1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 100 #include <asm/pgalloc.h> 101 #include <linux/uaccess.h> 102 #include <asm/mmu_context.h> 103 #include <asm/cacheflush.h> 104 #include <asm/tlbflush.h> 105 106 #include <trace/events/sched.h> 107 108 #define CREATE_TRACE_POINTS 109 #include <trace/events/task.h> 110 111 /* 112 * Minimum number of threads to boot the kernel 113 */ 114 #define MIN_THREADS 20 115 116 /* 117 * Maximum number of threads 118 */ 119 #define MAX_THREADS FUTEX_TID_MASK 120 121 /* 122 * Protected counters by write_lock_irq(&tasklist_lock) 123 */ 124 unsigned long total_forks; /* Handle normal Linux uptimes. */ 125 int nr_threads; /* The idle threads do not count.. */ 126 127 static int max_threads; /* tunable limit on nr_threads */ 128 129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 130 131 static const char * const resident_page_types[] = { 132 NAMED_ARRAY_INDEX(MM_FILEPAGES), 133 NAMED_ARRAY_INDEX(MM_ANONPAGES), 134 NAMED_ARRAY_INDEX(MM_SWAPENTS), 135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 136 }; 137 138 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 139 140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 141 142 #ifdef CONFIG_PROVE_RCU 143 int lockdep_tasklist_lock_is_held(void) 144 { 145 return lockdep_is_held(&tasklist_lock); 146 } 147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 148 #endif /* #ifdef CONFIG_PROVE_RCU */ 149 150 int nr_processes(void) 151 { 152 int cpu; 153 int total = 0; 154 155 for_each_possible_cpu(cpu) 156 total += per_cpu(process_counts, cpu); 157 158 return total; 159 } 160 161 void __weak arch_release_task_struct(struct task_struct *tsk) 162 { 163 } 164 165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 166 static struct kmem_cache *task_struct_cachep; 167 168 static inline struct task_struct *alloc_task_struct_node(int node) 169 { 170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 171 } 172 173 static inline void free_task_struct(struct task_struct *tsk) 174 { 175 kmem_cache_free(task_struct_cachep, tsk); 176 } 177 #endif 178 179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 180 181 /* 182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 183 * kmemcache based allocator. 184 */ 185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 186 187 #ifdef CONFIG_VMAP_STACK 188 /* 189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 190 * flush. Try to minimize the number of calls by caching stacks. 191 */ 192 #define NR_CACHED_STACKS 2 193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 194 195 static int free_vm_stack_cache(unsigned int cpu) 196 { 197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 198 int i; 199 200 for (i = 0; i < NR_CACHED_STACKS; i++) { 201 struct vm_struct *vm_stack = cached_vm_stacks[i]; 202 203 if (!vm_stack) 204 continue; 205 206 vfree(vm_stack->addr); 207 cached_vm_stacks[i] = NULL; 208 } 209 210 return 0; 211 } 212 #endif 213 214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 215 { 216 #ifdef CONFIG_VMAP_STACK 217 void *stack; 218 int i; 219 220 for (i = 0; i < NR_CACHED_STACKS; i++) { 221 struct vm_struct *s; 222 223 s = this_cpu_xchg(cached_stacks[i], NULL); 224 225 if (!s) 226 continue; 227 228 /* Mark stack accessible for KASAN. */ 229 kasan_unpoison_range(s->addr, THREAD_SIZE); 230 231 /* Clear stale pointers from reused stack. */ 232 memset(s->addr, 0, THREAD_SIZE); 233 234 tsk->stack_vm_area = s; 235 tsk->stack = s->addr; 236 return s->addr; 237 } 238 239 /* 240 * Allocated stacks are cached and later reused by new threads, 241 * so memcg accounting is performed manually on assigning/releasing 242 * stacks to tasks. Drop __GFP_ACCOUNT. 243 */ 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 245 VMALLOC_START, VMALLOC_END, 246 THREADINFO_GFP & ~__GFP_ACCOUNT, 247 PAGE_KERNEL, 248 0, node, __builtin_return_address(0)); 249 250 /* 251 * We can't call find_vm_area() in interrupt context, and 252 * free_thread_stack() can be called in interrupt context, 253 * so cache the vm_struct. 254 */ 255 if (stack) { 256 tsk->stack_vm_area = find_vm_area(stack); 257 tsk->stack = stack; 258 } 259 return stack; 260 #else 261 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 262 THREAD_SIZE_ORDER); 263 264 if (likely(page)) { 265 tsk->stack = kasan_reset_tag(page_address(page)); 266 return tsk->stack; 267 } 268 return NULL; 269 #endif 270 } 271 272 static inline void free_thread_stack(struct task_struct *tsk) 273 { 274 #ifdef CONFIG_VMAP_STACK 275 struct vm_struct *vm = task_stack_vm_area(tsk); 276 277 if (vm) { 278 int i; 279 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 281 memcg_kmem_uncharge_page(vm->pages[i], 0); 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 if (this_cpu_cmpxchg(cached_stacks[i], 285 NULL, tsk->stack_vm_area) != NULL) 286 continue; 287 288 return; 289 } 290 291 vfree_atomic(tsk->stack); 292 return; 293 } 294 #endif 295 296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 297 } 298 # else 299 static struct kmem_cache *thread_stack_cache; 300 301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 302 int node) 303 { 304 unsigned long *stack; 305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 306 stack = kasan_reset_tag(stack); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 361 /* 362 * orig->shared.rb may be modified concurrently, but the clone 363 * will be reinitialized. 364 */ 365 *new = data_race(*orig); 366 INIT_LIST_HEAD(&new->anon_vma_chain); 367 new->vm_next = new->vm_prev = NULL; 368 } 369 return new; 370 } 371 372 void vm_area_free(struct vm_area_struct *vma) 373 { 374 kmem_cache_free(vm_area_cachep, vma); 375 } 376 377 static void account_kernel_stack(struct task_struct *tsk, int account) 378 { 379 void *stack = task_stack_page(tsk); 380 struct vm_struct *vm = task_stack_vm_area(tsk); 381 382 if (vm) { 383 int i; 384 385 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 386 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 387 account * (PAGE_SIZE / 1024)); 388 } else { 389 /* All stack pages are in the same node. */ 390 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 391 account * (THREAD_SIZE / 1024)); 392 } 393 } 394 395 static int memcg_charge_kernel_stack(struct task_struct *tsk) 396 { 397 #ifdef CONFIG_VMAP_STACK 398 struct vm_struct *vm = task_stack_vm_area(tsk); 399 int ret; 400 401 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 402 403 if (vm) { 404 int i; 405 406 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 407 408 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 409 /* 410 * If memcg_kmem_charge_page() fails, page's 411 * memory cgroup pointer is NULL, and 412 * memcg_kmem_uncharge_page() in free_thread_stack() 413 * will ignore this page. 414 */ 415 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 416 0); 417 if (ret) 418 return ret; 419 } 420 } 421 #endif 422 return 0; 423 } 424 425 static void release_task_stack(struct task_struct *tsk) 426 { 427 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 428 return; /* Better to leak the stack than to free prematurely */ 429 430 account_kernel_stack(tsk, -1); 431 free_thread_stack(tsk); 432 tsk->stack = NULL; 433 #ifdef CONFIG_VMAP_STACK 434 tsk->stack_vm_area = NULL; 435 #endif 436 } 437 438 #ifdef CONFIG_THREAD_INFO_IN_TASK 439 void put_task_stack(struct task_struct *tsk) 440 { 441 if (refcount_dec_and_test(&tsk->stack_refcount)) 442 release_task_stack(tsk); 443 } 444 #endif 445 446 void free_task(struct task_struct *tsk) 447 { 448 release_user_cpus_ptr(tsk); 449 scs_release(tsk); 450 451 #ifndef CONFIG_THREAD_INFO_IN_TASK 452 /* 453 * The task is finally done with both the stack and thread_info, 454 * so free both. 455 */ 456 release_task_stack(tsk); 457 #else 458 /* 459 * If the task had a separate stack allocation, it should be gone 460 * by now. 461 */ 462 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 463 #endif 464 rt_mutex_debug_task_free(tsk); 465 ftrace_graph_exit_task(tsk); 466 arch_release_task_struct(tsk); 467 if (tsk->flags & PF_KTHREAD) 468 free_kthread_struct(tsk); 469 free_task_struct(tsk); 470 } 471 EXPORT_SYMBOL(free_task); 472 473 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 474 { 475 struct file *exe_file; 476 477 exe_file = get_mm_exe_file(oldmm); 478 RCU_INIT_POINTER(mm->exe_file, exe_file); 479 /* 480 * We depend on the oldmm having properly denied write access to the 481 * exe_file already. 482 */ 483 if (exe_file && deny_write_access(exe_file)) 484 pr_warn_once("deny_write_access() failed in %s\n", __func__); 485 } 486 487 #ifdef CONFIG_MMU 488 static __latent_entropy int dup_mmap(struct mm_struct *mm, 489 struct mm_struct *oldmm) 490 { 491 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 492 struct rb_node **rb_link, *rb_parent; 493 int retval; 494 unsigned long charge; 495 LIST_HEAD(uf); 496 497 uprobe_start_dup_mmap(); 498 if (mmap_write_lock_killable(oldmm)) { 499 retval = -EINTR; 500 goto fail_uprobe_end; 501 } 502 flush_cache_dup_mm(oldmm); 503 uprobe_dup_mmap(oldmm, mm); 504 /* 505 * Not linked in yet - no deadlock potential: 506 */ 507 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 508 509 /* No ordering required: file already has been exposed. */ 510 dup_mm_exe_file(mm, oldmm); 511 512 mm->total_vm = oldmm->total_vm; 513 mm->data_vm = oldmm->data_vm; 514 mm->exec_vm = oldmm->exec_vm; 515 mm->stack_vm = oldmm->stack_vm; 516 517 rb_link = &mm->mm_rb.rb_node; 518 rb_parent = NULL; 519 pprev = &mm->mmap; 520 retval = ksm_fork(mm, oldmm); 521 if (retval) 522 goto out; 523 retval = khugepaged_fork(mm, oldmm); 524 if (retval) 525 goto out; 526 527 prev = NULL; 528 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 529 struct file *file; 530 531 if (mpnt->vm_flags & VM_DONTCOPY) { 532 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 533 continue; 534 } 535 charge = 0; 536 /* 537 * Don't duplicate many vmas if we've been oom-killed (for 538 * example) 539 */ 540 if (fatal_signal_pending(current)) { 541 retval = -EINTR; 542 goto out; 543 } 544 if (mpnt->vm_flags & VM_ACCOUNT) { 545 unsigned long len = vma_pages(mpnt); 546 547 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 548 goto fail_nomem; 549 charge = len; 550 } 551 tmp = vm_area_dup(mpnt); 552 if (!tmp) 553 goto fail_nomem; 554 retval = vma_dup_policy(mpnt, tmp); 555 if (retval) 556 goto fail_nomem_policy; 557 tmp->vm_mm = mm; 558 retval = dup_userfaultfd(tmp, &uf); 559 if (retval) 560 goto fail_nomem_anon_vma_fork; 561 if (tmp->vm_flags & VM_WIPEONFORK) { 562 /* 563 * VM_WIPEONFORK gets a clean slate in the child. 564 * Don't prepare anon_vma until fault since we don't 565 * copy page for current vma. 566 */ 567 tmp->anon_vma = NULL; 568 } else if (anon_vma_fork(tmp, mpnt)) 569 goto fail_nomem_anon_vma_fork; 570 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 571 file = tmp->vm_file; 572 if (file) { 573 struct address_space *mapping = file->f_mapping; 574 575 get_file(file); 576 i_mmap_lock_write(mapping); 577 if (tmp->vm_flags & VM_SHARED) 578 mapping_allow_writable(mapping); 579 flush_dcache_mmap_lock(mapping); 580 /* insert tmp into the share list, just after mpnt */ 581 vma_interval_tree_insert_after(tmp, mpnt, 582 &mapping->i_mmap); 583 flush_dcache_mmap_unlock(mapping); 584 i_mmap_unlock_write(mapping); 585 } 586 587 /* 588 * Clear hugetlb-related page reserves for children. This only 589 * affects MAP_PRIVATE mappings. Faults generated by the child 590 * are not guaranteed to succeed, even if read-only 591 */ 592 if (is_vm_hugetlb_page(tmp)) 593 reset_vma_resv_huge_pages(tmp); 594 595 /* 596 * Link in the new vma and copy the page table entries. 597 */ 598 *pprev = tmp; 599 pprev = &tmp->vm_next; 600 tmp->vm_prev = prev; 601 prev = tmp; 602 603 __vma_link_rb(mm, tmp, rb_link, rb_parent); 604 rb_link = &tmp->vm_rb.rb_right; 605 rb_parent = &tmp->vm_rb; 606 607 mm->map_count++; 608 if (!(tmp->vm_flags & VM_WIPEONFORK)) 609 retval = copy_page_range(tmp, mpnt); 610 611 if (tmp->vm_ops && tmp->vm_ops->open) 612 tmp->vm_ops->open(tmp); 613 614 if (retval) 615 goto out; 616 } 617 /* a new mm has just been created */ 618 retval = arch_dup_mmap(oldmm, mm); 619 out: 620 mmap_write_unlock(mm); 621 flush_tlb_mm(oldmm); 622 mmap_write_unlock(oldmm); 623 dup_userfaultfd_complete(&uf); 624 fail_uprobe_end: 625 uprobe_end_dup_mmap(); 626 return retval; 627 fail_nomem_anon_vma_fork: 628 mpol_put(vma_policy(tmp)); 629 fail_nomem_policy: 630 vm_area_free(tmp); 631 fail_nomem: 632 retval = -ENOMEM; 633 vm_unacct_memory(charge); 634 goto out; 635 } 636 637 static inline int mm_alloc_pgd(struct mm_struct *mm) 638 { 639 mm->pgd = pgd_alloc(mm); 640 if (unlikely(!mm->pgd)) 641 return -ENOMEM; 642 return 0; 643 } 644 645 static inline void mm_free_pgd(struct mm_struct *mm) 646 { 647 pgd_free(mm, mm->pgd); 648 } 649 #else 650 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 651 { 652 mmap_write_lock(oldmm); 653 dup_mm_exe_file(mm, oldmm); 654 mmap_write_unlock(oldmm); 655 return 0; 656 } 657 #define mm_alloc_pgd(mm) (0) 658 #define mm_free_pgd(mm) 659 #endif /* CONFIG_MMU */ 660 661 static void check_mm(struct mm_struct *mm) 662 { 663 int i; 664 665 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 666 "Please make sure 'struct resident_page_types[]' is updated as well"); 667 668 for (i = 0; i < NR_MM_COUNTERS; i++) { 669 long x = atomic_long_read(&mm->rss_stat.count[i]); 670 671 if (unlikely(x)) 672 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 673 mm, resident_page_types[i], x); 674 } 675 676 if (mm_pgtables_bytes(mm)) 677 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 678 mm_pgtables_bytes(mm)); 679 680 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 681 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 682 #endif 683 } 684 685 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 686 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 687 688 /* 689 * Called when the last reference to the mm 690 * is dropped: either by a lazy thread or by 691 * mmput. Free the page directory and the mm. 692 */ 693 void __mmdrop(struct mm_struct *mm) 694 { 695 BUG_ON(mm == &init_mm); 696 WARN_ON_ONCE(mm == current->mm); 697 WARN_ON_ONCE(mm == current->active_mm); 698 mm_free_pgd(mm); 699 destroy_context(mm); 700 mmu_notifier_subscriptions_destroy(mm); 701 check_mm(mm); 702 put_user_ns(mm->user_ns); 703 free_mm(mm); 704 } 705 EXPORT_SYMBOL_GPL(__mmdrop); 706 707 static void mmdrop_async_fn(struct work_struct *work) 708 { 709 struct mm_struct *mm; 710 711 mm = container_of(work, struct mm_struct, async_put_work); 712 __mmdrop(mm); 713 } 714 715 static void mmdrop_async(struct mm_struct *mm) 716 { 717 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 718 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 719 schedule_work(&mm->async_put_work); 720 } 721 } 722 723 static inline void free_signal_struct(struct signal_struct *sig) 724 { 725 taskstats_tgid_free(sig); 726 sched_autogroup_exit(sig); 727 /* 728 * __mmdrop is not safe to call from softirq context on x86 due to 729 * pgd_dtor so postpone it to the async context 730 */ 731 if (sig->oom_mm) 732 mmdrop_async(sig->oom_mm); 733 kmem_cache_free(signal_cachep, sig); 734 } 735 736 static inline void put_signal_struct(struct signal_struct *sig) 737 { 738 if (refcount_dec_and_test(&sig->sigcnt)) 739 free_signal_struct(sig); 740 } 741 742 void __put_task_struct(struct task_struct *tsk) 743 { 744 WARN_ON(!tsk->exit_state); 745 WARN_ON(refcount_read(&tsk->usage)); 746 WARN_ON(tsk == current); 747 748 io_uring_free(tsk); 749 cgroup_free(tsk); 750 task_numa_free(tsk, true); 751 security_task_free(tsk); 752 bpf_task_storage_free(tsk); 753 exit_creds(tsk); 754 delayacct_tsk_free(tsk); 755 put_signal_struct(tsk->signal); 756 sched_core_free(tsk); 757 758 if (!profile_handoff_task(tsk)) 759 free_task(tsk); 760 } 761 EXPORT_SYMBOL_GPL(__put_task_struct); 762 763 void __init __weak arch_task_cache_init(void) { } 764 765 /* 766 * set_max_threads 767 */ 768 static void set_max_threads(unsigned int max_threads_suggested) 769 { 770 u64 threads; 771 unsigned long nr_pages = totalram_pages(); 772 773 /* 774 * The number of threads shall be limited such that the thread 775 * structures may only consume a small part of the available memory. 776 */ 777 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 778 threads = MAX_THREADS; 779 else 780 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 781 (u64) THREAD_SIZE * 8UL); 782 783 if (threads > max_threads_suggested) 784 threads = max_threads_suggested; 785 786 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 787 } 788 789 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 790 /* Initialized by the architecture: */ 791 int arch_task_struct_size __read_mostly; 792 #endif 793 794 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 795 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 796 { 797 /* Fetch thread_struct whitelist for the architecture. */ 798 arch_thread_struct_whitelist(offset, size); 799 800 /* 801 * Handle zero-sized whitelist or empty thread_struct, otherwise 802 * adjust offset to position of thread_struct in task_struct. 803 */ 804 if (unlikely(*size == 0)) 805 *offset = 0; 806 else 807 *offset += offsetof(struct task_struct, thread); 808 } 809 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 810 811 void __init fork_init(void) 812 { 813 int i; 814 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 815 #ifndef ARCH_MIN_TASKALIGN 816 #define ARCH_MIN_TASKALIGN 0 817 #endif 818 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 819 unsigned long useroffset, usersize; 820 821 /* create a slab on which task_structs can be allocated */ 822 task_struct_whitelist(&useroffset, &usersize); 823 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 824 arch_task_struct_size, align, 825 SLAB_PANIC|SLAB_ACCOUNT, 826 useroffset, usersize, NULL); 827 #endif 828 829 /* do the arch specific task caches init */ 830 arch_task_cache_init(); 831 832 set_max_threads(MAX_THREADS); 833 834 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 835 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 836 init_task.signal->rlim[RLIMIT_SIGPENDING] = 837 init_task.signal->rlim[RLIMIT_NPROC]; 838 839 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 840 init_user_ns.ucount_max[i] = max_threads/2; 841 842 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 843 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 844 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 845 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 846 847 #ifdef CONFIG_VMAP_STACK 848 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 849 NULL, free_vm_stack_cache); 850 #endif 851 852 scs_init(); 853 854 lockdep_init_task(&init_task); 855 uprobes_init(); 856 } 857 858 int __weak arch_dup_task_struct(struct task_struct *dst, 859 struct task_struct *src) 860 { 861 *dst = *src; 862 return 0; 863 } 864 865 void set_task_stack_end_magic(struct task_struct *tsk) 866 { 867 unsigned long *stackend; 868 869 stackend = end_of_stack(tsk); 870 *stackend = STACK_END_MAGIC; /* for overflow detection */ 871 } 872 873 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 874 { 875 struct task_struct *tsk; 876 unsigned long *stack; 877 struct vm_struct *stack_vm_area __maybe_unused; 878 int err; 879 880 if (node == NUMA_NO_NODE) 881 node = tsk_fork_get_node(orig); 882 tsk = alloc_task_struct_node(node); 883 if (!tsk) 884 return NULL; 885 886 stack = alloc_thread_stack_node(tsk, node); 887 if (!stack) 888 goto free_tsk; 889 890 if (memcg_charge_kernel_stack(tsk)) 891 goto free_stack; 892 893 stack_vm_area = task_stack_vm_area(tsk); 894 895 err = arch_dup_task_struct(tsk, orig); 896 897 /* 898 * arch_dup_task_struct() clobbers the stack-related fields. Make 899 * sure they're properly initialized before using any stack-related 900 * functions again. 901 */ 902 tsk->stack = stack; 903 #ifdef CONFIG_VMAP_STACK 904 tsk->stack_vm_area = stack_vm_area; 905 #endif 906 #ifdef CONFIG_THREAD_INFO_IN_TASK 907 refcount_set(&tsk->stack_refcount, 1); 908 #endif 909 910 if (err) 911 goto free_stack; 912 913 err = scs_prepare(tsk, node); 914 if (err) 915 goto free_stack; 916 917 #ifdef CONFIG_SECCOMP 918 /* 919 * We must handle setting up seccomp filters once we're under 920 * the sighand lock in case orig has changed between now and 921 * then. Until then, filter must be NULL to avoid messing up 922 * the usage counts on the error path calling free_task. 923 */ 924 tsk->seccomp.filter = NULL; 925 #endif 926 927 setup_thread_stack(tsk, orig); 928 clear_user_return_notifier(tsk); 929 clear_tsk_need_resched(tsk); 930 set_task_stack_end_magic(tsk); 931 clear_syscall_work_syscall_user_dispatch(tsk); 932 933 #ifdef CONFIG_STACKPROTECTOR 934 tsk->stack_canary = get_random_canary(); 935 #endif 936 if (orig->cpus_ptr == &orig->cpus_mask) 937 tsk->cpus_ptr = &tsk->cpus_mask; 938 dup_user_cpus_ptr(tsk, orig, node); 939 940 /* 941 * One for the user space visible state that goes away when reaped. 942 * One for the scheduler. 943 */ 944 refcount_set(&tsk->rcu_users, 2); 945 /* One for the rcu users */ 946 refcount_set(&tsk->usage, 1); 947 #ifdef CONFIG_BLK_DEV_IO_TRACE 948 tsk->btrace_seq = 0; 949 #endif 950 tsk->splice_pipe = NULL; 951 tsk->task_frag.page = NULL; 952 tsk->wake_q.next = NULL; 953 tsk->pf_io_worker = NULL; 954 955 account_kernel_stack(tsk, 1); 956 957 kcov_task_init(tsk); 958 kmap_local_fork(tsk); 959 960 #ifdef CONFIG_FAULT_INJECTION 961 tsk->fail_nth = 0; 962 #endif 963 964 #ifdef CONFIG_BLK_CGROUP 965 tsk->throttle_queue = NULL; 966 tsk->use_memdelay = 0; 967 #endif 968 969 #ifdef CONFIG_MEMCG 970 tsk->active_memcg = NULL; 971 #endif 972 return tsk; 973 974 free_stack: 975 free_thread_stack(tsk); 976 free_tsk: 977 free_task_struct(tsk); 978 return NULL; 979 } 980 981 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 982 983 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 984 985 static int __init coredump_filter_setup(char *s) 986 { 987 default_dump_filter = 988 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 989 MMF_DUMP_FILTER_MASK; 990 return 1; 991 } 992 993 __setup("coredump_filter=", coredump_filter_setup); 994 995 #include <linux/init_task.h> 996 997 static void mm_init_aio(struct mm_struct *mm) 998 { 999 #ifdef CONFIG_AIO 1000 spin_lock_init(&mm->ioctx_lock); 1001 mm->ioctx_table = NULL; 1002 #endif 1003 } 1004 1005 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1006 struct task_struct *p) 1007 { 1008 #ifdef CONFIG_MEMCG 1009 if (mm->owner == p) 1010 WRITE_ONCE(mm->owner, NULL); 1011 #endif 1012 } 1013 1014 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1015 { 1016 #ifdef CONFIG_MEMCG 1017 mm->owner = p; 1018 #endif 1019 } 1020 1021 static void mm_init_pasid(struct mm_struct *mm) 1022 { 1023 #ifdef CONFIG_IOMMU_SUPPORT 1024 mm->pasid = INIT_PASID; 1025 #endif 1026 } 1027 1028 static void mm_init_uprobes_state(struct mm_struct *mm) 1029 { 1030 #ifdef CONFIG_UPROBES 1031 mm->uprobes_state.xol_area = NULL; 1032 #endif 1033 } 1034 1035 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1036 struct user_namespace *user_ns) 1037 { 1038 mm->mmap = NULL; 1039 mm->mm_rb = RB_ROOT; 1040 mm->vmacache_seqnum = 0; 1041 atomic_set(&mm->mm_users, 1); 1042 atomic_set(&mm->mm_count, 1); 1043 seqcount_init(&mm->write_protect_seq); 1044 mmap_init_lock(mm); 1045 INIT_LIST_HEAD(&mm->mmlist); 1046 mm->core_state = NULL; 1047 mm_pgtables_bytes_init(mm); 1048 mm->map_count = 0; 1049 mm->locked_vm = 0; 1050 atomic64_set(&mm->pinned_vm, 0); 1051 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1052 spin_lock_init(&mm->page_table_lock); 1053 spin_lock_init(&mm->arg_lock); 1054 mm_init_cpumask(mm); 1055 mm_init_aio(mm); 1056 mm_init_owner(mm, p); 1057 mm_init_pasid(mm); 1058 RCU_INIT_POINTER(mm->exe_file, NULL); 1059 mmu_notifier_subscriptions_init(mm); 1060 init_tlb_flush_pending(mm); 1061 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1062 mm->pmd_huge_pte = NULL; 1063 #endif 1064 mm_init_uprobes_state(mm); 1065 hugetlb_count_init(mm); 1066 1067 if (current->mm) { 1068 mm->flags = current->mm->flags & MMF_INIT_MASK; 1069 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1070 } else { 1071 mm->flags = default_dump_filter; 1072 mm->def_flags = 0; 1073 } 1074 1075 if (mm_alloc_pgd(mm)) 1076 goto fail_nopgd; 1077 1078 if (init_new_context(p, mm)) 1079 goto fail_nocontext; 1080 1081 mm->user_ns = get_user_ns(user_ns); 1082 return mm; 1083 1084 fail_nocontext: 1085 mm_free_pgd(mm); 1086 fail_nopgd: 1087 free_mm(mm); 1088 return NULL; 1089 } 1090 1091 /* 1092 * Allocate and initialize an mm_struct. 1093 */ 1094 struct mm_struct *mm_alloc(void) 1095 { 1096 struct mm_struct *mm; 1097 1098 mm = allocate_mm(); 1099 if (!mm) 1100 return NULL; 1101 1102 memset(mm, 0, sizeof(*mm)); 1103 return mm_init(mm, current, current_user_ns()); 1104 } 1105 1106 static inline void __mmput(struct mm_struct *mm) 1107 { 1108 VM_BUG_ON(atomic_read(&mm->mm_users)); 1109 1110 uprobe_clear_state(mm); 1111 exit_aio(mm); 1112 ksm_exit(mm); 1113 khugepaged_exit(mm); /* must run before exit_mmap */ 1114 exit_mmap(mm); 1115 mm_put_huge_zero_page(mm); 1116 set_mm_exe_file(mm, NULL); 1117 if (!list_empty(&mm->mmlist)) { 1118 spin_lock(&mmlist_lock); 1119 list_del(&mm->mmlist); 1120 spin_unlock(&mmlist_lock); 1121 } 1122 if (mm->binfmt) 1123 module_put(mm->binfmt->module); 1124 mmdrop(mm); 1125 } 1126 1127 /* 1128 * Decrement the use count and release all resources for an mm. 1129 */ 1130 void mmput(struct mm_struct *mm) 1131 { 1132 might_sleep(); 1133 1134 if (atomic_dec_and_test(&mm->mm_users)) 1135 __mmput(mm); 1136 } 1137 EXPORT_SYMBOL_GPL(mmput); 1138 1139 #ifdef CONFIG_MMU 1140 static void mmput_async_fn(struct work_struct *work) 1141 { 1142 struct mm_struct *mm = container_of(work, struct mm_struct, 1143 async_put_work); 1144 1145 __mmput(mm); 1146 } 1147 1148 void mmput_async(struct mm_struct *mm) 1149 { 1150 if (atomic_dec_and_test(&mm->mm_users)) { 1151 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1152 schedule_work(&mm->async_put_work); 1153 } 1154 } 1155 #endif 1156 1157 /** 1158 * set_mm_exe_file - change a reference to the mm's executable file 1159 * 1160 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1161 * 1162 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1163 * invocations: in mmput() nobody alive left, in execve task is single 1164 * threaded. 1165 * 1166 * Can only fail if new_exe_file != NULL. 1167 */ 1168 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1169 { 1170 struct file *old_exe_file; 1171 1172 /* 1173 * It is safe to dereference the exe_file without RCU as 1174 * this function is only called if nobody else can access 1175 * this mm -- see comment above for justification. 1176 */ 1177 old_exe_file = rcu_dereference_raw(mm->exe_file); 1178 1179 if (new_exe_file) { 1180 /* 1181 * We expect the caller (i.e., sys_execve) to already denied 1182 * write access, so this is unlikely to fail. 1183 */ 1184 if (unlikely(deny_write_access(new_exe_file))) 1185 return -EACCES; 1186 get_file(new_exe_file); 1187 } 1188 rcu_assign_pointer(mm->exe_file, new_exe_file); 1189 if (old_exe_file) { 1190 allow_write_access(old_exe_file); 1191 fput(old_exe_file); 1192 } 1193 return 0; 1194 } 1195 1196 /** 1197 * replace_mm_exe_file - replace a reference to the mm's executable file 1198 * 1199 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1200 * dealing with concurrent invocation and without grabbing the mmap lock in 1201 * write mode. 1202 * 1203 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1204 */ 1205 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1206 { 1207 struct vm_area_struct *vma; 1208 struct file *old_exe_file; 1209 int ret = 0; 1210 1211 /* Forbid mm->exe_file change if old file still mapped. */ 1212 old_exe_file = get_mm_exe_file(mm); 1213 if (old_exe_file) { 1214 mmap_read_lock(mm); 1215 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) { 1216 if (!vma->vm_file) 1217 continue; 1218 if (path_equal(&vma->vm_file->f_path, 1219 &old_exe_file->f_path)) 1220 ret = -EBUSY; 1221 } 1222 mmap_read_unlock(mm); 1223 fput(old_exe_file); 1224 if (ret) 1225 return ret; 1226 } 1227 1228 /* set the new file, lockless */ 1229 ret = deny_write_access(new_exe_file); 1230 if (ret) 1231 return -EACCES; 1232 get_file(new_exe_file); 1233 1234 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1235 if (old_exe_file) { 1236 /* 1237 * Don't race with dup_mmap() getting the file and disallowing 1238 * write access while someone might open the file writable. 1239 */ 1240 mmap_read_lock(mm); 1241 allow_write_access(old_exe_file); 1242 fput(old_exe_file); 1243 mmap_read_unlock(mm); 1244 } 1245 return 0; 1246 } 1247 1248 /** 1249 * get_mm_exe_file - acquire a reference to the mm's executable file 1250 * 1251 * Returns %NULL if mm has no associated executable file. 1252 * User must release file via fput(). 1253 */ 1254 struct file *get_mm_exe_file(struct mm_struct *mm) 1255 { 1256 struct file *exe_file; 1257 1258 rcu_read_lock(); 1259 exe_file = rcu_dereference(mm->exe_file); 1260 if (exe_file && !get_file_rcu(exe_file)) 1261 exe_file = NULL; 1262 rcu_read_unlock(); 1263 return exe_file; 1264 } 1265 1266 /** 1267 * get_task_exe_file - acquire a reference to the task's executable file 1268 * 1269 * Returns %NULL if task's mm (if any) has no associated executable file or 1270 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1271 * User must release file via fput(). 1272 */ 1273 struct file *get_task_exe_file(struct task_struct *task) 1274 { 1275 struct file *exe_file = NULL; 1276 struct mm_struct *mm; 1277 1278 task_lock(task); 1279 mm = task->mm; 1280 if (mm) { 1281 if (!(task->flags & PF_KTHREAD)) 1282 exe_file = get_mm_exe_file(mm); 1283 } 1284 task_unlock(task); 1285 return exe_file; 1286 } 1287 1288 /** 1289 * get_task_mm - acquire a reference to the task's mm 1290 * 1291 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1292 * this kernel workthread has transiently adopted a user mm with use_mm, 1293 * to do its AIO) is not set and if so returns a reference to it, after 1294 * bumping up the use count. User must release the mm via mmput() 1295 * after use. Typically used by /proc and ptrace. 1296 */ 1297 struct mm_struct *get_task_mm(struct task_struct *task) 1298 { 1299 struct mm_struct *mm; 1300 1301 task_lock(task); 1302 mm = task->mm; 1303 if (mm) { 1304 if (task->flags & PF_KTHREAD) 1305 mm = NULL; 1306 else 1307 mmget(mm); 1308 } 1309 task_unlock(task); 1310 return mm; 1311 } 1312 EXPORT_SYMBOL_GPL(get_task_mm); 1313 1314 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1315 { 1316 struct mm_struct *mm; 1317 int err; 1318 1319 err = down_read_killable(&task->signal->exec_update_lock); 1320 if (err) 1321 return ERR_PTR(err); 1322 1323 mm = get_task_mm(task); 1324 if (mm && mm != current->mm && 1325 !ptrace_may_access(task, mode)) { 1326 mmput(mm); 1327 mm = ERR_PTR(-EACCES); 1328 } 1329 up_read(&task->signal->exec_update_lock); 1330 1331 return mm; 1332 } 1333 1334 static void complete_vfork_done(struct task_struct *tsk) 1335 { 1336 struct completion *vfork; 1337 1338 task_lock(tsk); 1339 vfork = tsk->vfork_done; 1340 if (likely(vfork)) { 1341 tsk->vfork_done = NULL; 1342 complete(vfork); 1343 } 1344 task_unlock(tsk); 1345 } 1346 1347 static int wait_for_vfork_done(struct task_struct *child, 1348 struct completion *vfork) 1349 { 1350 int killed; 1351 1352 freezer_do_not_count(); 1353 cgroup_enter_frozen(); 1354 killed = wait_for_completion_killable(vfork); 1355 cgroup_leave_frozen(false); 1356 freezer_count(); 1357 1358 if (killed) { 1359 task_lock(child); 1360 child->vfork_done = NULL; 1361 task_unlock(child); 1362 } 1363 1364 put_task_struct(child); 1365 return killed; 1366 } 1367 1368 /* Please note the differences between mmput and mm_release. 1369 * mmput is called whenever we stop holding onto a mm_struct, 1370 * error success whatever. 1371 * 1372 * mm_release is called after a mm_struct has been removed 1373 * from the current process. 1374 * 1375 * This difference is important for error handling, when we 1376 * only half set up a mm_struct for a new process and need to restore 1377 * the old one. Because we mmput the new mm_struct before 1378 * restoring the old one. . . 1379 * Eric Biederman 10 January 1998 1380 */ 1381 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1382 { 1383 uprobe_free_utask(tsk); 1384 1385 /* Get rid of any cached register state */ 1386 deactivate_mm(tsk, mm); 1387 1388 /* 1389 * Signal userspace if we're not exiting with a core dump 1390 * because we want to leave the value intact for debugging 1391 * purposes. 1392 */ 1393 if (tsk->clear_child_tid) { 1394 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1395 atomic_read(&mm->mm_users) > 1) { 1396 /* 1397 * We don't check the error code - if userspace has 1398 * not set up a proper pointer then tough luck. 1399 */ 1400 put_user(0, tsk->clear_child_tid); 1401 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1402 1, NULL, NULL, 0, 0); 1403 } 1404 tsk->clear_child_tid = NULL; 1405 } 1406 1407 /* 1408 * All done, finally we can wake up parent and return this mm to him. 1409 * Also kthread_stop() uses this completion for synchronization. 1410 */ 1411 if (tsk->vfork_done) 1412 complete_vfork_done(tsk); 1413 } 1414 1415 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1416 { 1417 futex_exit_release(tsk); 1418 mm_release(tsk, mm); 1419 } 1420 1421 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1422 { 1423 futex_exec_release(tsk); 1424 mm_release(tsk, mm); 1425 } 1426 1427 /** 1428 * dup_mm() - duplicates an existing mm structure 1429 * @tsk: the task_struct with which the new mm will be associated. 1430 * @oldmm: the mm to duplicate. 1431 * 1432 * Allocates a new mm structure and duplicates the provided @oldmm structure 1433 * content into it. 1434 * 1435 * Return: the duplicated mm or NULL on failure. 1436 */ 1437 static struct mm_struct *dup_mm(struct task_struct *tsk, 1438 struct mm_struct *oldmm) 1439 { 1440 struct mm_struct *mm; 1441 int err; 1442 1443 mm = allocate_mm(); 1444 if (!mm) 1445 goto fail_nomem; 1446 1447 memcpy(mm, oldmm, sizeof(*mm)); 1448 1449 if (!mm_init(mm, tsk, mm->user_ns)) 1450 goto fail_nomem; 1451 1452 err = dup_mmap(mm, oldmm); 1453 if (err) 1454 goto free_pt; 1455 1456 mm->hiwater_rss = get_mm_rss(mm); 1457 mm->hiwater_vm = mm->total_vm; 1458 1459 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1460 goto free_pt; 1461 1462 return mm; 1463 1464 free_pt: 1465 /* don't put binfmt in mmput, we haven't got module yet */ 1466 mm->binfmt = NULL; 1467 mm_init_owner(mm, NULL); 1468 mmput(mm); 1469 1470 fail_nomem: 1471 return NULL; 1472 } 1473 1474 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1475 { 1476 struct mm_struct *mm, *oldmm; 1477 1478 tsk->min_flt = tsk->maj_flt = 0; 1479 tsk->nvcsw = tsk->nivcsw = 0; 1480 #ifdef CONFIG_DETECT_HUNG_TASK 1481 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1482 tsk->last_switch_time = 0; 1483 #endif 1484 1485 tsk->mm = NULL; 1486 tsk->active_mm = NULL; 1487 1488 /* 1489 * Are we cloning a kernel thread? 1490 * 1491 * We need to steal a active VM for that.. 1492 */ 1493 oldmm = current->mm; 1494 if (!oldmm) 1495 return 0; 1496 1497 /* initialize the new vmacache entries */ 1498 vmacache_flush(tsk); 1499 1500 if (clone_flags & CLONE_VM) { 1501 mmget(oldmm); 1502 mm = oldmm; 1503 } else { 1504 mm = dup_mm(tsk, current->mm); 1505 if (!mm) 1506 return -ENOMEM; 1507 } 1508 1509 tsk->mm = mm; 1510 tsk->active_mm = mm; 1511 return 0; 1512 } 1513 1514 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1515 { 1516 struct fs_struct *fs = current->fs; 1517 if (clone_flags & CLONE_FS) { 1518 /* tsk->fs is already what we want */ 1519 spin_lock(&fs->lock); 1520 if (fs->in_exec) { 1521 spin_unlock(&fs->lock); 1522 return -EAGAIN; 1523 } 1524 fs->users++; 1525 spin_unlock(&fs->lock); 1526 return 0; 1527 } 1528 tsk->fs = copy_fs_struct(fs); 1529 if (!tsk->fs) 1530 return -ENOMEM; 1531 return 0; 1532 } 1533 1534 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1535 { 1536 struct files_struct *oldf, *newf; 1537 int error = 0; 1538 1539 /* 1540 * A background process may not have any files ... 1541 */ 1542 oldf = current->files; 1543 if (!oldf) 1544 goto out; 1545 1546 if (clone_flags & CLONE_FILES) { 1547 atomic_inc(&oldf->count); 1548 goto out; 1549 } 1550 1551 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1552 if (!newf) 1553 goto out; 1554 1555 tsk->files = newf; 1556 error = 0; 1557 out: 1558 return error; 1559 } 1560 1561 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1562 { 1563 #ifdef CONFIG_BLOCK 1564 struct io_context *ioc = current->io_context; 1565 struct io_context *new_ioc; 1566 1567 if (!ioc) 1568 return 0; 1569 /* 1570 * Share io context with parent, if CLONE_IO is set 1571 */ 1572 if (clone_flags & CLONE_IO) { 1573 ioc_task_link(ioc); 1574 tsk->io_context = ioc; 1575 } else if (ioprio_valid(ioc->ioprio)) { 1576 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1577 if (unlikely(!new_ioc)) 1578 return -ENOMEM; 1579 1580 new_ioc->ioprio = ioc->ioprio; 1581 put_io_context(new_ioc); 1582 } 1583 #endif 1584 return 0; 1585 } 1586 1587 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1588 { 1589 struct sighand_struct *sig; 1590 1591 if (clone_flags & CLONE_SIGHAND) { 1592 refcount_inc(¤t->sighand->count); 1593 return 0; 1594 } 1595 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1596 RCU_INIT_POINTER(tsk->sighand, sig); 1597 if (!sig) 1598 return -ENOMEM; 1599 1600 refcount_set(&sig->count, 1); 1601 spin_lock_irq(¤t->sighand->siglock); 1602 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1603 spin_unlock_irq(¤t->sighand->siglock); 1604 1605 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1606 if (clone_flags & CLONE_CLEAR_SIGHAND) 1607 flush_signal_handlers(tsk, 0); 1608 1609 return 0; 1610 } 1611 1612 void __cleanup_sighand(struct sighand_struct *sighand) 1613 { 1614 if (refcount_dec_and_test(&sighand->count)) { 1615 signalfd_cleanup(sighand); 1616 /* 1617 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1618 * without an RCU grace period, see __lock_task_sighand(). 1619 */ 1620 kmem_cache_free(sighand_cachep, sighand); 1621 } 1622 } 1623 1624 /* 1625 * Initialize POSIX timer handling for a thread group. 1626 */ 1627 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1628 { 1629 struct posix_cputimers *pct = &sig->posix_cputimers; 1630 unsigned long cpu_limit; 1631 1632 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1633 posix_cputimers_group_init(pct, cpu_limit); 1634 } 1635 1636 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1637 { 1638 struct signal_struct *sig; 1639 1640 if (clone_flags & CLONE_THREAD) 1641 return 0; 1642 1643 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1644 tsk->signal = sig; 1645 if (!sig) 1646 return -ENOMEM; 1647 1648 sig->nr_threads = 1; 1649 atomic_set(&sig->live, 1); 1650 refcount_set(&sig->sigcnt, 1); 1651 1652 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1653 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1654 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1655 1656 init_waitqueue_head(&sig->wait_chldexit); 1657 sig->curr_target = tsk; 1658 init_sigpending(&sig->shared_pending); 1659 INIT_HLIST_HEAD(&sig->multiprocess); 1660 seqlock_init(&sig->stats_lock); 1661 prev_cputime_init(&sig->prev_cputime); 1662 1663 #ifdef CONFIG_POSIX_TIMERS 1664 INIT_LIST_HEAD(&sig->posix_timers); 1665 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1666 sig->real_timer.function = it_real_fn; 1667 #endif 1668 1669 task_lock(current->group_leader); 1670 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1671 task_unlock(current->group_leader); 1672 1673 posix_cpu_timers_init_group(sig); 1674 1675 tty_audit_fork(sig); 1676 sched_autogroup_fork(sig); 1677 1678 sig->oom_score_adj = current->signal->oom_score_adj; 1679 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1680 1681 mutex_init(&sig->cred_guard_mutex); 1682 init_rwsem(&sig->exec_update_lock); 1683 1684 return 0; 1685 } 1686 1687 static void copy_seccomp(struct task_struct *p) 1688 { 1689 #ifdef CONFIG_SECCOMP 1690 /* 1691 * Must be called with sighand->lock held, which is common to 1692 * all threads in the group. Holding cred_guard_mutex is not 1693 * needed because this new task is not yet running and cannot 1694 * be racing exec. 1695 */ 1696 assert_spin_locked(¤t->sighand->siglock); 1697 1698 /* Ref-count the new filter user, and assign it. */ 1699 get_seccomp_filter(current); 1700 p->seccomp = current->seccomp; 1701 1702 /* 1703 * Explicitly enable no_new_privs here in case it got set 1704 * between the task_struct being duplicated and holding the 1705 * sighand lock. The seccomp state and nnp must be in sync. 1706 */ 1707 if (task_no_new_privs(current)) 1708 task_set_no_new_privs(p); 1709 1710 /* 1711 * If the parent gained a seccomp mode after copying thread 1712 * flags and between before we held the sighand lock, we have 1713 * to manually enable the seccomp thread flag here. 1714 */ 1715 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1716 set_task_syscall_work(p, SECCOMP); 1717 #endif 1718 } 1719 1720 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1721 { 1722 current->clear_child_tid = tidptr; 1723 1724 return task_pid_vnr(current); 1725 } 1726 1727 static void rt_mutex_init_task(struct task_struct *p) 1728 { 1729 raw_spin_lock_init(&p->pi_lock); 1730 #ifdef CONFIG_RT_MUTEXES 1731 p->pi_waiters = RB_ROOT_CACHED; 1732 p->pi_top_task = NULL; 1733 p->pi_blocked_on = NULL; 1734 #endif 1735 } 1736 1737 static inline void init_task_pid_links(struct task_struct *task) 1738 { 1739 enum pid_type type; 1740 1741 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1742 INIT_HLIST_NODE(&task->pid_links[type]); 1743 } 1744 1745 static inline void 1746 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1747 { 1748 if (type == PIDTYPE_PID) 1749 task->thread_pid = pid; 1750 else 1751 task->signal->pids[type] = pid; 1752 } 1753 1754 static inline void rcu_copy_process(struct task_struct *p) 1755 { 1756 #ifdef CONFIG_PREEMPT_RCU 1757 p->rcu_read_lock_nesting = 0; 1758 p->rcu_read_unlock_special.s = 0; 1759 p->rcu_blocked_node = NULL; 1760 INIT_LIST_HEAD(&p->rcu_node_entry); 1761 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1762 #ifdef CONFIG_TASKS_RCU 1763 p->rcu_tasks_holdout = false; 1764 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1765 p->rcu_tasks_idle_cpu = -1; 1766 #endif /* #ifdef CONFIG_TASKS_RCU */ 1767 #ifdef CONFIG_TASKS_TRACE_RCU 1768 p->trc_reader_nesting = 0; 1769 p->trc_reader_special.s = 0; 1770 INIT_LIST_HEAD(&p->trc_holdout_list); 1771 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1772 } 1773 1774 struct pid *pidfd_pid(const struct file *file) 1775 { 1776 if (file->f_op == &pidfd_fops) 1777 return file->private_data; 1778 1779 return ERR_PTR(-EBADF); 1780 } 1781 1782 static int pidfd_release(struct inode *inode, struct file *file) 1783 { 1784 struct pid *pid = file->private_data; 1785 1786 file->private_data = NULL; 1787 put_pid(pid); 1788 return 0; 1789 } 1790 1791 #ifdef CONFIG_PROC_FS 1792 /** 1793 * pidfd_show_fdinfo - print information about a pidfd 1794 * @m: proc fdinfo file 1795 * @f: file referencing a pidfd 1796 * 1797 * Pid: 1798 * This function will print the pid that a given pidfd refers to in the 1799 * pid namespace of the procfs instance. 1800 * If the pid namespace of the process is not a descendant of the pid 1801 * namespace of the procfs instance 0 will be shown as its pid. This is 1802 * similar to calling getppid() on a process whose parent is outside of 1803 * its pid namespace. 1804 * 1805 * NSpid: 1806 * If pid namespaces are supported then this function will also print 1807 * the pid of a given pidfd refers to for all descendant pid namespaces 1808 * starting from the current pid namespace of the instance, i.e. the 1809 * Pid field and the first entry in the NSpid field will be identical. 1810 * If the pid namespace of the process is not a descendant of the pid 1811 * namespace of the procfs instance 0 will be shown as its first NSpid 1812 * entry and no others will be shown. 1813 * Note that this differs from the Pid and NSpid fields in 1814 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1815 * the pid namespace of the procfs instance. The difference becomes 1816 * obvious when sending around a pidfd between pid namespaces from a 1817 * different branch of the tree, i.e. where no ancestral relation is 1818 * present between the pid namespaces: 1819 * - create two new pid namespaces ns1 and ns2 in the initial pid 1820 * namespace (also take care to create new mount namespaces in the 1821 * new pid namespace and mount procfs) 1822 * - create a process with a pidfd in ns1 1823 * - send pidfd from ns1 to ns2 1824 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1825 * have exactly one entry, which is 0 1826 */ 1827 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1828 { 1829 struct pid *pid = f->private_data; 1830 struct pid_namespace *ns; 1831 pid_t nr = -1; 1832 1833 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1834 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1835 nr = pid_nr_ns(pid, ns); 1836 } 1837 1838 seq_put_decimal_ll(m, "Pid:\t", nr); 1839 1840 #ifdef CONFIG_PID_NS 1841 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1842 if (nr > 0) { 1843 int i; 1844 1845 /* If nr is non-zero it means that 'pid' is valid and that 1846 * ns, i.e. the pid namespace associated with the procfs 1847 * instance, is in the pid namespace hierarchy of pid. 1848 * Start at one below the already printed level. 1849 */ 1850 for (i = ns->level + 1; i <= pid->level; i++) 1851 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1852 } 1853 #endif 1854 seq_putc(m, '\n'); 1855 } 1856 #endif 1857 1858 /* 1859 * Poll support for process exit notification. 1860 */ 1861 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1862 { 1863 struct pid *pid = file->private_data; 1864 __poll_t poll_flags = 0; 1865 1866 poll_wait(file, &pid->wait_pidfd, pts); 1867 1868 /* 1869 * Inform pollers only when the whole thread group exits. 1870 * If the thread group leader exits before all other threads in the 1871 * group, then poll(2) should block, similar to the wait(2) family. 1872 */ 1873 if (thread_group_exited(pid)) 1874 poll_flags = EPOLLIN | EPOLLRDNORM; 1875 1876 return poll_flags; 1877 } 1878 1879 const struct file_operations pidfd_fops = { 1880 .release = pidfd_release, 1881 .poll = pidfd_poll, 1882 #ifdef CONFIG_PROC_FS 1883 .show_fdinfo = pidfd_show_fdinfo, 1884 #endif 1885 }; 1886 1887 static void __delayed_free_task(struct rcu_head *rhp) 1888 { 1889 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1890 1891 free_task(tsk); 1892 } 1893 1894 static __always_inline void delayed_free_task(struct task_struct *tsk) 1895 { 1896 if (IS_ENABLED(CONFIG_MEMCG)) 1897 call_rcu(&tsk->rcu, __delayed_free_task); 1898 else 1899 free_task(tsk); 1900 } 1901 1902 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1903 { 1904 /* Skip if kernel thread */ 1905 if (!tsk->mm) 1906 return; 1907 1908 /* Skip if spawning a thread or using vfork */ 1909 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1910 return; 1911 1912 /* We need to synchronize with __set_oom_adj */ 1913 mutex_lock(&oom_adj_mutex); 1914 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1915 /* Update the values in case they were changed after copy_signal */ 1916 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1917 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1918 mutex_unlock(&oom_adj_mutex); 1919 } 1920 1921 /* 1922 * This creates a new process as a copy of the old one, 1923 * but does not actually start it yet. 1924 * 1925 * It copies the registers, and all the appropriate 1926 * parts of the process environment (as per the clone 1927 * flags). The actual kick-off is left to the caller. 1928 */ 1929 static __latent_entropy struct task_struct *copy_process( 1930 struct pid *pid, 1931 int trace, 1932 int node, 1933 struct kernel_clone_args *args) 1934 { 1935 int pidfd = -1, retval; 1936 struct task_struct *p; 1937 struct multiprocess_signals delayed; 1938 struct file *pidfile = NULL; 1939 u64 clone_flags = args->flags; 1940 struct nsproxy *nsp = current->nsproxy; 1941 1942 /* 1943 * Don't allow sharing the root directory with processes in a different 1944 * namespace 1945 */ 1946 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1947 return ERR_PTR(-EINVAL); 1948 1949 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1950 return ERR_PTR(-EINVAL); 1951 1952 /* 1953 * Thread groups must share signals as well, and detached threads 1954 * can only be started up within the thread group. 1955 */ 1956 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1957 return ERR_PTR(-EINVAL); 1958 1959 /* 1960 * Shared signal handlers imply shared VM. By way of the above, 1961 * thread groups also imply shared VM. Blocking this case allows 1962 * for various simplifications in other code. 1963 */ 1964 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1965 return ERR_PTR(-EINVAL); 1966 1967 /* 1968 * Siblings of global init remain as zombies on exit since they are 1969 * not reaped by their parent (swapper). To solve this and to avoid 1970 * multi-rooted process trees, prevent global and container-inits 1971 * from creating siblings. 1972 */ 1973 if ((clone_flags & CLONE_PARENT) && 1974 current->signal->flags & SIGNAL_UNKILLABLE) 1975 return ERR_PTR(-EINVAL); 1976 1977 /* 1978 * If the new process will be in a different pid or user namespace 1979 * do not allow it to share a thread group with the forking task. 1980 */ 1981 if (clone_flags & CLONE_THREAD) { 1982 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1983 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1984 return ERR_PTR(-EINVAL); 1985 } 1986 1987 /* 1988 * If the new process will be in a different time namespace 1989 * do not allow it to share VM or a thread group with the forking task. 1990 */ 1991 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1992 if (nsp->time_ns != nsp->time_ns_for_children) 1993 return ERR_PTR(-EINVAL); 1994 } 1995 1996 if (clone_flags & CLONE_PIDFD) { 1997 /* 1998 * - CLONE_DETACHED is blocked so that we can potentially 1999 * reuse it later for CLONE_PIDFD. 2000 * - CLONE_THREAD is blocked until someone really needs it. 2001 */ 2002 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2003 return ERR_PTR(-EINVAL); 2004 } 2005 2006 /* 2007 * Force any signals received before this point to be delivered 2008 * before the fork happens. Collect up signals sent to multiple 2009 * processes that happen during the fork and delay them so that 2010 * they appear to happen after the fork. 2011 */ 2012 sigemptyset(&delayed.signal); 2013 INIT_HLIST_NODE(&delayed.node); 2014 2015 spin_lock_irq(¤t->sighand->siglock); 2016 if (!(clone_flags & CLONE_THREAD)) 2017 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2018 recalc_sigpending(); 2019 spin_unlock_irq(¤t->sighand->siglock); 2020 retval = -ERESTARTNOINTR; 2021 if (task_sigpending(current)) 2022 goto fork_out; 2023 2024 retval = -ENOMEM; 2025 p = dup_task_struct(current, node); 2026 if (!p) 2027 goto fork_out; 2028 if (args->io_thread) { 2029 /* 2030 * Mark us an IO worker, and block any signal that isn't 2031 * fatal or STOP 2032 */ 2033 p->flags |= PF_IO_WORKER; 2034 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2035 } 2036 2037 /* 2038 * This _must_ happen before we call free_task(), i.e. before we jump 2039 * to any of the bad_fork_* labels. This is to avoid freeing 2040 * p->set_child_tid which is (ab)used as a kthread's data pointer for 2041 * kernel threads (PF_KTHREAD). 2042 */ 2043 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2044 /* 2045 * Clear TID on mm_release()? 2046 */ 2047 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2048 2049 ftrace_graph_init_task(p); 2050 2051 rt_mutex_init_task(p); 2052 2053 lockdep_assert_irqs_enabled(); 2054 #ifdef CONFIG_PROVE_LOCKING 2055 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2056 #endif 2057 retval = -EAGAIN; 2058 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2059 if (p->real_cred->user != INIT_USER && 2060 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2061 goto bad_fork_free; 2062 } 2063 current->flags &= ~PF_NPROC_EXCEEDED; 2064 2065 retval = copy_creds(p, clone_flags); 2066 if (retval < 0) 2067 goto bad_fork_free; 2068 2069 /* 2070 * If multiple threads are within copy_process(), then this check 2071 * triggers too late. This doesn't hurt, the check is only there 2072 * to stop root fork bombs. 2073 */ 2074 retval = -EAGAIN; 2075 if (data_race(nr_threads >= max_threads)) 2076 goto bad_fork_cleanup_count; 2077 2078 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2079 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2080 p->flags |= PF_FORKNOEXEC; 2081 INIT_LIST_HEAD(&p->children); 2082 INIT_LIST_HEAD(&p->sibling); 2083 rcu_copy_process(p); 2084 p->vfork_done = NULL; 2085 spin_lock_init(&p->alloc_lock); 2086 2087 init_sigpending(&p->pending); 2088 2089 p->utime = p->stime = p->gtime = 0; 2090 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2091 p->utimescaled = p->stimescaled = 0; 2092 #endif 2093 prev_cputime_init(&p->prev_cputime); 2094 2095 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2096 seqcount_init(&p->vtime.seqcount); 2097 p->vtime.starttime = 0; 2098 p->vtime.state = VTIME_INACTIVE; 2099 #endif 2100 2101 #ifdef CONFIG_IO_URING 2102 p->io_uring = NULL; 2103 #endif 2104 2105 #if defined(SPLIT_RSS_COUNTING) 2106 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2107 #endif 2108 2109 p->default_timer_slack_ns = current->timer_slack_ns; 2110 2111 #ifdef CONFIG_PSI 2112 p->psi_flags = 0; 2113 #endif 2114 2115 task_io_accounting_init(&p->ioac); 2116 acct_clear_integrals(p); 2117 2118 posix_cputimers_init(&p->posix_cputimers); 2119 2120 p->io_context = NULL; 2121 audit_set_context(p, NULL); 2122 cgroup_fork(p); 2123 #ifdef CONFIG_NUMA 2124 p->mempolicy = mpol_dup(p->mempolicy); 2125 if (IS_ERR(p->mempolicy)) { 2126 retval = PTR_ERR(p->mempolicy); 2127 p->mempolicy = NULL; 2128 goto bad_fork_cleanup_threadgroup_lock; 2129 } 2130 #endif 2131 #ifdef CONFIG_CPUSETS 2132 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2133 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2134 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2135 #endif 2136 #ifdef CONFIG_TRACE_IRQFLAGS 2137 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2138 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2139 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2140 p->softirqs_enabled = 1; 2141 p->softirq_context = 0; 2142 #endif 2143 2144 p->pagefault_disabled = 0; 2145 2146 #ifdef CONFIG_LOCKDEP 2147 lockdep_init_task(p); 2148 #endif 2149 2150 #ifdef CONFIG_DEBUG_MUTEXES 2151 p->blocked_on = NULL; /* not blocked yet */ 2152 #endif 2153 #ifdef CONFIG_BCACHE 2154 p->sequential_io = 0; 2155 p->sequential_io_avg = 0; 2156 #endif 2157 #ifdef CONFIG_BPF_SYSCALL 2158 RCU_INIT_POINTER(p->bpf_storage, NULL); 2159 p->bpf_ctx = NULL; 2160 #endif 2161 2162 /* Perform scheduler related setup. Assign this task to a CPU. */ 2163 retval = sched_fork(clone_flags, p); 2164 if (retval) 2165 goto bad_fork_cleanup_policy; 2166 2167 retval = perf_event_init_task(p, clone_flags); 2168 if (retval) 2169 goto bad_fork_cleanup_policy; 2170 retval = audit_alloc(p); 2171 if (retval) 2172 goto bad_fork_cleanup_perf; 2173 /* copy all the process information */ 2174 shm_init_task(p); 2175 retval = security_task_alloc(p, clone_flags); 2176 if (retval) 2177 goto bad_fork_cleanup_audit; 2178 retval = copy_semundo(clone_flags, p); 2179 if (retval) 2180 goto bad_fork_cleanup_security; 2181 retval = copy_files(clone_flags, p); 2182 if (retval) 2183 goto bad_fork_cleanup_semundo; 2184 retval = copy_fs(clone_flags, p); 2185 if (retval) 2186 goto bad_fork_cleanup_files; 2187 retval = copy_sighand(clone_flags, p); 2188 if (retval) 2189 goto bad_fork_cleanup_fs; 2190 retval = copy_signal(clone_flags, p); 2191 if (retval) 2192 goto bad_fork_cleanup_sighand; 2193 retval = copy_mm(clone_flags, p); 2194 if (retval) 2195 goto bad_fork_cleanup_signal; 2196 retval = copy_namespaces(clone_flags, p); 2197 if (retval) 2198 goto bad_fork_cleanup_mm; 2199 retval = copy_io(clone_flags, p); 2200 if (retval) 2201 goto bad_fork_cleanup_namespaces; 2202 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2203 if (retval) 2204 goto bad_fork_cleanup_io; 2205 2206 stackleak_task_init(p); 2207 2208 if (pid != &init_struct_pid) { 2209 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2210 args->set_tid_size); 2211 if (IS_ERR(pid)) { 2212 retval = PTR_ERR(pid); 2213 goto bad_fork_cleanup_thread; 2214 } 2215 } 2216 2217 /* 2218 * This has to happen after we've potentially unshared the file 2219 * descriptor table (so that the pidfd doesn't leak into the child 2220 * if the fd table isn't shared). 2221 */ 2222 if (clone_flags & CLONE_PIDFD) { 2223 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2224 if (retval < 0) 2225 goto bad_fork_free_pid; 2226 2227 pidfd = retval; 2228 2229 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2230 O_RDWR | O_CLOEXEC); 2231 if (IS_ERR(pidfile)) { 2232 put_unused_fd(pidfd); 2233 retval = PTR_ERR(pidfile); 2234 goto bad_fork_free_pid; 2235 } 2236 get_pid(pid); /* held by pidfile now */ 2237 2238 retval = put_user(pidfd, args->pidfd); 2239 if (retval) 2240 goto bad_fork_put_pidfd; 2241 } 2242 2243 #ifdef CONFIG_BLOCK 2244 p->plug = NULL; 2245 #endif 2246 futex_init_task(p); 2247 2248 /* 2249 * sigaltstack should be cleared when sharing the same VM 2250 */ 2251 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2252 sas_ss_reset(p); 2253 2254 /* 2255 * Syscall tracing and stepping should be turned off in the 2256 * child regardless of CLONE_PTRACE. 2257 */ 2258 user_disable_single_step(p); 2259 clear_task_syscall_work(p, SYSCALL_TRACE); 2260 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2261 clear_task_syscall_work(p, SYSCALL_EMU); 2262 #endif 2263 clear_tsk_latency_tracing(p); 2264 2265 /* ok, now we should be set up.. */ 2266 p->pid = pid_nr(pid); 2267 if (clone_flags & CLONE_THREAD) { 2268 p->group_leader = current->group_leader; 2269 p->tgid = current->tgid; 2270 } else { 2271 p->group_leader = p; 2272 p->tgid = p->pid; 2273 } 2274 2275 p->nr_dirtied = 0; 2276 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2277 p->dirty_paused_when = 0; 2278 2279 p->pdeath_signal = 0; 2280 INIT_LIST_HEAD(&p->thread_group); 2281 p->task_works = NULL; 2282 2283 #ifdef CONFIG_KRETPROBES 2284 p->kretprobe_instances.first = NULL; 2285 #endif 2286 2287 /* 2288 * Ensure that the cgroup subsystem policies allow the new process to be 2289 * forked. It should be noted that the new process's css_set can be changed 2290 * between here and cgroup_post_fork() if an organisation operation is in 2291 * progress. 2292 */ 2293 retval = cgroup_can_fork(p, args); 2294 if (retval) 2295 goto bad_fork_put_pidfd; 2296 2297 /* 2298 * From this point on we must avoid any synchronous user-space 2299 * communication until we take the tasklist-lock. In particular, we do 2300 * not want user-space to be able to predict the process start-time by 2301 * stalling fork(2) after we recorded the start_time but before it is 2302 * visible to the system. 2303 */ 2304 2305 p->start_time = ktime_get_ns(); 2306 p->start_boottime = ktime_get_boottime_ns(); 2307 2308 /* 2309 * Make it visible to the rest of the system, but dont wake it up yet. 2310 * Need tasklist lock for parent etc handling! 2311 */ 2312 write_lock_irq(&tasklist_lock); 2313 2314 /* CLONE_PARENT re-uses the old parent */ 2315 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2316 p->real_parent = current->real_parent; 2317 p->parent_exec_id = current->parent_exec_id; 2318 if (clone_flags & CLONE_THREAD) 2319 p->exit_signal = -1; 2320 else 2321 p->exit_signal = current->group_leader->exit_signal; 2322 } else { 2323 p->real_parent = current; 2324 p->parent_exec_id = current->self_exec_id; 2325 p->exit_signal = args->exit_signal; 2326 } 2327 2328 klp_copy_process(p); 2329 2330 sched_core_fork(p); 2331 2332 spin_lock(¤t->sighand->siglock); 2333 2334 /* 2335 * Copy seccomp details explicitly here, in case they were changed 2336 * before holding sighand lock. 2337 */ 2338 copy_seccomp(p); 2339 2340 rseq_fork(p, clone_flags); 2341 2342 /* Don't start children in a dying pid namespace */ 2343 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2344 retval = -ENOMEM; 2345 goto bad_fork_cancel_cgroup; 2346 } 2347 2348 /* Let kill terminate clone/fork in the middle */ 2349 if (fatal_signal_pending(current)) { 2350 retval = -EINTR; 2351 goto bad_fork_cancel_cgroup; 2352 } 2353 2354 /* past the last point of failure */ 2355 if (pidfile) 2356 fd_install(pidfd, pidfile); 2357 2358 init_task_pid_links(p); 2359 if (likely(p->pid)) { 2360 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2361 2362 init_task_pid(p, PIDTYPE_PID, pid); 2363 if (thread_group_leader(p)) { 2364 init_task_pid(p, PIDTYPE_TGID, pid); 2365 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2366 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2367 2368 if (is_child_reaper(pid)) { 2369 ns_of_pid(pid)->child_reaper = p; 2370 p->signal->flags |= SIGNAL_UNKILLABLE; 2371 } 2372 p->signal->shared_pending.signal = delayed.signal; 2373 p->signal->tty = tty_kref_get(current->signal->tty); 2374 /* 2375 * Inherit has_child_subreaper flag under the same 2376 * tasklist_lock with adding child to the process tree 2377 * for propagate_has_child_subreaper optimization. 2378 */ 2379 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2380 p->real_parent->signal->is_child_subreaper; 2381 list_add_tail(&p->sibling, &p->real_parent->children); 2382 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2383 attach_pid(p, PIDTYPE_TGID); 2384 attach_pid(p, PIDTYPE_PGID); 2385 attach_pid(p, PIDTYPE_SID); 2386 __this_cpu_inc(process_counts); 2387 } else { 2388 current->signal->nr_threads++; 2389 atomic_inc(¤t->signal->live); 2390 refcount_inc(¤t->signal->sigcnt); 2391 task_join_group_stop(p); 2392 list_add_tail_rcu(&p->thread_group, 2393 &p->group_leader->thread_group); 2394 list_add_tail_rcu(&p->thread_node, 2395 &p->signal->thread_head); 2396 } 2397 attach_pid(p, PIDTYPE_PID); 2398 nr_threads++; 2399 } 2400 total_forks++; 2401 hlist_del_init(&delayed.node); 2402 spin_unlock(¤t->sighand->siglock); 2403 syscall_tracepoint_update(p); 2404 write_unlock_irq(&tasklist_lock); 2405 2406 proc_fork_connector(p); 2407 sched_post_fork(p, args); 2408 cgroup_post_fork(p, args); 2409 perf_event_fork(p); 2410 2411 trace_task_newtask(p, clone_flags); 2412 uprobe_copy_process(p, clone_flags); 2413 2414 copy_oom_score_adj(clone_flags, p); 2415 2416 return p; 2417 2418 bad_fork_cancel_cgroup: 2419 sched_core_free(p); 2420 spin_unlock(¤t->sighand->siglock); 2421 write_unlock_irq(&tasklist_lock); 2422 cgroup_cancel_fork(p, args); 2423 bad_fork_put_pidfd: 2424 if (clone_flags & CLONE_PIDFD) { 2425 fput(pidfile); 2426 put_unused_fd(pidfd); 2427 } 2428 bad_fork_free_pid: 2429 if (pid != &init_struct_pid) 2430 free_pid(pid); 2431 bad_fork_cleanup_thread: 2432 exit_thread(p); 2433 bad_fork_cleanup_io: 2434 if (p->io_context) 2435 exit_io_context(p); 2436 bad_fork_cleanup_namespaces: 2437 exit_task_namespaces(p); 2438 bad_fork_cleanup_mm: 2439 if (p->mm) { 2440 mm_clear_owner(p->mm, p); 2441 mmput(p->mm); 2442 } 2443 bad_fork_cleanup_signal: 2444 if (!(clone_flags & CLONE_THREAD)) 2445 free_signal_struct(p->signal); 2446 bad_fork_cleanup_sighand: 2447 __cleanup_sighand(p->sighand); 2448 bad_fork_cleanup_fs: 2449 exit_fs(p); /* blocking */ 2450 bad_fork_cleanup_files: 2451 exit_files(p); /* blocking */ 2452 bad_fork_cleanup_semundo: 2453 exit_sem(p); 2454 bad_fork_cleanup_security: 2455 security_task_free(p); 2456 bad_fork_cleanup_audit: 2457 audit_free(p); 2458 bad_fork_cleanup_perf: 2459 perf_event_free_task(p); 2460 bad_fork_cleanup_policy: 2461 lockdep_free_task(p); 2462 #ifdef CONFIG_NUMA 2463 mpol_put(p->mempolicy); 2464 bad_fork_cleanup_threadgroup_lock: 2465 #endif 2466 delayacct_tsk_free(p); 2467 bad_fork_cleanup_count: 2468 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2469 exit_creds(p); 2470 bad_fork_free: 2471 WRITE_ONCE(p->__state, TASK_DEAD); 2472 put_task_stack(p); 2473 delayed_free_task(p); 2474 fork_out: 2475 spin_lock_irq(¤t->sighand->siglock); 2476 hlist_del_init(&delayed.node); 2477 spin_unlock_irq(¤t->sighand->siglock); 2478 return ERR_PTR(retval); 2479 } 2480 2481 static inline void init_idle_pids(struct task_struct *idle) 2482 { 2483 enum pid_type type; 2484 2485 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2486 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2487 init_task_pid(idle, type, &init_struct_pid); 2488 } 2489 } 2490 2491 struct task_struct * __init fork_idle(int cpu) 2492 { 2493 struct task_struct *task; 2494 struct kernel_clone_args args = { 2495 .flags = CLONE_VM, 2496 }; 2497 2498 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2499 if (!IS_ERR(task)) { 2500 init_idle_pids(task); 2501 init_idle(task, cpu); 2502 } 2503 2504 return task; 2505 } 2506 2507 struct mm_struct *copy_init_mm(void) 2508 { 2509 return dup_mm(NULL, &init_mm); 2510 } 2511 2512 /* 2513 * This is like kernel_clone(), but shaved down and tailored to just 2514 * creating io_uring workers. It returns a created task, or an error pointer. 2515 * The returned task is inactive, and the caller must fire it up through 2516 * wake_up_new_task(p). All signals are blocked in the created task. 2517 */ 2518 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2519 { 2520 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2521 CLONE_IO; 2522 struct kernel_clone_args args = { 2523 .flags = ((lower_32_bits(flags) | CLONE_VM | 2524 CLONE_UNTRACED) & ~CSIGNAL), 2525 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2526 .stack = (unsigned long)fn, 2527 .stack_size = (unsigned long)arg, 2528 .io_thread = 1, 2529 }; 2530 2531 return copy_process(NULL, 0, node, &args); 2532 } 2533 2534 /* 2535 * Ok, this is the main fork-routine. 2536 * 2537 * It copies the process, and if successful kick-starts 2538 * it and waits for it to finish using the VM if required. 2539 * 2540 * args->exit_signal is expected to be checked for sanity by the caller. 2541 */ 2542 pid_t kernel_clone(struct kernel_clone_args *args) 2543 { 2544 u64 clone_flags = args->flags; 2545 struct completion vfork; 2546 struct pid *pid; 2547 struct task_struct *p; 2548 int trace = 0; 2549 pid_t nr; 2550 2551 /* 2552 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2553 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2554 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2555 * field in struct clone_args and it still doesn't make sense to have 2556 * them both point at the same memory location. Performing this check 2557 * here has the advantage that we don't need to have a separate helper 2558 * to check for legacy clone(). 2559 */ 2560 if ((args->flags & CLONE_PIDFD) && 2561 (args->flags & CLONE_PARENT_SETTID) && 2562 (args->pidfd == args->parent_tid)) 2563 return -EINVAL; 2564 2565 /* 2566 * Determine whether and which event to report to ptracer. When 2567 * called from kernel_thread or CLONE_UNTRACED is explicitly 2568 * requested, no event is reported; otherwise, report if the event 2569 * for the type of forking is enabled. 2570 */ 2571 if (!(clone_flags & CLONE_UNTRACED)) { 2572 if (clone_flags & CLONE_VFORK) 2573 trace = PTRACE_EVENT_VFORK; 2574 else if (args->exit_signal != SIGCHLD) 2575 trace = PTRACE_EVENT_CLONE; 2576 else 2577 trace = PTRACE_EVENT_FORK; 2578 2579 if (likely(!ptrace_event_enabled(current, trace))) 2580 trace = 0; 2581 } 2582 2583 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2584 add_latent_entropy(); 2585 2586 if (IS_ERR(p)) 2587 return PTR_ERR(p); 2588 2589 /* 2590 * Do this prior waking up the new thread - the thread pointer 2591 * might get invalid after that point, if the thread exits quickly. 2592 */ 2593 trace_sched_process_fork(current, p); 2594 2595 pid = get_task_pid(p, PIDTYPE_PID); 2596 nr = pid_vnr(pid); 2597 2598 if (clone_flags & CLONE_PARENT_SETTID) 2599 put_user(nr, args->parent_tid); 2600 2601 if (clone_flags & CLONE_VFORK) { 2602 p->vfork_done = &vfork; 2603 init_completion(&vfork); 2604 get_task_struct(p); 2605 } 2606 2607 wake_up_new_task(p); 2608 2609 /* forking complete and child started to run, tell ptracer */ 2610 if (unlikely(trace)) 2611 ptrace_event_pid(trace, pid); 2612 2613 if (clone_flags & CLONE_VFORK) { 2614 if (!wait_for_vfork_done(p, &vfork)) 2615 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2616 } 2617 2618 put_pid(pid); 2619 return nr; 2620 } 2621 2622 /* 2623 * Create a kernel thread. 2624 */ 2625 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2626 { 2627 struct kernel_clone_args args = { 2628 .flags = ((lower_32_bits(flags) | CLONE_VM | 2629 CLONE_UNTRACED) & ~CSIGNAL), 2630 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2631 .stack = (unsigned long)fn, 2632 .stack_size = (unsigned long)arg, 2633 }; 2634 2635 return kernel_clone(&args); 2636 } 2637 2638 #ifdef __ARCH_WANT_SYS_FORK 2639 SYSCALL_DEFINE0(fork) 2640 { 2641 #ifdef CONFIG_MMU 2642 struct kernel_clone_args args = { 2643 .exit_signal = SIGCHLD, 2644 }; 2645 2646 return kernel_clone(&args); 2647 #else 2648 /* can not support in nommu mode */ 2649 return -EINVAL; 2650 #endif 2651 } 2652 #endif 2653 2654 #ifdef __ARCH_WANT_SYS_VFORK 2655 SYSCALL_DEFINE0(vfork) 2656 { 2657 struct kernel_clone_args args = { 2658 .flags = CLONE_VFORK | CLONE_VM, 2659 .exit_signal = SIGCHLD, 2660 }; 2661 2662 return kernel_clone(&args); 2663 } 2664 #endif 2665 2666 #ifdef __ARCH_WANT_SYS_CLONE 2667 #ifdef CONFIG_CLONE_BACKWARDS 2668 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2669 int __user *, parent_tidptr, 2670 unsigned long, tls, 2671 int __user *, child_tidptr) 2672 #elif defined(CONFIG_CLONE_BACKWARDS2) 2673 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2674 int __user *, parent_tidptr, 2675 int __user *, child_tidptr, 2676 unsigned long, tls) 2677 #elif defined(CONFIG_CLONE_BACKWARDS3) 2678 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2679 int, stack_size, 2680 int __user *, parent_tidptr, 2681 int __user *, child_tidptr, 2682 unsigned long, tls) 2683 #else 2684 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2685 int __user *, parent_tidptr, 2686 int __user *, child_tidptr, 2687 unsigned long, tls) 2688 #endif 2689 { 2690 struct kernel_clone_args args = { 2691 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2692 .pidfd = parent_tidptr, 2693 .child_tid = child_tidptr, 2694 .parent_tid = parent_tidptr, 2695 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2696 .stack = newsp, 2697 .tls = tls, 2698 }; 2699 2700 return kernel_clone(&args); 2701 } 2702 #endif 2703 2704 #ifdef __ARCH_WANT_SYS_CLONE3 2705 2706 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2707 struct clone_args __user *uargs, 2708 size_t usize) 2709 { 2710 int err; 2711 struct clone_args args; 2712 pid_t *kset_tid = kargs->set_tid; 2713 2714 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2715 CLONE_ARGS_SIZE_VER0); 2716 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2717 CLONE_ARGS_SIZE_VER1); 2718 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2719 CLONE_ARGS_SIZE_VER2); 2720 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2721 2722 if (unlikely(usize > PAGE_SIZE)) 2723 return -E2BIG; 2724 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2725 return -EINVAL; 2726 2727 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2728 if (err) 2729 return err; 2730 2731 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2732 return -EINVAL; 2733 2734 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2735 return -EINVAL; 2736 2737 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2738 return -EINVAL; 2739 2740 /* 2741 * Verify that higher 32bits of exit_signal are unset and that 2742 * it is a valid signal 2743 */ 2744 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2745 !valid_signal(args.exit_signal))) 2746 return -EINVAL; 2747 2748 if ((args.flags & CLONE_INTO_CGROUP) && 2749 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2750 return -EINVAL; 2751 2752 *kargs = (struct kernel_clone_args){ 2753 .flags = args.flags, 2754 .pidfd = u64_to_user_ptr(args.pidfd), 2755 .child_tid = u64_to_user_ptr(args.child_tid), 2756 .parent_tid = u64_to_user_ptr(args.parent_tid), 2757 .exit_signal = args.exit_signal, 2758 .stack = args.stack, 2759 .stack_size = args.stack_size, 2760 .tls = args.tls, 2761 .set_tid_size = args.set_tid_size, 2762 .cgroup = args.cgroup, 2763 }; 2764 2765 if (args.set_tid && 2766 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2767 (kargs->set_tid_size * sizeof(pid_t)))) 2768 return -EFAULT; 2769 2770 kargs->set_tid = kset_tid; 2771 2772 return 0; 2773 } 2774 2775 /** 2776 * clone3_stack_valid - check and prepare stack 2777 * @kargs: kernel clone args 2778 * 2779 * Verify that the stack arguments userspace gave us are sane. 2780 * In addition, set the stack direction for userspace since it's easy for us to 2781 * determine. 2782 */ 2783 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2784 { 2785 if (kargs->stack == 0) { 2786 if (kargs->stack_size > 0) 2787 return false; 2788 } else { 2789 if (kargs->stack_size == 0) 2790 return false; 2791 2792 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2793 return false; 2794 2795 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2796 kargs->stack += kargs->stack_size; 2797 #endif 2798 } 2799 2800 return true; 2801 } 2802 2803 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2804 { 2805 /* Verify that no unknown flags are passed along. */ 2806 if (kargs->flags & 2807 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2808 return false; 2809 2810 /* 2811 * - make the CLONE_DETACHED bit reusable for clone3 2812 * - make the CSIGNAL bits reusable for clone3 2813 */ 2814 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2815 return false; 2816 2817 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2818 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2819 return false; 2820 2821 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2822 kargs->exit_signal) 2823 return false; 2824 2825 if (!clone3_stack_valid(kargs)) 2826 return false; 2827 2828 return true; 2829 } 2830 2831 /** 2832 * clone3 - create a new process with specific properties 2833 * @uargs: argument structure 2834 * @size: size of @uargs 2835 * 2836 * clone3() is the extensible successor to clone()/clone2(). 2837 * It takes a struct as argument that is versioned by its size. 2838 * 2839 * Return: On success, a positive PID for the child process. 2840 * On error, a negative errno number. 2841 */ 2842 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2843 { 2844 int err; 2845 2846 struct kernel_clone_args kargs; 2847 pid_t set_tid[MAX_PID_NS_LEVEL]; 2848 2849 kargs.set_tid = set_tid; 2850 2851 err = copy_clone_args_from_user(&kargs, uargs, size); 2852 if (err) 2853 return err; 2854 2855 if (!clone3_args_valid(&kargs)) 2856 return -EINVAL; 2857 2858 return kernel_clone(&kargs); 2859 } 2860 #endif 2861 2862 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2863 { 2864 struct task_struct *leader, *parent, *child; 2865 int res; 2866 2867 read_lock(&tasklist_lock); 2868 leader = top = top->group_leader; 2869 down: 2870 for_each_thread(leader, parent) { 2871 list_for_each_entry(child, &parent->children, sibling) { 2872 res = visitor(child, data); 2873 if (res) { 2874 if (res < 0) 2875 goto out; 2876 leader = child; 2877 goto down; 2878 } 2879 up: 2880 ; 2881 } 2882 } 2883 2884 if (leader != top) { 2885 child = leader; 2886 parent = child->real_parent; 2887 leader = parent->group_leader; 2888 goto up; 2889 } 2890 out: 2891 read_unlock(&tasklist_lock); 2892 } 2893 2894 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2895 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2896 #endif 2897 2898 static void sighand_ctor(void *data) 2899 { 2900 struct sighand_struct *sighand = data; 2901 2902 spin_lock_init(&sighand->siglock); 2903 init_waitqueue_head(&sighand->signalfd_wqh); 2904 } 2905 2906 void __init proc_caches_init(void) 2907 { 2908 unsigned int mm_size; 2909 2910 sighand_cachep = kmem_cache_create("sighand_cache", 2911 sizeof(struct sighand_struct), 0, 2912 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2913 SLAB_ACCOUNT, sighand_ctor); 2914 signal_cachep = kmem_cache_create("signal_cache", 2915 sizeof(struct signal_struct), 0, 2916 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2917 NULL); 2918 files_cachep = kmem_cache_create("files_cache", 2919 sizeof(struct files_struct), 0, 2920 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2921 NULL); 2922 fs_cachep = kmem_cache_create("fs_cache", 2923 sizeof(struct fs_struct), 0, 2924 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2925 NULL); 2926 2927 /* 2928 * The mm_cpumask is located at the end of mm_struct, and is 2929 * dynamically sized based on the maximum CPU number this system 2930 * can have, taking hotplug into account (nr_cpu_ids). 2931 */ 2932 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2933 2934 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2935 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2936 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2937 offsetof(struct mm_struct, saved_auxv), 2938 sizeof_field(struct mm_struct, saved_auxv), 2939 NULL); 2940 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2941 mmap_init(); 2942 nsproxy_cache_init(); 2943 } 2944 2945 /* 2946 * Check constraints on flags passed to the unshare system call. 2947 */ 2948 static int check_unshare_flags(unsigned long unshare_flags) 2949 { 2950 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2951 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2952 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2953 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2954 CLONE_NEWTIME)) 2955 return -EINVAL; 2956 /* 2957 * Not implemented, but pretend it works if there is nothing 2958 * to unshare. Note that unsharing the address space or the 2959 * signal handlers also need to unshare the signal queues (aka 2960 * CLONE_THREAD). 2961 */ 2962 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2963 if (!thread_group_empty(current)) 2964 return -EINVAL; 2965 } 2966 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2967 if (refcount_read(¤t->sighand->count) > 1) 2968 return -EINVAL; 2969 } 2970 if (unshare_flags & CLONE_VM) { 2971 if (!current_is_single_threaded()) 2972 return -EINVAL; 2973 } 2974 2975 return 0; 2976 } 2977 2978 /* 2979 * Unshare the filesystem structure if it is being shared 2980 */ 2981 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2982 { 2983 struct fs_struct *fs = current->fs; 2984 2985 if (!(unshare_flags & CLONE_FS) || !fs) 2986 return 0; 2987 2988 /* don't need lock here; in the worst case we'll do useless copy */ 2989 if (fs->users == 1) 2990 return 0; 2991 2992 *new_fsp = copy_fs_struct(fs); 2993 if (!*new_fsp) 2994 return -ENOMEM; 2995 2996 return 0; 2997 } 2998 2999 /* 3000 * Unshare file descriptor table if it is being shared 3001 */ 3002 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3003 struct files_struct **new_fdp) 3004 { 3005 struct files_struct *fd = current->files; 3006 int error = 0; 3007 3008 if ((unshare_flags & CLONE_FILES) && 3009 (fd && atomic_read(&fd->count) > 1)) { 3010 *new_fdp = dup_fd(fd, max_fds, &error); 3011 if (!*new_fdp) 3012 return error; 3013 } 3014 3015 return 0; 3016 } 3017 3018 /* 3019 * unshare allows a process to 'unshare' part of the process 3020 * context which was originally shared using clone. copy_* 3021 * functions used by kernel_clone() cannot be used here directly 3022 * because they modify an inactive task_struct that is being 3023 * constructed. Here we are modifying the current, active, 3024 * task_struct. 3025 */ 3026 int ksys_unshare(unsigned long unshare_flags) 3027 { 3028 struct fs_struct *fs, *new_fs = NULL; 3029 struct files_struct *fd, *new_fd = NULL; 3030 struct cred *new_cred = NULL; 3031 struct nsproxy *new_nsproxy = NULL; 3032 int do_sysvsem = 0; 3033 int err; 3034 3035 /* 3036 * If unsharing a user namespace must also unshare the thread group 3037 * and unshare the filesystem root and working directories. 3038 */ 3039 if (unshare_flags & CLONE_NEWUSER) 3040 unshare_flags |= CLONE_THREAD | CLONE_FS; 3041 /* 3042 * If unsharing vm, must also unshare signal handlers. 3043 */ 3044 if (unshare_flags & CLONE_VM) 3045 unshare_flags |= CLONE_SIGHAND; 3046 /* 3047 * If unsharing a signal handlers, must also unshare the signal queues. 3048 */ 3049 if (unshare_flags & CLONE_SIGHAND) 3050 unshare_flags |= CLONE_THREAD; 3051 /* 3052 * If unsharing namespace, must also unshare filesystem information. 3053 */ 3054 if (unshare_flags & CLONE_NEWNS) 3055 unshare_flags |= CLONE_FS; 3056 3057 err = check_unshare_flags(unshare_flags); 3058 if (err) 3059 goto bad_unshare_out; 3060 /* 3061 * CLONE_NEWIPC must also detach from the undolist: after switching 3062 * to a new ipc namespace, the semaphore arrays from the old 3063 * namespace are unreachable. 3064 */ 3065 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3066 do_sysvsem = 1; 3067 err = unshare_fs(unshare_flags, &new_fs); 3068 if (err) 3069 goto bad_unshare_out; 3070 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3071 if (err) 3072 goto bad_unshare_cleanup_fs; 3073 err = unshare_userns(unshare_flags, &new_cred); 3074 if (err) 3075 goto bad_unshare_cleanup_fd; 3076 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3077 new_cred, new_fs); 3078 if (err) 3079 goto bad_unshare_cleanup_cred; 3080 3081 if (new_cred) { 3082 err = set_cred_ucounts(new_cred); 3083 if (err) 3084 goto bad_unshare_cleanup_cred; 3085 } 3086 3087 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3088 if (do_sysvsem) { 3089 /* 3090 * CLONE_SYSVSEM is equivalent to sys_exit(). 3091 */ 3092 exit_sem(current); 3093 } 3094 if (unshare_flags & CLONE_NEWIPC) { 3095 /* Orphan segments in old ns (see sem above). */ 3096 exit_shm(current); 3097 shm_init_task(current); 3098 } 3099 3100 if (new_nsproxy) 3101 switch_task_namespaces(current, new_nsproxy); 3102 3103 task_lock(current); 3104 3105 if (new_fs) { 3106 fs = current->fs; 3107 spin_lock(&fs->lock); 3108 current->fs = new_fs; 3109 if (--fs->users) 3110 new_fs = NULL; 3111 else 3112 new_fs = fs; 3113 spin_unlock(&fs->lock); 3114 } 3115 3116 if (new_fd) { 3117 fd = current->files; 3118 current->files = new_fd; 3119 new_fd = fd; 3120 } 3121 3122 task_unlock(current); 3123 3124 if (new_cred) { 3125 /* Install the new user namespace */ 3126 commit_creds(new_cred); 3127 new_cred = NULL; 3128 } 3129 } 3130 3131 perf_event_namespaces(current); 3132 3133 bad_unshare_cleanup_cred: 3134 if (new_cred) 3135 put_cred(new_cred); 3136 bad_unshare_cleanup_fd: 3137 if (new_fd) 3138 put_files_struct(new_fd); 3139 3140 bad_unshare_cleanup_fs: 3141 if (new_fs) 3142 free_fs_struct(new_fs); 3143 3144 bad_unshare_out: 3145 return err; 3146 } 3147 3148 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3149 { 3150 return ksys_unshare(unshare_flags); 3151 } 3152 3153 /* 3154 * Helper to unshare the files of the current task. 3155 * We don't want to expose copy_files internals to 3156 * the exec layer of the kernel. 3157 */ 3158 3159 int unshare_files(void) 3160 { 3161 struct task_struct *task = current; 3162 struct files_struct *old, *copy = NULL; 3163 int error; 3164 3165 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3166 if (error || !copy) 3167 return error; 3168 3169 old = task->files; 3170 task_lock(task); 3171 task->files = copy; 3172 task_unlock(task); 3173 put_files_struct(old); 3174 return 0; 3175 } 3176 3177 int sysctl_max_threads(struct ctl_table *table, int write, 3178 void *buffer, size_t *lenp, loff_t *ppos) 3179 { 3180 struct ctl_table t; 3181 int ret; 3182 int threads = max_threads; 3183 int min = 1; 3184 int max = MAX_THREADS; 3185 3186 t = *table; 3187 t.data = &threads; 3188 t.extra1 = &min; 3189 t.extra2 = &max; 3190 3191 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3192 if (ret || !write) 3193 return ret; 3194 3195 max_threads = threads; 3196 3197 return 0; 3198 } 3199