xref: /openbmc/linux/kernel/fork.c (revision 8b5a1f9c)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74 
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81 
82 #include <trace/events/sched.h>
83 
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86 
87 /*
88  * Protected counters by write_lock_irq(&tasklist_lock)
89  */
90 unsigned long total_forks;	/* Handle normal Linux uptimes. */
91 int nr_threads;			/* The idle threads do not count.. */
92 
93 int max_threads;		/* tunable limit on nr_threads */
94 
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96 
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
98 
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 	return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106 
107 int nr_processes(void)
108 {
109 	int cpu;
110 	int total = 0;
111 
112 	for_each_possible_cpu(cpu)
113 		total += per_cpu(process_counts, cpu);
114 
115 	return total;
116 }
117 
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121 
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124 
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129 
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 	kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135 
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139 
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141 
142 /*
143  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144  * kmemcache based allocator.
145  */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 						  int node)
149 {
150 	struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 					     THREAD_SIZE_ORDER);
152 
153 	return page ? page_address(page) : NULL;
154 }
155 
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 	free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162 
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 						  int node)
165 {
166 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168 
169 static void free_thread_info(struct thread_info *ti)
170 {
171 	kmem_cache_free(thread_info_cache, ti);
172 }
173 
174 void thread_info_cache_init(void)
175 {
176 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 					      THREAD_SIZE, 0, NULL);
178 	BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182 
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185 
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188 
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191 
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194 
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197 
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200 
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 	struct zone *zone = page_zone(virt_to_page(ti));
204 
205 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207 
208 void free_task(struct task_struct *tsk)
209 {
210 	account_kernel_stack(tsk->stack, -1);
211 	arch_release_thread_info(tsk->stack);
212 	free_thread_info(tsk->stack);
213 	rt_mutex_debug_task_free(tsk);
214 	ftrace_graph_exit_task(tsk);
215 	put_seccomp_filter(tsk);
216 	arch_release_task_struct(tsk);
217 	free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220 
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 	taskstats_tgid_free(sig);
224 	sched_autogroup_exit(sig);
225 	kmem_cache_free(signal_cachep, sig);
226 }
227 
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 	if (atomic_dec_and_test(&sig->sigcnt))
231 		free_signal_struct(sig);
232 }
233 
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 	WARN_ON(!tsk->exit_state);
237 	WARN_ON(atomic_read(&tsk->usage));
238 	WARN_ON(tsk == current);
239 
240 	security_task_free(tsk);
241 	exit_creds(tsk);
242 	delayacct_tsk_free(tsk);
243 	put_signal_struct(tsk->signal);
244 
245 	if (!profile_handoff_task(tsk))
246 		free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249 
250 void __init __weak arch_task_cache_init(void) { }
251 
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
257 #endif
258 	/* create a slab on which task_structs can be allocated */
259 	task_struct_cachep =
260 		kmem_cache_create("task_struct", sizeof(struct task_struct),
261 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263 
264 	/* do the arch specific task caches init */
265 	arch_task_cache_init();
266 
267 	/*
268 	 * The default maximum number of threads is set to a safe
269 	 * value: the thread structures can take up at most half
270 	 * of memory.
271 	 */
272 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273 
274 	/*
275 	 * we need to allow at least 20 threads to boot a system
276 	 */
277 	if (max_threads < 20)
278 		max_threads = 20;
279 
280 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 		init_task.signal->rlim[RLIMIT_NPROC];
284 }
285 
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 					       struct task_struct *src)
288 {
289 	*dst = *src;
290 	return 0;
291 }
292 
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295 	struct task_struct *tsk;
296 	struct thread_info *ti;
297 	unsigned long *stackend;
298 	int node = tsk_fork_get_node(orig);
299 	int err;
300 
301 	tsk = alloc_task_struct_node(node);
302 	if (!tsk)
303 		return NULL;
304 
305 	ti = alloc_thread_info_node(tsk, node);
306 	if (!ti)
307 		goto free_tsk;
308 
309 	err = arch_dup_task_struct(tsk, orig);
310 	if (err)
311 		goto free_ti;
312 
313 	tsk->stack = ti;
314 
315 	setup_thread_stack(tsk, orig);
316 	clear_user_return_notifier(tsk);
317 	clear_tsk_need_resched(tsk);
318 	stackend = end_of_stack(tsk);
319 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
320 
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 	tsk->stack_canary = get_random_int();
323 #endif
324 
325 	/*
326 	 * One for us, one for whoever does the "release_task()" (usually
327 	 * parent)
328 	 */
329 	atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 	tsk->btrace_seq = 0;
332 #endif
333 	tsk->splice_pipe = NULL;
334 	tsk->task_frag.page = NULL;
335 
336 	account_kernel_stack(ti, 1);
337 
338 	return tsk;
339 
340 free_ti:
341 	free_thread_info(ti);
342 free_tsk:
343 	free_task_struct(tsk);
344 	return NULL;
345 }
346 
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 	struct rb_node **rb_link, *rb_parent;
352 	int retval;
353 	unsigned long charge;
354 	struct mempolicy *pol;
355 
356 	uprobe_start_dup_mmap();
357 	down_write(&oldmm->mmap_sem);
358 	flush_cache_dup_mm(oldmm);
359 	uprobe_dup_mmap(oldmm, mm);
360 	/*
361 	 * Not linked in yet - no deadlock potential:
362 	 */
363 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
364 
365 	mm->locked_vm = 0;
366 	mm->mmap = NULL;
367 	mm->mmap_cache = NULL;
368 	mm->free_area_cache = oldmm->mmap_base;
369 	mm->cached_hole_size = ~0UL;
370 	mm->map_count = 0;
371 	cpumask_clear(mm_cpumask(mm));
372 	mm->mm_rb = RB_ROOT;
373 	rb_link = &mm->mm_rb.rb_node;
374 	rb_parent = NULL;
375 	pprev = &mm->mmap;
376 	retval = ksm_fork(mm, oldmm);
377 	if (retval)
378 		goto out;
379 	retval = khugepaged_fork(mm, oldmm);
380 	if (retval)
381 		goto out;
382 
383 	prev = NULL;
384 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
385 		struct file *file;
386 
387 		if (mpnt->vm_flags & VM_DONTCOPY) {
388 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
389 							-vma_pages(mpnt));
390 			continue;
391 		}
392 		charge = 0;
393 		if (mpnt->vm_flags & VM_ACCOUNT) {
394 			unsigned long len = vma_pages(mpnt);
395 
396 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
397 				goto fail_nomem;
398 			charge = len;
399 		}
400 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
401 		if (!tmp)
402 			goto fail_nomem;
403 		*tmp = *mpnt;
404 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
405 		pol = mpol_dup(vma_policy(mpnt));
406 		retval = PTR_ERR(pol);
407 		if (IS_ERR(pol))
408 			goto fail_nomem_policy;
409 		vma_set_policy(tmp, pol);
410 		tmp->vm_mm = mm;
411 		if (anon_vma_fork(tmp, mpnt))
412 			goto fail_nomem_anon_vma_fork;
413 		tmp->vm_flags &= ~VM_LOCKED;
414 		tmp->vm_next = tmp->vm_prev = NULL;
415 		file = tmp->vm_file;
416 		if (file) {
417 			struct inode *inode = file_inode(file);
418 			struct address_space *mapping = file->f_mapping;
419 
420 			get_file(file);
421 			if (tmp->vm_flags & VM_DENYWRITE)
422 				atomic_dec(&inode->i_writecount);
423 			mutex_lock(&mapping->i_mmap_mutex);
424 			if (tmp->vm_flags & VM_SHARED)
425 				mapping->i_mmap_writable++;
426 			flush_dcache_mmap_lock(mapping);
427 			/* insert tmp into the share list, just after mpnt */
428 			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
429 				vma_nonlinear_insert(tmp,
430 						&mapping->i_mmap_nonlinear);
431 			else
432 				vma_interval_tree_insert_after(tmp, mpnt,
433 							&mapping->i_mmap);
434 			flush_dcache_mmap_unlock(mapping);
435 			mutex_unlock(&mapping->i_mmap_mutex);
436 		}
437 
438 		/*
439 		 * Clear hugetlb-related page reserves for children. This only
440 		 * affects MAP_PRIVATE mappings. Faults generated by the child
441 		 * are not guaranteed to succeed, even if read-only
442 		 */
443 		if (is_vm_hugetlb_page(tmp))
444 			reset_vma_resv_huge_pages(tmp);
445 
446 		/*
447 		 * Link in the new vma and copy the page table entries.
448 		 */
449 		*pprev = tmp;
450 		pprev = &tmp->vm_next;
451 		tmp->vm_prev = prev;
452 		prev = tmp;
453 
454 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
455 		rb_link = &tmp->vm_rb.rb_right;
456 		rb_parent = &tmp->vm_rb;
457 
458 		mm->map_count++;
459 		retval = copy_page_range(mm, oldmm, mpnt);
460 
461 		if (tmp->vm_ops && tmp->vm_ops->open)
462 			tmp->vm_ops->open(tmp);
463 
464 		if (retval)
465 			goto out;
466 	}
467 	/* a new mm has just been created */
468 	arch_dup_mmap(oldmm, mm);
469 	retval = 0;
470 out:
471 	up_write(&mm->mmap_sem);
472 	flush_tlb_mm(oldmm);
473 	up_write(&oldmm->mmap_sem);
474 	uprobe_end_dup_mmap();
475 	return retval;
476 fail_nomem_anon_vma_fork:
477 	mpol_put(pol);
478 fail_nomem_policy:
479 	kmem_cache_free(vm_area_cachep, tmp);
480 fail_nomem:
481 	retval = -ENOMEM;
482 	vm_unacct_memory(charge);
483 	goto out;
484 }
485 
486 static inline int mm_alloc_pgd(struct mm_struct *mm)
487 {
488 	mm->pgd = pgd_alloc(mm);
489 	if (unlikely(!mm->pgd))
490 		return -ENOMEM;
491 	return 0;
492 }
493 
494 static inline void mm_free_pgd(struct mm_struct *mm)
495 {
496 	pgd_free(mm, mm->pgd);
497 }
498 #else
499 #define dup_mmap(mm, oldmm)	(0)
500 #define mm_alloc_pgd(mm)	(0)
501 #define mm_free_pgd(mm)
502 #endif /* CONFIG_MMU */
503 
504 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
505 
506 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
507 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
508 
509 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
510 
511 static int __init coredump_filter_setup(char *s)
512 {
513 	default_dump_filter =
514 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
515 		MMF_DUMP_FILTER_MASK;
516 	return 1;
517 }
518 
519 __setup("coredump_filter=", coredump_filter_setup);
520 
521 #include <linux/init_task.h>
522 
523 static void mm_init_aio(struct mm_struct *mm)
524 {
525 #ifdef CONFIG_AIO
526 	spin_lock_init(&mm->ioctx_lock);
527 	INIT_HLIST_HEAD(&mm->ioctx_list);
528 #endif
529 }
530 
531 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
532 {
533 	atomic_set(&mm->mm_users, 1);
534 	atomic_set(&mm->mm_count, 1);
535 	init_rwsem(&mm->mmap_sem);
536 	INIT_LIST_HEAD(&mm->mmlist);
537 	mm->flags = (current->mm) ?
538 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
539 	mm->core_state = NULL;
540 	mm->nr_ptes = 0;
541 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
542 	spin_lock_init(&mm->page_table_lock);
543 	mm->free_area_cache = TASK_UNMAPPED_BASE;
544 	mm->cached_hole_size = ~0UL;
545 	mm_init_aio(mm);
546 	mm_init_owner(mm, p);
547 
548 	if (likely(!mm_alloc_pgd(mm))) {
549 		mm->def_flags = 0;
550 		mmu_notifier_mm_init(mm);
551 		return mm;
552 	}
553 
554 	free_mm(mm);
555 	return NULL;
556 }
557 
558 static void check_mm(struct mm_struct *mm)
559 {
560 	int i;
561 
562 	for (i = 0; i < NR_MM_COUNTERS; i++) {
563 		long x = atomic_long_read(&mm->rss_stat.count[i]);
564 
565 		if (unlikely(x))
566 			printk(KERN_ALERT "BUG: Bad rss-counter state "
567 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
568 	}
569 
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 	VM_BUG_ON(mm->pmd_huge_pte);
572 #endif
573 }
574 
575 /*
576  * Allocate and initialize an mm_struct.
577  */
578 struct mm_struct *mm_alloc(void)
579 {
580 	struct mm_struct *mm;
581 
582 	mm = allocate_mm();
583 	if (!mm)
584 		return NULL;
585 
586 	memset(mm, 0, sizeof(*mm));
587 	mm_init_cpumask(mm);
588 	return mm_init(mm, current);
589 }
590 
591 /*
592  * Called when the last reference to the mm
593  * is dropped: either by a lazy thread or by
594  * mmput. Free the page directory and the mm.
595  */
596 void __mmdrop(struct mm_struct *mm)
597 {
598 	BUG_ON(mm == &init_mm);
599 	mm_free_pgd(mm);
600 	destroy_context(mm);
601 	mmu_notifier_mm_destroy(mm);
602 	check_mm(mm);
603 	free_mm(mm);
604 }
605 EXPORT_SYMBOL_GPL(__mmdrop);
606 
607 /*
608  * Decrement the use count and release all resources for an mm.
609  */
610 void mmput(struct mm_struct *mm)
611 {
612 	might_sleep();
613 
614 	if (atomic_dec_and_test(&mm->mm_users)) {
615 		uprobe_clear_state(mm);
616 		exit_aio(mm);
617 		ksm_exit(mm);
618 		khugepaged_exit(mm); /* must run before exit_mmap */
619 		exit_mmap(mm);
620 		set_mm_exe_file(mm, NULL);
621 		if (!list_empty(&mm->mmlist)) {
622 			spin_lock(&mmlist_lock);
623 			list_del(&mm->mmlist);
624 			spin_unlock(&mmlist_lock);
625 		}
626 		if (mm->binfmt)
627 			module_put(mm->binfmt->module);
628 		mmdrop(mm);
629 	}
630 }
631 EXPORT_SYMBOL_GPL(mmput);
632 
633 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
634 {
635 	if (new_exe_file)
636 		get_file(new_exe_file);
637 	if (mm->exe_file)
638 		fput(mm->exe_file);
639 	mm->exe_file = new_exe_file;
640 }
641 
642 struct file *get_mm_exe_file(struct mm_struct *mm)
643 {
644 	struct file *exe_file;
645 
646 	/* We need mmap_sem to protect against races with removal of exe_file */
647 	down_read(&mm->mmap_sem);
648 	exe_file = mm->exe_file;
649 	if (exe_file)
650 		get_file(exe_file);
651 	up_read(&mm->mmap_sem);
652 	return exe_file;
653 }
654 
655 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
656 {
657 	/* It's safe to write the exe_file pointer without exe_file_lock because
658 	 * this is called during fork when the task is not yet in /proc */
659 	newmm->exe_file = get_mm_exe_file(oldmm);
660 }
661 
662 /**
663  * get_task_mm - acquire a reference to the task's mm
664  *
665  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
666  * this kernel workthread has transiently adopted a user mm with use_mm,
667  * to do its AIO) is not set and if so returns a reference to it, after
668  * bumping up the use count.  User must release the mm via mmput()
669  * after use.  Typically used by /proc and ptrace.
670  */
671 struct mm_struct *get_task_mm(struct task_struct *task)
672 {
673 	struct mm_struct *mm;
674 
675 	task_lock(task);
676 	mm = task->mm;
677 	if (mm) {
678 		if (task->flags & PF_KTHREAD)
679 			mm = NULL;
680 		else
681 			atomic_inc(&mm->mm_users);
682 	}
683 	task_unlock(task);
684 	return mm;
685 }
686 EXPORT_SYMBOL_GPL(get_task_mm);
687 
688 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
689 {
690 	struct mm_struct *mm;
691 	int err;
692 
693 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
694 	if (err)
695 		return ERR_PTR(err);
696 
697 	mm = get_task_mm(task);
698 	if (mm && mm != current->mm &&
699 			!ptrace_may_access(task, mode)) {
700 		mmput(mm);
701 		mm = ERR_PTR(-EACCES);
702 	}
703 	mutex_unlock(&task->signal->cred_guard_mutex);
704 
705 	return mm;
706 }
707 
708 static void complete_vfork_done(struct task_struct *tsk)
709 {
710 	struct completion *vfork;
711 
712 	task_lock(tsk);
713 	vfork = tsk->vfork_done;
714 	if (likely(vfork)) {
715 		tsk->vfork_done = NULL;
716 		complete(vfork);
717 	}
718 	task_unlock(tsk);
719 }
720 
721 static int wait_for_vfork_done(struct task_struct *child,
722 				struct completion *vfork)
723 {
724 	int killed;
725 
726 	freezer_do_not_count();
727 	killed = wait_for_completion_killable(vfork);
728 	freezer_count();
729 
730 	if (killed) {
731 		task_lock(child);
732 		child->vfork_done = NULL;
733 		task_unlock(child);
734 	}
735 
736 	put_task_struct(child);
737 	return killed;
738 }
739 
740 /* Please note the differences between mmput and mm_release.
741  * mmput is called whenever we stop holding onto a mm_struct,
742  * error success whatever.
743  *
744  * mm_release is called after a mm_struct has been removed
745  * from the current process.
746  *
747  * This difference is important for error handling, when we
748  * only half set up a mm_struct for a new process and need to restore
749  * the old one.  Because we mmput the new mm_struct before
750  * restoring the old one. . .
751  * Eric Biederman 10 January 1998
752  */
753 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
754 {
755 	/* Get rid of any futexes when releasing the mm */
756 #ifdef CONFIG_FUTEX
757 	if (unlikely(tsk->robust_list)) {
758 		exit_robust_list(tsk);
759 		tsk->robust_list = NULL;
760 	}
761 #ifdef CONFIG_COMPAT
762 	if (unlikely(tsk->compat_robust_list)) {
763 		compat_exit_robust_list(tsk);
764 		tsk->compat_robust_list = NULL;
765 	}
766 #endif
767 	if (unlikely(!list_empty(&tsk->pi_state_list)))
768 		exit_pi_state_list(tsk);
769 #endif
770 
771 	uprobe_free_utask(tsk);
772 
773 	/* Get rid of any cached register state */
774 	deactivate_mm(tsk, mm);
775 
776 	/*
777 	 * If we're exiting normally, clear a user-space tid field if
778 	 * requested.  We leave this alone when dying by signal, to leave
779 	 * the value intact in a core dump, and to save the unnecessary
780 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
781 	 * Userland only wants this done for a sys_exit.
782 	 */
783 	if (tsk->clear_child_tid) {
784 		if (!(tsk->flags & PF_SIGNALED) &&
785 		    atomic_read(&mm->mm_users) > 1) {
786 			/*
787 			 * We don't check the error code - if userspace has
788 			 * not set up a proper pointer then tough luck.
789 			 */
790 			put_user(0, tsk->clear_child_tid);
791 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
792 					1, NULL, NULL, 0);
793 		}
794 		tsk->clear_child_tid = NULL;
795 	}
796 
797 	/*
798 	 * All done, finally we can wake up parent and return this mm to him.
799 	 * Also kthread_stop() uses this completion for synchronization.
800 	 */
801 	if (tsk->vfork_done)
802 		complete_vfork_done(tsk);
803 }
804 
805 /*
806  * Allocate a new mm structure and copy contents from the
807  * mm structure of the passed in task structure.
808  */
809 struct mm_struct *dup_mm(struct task_struct *tsk)
810 {
811 	struct mm_struct *mm, *oldmm = current->mm;
812 	int err;
813 
814 	if (!oldmm)
815 		return NULL;
816 
817 	mm = allocate_mm();
818 	if (!mm)
819 		goto fail_nomem;
820 
821 	memcpy(mm, oldmm, sizeof(*mm));
822 	mm_init_cpumask(mm);
823 
824 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
825 	mm->pmd_huge_pte = NULL;
826 #endif
827 #ifdef CONFIG_NUMA_BALANCING
828 	mm->first_nid = NUMA_PTE_SCAN_INIT;
829 #endif
830 	if (!mm_init(mm, tsk))
831 		goto fail_nomem;
832 
833 	if (init_new_context(tsk, mm))
834 		goto fail_nocontext;
835 
836 	dup_mm_exe_file(oldmm, mm);
837 
838 	err = dup_mmap(mm, oldmm);
839 	if (err)
840 		goto free_pt;
841 
842 	mm->hiwater_rss = get_mm_rss(mm);
843 	mm->hiwater_vm = mm->total_vm;
844 
845 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
846 		goto free_pt;
847 
848 	return mm;
849 
850 free_pt:
851 	/* don't put binfmt in mmput, we haven't got module yet */
852 	mm->binfmt = NULL;
853 	mmput(mm);
854 
855 fail_nomem:
856 	return NULL;
857 
858 fail_nocontext:
859 	/*
860 	 * If init_new_context() failed, we cannot use mmput() to free the mm
861 	 * because it calls destroy_context()
862 	 */
863 	mm_free_pgd(mm);
864 	free_mm(mm);
865 	return NULL;
866 }
867 
868 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
869 {
870 	struct mm_struct *mm, *oldmm;
871 	int retval;
872 
873 	tsk->min_flt = tsk->maj_flt = 0;
874 	tsk->nvcsw = tsk->nivcsw = 0;
875 #ifdef CONFIG_DETECT_HUNG_TASK
876 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
877 #endif
878 
879 	tsk->mm = NULL;
880 	tsk->active_mm = NULL;
881 
882 	/*
883 	 * Are we cloning a kernel thread?
884 	 *
885 	 * We need to steal a active VM for that..
886 	 */
887 	oldmm = current->mm;
888 	if (!oldmm)
889 		return 0;
890 
891 	if (clone_flags & CLONE_VM) {
892 		atomic_inc(&oldmm->mm_users);
893 		mm = oldmm;
894 		goto good_mm;
895 	}
896 
897 	retval = -ENOMEM;
898 	mm = dup_mm(tsk);
899 	if (!mm)
900 		goto fail_nomem;
901 
902 good_mm:
903 	tsk->mm = mm;
904 	tsk->active_mm = mm;
905 	return 0;
906 
907 fail_nomem:
908 	return retval;
909 }
910 
911 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
912 {
913 	struct fs_struct *fs = current->fs;
914 	if (clone_flags & CLONE_FS) {
915 		/* tsk->fs is already what we want */
916 		spin_lock(&fs->lock);
917 		if (fs->in_exec) {
918 			spin_unlock(&fs->lock);
919 			return -EAGAIN;
920 		}
921 		fs->users++;
922 		spin_unlock(&fs->lock);
923 		return 0;
924 	}
925 	tsk->fs = copy_fs_struct(fs);
926 	if (!tsk->fs)
927 		return -ENOMEM;
928 	return 0;
929 }
930 
931 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
932 {
933 	struct files_struct *oldf, *newf;
934 	int error = 0;
935 
936 	/*
937 	 * A background process may not have any files ...
938 	 */
939 	oldf = current->files;
940 	if (!oldf)
941 		goto out;
942 
943 	if (clone_flags & CLONE_FILES) {
944 		atomic_inc(&oldf->count);
945 		goto out;
946 	}
947 
948 	newf = dup_fd(oldf, &error);
949 	if (!newf)
950 		goto out;
951 
952 	tsk->files = newf;
953 	error = 0;
954 out:
955 	return error;
956 }
957 
958 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
959 {
960 #ifdef CONFIG_BLOCK
961 	struct io_context *ioc = current->io_context;
962 	struct io_context *new_ioc;
963 
964 	if (!ioc)
965 		return 0;
966 	/*
967 	 * Share io context with parent, if CLONE_IO is set
968 	 */
969 	if (clone_flags & CLONE_IO) {
970 		ioc_task_link(ioc);
971 		tsk->io_context = ioc;
972 	} else if (ioprio_valid(ioc->ioprio)) {
973 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
974 		if (unlikely(!new_ioc))
975 			return -ENOMEM;
976 
977 		new_ioc->ioprio = ioc->ioprio;
978 		put_io_context(new_ioc);
979 	}
980 #endif
981 	return 0;
982 }
983 
984 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
985 {
986 	struct sighand_struct *sig;
987 
988 	if (clone_flags & CLONE_SIGHAND) {
989 		atomic_inc(&current->sighand->count);
990 		return 0;
991 	}
992 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
993 	rcu_assign_pointer(tsk->sighand, sig);
994 	if (!sig)
995 		return -ENOMEM;
996 	atomic_set(&sig->count, 1);
997 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
998 	return 0;
999 }
1000 
1001 void __cleanup_sighand(struct sighand_struct *sighand)
1002 {
1003 	if (atomic_dec_and_test(&sighand->count)) {
1004 		signalfd_cleanup(sighand);
1005 		kmem_cache_free(sighand_cachep, sighand);
1006 	}
1007 }
1008 
1009 
1010 /*
1011  * Initialize POSIX timer handling for a thread group.
1012  */
1013 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1014 {
1015 	unsigned long cpu_limit;
1016 
1017 	/* Thread group counters. */
1018 	thread_group_cputime_init(sig);
1019 
1020 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1021 	if (cpu_limit != RLIM_INFINITY) {
1022 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1023 		sig->cputimer.running = 1;
1024 	}
1025 
1026 	/* The timer lists. */
1027 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1028 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1029 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1030 }
1031 
1032 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1033 {
1034 	struct signal_struct *sig;
1035 
1036 	if (clone_flags & CLONE_THREAD)
1037 		return 0;
1038 
1039 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1040 	tsk->signal = sig;
1041 	if (!sig)
1042 		return -ENOMEM;
1043 
1044 	sig->nr_threads = 1;
1045 	atomic_set(&sig->live, 1);
1046 	atomic_set(&sig->sigcnt, 1);
1047 	init_waitqueue_head(&sig->wait_chldexit);
1048 	sig->curr_target = tsk;
1049 	init_sigpending(&sig->shared_pending);
1050 	INIT_LIST_HEAD(&sig->posix_timers);
1051 
1052 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1053 	sig->real_timer.function = it_real_fn;
1054 
1055 	task_lock(current->group_leader);
1056 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1057 	task_unlock(current->group_leader);
1058 
1059 	posix_cpu_timers_init_group(sig);
1060 
1061 	tty_audit_fork(sig);
1062 	sched_autogroup_fork(sig);
1063 
1064 #ifdef CONFIG_CGROUPS
1065 	init_rwsem(&sig->group_rwsem);
1066 #endif
1067 
1068 	sig->oom_score_adj = current->signal->oom_score_adj;
1069 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1070 
1071 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1072 				   current->signal->is_child_subreaper;
1073 
1074 	mutex_init(&sig->cred_guard_mutex);
1075 
1076 	return 0;
1077 }
1078 
1079 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1080 {
1081 	unsigned long new_flags = p->flags;
1082 
1083 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1084 	new_flags |= PF_FORKNOEXEC;
1085 	p->flags = new_flags;
1086 }
1087 
1088 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1089 {
1090 	current->clear_child_tid = tidptr;
1091 
1092 	return task_pid_vnr(current);
1093 }
1094 
1095 static void rt_mutex_init_task(struct task_struct *p)
1096 {
1097 	raw_spin_lock_init(&p->pi_lock);
1098 #ifdef CONFIG_RT_MUTEXES
1099 	plist_head_init(&p->pi_waiters);
1100 	p->pi_blocked_on = NULL;
1101 #endif
1102 }
1103 
1104 #ifdef CONFIG_MM_OWNER
1105 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1106 {
1107 	mm->owner = p;
1108 }
1109 #endif /* CONFIG_MM_OWNER */
1110 
1111 /*
1112  * Initialize POSIX timer handling for a single task.
1113  */
1114 static void posix_cpu_timers_init(struct task_struct *tsk)
1115 {
1116 	tsk->cputime_expires.prof_exp = 0;
1117 	tsk->cputime_expires.virt_exp = 0;
1118 	tsk->cputime_expires.sched_exp = 0;
1119 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1120 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1121 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1122 }
1123 
1124 /*
1125  * This creates a new process as a copy of the old one,
1126  * but does not actually start it yet.
1127  *
1128  * It copies the registers, and all the appropriate
1129  * parts of the process environment (as per the clone
1130  * flags). The actual kick-off is left to the caller.
1131  */
1132 static struct task_struct *copy_process(unsigned long clone_flags,
1133 					unsigned long stack_start,
1134 					unsigned long stack_size,
1135 					int __user *child_tidptr,
1136 					struct pid *pid,
1137 					int trace)
1138 {
1139 	int retval;
1140 	struct task_struct *p;
1141 
1142 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1143 		return ERR_PTR(-EINVAL);
1144 
1145 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1146 		return ERR_PTR(-EINVAL);
1147 
1148 	/*
1149 	 * Thread groups must share signals as well, and detached threads
1150 	 * can only be started up within the thread group.
1151 	 */
1152 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1153 		return ERR_PTR(-EINVAL);
1154 
1155 	/*
1156 	 * Shared signal handlers imply shared VM. By way of the above,
1157 	 * thread groups also imply shared VM. Blocking this case allows
1158 	 * for various simplifications in other code.
1159 	 */
1160 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1161 		return ERR_PTR(-EINVAL);
1162 
1163 	/*
1164 	 * Siblings of global init remain as zombies on exit since they are
1165 	 * not reaped by their parent (swapper). To solve this and to avoid
1166 	 * multi-rooted process trees, prevent global and container-inits
1167 	 * from creating siblings.
1168 	 */
1169 	if ((clone_flags & CLONE_PARENT) &&
1170 				current->signal->flags & SIGNAL_UNKILLABLE)
1171 		return ERR_PTR(-EINVAL);
1172 
1173 	/*
1174 	 * If the new process will be in a different pid namespace
1175 	 * don't allow the creation of threads.
1176 	 */
1177 	if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
1178 	    (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1179 		return ERR_PTR(-EINVAL);
1180 
1181 	retval = security_task_create(clone_flags);
1182 	if (retval)
1183 		goto fork_out;
1184 
1185 	retval = -ENOMEM;
1186 	p = dup_task_struct(current);
1187 	if (!p)
1188 		goto fork_out;
1189 
1190 	ftrace_graph_init_task(p);
1191 	get_seccomp_filter(p);
1192 
1193 	rt_mutex_init_task(p);
1194 
1195 #ifdef CONFIG_PROVE_LOCKING
1196 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1197 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1198 #endif
1199 	retval = -EAGAIN;
1200 	if (atomic_read(&p->real_cred->user->processes) >=
1201 			task_rlimit(p, RLIMIT_NPROC)) {
1202 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1203 		    p->real_cred->user != INIT_USER)
1204 			goto bad_fork_free;
1205 	}
1206 	current->flags &= ~PF_NPROC_EXCEEDED;
1207 
1208 	retval = copy_creds(p, clone_flags);
1209 	if (retval < 0)
1210 		goto bad_fork_free;
1211 
1212 	/*
1213 	 * If multiple threads are within copy_process(), then this check
1214 	 * triggers too late. This doesn't hurt, the check is only there
1215 	 * to stop root fork bombs.
1216 	 */
1217 	retval = -EAGAIN;
1218 	if (nr_threads >= max_threads)
1219 		goto bad_fork_cleanup_count;
1220 
1221 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1222 		goto bad_fork_cleanup_count;
1223 
1224 	p->did_exec = 0;
1225 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1226 	copy_flags(clone_flags, p);
1227 	INIT_LIST_HEAD(&p->children);
1228 	INIT_LIST_HEAD(&p->sibling);
1229 	rcu_copy_process(p);
1230 	p->vfork_done = NULL;
1231 	spin_lock_init(&p->alloc_lock);
1232 
1233 	init_sigpending(&p->pending);
1234 
1235 	p->utime = p->stime = p->gtime = 0;
1236 	p->utimescaled = p->stimescaled = 0;
1237 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1238 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1239 #endif
1240 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1241 	seqlock_init(&p->vtime_seqlock);
1242 	p->vtime_snap = 0;
1243 	p->vtime_snap_whence = VTIME_SLEEPING;
1244 #endif
1245 
1246 #if defined(SPLIT_RSS_COUNTING)
1247 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1248 #endif
1249 
1250 	p->default_timer_slack_ns = current->timer_slack_ns;
1251 
1252 	task_io_accounting_init(&p->ioac);
1253 	acct_clear_integrals(p);
1254 
1255 	posix_cpu_timers_init(p);
1256 
1257 	do_posix_clock_monotonic_gettime(&p->start_time);
1258 	p->real_start_time = p->start_time;
1259 	monotonic_to_bootbased(&p->real_start_time);
1260 	p->io_context = NULL;
1261 	p->audit_context = NULL;
1262 	if (clone_flags & CLONE_THREAD)
1263 		threadgroup_change_begin(current);
1264 	cgroup_fork(p);
1265 #ifdef CONFIG_NUMA
1266 	p->mempolicy = mpol_dup(p->mempolicy);
1267 	if (IS_ERR(p->mempolicy)) {
1268 		retval = PTR_ERR(p->mempolicy);
1269 		p->mempolicy = NULL;
1270 		goto bad_fork_cleanup_cgroup;
1271 	}
1272 	mpol_fix_fork_child_flag(p);
1273 #endif
1274 #ifdef CONFIG_CPUSETS
1275 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1276 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1277 	seqcount_init(&p->mems_allowed_seq);
1278 #endif
1279 #ifdef CONFIG_TRACE_IRQFLAGS
1280 	p->irq_events = 0;
1281 	p->hardirqs_enabled = 0;
1282 	p->hardirq_enable_ip = 0;
1283 	p->hardirq_enable_event = 0;
1284 	p->hardirq_disable_ip = _THIS_IP_;
1285 	p->hardirq_disable_event = 0;
1286 	p->softirqs_enabled = 1;
1287 	p->softirq_enable_ip = _THIS_IP_;
1288 	p->softirq_enable_event = 0;
1289 	p->softirq_disable_ip = 0;
1290 	p->softirq_disable_event = 0;
1291 	p->hardirq_context = 0;
1292 	p->softirq_context = 0;
1293 #endif
1294 #ifdef CONFIG_LOCKDEP
1295 	p->lockdep_depth = 0; /* no locks held yet */
1296 	p->curr_chain_key = 0;
1297 	p->lockdep_recursion = 0;
1298 #endif
1299 
1300 #ifdef CONFIG_DEBUG_MUTEXES
1301 	p->blocked_on = NULL; /* not blocked yet */
1302 #endif
1303 #ifdef CONFIG_MEMCG
1304 	p->memcg_batch.do_batch = 0;
1305 	p->memcg_batch.memcg = NULL;
1306 #endif
1307 #ifdef CONFIG_BCACHE
1308 	p->sequential_io	= 0;
1309 	p->sequential_io_avg	= 0;
1310 #endif
1311 
1312 	/* Perform scheduler related setup. Assign this task to a CPU. */
1313 	sched_fork(p);
1314 
1315 	retval = perf_event_init_task(p);
1316 	if (retval)
1317 		goto bad_fork_cleanup_policy;
1318 	retval = audit_alloc(p);
1319 	if (retval)
1320 		goto bad_fork_cleanup_policy;
1321 	/* copy all the process information */
1322 	retval = copy_semundo(clone_flags, p);
1323 	if (retval)
1324 		goto bad_fork_cleanup_audit;
1325 	retval = copy_files(clone_flags, p);
1326 	if (retval)
1327 		goto bad_fork_cleanup_semundo;
1328 	retval = copy_fs(clone_flags, p);
1329 	if (retval)
1330 		goto bad_fork_cleanup_files;
1331 	retval = copy_sighand(clone_flags, p);
1332 	if (retval)
1333 		goto bad_fork_cleanup_fs;
1334 	retval = copy_signal(clone_flags, p);
1335 	if (retval)
1336 		goto bad_fork_cleanup_sighand;
1337 	retval = copy_mm(clone_flags, p);
1338 	if (retval)
1339 		goto bad_fork_cleanup_signal;
1340 	retval = copy_namespaces(clone_flags, p);
1341 	if (retval)
1342 		goto bad_fork_cleanup_mm;
1343 	retval = copy_io(clone_flags, p);
1344 	if (retval)
1345 		goto bad_fork_cleanup_namespaces;
1346 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1347 	if (retval)
1348 		goto bad_fork_cleanup_io;
1349 
1350 	if (pid != &init_struct_pid) {
1351 		retval = -ENOMEM;
1352 		pid = alloc_pid(p->nsproxy->pid_ns);
1353 		if (!pid)
1354 			goto bad_fork_cleanup_io;
1355 	}
1356 
1357 	p->pid = pid_nr(pid);
1358 	p->tgid = p->pid;
1359 	if (clone_flags & CLONE_THREAD)
1360 		p->tgid = current->tgid;
1361 
1362 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1363 	/*
1364 	 * Clear TID on mm_release()?
1365 	 */
1366 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1367 #ifdef CONFIG_BLOCK
1368 	p->plug = NULL;
1369 #endif
1370 #ifdef CONFIG_FUTEX
1371 	p->robust_list = NULL;
1372 #ifdef CONFIG_COMPAT
1373 	p->compat_robust_list = NULL;
1374 #endif
1375 	INIT_LIST_HEAD(&p->pi_state_list);
1376 	p->pi_state_cache = NULL;
1377 #endif
1378 	uprobe_copy_process(p);
1379 	/*
1380 	 * sigaltstack should be cleared when sharing the same VM
1381 	 */
1382 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1383 		p->sas_ss_sp = p->sas_ss_size = 0;
1384 
1385 	/*
1386 	 * Syscall tracing and stepping should be turned off in the
1387 	 * child regardless of CLONE_PTRACE.
1388 	 */
1389 	user_disable_single_step(p);
1390 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1391 #ifdef TIF_SYSCALL_EMU
1392 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1393 #endif
1394 	clear_all_latency_tracing(p);
1395 
1396 	/* ok, now we should be set up.. */
1397 	if (clone_flags & CLONE_THREAD)
1398 		p->exit_signal = -1;
1399 	else if (clone_flags & CLONE_PARENT)
1400 		p->exit_signal = current->group_leader->exit_signal;
1401 	else
1402 		p->exit_signal = (clone_flags & CSIGNAL);
1403 
1404 	p->pdeath_signal = 0;
1405 	p->exit_state = 0;
1406 
1407 	p->nr_dirtied = 0;
1408 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1409 	p->dirty_paused_when = 0;
1410 
1411 	/*
1412 	 * Ok, make it visible to the rest of the system.
1413 	 * We dont wake it up yet.
1414 	 */
1415 	p->group_leader = p;
1416 	INIT_LIST_HEAD(&p->thread_group);
1417 	p->task_works = NULL;
1418 
1419 	/* Need tasklist lock for parent etc handling! */
1420 	write_lock_irq(&tasklist_lock);
1421 
1422 	/* CLONE_PARENT re-uses the old parent */
1423 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1424 		p->real_parent = current->real_parent;
1425 		p->parent_exec_id = current->parent_exec_id;
1426 	} else {
1427 		p->real_parent = current;
1428 		p->parent_exec_id = current->self_exec_id;
1429 	}
1430 
1431 	spin_lock(&current->sighand->siglock);
1432 
1433 	/*
1434 	 * Process group and session signals need to be delivered to just the
1435 	 * parent before the fork or both the parent and the child after the
1436 	 * fork. Restart if a signal comes in before we add the new process to
1437 	 * it's process group.
1438 	 * A fatal signal pending means that current will exit, so the new
1439 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1440 	*/
1441 	recalc_sigpending();
1442 	if (signal_pending(current)) {
1443 		spin_unlock(&current->sighand->siglock);
1444 		write_unlock_irq(&tasklist_lock);
1445 		retval = -ERESTARTNOINTR;
1446 		goto bad_fork_free_pid;
1447 	}
1448 
1449 	if (clone_flags & CLONE_THREAD) {
1450 		current->signal->nr_threads++;
1451 		atomic_inc(&current->signal->live);
1452 		atomic_inc(&current->signal->sigcnt);
1453 		p->group_leader = current->group_leader;
1454 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1455 	}
1456 
1457 	if (likely(p->pid)) {
1458 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1459 
1460 		if (thread_group_leader(p)) {
1461 			if (is_child_reaper(pid)) {
1462 				ns_of_pid(pid)->child_reaper = p;
1463 				p->signal->flags |= SIGNAL_UNKILLABLE;
1464 			}
1465 
1466 			p->signal->leader_pid = pid;
1467 			p->signal->tty = tty_kref_get(current->signal->tty);
1468 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1469 			attach_pid(p, PIDTYPE_SID, task_session(current));
1470 			list_add_tail(&p->sibling, &p->real_parent->children);
1471 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1472 			__this_cpu_inc(process_counts);
1473 		}
1474 		attach_pid(p, PIDTYPE_PID, pid);
1475 		nr_threads++;
1476 	}
1477 
1478 	total_forks++;
1479 	spin_unlock(&current->sighand->siglock);
1480 	write_unlock_irq(&tasklist_lock);
1481 	proc_fork_connector(p);
1482 	cgroup_post_fork(p);
1483 	if (clone_flags & CLONE_THREAD)
1484 		threadgroup_change_end(current);
1485 	perf_event_fork(p);
1486 
1487 	trace_task_newtask(p, clone_flags);
1488 
1489 	return p;
1490 
1491 bad_fork_free_pid:
1492 	if (pid != &init_struct_pid)
1493 		free_pid(pid);
1494 bad_fork_cleanup_io:
1495 	if (p->io_context)
1496 		exit_io_context(p);
1497 bad_fork_cleanup_namespaces:
1498 	exit_task_namespaces(p);
1499 bad_fork_cleanup_mm:
1500 	if (p->mm)
1501 		mmput(p->mm);
1502 bad_fork_cleanup_signal:
1503 	if (!(clone_flags & CLONE_THREAD))
1504 		free_signal_struct(p->signal);
1505 bad_fork_cleanup_sighand:
1506 	__cleanup_sighand(p->sighand);
1507 bad_fork_cleanup_fs:
1508 	exit_fs(p); /* blocking */
1509 bad_fork_cleanup_files:
1510 	exit_files(p); /* blocking */
1511 bad_fork_cleanup_semundo:
1512 	exit_sem(p);
1513 bad_fork_cleanup_audit:
1514 	audit_free(p);
1515 bad_fork_cleanup_policy:
1516 	perf_event_free_task(p);
1517 #ifdef CONFIG_NUMA
1518 	mpol_put(p->mempolicy);
1519 bad_fork_cleanup_cgroup:
1520 #endif
1521 	if (clone_flags & CLONE_THREAD)
1522 		threadgroup_change_end(current);
1523 	cgroup_exit(p, 0);
1524 	delayacct_tsk_free(p);
1525 	module_put(task_thread_info(p)->exec_domain->module);
1526 bad_fork_cleanup_count:
1527 	atomic_dec(&p->cred->user->processes);
1528 	exit_creds(p);
1529 bad_fork_free:
1530 	free_task(p);
1531 fork_out:
1532 	return ERR_PTR(retval);
1533 }
1534 
1535 static inline void init_idle_pids(struct pid_link *links)
1536 {
1537 	enum pid_type type;
1538 
1539 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1540 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1541 		links[type].pid = &init_struct_pid;
1542 	}
1543 }
1544 
1545 struct task_struct * __cpuinit fork_idle(int cpu)
1546 {
1547 	struct task_struct *task;
1548 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1549 	if (!IS_ERR(task)) {
1550 		init_idle_pids(task->pids);
1551 		init_idle(task, cpu);
1552 	}
1553 
1554 	return task;
1555 }
1556 
1557 /*
1558  *  Ok, this is the main fork-routine.
1559  *
1560  * It copies the process, and if successful kick-starts
1561  * it and waits for it to finish using the VM if required.
1562  */
1563 long do_fork(unsigned long clone_flags,
1564 	      unsigned long stack_start,
1565 	      unsigned long stack_size,
1566 	      int __user *parent_tidptr,
1567 	      int __user *child_tidptr)
1568 {
1569 	struct task_struct *p;
1570 	int trace = 0;
1571 	long nr;
1572 
1573 	/*
1574 	 * Do some preliminary argument and permissions checking before we
1575 	 * actually start allocating stuff
1576 	 */
1577 	if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1578 		if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1579 			return -EINVAL;
1580 	}
1581 
1582 	/*
1583 	 * Determine whether and which event to report to ptracer.  When
1584 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1585 	 * requested, no event is reported; otherwise, report if the event
1586 	 * for the type of forking is enabled.
1587 	 */
1588 	if (!(clone_flags & CLONE_UNTRACED)) {
1589 		if (clone_flags & CLONE_VFORK)
1590 			trace = PTRACE_EVENT_VFORK;
1591 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1592 			trace = PTRACE_EVENT_CLONE;
1593 		else
1594 			trace = PTRACE_EVENT_FORK;
1595 
1596 		if (likely(!ptrace_event_enabled(current, trace)))
1597 			trace = 0;
1598 	}
1599 
1600 	p = copy_process(clone_flags, stack_start, stack_size,
1601 			 child_tidptr, NULL, trace);
1602 	/*
1603 	 * Do this prior waking up the new thread - the thread pointer
1604 	 * might get invalid after that point, if the thread exits quickly.
1605 	 */
1606 	if (!IS_ERR(p)) {
1607 		struct completion vfork;
1608 
1609 		trace_sched_process_fork(current, p);
1610 
1611 		nr = task_pid_vnr(p);
1612 
1613 		if (clone_flags & CLONE_PARENT_SETTID)
1614 			put_user(nr, parent_tidptr);
1615 
1616 		if (clone_flags & CLONE_VFORK) {
1617 			p->vfork_done = &vfork;
1618 			init_completion(&vfork);
1619 			get_task_struct(p);
1620 		}
1621 
1622 		wake_up_new_task(p);
1623 
1624 		/* forking complete and child started to run, tell ptracer */
1625 		if (unlikely(trace))
1626 			ptrace_event(trace, nr);
1627 
1628 		if (clone_flags & CLONE_VFORK) {
1629 			if (!wait_for_vfork_done(p, &vfork))
1630 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1631 		}
1632 	} else {
1633 		nr = PTR_ERR(p);
1634 	}
1635 	return nr;
1636 }
1637 
1638 /*
1639  * Create a kernel thread.
1640  */
1641 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1642 {
1643 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1644 		(unsigned long)arg, NULL, NULL);
1645 }
1646 
1647 #ifdef __ARCH_WANT_SYS_FORK
1648 SYSCALL_DEFINE0(fork)
1649 {
1650 #ifdef CONFIG_MMU
1651 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1652 #else
1653 	/* can not support in nommu mode */
1654 	return(-EINVAL);
1655 #endif
1656 }
1657 #endif
1658 
1659 #ifdef __ARCH_WANT_SYS_VFORK
1660 SYSCALL_DEFINE0(vfork)
1661 {
1662 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1663 			0, NULL, NULL);
1664 }
1665 #endif
1666 
1667 #ifdef __ARCH_WANT_SYS_CLONE
1668 #ifdef CONFIG_CLONE_BACKWARDS
1669 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1670 		 int __user *, parent_tidptr,
1671 		 int, tls_val,
1672 		 int __user *, child_tidptr)
1673 #elif defined(CONFIG_CLONE_BACKWARDS2)
1674 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1675 		 int __user *, parent_tidptr,
1676 		 int __user *, child_tidptr,
1677 		 int, tls_val)
1678 #else
1679 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1680 		 int __user *, parent_tidptr,
1681 		 int __user *, child_tidptr,
1682 		 int, tls_val)
1683 #endif
1684 {
1685 	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1686 }
1687 #endif
1688 
1689 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1690 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1691 #endif
1692 
1693 static void sighand_ctor(void *data)
1694 {
1695 	struct sighand_struct *sighand = data;
1696 
1697 	spin_lock_init(&sighand->siglock);
1698 	init_waitqueue_head(&sighand->signalfd_wqh);
1699 }
1700 
1701 void __init proc_caches_init(void)
1702 {
1703 	sighand_cachep = kmem_cache_create("sighand_cache",
1704 			sizeof(struct sighand_struct), 0,
1705 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1706 			SLAB_NOTRACK, sighand_ctor);
1707 	signal_cachep = kmem_cache_create("signal_cache",
1708 			sizeof(struct signal_struct), 0,
1709 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1710 	files_cachep = kmem_cache_create("files_cache",
1711 			sizeof(struct files_struct), 0,
1712 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1713 	fs_cachep = kmem_cache_create("fs_cache",
1714 			sizeof(struct fs_struct), 0,
1715 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1716 	/*
1717 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1718 	 * whole struct cpumask for the OFFSTACK case. We could change
1719 	 * this to *only* allocate as much of it as required by the
1720 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1721 	 * is at the end of the structure, exactly for that reason.
1722 	 */
1723 	mm_cachep = kmem_cache_create("mm_struct",
1724 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1725 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1726 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1727 	mmap_init();
1728 	nsproxy_cache_init();
1729 }
1730 
1731 /*
1732  * Check constraints on flags passed to the unshare system call.
1733  */
1734 static int check_unshare_flags(unsigned long unshare_flags)
1735 {
1736 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1737 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1738 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1739 				CLONE_NEWUSER|CLONE_NEWPID))
1740 		return -EINVAL;
1741 	/*
1742 	 * Not implemented, but pretend it works if there is nothing to
1743 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1744 	 * needs to unshare vm.
1745 	 */
1746 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1747 		/* FIXME: get_task_mm() increments ->mm_users */
1748 		if (atomic_read(&current->mm->mm_users) > 1)
1749 			return -EINVAL;
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 /*
1756  * Unshare the filesystem structure if it is being shared
1757  */
1758 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1759 {
1760 	struct fs_struct *fs = current->fs;
1761 
1762 	if (!(unshare_flags & CLONE_FS) || !fs)
1763 		return 0;
1764 
1765 	/* don't need lock here; in the worst case we'll do useless copy */
1766 	if (fs->users == 1)
1767 		return 0;
1768 
1769 	*new_fsp = copy_fs_struct(fs);
1770 	if (!*new_fsp)
1771 		return -ENOMEM;
1772 
1773 	return 0;
1774 }
1775 
1776 /*
1777  * Unshare file descriptor table if it is being shared
1778  */
1779 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1780 {
1781 	struct files_struct *fd = current->files;
1782 	int error = 0;
1783 
1784 	if ((unshare_flags & CLONE_FILES) &&
1785 	    (fd && atomic_read(&fd->count) > 1)) {
1786 		*new_fdp = dup_fd(fd, &error);
1787 		if (!*new_fdp)
1788 			return error;
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 /*
1795  * unshare allows a process to 'unshare' part of the process
1796  * context which was originally shared using clone.  copy_*
1797  * functions used by do_fork() cannot be used here directly
1798  * because they modify an inactive task_struct that is being
1799  * constructed. Here we are modifying the current, active,
1800  * task_struct.
1801  */
1802 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1803 {
1804 	struct fs_struct *fs, *new_fs = NULL;
1805 	struct files_struct *fd, *new_fd = NULL;
1806 	struct cred *new_cred = NULL;
1807 	struct nsproxy *new_nsproxy = NULL;
1808 	int do_sysvsem = 0;
1809 	int err;
1810 
1811 	/*
1812 	 * If unsharing a user namespace must also unshare the thread.
1813 	 */
1814 	if (unshare_flags & CLONE_NEWUSER)
1815 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1816 	/*
1817 	 * If unsharing a pid namespace must also unshare the thread.
1818 	 */
1819 	if (unshare_flags & CLONE_NEWPID)
1820 		unshare_flags |= CLONE_THREAD;
1821 	/*
1822 	 * If unsharing a thread from a thread group, must also unshare vm.
1823 	 */
1824 	if (unshare_flags & CLONE_THREAD)
1825 		unshare_flags |= CLONE_VM;
1826 	/*
1827 	 * If unsharing vm, must also unshare signal handlers.
1828 	 */
1829 	if (unshare_flags & CLONE_VM)
1830 		unshare_flags |= CLONE_SIGHAND;
1831 	/*
1832 	 * If unsharing namespace, must also unshare filesystem information.
1833 	 */
1834 	if (unshare_flags & CLONE_NEWNS)
1835 		unshare_flags |= CLONE_FS;
1836 
1837 	err = check_unshare_flags(unshare_flags);
1838 	if (err)
1839 		goto bad_unshare_out;
1840 	/*
1841 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1842 	 * to a new ipc namespace, the semaphore arrays from the old
1843 	 * namespace are unreachable.
1844 	 */
1845 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1846 		do_sysvsem = 1;
1847 	err = unshare_fs(unshare_flags, &new_fs);
1848 	if (err)
1849 		goto bad_unshare_out;
1850 	err = unshare_fd(unshare_flags, &new_fd);
1851 	if (err)
1852 		goto bad_unshare_cleanup_fs;
1853 	err = unshare_userns(unshare_flags, &new_cred);
1854 	if (err)
1855 		goto bad_unshare_cleanup_fd;
1856 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1857 					 new_cred, new_fs);
1858 	if (err)
1859 		goto bad_unshare_cleanup_cred;
1860 
1861 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1862 		if (do_sysvsem) {
1863 			/*
1864 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1865 			 */
1866 			exit_sem(current);
1867 		}
1868 
1869 		if (new_nsproxy)
1870 			switch_task_namespaces(current, new_nsproxy);
1871 
1872 		task_lock(current);
1873 
1874 		if (new_fs) {
1875 			fs = current->fs;
1876 			spin_lock(&fs->lock);
1877 			current->fs = new_fs;
1878 			if (--fs->users)
1879 				new_fs = NULL;
1880 			else
1881 				new_fs = fs;
1882 			spin_unlock(&fs->lock);
1883 		}
1884 
1885 		if (new_fd) {
1886 			fd = current->files;
1887 			current->files = new_fd;
1888 			new_fd = fd;
1889 		}
1890 
1891 		task_unlock(current);
1892 
1893 		if (new_cred) {
1894 			/* Install the new user namespace */
1895 			commit_creds(new_cred);
1896 			new_cred = NULL;
1897 		}
1898 	}
1899 
1900 bad_unshare_cleanup_cred:
1901 	if (new_cred)
1902 		put_cred(new_cred);
1903 bad_unshare_cleanup_fd:
1904 	if (new_fd)
1905 		put_files_struct(new_fd);
1906 
1907 bad_unshare_cleanup_fs:
1908 	if (new_fs)
1909 		free_fs_struct(new_fs);
1910 
1911 bad_unshare_out:
1912 	return err;
1913 }
1914 
1915 /*
1916  *	Helper to unshare the files of the current task.
1917  *	We don't want to expose copy_files internals to
1918  *	the exec layer of the kernel.
1919  */
1920 
1921 int unshare_files(struct files_struct **displaced)
1922 {
1923 	struct task_struct *task = current;
1924 	struct files_struct *copy = NULL;
1925 	int error;
1926 
1927 	error = unshare_fd(CLONE_FILES, &copy);
1928 	if (error || !copy) {
1929 		*displaced = NULL;
1930 		return error;
1931 	}
1932 	*displaced = task->files;
1933 	task_lock(task);
1934 	task->files = copy;
1935 	task_unlock(task);
1936 	return 0;
1937 }
1938