1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/mm.h> 32 #include <linux/vmacache.h> 33 #include <linux/nsproxy.h> 34 #include <linux/capability.h> 35 #include <linux/cpu.h> 36 #include <linux/cgroup.h> 37 #include <linux/security.h> 38 #include <linux/hugetlb.h> 39 #include <linux/seccomp.h> 40 #include <linux/swap.h> 41 #include <linux/syscalls.h> 42 #include <linux/jiffies.h> 43 #include <linux/futex.h> 44 #include <linux/compat.h> 45 #include <linux/kthread.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/rcupdate.h> 48 #include <linux/ptrace.h> 49 #include <linux/mount.h> 50 #include <linux/audit.h> 51 #include <linux/memcontrol.h> 52 #include <linux/ftrace.h> 53 #include <linux/proc_fs.h> 54 #include <linux/profile.h> 55 #include <linux/rmap.h> 56 #include <linux/ksm.h> 57 #include <linux/acct.h> 58 #include <linux/tsacct_kern.h> 59 #include <linux/cn_proc.h> 60 #include <linux/freezer.h> 61 #include <linux/delayacct.h> 62 #include <linux/taskstats_kern.h> 63 #include <linux/random.h> 64 #include <linux/tty.h> 65 #include <linux/blkdev.h> 66 #include <linux/fs_struct.h> 67 #include <linux/magic.h> 68 #include <linux/perf_event.h> 69 #include <linux/posix-timers.h> 70 #include <linux/user-return-notifier.h> 71 #include <linux/oom.h> 72 #include <linux/khugepaged.h> 73 #include <linux/signalfd.h> 74 #include <linux/uprobes.h> 75 #include <linux/aio.h> 76 #include <linux/compiler.h> 77 78 #include <asm/pgtable.h> 79 #include <asm/pgalloc.h> 80 #include <asm/uaccess.h> 81 #include <asm/mmu_context.h> 82 #include <asm/cacheflush.h> 83 #include <asm/tlbflush.h> 84 85 #include <trace/events/sched.h> 86 87 #define CREATE_TRACE_POINTS 88 #include <trace/events/task.h> 89 90 /* 91 * Protected counters by write_lock_irq(&tasklist_lock) 92 */ 93 unsigned long total_forks; /* Handle normal Linux uptimes. */ 94 int nr_threads; /* The idle threads do not count.. */ 95 96 int max_threads; /* tunable limit on nr_threads */ 97 98 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 99 100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 101 102 #ifdef CONFIG_PROVE_RCU 103 int lockdep_tasklist_lock_is_held(void) 104 { 105 return lockdep_is_held(&tasklist_lock); 106 } 107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 108 #endif /* #ifdef CONFIG_PROVE_RCU */ 109 110 int nr_processes(void) 111 { 112 int cpu; 113 int total = 0; 114 115 for_each_possible_cpu(cpu) 116 total += per_cpu(process_counts, cpu); 117 118 return total; 119 } 120 121 void __weak arch_release_task_struct(struct task_struct *tsk) 122 { 123 } 124 125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 126 static struct kmem_cache *task_struct_cachep; 127 128 static inline struct task_struct *alloc_task_struct_node(int node) 129 { 130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 131 } 132 133 static inline void free_task_struct(struct task_struct *tsk) 134 { 135 kmem_cache_free(task_struct_cachep, tsk); 136 } 137 #endif 138 139 void __weak arch_release_thread_info(struct thread_info *ti) 140 { 141 } 142 143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 144 145 /* 146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 147 * kmemcache based allocator. 148 */ 149 # if THREAD_SIZE >= PAGE_SIZE 150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 151 int node) 152 { 153 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP, 154 THREAD_SIZE_ORDER); 155 156 return page ? page_address(page) : NULL; 157 } 158 159 static inline void free_thread_info(struct thread_info *ti) 160 { 161 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER); 162 } 163 # else 164 static struct kmem_cache *thread_info_cache; 165 166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 167 int node) 168 { 169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 170 } 171 172 static void free_thread_info(struct thread_info *ti) 173 { 174 kmem_cache_free(thread_info_cache, ti); 175 } 176 177 void thread_info_cache_init(void) 178 { 179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 180 THREAD_SIZE, 0, NULL); 181 BUG_ON(thread_info_cache == NULL); 182 } 183 # endif 184 #endif 185 186 /* SLAB cache for signal_struct structures (tsk->signal) */ 187 static struct kmem_cache *signal_cachep; 188 189 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 190 struct kmem_cache *sighand_cachep; 191 192 /* SLAB cache for files_struct structures (tsk->files) */ 193 struct kmem_cache *files_cachep; 194 195 /* SLAB cache for fs_struct structures (tsk->fs) */ 196 struct kmem_cache *fs_cachep; 197 198 /* SLAB cache for vm_area_struct structures */ 199 struct kmem_cache *vm_area_cachep; 200 201 /* SLAB cache for mm_struct structures (tsk->mm) */ 202 static struct kmem_cache *mm_cachep; 203 204 static void account_kernel_stack(struct thread_info *ti, int account) 205 { 206 struct zone *zone = page_zone(virt_to_page(ti)); 207 208 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 209 } 210 211 void free_task(struct task_struct *tsk) 212 { 213 account_kernel_stack(tsk->stack, -1); 214 arch_release_thread_info(tsk->stack); 215 free_thread_info(tsk->stack); 216 rt_mutex_debug_task_free(tsk); 217 ftrace_graph_exit_task(tsk); 218 put_seccomp_filter(tsk); 219 arch_release_task_struct(tsk); 220 free_task_struct(tsk); 221 } 222 EXPORT_SYMBOL(free_task); 223 224 static inline void free_signal_struct(struct signal_struct *sig) 225 { 226 taskstats_tgid_free(sig); 227 sched_autogroup_exit(sig); 228 kmem_cache_free(signal_cachep, sig); 229 } 230 231 static inline void put_signal_struct(struct signal_struct *sig) 232 { 233 if (atomic_dec_and_test(&sig->sigcnt)) 234 free_signal_struct(sig); 235 } 236 237 void __put_task_struct(struct task_struct *tsk) 238 { 239 WARN_ON(!tsk->exit_state); 240 WARN_ON(atomic_read(&tsk->usage)); 241 WARN_ON(tsk == current); 242 243 task_numa_free(tsk); 244 security_task_free(tsk); 245 exit_creds(tsk); 246 delayacct_tsk_free(tsk); 247 put_signal_struct(tsk->signal); 248 249 if (!profile_handoff_task(tsk)) 250 free_task(tsk); 251 } 252 EXPORT_SYMBOL_GPL(__put_task_struct); 253 254 void __init __weak arch_task_cache_init(void) { } 255 256 void __init fork_init(unsigned long mempages) 257 { 258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 259 #ifndef ARCH_MIN_TASKALIGN 260 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 261 #endif 262 /* create a slab on which task_structs can be allocated */ 263 task_struct_cachep = 264 kmem_cache_create("task_struct", sizeof(struct task_struct), 265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 266 #endif 267 268 /* do the arch specific task caches init */ 269 arch_task_cache_init(); 270 271 /* 272 * The default maximum number of threads is set to a safe 273 * value: the thread structures can take up at most half 274 * of memory. 275 */ 276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 277 278 /* 279 * we need to allow at least 20 threads to boot a system 280 */ 281 if (max_threads < 20) 282 max_threads = 20; 283 284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 286 init_task.signal->rlim[RLIMIT_SIGPENDING] = 287 init_task.signal->rlim[RLIMIT_NPROC]; 288 } 289 290 int __weak arch_dup_task_struct(struct task_struct *dst, 291 struct task_struct *src) 292 { 293 *dst = *src; 294 return 0; 295 } 296 297 void set_task_stack_end_magic(struct task_struct *tsk) 298 { 299 unsigned long *stackend; 300 301 stackend = end_of_stack(tsk); 302 *stackend = STACK_END_MAGIC; /* for overflow detection */ 303 } 304 305 static struct task_struct *dup_task_struct(struct task_struct *orig) 306 { 307 struct task_struct *tsk; 308 struct thread_info *ti; 309 int node = tsk_fork_get_node(orig); 310 int err; 311 312 tsk = alloc_task_struct_node(node); 313 if (!tsk) 314 return NULL; 315 316 ti = alloc_thread_info_node(tsk, node); 317 if (!ti) 318 goto free_tsk; 319 320 err = arch_dup_task_struct(tsk, orig); 321 if (err) 322 goto free_ti; 323 324 tsk->stack = ti; 325 #ifdef CONFIG_SECCOMP 326 /* 327 * We must handle setting up seccomp filters once we're under 328 * the sighand lock in case orig has changed between now and 329 * then. Until then, filter must be NULL to avoid messing up 330 * the usage counts on the error path calling free_task. 331 */ 332 tsk->seccomp.filter = NULL; 333 #endif 334 335 setup_thread_stack(tsk, orig); 336 clear_user_return_notifier(tsk); 337 clear_tsk_need_resched(tsk); 338 set_task_stack_end_magic(tsk); 339 340 #ifdef CONFIG_CC_STACKPROTECTOR 341 tsk->stack_canary = get_random_int(); 342 #endif 343 344 /* 345 * One for us, one for whoever does the "release_task()" (usually 346 * parent) 347 */ 348 atomic_set(&tsk->usage, 2); 349 #ifdef CONFIG_BLK_DEV_IO_TRACE 350 tsk->btrace_seq = 0; 351 #endif 352 tsk->splice_pipe = NULL; 353 tsk->task_frag.page = NULL; 354 355 account_kernel_stack(ti, 1); 356 357 return tsk; 358 359 free_ti: 360 free_thread_info(ti); 361 free_tsk: 362 free_task_struct(tsk); 363 return NULL; 364 } 365 366 #ifdef CONFIG_MMU 367 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 368 { 369 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 370 struct rb_node **rb_link, *rb_parent; 371 int retval; 372 unsigned long charge; 373 374 uprobe_start_dup_mmap(); 375 down_write(&oldmm->mmap_sem); 376 flush_cache_dup_mm(oldmm); 377 uprobe_dup_mmap(oldmm, mm); 378 /* 379 * Not linked in yet - no deadlock potential: 380 */ 381 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 382 383 mm->total_vm = oldmm->total_vm; 384 mm->shared_vm = oldmm->shared_vm; 385 mm->exec_vm = oldmm->exec_vm; 386 mm->stack_vm = oldmm->stack_vm; 387 388 rb_link = &mm->mm_rb.rb_node; 389 rb_parent = NULL; 390 pprev = &mm->mmap; 391 retval = ksm_fork(mm, oldmm); 392 if (retval) 393 goto out; 394 retval = khugepaged_fork(mm, oldmm); 395 if (retval) 396 goto out; 397 398 prev = NULL; 399 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 400 struct file *file; 401 402 if (mpnt->vm_flags & VM_DONTCOPY) { 403 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 404 -vma_pages(mpnt)); 405 continue; 406 } 407 charge = 0; 408 if (mpnt->vm_flags & VM_ACCOUNT) { 409 unsigned long len = vma_pages(mpnt); 410 411 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 412 goto fail_nomem; 413 charge = len; 414 } 415 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 416 if (!tmp) 417 goto fail_nomem; 418 *tmp = *mpnt; 419 INIT_LIST_HEAD(&tmp->anon_vma_chain); 420 retval = vma_dup_policy(mpnt, tmp); 421 if (retval) 422 goto fail_nomem_policy; 423 tmp->vm_mm = mm; 424 if (anon_vma_fork(tmp, mpnt)) 425 goto fail_nomem_anon_vma_fork; 426 tmp->vm_flags &= ~VM_LOCKED; 427 tmp->vm_next = tmp->vm_prev = NULL; 428 file = tmp->vm_file; 429 if (file) { 430 struct inode *inode = file_inode(file); 431 struct address_space *mapping = file->f_mapping; 432 433 get_file(file); 434 if (tmp->vm_flags & VM_DENYWRITE) 435 atomic_dec(&inode->i_writecount); 436 i_mmap_lock_write(mapping); 437 if (tmp->vm_flags & VM_SHARED) 438 atomic_inc(&mapping->i_mmap_writable); 439 flush_dcache_mmap_lock(mapping); 440 /* insert tmp into the share list, just after mpnt */ 441 if (unlikely(tmp->vm_flags & VM_NONLINEAR)) 442 vma_nonlinear_insert(tmp, 443 &mapping->i_mmap_nonlinear); 444 else 445 vma_interval_tree_insert_after(tmp, mpnt, 446 &mapping->i_mmap); 447 flush_dcache_mmap_unlock(mapping); 448 i_mmap_unlock_write(mapping); 449 } 450 451 /* 452 * Clear hugetlb-related page reserves for children. This only 453 * affects MAP_PRIVATE mappings. Faults generated by the child 454 * are not guaranteed to succeed, even if read-only 455 */ 456 if (is_vm_hugetlb_page(tmp)) 457 reset_vma_resv_huge_pages(tmp); 458 459 /* 460 * Link in the new vma and copy the page table entries. 461 */ 462 *pprev = tmp; 463 pprev = &tmp->vm_next; 464 tmp->vm_prev = prev; 465 prev = tmp; 466 467 __vma_link_rb(mm, tmp, rb_link, rb_parent); 468 rb_link = &tmp->vm_rb.rb_right; 469 rb_parent = &tmp->vm_rb; 470 471 mm->map_count++; 472 retval = copy_page_range(mm, oldmm, mpnt); 473 474 if (tmp->vm_ops && tmp->vm_ops->open) 475 tmp->vm_ops->open(tmp); 476 477 if (retval) 478 goto out; 479 } 480 /* a new mm has just been created */ 481 arch_dup_mmap(oldmm, mm); 482 retval = 0; 483 out: 484 up_write(&mm->mmap_sem); 485 flush_tlb_mm(oldmm); 486 up_write(&oldmm->mmap_sem); 487 uprobe_end_dup_mmap(); 488 return retval; 489 fail_nomem_anon_vma_fork: 490 mpol_put(vma_policy(tmp)); 491 fail_nomem_policy: 492 kmem_cache_free(vm_area_cachep, tmp); 493 fail_nomem: 494 retval = -ENOMEM; 495 vm_unacct_memory(charge); 496 goto out; 497 } 498 499 static inline int mm_alloc_pgd(struct mm_struct *mm) 500 { 501 mm->pgd = pgd_alloc(mm); 502 if (unlikely(!mm->pgd)) 503 return -ENOMEM; 504 return 0; 505 } 506 507 static inline void mm_free_pgd(struct mm_struct *mm) 508 { 509 pgd_free(mm, mm->pgd); 510 } 511 #else 512 #define dup_mmap(mm, oldmm) (0) 513 #define mm_alloc_pgd(mm) (0) 514 #define mm_free_pgd(mm) 515 #endif /* CONFIG_MMU */ 516 517 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 518 519 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 520 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 521 522 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 523 524 static int __init coredump_filter_setup(char *s) 525 { 526 default_dump_filter = 527 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 528 MMF_DUMP_FILTER_MASK; 529 return 1; 530 } 531 532 __setup("coredump_filter=", coredump_filter_setup); 533 534 #include <linux/init_task.h> 535 536 static void mm_init_aio(struct mm_struct *mm) 537 { 538 #ifdef CONFIG_AIO 539 spin_lock_init(&mm->ioctx_lock); 540 mm->ioctx_table = NULL; 541 #endif 542 } 543 544 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 545 { 546 #ifdef CONFIG_MEMCG 547 mm->owner = p; 548 #endif 549 } 550 551 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 552 { 553 mm->mmap = NULL; 554 mm->mm_rb = RB_ROOT; 555 mm->vmacache_seqnum = 0; 556 atomic_set(&mm->mm_users, 1); 557 atomic_set(&mm->mm_count, 1); 558 init_rwsem(&mm->mmap_sem); 559 INIT_LIST_HEAD(&mm->mmlist); 560 mm->core_state = NULL; 561 atomic_long_set(&mm->nr_ptes, 0); 562 mm->map_count = 0; 563 mm->locked_vm = 0; 564 mm->pinned_vm = 0; 565 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 566 spin_lock_init(&mm->page_table_lock); 567 mm_init_cpumask(mm); 568 mm_init_aio(mm); 569 mm_init_owner(mm, p); 570 mmu_notifier_mm_init(mm); 571 clear_tlb_flush_pending(mm); 572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 573 mm->pmd_huge_pte = NULL; 574 #endif 575 576 if (current->mm) { 577 mm->flags = current->mm->flags & MMF_INIT_MASK; 578 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 579 } else { 580 mm->flags = default_dump_filter; 581 mm->def_flags = 0; 582 } 583 584 if (mm_alloc_pgd(mm)) 585 goto fail_nopgd; 586 587 if (init_new_context(p, mm)) 588 goto fail_nocontext; 589 590 return mm; 591 592 fail_nocontext: 593 mm_free_pgd(mm); 594 fail_nopgd: 595 free_mm(mm); 596 return NULL; 597 } 598 599 static void check_mm(struct mm_struct *mm) 600 { 601 int i; 602 603 for (i = 0; i < NR_MM_COUNTERS; i++) { 604 long x = atomic_long_read(&mm->rss_stat.count[i]); 605 606 if (unlikely(x)) 607 printk(KERN_ALERT "BUG: Bad rss-counter state " 608 "mm:%p idx:%d val:%ld\n", mm, i, x); 609 } 610 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 611 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 612 #endif 613 } 614 615 /* 616 * Allocate and initialize an mm_struct. 617 */ 618 struct mm_struct *mm_alloc(void) 619 { 620 struct mm_struct *mm; 621 622 mm = allocate_mm(); 623 if (!mm) 624 return NULL; 625 626 memset(mm, 0, sizeof(*mm)); 627 return mm_init(mm, current); 628 } 629 630 /* 631 * Called when the last reference to the mm 632 * is dropped: either by a lazy thread or by 633 * mmput. Free the page directory and the mm. 634 */ 635 void __mmdrop(struct mm_struct *mm) 636 { 637 BUG_ON(mm == &init_mm); 638 mm_free_pgd(mm); 639 destroy_context(mm); 640 mmu_notifier_mm_destroy(mm); 641 check_mm(mm); 642 free_mm(mm); 643 } 644 EXPORT_SYMBOL_GPL(__mmdrop); 645 646 /* 647 * Decrement the use count and release all resources for an mm. 648 */ 649 void mmput(struct mm_struct *mm) 650 { 651 might_sleep(); 652 653 if (atomic_dec_and_test(&mm->mm_users)) { 654 uprobe_clear_state(mm); 655 exit_aio(mm); 656 ksm_exit(mm); 657 khugepaged_exit(mm); /* must run before exit_mmap */ 658 exit_mmap(mm); 659 set_mm_exe_file(mm, NULL); 660 if (!list_empty(&mm->mmlist)) { 661 spin_lock(&mmlist_lock); 662 list_del(&mm->mmlist); 663 spin_unlock(&mmlist_lock); 664 } 665 if (mm->binfmt) 666 module_put(mm->binfmt->module); 667 mmdrop(mm); 668 } 669 } 670 EXPORT_SYMBOL_GPL(mmput); 671 672 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 673 { 674 if (new_exe_file) 675 get_file(new_exe_file); 676 if (mm->exe_file) 677 fput(mm->exe_file); 678 mm->exe_file = new_exe_file; 679 } 680 681 struct file *get_mm_exe_file(struct mm_struct *mm) 682 { 683 struct file *exe_file; 684 685 /* We need mmap_sem to protect against races with removal of exe_file */ 686 down_read(&mm->mmap_sem); 687 exe_file = mm->exe_file; 688 if (exe_file) 689 get_file(exe_file); 690 up_read(&mm->mmap_sem); 691 return exe_file; 692 } 693 694 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 695 { 696 /* It's safe to write the exe_file pointer without exe_file_lock because 697 * this is called during fork when the task is not yet in /proc */ 698 newmm->exe_file = get_mm_exe_file(oldmm); 699 } 700 701 /** 702 * get_task_mm - acquire a reference to the task's mm 703 * 704 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 705 * this kernel workthread has transiently adopted a user mm with use_mm, 706 * to do its AIO) is not set and if so returns a reference to it, after 707 * bumping up the use count. User must release the mm via mmput() 708 * after use. Typically used by /proc and ptrace. 709 */ 710 struct mm_struct *get_task_mm(struct task_struct *task) 711 { 712 struct mm_struct *mm; 713 714 task_lock(task); 715 mm = task->mm; 716 if (mm) { 717 if (task->flags & PF_KTHREAD) 718 mm = NULL; 719 else 720 atomic_inc(&mm->mm_users); 721 } 722 task_unlock(task); 723 return mm; 724 } 725 EXPORT_SYMBOL_GPL(get_task_mm); 726 727 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 728 { 729 struct mm_struct *mm; 730 int err; 731 732 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 733 if (err) 734 return ERR_PTR(err); 735 736 mm = get_task_mm(task); 737 if (mm && mm != current->mm && 738 !ptrace_may_access(task, mode)) { 739 mmput(mm); 740 mm = ERR_PTR(-EACCES); 741 } 742 mutex_unlock(&task->signal->cred_guard_mutex); 743 744 return mm; 745 } 746 747 static void complete_vfork_done(struct task_struct *tsk) 748 { 749 struct completion *vfork; 750 751 task_lock(tsk); 752 vfork = tsk->vfork_done; 753 if (likely(vfork)) { 754 tsk->vfork_done = NULL; 755 complete(vfork); 756 } 757 task_unlock(tsk); 758 } 759 760 static int wait_for_vfork_done(struct task_struct *child, 761 struct completion *vfork) 762 { 763 int killed; 764 765 freezer_do_not_count(); 766 killed = wait_for_completion_killable(vfork); 767 freezer_count(); 768 769 if (killed) { 770 task_lock(child); 771 child->vfork_done = NULL; 772 task_unlock(child); 773 } 774 775 put_task_struct(child); 776 return killed; 777 } 778 779 /* Please note the differences between mmput and mm_release. 780 * mmput is called whenever we stop holding onto a mm_struct, 781 * error success whatever. 782 * 783 * mm_release is called after a mm_struct has been removed 784 * from the current process. 785 * 786 * This difference is important for error handling, when we 787 * only half set up a mm_struct for a new process and need to restore 788 * the old one. Because we mmput the new mm_struct before 789 * restoring the old one. . . 790 * Eric Biederman 10 January 1998 791 */ 792 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 793 { 794 /* Get rid of any futexes when releasing the mm */ 795 #ifdef CONFIG_FUTEX 796 if (unlikely(tsk->robust_list)) { 797 exit_robust_list(tsk); 798 tsk->robust_list = NULL; 799 } 800 #ifdef CONFIG_COMPAT 801 if (unlikely(tsk->compat_robust_list)) { 802 compat_exit_robust_list(tsk); 803 tsk->compat_robust_list = NULL; 804 } 805 #endif 806 if (unlikely(!list_empty(&tsk->pi_state_list))) 807 exit_pi_state_list(tsk); 808 #endif 809 810 uprobe_free_utask(tsk); 811 812 /* Get rid of any cached register state */ 813 deactivate_mm(tsk, mm); 814 815 /* 816 * If we're exiting normally, clear a user-space tid field if 817 * requested. We leave this alone when dying by signal, to leave 818 * the value intact in a core dump, and to save the unnecessary 819 * trouble, say, a killed vfork parent shouldn't touch this mm. 820 * Userland only wants this done for a sys_exit. 821 */ 822 if (tsk->clear_child_tid) { 823 if (!(tsk->flags & PF_SIGNALED) && 824 atomic_read(&mm->mm_users) > 1) { 825 /* 826 * We don't check the error code - if userspace has 827 * not set up a proper pointer then tough luck. 828 */ 829 put_user(0, tsk->clear_child_tid); 830 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 831 1, NULL, NULL, 0); 832 } 833 tsk->clear_child_tid = NULL; 834 } 835 836 /* 837 * All done, finally we can wake up parent and return this mm to him. 838 * Also kthread_stop() uses this completion for synchronization. 839 */ 840 if (tsk->vfork_done) 841 complete_vfork_done(tsk); 842 } 843 844 /* 845 * Allocate a new mm structure and copy contents from the 846 * mm structure of the passed in task structure. 847 */ 848 static struct mm_struct *dup_mm(struct task_struct *tsk) 849 { 850 struct mm_struct *mm, *oldmm = current->mm; 851 int err; 852 853 mm = allocate_mm(); 854 if (!mm) 855 goto fail_nomem; 856 857 memcpy(mm, oldmm, sizeof(*mm)); 858 859 if (!mm_init(mm, tsk)) 860 goto fail_nomem; 861 862 dup_mm_exe_file(oldmm, mm); 863 864 err = dup_mmap(mm, oldmm); 865 if (err) 866 goto free_pt; 867 868 mm->hiwater_rss = get_mm_rss(mm); 869 mm->hiwater_vm = mm->total_vm; 870 871 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 872 goto free_pt; 873 874 return mm; 875 876 free_pt: 877 /* don't put binfmt in mmput, we haven't got module yet */ 878 mm->binfmt = NULL; 879 mmput(mm); 880 881 fail_nomem: 882 return NULL; 883 } 884 885 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 886 { 887 struct mm_struct *mm, *oldmm; 888 int retval; 889 890 tsk->min_flt = tsk->maj_flt = 0; 891 tsk->nvcsw = tsk->nivcsw = 0; 892 #ifdef CONFIG_DETECT_HUNG_TASK 893 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 894 #endif 895 896 tsk->mm = NULL; 897 tsk->active_mm = NULL; 898 899 /* 900 * Are we cloning a kernel thread? 901 * 902 * We need to steal a active VM for that.. 903 */ 904 oldmm = current->mm; 905 if (!oldmm) 906 return 0; 907 908 /* initialize the new vmacache entries */ 909 vmacache_flush(tsk); 910 911 if (clone_flags & CLONE_VM) { 912 atomic_inc(&oldmm->mm_users); 913 mm = oldmm; 914 goto good_mm; 915 } 916 917 retval = -ENOMEM; 918 mm = dup_mm(tsk); 919 if (!mm) 920 goto fail_nomem; 921 922 good_mm: 923 tsk->mm = mm; 924 tsk->active_mm = mm; 925 return 0; 926 927 fail_nomem: 928 return retval; 929 } 930 931 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 932 { 933 struct fs_struct *fs = current->fs; 934 if (clone_flags & CLONE_FS) { 935 /* tsk->fs is already what we want */ 936 spin_lock(&fs->lock); 937 if (fs->in_exec) { 938 spin_unlock(&fs->lock); 939 return -EAGAIN; 940 } 941 fs->users++; 942 spin_unlock(&fs->lock); 943 return 0; 944 } 945 tsk->fs = copy_fs_struct(fs); 946 if (!tsk->fs) 947 return -ENOMEM; 948 return 0; 949 } 950 951 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 952 { 953 struct files_struct *oldf, *newf; 954 int error = 0; 955 956 /* 957 * A background process may not have any files ... 958 */ 959 oldf = current->files; 960 if (!oldf) 961 goto out; 962 963 if (clone_flags & CLONE_FILES) { 964 atomic_inc(&oldf->count); 965 goto out; 966 } 967 968 newf = dup_fd(oldf, &error); 969 if (!newf) 970 goto out; 971 972 tsk->files = newf; 973 error = 0; 974 out: 975 return error; 976 } 977 978 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 979 { 980 #ifdef CONFIG_BLOCK 981 struct io_context *ioc = current->io_context; 982 struct io_context *new_ioc; 983 984 if (!ioc) 985 return 0; 986 /* 987 * Share io context with parent, if CLONE_IO is set 988 */ 989 if (clone_flags & CLONE_IO) { 990 ioc_task_link(ioc); 991 tsk->io_context = ioc; 992 } else if (ioprio_valid(ioc->ioprio)) { 993 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 994 if (unlikely(!new_ioc)) 995 return -ENOMEM; 996 997 new_ioc->ioprio = ioc->ioprio; 998 put_io_context(new_ioc); 999 } 1000 #endif 1001 return 0; 1002 } 1003 1004 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1005 { 1006 struct sighand_struct *sig; 1007 1008 if (clone_flags & CLONE_SIGHAND) { 1009 atomic_inc(¤t->sighand->count); 1010 return 0; 1011 } 1012 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1013 rcu_assign_pointer(tsk->sighand, sig); 1014 if (!sig) 1015 return -ENOMEM; 1016 atomic_set(&sig->count, 1); 1017 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1018 return 0; 1019 } 1020 1021 void __cleanup_sighand(struct sighand_struct *sighand) 1022 { 1023 if (atomic_dec_and_test(&sighand->count)) { 1024 signalfd_cleanup(sighand); 1025 /* 1026 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it 1027 * without an RCU grace period, see __lock_task_sighand(). 1028 */ 1029 kmem_cache_free(sighand_cachep, sighand); 1030 } 1031 } 1032 1033 /* 1034 * Initialize POSIX timer handling for a thread group. 1035 */ 1036 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1037 { 1038 unsigned long cpu_limit; 1039 1040 /* Thread group counters. */ 1041 thread_group_cputime_init(sig); 1042 1043 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1044 if (cpu_limit != RLIM_INFINITY) { 1045 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1046 sig->cputimer.running = 1; 1047 } 1048 1049 /* The timer lists. */ 1050 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1051 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1052 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1053 } 1054 1055 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1056 { 1057 struct signal_struct *sig; 1058 1059 if (clone_flags & CLONE_THREAD) 1060 return 0; 1061 1062 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1063 tsk->signal = sig; 1064 if (!sig) 1065 return -ENOMEM; 1066 1067 sig->nr_threads = 1; 1068 atomic_set(&sig->live, 1); 1069 atomic_set(&sig->sigcnt, 1); 1070 1071 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1072 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1073 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1074 1075 init_waitqueue_head(&sig->wait_chldexit); 1076 sig->curr_target = tsk; 1077 init_sigpending(&sig->shared_pending); 1078 INIT_LIST_HEAD(&sig->posix_timers); 1079 seqlock_init(&sig->stats_lock); 1080 1081 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1082 sig->real_timer.function = it_real_fn; 1083 1084 task_lock(current->group_leader); 1085 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1086 task_unlock(current->group_leader); 1087 1088 posix_cpu_timers_init_group(sig); 1089 1090 tty_audit_fork(sig); 1091 sched_autogroup_fork(sig); 1092 1093 #ifdef CONFIG_CGROUPS 1094 init_rwsem(&sig->group_rwsem); 1095 #endif 1096 1097 sig->oom_score_adj = current->signal->oom_score_adj; 1098 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1099 1100 sig->has_child_subreaper = current->signal->has_child_subreaper || 1101 current->signal->is_child_subreaper; 1102 1103 mutex_init(&sig->cred_guard_mutex); 1104 1105 return 0; 1106 } 1107 1108 static void copy_seccomp(struct task_struct *p) 1109 { 1110 #ifdef CONFIG_SECCOMP 1111 /* 1112 * Must be called with sighand->lock held, which is common to 1113 * all threads in the group. Holding cred_guard_mutex is not 1114 * needed because this new task is not yet running and cannot 1115 * be racing exec. 1116 */ 1117 assert_spin_locked(¤t->sighand->siglock); 1118 1119 /* Ref-count the new filter user, and assign it. */ 1120 get_seccomp_filter(current); 1121 p->seccomp = current->seccomp; 1122 1123 /* 1124 * Explicitly enable no_new_privs here in case it got set 1125 * between the task_struct being duplicated and holding the 1126 * sighand lock. The seccomp state and nnp must be in sync. 1127 */ 1128 if (task_no_new_privs(current)) 1129 task_set_no_new_privs(p); 1130 1131 /* 1132 * If the parent gained a seccomp mode after copying thread 1133 * flags and between before we held the sighand lock, we have 1134 * to manually enable the seccomp thread flag here. 1135 */ 1136 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1137 set_tsk_thread_flag(p, TIF_SECCOMP); 1138 #endif 1139 } 1140 1141 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1142 { 1143 current->clear_child_tid = tidptr; 1144 1145 return task_pid_vnr(current); 1146 } 1147 1148 static void rt_mutex_init_task(struct task_struct *p) 1149 { 1150 raw_spin_lock_init(&p->pi_lock); 1151 #ifdef CONFIG_RT_MUTEXES 1152 p->pi_waiters = RB_ROOT; 1153 p->pi_waiters_leftmost = NULL; 1154 p->pi_blocked_on = NULL; 1155 #endif 1156 } 1157 1158 /* 1159 * Initialize POSIX timer handling for a single task. 1160 */ 1161 static void posix_cpu_timers_init(struct task_struct *tsk) 1162 { 1163 tsk->cputime_expires.prof_exp = 0; 1164 tsk->cputime_expires.virt_exp = 0; 1165 tsk->cputime_expires.sched_exp = 0; 1166 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1167 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1168 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1169 } 1170 1171 static inline void 1172 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1173 { 1174 task->pids[type].pid = pid; 1175 } 1176 1177 /* 1178 * This creates a new process as a copy of the old one, 1179 * but does not actually start it yet. 1180 * 1181 * It copies the registers, and all the appropriate 1182 * parts of the process environment (as per the clone 1183 * flags). The actual kick-off is left to the caller. 1184 */ 1185 static struct task_struct *copy_process(unsigned long clone_flags, 1186 unsigned long stack_start, 1187 unsigned long stack_size, 1188 int __user *child_tidptr, 1189 struct pid *pid, 1190 int trace) 1191 { 1192 int retval; 1193 struct task_struct *p; 1194 1195 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1196 return ERR_PTR(-EINVAL); 1197 1198 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1199 return ERR_PTR(-EINVAL); 1200 1201 /* 1202 * Thread groups must share signals as well, and detached threads 1203 * can only be started up within the thread group. 1204 */ 1205 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1206 return ERR_PTR(-EINVAL); 1207 1208 /* 1209 * Shared signal handlers imply shared VM. By way of the above, 1210 * thread groups also imply shared VM. Blocking this case allows 1211 * for various simplifications in other code. 1212 */ 1213 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1214 return ERR_PTR(-EINVAL); 1215 1216 /* 1217 * Siblings of global init remain as zombies on exit since they are 1218 * not reaped by their parent (swapper). To solve this and to avoid 1219 * multi-rooted process trees, prevent global and container-inits 1220 * from creating siblings. 1221 */ 1222 if ((clone_flags & CLONE_PARENT) && 1223 current->signal->flags & SIGNAL_UNKILLABLE) 1224 return ERR_PTR(-EINVAL); 1225 1226 /* 1227 * If the new process will be in a different pid or user namespace 1228 * do not allow it to share a thread group or signal handlers or 1229 * parent with the forking task. 1230 */ 1231 if (clone_flags & CLONE_SIGHAND) { 1232 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1233 (task_active_pid_ns(current) != 1234 current->nsproxy->pid_ns_for_children)) 1235 return ERR_PTR(-EINVAL); 1236 } 1237 1238 retval = security_task_create(clone_flags); 1239 if (retval) 1240 goto fork_out; 1241 1242 retval = -ENOMEM; 1243 p = dup_task_struct(current); 1244 if (!p) 1245 goto fork_out; 1246 1247 ftrace_graph_init_task(p); 1248 1249 rt_mutex_init_task(p); 1250 1251 #ifdef CONFIG_PROVE_LOCKING 1252 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1253 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1254 #endif 1255 retval = -EAGAIN; 1256 if (atomic_read(&p->real_cred->user->processes) >= 1257 task_rlimit(p, RLIMIT_NPROC)) { 1258 if (p->real_cred->user != INIT_USER && 1259 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1260 goto bad_fork_free; 1261 } 1262 current->flags &= ~PF_NPROC_EXCEEDED; 1263 1264 retval = copy_creds(p, clone_flags); 1265 if (retval < 0) 1266 goto bad_fork_free; 1267 1268 /* 1269 * If multiple threads are within copy_process(), then this check 1270 * triggers too late. This doesn't hurt, the check is only there 1271 * to stop root fork bombs. 1272 */ 1273 retval = -EAGAIN; 1274 if (nr_threads >= max_threads) 1275 goto bad_fork_cleanup_count; 1276 1277 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1278 goto bad_fork_cleanup_count; 1279 1280 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1281 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1282 p->flags |= PF_FORKNOEXEC; 1283 INIT_LIST_HEAD(&p->children); 1284 INIT_LIST_HEAD(&p->sibling); 1285 rcu_copy_process(p); 1286 p->vfork_done = NULL; 1287 spin_lock_init(&p->alloc_lock); 1288 1289 init_sigpending(&p->pending); 1290 1291 p->utime = p->stime = p->gtime = 0; 1292 p->utimescaled = p->stimescaled = 0; 1293 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1294 p->prev_cputime.utime = p->prev_cputime.stime = 0; 1295 #endif 1296 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1297 seqlock_init(&p->vtime_seqlock); 1298 p->vtime_snap = 0; 1299 p->vtime_snap_whence = VTIME_SLEEPING; 1300 #endif 1301 1302 #if defined(SPLIT_RSS_COUNTING) 1303 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1304 #endif 1305 1306 p->default_timer_slack_ns = current->timer_slack_ns; 1307 1308 task_io_accounting_init(&p->ioac); 1309 acct_clear_integrals(p); 1310 1311 posix_cpu_timers_init(p); 1312 1313 p->start_time = ktime_get_ns(); 1314 p->real_start_time = ktime_get_boot_ns(); 1315 p->io_context = NULL; 1316 p->audit_context = NULL; 1317 if (clone_flags & CLONE_THREAD) 1318 threadgroup_change_begin(current); 1319 cgroup_fork(p); 1320 #ifdef CONFIG_NUMA 1321 p->mempolicy = mpol_dup(p->mempolicy); 1322 if (IS_ERR(p->mempolicy)) { 1323 retval = PTR_ERR(p->mempolicy); 1324 p->mempolicy = NULL; 1325 goto bad_fork_cleanup_threadgroup_lock; 1326 } 1327 #endif 1328 #ifdef CONFIG_CPUSETS 1329 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1330 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1331 seqcount_init(&p->mems_allowed_seq); 1332 #endif 1333 #ifdef CONFIG_TRACE_IRQFLAGS 1334 p->irq_events = 0; 1335 p->hardirqs_enabled = 0; 1336 p->hardirq_enable_ip = 0; 1337 p->hardirq_enable_event = 0; 1338 p->hardirq_disable_ip = _THIS_IP_; 1339 p->hardirq_disable_event = 0; 1340 p->softirqs_enabled = 1; 1341 p->softirq_enable_ip = _THIS_IP_; 1342 p->softirq_enable_event = 0; 1343 p->softirq_disable_ip = 0; 1344 p->softirq_disable_event = 0; 1345 p->hardirq_context = 0; 1346 p->softirq_context = 0; 1347 #endif 1348 #ifdef CONFIG_LOCKDEP 1349 p->lockdep_depth = 0; /* no locks held yet */ 1350 p->curr_chain_key = 0; 1351 p->lockdep_recursion = 0; 1352 #endif 1353 1354 #ifdef CONFIG_DEBUG_MUTEXES 1355 p->blocked_on = NULL; /* not blocked yet */ 1356 #endif 1357 #ifdef CONFIG_BCACHE 1358 p->sequential_io = 0; 1359 p->sequential_io_avg = 0; 1360 #endif 1361 1362 /* Perform scheduler related setup. Assign this task to a CPU. */ 1363 retval = sched_fork(clone_flags, p); 1364 if (retval) 1365 goto bad_fork_cleanup_policy; 1366 1367 retval = perf_event_init_task(p); 1368 if (retval) 1369 goto bad_fork_cleanup_policy; 1370 retval = audit_alloc(p); 1371 if (retval) 1372 goto bad_fork_cleanup_perf; 1373 /* copy all the process information */ 1374 shm_init_task(p); 1375 retval = copy_semundo(clone_flags, p); 1376 if (retval) 1377 goto bad_fork_cleanup_audit; 1378 retval = copy_files(clone_flags, p); 1379 if (retval) 1380 goto bad_fork_cleanup_semundo; 1381 retval = copy_fs(clone_flags, p); 1382 if (retval) 1383 goto bad_fork_cleanup_files; 1384 retval = copy_sighand(clone_flags, p); 1385 if (retval) 1386 goto bad_fork_cleanup_fs; 1387 retval = copy_signal(clone_flags, p); 1388 if (retval) 1389 goto bad_fork_cleanup_sighand; 1390 retval = copy_mm(clone_flags, p); 1391 if (retval) 1392 goto bad_fork_cleanup_signal; 1393 retval = copy_namespaces(clone_flags, p); 1394 if (retval) 1395 goto bad_fork_cleanup_mm; 1396 retval = copy_io(clone_flags, p); 1397 if (retval) 1398 goto bad_fork_cleanup_namespaces; 1399 retval = copy_thread(clone_flags, stack_start, stack_size, p); 1400 if (retval) 1401 goto bad_fork_cleanup_io; 1402 1403 if (pid != &init_struct_pid) { 1404 retval = -ENOMEM; 1405 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 1406 if (!pid) 1407 goto bad_fork_cleanup_io; 1408 } 1409 1410 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1411 /* 1412 * Clear TID on mm_release()? 1413 */ 1414 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1415 #ifdef CONFIG_BLOCK 1416 p->plug = NULL; 1417 #endif 1418 #ifdef CONFIG_FUTEX 1419 p->robust_list = NULL; 1420 #ifdef CONFIG_COMPAT 1421 p->compat_robust_list = NULL; 1422 #endif 1423 INIT_LIST_HEAD(&p->pi_state_list); 1424 p->pi_state_cache = NULL; 1425 #endif 1426 /* 1427 * sigaltstack should be cleared when sharing the same VM 1428 */ 1429 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1430 p->sas_ss_sp = p->sas_ss_size = 0; 1431 1432 /* 1433 * Syscall tracing and stepping should be turned off in the 1434 * child regardless of CLONE_PTRACE. 1435 */ 1436 user_disable_single_step(p); 1437 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1438 #ifdef TIF_SYSCALL_EMU 1439 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1440 #endif 1441 clear_all_latency_tracing(p); 1442 1443 /* ok, now we should be set up.. */ 1444 p->pid = pid_nr(pid); 1445 if (clone_flags & CLONE_THREAD) { 1446 p->exit_signal = -1; 1447 p->group_leader = current->group_leader; 1448 p->tgid = current->tgid; 1449 } else { 1450 if (clone_flags & CLONE_PARENT) 1451 p->exit_signal = current->group_leader->exit_signal; 1452 else 1453 p->exit_signal = (clone_flags & CSIGNAL); 1454 p->group_leader = p; 1455 p->tgid = p->pid; 1456 } 1457 1458 p->nr_dirtied = 0; 1459 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1460 p->dirty_paused_when = 0; 1461 1462 p->pdeath_signal = 0; 1463 INIT_LIST_HEAD(&p->thread_group); 1464 p->task_works = NULL; 1465 1466 /* 1467 * Make it visible to the rest of the system, but dont wake it up yet. 1468 * Need tasklist lock for parent etc handling! 1469 */ 1470 write_lock_irq(&tasklist_lock); 1471 1472 /* CLONE_PARENT re-uses the old parent */ 1473 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1474 p->real_parent = current->real_parent; 1475 p->parent_exec_id = current->parent_exec_id; 1476 } else { 1477 p->real_parent = current; 1478 p->parent_exec_id = current->self_exec_id; 1479 } 1480 1481 spin_lock(¤t->sighand->siglock); 1482 1483 /* 1484 * Copy seccomp details explicitly here, in case they were changed 1485 * before holding sighand lock. 1486 */ 1487 copy_seccomp(p); 1488 1489 /* 1490 * Process group and session signals need to be delivered to just the 1491 * parent before the fork or both the parent and the child after the 1492 * fork. Restart if a signal comes in before we add the new process to 1493 * it's process group. 1494 * A fatal signal pending means that current will exit, so the new 1495 * thread can't slip out of an OOM kill (or normal SIGKILL). 1496 */ 1497 recalc_sigpending(); 1498 if (signal_pending(current)) { 1499 spin_unlock(¤t->sighand->siglock); 1500 write_unlock_irq(&tasklist_lock); 1501 retval = -ERESTARTNOINTR; 1502 goto bad_fork_free_pid; 1503 } 1504 1505 if (likely(p->pid)) { 1506 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1507 1508 init_task_pid(p, PIDTYPE_PID, pid); 1509 if (thread_group_leader(p)) { 1510 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1511 init_task_pid(p, PIDTYPE_SID, task_session(current)); 1512 1513 if (is_child_reaper(pid)) { 1514 ns_of_pid(pid)->child_reaper = p; 1515 p->signal->flags |= SIGNAL_UNKILLABLE; 1516 } 1517 1518 p->signal->leader_pid = pid; 1519 p->signal->tty = tty_kref_get(current->signal->tty); 1520 list_add_tail(&p->sibling, &p->real_parent->children); 1521 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1522 attach_pid(p, PIDTYPE_PGID); 1523 attach_pid(p, PIDTYPE_SID); 1524 __this_cpu_inc(process_counts); 1525 } else { 1526 current->signal->nr_threads++; 1527 atomic_inc(¤t->signal->live); 1528 atomic_inc(¤t->signal->sigcnt); 1529 list_add_tail_rcu(&p->thread_group, 1530 &p->group_leader->thread_group); 1531 list_add_tail_rcu(&p->thread_node, 1532 &p->signal->thread_head); 1533 } 1534 attach_pid(p, PIDTYPE_PID); 1535 nr_threads++; 1536 } 1537 1538 total_forks++; 1539 spin_unlock(¤t->sighand->siglock); 1540 syscall_tracepoint_update(p); 1541 write_unlock_irq(&tasklist_lock); 1542 1543 proc_fork_connector(p); 1544 cgroup_post_fork(p); 1545 if (clone_flags & CLONE_THREAD) 1546 threadgroup_change_end(current); 1547 perf_event_fork(p); 1548 1549 trace_task_newtask(p, clone_flags); 1550 uprobe_copy_process(p, clone_flags); 1551 1552 return p; 1553 1554 bad_fork_free_pid: 1555 if (pid != &init_struct_pid) 1556 free_pid(pid); 1557 bad_fork_cleanup_io: 1558 if (p->io_context) 1559 exit_io_context(p); 1560 bad_fork_cleanup_namespaces: 1561 exit_task_namespaces(p); 1562 bad_fork_cleanup_mm: 1563 if (p->mm) 1564 mmput(p->mm); 1565 bad_fork_cleanup_signal: 1566 if (!(clone_flags & CLONE_THREAD)) 1567 free_signal_struct(p->signal); 1568 bad_fork_cleanup_sighand: 1569 __cleanup_sighand(p->sighand); 1570 bad_fork_cleanup_fs: 1571 exit_fs(p); /* blocking */ 1572 bad_fork_cleanup_files: 1573 exit_files(p); /* blocking */ 1574 bad_fork_cleanup_semundo: 1575 exit_sem(p); 1576 bad_fork_cleanup_audit: 1577 audit_free(p); 1578 bad_fork_cleanup_perf: 1579 perf_event_free_task(p); 1580 bad_fork_cleanup_policy: 1581 #ifdef CONFIG_NUMA 1582 mpol_put(p->mempolicy); 1583 bad_fork_cleanup_threadgroup_lock: 1584 #endif 1585 if (clone_flags & CLONE_THREAD) 1586 threadgroup_change_end(current); 1587 delayacct_tsk_free(p); 1588 module_put(task_thread_info(p)->exec_domain->module); 1589 bad_fork_cleanup_count: 1590 atomic_dec(&p->cred->user->processes); 1591 exit_creds(p); 1592 bad_fork_free: 1593 free_task(p); 1594 fork_out: 1595 return ERR_PTR(retval); 1596 } 1597 1598 static inline void init_idle_pids(struct pid_link *links) 1599 { 1600 enum pid_type type; 1601 1602 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1603 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1604 links[type].pid = &init_struct_pid; 1605 } 1606 } 1607 1608 struct task_struct *fork_idle(int cpu) 1609 { 1610 struct task_struct *task; 1611 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0); 1612 if (!IS_ERR(task)) { 1613 init_idle_pids(task->pids); 1614 init_idle(task, cpu); 1615 } 1616 1617 return task; 1618 } 1619 1620 /* 1621 * Ok, this is the main fork-routine. 1622 * 1623 * It copies the process, and if successful kick-starts 1624 * it and waits for it to finish using the VM if required. 1625 */ 1626 long do_fork(unsigned long clone_flags, 1627 unsigned long stack_start, 1628 unsigned long stack_size, 1629 int __user *parent_tidptr, 1630 int __user *child_tidptr) 1631 { 1632 struct task_struct *p; 1633 int trace = 0; 1634 long nr; 1635 1636 /* 1637 * Determine whether and which event to report to ptracer. When 1638 * called from kernel_thread or CLONE_UNTRACED is explicitly 1639 * requested, no event is reported; otherwise, report if the event 1640 * for the type of forking is enabled. 1641 */ 1642 if (!(clone_flags & CLONE_UNTRACED)) { 1643 if (clone_flags & CLONE_VFORK) 1644 trace = PTRACE_EVENT_VFORK; 1645 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1646 trace = PTRACE_EVENT_CLONE; 1647 else 1648 trace = PTRACE_EVENT_FORK; 1649 1650 if (likely(!ptrace_event_enabled(current, trace))) 1651 trace = 0; 1652 } 1653 1654 p = copy_process(clone_flags, stack_start, stack_size, 1655 child_tidptr, NULL, trace); 1656 /* 1657 * Do this prior waking up the new thread - the thread pointer 1658 * might get invalid after that point, if the thread exits quickly. 1659 */ 1660 if (!IS_ERR(p)) { 1661 struct completion vfork; 1662 struct pid *pid; 1663 1664 trace_sched_process_fork(current, p); 1665 1666 pid = get_task_pid(p, PIDTYPE_PID); 1667 nr = pid_vnr(pid); 1668 1669 if (clone_flags & CLONE_PARENT_SETTID) 1670 put_user(nr, parent_tidptr); 1671 1672 if (clone_flags & CLONE_VFORK) { 1673 p->vfork_done = &vfork; 1674 init_completion(&vfork); 1675 get_task_struct(p); 1676 } 1677 1678 wake_up_new_task(p); 1679 1680 /* forking complete and child started to run, tell ptracer */ 1681 if (unlikely(trace)) 1682 ptrace_event_pid(trace, pid); 1683 1684 if (clone_flags & CLONE_VFORK) { 1685 if (!wait_for_vfork_done(p, &vfork)) 1686 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 1687 } 1688 1689 put_pid(pid); 1690 } else { 1691 nr = PTR_ERR(p); 1692 } 1693 return nr; 1694 } 1695 1696 /* 1697 * Create a kernel thread. 1698 */ 1699 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 1700 { 1701 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 1702 (unsigned long)arg, NULL, NULL); 1703 } 1704 1705 #ifdef __ARCH_WANT_SYS_FORK 1706 SYSCALL_DEFINE0(fork) 1707 { 1708 #ifdef CONFIG_MMU 1709 return do_fork(SIGCHLD, 0, 0, NULL, NULL); 1710 #else 1711 /* can not support in nommu mode */ 1712 return -EINVAL; 1713 #endif 1714 } 1715 #endif 1716 1717 #ifdef __ARCH_WANT_SYS_VFORK 1718 SYSCALL_DEFINE0(vfork) 1719 { 1720 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 1721 0, NULL, NULL); 1722 } 1723 #endif 1724 1725 #ifdef __ARCH_WANT_SYS_CLONE 1726 #ifdef CONFIG_CLONE_BACKWARDS 1727 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1728 int __user *, parent_tidptr, 1729 int, tls_val, 1730 int __user *, child_tidptr) 1731 #elif defined(CONFIG_CLONE_BACKWARDS2) 1732 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 1733 int __user *, parent_tidptr, 1734 int __user *, child_tidptr, 1735 int, tls_val) 1736 #elif defined(CONFIG_CLONE_BACKWARDS3) 1737 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 1738 int, stack_size, 1739 int __user *, parent_tidptr, 1740 int __user *, child_tidptr, 1741 int, tls_val) 1742 #else 1743 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1744 int __user *, parent_tidptr, 1745 int __user *, child_tidptr, 1746 int, tls_val) 1747 #endif 1748 { 1749 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr); 1750 } 1751 #endif 1752 1753 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1754 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1755 #endif 1756 1757 static void sighand_ctor(void *data) 1758 { 1759 struct sighand_struct *sighand = data; 1760 1761 spin_lock_init(&sighand->siglock); 1762 init_waitqueue_head(&sighand->signalfd_wqh); 1763 } 1764 1765 void __init proc_caches_init(void) 1766 { 1767 sighand_cachep = kmem_cache_create("sighand_cache", 1768 sizeof(struct sighand_struct), 0, 1769 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1770 SLAB_NOTRACK, sighand_ctor); 1771 signal_cachep = kmem_cache_create("signal_cache", 1772 sizeof(struct signal_struct), 0, 1773 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1774 files_cachep = kmem_cache_create("files_cache", 1775 sizeof(struct files_struct), 0, 1776 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1777 fs_cachep = kmem_cache_create("fs_cache", 1778 sizeof(struct fs_struct), 0, 1779 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1780 /* 1781 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1782 * whole struct cpumask for the OFFSTACK case. We could change 1783 * this to *only* allocate as much of it as required by the 1784 * maximum number of CPU's we can ever have. The cpumask_allocation 1785 * is at the end of the structure, exactly for that reason. 1786 */ 1787 mm_cachep = kmem_cache_create("mm_struct", 1788 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1789 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1790 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1791 mmap_init(); 1792 nsproxy_cache_init(); 1793 } 1794 1795 /* 1796 * Check constraints on flags passed to the unshare system call. 1797 */ 1798 static int check_unshare_flags(unsigned long unshare_flags) 1799 { 1800 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1801 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1802 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 1803 CLONE_NEWUSER|CLONE_NEWPID)) 1804 return -EINVAL; 1805 /* 1806 * Not implemented, but pretend it works if there is nothing to 1807 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1808 * needs to unshare vm. 1809 */ 1810 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1811 /* FIXME: get_task_mm() increments ->mm_users */ 1812 if (atomic_read(¤t->mm->mm_users) > 1) 1813 return -EINVAL; 1814 } 1815 1816 return 0; 1817 } 1818 1819 /* 1820 * Unshare the filesystem structure if it is being shared 1821 */ 1822 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1823 { 1824 struct fs_struct *fs = current->fs; 1825 1826 if (!(unshare_flags & CLONE_FS) || !fs) 1827 return 0; 1828 1829 /* don't need lock here; in the worst case we'll do useless copy */ 1830 if (fs->users == 1) 1831 return 0; 1832 1833 *new_fsp = copy_fs_struct(fs); 1834 if (!*new_fsp) 1835 return -ENOMEM; 1836 1837 return 0; 1838 } 1839 1840 /* 1841 * Unshare file descriptor table if it is being shared 1842 */ 1843 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1844 { 1845 struct files_struct *fd = current->files; 1846 int error = 0; 1847 1848 if ((unshare_flags & CLONE_FILES) && 1849 (fd && atomic_read(&fd->count) > 1)) { 1850 *new_fdp = dup_fd(fd, &error); 1851 if (!*new_fdp) 1852 return error; 1853 } 1854 1855 return 0; 1856 } 1857 1858 /* 1859 * unshare allows a process to 'unshare' part of the process 1860 * context which was originally shared using clone. copy_* 1861 * functions used by do_fork() cannot be used here directly 1862 * because they modify an inactive task_struct that is being 1863 * constructed. Here we are modifying the current, active, 1864 * task_struct. 1865 */ 1866 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1867 { 1868 struct fs_struct *fs, *new_fs = NULL; 1869 struct files_struct *fd, *new_fd = NULL; 1870 struct cred *new_cred = NULL; 1871 struct nsproxy *new_nsproxy = NULL; 1872 int do_sysvsem = 0; 1873 int err; 1874 1875 /* 1876 * If unsharing a user namespace must also unshare the thread. 1877 */ 1878 if (unshare_flags & CLONE_NEWUSER) 1879 unshare_flags |= CLONE_THREAD | CLONE_FS; 1880 /* 1881 * If unsharing a thread from a thread group, must also unshare vm. 1882 */ 1883 if (unshare_flags & CLONE_THREAD) 1884 unshare_flags |= CLONE_VM; 1885 /* 1886 * If unsharing vm, must also unshare signal handlers. 1887 */ 1888 if (unshare_flags & CLONE_VM) 1889 unshare_flags |= CLONE_SIGHAND; 1890 /* 1891 * If unsharing namespace, must also unshare filesystem information. 1892 */ 1893 if (unshare_flags & CLONE_NEWNS) 1894 unshare_flags |= CLONE_FS; 1895 1896 err = check_unshare_flags(unshare_flags); 1897 if (err) 1898 goto bad_unshare_out; 1899 /* 1900 * CLONE_NEWIPC must also detach from the undolist: after switching 1901 * to a new ipc namespace, the semaphore arrays from the old 1902 * namespace are unreachable. 1903 */ 1904 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1905 do_sysvsem = 1; 1906 err = unshare_fs(unshare_flags, &new_fs); 1907 if (err) 1908 goto bad_unshare_out; 1909 err = unshare_fd(unshare_flags, &new_fd); 1910 if (err) 1911 goto bad_unshare_cleanup_fs; 1912 err = unshare_userns(unshare_flags, &new_cred); 1913 if (err) 1914 goto bad_unshare_cleanup_fd; 1915 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1916 new_cred, new_fs); 1917 if (err) 1918 goto bad_unshare_cleanup_cred; 1919 1920 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 1921 if (do_sysvsem) { 1922 /* 1923 * CLONE_SYSVSEM is equivalent to sys_exit(). 1924 */ 1925 exit_sem(current); 1926 } 1927 if (unshare_flags & CLONE_NEWIPC) { 1928 /* Orphan segments in old ns (see sem above). */ 1929 exit_shm(current); 1930 shm_init_task(current); 1931 } 1932 1933 if (new_nsproxy) 1934 switch_task_namespaces(current, new_nsproxy); 1935 1936 task_lock(current); 1937 1938 if (new_fs) { 1939 fs = current->fs; 1940 spin_lock(&fs->lock); 1941 current->fs = new_fs; 1942 if (--fs->users) 1943 new_fs = NULL; 1944 else 1945 new_fs = fs; 1946 spin_unlock(&fs->lock); 1947 } 1948 1949 if (new_fd) { 1950 fd = current->files; 1951 current->files = new_fd; 1952 new_fd = fd; 1953 } 1954 1955 task_unlock(current); 1956 1957 if (new_cred) { 1958 /* Install the new user namespace */ 1959 commit_creds(new_cred); 1960 new_cred = NULL; 1961 } 1962 } 1963 1964 bad_unshare_cleanup_cred: 1965 if (new_cred) 1966 put_cred(new_cred); 1967 bad_unshare_cleanup_fd: 1968 if (new_fd) 1969 put_files_struct(new_fd); 1970 1971 bad_unshare_cleanup_fs: 1972 if (new_fs) 1973 free_fs_struct(new_fs); 1974 1975 bad_unshare_out: 1976 return err; 1977 } 1978 1979 /* 1980 * Helper to unshare the files of the current task. 1981 * We don't want to expose copy_files internals to 1982 * the exec layer of the kernel. 1983 */ 1984 1985 int unshare_files(struct files_struct **displaced) 1986 { 1987 struct task_struct *task = current; 1988 struct files_struct *copy = NULL; 1989 int error; 1990 1991 error = unshare_fd(CLONE_FILES, ©); 1992 if (error || !copy) { 1993 *displaced = NULL; 1994 return error; 1995 } 1996 *displaced = task->files; 1997 task_lock(task); 1998 task->files = copy; 1999 task_unlock(task); 2000 return 0; 2001 } 2002