xref: /openbmc/linux/kernel/fork.c (revision 827beb77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105 
106 #include <trace/events/sched.h>
107 
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110 
111 /*
112  * Minimum number of threads to boot the kernel
113  */
114 #define MIN_THREADS 20
115 
116 /*
117  * Maximum number of threads
118  */
119 #define MAX_THREADS FUTEX_TID_MASK
120 
121 /*
122  * Protected counters by write_lock_irq(&tasklist_lock)
123  */
124 unsigned long total_forks;	/* Handle normal Linux uptimes. */
125 int nr_threads;			/* The idle threads do not count.. */
126 
127 static int max_threads;		/* tunable limit on nr_threads */
128 
129 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
130 
131 static const char * const resident_page_types[] = {
132 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137 
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139 
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
141 
142 #ifdef CONFIG_PROVE_RCU
143 int lockdep_tasklist_lock_is_held(void)
144 {
145 	return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149 
150 int nr_processes(void)
151 {
152 	int cpu;
153 	int total = 0;
154 
155 	for_each_possible_cpu(cpu)
156 		total += per_cpu(process_counts, cpu);
157 
158 	return total;
159 }
160 
161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164 
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167 
168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172 
173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 	kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178 
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180 
181 /*
182  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183  * kmemcache based allocator.
184  */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186 
187 #ifdef CONFIG_VMAP_STACK
188 /*
189  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190  * flush.  Try to minimize the number of calls by caching stacks.
191  */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194 
195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 	int i;
199 
200 	for (i = 0; i < NR_CACHED_STACKS; i++) {
201 		struct vm_struct *vm_stack = cached_vm_stacks[i];
202 
203 		if (!vm_stack)
204 			continue;
205 
206 		vfree(vm_stack->addr);
207 		cached_vm_stacks[i] = NULL;
208 	}
209 
210 	return 0;
211 }
212 #endif
213 
214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	void *stack;
218 	int i;
219 
220 	for (i = 0; i < NR_CACHED_STACKS; i++) {
221 		struct vm_struct *s;
222 
223 		s = this_cpu_xchg(cached_stacks[i], NULL);
224 
225 		if (!s)
226 			continue;
227 
228 		/* Mark stack accessible for KASAN. */
229 		kasan_unpoison_range(s->addr, THREAD_SIZE);
230 
231 		/* Clear stale pointers from reused stack. */
232 		memset(s->addr, 0, THREAD_SIZE);
233 
234 		tsk->stack_vm_area = s;
235 		tsk->stack = s->addr;
236 		return s->addr;
237 	}
238 
239 	/*
240 	 * Allocated stacks are cached and later reused by new threads,
241 	 * so memcg accounting is performed manually on assigning/releasing
242 	 * stacks to tasks. Drop __GFP_ACCOUNT.
243 	 */
244 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 				     VMALLOC_START, VMALLOC_END,
246 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
247 				     PAGE_KERNEL,
248 				     0, node, __builtin_return_address(0));
249 
250 	/*
251 	 * We can't call find_vm_area() in interrupt context, and
252 	 * free_thread_stack() can be called in interrupt context,
253 	 * so cache the vm_struct.
254 	 */
255 	if (stack) {
256 		tsk->stack_vm_area = find_vm_area(stack);
257 		tsk->stack = stack;
258 	}
259 	return stack;
260 #else
261 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 					     THREAD_SIZE_ORDER);
263 
264 	if (likely(page)) {
265 		tsk->stack = kasan_reset_tag(page_address(page));
266 		return tsk->stack;
267 	}
268 	return NULL;
269 #endif
270 }
271 
272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 	struct vm_struct *vm = task_stack_vm_area(tsk);
276 
277 	if (vm) {
278 		int i;
279 
280 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 			memcg_kmem_uncharge_page(vm->pages[i], 0);
282 
283 		for (i = 0; i < NR_CACHED_STACKS; i++) {
284 			if (this_cpu_cmpxchg(cached_stacks[i],
285 					NULL, tsk->stack_vm_area) != NULL)
286 				continue;
287 
288 			return;
289 		}
290 
291 		vfree_atomic(tsk->stack);
292 		return;
293 	}
294 #endif
295 
296 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
297 }
298 # else
299 static struct kmem_cache *thread_stack_cache;
300 
301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
302 						  int node)
303 {
304 	unsigned long *stack;
305 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 	stack = kasan_reset_tag(stack);
307 	tsk->stack = stack;
308 	return stack;
309 }
310 
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 	kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315 
316 void thread_stack_cache_init(void)
317 {
318 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 					THREAD_SIZE, THREAD_SIZE, 0, 0,
320 					THREAD_SIZE, NULL);
321 	BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325 
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328 
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331 
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334 
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337 
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340 
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343 
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 	struct vm_area_struct *vma;
347 
348 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 	if (vma)
350 		vma_init(vma, mm);
351 	return vma;
352 }
353 
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357 
358 	if (new) {
359 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361 		/*
362 		 * orig->shared.rb may be modified concurrently, but the clone
363 		 * will be reinitialized.
364 		 */
365 		*new = data_race(*orig);
366 		INIT_LIST_HEAD(&new->anon_vma_chain);
367 		new->vm_next = new->vm_prev = NULL;
368 	}
369 	return new;
370 }
371 
372 void vm_area_free(struct vm_area_struct *vma)
373 {
374 	kmem_cache_free(vm_area_cachep, vma);
375 }
376 
377 static void account_kernel_stack(struct task_struct *tsk, int account)
378 {
379 	void *stack = task_stack_page(tsk);
380 	struct vm_struct *vm = task_stack_vm_area(tsk);
381 
382 	if (vm) {
383 		int i;
384 
385 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
386 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
387 					      account * (PAGE_SIZE / 1024));
388 	} else {
389 		/* All stack pages are in the same node. */
390 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
391 				      account * (THREAD_SIZE / 1024));
392 	}
393 }
394 
395 static int memcg_charge_kernel_stack(struct task_struct *tsk)
396 {
397 #ifdef CONFIG_VMAP_STACK
398 	struct vm_struct *vm = task_stack_vm_area(tsk);
399 	int ret;
400 
401 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
402 
403 	if (vm) {
404 		int i;
405 
406 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
407 
408 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
409 			/*
410 			 * If memcg_kmem_charge_page() fails, page's
411 			 * memory cgroup pointer is NULL, and
412 			 * memcg_kmem_uncharge_page() in free_thread_stack()
413 			 * will ignore this page.
414 			 */
415 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
416 						     0);
417 			if (ret)
418 				return ret;
419 		}
420 	}
421 #endif
422 	return 0;
423 }
424 
425 static void release_task_stack(struct task_struct *tsk)
426 {
427 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
428 		return;  /* Better to leak the stack than to free prematurely */
429 
430 	account_kernel_stack(tsk, -1);
431 	free_thread_stack(tsk);
432 	tsk->stack = NULL;
433 #ifdef CONFIG_VMAP_STACK
434 	tsk->stack_vm_area = NULL;
435 #endif
436 }
437 
438 #ifdef CONFIG_THREAD_INFO_IN_TASK
439 void put_task_stack(struct task_struct *tsk)
440 {
441 	if (refcount_dec_and_test(&tsk->stack_refcount))
442 		release_task_stack(tsk);
443 }
444 #endif
445 
446 void free_task(struct task_struct *tsk)
447 {
448 	release_user_cpus_ptr(tsk);
449 	scs_release(tsk);
450 
451 #ifndef CONFIG_THREAD_INFO_IN_TASK
452 	/*
453 	 * The task is finally done with both the stack and thread_info,
454 	 * so free both.
455 	 */
456 	release_task_stack(tsk);
457 #else
458 	/*
459 	 * If the task had a separate stack allocation, it should be gone
460 	 * by now.
461 	 */
462 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
463 #endif
464 	rt_mutex_debug_task_free(tsk);
465 	ftrace_graph_exit_task(tsk);
466 	arch_release_task_struct(tsk);
467 	if (tsk->flags & PF_KTHREAD)
468 		free_kthread_struct(tsk);
469 	free_task_struct(tsk);
470 }
471 EXPORT_SYMBOL(free_task);
472 
473 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
474 {
475 	struct file *exe_file;
476 
477 	exe_file = get_mm_exe_file(oldmm);
478 	RCU_INIT_POINTER(mm->exe_file, exe_file);
479 	/*
480 	 * We depend on the oldmm having properly denied write access to the
481 	 * exe_file already.
482 	 */
483 	if (exe_file && deny_write_access(exe_file))
484 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
485 }
486 
487 #ifdef CONFIG_MMU
488 static __latent_entropy int dup_mmap(struct mm_struct *mm,
489 					struct mm_struct *oldmm)
490 {
491 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
492 	struct rb_node **rb_link, *rb_parent;
493 	int retval;
494 	unsigned long charge;
495 	LIST_HEAD(uf);
496 
497 	uprobe_start_dup_mmap();
498 	if (mmap_write_lock_killable(oldmm)) {
499 		retval = -EINTR;
500 		goto fail_uprobe_end;
501 	}
502 	flush_cache_dup_mm(oldmm);
503 	uprobe_dup_mmap(oldmm, mm);
504 	/*
505 	 * Not linked in yet - no deadlock potential:
506 	 */
507 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
508 
509 	/* No ordering required: file already has been exposed. */
510 	dup_mm_exe_file(mm, oldmm);
511 
512 	mm->total_vm = oldmm->total_vm;
513 	mm->data_vm = oldmm->data_vm;
514 	mm->exec_vm = oldmm->exec_vm;
515 	mm->stack_vm = oldmm->stack_vm;
516 
517 	rb_link = &mm->mm_rb.rb_node;
518 	rb_parent = NULL;
519 	pprev = &mm->mmap;
520 	retval = ksm_fork(mm, oldmm);
521 	if (retval)
522 		goto out;
523 	retval = khugepaged_fork(mm, oldmm);
524 	if (retval)
525 		goto out;
526 
527 	prev = NULL;
528 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
529 		struct file *file;
530 
531 		if (mpnt->vm_flags & VM_DONTCOPY) {
532 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
533 			continue;
534 		}
535 		charge = 0;
536 		/*
537 		 * Don't duplicate many vmas if we've been oom-killed (for
538 		 * example)
539 		 */
540 		if (fatal_signal_pending(current)) {
541 			retval = -EINTR;
542 			goto out;
543 		}
544 		if (mpnt->vm_flags & VM_ACCOUNT) {
545 			unsigned long len = vma_pages(mpnt);
546 
547 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
548 				goto fail_nomem;
549 			charge = len;
550 		}
551 		tmp = vm_area_dup(mpnt);
552 		if (!tmp)
553 			goto fail_nomem;
554 		retval = vma_dup_policy(mpnt, tmp);
555 		if (retval)
556 			goto fail_nomem_policy;
557 		tmp->vm_mm = mm;
558 		retval = dup_userfaultfd(tmp, &uf);
559 		if (retval)
560 			goto fail_nomem_anon_vma_fork;
561 		if (tmp->vm_flags & VM_WIPEONFORK) {
562 			/*
563 			 * VM_WIPEONFORK gets a clean slate in the child.
564 			 * Don't prepare anon_vma until fault since we don't
565 			 * copy page for current vma.
566 			 */
567 			tmp->anon_vma = NULL;
568 		} else if (anon_vma_fork(tmp, mpnt))
569 			goto fail_nomem_anon_vma_fork;
570 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
571 		file = tmp->vm_file;
572 		if (file) {
573 			struct address_space *mapping = file->f_mapping;
574 
575 			get_file(file);
576 			i_mmap_lock_write(mapping);
577 			if (tmp->vm_flags & VM_SHARED)
578 				mapping_allow_writable(mapping);
579 			flush_dcache_mmap_lock(mapping);
580 			/* insert tmp into the share list, just after mpnt */
581 			vma_interval_tree_insert_after(tmp, mpnt,
582 					&mapping->i_mmap);
583 			flush_dcache_mmap_unlock(mapping);
584 			i_mmap_unlock_write(mapping);
585 		}
586 
587 		/*
588 		 * Clear hugetlb-related page reserves for children. This only
589 		 * affects MAP_PRIVATE mappings. Faults generated by the child
590 		 * are not guaranteed to succeed, even if read-only
591 		 */
592 		if (is_vm_hugetlb_page(tmp))
593 			reset_vma_resv_huge_pages(tmp);
594 
595 		/*
596 		 * Link in the new vma and copy the page table entries.
597 		 */
598 		*pprev = tmp;
599 		pprev = &tmp->vm_next;
600 		tmp->vm_prev = prev;
601 		prev = tmp;
602 
603 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
604 		rb_link = &tmp->vm_rb.rb_right;
605 		rb_parent = &tmp->vm_rb;
606 
607 		mm->map_count++;
608 		if (!(tmp->vm_flags & VM_WIPEONFORK))
609 			retval = copy_page_range(tmp, mpnt);
610 
611 		if (tmp->vm_ops && tmp->vm_ops->open)
612 			tmp->vm_ops->open(tmp);
613 
614 		if (retval)
615 			goto out;
616 	}
617 	/* a new mm has just been created */
618 	retval = arch_dup_mmap(oldmm, mm);
619 out:
620 	mmap_write_unlock(mm);
621 	flush_tlb_mm(oldmm);
622 	mmap_write_unlock(oldmm);
623 	dup_userfaultfd_complete(&uf);
624 fail_uprobe_end:
625 	uprobe_end_dup_mmap();
626 	return retval;
627 fail_nomem_anon_vma_fork:
628 	mpol_put(vma_policy(tmp));
629 fail_nomem_policy:
630 	vm_area_free(tmp);
631 fail_nomem:
632 	retval = -ENOMEM;
633 	vm_unacct_memory(charge);
634 	goto out;
635 }
636 
637 static inline int mm_alloc_pgd(struct mm_struct *mm)
638 {
639 	mm->pgd = pgd_alloc(mm);
640 	if (unlikely(!mm->pgd))
641 		return -ENOMEM;
642 	return 0;
643 }
644 
645 static inline void mm_free_pgd(struct mm_struct *mm)
646 {
647 	pgd_free(mm, mm->pgd);
648 }
649 #else
650 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
651 {
652 	mmap_write_lock(oldmm);
653 	dup_mm_exe_file(mm, oldmm);
654 	mmap_write_unlock(oldmm);
655 	return 0;
656 }
657 #define mm_alloc_pgd(mm)	(0)
658 #define mm_free_pgd(mm)
659 #endif /* CONFIG_MMU */
660 
661 static void check_mm(struct mm_struct *mm)
662 {
663 	int i;
664 
665 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
666 			 "Please make sure 'struct resident_page_types[]' is updated as well");
667 
668 	for (i = 0; i < NR_MM_COUNTERS; i++) {
669 		long x = atomic_long_read(&mm->rss_stat.count[i]);
670 
671 		if (unlikely(x))
672 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
673 				 mm, resident_page_types[i], x);
674 	}
675 
676 	if (mm_pgtables_bytes(mm))
677 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
678 				mm_pgtables_bytes(mm));
679 
680 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
681 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
682 #endif
683 }
684 
685 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
686 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
687 
688 /*
689  * Called when the last reference to the mm
690  * is dropped: either by a lazy thread or by
691  * mmput. Free the page directory and the mm.
692  */
693 void __mmdrop(struct mm_struct *mm)
694 {
695 	BUG_ON(mm == &init_mm);
696 	WARN_ON_ONCE(mm == current->mm);
697 	WARN_ON_ONCE(mm == current->active_mm);
698 	mm_free_pgd(mm);
699 	destroy_context(mm);
700 	mmu_notifier_subscriptions_destroy(mm);
701 	check_mm(mm);
702 	put_user_ns(mm->user_ns);
703 	free_mm(mm);
704 }
705 EXPORT_SYMBOL_GPL(__mmdrop);
706 
707 static void mmdrop_async_fn(struct work_struct *work)
708 {
709 	struct mm_struct *mm;
710 
711 	mm = container_of(work, struct mm_struct, async_put_work);
712 	__mmdrop(mm);
713 }
714 
715 static void mmdrop_async(struct mm_struct *mm)
716 {
717 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
718 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
719 		schedule_work(&mm->async_put_work);
720 	}
721 }
722 
723 static inline void free_signal_struct(struct signal_struct *sig)
724 {
725 	taskstats_tgid_free(sig);
726 	sched_autogroup_exit(sig);
727 	/*
728 	 * __mmdrop is not safe to call from softirq context on x86 due to
729 	 * pgd_dtor so postpone it to the async context
730 	 */
731 	if (sig->oom_mm)
732 		mmdrop_async(sig->oom_mm);
733 	kmem_cache_free(signal_cachep, sig);
734 }
735 
736 static inline void put_signal_struct(struct signal_struct *sig)
737 {
738 	if (refcount_dec_and_test(&sig->sigcnt))
739 		free_signal_struct(sig);
740 }
741 
742 void __put_task_struct(struct task_struct *tsk)
743 {
744 	WARN_ON(!tsk->exit_state);
745 	WARN_ON(refcount_read(&tsk->usage));
746 	WARN_ON(tsk == current);
747 
748 	io_uring_free(tsk);
749 	cgroup_free(tsk);
750 	task_numa_free(tsk, true);
751 	security_task_free(tsk);
752 	bpf_task_storage_free(tsk);
753 	exit_creds(tsk);
754 	delayacct_tsk_free(tsk);
755 	put_signal_struct(tsk->signal);
756 	sched_core_free(tsk);
757 
758 	if (!profile_handoff_task(tsk))
759 		free_task(tsk);
760 }
761 EXPORT_SYMBOL_GPL(__put_task_struct);
762 
763 void __init __weak arch_task_cache_init(void) { }
764 
765 /*
766  * set_max_threads
767  */
768 static void set_max_threads(unsigned int max_threads_suggested)
769 {
770 	u64 threads;
771 	unsigned long nr_pages = totalram_pages();
772 
773 	/*
774 	 * The number of threads shall be limited such that the thread
775 	 * structures may only consume a small part of the available memory.
776 	 */
777 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
778 		threads = MAX_THREADS;
779 	else
780 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
781 				    (u64) THREAD_SIZE * 8UL);
782 
783 	if (threads > max_threads_suggested)
784 		threads = max_threads_suggested;
785 
786 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
787 }
788 
789 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
790 /* Initialized by the architecture: */
791 int arch_task_struct_size __read_mostly;
792 #endif
793 
794 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
795 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
796 {
797 	/* Fetch thread_struct whitelist for the architecture. */
798 	arch_thread_struct_whitelist(offset, size);
799 
800 	/*
801 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
802 	 * adjust offset to position of thread_struct in task_struct.
803 	 */
804 	if (unlikely(*size == 0))
805 		*offset = 0;
806 	else
807 		*offset += offsetof(struct task_struct, thread);
808 }
809 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
810 
811 void __init fork_init(void)
812 {
813 	int i;
814 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
815 #ifndef ARCH_MIN_TASKALIGN
816 #define ARCH_MIN_TASKALIGN	0
817 #endif
818 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
819 	unsigned long useroffset, usersize;
820 
821 	/* create a slab on which task_structs can be allocated */
822 	task_struct_whitelist(&useroffset, &usersize);
823 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
824 			arch_task_struct_size, align,
825 			SLAB_PANIC|SLAB_ACCOUNT,
826 			useroffset, usersize, NULL);
827 #endif
828 
829 	/* do the arch specific task caches init */
830 	arch_task_cache_init();
831 
832 	set_max_threads(MAX_THREADS);
833 
834 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
835 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
836 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
837 		init_task.signal->rlim[RLIMIT_NPROC];
838 
839 	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
840 		init_user_ns.ucount_max[i] = max_threads/2;
841 
842 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
843 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
844 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
845 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
846 
847 #ifdef CONFIG_VMAP_STACK
848 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
849 			  NULL, free_vm_stack_cache);
850 #endif
851 
852 	scs_init();
853 
854 	lockdep_init_task(&init_task);
855 	uprobes_init();
856 }
857 
858 int __weak arch_dup_task_struct(struct task_struct *dst,
859 					       struct task_struct *src)
860 {
861 	*dst = *src;
862 	return 0;
863 }
864 
865 void set_task_stack_end_magic(struct task_struct *tsk)
866 {
867 	unsigned long *stackend;
868 
869 	stackend = end_of_stack(tsk);
870 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
871 }
872 
873 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
874 {
875 	struct task_struct *tsk;
876 	unsigned long *stack;
877 	struct vm_struct *stack_vm_area __maybe_unused;
878 	int err;
879 
880 	if (node == NUMA_NO_NODE)
881 		node = tsk_fork_get_node(orig);
882 	tsk = alloc_task_struct_node(node);
883 	if (!tsk)
884 		return NULL;
885 
886 	stack = alloc_thread_stack_node(tsk, node);
887 	if (!stack)
888 		goto free_tsk;
889 
890 	if (memcg_charge_kernel_stack(tsk))
891 		goto free_stack;
892 
893 	stack_vm_area = task_stack_vm_area(tsk);
894 
895 	err = arch_dup_task_struct(tsk, orig);
896 
897 	/*
898 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
899 	 * sure they're properly initialized before using any stack-related
900 	 * functions again.
901 	 */
902 	tsk->stack = stack;
903 #ifdef CONFIG_VMAP_STACK
904 	tsk->stack_vm_area = stack_vm_area;
905 #endif
906 #ifdef CONFIG_THREAD_INFO_IN_TASK
907 	refcount_set(&tsk->stack_refcount, 1);
908 #endif
909 
910 	if (err)
911 		goto free_stack;
912 
913 	err = scs_prepare(tsk, node);
914 	if (err)
915 		goto free_stack;
916 
917 #ifdef CONFIG_SECCOMP
918 	/*
919 	 * We must handle setting up seccomp filters once we're under
920 	 * the sighand lock in case orig has changed between now and
921 	 * then. Until then, filter must be NULL to avoid messing up
922 	 * the usage counts on the error path calling free_task.
923 	 */
924 	tsk->seccomp.filter = NULL;
925 #endif
926 
927 	setup_thread_stack(tsk, orig);
928 	clear_user_return_notifier(tsk);
929 	clear_tsk_need_resched(tsk);
930 	set_task_stack_end_magic(tsk);
931 	clear_syscall_work_syscall_user_dispatch(tsk);
932 
933 #ifdef CONFIG_STACKPROTECTOR
934 	tsk->stack_canary = get_random_canary();
935 #endif
936 	if (orig->cpus_ptr == &orig->cpus_mask)
937 		tsk->cpus_ptr = &tsk->cpus_mask;
938 	dup_user_cpus_ptr(tsk, orig, node);
939 
940 	/*
941 	 * One for the user space visible state that goes away when reaped.
942 	 * One for the scheduler.
943 	 */
944 	refcount_set(&tsk->rcu_users, 2);
945 	/* One for the rcu users */
946 	refcount_set(&tsk->usage, 1);
947 #ifdef CONFIG_BLK_DEV_IO_TRACE
948 	tsk->btrace_seq = 0;
949 #endif
950 	tsk->splice_pipe = NULL;
951 	tsk->task_frag.page = NULL;
952 	tsk->wake_q.next = NULL;
953 	tsk->pf_io_worker = NULL;
954 
955 	account_kernel_stack(tsk, 1);
956 
957 	kcov_task_init(tsk);
958 	kmap_local_fork(tsk);
959 
960 #ifdef CONFIG_FAULT_INJECTION
961 	tsk->fail_nth = 0;
962 #endif
963 
964 #ifdef CONFIG_BLK_CGROUP
965 	tsk->throttle_queue = NULL;
966 	tsk->use_memdelay = 0;
967 #endif
968 
969 #ifdef CONFIG_MEMCG
970 	tsk->active_memcg = NULL;
971 #endif
972 	return tsk;
973 
974 free_stack:
975 	free_thread_stack(tsk);
976 free_tsk:
977 	free_task_struct(tsk);
978 	return NULL;
979 }
980 
981 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
982 
983 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
984 
985 static int __init coredump_filter_setup(char *s)
986 {
987 	default_dump_filter =
988 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
989 		MMF_DUMP_FILTER_MASK;
990 	return 1;
991 }
992 
993 __setup("coredump_filter=", coredump_filter_setup);
994 
995 #include <linux/init_task.h>
996 
997 static void mm_init_aio(struct mm_struct *mm)
998 {
999 #ifdef CONFIG_AIO
1000 	spin_lock_init(&mm->ioctx_lock);
1001 	mm->ioctx_table = NULL;
1002 #endif
1003 }
1004 
1005 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1006 					   struct task_struct *p)
1007 {
1008 #ifdef CONFIG_MEMCG
1009 	if (mm->owner == p)
1010 		WRITE_ONCE(mm->owner, NULL);
1011 #endif
1012 }
1013 
1014 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1015 {
1016 #ifdef CONFIG_MEMCG
1017 	mm->owner = p;
1018 #endif
1019 }
1020 
1021 static void mm_init_pasid(struct mm_struct *mm)
1022 {
1023 #ifdef CONFIG_IOMMU_SUPPORT
1024 	mm->pasid = INIT_PASID;
1025 #endif
1026 }
1027 
1028 static void mm_init_uprobes_state(struct mm_struct *mm)
1029 {
1030 #ifdef CONFIG_UPROBES
1031 	mm->uprobes_state.xol_area = NULL;
1032 #endif
1033 }
1034 
1035 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1036 	struct user_namespace *user_ns)
1037 {
1038 	mm->mmap = NULL;
1039 	mm->mm_rb = RB_ROOT;
1040 	mm->vmacache_seqnum = 0;
1041 	atomic_set(&mm->mm_users, 1);
1042 	atomic_set(&mm->mm_count, 1);
1043 	seqcount_init(&mm->write_protect_seq);
1044 	mmap_init_lock(mm);
1045 	INIT_LIST_HEAD(&mm->mmlist);
1046 	mm->core_state = NULL;
1047 	mm_pgtables_bytes_init(mm);
1048 	mm->map_count = 0;
1049 	mm->locked_vm = 0;
1050 	atomic64_set(&mm->pinned_vm, 0);
1051 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1052 	spin_lock_init(&mm->page_table_lock);
1053 	spin_lock_init(&mm->arg_lock);
1054 	mm_init_cpumask(mm);
1055 	mm_init_aio(mm);
1056 	mm_init_owner(mm, p);
1057 	mm_init_pasid(mm);
1058 	RCU_INIT_POINTER(mm->exe_file, NULL);
1059 	mmu_notifier_subscriptions_init(mm);
1060 	init_tlb_flush_pending(mm);
1061 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1062 	mm->pmd_huge_pte = NULL;
1063 #endif
1064 	mm_init_uprobes_state(mm);
1065 	hugetlb_count_init(mm);
1066 
1067 	if (current->mm) {
1068 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1069 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1070 	} else {
1071 		mm->flags = default_dump_filter;
1072 		mm->def_flags = 0;
1073 	}
1074 
1075 	if (mm_alloc_pgd(mm))
1076 		goto fail_nopgd;
1077 
1078 	if (init_new_context(p, mm))
1079 		goto fail_nocontext;
1080 
1081 	mm->user_ns = get_user_ns(user_ns);
1082 	return mm;
1083 
1084 fail_nocontext:
1085 	mm_free_pgd(mm);
1086 fail_nopgd:
1087 	free_mm(mm);
1088 	return NULL;
1089 }
1090 
1091 /*
1092  * Allocate and initialize an mm_struct.
1093  */
1094 struct mm_struct *mm_alloc(void)
1095 {
1096 	struct mm_struct *mm;
1097 
1098 	mm = allocate_mm();
1099 	if (!mm)
1100 		return NULL;
1101 
1102 	memset(mm, 0, sizeof(*mm));
1103 	return mm_init(mm, current, current_user_ns());
1104 }
1105 
1106 static inline void __mmput(struct mm_struct *mm)
1107 {
1108 	VM_BUG_ON(atomic_read(&mm->mm_users));
1109 
1110 	uprobe_clear_state(mm);
1111 	exit_aio(mm);
1112 	ksm_exit(mm);
1113 	khugepaged_exit(mm); /* must run before exit_mmap */
1114 	exit_mmap(mm);
1115 	mm_put_huge_zero_page(mm);
1116 	set_mm_exe_file(mm, NULL);
1117 	if (!list_empty(&mm->mmlist)) {
1118 		spin_lock(&mmlist_lock);
1119 		list_del(&mm->mmlist);
1120 		spin_unlock(&mmlist_lock);
1121 	}
1122 	if (mm->binfmt)
1123 		module_put(mm->binfmt->module);
1124 	mmdrop(mm);
1125 }
1126 
1127 /*
1128  * Decrement the use count and release all resources for an mm.
1129  */
1130 void mmput(struct mm_struct *mm)
1131 {
1132 	might_sleep();
1133 
1134 	if (atomic_dec_and_test(&mm->mm_users))
1135 		__mmput(mm);
1136 }
1137 EXPORT_SYMBOL_GPL(mmput);
1138 
1139 #ifdef CONFIG_MMU
1140 static void mmput_async_fn(struct work_struct *work)
1141 {
1142 	struct mm_struct *mm = container_of(work, struct mm_struct,
1143 					    async_put_work);
1144 
1145 	__mmput(mm);
1146 }
1147 
1148 void mmput_async(struct mm_struct *mm)
1149 {
1150 	if (atomic_dec_and_test(&mm->mm_users)) {
1151 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1152 		schedule_work(&mm->async_put_work);
1153 	}
1154 }
1155 #endif
1156 
1157 /**
1158  * set_mm_exe_file - change a reference to the mm's executable file
1159  *
1160  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1161  *
1162  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1163  * invocations: in mmput() nobody alive left, in execve task is single
1164  * threaded.
1165  *
1166  * Can only fail if new_exe_file != NULL.
1167  */
1168 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1169 {
1170 	struct file *old_exe_file;
1171 
1172 	/*
1173 	 * It is safe to dereference the exe_file without RCU as
1174 	 * this function is only called if nobody else can access
1175 	 * this mm -- see comment above for justification.
1176 	 */
1177 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1178 
1179 	if (new_exe_file) {
1180 		/*
1181 		 * We expect the caller (i.e., sys_execve) to already denied
1182 		 * write access, so this is unlikely to fail.
1183 		 */
1184 		if (unlikely(deny_write_access(new_exe_file)))
1185 			return -EACCES;
1186 		get_file(new_exe_file);
1187 	}
1188 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1189 	if (old_exe_file) {
1190 		allow_write_access(old_exe_file);
1191 		fput(old_exe_file);
1192 	}
1193 	return 0;
1194 }
1195 
1196 /**
1197  * replace_mm_exe_file - replace a reference to the mm's executable file
1198  *
1199  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1200  * dealing with concurrent invocation and without grabbing the mmap lock in
1201  * write mode.
1202  *
1203  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1204  */
1205 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1206 {
1207 	struct vm_area_struct *vma;
1208 	struct file *old_exe_file;
1209 	int ret = 0;
1210 
1211 	/* Forbid mm->exe_file change if old file still mapped. */
1212 	old_exe_file = get_mm_exe_file(mm);
1213 	if (old_exe_file) {
1214 		mmap_read_lock(mm);
1215 		for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1216 			if (!vma->vm_file)
1217 				continue;
1218 			if (path_equal(&vma->vm_file->f_path,
1219 				       &old_exe_file->f_path))
1220 				ret = -EBUSY;
1221 		}
1222 		mmap_read_unlock(mm);
1223 		fput(old_exe_file);
1224 		if (ret)
1225 			return ret;
1226 	}
1227 
1228 	/* set the new file, lockless */
1229 	ret = deny_write_access(new_exe_file);
1230 	if (ret)
1231 		return -EACCES;
1232 	get_file(new_exe_file);
1233 
1234 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1235 	if (old_exe_file) {
1236 		/*
1237 		 * Don't race with dup_mmap() getting the file and disallowing
1238 		 * write access while someone might open the file writable.
1239 		 */
1240 		mmap_read_lock(mm);
1241 		allow_write_access(old_exe_file);
1242 		fput(old_exe_file);
1243 		mmap_read_unlock(mm);
1244 	}
1245 	return 0;
1246 }
1247 
1248 /**
1249  * get_mm_exe_file - acquire a reference to the mm's executable file
1250  *
1251  * Returns %NULL if mm has no associated executable file.
1252  * User must release file via fput().
1253  */
1254 struct file *get_mm_exe_file(struct mm_struct *mm)
1255 {
1256 	struct file *exe_file;
1257 
1258 	rcu_read_lock();
1259 	exe_file = rcu_dereference(mm->exe_file);
1260 	if (exe_file && !get_file_rcu(exe_file))
1261 		exe_file = NULL;
1262 	rcu_read_unlock();
1263 	return exe_file;
1264 }
1265 
1266 /**
1267  * get_task_exe_file - acquire a reference to the task's executable file
1268  *
1269  * Returns %NULL if task's mm (if any) has no associated executable file or
1270  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1271  * User must release file via fput().
1272  */
1273 struct file *get_task_exe_file(struct task_struct *task)
1274 {
1275 	struct file *exe_file = NULL;
1276 	struct mm_struct *mm;
1277 
1278 	task_lock(task);
1279 	mm = task->mm;
1280 	if (mm) {
1281 		if (!(task->flags & PF_KTHREAD))
1282 			exe_file = get_mm_exe_file(mm);
1283 	}
1284 	task_unlock(task);
1285 	return exe_file;
1286 }
1287 
1288 /**
1289  * get_task_mm - acquire a reference to the task's mm
1290  *
1291  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1292  * this kernel workthread has transiently adopted a user mm with use_mm,
1293  * to do its AIO) is not set and if so returns a reference to it, after
1294  * bumping up the use count.  User must release the mm via mmput()
1295  * after use.  Typically used by /proc and ptrace.
1296  */
1297 struct mm_struct *get_task_mm(struct task_struct *task)
1298 {
1299 	struct mm_struct *mm;
1300 
1301 	task_lock(task);
1302 	mm = task->mm;
1303 	if (mm) {
1304 		if (task->flags & PF_KTHREAD)
1305 			mm = NULL;
1306 		else
1307 			mmget(mm);
1308 	}
1309 	task_unlock(task);
1310 	return mm;
1311 }
1312 EXPORT_SYMBOL_GPL(get_task_mm);
1313 
1314 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1315 {
1316 	struct mm_struct *mm;
1317 	int err;
1318 
1319 	err =  down_read_killable(&task->signal->exec_update_lock);
1320 	if (err)
1321 		return ERR_PTR(err);
1322 
1323 	mm = get_task_mm(task);
1324 	if (mm && mm != current->mm &&
1325 			!ptrace_may_access(task, mode)) {
1326 		mmput(mm);
1327 		mm = ERR_PTR(-EACCES);
1328 	}
1329 	up_read(&task->signal->exec_update_lock);
1330 
1331 	return mm;
1332 }
1333 
1334 static void complete_vfork_done(struct task_struct *tsk)
1335 {
1336 	struct completion *vfork;
1337 
1338 	task_lock(tsk);
1339 	vfork = tsk->vfork_done;
1340 	if (likely(vfork)) {
1341 		tsk->vfork_done = NULL;
1342 		complete(vfork);
1343 	}
1344 	task_unlock(tsk);
1345 }
1346 
1347 static int wait_for_vfork_done(struct task_struct *child,
1348 				struct completion *vfork)
1349 {
1350 	int killed;
1351 
1352 	freezer_do_not_count();
1353 	cgroup_enter_frozen();
1354 	killed = wait_for_completion_killable(vfork);
1355 	cgroup_leave_frozen(false);
1356 	freezer_count();
1357 
1358 	if (killed) {
1359 		task_lock(child);
1360 		child->vfork_done = NULL;
1361 		task_unlock(child);
1362 	}
1363 
1364 	put_task_struct(child);
1365 	return killed;
1366 }
1367 
1368 /* Please note the differences between mmput and mm_release.
1369  * mmput is called whenever we stop holding onto a mm_struct,
1370  * error success whatever.
1371  *
1372  * mm_release is called after a mm_struct has been removed
1373  * from the current process.
1374  *
1375  * This difference is important for error handling, when we
1376  * only half set up a mm_struct for a new process and need to restore
1377  * the old one.  Because we mmput the new mm_struct before
1378  * restoring the old one. . .
1379  * Eric Biederman 10 January 1998
1380  */
1381 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1382 {
1383 	uprobe_free_utask(tsk);
1384 
1385 	/* Get rid of any cached register state */
1386 	deactivate_mm(tsk, mm);
1387 
1388 	/*
1389 	 * Signal userspace if we're not exiting with a core dump
1390 	 * because we want to leave the value intact for debugging
1391 	 * purposes.
1392 	 */
1393 	if (tsk->clear_child_tid) {
1394 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1395 		    atomic_read(&mm->mm_users) > 1) {
1396 			/*
1397 			 * We don't check the error code - if userspace has
1398 			 * not set up a proper pointer then tough luck.
1399 			 */
1400 			put_user(0, tsk->clear_child_tid);
1401 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1402 					1, NULL, NULL, 0, 0);
1403 		}
1404 		tsk->clear_child_tid = NULL;
1405 	}
1406 
1407 	/*
1408 	 * All done, finally we can wake up parent and return this mm to him.
1409 	 * Also kthread_stop() uses this completion for synchronization.
1410 	 */
1411 	if (tsk->vfork_done)
1412 		complete_vfork_done(tsk);
1413 }
1414 
1415 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1416 {
1417 	futex_exit_release(tsk);
1418 	mm_release(tsk, mm);
1419 }
1420 
1421 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1422 {
1423 	futex_exec_release(tsk);
1424 	mm_release(tsk, mm);
1425 }
1426 
1427 /**
1428  * dup_mm() - duplicates an existing mm structure
1429  * @tsk: the task_struct with which the new mm will be associated.
1430  * @oldmm: the mm to duplicate.
1431  *
1432  * Allocates a new mm structure and duplicates the provided @oldmm structure
1433  * content into it.
1434  *
1435  * Return: the duplicated mm or NULL on failure.
1436  */
1437 static struct mm_struct *dup_mm(struct task_struct *tsk,
1438 				struct mm_struct *oldmm)
1439 {
1440 	struct mm_struct *mm;
1441 	int err;
1442 
1443 	mm = allocate_mm();
1444 	if (!mm)
1445 		goto fail_nomem;
1446 
1447 	memcpy(mm, oldmm, sizeof(*mm));
1448 
1449 	if (!mm_init(mm, tsk, mm->user_ns))
1450 		goto fail_nomem;
1451 
1452 	err = dup_mmap(mm, oldmm);
1453 	if (err)
1454 		goto free_pt;
1455 
1456 	mm->hiwater_rss = get_mm_rss(mm);
1457 	mm->hiwater_vm = mm->total_vm;
1458 
1459 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1460 		goto free_pt;
1461 
1462 	return mm;
1463 
1464 free_pt:
1465 	/* don't put binfmt in mmput, we haven't got module yet */
1466 	mm->binfmt = NULL;
1467 	mm_init_owner(mm, NULL);
1468 	mmput(mm);
1469 
1470 fail_nomem:
1471 	return NULL;
1472 }
1473 
1474 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1475 {
1476 	struct mm_struct *mm, *oldmm;
1477 
1478 	tsk->min_flt = tsk->maj_flt = 0;
1479 	tsk->nvcsw = tsk->nivcsw = 0;
1480 #ifdef CONFIG_DETECT_HUNG_TASK
1481 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1482 	tsk->last_switch_time = 0;
1483 #endif
1484 
1485 	tsk->mm = NULL;
1486 	tsk->active_mm = NULL;
1487 
1488 	/*
1489 	 * Are we cloning a kernel thread?
1490 	 *
1491 	 * We need to steal a active VM for that..
1492 	 */
1493 	oldmm = current->mm;
1494 	if (!oldmm)
1495 		return 0;
1496 
1497 	/* initialize the new vmacache entries */
1498 	vmacache_flush(tsk);
1499 
1500 	if (clone_flags & CLONE_VM) {
1501 		mmget(oldmm);
1502 		mm = oldmm;
1503 	} else {
1504 		mm = dup_mm(tsk, current->mm);
1505 		if (!mm)
1506 			return -ENOMEM;
1507 	}
1508 
1509 	tsk->mm = mm;
1510 	tsk->active_mm = mm;
1511 	return 0;
1512 }
1513 
1514 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1515 {
1516 	struct fs_struct *fs = current->fs;
1517 	if (clone_flags & CLONE_FS) {
1518 		/* tsk->fs is already what we want */
1519 		spin_lock(&fs->lock);
1520 		if (fs->in_exec) {
1521 			spin_unlock(&fs->lock);
1522 			return -EAGAIN;
1523 		}
1524 		fs->users++;
1525 		spin_unlock(&fs->lock);
1526 		return 0;
1527 	}
1528 	tsk->fs = copy_fs_struct(fs);
1529 	if (!tsk->fs)
1530 		return -ENOMEM;
1531 	return 0;
1532 }
1533 
1534 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1535 {
1536 	struct files_struct *oldf, *newf;
1537 	int error = 0;
1538 
1539 	/*
1540 	 * A background process may not have any files ...
1541 	 */
1542 	oldf = current->files;
1543 	if (!oldf)
1544 		goto out;
1545 
1546 	if (clone_flags & CLONE_FILES) {
1547 		atomic_inc(&oldf->count);
1548 		goto out;
1549 	}
1550 
1551 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1552 	if (!newf)
1553 		goto out;
1554 
1555 	tsk->files = newf;
1556 	error = 0;
1557 out:
1558 	return error;
1559 }
1560 
1561 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1562 {
1563 #ifdef CONFIG_BLOCK
1564 	struct io_context *ioc = current->io_context;
1565 	struct io_context *new_ioc;
1566 
1567 	if (!ioc)
1568 		return 0;
1569 	/*
1570 	 * Share io context with parent, if CLONE_IO is set
1571 	 */
1572 	if (clone_flags & CLONE_IO) {
1573 		ioc_task_link(ioc);
1574 		tsk->io_context = ioc;
1575 	} else if (ioprio_valid(ioc->ioprio)) {
1576 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1577 		if (unlikely(!new_ioc))
1578 			return -ENOMEM;
1579 
1580 		new_ioc->ioprio = ioc->ioprio;
1581 		put_io_context(new_ioc);
1582 	}
1583 #endif
1584 	return 0;
1585 }
1586 
1587 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1588 {
1589 	struct sighand_struct *sig;
1590 
1591 	if (clone_flags & CLONE_SIGHAND) {
1592 		refcount_inc(&current->sighand->count);
1593 		return 0;
1594 	}
1595 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1596 	RCU_INIT_POINTER(tsk->sighand, sig);
1597 	if (!sig)
1598 		return -ENOMEM;
1599 
1600 	refcount_set(&sig->count, 1);
1601 	spin_lock_irq(&current->sighand->siglock);
1602 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1603 	spin_unlock_irq(&current->sighand->siglock);
1604 
1605 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1606 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1607 		flush_signal_handlers(tsk, 0);
1608 
1609 	return 0;
1610 }
1611 
1612 void __cleanup_sighand(struct sighand_struct *sighand)
1613 {
1614 	if (refcount_dec_and_test(&sighand->count)) {
1615 		signalfd_cleanup(sighand);
1616 		/*
1617 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1618 		 * without an RCU grace period, see __lock_task_sighand().
1619 		 */
1620 		kmem_cache_free(sighand_cachep, sighand);
1621 	}
1622 }
1623 
1624 /*
1625  * Initialize POSIX timer handling for a thread group.
1626  */
1627 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1628 {
1629 	struct posix_cputimers *pct = &sig->posix_cputimers;
1630 	unsigned long cpu_limit;
1631 
1632 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1633 	posix_cputimers_group_init(pct, cpu_limit);
1634 }
1635 
1636 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1637 {
1638 	struct signal_struct *sig;
1639 
1640 	if (clone_flags & CLONE_THREAD)
1641 		return 0;
1642 
1643 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1644 	tsk->signal = sig;
1645 	if (!sig)
1646 		return -ENOMEM;
1647 
1648 	sig->nr_threads = 1;
1649 	atomic_set(&sig->live, 1);
1650 	refcount_set(&sig->sigcnt, 1);
1651 
1652 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1653 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1654 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1655 
1656 	init_waitqueue_head(&sig->wait_chldexit);
1657 	sig->curr_target = tsk;
1658 	init_sigpending(&sig->shared_pending);
1659 	INIT_HLIST_HEAD(&sig->multiprocess);
1660 	seqlock_init(&sig->stats_lock);
1661 	prev_cputime_init(&sig->prev_cputime);
1662 
1663 #ifdef CONFIG_POSIX_TIMERS
1664 	INIT_LIST_HEAD(&sig->posix_timers);
1665 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1666 	sig->real_timer.function = it_real_fn;
1667 #endif
1668 
1669 	task_lock(current->group_leader);
1670 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1671 	task_unlock(current->group_leader);
1672 
1673 	posix_cpu_timers_init_group(sig);
1674 
1675 	tty_audit_fork(sig);
1676 	sched_autogroup_fork(sig);
1677 
1678 	sig->oom_score_adj = current->signal->oom_score_adj;
1679 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1680 
1681 	mutex_init(&sig->cred_guard_mutex);
1682 	init_rwsem(&sig->exec_update_lock);
1683 
1684 	return 0;
1685 }
1686 
1687 static void copy_seccomp(struct task_struct *p)
1688 {
1689 #ifdef CONFIG_SECCOMP
1690 	/*
1691 	 * Must be called with sighand->lock held, which is common to
1692 	 * all threads in the group. Holding cred_guard_mutex is not
1693 	 * needed because this new task is not yet running and cannot
1694 	 * be racing exec.
1695 	 */
1696 	assert_spin_locked(&current->sighand->siglock);
1697 
1698 	/* Ref-count the new filter user, and assign it. */
1699 	get_seccomp_filter(current);
1700 	p->seccomp = current->seccomp;
1701 
1702 	/*
1703 	 * Explicitly enable no_new_privs here in case it got set
1704 	 * between the task_struct being duplicated and holding the
1705 	 * sighand lock. The seccomp state and nnp must be in sync.
1706 	 */
1707 	if (task_no_new_privs(current))
1708 		task_set_no_new_privs(p);
1709 
1710 	/*
1711 	 * If the parent gained a seccomp mode after copying thread
1712 	 * flags and between before we held the sighand lock, we have
1713 	 * to manually enable the seccomp thread flag here.
1714 	 */
1715 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1716 		set_task_syscall_work(p, SECCOMP);
1717 #endif
1718 }
1719 
1720 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1721 {
1722 	current->clear_child_tid = tidptr;
1723 
1724 	return task_pid_vnr(current);
1725 }
1726 
1727 static void rt_mutex_init_task(struct task_struct *p)
1728 {
1729 	raw_spin_lock_init(&p->pi_lock);
1730 #ifdef CONFIG_RT_MUTEXES
1731 	p->pi_waiters = RB_ROOT_CACHED;
1732 	p->pi_top_task = NULL;
1733 	p->pi_blocked_on = NULL;
1734 #endif
1735 }
1736 
1737 static inline void init_task_pid_links(struct task_struct *task)
1738 {
1739 	enum pid_type type;
1740 
1741 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1742 		INIT_HLIST_NODE(&task->pid_links[type]);
1743 }
1744 
1745 static inline void
1746 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1747 {
1748 	if (type == PIDTYPE_PID)
1749 		task->thread_pid = pid;
1750 	else
1751 		task->signal->pids[type] = pid;
1752 }
1753 
1754 static inline void rcu_copy_process(struct task_struct *p)
1755 {
1756 #ifdef CONFIG_PREEMPT_RCU
1757 	p->rcu_read_lock_nesting = 0;
1758 	p->rcu_read_unlock_special.s = 0;
1759 	p->rcu_blocked_node = NULL;
1760 	INIT_LIST_HEAD(&p->rcu_node_entry);
1761 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1762 #ifdef CONFIG_TASKS_RCU
1763 	p->rcu_tasks_holdout = false;
1764 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1765 	p->rcu_tasks_idle_cpu = -1;
1766 #endif /* #ifdef CONFIG_TASKS_RCU */
1767 #ifdef CONFIG_TASKS_TRACE_RCU
1768 	p->trc_reader_nesting = 0;
1769 	p->trc_reader_special.s = 0;
1770 	INIT_LIST_HEAD(&p->trc_holdout_list);
1771 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1772 }
1773 
1774 struct pid *pidfd_pid(const struct file *file)
1775 {
1776 	if (file->f_op == &pidfd_fops)
1777 		return file->private_data;
1778 
1779 	return ERR_PTR(-EBADF);
1780 }
1781 
1782 static int pidfd_release(struct inode *inode, struct file *file)
1783 {
1784 	struct pid *pid = file->private_data;
1785 
1786 	file->private_data = NULL;
1787 	put_pid(pid);
1788 	return 0;
1789 }
1790 
1791 #ifdef CONFIG_PROC_FS
1792 /**
1793  * pidfd_show_fdinfo - print information about a pidfd
1794  * @m: proc fdinfo file
1795  * @f: file referencing a pidfd
1796  *
1797  * Pid:
1798  * This function will print the pid that a given pidfd refers to in the
1799  * pid namespace of the procfs instance.
1800  * If the pid namespace of the process is not a descendant of the pid
1801  * namespace of the procfs instance 0 will be shown as its pid. This is
1802  * similar to calling getppid() on a process whose parent is outside of
1803  * its pid namespace.
1804  *
1805  * NSpid:
1806  * If pid namespaces are supported then this function will also print
1807  * the pid of a given pidfd refers to for all descendant pid namespaces
1808  * starting from the current pid namespace of the instance, i.e. the
1809  * Pid field and the first entry in the NSpid field will be identical.
1810  * If the pid namespace of the process is not a descendant of the pid
1811  * namespace of the procfs instance 0 will be shown as its first NSpid
1812  * entry and no others will be shown.
1813  * Note that this differs from the Pid and NSpid fields in
1814  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1815  * the  pid namespace of the procfs instance. The difference becomes
1816  * obvious when sending around a pidfd between pid namespaces from a
1817  * different branch of the tree, i.e. where no ancestral relation is
1818  * present between the pid namespaces:
1819  * - create two new pid namespaces ns1 and ns2 in the initial pid
1820  *   namespace (also take care to create new mount namespaces in the
1821  *   new pid namespace and mount procfs)
1822  * - create a process with a pidfd in ns1
1823  * - send pidfd from ns1 to ns2
1824  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1825  *   have exactly one entry, which is 0
1826  */
1827 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1828 {
1829 	struct pid *pid = f->private_data;
1830 	struct pid_namespace *ns;
1831 	pid_t nr = -1;
1832 
1833 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1834 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1835 		nr = pid_nr_ns(pid, ns);
1836 	}
1837 
1838 	seq_put_decimal_ll(m, "Pid:\t", nr);
1839 
1840 #ifdef CONFIG_PID_NS
1841 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1842 	if (nr > 0) {
1843 		int i;
1844 
1845 		/* If nr is non-zero it means that 'pid' is valid and that
1846 		 * ns, i.e. the pid namespace associated with the procfs
1847 		 * instance, is in the pid namespace hierarchy of pid.
1848 		 * Start at one below the already printed level.
1849 		 */
1850 		for (i = ns->level + 1; i <= pid->level; i++)
1851 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1852 	}
1853 #endif
1854 	seq_putc(m, '\n');
1855 }
1856 #endif
1857 
1858 /*
1859  * Poll support for process exit notification.
1860  */
1861 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1862 {
1863 	struct pid *pid = file->private_data;
1864 	__poll_t poll_flags = 0;
1865 
1866 	poll_wait(file, &pid->wait_pidfd, pts);
1867 
1868 	/*
1869 	 * Inform pollers only when the whole thread group exits.
1870 	 * If the thread group leader exits before all other threads in the
1871 	 * group, then poll(2) should block, similar to the wait(2) family.
1872 	 */
1873 	if (thread_group_exited(pid))
1874 		poll_flags = EPOLLIN | EPOLLRDNORM;
1875 
1876 	return poll_flags;
1877 }
1878 
1879 const struct file_operations pidfd_fops = {
1880 	.release = pidfd_release,
1881 	.poll = pidfd_poll,
1882 #ifdef CONFIG_PROC_FS
1883 	.show_fdinfo = pidfd_show_fdinfo,
1884 #endif
1885 };
1886 
1887 static void __delayed_free_task(struct rcu_head *rhp)
1888 {
1889 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1890 
1891 	free_task(tsk);
1892 }
1893 
1894 static __always_inline void delayed_free_task(struct task_struct *tsk)
1895 {
1896 	if (IS_ENABLED(CONFIG_MEMCG))
1897 		call_rcu(&tsk->rcu, __delayed_free_task);
1898 	else
1899 		free_task(tsk);
1900 }
1901 
1902 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1903 {
1904 	/* Skip if kernel thread */
1905 	if (!tsk->mm)
1906 		return;
1907 
1908 	/* Skip if spawning a thread or using vfork */
1909 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1910 		return;
1911 
1912 	/* We need to synchronize with __set_oom_adj */
1913 	mutex_lock(&oom_adj_mutex);
1914 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1915 	/* Update the values in case they were changed after copy_signal */
1916 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1917 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1918 	mutex_unlock(&oom_adj_mutex);
1919 }
1920 
1921 /*
1922  * This creates a new process as a copy of the old one,
1923  * but does not actually start it yet.
1924  *
1925  * It copies the registers, and all the appropriate
1926  * parts of the process environment (as per the clone
1927  * flags). The actual kick-off is left to the caller.
1928  */
1929 static __latent_entropy struct task_struct *copy_process(
1930 					struct pid *pid,
1931 					int trace,
1932 					int node,
1933 					struct kernel_clone_args *args)
1934 {
1935 	int pidfd = -1, retval;
1936 	struct task_struct *p;
1937 	struct multiprocess_signals delayed;
1938 	struct file *pidfile = NULL;
1939 	u64 clone_flags = args->flags;
1940 	struct nsproxy *nsp = current->nsproxy;
1941 
1942 	/*
1943 	 * Don't allow sharing the root directory with processes in a different
1944 	 * namespace
1945 	 */
1946 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1947 		return ERR_PTR(-EINVAL);
1948 
1949 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1950 		return ERR_PTR(-EINVAL);
1951 
1952 	/*
1953 	 * Thread groups must share signals as well, and detached threads
1954 	 * can only be started up within the thread group.
1955 	 */
1956 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1957 		return ERR_PTR(-EINVAL);
1958 
1959 	/*
1960 	 * Shared signal handlers imply shared VM. By way of the above,
1961 	 * thread groups also imply shared VM. Blocking this case allows
1962 	 * for various simplifications in other code.
1963 	 */
1964 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1965 		return ERR_PTR(-EINVAL);
1966 
1967 	/*
1968 	 * Siblings of global init remain as zombies on exit since they are
1969 	 * not reaped by their parent (swapper). To solve this and to avoid
1970 	 * multi-rooted process trees, prevent global and container-inits
1971 	 * from creating siblings.
1972 	 */
1973 	if ((clone_flags & CLONE_PARENT) &&
1974 				current->signal->flags & SIGNAL_UNKILLABLE)
1975 		return ERR_PTR(-EINVAL);
1976 
1977 	/*
1978 	 * If the new process will be in a different pid or user namespace
1979 	 * do not allow it to share a thread group with the forking task.
1980 	 */
1981 	if (clone_flags & CLONE_THREAD) {
1982 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1983 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1984 			return ERR_PTR(-EINVAL);
1985 	}
1986 
1987 	/*
1988 	 * If the new process will be in a different time namespace
1989 	 * do not allow it to share VM or a thread group with the forking task.
1990 	 */
1991 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1992 		if (nsp->time_ns != nsp->time_ns_for_children)
1993 			return ERR_PTR(-EINVAL);
1994 	}
1995 
1996 	if (clone_flags & CLONE_PIDFD) {
1997 		/*
1998 		 * - CLONE_DETACHED is blocked so that we can potentially
1999 		 *   reuse it later for CLONE_PIDFD.
2000 		 * - CLONE_THREAD is blocked until someone really needs it.
2001 		 */
2002 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2003 			return ERR_PTR(-EINVAL);
2004 	}
2005 
2006 	/*
2007 	 * Force any signals received before this point to be delivered
2008 	 * before the fork happens.  Collect up signals sent to multiple
2009 	 * processes that happen during the fork and delay them so that
2010 	 * they appear to happen after the fork.
2011 	 */
2012 	sigemptyset(&delayed.signal);
2013 	INIT_HLIST_NODE(&delayed.node);
2014 
2015 	spin_lock_irq(&current->sighand->siglock);
2016 	if (!(clone_flags & CLONE_THREAD))
2017 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2018 	recalc_sigpending();
2019 	spin_unlock_irq(&current->sighand->siglock);
2020 	retval = -ERESTARTNOINTR;
2021 	if (task_sigpending(current))
2022 		goto fork_out;
2023 
2024 	retval = -ENOMEM;
2025 	p = dup_task_struct(current, node);
2026 	if (!p)
2027 		goto fork_out;
2028 	if (args->io_thread) {
2029 		/*
2030 		 * Mark us an IO worker, and block any signal that isn't
2031 		 * fatal or STOP
2032 		 */
2033 		p->flags |= PF_IO_WORKER;
2034 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2035 	}
2036 
2037 	/*
2038 	 * This _must_ happen before we call free_task(), i.e. before we jump
2039 	 * to any of the bad_fork_* labels. This is to avoid freeing
2040 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
2041 	 * kernel threads (PF_KTHREAD).
2042 	 */
2043 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2044 	/*
2045 	 * Clear TID on mm_release()?
2046 	 */
2047 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2048 
2049 	ftrace_graph_init_task(p);
2050 
2051 	rt_mutex_init_task(p);
2052 
2053 	lockdep_assert_irqs_enabled();
2054 #ifdef CONFIG_PROVE_LOCKING
2055 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2056 #endif
2057 	retval = -EAGAIN;
2058 	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2059 		if (p->real_cred->user != INIT_USER &&
2060 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2061 			goto bad_fork_free;
2062 	}
2063 	current->flags &= ~PF_NPROC_EXCEEDED;
2064 
2065 	retval = copy_creds(p, clone_flags);
2066 	if (retval < 0)
2067 		goto bad_fork_free;
2068 
2069 	/*
2070 	 * If multiple threads are within copy_process(), then this check
2071 	 * triggers too late. This doesn't hurt, the check is only there
2072 	 * to stop root fork bombs.
2073 	 */
2074 	retval = -EAGAIN;
2075 	if (data_race(nr_threads >= max_threads))
2076 		goto bad_fork_cleanup_count;
2077 
2078 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2079 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2080 	p->flags |= PF_FORKNOEXEC;
2081 	INIT_LIST_HEAD(&p->children);
2082 	INIT_LIST_HEAD(&p->sibling);
2083 	rcu_copy_process(p);
2084 	p->vfork_done = NULL;
2085 	spin_lock_init(&p->alloc_lock);
2086 
2087 	init_sigpending(&p->pending);
2088 
2089 	p->utime = p->stime = p->gtime = 0;
2090 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2091 	p->utimescaled = p->stimescaled = 0;
2092 #endif
2093 	prev_cputime_init(&p->prev_cputime);
2094 
2095 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2096 	seqcount_init(&p->vtime.seqcount);
2097 	p->vtime.starttime = 0;
2098 	p->vtime.state = VTIME_INACTIVE;
2099 #endif
2100 
2101 #ifdef CONFIG_IO_URING
2102 	p->io_uring = NULL;
2103 #endif
2104 
2105 #if defined(SPLIT_RSS_COUNTING)
2106 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2107 #endif
2108 
2109 	p->default_timer_slack_ns = current->timer_slack_ns;
2110 
2111 #ifdef CONFIG_PSI
2112 	p->psi_flags = 0;
2113 #endif
2114 
2115 	task_io_accounting_init(&p->ioac);
2116 	acct_clear_integrals(p);
2117 
2118 	posix_cputimers_init(&p->posix_cputimers);
2119 
2120 	p->io_context = NULL;
2121 	audit_set_context(p, NULL);
2122 	cgroup_fork(p);
2123 #ifdef CONFIG_NUMA
2124 	p->mempolicy = mpol_dup(p->mempolicy);
2125 	if (IS_ERR(p->mempolicy)) {
2126 		retval = PTR_ERR(p->mempolicy);
2127 		p->mempolicy = NULL;
2128 		goto bad_fork_cleanup_threadgroup_lock;
2129 	}
2130 #endif
2131 #ifdef CONFIG_CPUSETS
2132 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2133 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2134 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2135 #endif
2136 #ifdef CONFIG_TRACE_IRQFLAGS
2137 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2138 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2139 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2140 	p->softirqs_enabled		= 1;
2141 	p->softirq_context		= 0;
2142 #endif
2143 
2144 	p->pagefault_disabled = 0;
2145 
2146 #ifdef CONFIG_LOCKDEP
2147 	lockdep_init_task(p);
2148 #endif
2149 
2150 #ifdef CONFIG_DEBUG_MUTEXES
2151 	p->blocked_on = NULL; /* not blocked yet */
2152 #endif
2153 #ifdef CONFIG_BCACHE
2154 	p->sequential_io	= 0;
2155 	p->sequential_io_avg	= 0;
2156 #endif
2157 #ifdef CONFIG_BPF_SYSCALL
2158 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2159 	p->bpf_ctx = NULL;
2160 #endif
2161 
2162 	/* Perform scheduler related setup. Assign this task to a CPU. */
2163 	retval = sched_fork(clone_flags, p);
2164 	if (retval)
2165 		goto bad_fork_cleanup_policy;
2166 
2167 	retval = perf_event_init_task(p, clone_flags);
2168 	if (retval)
2169 		goto bad_fork_cleanup_policy;
2170 	retval = audit_alloc(p);
2171 	if (retval)
2172 		goto bad_fork_cleanup_perf;
2173 	/* copy all the process information */
2174 	shm_init_task(p);
2175 	retval = security_task_alloc(p, clone_flags);
2176 	if (retval)
2177 		goto bad_fork_cleanup_audit;
2178 	retval = copy_semundo(clone_flags, p);
2179 	if (retval)
2180 		goto bad_fork_cleanup_security;
2181 	retval = copy_files(clone_flags, p);
2182 	if (retval)
2183 		goto bad_fork_cleanup_semundo;
2184 	retval = copy_fs(clone_flags, p);
2185 	if (retval)
2186 		goto bad_fork_cleanup_files;
2187 	retval = copy_sighand(clone_flags, p);
2188 	if (retval)
2189 		goto bad_fork_cleanup_fs;
2190 	retval = copy_signal(clone_flags, p);
2191 	if (retval)
2192 		goto bad_fork_cleanup_sighand;
2193 	retval = copy_mm(clone_flags, p);
2194 	if (retval)
2195 		goto bad_fork_cleanup_signal;
2196 	retval = copy_namespaces(clone_flags, p);
2197 	if (retval)
2198 		goto bad_fork_cleanup_mm;
2199 	retval = copy_io(clone_flags, p);
2200 	if (retval)
2201 		goto bad_fork_cleanup_namespaces;
2202 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2203 	if (retval)
2204 		goto bad_fork_cleanup_io;
2205 
2206 	stackleak_task_init(p);
2207 
2208 	if (pid != &init_struct_pid) {
2209 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2210 				args->set_tid_size);
2211 		if (IS_ERR(pid)) {
2212 			retval = PTR_ERR(pid);
2213 			goto bad_fork_cleanup_thread;
2214 		}
2215 	}
2216 
2217 	/*
2218 	 * This has to happen after we've potentially unshared the file
2219 	 * descriptor table (so that the pidfd doesn't leak into the child
2220 	 * if the fd table isn't shared).
2221 	 */
2222 	if (clone_flags & CLONE_PIDFD) {
2223 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2224 		if (retval < 0)
2225 			goto bad_fork_free_pid;
2226 
2227 		pidfd = retval;
2228 
2229 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2230 					      O_RDWR | O_CLOEXEC);
2231 		if (IS_ERR(pidfile)) {
2232 			put_unused_fd(pidfd);
2233 			retval = PTR_ERR(pidfile);
2234 			goto bad_fork_free_pid;
2235 		}
2236 		get_pid(pid);	/* held by pidfile now */
2237 
2238 		retval = put_user(pidfd, args->pidfd);
2239 		if (retval)
2240 			goto bad_fork_put_pidfd;
2241 	}
2242 
2243 #ifdef CONFIG_BLOCK
2244 	p->plug = NULL;
2245 #endif
2246 	futex_init_task(p);
2247 
2248 	/*
2249 	 * sigaltstack should be cleared when sharing the same VM
2250 	 */
2251 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2252 		sas_ss_reset(p);
2253 
2254 	/*
2255 	 * Syscall tracing and stepping should be turned off in the
2256 	 * child regardless of CLONE_PTRACE.
2257 	 */
2258 	user_disable_single_step(p);
2259 	clear_task_syscall_work(p, SYSCALL_TRACE);
2260 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2261 	clear_task_syscall_work(p, SYSCALL_EMU);
2262 #endif
2263 	clear_tsk_latency_tracing(p);
2264 
2265 	/* ok, now we should be set up.. */
2266 	p->pid = pid_nr(pid);
2267 	if (clone_flags & CLONE_THREAD) {
2268 		p->group_leader = current->group_leader;
2269 		p->tgid = current->tgid;
2270 	} else {
2271 		p->group_leader = p;
2272 		p->tgid = p->pid;
2273 	}
2274 
2275 	p->nr_dirtied = 0;
2276 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2277 	p->dirty_paused_when = 0;
2278 
2279 	p->pdeath_signal = 0;
2280 	INIT_LIST_HEAD(&p->thread_group);
2281 	p->task_works = NULL;
2282 
2283 #ifdef CONFIG_KRETPROBES
2284 	p->kretprobe_instances.first = NULL;
2285 #endif
2286 
2287 	/*
2288 	 * Ensure that the cgroup subsystem policies allow the new process to be
2289 	 * forked. It should be noted that the new process's css_set can be changed
2290 	 * between here and cgroup_post_fork() if an organisation operation is in
2291 	 * progress.
2292 	 */
2293 	retval = cgroup_can_fork(p, args);
2294 	if (retval)
2295 		goto bad_fork_put_pidfd;
2296 
2297 	/*
2298 	 * From this point on we must avoid any synchronous user-space
2299 	 * communication until we take the tasklist-lock. In particular, we do
2300 	 * not want user-space to be able to predict the process start-time by
2301 	 * stalling fork(2) after we recorded the start_time but before it is
2302 	 * visible to the system.
2303 	 */
2304 
2305 	p->start_time = ktime_get_ns();
2306 	p->start_boottime = ktime_get_boottime_ns();
2307 
2308 	/*
2309 	 * Make it visible to the rest of the system, but dont wake it up yet.
2310 	 * Need tasklist lock for parent etc handling!
2311 	 */
2312 	write_lock_irq(&tasklist_lock);
2313 
2314 	/* CLONE_PARENT re-uses the old parent */
2315 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2316 		p->real_parent = current->real_parent;
2317 		p->parent_exec_id = current->parent_exec_id;
2318 		if (clone_flags & CLONE_THREAD)
2319 			p->exit_signal = -1;
2320 		else
2321 			p->exit_signal = current->group_leader->exit_signal;
2322 	} else {
2323 		p->real_parent = current;
2324 		p->parent_exec_id = current->self_exec_id;
2325 		p->exit_signal = args->exit_signal;
2326 	}
2327 
2328 	klp_copy_process(p);
2329 
2330 	sched_core_fork(p);
2331 
2332 	spin_lock(&current->sighand->siglock);
2333 
2334 	/*
2335 	 * Copy seccomp details explicitly here, in case they were changed
2336 	 * before holding sighand lock.
2337 	 */
2338 	copy_seccomp(p);
2339 
2340 	rseq_fork(p, clone_flags);
2341 
2342 	/* Don't start children in a dying pid namespace */
2343 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2344 		retval = -ENOMEM;
2345 		goto bad_fork_cancel_cgroup;
2346 	}
2347 
2348 	/* Let kill terminate clone/fork in the middle */
2349 	if (fatal_signal_pending(current)) {
2350 		retval = -EINTR;
2351 		goto bad_fork_cancel_cgroup;
2352 	}
2353 
2354 	/* past the last point of failure */
2355 	if (pidfile)
2356 		fd_install(pidfd, pidfile);
2357 
2358 	init_task_pid_links(p);
2359 	if (likely(p->pid)) {
2360 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2361 
2362 		init_task_pid(p, PIDTYPE_PID, pid);
2363 		if (thread_group_leader(p)) {
2364 			init_task_pid(p, PIDTYPE_TGID, pid);
2365 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2366 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2367 
2368 			if (is_child_reaper(pid)) {
2369 				ns_of_pid(pid)->child_reaper = p;
2370 				p->signal->flags |= SIGNAL_UNKILLABLE;
2371 			}
2372 			p->signal->shared_pending.signal = delayed.signal;
2373 			p->signal->tty = tty_kref_get(current->signal->tty);
2374 			/*
2375 			 * Inherit has_child_subreaper flag under the same
2376 			 * tasklist_lock with adding child to the process tree
2377 			 * for propagate_has_child_subreaper optimization.
2378 			 */
2379 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2380 							 p->real_parent->signal->is_child_subreaper;
2381 			list_add_tail(&p->sibling, &p->real_parent->children);
2382 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2383 			attach_pid(p, PIDTYPE_TGID);
2384 			attach_pid(p, PIDTYPE_PGID);
2385 			attach_pid(p, PIDTYPE_SID);
2386 			__this_cpu_inc(process_counts);
2387 		} else {
2388 			current->signal->nr_threads++;
2389 			atomic_inc(&current->signal->live);
2390 			refcount_inc(&current->signal->sigcnt);
2391 			task_join_group_stop(p);
2392 			list_add_tail_rcu(&p->thread_group,
2393 					  &p->group_leader->thread_group);
2394 			list_add_tail_rcu(&p->thread_node,
2395 					  &p->signal->thread_head);
2396 		}
2397 		attach_pid(p, PIDTYPE_PID);
2398 		nr_threads++;
2399 	}
2400 	total_forks++;
2401 	hlist_del_init(&delayed.node);
2402 	spin_unlock(&current->sighand->siglock);
2403 	syscall_tracepoint_update(p);
2404 	write_unlock_irq(&tasklist_lock);
2405 
2406 	proc_fork_connector(p);
2407 	sched_post_fork(p, args);
2408 	cgroup_post_fork(p, args);
2409 	perf_event_fork(p);
2410 
2411 	trace_task_newtask(p, clone_flags);
2412 	uprobe_copy_process(p, clone_flags);
2413 
2414 	copy_oom_score_adj(clone_flags, p);
2415 
2416 	return p;
2417 
2418 bad_fork_cancel_cgroup:
2419 	sched_core_free(p);
2420 	spin_unlock(&current->sighand->siglock);
2421 	write_unlock_irq(&tasklist_lock);
2422 	cgroup_cancel_fork(p, args);
2423 bad_fork_put_pidfd:
2424 	if (clone_flags & CLONE_PIDFD) {
2425 		fput(pidfile);
2426 		put_unused_fd(pidfd);
2427 	}
2428 bad_fork_free_pid:
2429 	if (pid != &init_struct_pid)
2430 		free_pid(pid);
2431 bad_fork_cleanup_thread:
2432 	exit_thread(p);
2433 bad_fork_cleanup_io:
2434 	if (p->io_context)
2435 		exit_io_context(p);
2436 bad_fork_cleanup_namespaces:
2437 	exit_task_namespaces(p);
2438 bad_fork_cleanup_mm:
2439 	if (p->mm) {
2440 		mm_clear_owner(p->mm, p);
2441 		mmput(p->mm);
2442 	}
2443 bad_fork_cleanup_signal:
2444 	if (!(clone_flags & CLONE_THREAD))
2445 		free_signal_struct(p->signal);
2446 bad_fork_cleanup_sighand:
2447 	__cleanup_sighand(p->sighand);
2448 bad_fork_cleanup_fs:
2449 	exit_fs(p); /* blocking */
2450 bad_fork_cleanup_files:
2451 	exit_files(p); /* blocking */
2452 bad_fork_cleanup_semundo:
2453 	exit_sem(p);
2454 bad_fork_cleanup_security:
2455 	security_task_free(p);
2456 bad_fork_cleanup_audit:
2457 	audit_free(p);
2458 bad_fork_cleanup_perf:
2459 	perf_event_free_task(p);
2460 bad_fork_cleanup_policy:
2461 	lockdep_free_task(p);
2462 #ifdef CONFIG_NUMA
2463 	mpol_put(p->mempolicy);
2464 bad_fork_cleanup_threadgroup_lock:
2465 #endif
2466 	delayacct_tsk_free(p);
2467 bad_fork_cleanup_count:
2468 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2469 	exit_creds(p);
2470 bad_fork_free:
2471 	WRITE_ONCE(p->__state, TASK_DEAD);
2472 	put_task_stack(p);
2473 	delayed_free_task(p);
2474 fork_out:
2475 	spin_lock_irq(&current->sighand->siglock);
2476 	hlist_del_init(&delayed.node);
2477 	spin_unlock_irq(&current->sighand->siglock);
2478 	return ERR_PTR(retval);
2479 }
2480 
2481 static inline void init_idle_pids(struct task_struct *idle)
2482 {
2483 	enum pid_type type;
2484 
2485 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2486 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2487 		init_task_pid(idle, type, &init_struct_pid);
2488 	}
2489 }
2490 
2491 struct task_struct * __init fork_idle(int cpu)
2492 {
2493 	struct task_struct *task;
2494 	struct kernel_clone_args args = {
2495 		.flags = CLONE_VM,
2496 	};
2497 
2498 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2499 	if (!IS_ERR(task)) {
2500 		init_idle_pids(task);
2501 		init_idle(task, cpu);
2502 	}
2503 
2504 	return task;
2505 }
2506 
2507 struct mm_struct *copy_init_mm(void)
2508 {
2509 	return dup_mm(NULL, &init_mm);
2510 }
2511 
2512 /*
2513  * This is like kernel_clone(), but shaved down and tailored to just
2514  * creating io_uring workers. It returns a created task, or an error pointer.
2515  * The returned task is inactive, and the caller must fire it up through
2516  * wake_up_new_task(p). All signals are blocked in the created task.
2517  */
2518 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2519 {
2520 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2521 				CLONE_IO;
2522 	struct kernel_clone_args args = {
2523 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2524 				    CLONE_UNTRACED) & ~CSIGNAL),
2525 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2526 		.stack		= (unsigned long)fn,
2527 		.stack_size	= (unsigned long)arg,
2528 		.io_thread	= 1,
2529 	};
2530 
2531 	return copy_process(NULL, 0, node, &args);
2532 }
2533 
2534 /*
2535  *  Ok, this is the main fork-routine.
2536  *
2537  * It copies the process, and if successful kick-starts
2538  * it and waits for it to finish using the VM if required.
2539  *
2540  * args->exit_signal is expected to be checked for sanity by the caller.
2541  */
2542 pid_t kernel_clone(struct kernel_clone_args *args)
2543 {
2544 	u64 clone_flags = args->flags;
2545 	struct completion vfork;
2546 	struct pid *pid;
2547 	struct task_struct *p;
2548 	int trace = 0;
2549 	pid_t nr;
2550 
2551 	/*
2552 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2553 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2554 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2555 	 * field in struct clone_args and it still doesn't make sense to have
2556 	 * them both point at the same memory location. Performing this check
2557 	 * here has the advantage that we don't need to have a separate helper
2558 	 * to check for legacy clone().
2559 	 */
2560 	if ((args->flags & CLONE_PIDFD) &&
2561 	    (args->flags & CLONE_PARENT_SETTID) &&
2562 	    (args->pidfd == args->parent_tid))
2563 		return -EINVAL;
2564 
2565 	/*
2566 	 * Determine whether and which event to report to ptracer.  When
2567 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2568 	 * requested, no event is reported; otherwise, report if the event
2569 	 * for the type of forking is enabled.
2570 	 */
2571 	if (!(clone_flags & CLONE_UNTRACED)) {
2572 		if (clone_flags & CLONE_VFORK)
2573 			trace = PTRACE_EVENT_VFORK;
2574 		else if (args->exit_signal != SIGCHLD)
2575 			trace = PTRACE_EVENT_CLONE;
2576 		else
2577 			trace = PTRACE_EVENT_FORK;
2578 
2579 		if (likely(!ptrace_event_enabled(current, trace)))
2580 			trace = 0;
2581 	}
2582 
2583 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2584 	add_latent_entropy();
2585 
2586 	if (IS_ERR(p))
2587 		return PTR_ERR(p);
2588 
2589 	/*
2590 	 * Do this prior waking up the new thread - the thread pointer
2591 	 * might get invalid after that point, if the thread exits quickly.
2592 	 */
2593 	trace_sched_process_fork(current, p);
2594 
2595 	pid = get_task_pid(p, PIDTYPE_PID);
2596 	nr = pid_vnr(pid);
2597 
2598 	if (clone_flags & CLONE_PARENT_SETTID)
2599 		put_user(nr, args->parent_tid);
2600 
2601 	if (clone_flags & CLONE_VFORK) {
2602 		p->vfork_done = &vfork;
2603 		init_completion(&vfork);
2604 		get_task_struct(p);
2605 	}
2606 
2607 	wake_up_new_task(p);
2608 
2609 	/* forking complete and child started to run, tell ptracer */
2610 	if (unlikely(trace))
2611 		ptrace_event_pid(trace, pid);
2612 
2613 	if (clone_flags & CLONE_VFORK) {
2614 		if (!wait_for_vfork_done(p, &vfork))
2615 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2616 	}
2617 
2618 	put_pid(pid);
2619 	return nr;
2620 }
2621 
2622 /*
2623  * Create a kernel thread.
2624  */
2625 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2626 {
2627 	struct kernel_clone_args args = {
2628 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2629 				    CLONE_UNTRACED) & ~CSIGNAL),
2630 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2631 		.stack		= (unsigned long)fn,
2632 		.stack_size	= (unsigned long)arg,
2633 	};
2634 
2635 	return kernel_clone(&args);
2636 }
2637 
2638 #ifdef __ARCH_WANT_SYS_FORK
2639 SYSCALL_DEFINE0(fork)
2640 {
2641 #ifdef CONFIG_MMU
2642 	struct kernel_clone_args args = {
2643 		.exit_signal = SIGCHLD,
2644 	};
2645 
2646 	return kernel_clone(&args);
2647 #else
2648 	/* can not support in nommu mode */
2649 	return -EINVAL;
2650 #endif
2651 }
2652 #endif
2653 
2654 #ifdef __ARCH_WANT_SYS_VFORK
2655 SYSCALL_DEFINE0(vfork)
2656 {
2657 	struct kernel_clone_args args = {
2658 		.flags		= CLONE_VFORK | CLONE_VM,
2659 		.exit_signal	= SIGCHLD,
2660 	};
2661 
2662 	return kernel_clone(&args);
2663 }
2664 #endif
2665 
2666 #ifdef __ARCH_WANT_SYS_CLONE
2667 #ifdef CONFIG_CLONE_BACKWARDS
2668 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2669 		 int __user *, parent_tidptr,
2670 		 unsigned long, tls,
2671 		 int __user *, child_tidptr)
2672 #elif defined(CONFIG_CLONE_BACKWARDS2)
2673 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2674 		 int __user *, parent_tidptr,
2675 		 int __user *, child_tidptr,
2676 		 unsigned long, tls)
2677 #elif defined(CONFIG_CLONE_BACKWARDS3)
2678 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2679 		int, stack_size,
2680 		int __user *, parent_tidptr,
2681 		int __user *, child_tidptr,
2682 		unsigned long, tls)
2683 #else
2684 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2685 		 int __user *, parent_tidptr,
2686 		 int __user *, child_tidptr,
2687 		 unsigned long, tls)
2688 #endif
2689 {
2690 	struct kernel_clone_args args = {
2691 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2692 		.pidfd		= parent_tidptr,
2693 		.child_tid	= child_tidptr,
2694 		.parent_tid	= parent_tidptr,
2695 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2696 		.stack		= newsp,
2697 		.tls		= tls,
2698 	};
2699 
2700 	return kernel_clone(&args);
2701 }
2702 #endif
2703 
2704 #ifdef __ARCH_WANT_SYS_CLONE3
2705 
2706 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2707 					      struct clone_args __user *uargs,
2708 					      size_t usize)
2709 {
2710 	int err;
2711 	struct clone_args args;
2712 	pid_t *kset_tid = kargs->set_tid;
2713 
2714 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2715 		     CLONE_ARGS_SIZE_VER0);
2716 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2717 		     CLONE_ARGS_SIZE_VER1);
2718 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2719 		     CLONE_ARGS_SIZE_VER2);
2720 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2721 
2722 	if (unlikely(usize > PAGE_SIZE))
2723 		return -E2BIG;
2724 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2725 		return -EINVAL;
2726 
2727 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2728 	if (err)
2729 		return err;
2730 
2731 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2732 		return -EINVAL;
2733 
2734 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2735 		return -EINVAL;
2736 
2737 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2738 		return -EINVAL;
2739 
2740 	/*
2741 	 * Verify that higher 32bits of exit_signal are unset and that
2742 	 * it is a valid signal
2743 	 */
2744 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2745 		     !valid_signal(args.exit_signal)))
2746 		return -EINVAL;
2747 
2748 	if ((args.flags & CLONE_INTO_CGROUP) &&
2749 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2750 		return -EINVAL;
2751 
2752 	*kargs = (struct kernel_clone_args){
2753 		.flags		= args.flags,
2754 		.pidfd		= u64_to_user_ptr(args.pidfd),
2755 		.child_tid	= u64_to_user_ptr(args.child_tid),
2756 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2757 		.exit_signal	= args.exit_signal,
2758 		.stack		= args.stack,
2759 		.stack_size	= args.stack_size,
2760 		.tls		= args.tls,
2761 		.set_tid_size	= args.set_tid_size,
2762 		.cgroup		= args.cgroup,
2763 	};
2764 
2765 	if (args.set_tid &&
2766 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2767 			(kargs->set_tid_size * sizeof(pid_t))))
2768 		return -EFAULT;
2769 
2770 	kargs->set_tid = kset_tid;
2771 
2772 	return 0;
2773 }
2774 
2775 /**
2776  * clone3_stack_valid - check and prepare stack
2777  * @kargs: kernel clone args
2778  *
2779  * Verify that the stack arguments userspace gave us are sane.
2780  * In addition, set the stack direction for userspace since it's easy for us to
2781  * determine.
2782  */
2783 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2784 {
2785 	if (kargs->stack == 0) {
2786 		if (kargs->stack_size > 0)
2787 			return false;
2788 	} else {
2789 		if (kargs->stack_size == 0)
2790 			return false;
2791 
2792 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2793 			return false;
2794 
2795 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2796 		kargs->stack += kargs->stack_size;
2797 #endif
2798 	}
2799 
2800 	return true;
2801 }
2802 
2803 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2804 {
2805 	/* Verify that no unknown flags are passed along. */
2806 	if (kargs->flags &
2807 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2808 		return false;
2809 
2810 	/*
2811 	 * - make the CLONE_DETACHED bit reusable for clone3
2812 	 * - make the CSIGNAL bits reusable for clone3
2813 	 */
2814 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2815 		return false;
2816 
2817 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2818 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2819 		return false;
2820 
2821 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2822 	    kargs->exit_signal)
2823 		return false;
2824 
2825 	if (!clone3_stack_valid(kargs))
2826 		return false;
2827 
2828 	return true;
2829 }
2830 
2831 /**
2832  * clone3 - create a new process with specific properties
2833  * @uargs: argument structure
2834  * @size:  size of @uargs
2835  *
2836  * clone3() is the extensible successor to clone()/clone2().
2837  * It takes a struct as argument that is versioned by its size.
2838  *
2839  * Return: On success, a positive PID for the child process.
2840  *         On error, a negative errno number.
2841  */
2842 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2843 {
2844 	int err;
2845 
2846 	struct kernel_clone_args kargs;
2847 	pid_t set_tid[MAX_PID_NS_LEVEL];
2848 
2849 	kargs.set_tid = set_tid;
2850 
2851 	err = copy_clone_args_from_user(&kargs, uargs, size);
2852 	if (err)
2853 		return err;
2854 
2855 	if (!clone3_args_valid(&kargs))
2856 		return -EINVAL;
2857 
2858 	return kernel_clone(&kargs);
2859 }
2860 #endif
2861 
2862 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2863 {
2864 	struct task_struct *leader, *parent, *child;
2865 	int res;
2866 
2867 	read_lock(&tasklist_lock);
2868 	leader = top = top->group_leader;
2869 down:
2870 	for_each_thread(leader, parent) {
2871 		list_for_each_entry(child, &parent->children, sibling) {
2872 			res = visitor(child, data);
2873 			if (res) {
2874 				if (res < 0)
2875 					goto out;
2876 				leader = child;
2877 				goto down;
2878 			}
2879 up:
2880 			;
2881 		}
2882 	}
2883 
2884 	if (leader != top) {
2885 		child = leader;
2886 		parent = child->real_parent;
2887 		leader = parent->group_leader;
2888 		goto up;
2889 	}
2890 out:
2891 	read_unlock(&tasklist_lock);
2892 }
2893 
2894 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2895 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2896 #endif
2897 
2898 static void sighand_ctor(void *data)
2899 {
2900 	struct sighand_struct *sighand = data;
2901 
2902 	spin_lock_init(&sighand->siglock);
2903 	init_waitqueue_head(&sighand->signalfd_wqh);
2904 }
2905 
2906 void __init proc_caches_init(void)
2907 {
2908 	unsigned int mm_size;
2909 
2910 	sighand_cachep = kmem_cache_create("sighand_cache",
2911 			sizeof(struct sighand_struct), 0,
2912 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2913 			SLAB_ACCOUNT, sighand_ctor);
2914 	signal_cachep = kmem_cache_create("signal_cache",
2915 			sizeof(struct signal_struct), 0,
2916 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2917 			NULL);
2918 	files_cachep = kmem_cache_create("files_cache",
2919 			sizeof(struct files_struct), 0,
2920 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2921 			NULL);
2922 	fs_cachep = kmem_cache_create("fs_cache",
2923 			sizeof(struct fs_struct), 0,
2924 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2925 			NULL);
2926 
2927 	/*
2928 	 * The mm_cpumask is located at the end of mm_struct, and is
2929 	 * dynamically sized based on the maximum CPU number this system
2930 	 * can have, taking hotplug into account (nr_cpu_ids).
2931 	 */
2932 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2933 
2934 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2935 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2936 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2937 			offsetof(struct mm_struct, saved_auxv),
2938 			sizeof_field(struct mm_struct, saved_auxv),
2939 			NULL);
2940 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2941 	mmap_init();
2942 	nsproxy_cache_init();
2943 }
2944 
2945 /*
2946  * Check constraints on flags passed to the unshare system call.
2947  */
2948 static int check_unshare_flags(unsigned long unshare_flags)
2949 {
2950 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2951 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2952 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2953 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2954 				CLONE_NEWTIME))
2955 		return -EINVAL;
2956 	/*
2957 	 * Not implemented, but pretend it works if there is nothing
2958 	 * to unshare.  Note that unsharing the address space or the
2959 	 * signal handlers also need to unshare the signal queues (aka
2960 	 * CLONE_THREAD).
2961 	 */
2962 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2963 		if (!thread_group_empty(current))
2964 			return -EINVAL;
2965 	}
2966 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2967 		if (refcount_read(&current->sighand->count) > 1)
2968 			return -EINVAL;
2969 	}
2970 	if (unshare_flags & CLONE_VM) {
2971 		if (!current_is_single_threaded())
2972 			return -EINVAL;
2973 	}
2974 
2975 	return 0;
2976 }
2977 
2978 /*
2979  * Unshare the filesystem structure if it is being shared
2980  */
2981 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2982 {
2983 	struct fs_struct *fs = current->fs;
2984 
2985 	if (!(unshare_flags & CLONE_FS) || !fs)
2986 		return 0;
2987 
2988 	/* don't need lock here; in the worst case we'll do useless copy */
2989 	if (fs->users == 1)
2990 		return 0;
2991 
2992 	*new_fsp = copy_fs_struct(fs);
2993 	if (!*new_fsp)
2994 		return -ENOMEM;
2995 
2996 	return 0;
2997 }
2998 
2999 /*
3000  * Unshare file descriptor table if it is being shared
3001  */
3002 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3003 	       struct files_struct **new_fdp)
3004 {
3005 	struct files_struct *fd = current->files;
3006 	int error = 0;
3007 
3008 	if ((unshare_flags & CLONE_FILES) &&
3009 	    (fd && atomic_read(&fd->count) > 1)) {
3010 		*new_fdp = dup_fd(fd, max_fds, &error);
3011 		if (!*new_fdp)
3012 			return error;
3013 	}
3014 
3015 	return 0;
3016 }
3017 
3018 /*
3019  * unshare allows a process to 'unshare' part of the process
3020  * context which was originally shared using clone.  copy_*
3021  * functions used by kernel_clone() cannot be used here directly
3022  * because they modify an inactive task_struct that is being
3023  * constructed. Here we are modifying the current, active,
3024  * task_struct.
3025  */
3026 int ksys_unshare(unsigned long unshare_flags)
3027 {
3028 	struct fs_struct *fs, *new_fs = NULL;
3029 	struct files_struct *fd, *new_fd = NULL;
3030 	struct cred *new_cred = NULL;
3031 	struct nsproxy *new_nsproxy = NULL;
3032 	int do_sysvsem = 0;
3033 	int err;
3034 
3035 	/*
3036 	 * If unsharing a user namespace must also unshare the thread group
3037 	 * and unshare the filesystem root and working directories.
3038 	 */
3039 	if (unshare_flags & CLONE_NEWUSER)
3040 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3041 	/*
3042 	 * If unsharing vm, must also unshare signal handlers.
3043 	 */
3044 	if (unshare_flags & CLONE_VM)
3045 		unshare_flags |= CLONE_SIGHAND;
3046 	/*
3047 	 * If unsharing a signal handlers, must also unshare the signal queues.
3048 	 */
3049 	if (unshare_flags & CLONE_SIGHAND)
3050 		unshare_flags |= CLONE_THREAD;
3051 	/*
3052 	 * If unsharing namespace, must also unshare filesystem information.
3053 	 */
3054 	if (unshare_flags & CLONE_NEWNS)
3055 		unshare_flags |= CLONE_FS;
3056 
3057 	err = check_unshare_flags(unshare_flags);
3058 	if (err)
3059 		goto bad_unshare_out;
3060 	/*
3061 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3062 	 * to a new ipc namespace, the semaphore arrays from the old
3063 	 * namespace are unreachable.
3064 	 */
3065 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3066 		do_sysvsem = 1;
3067 	err = unshare_fs(unshare_flags, &new_fs);
3068 	if (err)
3069 		goto bad_unshare_out;
3070 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3071 	if (err)
3072 		goto bad_unshare_cleanup_fs;
3073 	err = unshare_userns(unshare_flags, &new_cred);
3074 	if (err)
3075 		goto bad_unshare_cleanup_fd;
3076 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3077 					 new_cred, new_fs);
3078 	if (err)
3079 		goto bad_unshare_cleanup_cred;
3080 
3081 	if (new_cred) {
3082 		err = set_cred_ucounts(new_cred);
3083 		if (err)
3084 			goto bad_unshare_cleanup_cred;
3085 	}
3086 
3087 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3088 		if (do_sysvsem) {
3089 			/*
3090 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3091 			 */
3092 			exit_sem(current);
3093 		}
3094 		if (unshare_flags & CLONE_NEWIPC) {
3095 			/* Orphan segments in old ns (see sem above). */
3096 			exit_shm(current);
3097 			shm_init_task(current);
3098 		}
3099 
3100 		if (new_nsproxy)
3101 			switch_task_namespaces(current, new_nsproxy);
3102 
3103 		task_lock(current);
3104 
3105 		if (new_fs) {
3106 			fs = current->fs;
3107 			spin_lock(&fs->lock);
3108 			current->fs = new_fs;
3109 			if (--fs->users)
3110 				new_fs = NULL;
3111 			else
3112 				new_fs = fs;
3113 			spin_unlock(&fs->lock);
3114 		}
3115 
3116 		if (new_fd) {
3117 			fd = current->files;
3118 			current->files = new_fd;
3119 			new_fd = fd;
3120 		}
3121 
3122 		task_unlock(current);
3123 
3124 		if (new_cred) {
3125 			/* Install the new user namespace */
3126 			commit_creds(new_cred);
3127 			new_cred = NULL;
3128 		}
3129 	}
3130 
3131 	perf_event_namespaces(current);
3132 
3133 bad_unshare_cleanup_cred:
3134 	if (new_cred)
3135 		put_cred(new_cred);
3136 bad_unshare_cleanup_fd:
3137 	if (new_fd)
3138 		put_files_struct(new_fd);
3139 
3140 bad_unshare_cleanup_fs:
3141 	if (new_fs)
3142 		free_fs_struct(new_fs);
3143 
3144 bad_unshare_out:
3145 	return err;
3146 }
3147 
3148 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3149 {
3150 	return ksys_unshare(unshare_flags);
3151 }
3152 
3153 /*
3154  *	Helper to unshare the files of the current task.
3155  *	We don't want to expose copy_files internals to
3156  *	the exec layer of the kernel.
3157  */
3158 
3159 int unshare_files(void)
3160 {
3161 	struct task_struct *task = current;
3162 	struct files_struct *old, *copy = NULL;
3163 	int error;
3164 
3165 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3166 	if (error || !copy)
3167 		return error;
3168 
3169 	old = task->files;
3170 	task_lock(task);
3171 	task->files = copy;
3172 	task_unlock(task);
3173 	put_files_struct(old);
3174 	return 0;
3175 }
3176 
3177 int sysctl_max_threads(struct ctl_table *table, int write,
3178 		       void *buffer, size_t *lenp, loff_t *ppos)
3179 {
3180 	struct ctl_table t;
3181 	int ret;
3182 	int threads = max_threads;
3183 	int min = 1;
3184 	int max = MAX_THREADS;
3185 
3186 	t = *table;
3187 	t.data = &threads;
3188 	t.extra1 = &min;
3189 	t.extra2 = &max;
3190 
3191 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3192 	if (ret || !write)
3193 		return ret;
3194 
3195 	max_threads = threads;
3196 
3197 	return 0;
3198 }
3199