 	newf = dup_fd(oldf, &error);
1373 	if (!newf)
1374 		goto out;
1375 
1376 	tsk->files = newf;
1377 	error = 0;
1378 out:
1379 	return error;
1380 }
1381 
1382 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1383 {
1384 #ifdef CONFIG_BLOCK
1385 	struct io_context *ioc = current->io_context;
1386 	struct io_context *new_ioc;
1387 
1388 	if (!ioc)
1389 		return 0;
1390 	/*
1391 	 * Share io context with parent, if CLONE_IO is set
1392 	 */
1393 	if (clone_flags & CLONE_IO) {
1394 		ioc_task_link(ioc);
1395 		tsk->io_context = ioc;
1396 	} else if (ioprio_valid(ioc->ioprio)) {
1397 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1398 		if (unlikely(!new_ioc))
1399 			return -ENOMEM;
1400 
1401 		new_ioc->ioprio = ioc->ioprio;
1402 		put_io_context(new_ioc);
1403 	}
1404 #endif
1405 	return 0;
1406 }
1407 
1408 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1409 {
1410 	struct sighand_struct *sig;
1411 
1412 	if (clone_flags & CLONE_SIGHAND) {
1413 		atomic_inc(&current->sighand->count);
1414 		return 0;
1415 	}
1416 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1417 	rcu_assign_pointer(tsk->sighand, sig);
1418 	if (!sig)
1419 		return -ENOMEM;
1420 
1421 	atomic_set(&sig->count, 1);
1422 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1423 	return 0;
1424 }
1425 
1426 void __cleanup_sighand(struct sighand_struct *sighand)
1427 {
1428 	if (atomic_dec_and_test(&sighand->count)) {
1429 		signalfd_cleanup(sighand);
1430 		/*
1431 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1432 		 * without an RCU grace period, see __lock_task_sighand().
1433 		 */
1434 		kmem_cache_free(sighand_cachep, sighand);
1435 	}
1436 }
1437 
1438 #ifdef CONFIG_POSIX_TIMERS
1439 /*
1440  * Initialize POSIX timer handling for a thread group.
1441  */
1442 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1443 {
1444 	unsigned long cpu_limit;
1445 
1446 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1447 	if (cpu_limit != RLIM_INFINITY) {
1448 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1449 		sig->cputimer.running = true;
1450 	}
1451 
1452 	/* The timer lists. */
1453 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1454 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1455 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1456 }
1457 #else
1458 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1459 #endif
1460 
1461 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1462 {
1463 	struct signal_struct *sig;
1464 
1465 	if (clone_flags & CLONE_THREAD)
1466 		return 0;
1467 
1468 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1469 	tsk->signal = sig;
1470 	if (!sig)
1471 		return -ENOMEM;
1472 
1473 	sig->nr_threads = 1;
1474 	atomic_set(&sig->live, 1);
1475 	atomic_set(&sig->sigcnt, 1);
1476 
1477 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1478 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1479 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1480 
1481 	init_waitqueue_head(&sig->wait_chldexit);
1482 	sig->curr_target = tsk;
1483 	init_sigpending(&sig->shared_pending);
1484 	seqlock_init(&sig->stats_lock);
1485 	prev_cputime_init(&sig->prev_cputime);
1486 
1487 #ifdef CONFIG_POSIX_TIMERS
1488 	INIT_LIST_HEAD(&sig->posix_timers);
1489 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1490 	sig->real_timer.function = it_real_fn;
1491 #endif
1492 
1493 	task_lock(current->group_leader);
1494 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1495 	task_unlock(current->group_leader);
1496 
1497 	posix_cpu_timers_init_group(sig);
1498 
1499 	tty_audit_fork(sig);
1500 	sched_autogroup_fork(sig);
1501 
1502 	sig->oom_score_adj = current->signal->oom_score_adj;
1503 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1504 
1505 	mutex_init(&sig->cred_guard_mutex);
1506 
1507 	return 0;
1508 }
1509 
1510 static void copy_seccomp(struct task_struct *p)
1511 {
1512 #ifdef CONFIG_SECCOMP
1513 	/*
1514 	 * Must be called with sighand->lock held, which is common to
1515 	 * all threads in the group. Holding cred_guard_mutex is not
1516 	 * needed because this new task is not yet running and cannot
1517 	 * be racing exec.
1518 	 */
1519 	assert_spin_locked(&current->sighand->siglock);
1520 
1521 	/* Ref-count the new filter user, and assign it. */
1522 	get_seccomp_filter(current);
1523 	p->seccomp = current->seccomp;
1524 
1525 	/*
1526 	 * Explicitly enable no_new_privs here in case it got set
1527 	 * between the task_struct being duplicated and holding the
1528 	 * sighand lock. The seccomp state and nnp must be in sync.
1529 	 */
1530 	if (task_no_new_privs(current))
1531 		task_set_no_new_privs(p);
1532 
1533 	/*
1534 	 * If the parent gained a seccomp mode after copying thread
1535 	 * flags and between before we held the sighand lock, we have
1536 	 * to manually enable the seccomp thread flag here.
1537 	 */
1538 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1539 		set_tsk_thread_flag(p, TIF_SECCOMP);
1540 #endif
1541 }
1542 
1543 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1544 {
1545 	current->clear_child_tid = tidptr;
1546 
1547 	return task_pid_vnr(current);
1548 }
1549 
1550 static void rt_mutex_init_task(struct task_struct *p)
1551 {
1552 	raw_spin_lock_init(&p->pi_lock);
1553 #ifdef CONFIG_RT_MUTEXES
1554 	p->pi_waiters = RB_ROOT_CACHED;
1555 	p->pi_top_task = NULL;
1556 	p->pi_blocked_on = NULL;
1557 #endif
1558 }
1559 
1560 #ifdef CONFIG_POSIX_TIMERS
1561 /*
1562  * Initialize POSIX timer handling for a single task.
1563  */
1564 static void posix_cpu_timers_init(struct task_struct *tsk)
1565 {
1566 	tsk->cputime_expires.prof_exp = 0;
1567 	tsk->cputime_expires.virt_exp = 0;
1568 	tsk->cputime_expires.sched_exp = 0;
1569 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1570 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1571 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1572 }
1573 #else
1574 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1575 #endif
1576 
1577 static inline void
1578 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1579 {
1580 	 task->pids[type].pid = pid;
1581 }
1582 
1583 static inline void rcu_copy_process(struct task_struct *p)
1584 {
1585 #ifdef CONFIG_PREEMPT_RCU
1586 	p->rcu_read_lock_nesting = 0;
1587 	p->rcu_read_unlock_special.s = 0;
1588 	p->rcu_blocked_node = NULL;
1589 	INIT_LIST_HEAD(&p->rcu_node_entry);
1590 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1591 #ifdef CONFIG_TASKS_RCU
1592 	p->rcu_tasks_holdout = false;
1593 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1594 	p->rcu_tasks_idle_cpu = -1;
1595 #endif /* #ifdef CONFIG_TASKS_RCU */
1596 }
1597 
1598 /*
1599  * This creates a new process as a copy of the old one,
1600  * but does not actually start it yet.
1601  *
1602  * It copies the registers, and all the appropriate
1603  * parts of the process environment (as per the clone
1604  * flags). The actual kick-off is left to the caller.
1605  */
1606 static __latent_entropy struct task_struct *copy_process(
1607 					unsigned long clone_flags,
1608 					unsigned long stack_start,
1609 					unsigned long stack_size,
1610 					int __user *child_tidptr,
1611 					struct pid *pid,
1612 					int trace,
1613 					unsigned long tls,
1614 					int node)
1615 {
1616 	int retval;
1617 	struct task_struct *p;
1618 
1619 	/*
1620 	 * Don't allow sharing the root directory with processes in a different
1621 	 * namespace
1622 	 */
1623 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1624 		return ERR_PTR(-EINVAL);
1625 
1626 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1627 		return ERR_PTR(-EINVAL);
1628 
1629 	/*
1630 	 * Thread groups must share signals as well, and detached threads
1631 	 * can only be started up within the thread group.
1632 	 */
1633 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1634 		return ERR_PTR(-EINVAL);
1635 
1636 	/*
1637 	 * Shared signal handlers imply shared VM. By way of the above,
1638 	 * thread groups also imply shared VM. Blocking this case allows
1639 	 * for various simplifications in other code.
1640 	 */
1641 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1642 		return ERR_PTR(-EINVAL);
1643 
1644 	/*
1645 	 * Siblings of global init remain as zombies on exit since they are
1646 	 * not reaped by their parent (swapper). To solve this and to avoid
1647 	 * multi-rooted process trees, prevent global and container-inits
1648 	 * from creating siblings.
1649 	 */
1650 	if ((clone_flags & CLONE_PARENT) &&
1651 				current->signal->flags & SIGNAL_UNKILLABLE)
1652 		return ERR_PTR(-EINVAL);
1653 
1654 	/*
1655 	 * If the new process will be in a different pid or user namespace
1656 	 * do not allow it to share a thread group with the forking task.
1657 	 */
1658 	if (clone_flags & CLONE_THREAD) {
1659 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1660 		    (task_active_pid_ns(current) !=
1661 				current->nsproxy->pid_ns_for_children))
1662 			return ERR_PTR(-EINVAL);
1663 	}
1664 
1665 	retval = -ENOMEM;
1666 	p = dup_task_struct(current, node);
1667 	if (!p)
1668 		goto fork_out;
1669 
1670 	/*
1671 	 * This _must_ happen before we call free_task(), i.e. before we jump
1672 	 * to any of the bad_fork_* labels. This is to avoid freeing
1673 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1674 	 * kernel threads (PF_KTHREAD).
1675 	 */
1676 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1677 	/*
1678 	 * Clear TID on mm_release()?
1679 	 */
1680 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1681 
1682 	ftrace_graph_init_task(p);
1683 
1684 	rt_mutex_init_task(p);
1685 
1686 #ifdef CONFIG_PROVE_LOCKING
1687 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1688 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1689 #endif
1690 	retval = -EAGAIN;
1691 	if (atomic_read(&p->real_cred->user->processes) >=
1692 			task_rlimit(p, RLIMIT_NPROC)) {
1693 		if (p->real_cred->user != INIT_USER &&
1694 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1695 			goto bad_fork_free;
1696 	}
1697 	current->flags &= ~PF_NPROC_EXCEEDED;
1698 
1699 	retval = copy_creds(p, clone_flags);
1700 	if (retval < 0)
1701 		goto bad_fork_free;
1702 
1703 	/*
1704 	 * If multiple threads are within copy_process(), then this check
1705 	 * triggers too late. This doesn't hurt, the check is only there
1706 	 * to stop root fork bombs.
1707 	 */
1708 	retval = -EAGAIN;
1709 	if (nr_threads >= max_threads)
1710 		goto bad_fork_cleanup_count;
1711 
1712 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1713 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1714 	p->flags |= PF_FORKNOEXEC;
1715 	INIT_LIST_HEAD(&p->children);
1716 	INIT_LIST_HEAD(&p->sibling);
1717 	rcu_copy_process(p);
1718 	p->vfork_done = NULL;
1719 	spin_lock_init(&p->alloc_lock);
1720 
1721 	init_sigpending(&p->pending);
1722 
1723 	p->utime = p->stime = p->gtime = 0;
1724 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1725 	p->utimescaled = p->stimescaled = 0;
1726 #endif
1727 	prev_cputime_init(&p->prev_cputime);
1728 
1729 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1730 	seqcount_init(&p->vtime.seqcount);
1731 	p->vtime.starttime = 0;
1732 	p->vtime.state = VTIME_INACTIVE;
1733 #endif
1734 
1735 #if defined(SPLIT_RSS_COUNTING)
1736 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1737 #endif
1738 
1739 	p->default_timer_slack_ns = current->timer_slack_ns;
1740 
1741 	task_io_accounting_init(&p->ioac);
1742 	acct_clear_integrals(p);
1743 
1744 	posix_cpu_timers_init(p);
1745 
1746 	p->start_time = ktime_get_ns();
1747 	p->real_start_time = ktime_get_boot_ns();
1748 	p->io_context = NULL;
1749 	audit_set_context(p, NULL);
1750 	cgroup_fork(p);
1751 #ifdef CONFIG_NUMA
1752 	p->mempolicy = mpol_dup(p->mempolicy);
1753 	if (IS_ERR(p->mempolicy)) {
1754 		retval = PTR_ERR(p->mempolicy);
1755 		p->mempolicy = NULL;
1756 		goto bad_fork_cleanup_threadgroup_lock;
1757 	}
1758 #endif
1759 #ifdef CONFIG_CPUSETS
1760 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1761 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1762 	seqcount_init(&p->mems_allowed_seq);
1763 #endif
1764 #ifdef CONFIG_TRACE_IRQFLAGS
1765 	p->irq_events = 0;
1766 	p->hardirqs_enabled = 0;
1767 	p->hardirq_enable_ip = 0;
1768 	p->hardirq_enable_event = 0;
1769 	p->hardirq_disable_ip = _THIS_IP_;
1770 	p->hardirq_disable_event = 0;
1771 	p->softirqs_enabled = 1;
1772 	p->softirq_enable_ip = _THIS_IP_;
1773 	p->softirq_enable_event = 0;
1774 	p->softirq_disable_ip = 0;
1775 	p->softirq_disable_event = 0;
1776 	p->hardirq_context = 0;
1777 	p->softirq_context = 0;
1778 #endif
1779 
1780 	p->pagefault_disabled = 0;
1781 
1782 #ifdef CONFIG_LOCKDEP
1783 	p->lockdep_depth = 0; /* no locks held yet */
1784 	p->curr_chain_key = 0;
1785 	p->lockdep_recursion = 0;
1786 	lockdep_init_task(p);
1787 #endif
1788 
1789 #ifdef CONFIG_DEBUG_MUTEXES
1790 	p->blocked_on = NULL; /* not blocked yet */
1791 #endif
1792 #ifdef CONFIG_BCACHE
1793 	p->sequential_io	= 0;
1794 	p->sequential_io_avg	= 0;
1795 #endif
1796 
1797 	/* Perform scheduler related setup. Assign this task to a CPU. */
1798 	retval = sched_fork(clone_flags, p);
1799 	if (retval)
1800 		goto bad_fork_cleanup_policy;
1801 
1802 	retval = perf_event_init_task(p);
1803 	if (retval)
1804 		goto bad_fork_cleanup_policy;
1805 	retval = audit_alloc(p);
1806 	if (retval)
1807 		goto bad_fork_cleanup_perf;
1808 	/* copy all the process information */
1809 	shm_init_task(p);
1810 	retval = security_task_alloc(p, clone_flags);
1811 	if (retval)
1812 		goto bad_fork_cleanup_audit;
1813 	retval = copy_semundo(clone_flags, p);
1814 	if (retval)
1815 		goto bad_fork_cleanup_security;
1816 	retval = copy_files(clone_flags, p);
1817 	if (retval)
1818 		goto bad_fork_cleanup_semundo;
1819 	retval = copy_fs(clone_flags, p);
1820 	if (retval)
1821 		goto bad_fork_cleanup_files;
1822 	retval = copy_sighand(clone_flags, p);
1823 	if (retval)
1824 		goto bad_fork_cleanup_fs;
1825 	retval = copy_signal(clone_flags, p);
1826 	if (retval)
1827 		goto bad_fork_cleanup_sighand;
1828 	retval = copy_mm(clone_flags, p);
1829 	if (retval)
1830 		goto bad_fork_cleanup_signal;
1831 	retval = copy_namespaces(clone_flags, p);
1832 	if (retval)
1833 		goto bad_fork_cleanup_mm;
1834 	retval = copy_io(clone_flags, p);
1835 	if (retval)
1836 		goto bad_fork_cleanup_namespaces;
1837 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1838 	if (retval)
1839 		goto bad_fork_cleanup_io;
1840 
1841 	if (pid != &init_struct_pid) {
1842 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1843 		if (IS_ERR(pid)) {
1844 			retval = PTR_ERR(pid);
1845 			goto bad_fork_cleanup_thread;
1846 		}
1847 	}
1848 
1849 #ifdef CONFIG_BLOCK
1850 	p->plug = NULL;
1851 #endif
1852 #ifdef CONFIG_FUTEX
1853 	p->robust_list = NULL;
1854 #ifdef CONFIG_COMPAT
1855 	p->compat_robust_list = NULL;
1856 #endif
1857 	INIT_LIST_HEAD(&p->pi_state_list);
1858 	p->pi_state_cache = NULL;
1859 #endif
1860 	/*
1861 	 * sigaltstack should be cleared when sharing the same VM
1862 	 */
1863 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1864 		sas_ss_reset(p);
1865 
1866 	/*
1867 	 * Syscall tracing and stepping should be turned off in the
1868 	 * child regardless of CLONE_PTRACE.
1869 	 */
1870 	user_disable_single_step(p);
1871 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1872 #ifdef TIF_SYSCALL_EMU
1873 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1874 #endif
1875 	clear_all_latency_tracing(p);
1876 
1877 	/* ok, now we should be set up.. */
1878 	p->pid = pid_nr(pid);
1879 	if (clone_flags & CLONE_THREAD) {
1880 		p->exit_signal = -1;
1881 		p->group_leader = current->group_leader;
1882 		p->tgid = current->tgid;
1883 	} else {
1884 		if (clone_flags & CLONE_PARENT)
1885 			p->exit_signal = current->group_leader->exit_signal;
1886 		else
1887 			p->exit_signal = (clone_flags & CSIGNAL);
1888 		p->group_leader = p;
1889 		p->tgid = p->pid;
1890 	}
1891 
1892 	p->nr_dirtied = 0;
1893 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1894 	p->dirty_paused_when = 0;
1895 
1896 	p->pdeath_signal = 0;
1897 	INIT_LIST_HEAD(&p->thread_group);
1898 	p->task_works = NULL;
1899 
1900 	cgroup_threadgroup_change_begin(current);
1901 	/*
1902 	 * Ensure that the cgroup subsystem policies allow the new process to be
1903 	 * forked. It should be noted the the new process's css_set can be changed
1904 	 * between here and cgroup_post_fork() if an organisation operation is in
1905 	 * progress.
1906 	 */
1907 	retval = cgroup_can_fork(p);
1908 	if (retval)
1909 		goto bad_fork_free_pid;
1910 
1911 	/*
1912 	 * Make it visible to the rest of the system, but dont wake it up yet.
1913 	 * Need tasklist lock for parent etc handling!
1914 	 */
1915 	write_lock_irq(&tasklist_lock);
1916 
1917 	/* CLONE_PARENT re-uses the old parent */
1918 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1919 		p->real_parent = current->real_parent;
1920 		p->parent_exec_id = current->parent_exec_id;
1921 	} else {
1922 		p->real_parent = current;
1923 		p->parent_exec_id = current->self_exec_id;
1924 	}
1925 
1926 	klp_copy_process(p);
1927 
1928 	spin_lock(&current->sighand->siglock);
1929 
1930 	/*
1931 	 * Copy seccomp details explicitly here, in case they were changed
1932 	 * before holding sighand lock.
1933 	 */
1934 	copy_seccomp(p);
1935 
1936 	rseq_fork(p, clone_flags);
1937 
1938 	/*
1939 	 * Process group and session signals need to be delivered to just the
1940 	 * parent before the fork or both the parent and the child after the
1941 	 * fork. Restart if a signal comes in before we add the new process to
1942 	 * it's process group.
1943 	 * A fatal signal pending means that current will exit, so the new
1944 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1945 	*/
1946 	recalc_sigpending();
1947 	if (signal_pending(current)) {
1948 		retval = -ERESTARTNOINTR;
1949 		goto bad_fork_cancel_cgroup;
1950 	}
1951 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1952 		retval = -ENOMEM;
1953 		goto bad_fork_cancel_cgroup;
1954 	}
1955 
1956 	if (likely(p->pid)) {
1957 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1958 
1959 		init_task_pid(p, PIDTYPE_PID, pid);
1960 		if (thread_group_leader(p)) {
1961 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1962 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1963 
1964 			if (is_child_reaper(pid)) {
1965 				ns_of_pid(pid)->child_reaper = p;
1966 				p->signal->flags |= SIGNAL_UNKILLABLE;
1967 			}
1968 
1969 			p->signal->leader_pid = pid;
1970 			p->signal->tty = tty_kref_get(current->signal->tty);
1971 			/*
1972 			 * Inherit has_child_subreaper flag under the same
1973 			 * tasklist_lock with adding child to the process tree
1974 			 * for propagate_has_child_subreaper optimization.
1975 			 */
1976 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1977 							 p->real_parent->signal->is_child_subreaper;
1978 			list_add_tail(&p->sibling, &p->real_parent->children);
1979 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1980 			attach_pid(p, PIDTYPE_PGID);
1981 			attach_pid(p, PIDTYPE_SID);
1982 			__this_cpu_inc(process_counts);
1983 		} else {
1984 			current->signal->nr_threads++;
1985 			atomic_inc(&current->signal->live);
1986 			atomic_inc(&current->signal->sigcnt);
1987 			list_add_tail_rcu(&p->thread_group,
1988 					  &p->group_leader->thread_group);
1989 			list_add_tail_rcu(&p->thread_node,
1990 					  &p->signal->thread_head);
1991 		}
1992 		attach_pid(p, PIDTYPE_PID);
1993 		nr_threads++;
1994 	}
1995 
1996 	total_forks++;
1997 	spin_unlock(&current->sighand->siglock);
1998 	syscall_tracepoint_update(p);
1999 	write_unlock_irq(&tasklist_lock);
2000 
2001 	proc_fork_connector(p);
2002 	cgroup_post_fork(p);
2003 	cgroup_threadgroup_change_end(current);
2004 	perf_event_fork(p);
2005 
2006 	trace_task_newtask(p, clone_flags);
2007 	uprobe_copy_process(p, clone_flags);
2008 
2009 	return p;
2010 
2011 bad_fork_cancel_cgroup:
2012 	spin_unlock(&current->sighand->siglock);
2013 	write_unlock_irq(&tasklist_lock);
2014 	cgroup_cancel_fork(p);
2015 bad_fork_free_pid:
2016 	cgroup_threadgroup_change_end(current);
2017 	if (pid != &init_struct_pid)
2018 		free_pid(pid);
2019 bad_fork_cleanup_thread:
2020 	exit_thread(p);
2021 bad_fork_cleanup_io:
2022 	if (p->io_context)
2023 		exit_io_context(p);
2024 bad_fork_cleanup_namespaces:
2025 	exit_task_namespaces(p);
2026 bad_fork_cleanup_mm:
2027 	if (p->mm)
2028 		mmput(p->mm);
2029 bad_fork_cleanup_signal:
2030 	if (!(clone_flags & CLONE_THREAD))
2031 		free_signal_struct(p->signal);
2032 bad_fork_cleanup_sighand:
2033 	__cleanup_sighand(p->sighand);
2034 bad_fork_cleanup_fs:
2035 	exit_fs(p); /* blocking */
2036 bad_fork_cleanup_files:
2037 	exit_files(p); /* blocking */
2038 bad_fork_cleanup_semundo:
2039 	exit_sem(p);
2040 bad_fork_cleanup_security:
2041 	security_task_free(p);
2042 bad_fork_cleanup_audit:
2043 	audit_free(p);
2044 bad_fork_cleanup_perf:
2045 	perf_event_free_task(p);
2046 bad_fork_cleanup_policy:
2047 	lockdep_free_task(p);
2048 #ifdef CONFIG_NUMA
2049 	mpol_put(p->mempolicy);
2050 bad_fork_cleanup_threadgroup_lock:
2051 #endif
2052 	delayacct_tsk_free(p);
2053 bad_fork_cleanup_count:
2054 	atomic_dec(&p->cred->user->processes);
2055 	exit_creds(p);
2056 bad_fork_free:
2057 	p->state = TASK_DEAD;
2058 	put_task_stack(p);
2059 	free_task(p);
2060 fork_out:
2061 	return ERR_PTR(retval);
2062 }
2063 
2064 static inline void init_idle_pids(struct pid_link *links)
2065 {
2066 	enum pid_type type;
2067 
2068 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2069 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
2070 		links[type].pid = &init_struct_pid;
2071 	}
2072 }
2073 
2074 struct task_struct *fork_idle(int cpu)
2075 {
2076 	struct task_struct *task;
2077 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2078 			    cpu_to_node(cpu));
2079 	if (!IS_ERR(task)) {
2080 		init_idle_pids(task->pids);
2081 		init_idle(task, cpu);
2082 	}
2083 
2084 	return task;
2085 }
2086 
2087 /*
2088  *  Ok, this is the main fork-routine.
2089  *
2090  * It copies the process, and if successful kick-starts
2091  * it and waits for it to finish using the VM if required.
2092  */
2093 long _do_fork(unsigned long clone_flags,
2094 	      unsigned long stack_start,
2095 	      unsigned long stack_size,
2096 	      int __user *parent_tidptr,
2097 	      int __user *child_tidptr,
2098 	      unsigned long tls)
2099 {
2100 	struct completion vfork;
2101 	struct pid *pid;
2102 	struct task_struct *p;
2103 	int trace = 0;
2104 	long nr;
2105 
2106 	/*
2107 	 * Determine whether and which event to report to ptracer.  When
2108 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2109 	 * requested, no event is reported; otherwise, report if the event
2110 	 * for the type of forking is enabled.
2111 	 */
2112 	if (!(clone_flags & CLONE_UNTRACED)) {
2113 		if (clone_flags & CLONE_VFORK)
2114 			trace = PTRACE_EVENT_VFORK;
2115 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2116 			trace = PTRACE_EVENT_CLONE;
2117 		else
2118 			trace = PTRACE_EVENT_FORK;
2119 
2120 		if (likely(!ptrace_event_enabled(current, trace)))
2121 			trace = 0;
2122 	}
2123 
2124 	p = copy_process(clone_flags, stack_start, stack_size,
2125 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2126 	add_latent_entropy();
2127 
2128 	if (IS_ERR(p))
2129 		return PTR_ERR(p);
2130 
2131 	/*
2132 	 * Do this prior waking up the new thread - the thread pointer
2133 	 * might get invalid after that point, if the thread exits quickly.
2134 	 */
2135 	trace_sched_process_fork(current, p);
2136 
2137 	pid = get_task_pid(p, PIDTYPE_PID);
2138 	nr = pid_vnr(pid);
2139 
2140 	if (clone_flags & CLONE_PARENT_SETTID)
2141 		put_user(nr, parent_tidptr);
2142 
2143 	if (clone_flags & CLONE_VFORK) {
2144 		p->vfork_done = &vfork;
2145 		init_completion(&vfork);
2146 		get_task_struct(p);
2147 	}
2148 
2149 	wake_up_new_task(p);
2150 
2151 	/* forking complete and child started to run, tell ptracer */
2152 	if (unlikely(trace))
2153 		ptrace_event_pid(trace, pid);
2154 
2155 	if (clone_flags & CLONE_VFORK) {
2156 		if (!wait_for_vfork_done(p, &vfork))
2157 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2158 	}
2159 
2160 	put_pid(pid);
2161 	return nr;
2162 }
2163 
2164 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2165 /* For compatibility with architectures that call do_fork directly rather than
2166  * using the syscall entry points below. */
2167 long do_fork(unsigned long clone_flags,
2168 	      unsigned long stack_start,
2169 	      unsigned long stack_size,
2170 	      int __user *parent_tidptr,
2171 	      int __user *child_tidptr)
2172 {
2173 	return _do_fork(clone_flags, stack_start, stack_size,
2174 			parent_tidptr, child_tidptr, 0);
2175 }
2176 #endif
2177 
2178 /*
2179  * Create a kernel thread.
2180  */
2181 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2182 {
2183 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2184 		(unsigned long)arg, NULL, NULL, 0);
2185 }
2186 
2187 #ifdef __ARCH_WANT_SYS_FORK
2188 SYSCALL_DEFINE0(fork)
2189 {
2190 #ifdef CONFIG_MMU
2191 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2192 #else
2193 	/* can not support in nommu mode */
2194 	return -EINVAL;
2195 #endif
2196 }
2197 #endif
2198 
2199 #ifdef __ARCH_WANT_SYS_VFORK
2200 SYSCALL_DEFINE0(vfork)
2201 {
2202 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2203 			0, NULL, NULL, 0);
2204 }
2205 #endif
2206 
2207 #ifdef __ARCH_WANT_SYS_CLONE
2208 #ifdef CONFIG_CLONE_BACKWARDS
2209 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2210 		 int __user *, parent_tidptr,
2211 		 unsigned long, tls,
2212 		 int __user *, child_tidptr)
2213 #elif defined(CONFIG_CLONE_BACKWARDS2)
2214 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2215 		 int __user *, parent_tidptr,
2216 		 int __user *, child_tidptr,
2217 		 unsigned long, tls)
2218 #elif defined(CONFIG_CLONE_BACKWARDS3)
2219 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2220 		int, stack_size,
2221 		int __user *, parent_tidptr,
2222 		int __user *, child_tidptr,
2223 		unsigned long, tls)
2224 #else
2225 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2226 		 int __user *, parent_tidptr,
2227 		 int __user *, child_tidptr,
2228 		 unsigned long, tls)
2229 #endif
2230 {
2231 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2232 }
2233 #endif
2234 
2235 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2236 {
2237 	struct task_struct *leader, *parent, *child;
2238 	int res;
2239 
2240 	read_lock(&tasklist_lock);
2241 	leader = top = top->group_leader;
2242 down:
2243 	for_each_thread(leader, parent) {
2244 		list_for_each_entry(child, &parent->children, sibling) {
2245 			res = visitor(child, data);
2246 			if (res) {
2247 				if (res < 0)
2248 					goto out;
2249 				leader = child;
2250 				goto down;
2251 			}
2252 up:
2253 			;
2254 		}
2255 	}
2256 
2257 	if (leader != top) {
2258 		child = leader;
2259 		parent = child->real_parent;
2260 		leader = parent->group_leader;
2261 		goto up;
2262 	}
2263 out:
2264 	read_unlock(&tasklist_lock);
2265 }
2266 
2267 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2268 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2269 #endif
2270 
2271 static void sighand_ctor(void *data)
2272 {
2273 	struct sighand_struct *sighand = data;
2274 
2275 	spin_lock_init(&sighand->siglock);
2276 	init_waitqueue_head(&sighand->signalfd_wqh);
2277 }
2278 
2279 void __init proc_caches_init(void)
2280 {
2281 	sighand_cachep = kmem_cache_create("sighand_cache",
2282 			sizeof(struct sighand_struct), 0,
2283 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2284 			SLAB_ACCOUNT, sighand_ctor);
2285 	signal_cachep = kmem_cache_create("signal_cache",
2286 			sizeof(struct signal_struct), 0,
2287 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2288 			NULL);
2289 	files_cachep = kmem_cache_create("files_cache",
2290 			sizeof(struct files_struct), 0,
2291 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2292 			NULL);
2293 	fs_cachep = kmem_cache_create("fs_cache",
2294 			sizeof(struct fs_struct), 0,
2295 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2296 			NULL);
2297 	/*
2298 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2299 	 * whole struct cpumask for the OFFSTACK case. We could change
2300 	 * this to *only* allocate as much of it as required by the
2301 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2302 	 * is at the end of the structure, exactly for that reason.
2303 	 */
2304 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2305 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2306 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2307 			offsetof(struct mm_struct, saved_auxv),
2308 			sizeof_field(struct mm_struct, saved_auxv),
2309 			NULL);
2310 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2311 	mmap_init();
2312 	nsproxy_cache_init();
2313 }
2314 
2315 /*
2316  * Check constraints on flags passed to the unshare system call.
2317  */
2318 static int check_unshare_flags(unsigned long unshare_flags)
2319 {
2320 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2321 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2322 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2323 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2324 		return -EINVAL;
2325 	/*
2326 	 * Not implemented, but pretend it works if there is nothing
2327 	 * to unshare.  Note that unsharing the address space or the
2328 	 * signal handlers also need to unshare the signal queues (aka
2329 	 * CLONE_THREAD).
2330 	 */
2331 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2332 		if (!thread_group_empty(current))
2333 			return -EINVAL;
2334 	}
2335 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2336 		if (atomic_read(&current->sighand->count) > 1)
2337 			return -EINVAL;
2338 	}
2339 	if (unshare_flags & CLONE_VM) {
2340 		if (!current_is_single_threaded())
2341 			return -EINVAL;
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 /*
2348  * Unshare the filesystem structure if it is being shared
2349  */
2350 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2351 {
2352 	struct fs_struct *fs = current->fs;
2353 
2354 	if (!(unshare_flags & CLONE_FS) || !fs)
2355 		return 0;
2356 
2357 	/* don't need lock here; in the worst case we'll do useless copy */
2358 	if (fs->users == 1)
2359 		return 0;
2360 
2361 	*new_fsp = copy_fs_struct(fs);
2362 	if (!*new_fsp)
2363 		return -ENOMEM;
2364 
2365 	return 0;
2366 }
2367 
2368 /*
2369  * Unshare file descriptor table if it is being shared
2370  */
2371 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2372 {
2373 	struct files_struct *fd = current->files;
2374 	int error = 0;
2375 
2376 	if ((unshare_flags & CLONE_FILES) &&
2377 	    (fd && atomic_read(&fd->count) > 1)) {
2378 		*new_fdp = dup_fd(fd, &error);
2379 		if (!*new_fdp)
2380 			return error;
2381 	}
2382 
2383 	return 0;
2384 }
2385 
2386 /*
2387  * unshare allows a process to 'unshare' part of the process
2388  * context which was originally shared using clone.  copy_*
2389  * functions used by do_fork() cannot be used here directly
2390  * because they modify an inactive task_struct that is being
2391  * constructed. Here we are modifying the current, active,
2392  * task_struct.
2393  */
2394 int ksys_unshare(unsigned long unshare_flags)
2395 {
2396 	struct fs_struct *fs, *new_fs = NULL;
2397 	struct files_struct *fd, *new_fd = NULL;
2398 	struct cred *new_cred = NULL;
2399 	struct nsproxy *new_nsproxy = NULL;
2400 	int do_sysvsem = 0;
2401 	int err;
2402 
2403 	/*
2404 	 * If unsharing a user namespace must also unshare the thread group
2405 	 * and unshare the filesystem root and working directories.
2406 	 */
2407 	if (unshare_flags & CLONE_NEWUSER)
2408 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2409 	/*
2410 	 * If unsharing vm, must also unshare signal handlers.
2411 	 */
2412 	if (unshare_flags & CLONE_VM)
2413 		unshare_flags |= CLONE_SIGHAND;
2414 	/*
2415 	 * If unsharing a signal handlers, must also unshare the signal queues.
2416 	 */
2417 	if (unshare_flags & CLONE_SIGHAND)
2418 		unshare_flags |= CLONE_THREAD;
2419 	/*
2420 	 * If unsharing namespace, must also unshare filesystem information.
2421 	 */
2422 	if (unshare_flags & CLONE_NEWNS)
2423 		unshare_flags |= CLONE_FS;
2424 
2425 	err = check_unshare_flags(unshare_flags);
2426 	if (err)
2427 		goto bad_unshare_out;
2428 	/*
2429 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2430 	 * to a new ipc namespace, the semaphore arrays from the old
2431 	 * namespace are unreachable.
2432 	 */
2433 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2434 		do_sysvsem = 1;
2435 	err = unshare_fs(unshare_flags, &new_fs);
2436 	if (err)
2437 		goto bad_unshare_out;
2438 	err = unshare_fd(unshare_flags, &new_fd);
2439 	if (err)
2440 		goto bad_unshare_cleanup_fs;
2441 	err = unshare_userns(unshare_flags, &new_cred);
2442 	if (err)
2443 		goto bad_unshare_cleanup_fd;
2444 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2445 					 new_cred, new_fs);
2446 	if (err)
2447 		goto bad_unshare_cleanup_cred;
2448 
2449 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2450 		if (do_sysvsem) {
2451 			/*
2452 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2453 			 */
2454 			exit_sem(current);
2455 		}
2456 		if (unshare_flags & CLONE_NEWIPC) {
2457 			/* Orphan segments in old ns (see sem above). */
2458 			exit_shm(current);
2459 			shm_init_task(current);
2460 		}
2461 
2462 		if (new_nsproxy)
2463 			switch_task_namespaces(current, new_nsproxy);
2464 
2465 		task_lock(current);
2466 
2467 		if (new_fs) {
2468 			fs = current->fs;
2469 			spin_lock(&fs->lock);
2470 			current->fs = new_fs;
2471 			if (--fs->users)
2472 				new_fs = NULL;
2473 			else
2474 				new_fs = fs;
2475 			spin_unlock(&fs->lock);
2476 		}
2477 
2478 		if (new_fd) {
2479 			fd = current->files;
2480 			current->files = new_fd;
2481 			new_fd = fd;
2482 		}
2483 
2484 		task_unlock(current);
2485 
2486 		if (new_cred) {
2487 			/* Install the new user namespace */
2488 			commit_creds(new_cred);
2489 			new_cred = NULL;
2490 		}
2491 	}
2492 
2493 	perf_event_namespaces(current);
2494 
2495 bad_unshare_cleanup_cred:
2496 	if (new_cred)
2497 		put_cred(new_cred);
2498 bad_unshare_cleanup_fd:
2499 	if (new_fd)
2500 		put_files_struct(new_fd);
2501 
2502 bad_unshare_cleanup_fs:
2503 	if (new_fs)
2504 		free_fs_struct(new_fs);
2505 
2506 bad_unshare_out:
2507 	return err;
2508 }
2509 
2510 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2511 {
2512 	return ksys_unshare(unshare_flags);
2513 }
2514 
2515 /*
2516  *	Helper to unshare the files of the current task.
2517  *	We don't want to expose copy_files internals to
2518  *	the exec layer of the kernel.
2519  */
2520 
2521 int unshare_files(struct files_struct **displaced)
2522 {
2523 	struct task_struct *task = current;
2524 	struct files_struct *copy = NULL;
2525 	int error;
2526 
2527 	error = unshare_fd(CLONE_FILES, &copy);
2528 	if (error || !copy) {
2529 		*displaced = NULL;
2530 		return error;
2531 	}
2532 	*displaced = task->files;
2533 	task_lock(task);
2534 	task->files = copy;
2535 	task_unlock(task);
2536 	return 0;
2537 }
2538 
2539 int sysctl_max_threads(struct ctl_table *table, int write,
2540 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2541 {
2542 	struct ctl_table t;
2543 	int ret;
2544 	int threads = max_threads;
2545 	int min = MIN_THREADS;
2546 	int max = MAX_THREADS;
2547 
2548 	t = *table;
2549 	t.data = &threads;
2550 	t.extra1 = &min;
2551 	t.extra2 = &max;
2552 
2553 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2554 	if (ret || !write)
2555 		return ret;
2556 
2557 	set_max_threads(threads);
2558 
2559 	return 0;
2560 }
2561