xref: /openbmc/linux/kernel/fork.c (revision 812dd0202379a242f764f75aa30abfbef4398ba4)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169 
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 	int i;
190 
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *vm_stack = cached_vm_stacks[i];
193 
194 		if (!vm_stack)
195 			continue;
196 
197 		vfree(vm_stack->addr);
198 		cached_vm_stacks[i] = NULL;
199 	}
200 
201 	return 0;
202 }
203 #endif
204 
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 	void *stack;
209 	int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *s;
213 
214 		s = this_cpu_xchg(cached_stacks[i], NULL);
215 
216 		if (!s)
217 			continue;
218 
219 #ifdef CONFIG_DEBUG_KMEMLEAK
220 		/* Clear stale pointers from reused stack. */
221 		memset(s->addr, 0, THREAD_SIZE);
222 #endif
223 		tsk->stack_vm_area = s;
224 		return s->addr;
225 	}
226 
227 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
228 				     VMALLOC_START, VMALLOC_END,
229 				     THREADINFO_GFP,
230 				     PAGE_KERNEL,
231 				     0, node, __builtin_return_address(0));
232 
233 	/*
234 	 * We can't call find_vm_area() in interrupt context, and
235 	 * free_thread_stack() can be called in interrupt context,
236 	 * so cache the vm_struct.
237 	 */
238 	if (stack)
239 		tsk->stack_vm_area = find_vm_area(stack);
240 	return stack;
241 #else
242 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
243 					     THREAD_SIZE_ORDER);
244 
245 	return page ? page_address(page) : NULL;
246 #endif
247 }
248 
249 static inline void free_thread_stack(struct task_struct *tsk)
250 {
251 #ifdef CONFIG_VMAP_STACK
252 	if (task_stack_vm_area(tsk)) {
253 		int i;
254 
255 		for (i = 0; i < NR_CACHED_STACKS; i++) {
256 			if (this_cpu_cmpxchg(cached_stacks[i],
257 					NULL, tsk->stack_vm_area) != NULL)
258 				continue;
259 
260 			return;
261 		}
262 
263 		vfree_atomic(tsk->stack);
264 		return;
265 	}
266 #endif
267 
268 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
269 }
270 # else
271 static struct kmem_cache *thread_stack_cache;
272 
273 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
274 						  int node)
275 {
276 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
277 }
278 
279 static void free_thread_stack(struct task_struct *tsk)
280 {
281 	kmem_cache_free(thread_stack_cache, tsk->stack);
282 }
283 
284 void thread_stack_cache_init(void)
285 {
286 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
287 					THREAD_SIZE, THREAD_SIZE, 0, 0,
288 					THREAD_SIZE, NULL);
289 	BUG_ON(thread_stack_cache == NULL);
290 }
291 # endif
292 #endif
293 
294 /* SLAB cache for signal_struct structures (tsk->signal) */
295 static struct kmem_cache *signal_cachep;
296 
297 /* SLAB cache for sighand_struct structures (tsk->sighand) */
298 struct kmem_cache *sighand_cachep;
299 
300 /* SLAB cache for files_struct structures (tsk->files) */
301 struct kmem_cache *files_cachep;
302 
303 /* SLAB cache for fs_struct structures (tsk->fs) */
304 struct kmem_cache *fs_cachep;
305 
306 /* SLAB cache for vm_area_struct structures */
307 struct kmem_cache *vm_area_cachep;
308 
309 /* SLAB cache for mm_struct structures (tsk->mm) */
310 static struct kmem_cache *mm_cachep;
311 
312 static void account_kernel_stack(struct task_struct *tsk, int account)
313 {
314 	void *stack = task_stack_page(tsk);
315 	struct vm_struct *vm = task_stack_vm_area(tsk);
316 
317 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
318 
319 	if (vm) {
320 		int i;
321 
322 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
323 
324 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
325 			mod_zone_page_state(page_zone(vm->pages[i]),
326 					    NR_KERNEL_STACK_KB,
327 					    PAGE_SIZE / 1024 * account);
328 		}
329 
330 		/* All stack pages belong to the same memcg. */
331 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
332 				     account * (THREAD_SIZE / 1024));
333 	} else {
334 		/*
335 		 * All stack pages are in the same zone and belong to the
336 		 * same memcg.
337 		 */
338 		struct page *first_page = virt_to_page(stack);
339 
340 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
341 				    THREAD_SIZE / 1024 * account);
342 
343 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
344 				     account * (THREAD_SIZE / 1024));
345 	}
346 }
347 
348 static void release_task_stack(struct task_struct *tsk)
349 {
350 	if (WARN_ON(tsk->state != TASK_DEAD))
351 		return;  /* Better to leak the stack than to free prematurely */
352 
353 	account_kernel_stack(tsk, -1);
354 	arch_release_thread_stack(tsk->stack);
355 	free_thread_stack(tsk);
356 	tsk->stack = NULL;
357 #ifdef CONFIG_VMAP_STACK
358 	tsk->stack_vm_area = NULL;
359 #endif
360 }
361 
362 #ifdef CONFIG_THREAD_INFO_IN_TASK
363 void put_task_stack(struct task_struct *tsk)
364 {
365 	if (atomic_dec_and_test(&tsk->stack_refcount))
366 		release_task_stack(tsk);
367 }
368 #endif
369 
370 void free_task(struct task_struct *tsk)
371 {
372 #ifndef CONFIG_THREAD_INFO_IN_TASK
373 	/*
374 	 * The task is finally done with both the stack and thread_info,
375 	 * so free both.
376 	 */
377 	release_task_stack(tsk);
378 #else
379 	/*
380 	 * If the task had a separate stack allocation, it should be gone
381 	 * by now.
382 	 */
383 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
384 #endif
385 	rt_mutex_debug_task_free(tsk);
386 	ftrace_graph_exit_task(tsk);
387 	put_seccomp_filter(tsk);
388 	arch_release_task_struct(tsk);
389 	if (tsk->flags & PF_KTHREAD)
390 		free_kthread_struct(tsk);
391 	free_task_struct(tsk);
392 }
393 EXPORT_SYMBOL(free_task);
394 
395 #ifdef CONFIG_MMU
396 static __latent_entropy int dup_mmap(struct mm_struct *mm,
397 					struct mm_struct *oldmm)
398 {
399 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
400 	struct rb_node **rb_link, *rb_parent;
401 	int retval;
402 	unsigned long charge;
403 	LIST_HEAD(uf);
404 
405 	uprobe_start_dup_mmap();
406 	if (down_write_killable(&oldmm->mmap_sem)) {
407 		retval = -EINTR;
408 		goto fail_uprobe_end;
409 	}
410 	flush_cache_dup_mm(oldmm);
411 	uprobe_dup_mmap(oldmm, mm);
412 	/*
413 	 * Not linked in yet - no deadlock potential:
414 	 */
415 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
416 
417 	/* No ordering required: file already has been exposed. */
418 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
419 
420 	mm->total_vm = oldmm->total_vm;
421 	mm->data_vm = oldmm->data_vm;
422 	mm->exec_vm = oldmm->exec_vm;
423 	mm->stack_vm = oldmm->stack_vm;
424 
425 	rb_link = &mm->mm_rb.rb_node;
426 	rb_parent = NULL;
427 	pprev = &mm->mmap;
428 	retval = ksm_fork(mm, oldmm);
429 	if (retval)
430 		goto out;
431 	retval = khugepaged_fork(mm, oldmm);
432 	if (retval)
433 		goto out;
434 
435 	prev = NULL;
436 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
437 		struct file *file;
438 
439 		if (mpnt->vm_flags & VM_DONTCOPY) {
440 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
441 			continue;
442 		}
443 		charge = 0;
444 		if (mpnt->vm_flags & VM_ACCOUNT) {
445 			unsigned long len = vma_pages(mpnt);
446 
447 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
448 				goto fail_nomem;
449 			charge = len;
450 		}
451 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
452 		if (!tmp)
453 			goto fail_nomem;
454 		*tmp = *mpnt;
455 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
456 		retval = vma_dup_policy(mpnt, tmp);
457 		if (retval)
458 			goto fail_nomem_policy;
459 		tmp->vm_mm = mm;
460 		retval = dup_userfaultfd(tmp, &uf);
461 		if (retval)
462 			goto fail_nomem_anon_vma_fork;
463 		if (tmp->vm_flags & VM_WIPEONFORK) {
464 			/* VM_WIPEONFORK gets a clean slate in the child. */
465 			tmp->anon_vma = NULL;
466 			if (anon_vma_prepare(tmp))
467 				goto fail_nomem_anon_vma_fork;
468 		} else if (anon_vma_fork(tmp, mpnt))
469 			goto fail_nomem_anon_vma_fork;
470 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
471 		tmp->vm_next = tmp->vm_prev = NULL;
472 		file = tmp->vm_file;
473 		if (file) {
474 			struct inode *inode = file_inode(file);
475 			struct address_space *mapping = file->f_mapping;
476 
477 			get_file(file);
478 			if (tmp->vm_flags & VM_DENYWRITE)
479 				atomic_dec(&inode->i_writecount);
480 			i_mmap_lock_write(mapping);
481 			if (tmp->vm_flags & VM_SHARED)
482 				atomic_inc(&mapping->i_mmap_writable);
483 			flush_dcache_mmap_lock(mapping);
484 			/* insert tmp into the share list, just after mpnt */
485 			vma_interval_tree_insert_after(tmp, mpnt,
486 					&mapping->i_mmap);
487 			flush_dcache_mmap_unlock(mapping);
488 			i_mmap_unlock_write(mapping);
489 		}
490 
491 		/*
492 		 * Clear hugetlb-related page reserves for children. This only
493 		 * affects MAP_PRIVATE mappings. Faults generated by the child
494 		 * are not guaranteed to succeed, even if read-only
495 		 */
496 		if (is_vm_hugetlb_page(tmp))
497 			reset_vma_resv_huge_pages(tmp);
498 
499 		/*
500 		 * Link in the new vma and copy the page table entries.
501 		 */
502 		*pprev = tmp;
503 		pprev = &tmp->vm_next;
504 		tmp->vm_prev = prev;
505 		prev = tmp;
506 
507 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
508 		rb_link = &tmp->vm_rb.rb_right;
509 		rb_parent = &tmp->vm_rb;
510 
511 		mm->map_count++;
512 		if (!(tmp->vm_flags & VM_WIPEONFORK))
513 			retval = copy_page_range(mm, oldmm, mpnt);
514 
515 		if (tmp->vm_ops && tmp->vm_ops->open)
516 			tmp->vm_ops->open(tmp);
517 
518 		if (retval)
519 			goto out;
520 	}
521 	/* a new mm has just been created */
522 	arch_dup_mmap(oldmm, mm);
523 	retval = 0;
524 out:
525 	up_write(&mm->mmap_sem);
526 	flush_tlb_mm(oldmm);
527 	up_write(&oldmm->mmap_sem);
528 	dup_userfaultfd_complete(&uf);
529 fail_uprobe_end:
530 	uprobe_end_dup_mmap();
531 	return retval;
532 fail_nomem_anon_vma_fork:
533 	mpol_put(vma_policy(tmp));
534 fail_nomem_policy:
535 	kmem_cache_free(vm_area_cachep, tmp);
536 fail_nomem:
537 	retval = -ENOMEM;
538 	vm_unacct_memory(charge);
539 	goto out;
540 }
541 
542 static inline int mm_alloc_pgd(struct mm_struct *mm)
543 {
544 	mm->pgd = pgd_alloc(mm);
545 	if (unlikely(!mm->pgd))
546 		return -ENOMEM;
547 	return 0;
548 }
549 
550 static inline void mm_free_pgd(struct mm_struct *mm)
551 {
552 	pgd_free(mm, mm->pgd);
553 }
554 #else
555 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
556 {
557 	down_write(&oldmm->mmap_sem);
558 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
559 	up_write(&oldmm->mmap_sem);
560 	return 0;
561 }
562 #define mm_alloc_pgd(mm)	(0)
563 #define mm_free_pgd(mm)
564 #endif /* CONFIG_MMU */
565 
566 static void check_mm(struct mm_struct *mm)
567 {
568 	int i;
569 
570 	for (i = 0; i < NR_MM_COUNTERS; i++) {
571 		long x = atomic_long_read(&mm->rss_stat.count[i]);
572 
573 		if (unlikely(x))
574 			printk(KERN_ALERT "BUG: Bad rss-counter state "
575 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
576 	}
577 
578 	if (mm_pgtables_bytes(mm))
579 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
580 				mm_pgtables_bytes(mm));
581 
582 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
583 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
584 #endif
585 }
586 
587 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
588 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
589 
590 /*
591  * Called when the last reference to the mm
592  * is dropped: either by a lazy thread or by
593  * mmput. Free the page directory and the mm.
594  */
595 void __mmdrop(struct mm_struct *mm)
596 {
597 	BUG_ON(mm == &init_mm);
598 	mm_free_pgd(mm);
599 	destroy_context(mm);
600 	hmm_mm_destroy(mm);
601 	mmu_notifier_mm_destroy(mm);
602 	check_mm(mm);
603 	put_user_ns(mm->user_ns);
604 	free_mm(mm);
605 }
606 EXPORT_SYMBOL_GPL(__mmdrop);
607 
608 static void mmdrop_async_fn(struct work_struct *work)
609 {
610 	struct mm_struct *mm;
611 
612 	mm = container_of(work, struct mm_struct, async_put_work);
613 	__mmdrop(mm);
614 }
615 
616 static void mmdrop_async(struct mm_struct *mm)
617 {
618 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
619 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
620 		schedule_work(&mm->async_put_work);
621 	}
622 }
623 
624 static inline void free_signal_struct(struct signal_struct *sig)
625 {
626 	taskstats_tgid_free(sig);
627 	sched_autogroup_exit(sig);
628 	/*
629 	 * __mmdrop is not safe to call from softirq context on x86 due to
630 	 * pgd_dtor so postpone it to the async context
631 	 */
632 	if (sig->oom_mm)
633 		mmdrop_async(sig->oom_mm);
634 	kmem_cache_free(signal_cachep, sig);
635 }
636 
637 static inline void put_signal_struct(struct signal_struct *sig)
638 {
639 	if (atomic_dec_and_test(&sig->sigcnt))
640 		free_signal_struct(sig);
641 }
642 
643 void __put_task_struct(struct task_struct *tsk)
644 {
645 	WARN_ON(!tsk->exit_state);
646 	WARN_ON(atomic_read(&tsk->usage));
647 	WARN_ON(tsk == current);
648 
649 	cgroup_free(tsk);
650 	task_numa_free(tsk);
651 	security_task_free(tsk);
652 	exit_creds(tsk);
653 	delayacct_tsk_free(tsk);
654 	put_signal_struct(tsk->signal);
655 
656 	if (!profile_handoff_task(tsk))
657 		free_task(tsk);
658 }
659 EXPORT_SYMBOL_GPL(__put_task_struct);
660 
661 void __init __weak arch_task_cache_init(void) { }
662 
663 /*
664  * set_max_threads
665  */
666 static void set_max_threads(unsigned int max_threads_suggested)
667 {
668 	u64 threads;
669 
670 	/*
671 	 * The number of threads shall be limited such that the thread
672 	 * structures may only consume a small part of the available memory.
673 	 */
674 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
675 		threads = MAX_THREADS;
676 	else
677 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
678 				    (u64) THREAD_SIZE * 8UL);
679 
680 	if (threads > max_threads_suggested)
681 		threads = max_threads_suggested;
682 
683 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
684 }
685 
686 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
687 /* Initialized by the architecture: */
688 int arch_task_struct_size __read_mostly;
689 #endif
690 
691 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
692 {
693 	/* Fetch thread_struct whitelist for the architecture. */
694 	arch_thread_struct_whitelist(offset, size);
695 
696 	/*
697 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
698 	 * adjust offset to position of thread_struct in task_struct.
699 	 */
700 	if (unlikely(*size == 0))
701 		*offset = 0;
702 	else
703 		*offset += offsetof(struct task_struct, thread);
704 }
705 
706 void __init fork_init(void)
707 {
708 	int i;
709 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
710 #ifndef ARCH_MIN_TASKALIGN
711 #define ARCH_MIN_TASKALIGN	0
712 #endif
713 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
714 	unsigned long useroffset, usersize;
715 
716 	/* create a slab on which task_structs can be allocated */
717 	task_struct_whitelist(&useroffset, &usersize);
718 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
719 			arch_task_struct_size, align,
720 			SLAB_PANIC|SLAB_ACCOUNT,
721 			useroffset, usersize, NULL);
722 #endif
723 
724 	/* do the arch specific task caches init */
725 	arch_task_cache_init();
726 
727 	set_max_threads(MAX_THREADS);
728 
729 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
730 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
731 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
732 		init_task.signal->rlim[RLIMIT_NPROC];
733 
734 	for (i = 0; i < UCOUNT_COUNTS; i++) {
735 		init_user_ns.ucount_max[i] = max_threads/2;
736 	}
737 
738 #ifdef CONFIG_VMAP_STACK
739 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
740 			  NULL, free_vm_stack_cache);
741 #endif
742 
743 	lockdep_init_task(&init_task);
744 }
745 
746 int __weak arch_dup_task_struct(struct task_struct *dst,
747 					       struct task_struct *src)
748 {
749 	*dst = *src;
750 	return 0;
751 }
752 
753 void set_task_stack_end_magic(struct task_struct *tsk)
754 {
755 	unsigned long *stackend;
756 
757 	stackend = end_of_stack(tsk);
758 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
759 }
760 
761 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
762 {
763 	struct task_struct *tsk;
764 	unsigned long *stack;
765 	struct vm_struct *stack_vm_area;
766 	int err;
767 
768 	if (node == NUMA_NO_NODE)
769 		node = tsk_fork_get_node(orig);
770 	tsk = alloc_task_struct_node(node);
771 	if (!tsk)
772 		return NULL;
773 
774 	stack = alloc_thread_stack_node(tsk, node);
775 	if (!stack)
776 		goto free_tsk;
777 
778 	stack_vm_area = task_stack_vm_area(tsk);
779 
780 	err = arch_dup_task_struct(tsk, orig);
781 
782 	/*
783 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
784 	 * sure they're properly initialized before using any stack-related
785 	 * functions again.
786 	 */
787 	tsk->stack = stack;
788 #ifdef CONFIG_VMAP_STACK
789 	tsk->stack_vm_area = stack_vm_area;
790 #endif
791 #ifdef CONFIG_THREAD_INFO_IN_TASK
792 	atomic_set(&tsk->stack_refcount, 1);
793 #endif
794 
795 	if (err)
796 		goto free_stack;
797 
798 #ifdef CONFIG_SECCOMP
799 	/*
800 	 * We must handle setting up seccomp filters once we're under
801 	 * the sighand lock in case orig has changed between now and
802 	 * then. Until then, filter must be NULL to avoid messing up
803 	 * the usage counts on the error path calling free_task.
804 	 */
805 	tsk->seccomp.filter = NULL;
806 #endif
807 
808 	setup_thread_stack(tsk, orig);
809 	clear_user_return_notifier(tsk);
810 	clear_tsk_need_resched(tsk);
811 	set_task_stack_end_magic(tsk);
812 
813 #ifdef CONFIG_CC_STACKPROTECTOR
814 	tsk->stack_canary = get_random_canary();
815 #endif
816 
817 	/*
818 	 * One for us, one for whoever does the "release_task()" (usually
819 	 * parent)
820 	 */
821 	atomic_set(&tsk->usage, 2);
822 #ifdef CONFIG_BLK_DEV_IO_TRACE
823 	tsk->btrace_seq = 0;
824 #endif
825 	tsk->splice_pipe = NULL;
826 	tsk->task_frag.page = NULL;
827 	tsk->wake_q.next = NULL;
828 
829 	account_kernel_stack(tsk, 1);
830 
831 	kcov_task_init(tsk);
832 
833 #ifdef CONFIG_FAULT_INJECTION
834 	tsk->fail_nth = 0;
835 #endif
836 
837 	return tsk;
838 
839 free_stack:
840 	free_thread_stack(tsk);
841 free_tsk:
842 	free_task_struct(tsk);
843 	return NULL;
844 }
845 
846 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
847 
848 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
849 
850 static int __init coredump_filter_setup(char *s)
851 {
852 	default_dump_filter =
853 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
854 		MMF_DUMP_FILTER_MASK;
855 	return 1;
856 }
857 
858 __setup("coredump_filter=", coredump_filter_setup);
859 
860 #include <linux/init_task.h>
861 
862 static void mm_init_aio(struct mm_struct *mm)
863 {
864 #ifdef CONFIG_AIO
865 	spin_lock_init(&mm->ioctx_lock);
866 	mm->ioctx_table = NULL;
867 #endif
868 }
869 
870 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
871 {
872 #ifdef CONFIG_MEMCG
873 	mm->owner = p;
874 #endif
875 }
876 
877 static void mm_init_uprobes_state(struct mm_struct *mm)
878 {
879 #ifdef CONFIG_UPROBES
880 	mm->uprobes_state.xol_area = NULL;
881 #endif
882 }
883 
884 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
885 	struct user_namespace *user_ns)
886 {
887 	mm->mmap = NULL;
888 	mm->mm_rb = RB_ROOT;
889 	mm->vmacache_seqnum = 0;
890 	atomic_set(&mm->mm_users, 1);
891 	atomic_set(&mm->mm_count, 1);
892 	init_rwsem(&mm->mmap_sem);
893 	INIT_LIST_HEAD(&mm->mmlist);
894 	mm->core_state = NULL;
895 	mm_pgtables_bytes_init(mm);
896 	mm->map_count = 0;
897 	mm->locked_vm = 0;
898 	mm->pinned_vm = 0;
899 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
900 	spin_lock_init(&mm->page_table_lock);
901 	mm_init_cpumask(mm);
902 	mm_init_aio(mm);
903 	mm_init_owner(mm, p);
904 	RCU_INIT_POINTER(mm->exe_file, NULL);
905 	mmu_notifier_mm_init(mm);
906 	hmm_mm_init(mm);
907 	init_tlb_flush_pending(mm);
908 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
909 	mm->pmd_huge_pte = NULL;
910 #endif
911 	mm_init_uprobes_state(mm);
912 
913 	if (current->mm) {
914 		mm->flags = current->mm->flags & MMF_INIT_MASK;
915 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
916 	} else {
917 		mm->flags = default_dump_filter;
918 		mm->def_flags = 0;
919 	}
920 
921 	if (mm_alloc_pgd(mm))
922 		goto fail_nopgd;
923 
924 	if (init_new_context(p, mm))
925 		goto fail_nocontext;
926 
927 	mm->user_ns = get_user_ns(user_ns);
928 	return mm;
929 
930 fail_nocontext:
931 	mm_free_pgd(mm);
932 fail_nopgd:
933 	free_mm(mm);
934 	return NULL;
935 }
936 
937 /*
938  * Allocate and initialize an mm_struct.
939  */
940 struct mm_struct *mm_alloc(void)
941 {
942 	struct mm_struct *mm;
943 
944 	mm = allocate_mm();
945 	if (!mm)
946 		return NULL;
947 
948 	memset(mm, 0, sizeof(*mm));
949 	return mm_init(mm, current, current_user_ns());
950 }
951 
952 static inline void __mmput(struct mm_struct *mm)
953 {
954 	VM_BUG_ON(atomic_read(&mm->mm_users));
955 
956 	uprobe_clear_state(mm);
957 	exit_aio(mm);
958 	ksm_exit(mm);
959 	khugepaged_exit(mm); /* must run before exit_mmap */
960 	exit_mmap(mm);
961 	mm_put_huge_zero_page(mm);
962 	set_mm_exe_file(mm, NULL);
963 	if (!list_empty(&mm->mmlist)) {
964 		spin_lock(&mmlist_lock);
965 		list_del(&mm->mmlist);
966 		spin_unlock(&mmlist_lock);
967 	}
968 	if (mm->binfmt)
969 		module_put(mm->binfmt->module);
970 	mmdrop(mm);
971 }
972 
973 /*
974  * Decrement the use count and release all resources for an mm.
975  */
976 void mmput(struct mm_struct *mm)
977 {
978 	might_sleep();
979 
980 	if (atomic_dec_and_test(&mm->mm_users))
981 		__mmput(mm);
982 }
983 EXPORT_SYMBOL_GPL(mmput);
984 
985 #ifdef CONFIG_MMU
986 static void mmput_async_fn(struct work_struct *work)
987 {
988 	struct mm_struct *mm = container_of(work, struct mm_struct,
989 					    async_put_work);
990 
991 	__mmput(mm);
992 }
993 
994 void mmput_async(struct mm_struct *mm)
995 {
996 	if (atomic_dec_and_test(&mm->mm_users)) {
997 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
998 		schedule_work(&mm->async_put_work);
999 	}
1000 }
1001 #endif
1002 
1003 /**
1004  * set_mm_exe_file - change a reference to the mm's executable file
1005  *
1006  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1007  *
1008  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1009  * invocations: in mmput() nobody alive left, in execve task is single
1010  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1011  * mm->exe_file, but does so without using set_mm_exe_file() in order
1012  * to do avoid the need for any locks.
1013  */
1014 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1015 {
1016 	struct file *old_exe_file;
1017 
1018 	/*
1019 	 * It is safe to dereference the exe_file without RCU as
1020 	 * this function is only called if nobody else can access
1021 	 * this mm -- see comment above for justification.
1022 	 */
1023 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1024 
1025 	if (new_exe_file)
1026 		get_file(new_exe_file);
1027 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1028 	if (old_exe_file)
1029 		fput(old_exe_file);
1030 }
1031 
1032 /**
1033  * get_mm_exe_file - acquire a reference to the mm's executable file
1034  *
1035  * Returns %NULL if mm has no associated executable file.
1036  * User must release file via fput().
1037  */
1038 struct file *get_mm_exe_file(struct mm_struct *mm)
1039 {
1040 	struct file *exe_file;
1041 
1042 	rcu_read_lock();
1043 	exe_file = rcu_dereference(mm->exe_file);
1044 	if (exe_file && !get_file_rcu(exe_file))
1045 		exe_file = NULL;
1046 	rcu_read_unlock();
1047 	return exe_file;
1048 }
1049 EXPORT_SYMBOL(get_mm_exe_file);
1050 
1051 /**
1052  * get_task_exe_file - acquire a reference to the task's executable file
1053  *
1054  * Returns %NULL if task's mm (if any) has no associated executable file or
1055  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1056  * User must release file via fput().
1057  */
1058 struct file *get_task_exe_file(struct task_struct *task)
1059 {
1060 	struct file *exe_file = NULL;
1061 	struct mm_struct *mm;
1062 
1063 	task_lock(task);
1064 	mm = task->mm;
1065 	if (mm) {
1066 		if (!(task->flags & PF_KTHREAD))
1067 			exe_file = get_mm_exe_file(mm);
1068 	}
1069 	task_unlock(task);
1070 	return exe_file;
1071 }
1072 EXPORT_SYMBOL(get_task_exe_file);
1073 
1074 /**
1075  * get_task_mm - acquire a reference to the task's mm
1076  *
1077  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1078  * this kernel workthread has transiently adopted a user mm with use_mm,
1079  * to do its AIO) is not set and if so returns a reference to it, after
1080  * bumping up the use count.  User must release the mm via mmput()
1081  * after use.  Typically used by /proc and ptrace.
1082  */
1083 struct mm_struct *get_task_mm(struct task_struct *task)
1084 {
1085 	struct mm_struct *mm;
1086 
1087 	task_lock(task);
1088 	mm = task->mm;
1089 	if (mm) {
1090 		if (task->flags & PF_KTHREAD)
1091 			mm = NULL;
1092 		else
1093 			mmget(mm);
1094 	}
1095 	task_unlock(task);
1096 	return mm;
1097 }
1098 EXPORT_SYMBOL_GPL(get_task_mm);
1099 
1100 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1101 {
1102 	struct mm_struct *mm;
1103 	int err;
1104 
1105 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1106 	if (err)
1107 		return ERR_PTR(err);
1108 
1109 	mm = get_task_mm(task);
1110 	if (mm && mm != current->mm &&
1111 			!ptrace_may_access(task, mode)) {
1112 		mmput(mm);
1113 		mm = ERR_PTR(-EACCES);
1114 	}
1115 	mutex_unlock(&task->signal->cred_guard_mutex);
1116 
1117 	return mm;
1118 }
1119 
1120 static void complete_vfork_done(struct task_struct *tsk)
1121 {
1122 	struct completion *vfork;
1123 
1124 	task_lock(tsk);
1125 	vfork = tsk->vfork_done;
1126 	if (likely(vfork)) {
1127 		tsk->vfork_done = NULL;
1128 		complete(vfork);
1129 	}
1130 	task_unlock(tsk);
1131 }
1132 
1133 static int wait_for_vfork_done(struct task_struct *child,
1134 				struct completion *vfork)
1135 {
1136 	int killed;
1137 
1138 	freezer_do_not_count();
1139 	killed = wait_for_completion_killable(vfork);
1140 	freezer_count();
1141 
1142 	if (killed) {
1143 		task_lock(child);
1144 		child->vfork_done = NULL;
1145 		task_unlock(child);
1146 	}
1147 
1148 	put_task_struct(child);
1149 	return killed;
1150 }
1151 
1152 /* Please note the differences between mmput and mm_release.
1153  * mmput is called whenever we stop holding onto a mm_struct,
1154  * error success whatever.
1155  *
1156  * mm_release is called after a mm_struct has been removed
1157  * from the current process.
1158  *
1159  * This difference is important for error handling, when we
1160  * only half set up a mm_struct for a new process and need to restore
1161  * the old one.  Because we mmput the new mm_struct before
1162  * restoring the old one. . .
1163  * Eric Biederman 10 January 1998
1164  */
1165 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1166 {
1167 	/* Get rid of any futexes when releasing the mm */
1168 #ifdef CONFIG_FUTEX
1169 	if (unlikely(tsk->robust_list)) {
1170 		exit_robust_list(tsk);
1171 		tsk->robust_list = NULL;
1172 	}
1173 #ifdef CONFIG_COMPAT
1174 	if (unlikely(tsk->compat_robust_list)) {
1175 		compat_exit_robust_list(tsk);
1176 		tsk->compat_robust_list = NULL;
1177 	}
1178 #endif
1179 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1180 		exit_pi_state_list(tsk);
1181 #endif
1182 
1183 	uprobe_free_utask(tsk);
1184 
1185 	/* Get rid of any cached register state */
1186 	deactivate_mm(tsk, mm);
1187 
1188 	/*
1189 	 * Signal userspace if we're not exiting with a core dump
1190 	 * because we want to leave the value intact for debugging
1191 	 * purposes.
1192 	 */
1193 	if (tsk->clear_child_tid) {
1194 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1195 		    atomic_read(&mm->mm_users) > 1) {
1196 			/*
1197 			 * We don't check the error code - if userspace has
1198 			 * not set up a proper pointer then tough luck.
1199 			 */
1200 			put_user(0, tsk->clear_child_tid);
1201 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1202 					1, NULL, NULL, 0);
1203 		}
1204 		tsk->clear_child_tid = NULL;
1205 	}
1206 
1207 	/*
1208 	 * All done, finally we can wake up parent and return this mm to him.
1209 	 * Also kthread_stop() uses this completion for synchronization.
1210 	 */
1211 	if (tsk->vfork_done)
1212 		complete_vfork_done(tsk);
1213 }
1214 
1215 /*
1216  * Allocate a new mm structure and copy contents from the
1217  * mm structure of the passed in task structure.
1218  */
1219 static struct mm_struct *dup_mm(struct task_struct *tsk)
1220 {
1221 	struct mm_struct *mm, *oldmm = current->mm;
1222 	int err;
1223 
1224 	mm = allocate_mm();
1225 	if (!mm)
1226 		goto fail_nomem;
1227 
1228 	memcpy(mm, oldmm, sizeof(*mm));
1229 
1230 	if (!mm_init(mm, tsk, mm->user_ns))
1231 		goto fail_nomem;
1232 
1233 	err = dup_mmap(mm, oldmm);
1234 	if (err)
1235 		goto free_pt;
1236 
1237 	mm->hiwater_rss = get_mm_rss(mm);
1238 	mm->hiwater_vm = mm->total_vm;
1239 
1240 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1241 		goto free_pt;
1242 
1243 	return mm;
1244 
1245 free_pt:
1246 	/* don't put binfmt in mmput, we haven't got module yet */
1247 	mm->binfmt = NULL;
1248 	mmput(mm);
1249 
1250 fail_nomem:
1251 	return NULL;
1252 }
1253 
1254 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1255 {
1256 	struct mm_struct *mm, *oldmm;
1257 	int retval;
1258 
1259 	tsk->min_flt = tsk->maj_flt = 0;
1260 	tsk->nvcsw = tsk->nivcsw = 0;
1261 #ifdef CONFIG_DETECT_HUNG_TASK
1262 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1263 #endif
1264 
1265 	tsk->mm = NULL;
1266 	tsk->active_mm = NULL;
1267 
1268 	/*
1269 	 * Are we cloning a kernel thread?
1270 	 *
1271 	 * We need to steal a active VM for that..
1272 	 */
1273 	oldmm = current->mm;
1274 	if (!oldmm)
1275 		return 0;
1276 
1277 	/* initialize the new vmacache entries */
1278 	vmacache_flush(tsk);
1279 
1280 	if (clone_flags & CLONE_VM) {
1281 		mmget(oldmm);
1282 		mm = oldmm;
1283 		goto good_mm;
1284 	}
1285 
1286 	retval = -ENOMEM;
1287 	mm = dup_mm(tsk);
1288 	if (!mm)
1289 		goto fail_nomem;
1290 
1291 good_mm:
1292 	tsk->mm = mm;
1293 	tsk->active_mm = mm;
1294 	return 0;
1295 
1296 fail_nomem:
1297 	return retval;
1298 }
1299 
1300 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1301 {
1302 	struct fs_struct *fs = current->fs;
1303 	if (clone_flags & CLONE_FS) {
1304 		/* tsk->fs is already what we want */
1305 		spin_lock(&fs->lock);
1306 		if (fs->in_exec) {
1307 			spin_unlock(&fs->lock);
1308 			return -EAGAIN;
1309 		}
1310 		fs->users++;
1311 		spin_unlock(&fs->lock);
1312 		return 0;
1313 	}
1314 	tsk->fs = copy_fs_struct(fs);
1315 	if (!tsk->fs)
1316 		return -ENOMEM;
1317 	return 0;
1318 }
1319 
1320 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1321 {
1322 	struct files_struct *oldf, *newf;
1323 	int error = 0;
1324 
1325 	/*
1326 	 * A background process may not have any files ...
1327 	 */
1328 	oldf = current->files;
1329 	if (!oldf)
1330 		goto out;
1331 
1332 	if (clone_flags & CLONE_FILES) {
1333 		atomic_inc(&oldf->count);
1334 		goto out;
1335 	}
1336 
1337 	newf = dup_fd(oldf, &error);
1338 	if (!newf)
1339 		goto out;
1340 
1341 	tsk->files = newf;
1342 	error = 0;
1343 out:
1344 	return error;
1345 }
1346 
1347 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1348 {
1349 #ifdef CONFIG_BLOCK
1350 	struct io_context *ioc = current->io_context;
1351 	struct io_context *new_ioc;
1352 
1353 	if (!ioc)
1354 		return 0;
1355 	/*
1356 	 * Share io context with parent, if CLONE_IO is set
1357 	 */
1358 	if (clone_flags & CLONE_IO) {
1359 		ioc_task_link(ioc);
1360 		tsk->io_context = ioc;
1361 	} else if (ioprio_valid(ioc->ioprio)) {
1362 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1363 		if (unlikely(!new_ioc))
1364 			return -ENOMEM;
1365 
1366 		new_ioc->ioprio = ioc->ioprio;
1367 		put_io_context(new_ioc);
1368 	}
1369 #endif
1370 	return 0;
1371 }
1372 
1373 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1374 {
1375 	struct sighand_struct *sig;
1376 
1377 	if (clone_flags & CLONE_SIGHAND) {
1378 		atomic_inc(&current->sighand->count);
1379 		return 0;
1380 	}
1381 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1382 	rcu_assign_pointer(tsk->sighand, sig);
1383 	if (!sig)
1384 		return -ENOMEM;
1385 
1386 	atomic_set(&sig->count, 1);
1387 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1388 	return 0;
1389 }
1390 
1391 void __cleanup_sighand(struct sighand_struct *sighand)
1392 {
1393 	if (atomic_dec_and_test(&sighand->count)) {
1394 		signalfd_cleanup(sighand);
1395 		/*
1396 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1397 		 * without an RCU grace period, see __lock_task_sighand().
1398 		 */
1399 		kmem_cache_free(sighand_cachep, sighand);
1400 	}
1401 }
1402 
1403 #ifdef CONFIG_POSIX_TIMERS
1404 /*
1405  * Initialize POSIX timer handling for a thread group.
1406  */
1407 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1408 {
1409 	unsigned long cpu_limit;
1410 
1411 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1412 	if (cpu_limit != RLIM_INFINITY) {
1413 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1414 		sig->cputimer.running = true;
1415 	}
1416 
1417 	/* The timer lists. */
1418 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1419 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1420 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1421 }
1422 #else
1423 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1424 #endif
1425 
1426 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1427 {
1428 	struct signal_struct *sig;
1429 
1430 	if (clone_flags & CLONE_THREAD)
1431 		return 0;
1432 
1433 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1434 	tsk->signal = sig;
1435 	if (!sig)
1436 		return -ENOMEM;
1437 
1438 	sig->nr_threads = 1;
1439 	atomic_set(&sig->live, 1);
1440 	atomic_set(&sig->sigcnt, 1);
1441 
1442 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1443 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1444 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1445 
1446 	init_waitqueue_head(&sig->wait_chldexit);
1447 	sig->curr_target = tsk;
1448 	init_sigpending(&sig->shared_pending);
1449 	seqlock_init(&sig->stats_lock);
1450 	prev_cputime_init(&sig->prev_cputime);
1451 
1452 #ifdef CONFIG_POSIX_TIMERS
1453 	INIT_LIST_HEAD(&sig->posix_timers);
1454 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1455 	sig->real_timer.function = it_real_fn;
1456 #endif
1457 
1458 	task_lock(current->group_leader);
1459 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1460 	task_unlock(current->group_leader);
1461 
1462 	posix_cpu_timers_init_group(sig);
1463 
1464 	tty_audit_fork(sig);
1465 	sched_autogroup_fork(sig);
1466 
1467 	sig->oom_score_adj = current->signal->oom_score_adj;
1468 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1469 
1470 	mutex_init(&sig->cred_guard_mutex);
1471 
1472 	return 0;
1473 }
1474 
1475 static void copy_seccomp(struct task_struct *p)
1476 {
1477 #ifdef CONFIG_SECCOMP
1478 	/*
1479 	 * Must be called with sighand->lock held, which is common to
1480 	 * all threads in the group. Holding cred_guard_mutex is not
1481 	 * needed because this new task is not yet running and cannot
1482 	 * be racing exec.
1483 	 */
1484 	assert_spin_locked(&current->sighand->siglock);
1485 
1486 	/* Ref-count the new filter user, and assign it. */
1487 	get_seccomp_filter(current);
1488 	p->seccomp = current->seccomp;
1489 
1490 	/*
1491 	 * Explicitly enable no_new_privs here in case it got set
1492 	 * between the task_struct being duplicated and holding the
1493 	 * sighand lock. The seccomp state and nnp must be in sync.
1494 	 */
1495 	if (task_no_new_privs(current))
1496 		task_set_no_new_privs(p);
1497 
1498 	/*
1499 	 * If the parent gained a seccomp mode after copying thread
1500 	 * flags and between before we held the sighand lock, we have
1501 	 * to manually enable the seccomp thread flag here.
1502 	 */
1503 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1504 		set_tsk_thread_flag(p, TIF_SECCOMP);
1505 #endif
1506 }
1507 
1508 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1509 {
1510 	current->clear_child_tid = tidptr;
1511 
1512 	return task_pid_vnr(current);
1513 }
1514 
1515 static void rt_mutex_init_task(struct task_struct *p)
1516 {
1517 	raw_spin_lock_init(&p->pi_lock);
1518 #ifdef CONFIG_RT_MUTEXES
1519 	p->pi_waiters = RB_ROOT_CACHED;
1520 	p->pi_top_task = NULL;
1521 	p->pi_blocked_on = NULL;
1522 #endif
1523 }
1524 
1525 #ifdef CONFIG_POSIX_TIMERS
1526 /*
1527  * Initialize POSIX timer handling for a single task.
1528  */
1529 static void posix_cpu_timers_init(struct task_struct *tsk)
1530 {
1531 	tsk->cputime_expires.prof_exp = 0;
1532 	tsk->cputime_expires.virt_exp = 0;
1533 	tsk->cputime_expires.sched_exp = 0;
1534 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1535 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1536 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1537 }
1538 #else
1539 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1540 #endif
1541 
1542 static inline void
1543 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1544 {
1545 	 task->pids[type].pid = pid;
1546 }
1547 
1548 static inline void rcu_copy_process(struct task_struct *p)
1549 {
1550 #ifdef CONFIG_PREEMPT_RCU
1551 	p->rcu_read_lock_nesting = 0;
1552 	p->rcu_read_unlock_special.s = 0;
1553 	p->rcu_blocked_node = NULL;
1554 	INIT_LIST_HEAD(&p->rcu_node_entry);
1555 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1556 #ifdef CONFIG_TASKS_RCU
1557 	p->rcu_tasks_holdout = false;
1558 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1559 	p->rcu_tasks_idle_cpu = -1;
1560 #endif /* #ifdef CONFIG_TASKS_RCU */
1561 }
1562 
1563 /*
1564  * This creates a new process as a copy of the old one,
1565  * but does not actually start it yet.
1566  *
1567  * It copies the registers, and all the appropriate
1568  * parts of the process environment (as per the clone
1569  * flags). The actual kick-off is left to the caller.
1570  */
1571 static __latent_entropy struct task_struct *copy_process(
1572 					unsigned long clone_flags,
1573 					unsigned long stack_start,
1574 					unsigned long stack_size,
1575 					int __user *child_tidptr,
1576 					struct pid *pid,
1577 					int trace,
1578 					unsigned long tls,
1579 					int node)
1580 {
1581 	int retval;
1582 	struct task_struct *p;
1583 
1584 	/*
1585 	 * Don't allow sharing the root directory with processes in a different
1586 	 * namespace
1587 	 */
1588 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1589 		return ERR_PTR(-EINVAL);
1590 
1591 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1592 		return ERR_PTR(-EINVAL);
1593 
1594 	/*
1595 	 * Thread groups must share signals as well, and detached threads
1596 	 * can only be started up within the thread group.
1597 	 */
1598 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1599 		return ERR_PTR(-EINVAL);
1600 
1601 	/*
1602 	 * Shared signal handlers imply shared VM. By way of the above,
1603 	 * thread groups also imply shared VM. Blocking this case allows
1604 	 * for various simplifications in other code.
1605 	 */
1606 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1607 		return ERR_PTR(-EINVAL);
1608 
1609 	/*
1610 	 * Siblings of global init remain as zombies on exit since they are
1611 	 * not reaped by their parent (swapper). To solve this and to avoid
1612 	 * multi-rooted process trees, prevent global and container-inits
1613 	 * from creating siblings.
1614 	 */
1615 	if ((clone_flags & CLONE_PARENT) &&
1616 				current->signal->flags & SIGNAL_UNKILLABLE)
1617 		return ERR_PTR(-EINVAL);
1618 
1619 	/*
1620 	 * If the new process will be in a different pid or user namespace
1621 	 * do not allow it to share a thread group with the forking task.
1622 	 */
1623 	if (clone_flags & CLONE_THREAD) {
1624 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1625 		    (task_active_pid_ns(current) !=
1626 				current->nsproxy->pid_ns_for_children))
1627 			return ERR_PTR(-EINVAL);
1628 	}
1629 
1630 	retval = -ENOMEM;
1631 	p = dup_task_struct(current, node);
1632 	if (!p)
1633 		goto fork_out;
1634 
1635 	/*
1636 	 * This _must_ happen before we call free_task(), i.e. before we jump
1637 	 * to any of the bad_fork_* labels. This is to avoid freeing
1638 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1639 	 * kernel threads (PF_KTHREAD).
1640 	 */
1641 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1642 	/*
1643 	 * Clear TID on mm_release()?
1644 	 */
1645 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1646 
1647 	ftrace_graph_init_task(p);
1648 
1649 	rt_mutex_init_task(p);
1650 
1651 #ifdef CONFIG_PROVE_LOCKING
1652 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1653 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1654 #endif
1655 	retval = -EAGAIN;
1656 	if (atomic_read(&p->real_cred->user->processes) >=
1657 			task_rlimit(p, RLIMIT_NPROC)) {
1658 		if (p->real_cred->user != INIT_USER &&
1659 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1660 			goto bad_fork_free;
1661 	}
1662 	current->flags &= ~PF_NPROC_EXCEEDED;
1663 
1664 	retval = copy_creds(p, clone_flags);
1665 	if (retval < 0)
1666 		goto bad_fork_free;
1667 
1668 	/*
1669 	 * If multiple threads are within copy_process(), then this check
1670 	 * triggers too late. This doesn't hurt, the check is only there
1671 	 * to stop root fork bombs.
1672 	 */
1673 	retval = -EAGAIN;
1674 	if (nr_threads >= max_threads)
1675 		goto bad_fork_cleanup_count;
1676 
1677 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1678 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1679 	p->flags |= PF_FORKNOEXEC;
1680 	INIT_LIST_HEAD(&p->children);
1681 	INIT_LIST_HEAD(&p->sibling);
1682 	rcu_copy_process(p);
1683 	p->vfork_done = NULL;
1684 	spin_lock_init(&p->alloc_lock);
1685 
1686 	init_sigpending(&p->pending);
1687 
1688 	p->utime = p->stime = p->gtime = 0;
1689 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1690 	p->utimescaled = p->stimescaled = 0;
1691 #endif
1692 	prev_cputime_init(&p->prev_cputime);
1693 
1694 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1695 	seqcount_init(&p->vtime.seqcount);
1696 	p->vtime.starttime = 0;
1697 	p->vtime.state = VTIME_INACTIVE;
1698 #endif
1699 
1700 #if defined(SPLIT_RSS_COUNTING)
1701 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1702 #endif
1703 
1704 	p->default_timer_slack_ns = current->timer_slack_ns;
1705 
1706 	task_io_accounting_init(&p->ioac);
1707 	acct_clear_integrals(p);
1708 
1709 	posix_cpu_timers_init(p);
1710 
1711 	p->start_time = ktime_get_ns();
1712 	p->real_start_time = ktime_get_boot_ns();
1713 	p->io_context = NULL;
1714 	p->audit_context = NULL;
1715 	cgroup_fork(p);
1716 #ifdef CONFIG_NUMA
1717 	p->mempolicy = mpol_dup(p->mempolicy);
1718 	if (IS_ERR(p->mempolicy)) {
1719 		retval = PTR_ERR(p->mempolicy);
1720 		p->mempolicy = NULL;
1721 		goto bad_fork_cleanup_threadgroup_lock;
1722 	}
1723 #endif
1724 #ifdef CONFIG_CPUSETS
1725 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1726 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1727 	seqcount_init(&p->mems_allowed_seq);
1728 #endif
1729 #ifdef CONFIG_TRACE_IRQFLAGS
1730 	p->irq_events = 0;
1731 	p->hardirqs_enabled = 0;
1732 	p->hardirq_enable_ip = 0;
1733 	p->hardirq_enable_event = 0;
1734 	p->hardirq_disable_ip = _THIS_IP_;
1735 	p->hardirq_disable_event = 0;
1736 	p->softirqs_enabled = 1;
1737 	p->softirq_enable_ip = _THIS_IP_;
1738 	p->softirq_enable_event = 0;
1739 	p->softirq_disable_ip = 0;
1740 	p->softirq_disable_event = 0;
1741 	p->hardirq_context = 0;
1742 	p->softirq_context = 0;
1743 #endif
1744 
1745 	p->pagefault_disabled = 0;
1746 
1747 #ifdef CONFIG_LOCKDEP
1748 	p->lockdep_depth = 0; /* no locks held yet */
1749 	p->curr_chain_key = 0;
1750 	p->lockdep_recursion = 0;
1751 	lockdep_init_task(p);
1752 #endif
1753 
1754 #ifdef CONFIG_DEBUG_MUTEXES
1755 	p->blocked_on = NULL; /* not blocked yet */
1756 #endif
1757 #ifdef CONFIG_BCACHE
1758 	p->sequential_io	= 0;
1759 	p->sequential_io_avg	= 0;
1760 #endif
1761 
1762 	/* Perform scheduler related setup. Assign this task to a CPU. */
1763 	retval = sched_fork(clone_flags, p);
1764 	if (retval)
1765 		goto bad_fork_cleanup_policy;
1766 
1767 	retval = perf_event_init_task(p);
1768 	if (retval)
1769 		goto bad_fork_cleanup_policy;
1770 	retval = audit_alloc(p);
1771 	if (retval)
1772 		goto bad_fork_cleanup_perf;
1773 	/* copy all the process information */
1774 	shm_init_task(p);
1775 	retval = security_task_alloc(p, clone_flags);
1776 	if (retval)
1777 		goto bad_fork_cleanup_audit;
1778 	retval = copy_semundo(clone_flags, p);
1779 	if (retval)
1780 		goto bad_fork_cleanup_security;
1781 	retval = copy_files(clone_flags, p);
1782 	if (retval)
1783 		goto bad_fork_cleanup_semundo;
1784 	retval = copy_fs(clone_flags, p);
1785 	if (retval)
1786 		goto bad_fork_cleanup_files;
1787 	retval = copy_sighand(clone_flags, p);
1788 	if (retval)
1789 		goto bad_fork_cleanup_fs;
1790 	retval = copy_signal(clone_flags, p);
1791 	if (retval)
1792 		goto bad_fork_cleanup_sighand;
1793 	retval = copy_mm(clone_flags, p);
1794 	if (retval)
1795 		goto bad_fork_cleanup_signal;
1796 	retval = copy_namespaces(clone_flags, p);
1797 	if (retval)
1798 		goto bad_fork_cleanup_mm;
1799 	retval = copy_io(clone_flags, p);
1800 	if (retval)
1801 		goto bad_fork_cleanup_namespaces;
1802 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1803 	if (retval)
1804 		goto bad_fork_cleanup_io;
1805 
1806 	if (pid != &init_struct_pid) {
1807 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1808 		if (IS_ERR(pid)) {
1809 			retval = PTR_ERR(pid);
1810 			goto bad_fork_cleanup_thread;
1811 		}
1812 	}
1813 
1814 #ifdef CONFIG_BLOCK
1815 	p->plug = NULL;
1816 #endif
1817 #ifdef CONFIG_FUTEX
1818 	p->robust_list = NULL;
1819 #ifdef CONFIG_COMPAT
1820 	p->compat_robust_list = NULL;
1821 #endif
1822 	INIT_LIST_HEAD(&p->pi_state_list);
1823 	p->pi_state_cache = NULL;
1824 #endif
1825 	/*
1826 	 * sigaltstack should be cleared when sharing the same VM
1827 	 */
1828 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1829 		sas_ss_reset(p);
1830 
1831 	/*
1832 	 * Syscall tracing and stepping should be turned off in the
1833 	 * child regardless of CLONE_PTRACE.
1834 	 */
1835 	user_disable_single_step(p);
1836 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1837 #ifdef TIF_SYSCALL_EMU
1838 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1839 #endif
1840 	clear_all_latency_tracing(p);
1841 
1842 	/* ok, now we should be set up.. */
1843 	p->pid = pid_nr(pid);
1844 	if (clone_flags & CLONE_THREAD) {
1845 		p->exit_signal = -1;
1846 		p->group_leader = current->group_leader;
1847 		p->tgid = current->tgid;
1848 	} else {
1849 		if (clone_flags & CLONE_PARENT)
1850 			p->exit_signal = current->group_leader->exit_signal;
1851 		else
1852 			p->exit_signal = (clone_flags & CSIGNAL);
1853 		p->group_leader = p;
1854 		p->tgid = p->pid;
1855 	}
1856 
1857 	p->nr_dirtied = 0;
1858 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1859 	p->dirty_paused_when = 0;
1860 
1861 	p->pdeath_signal = 0;
1862 	INIT_LIST_HEAD(&p->thread_group);
1863 	p->task_works = NULL;
1864 
1865 	cgroup_threadgroup_change_begin(current);
1866 	/*
1867 	 * Ensure that the cgroup subsystem policies allow the new process to be
1868 	 * forked. It should be noted the the new process's css_set can be changed
1869 	 * between here and cgroup_post_fork() if an organisation operation is in
1870 	 * progress.
1871 	 */
1872 	retval = cgroup_can_fork(p);
1873 	if (retval)
1874 		goto bad_fork_free_pid;
1875 
1876 	/*
1877 	 * Make it visible to the rest of the system, but dont wake it up yet.
1878 	 * Need tasklist lock for parent etc handling!
1879 	 */
1880 	write_lock_irq(&tasklist_lock);
1881 
1882 	/* CLONE_PARENT re-uses the old parent */
1883 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1884 		p->real_parent = current->real_parent;
1885 		p->parent_exec_id = current->parent_exec_id;
1886 	} else {
1887 		p->real_parent = current;
1888 		p->parent_exec_id = current->self_exec_id;
1889 	}
1890 
1891 	klp_copy_process(p);
1892 
1893 	spin_lock(&current->sighand->siglock);
1894 
1895 	/*
1896 	 * Copy seccomp details explicitly here, in case they were changed
1897 	 * before holding sighand lock.
1898 	 */
1899 	copy_seccomp(p);
1900 
1901 	/*
1902 	 * Process group and session signals need to be delivered to just the
1903 	 * parent before the fork or both the parent and the child after the
1904 	 * fork. Restart if a signal comes in before we add the new process to
1905 	 * it's process group.
1906 	 * A fatal signal pending means that current will exit, so the new
1907 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1908 	*/
1909 	recalc_sigpending();
1910 	if (signal_pending(current)) {
1911 		retval = -ERESTARTNOINTR;
1912 		goto bad_fork_cancel_cgroup;
1913 	}
1914 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1915 		retval = -ENOMEM;
1916 		goto bad_fork_cancel_cgroup;
1917 	}
1918 
1919 	if (likely(p->pid)) {
1920 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1921 
1922 		init_task_pid(p, PIDTYPE_PID, pid);
1923 		if (thread_group_leader(p)) {
1924 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1925 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1926 
1927 			if (is_child_reaper(pid)) {
1928 				ns_of_pid(pid)->child_reaper = p;
1929 				p->signal->flags |= SIGNAL_UNKILLABLE;
1930 			}
1931 
1932 			p->signal->leader_pid = pid;
1933 			p->signal->tty = tty_kref_get(current->signal->tty);
1934 			/*
1935 			 * Inherit has_child_subreaper flag under the same
1936 			 * tasklist_lock with adding child to the process tree
1937 			 * for propagate_has_child_subreaper optimization.
1938 			 */
1939 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1940 							 p->real_parent->signal->is_child_subreaper;
1941 			list_add_tail(&p->sibling, &p->real_parent->children);
1942 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1943 			attach_pid(p, PIDTYPE_PGID);
1944 			attach_pid(p, PIDTYPE_SID);
1945 			__this_cpu_inc(process_counts);
1946 		} else {
1947 			current->signal->nr_threads++;
1948 			atomic_inc(&current->signal->live);
1949 			atomic_inc(&current->signal->sigcnt);
1950 			list_add_tail_rcu(&p->thread_group,
1951 					  &p->group_leader->thread_group);
1952 			list_add_tail_rcu(&p->thread_node,
1953 					  &p->signal->thread_head);
1954 		}
1955 		attach_pid(p, PIDTYPE_PID);
1956 		nr_threads++;
1957 	}
1958 
1959 	total_forks++;
1960 	spin_unlock(&current->sighand->siglock);
1961 	syscall_tracepoint_update(p);
1962 	write_unlock_irq(&tasklist_lock);
1963 
1964 	proc_fork_connector(p);
1965 	cgroup_post_fork(p);
1966 	cgroup_threadgroup_change_end(current);
1967 	perf_event_fork(p);
1968 
1969 	trace_task_newtask(p, clone_flags);
1970 	uprobe_copy_process(p, clone_flags);
1971 
1972 	return p;
1973 
1974 bad_fork_cancel_cgroup:
1975 	spin_unlock(&current->sighand->siglock);
1976 	write_unlock_irq(&tasklist_lock);
1977 	cgroup_cancel_fork(p);
1978 bad_fork_free_pid:
1979 	cgroup_threadgroup_change_end(current);
1980 	if (pid != &init_struct_pid)
1981 		free_pid(pid);
1982 bad_fork_cleanup_thread:
1983 	exit_thread(p);
1984 bad_fork_cleanup_io:
1985 	if (p->io_context)
1986 		exit_io_context(p);
1987 bad_fork_cleanup_namespaces:
1988 	exit_task_namespaces(p);
1989 bad_fork_cleanup_mm:
1990 	if (p->mm)
1991 		mmput(p->mm);
1992 bad_fork_cleanup_signal:
1993 	if (!(clone_flags & CLONE_THREAD))
1994 		free_signal_struct(p->signal);
1995 bad_fork_cleanup_sighand:
1996 	__cleanup_sighand(p->sighand);
1997 bad_fork_cleanup_fs:
1998 	exit_fs(p); /* blocking */
1999 bad_fork_cleanup_files:
2000 	exit_files(p); /* blocking */
2001 bad_fork_cleanup_semundo:
2002 	exit_sem(p);
2003 bad_fork_cleanup_security:
2004 	security_task_free(p);
2005 bad_fork_cleanup_audit:
2006 	audit_free(p);
2007 bad_fork_cleanup_perf:
2008 	perf_event_free_task(p);
2009 bad_fork_cleanup_policy:
2010 	lockdep_free_task(p);
2011 #ifdef CONFIG_NUMA
2012 	mpol_put(p->mempolicy);
2013 bad_fork_cleanup_threadgroup_lock:
2014 #endif
2015 	delayacct_tsk_free(p);
2016 bad_fork_cleanup_count:
2017 	atomic_dec(&p->cred->user->processes);
2018 	exit_creds(p);
2019 bad_fork_free:
2020 	p->state = TASK_DEAD;
2021 	put_task_stack(p);
2022 	free_task(p);
2023 fork_out:
2024 	return ERR_PTR(retval);
2025 }
2026 
2027 static inline void init_idle_pids(struct pid_link *links)
2028 {
2029 	enum pid_type type;
2030 
2031 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2032 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
2033 		links[type].pid = &init_struct_pid;
2034 	}
2035 }
2036 
2037 struct task_struct *fork_idle(int cpu)
2038 {
2039 	struct task_struct *task;
2040 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2041 			    cpu_to_node(cpu));
2042 	if (!IS_ERR(task)) {
2043 		init_idle_pids(task->pids);
2044 		init_idle(task, cpu);
2045 	}
2046 
2047 	return task;
2048 }
2049 
2050 /*
2051  *  Ok, this is the main fork-routine.
2052  *
2053  * It copies the process, and if successful kick-starts
2054  * it and waits for it to finish using the VM if required.
2055  */
2056 long _do_fork(unsigned long clone_flags,
2057 	      unsigned long stack_start,
2058 	      unsigned long stack_size,
2059 	      int __user *parent_tidptr,
2060 	      int __user *child_tidptr,
2061 	      unsigned long tls)
2062 {
2063 	struct completion vfork;
2064 	struct pid *pid;
2065 	struct task_struct *p;
2066 	int trace = 0;
2067 	long nr;
2068 
2069 	/*
2070 	 * Determine whether and which event to report to ptracer.  When
2071 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2072 	 * requested, no event is reported; otherwise, report if the event
2073 	 * for the type of forking is enabled.
2074 	 */
2075 	if (!(clone_flags & CLONE_UNTRACED)) {
2076 		if (clone_flags & CLONE_VFORK)
2077 			trace = PTRACE_EVENT_VFORK;
2078 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2079 			trace = PTRACE_EVENT_CLONE;
2080 		else
2081 			trace = PTRACE_EVENT_FORK;
2082 
2083 		if (likely(!ptrace_event_enabled(current, trace)))
2084 			trace = 0;
2085 	}
2086 
2087 	p = copy_process(clone_flags, stack_start, stack_size,
2088 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2089 	add_latent_entropy();
2090 
2091 	if (IS_ERR(p))
2092 		return PTR_ERR(p);
2093 
2094 	/*
2095 	 * Do this prior waking up the new thread - the thread pointer
2096 	 * might get invalid after that point, if the thread exits quickly.
2097 	 */
2098 	trace_sched_process_fork(current, p);
2099 
2100 	pid = get_task_pid(p, PIDTYPE_PID);
2101 	nr = pid_vnr(pid);
2102 
2103 	if (clone_flags & CLONE_PARENT_SETTID)
2104 		put_user(nr, parent_tidptr);
2105 
2106 	if (clone_flags & CLONE_VFORK) {
2107 		p->vfork_done = &vfork;
2108 		init_completion(&vfork);
2109 		get_task_struct(p);
2110 	}
2111 
2112 	wake_up_new_task(p);
2113 
2114 	/* forking complete and child started to run, tell ptracer */
2115 	if (unlikely(trace))
2116 		ptrace_event_pid(trace, pid);
2117 
2118 	if (clone_flags & CLONE_VFORK) {
2119 		if (!wait_for_vfork_done(p, &vfork))
2120 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2121 	}
2122 
2123 	put_pid(pid);
2124 	return nr;
2125 }
2126 
2127 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2128 /* For compatibility with architectures that call do_fork directly rather than
2129  * using the syscall entry points below. */
2130 long do_fork(unsigned long clone_flags,
2131 	      unsigned long stack_start,
2132 	      unsigned long stack_size,
2133 	      int __user *parent_tidptr,
2134 	      int __user *child_tidptr)
2135 {
2136 	return _do_fork(clone_flags, stack_start, stack_size,
2137 			parent_tidptr, child_tidptr, 0);
2138 }
2139 #endif
2140 
2141 /*
2142  * Create a kernel thread.
2143  */
2144 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2145 {
2146 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2147 		(unsigned long)arg, NULL, NULL, 0);
2148 }
2149 
2150 #ifdef __ARCH_WANT_SYS_FORK
2151 SYSCALL_DEFINE0(fork)
2152 {
2153 #ifdef CONFIG_MMU
2154 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2155 #else
2156 	/* can not support in nommu mode */
2157 	return -EINVAL;
2158 #endif
2159 }
2160 #endif
2161 
2162 #ifdef __ARCH_WANT_SYS_VFORK
2163 SYSCALL_DEFINE0(vfork)
2164 {
2165 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2166 			0, NULL, NULL, 0);
2167 }
2168 #endif
2169 
2170 #ifdef __ARCH_WANT_SYS_CLONE
2171 #ifdef CONFIG_CLONE_BACKWARDS
2172 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2173 		 int __user *, parent_tidptr,
2174 		 unsigned long, tls,
2175 		 int __user *, child_tidptr)
2176 #elif defined(CONFIG_CLONE_BACKWARDS2)
2177 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2178 		 int __user *, parent_tidptr,
2179 		 int __user *, child_tidptr,
2180 		 unsigned long, tls)
2181 #elif defined(CONFIG_CLONE_BACKWARDS3)
2182 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2183 		int, stack_size,
2184 		int __user *, parent_tidptr,
2185 		int __user *, child_tidptr,
2186 		unsigned long, tls)
2187 #else
2188 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2189 		 int __user *, parent_tidptr,
2190 		 int __user *, child_tidptr,
2191 		 unsigned long, tls)
2192 #endif
2193 {
2194 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2195 }
2196 #endif
2197 
2198 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2199 {
2200 	struct task_struct *leader, *parent, *child;
2201 	int res;
2202 
2203 	read_lock(&tasklist_lock);
2204 	leader = top = top->group_leader;
2205 down:
2206 	for_each_thread(leader, parent) {
2207 		list_for_each_entry(child, &parent->children, sibling) {
2208 			res = visitor(child, data);
2209 			if (res) {
2210 				if (res < 0)
2211 					goto out;
2212 				leader = child;
2213 				goto down;
2214 			}
2215 up:
2216 			;
2217 		}
2218 	}
2219 
2220 	if (leader != top) {
2221 		child = leader;
2222 		parent = child->real_parent;
2223 		leader = parent->group_leader;
2224 		goto up;
2225 	}
2226 out:
2227 	read_unlock(&tasklist_lock);
2228 }
2229 
2230 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2231 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2232 #endif
2233 
2234 static void sighand_ctor(void *data)
2235 {
2236 	struct sighand_struct *sighand = data;
2237 
2238 	spin_lock_init(&sighand->siglock);
2239 	init_waitqueue_head(&sighand->signalfd_wqh);
2240 }
2241 
2242 void __init proc_caches_init(void)
2243 {
2244 	sighand_cachep = kmem_cache_create("sighand_cache",
2245 			sizeof(struct sighand_struct), 0,
2246 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2247 			SLAB_ACCOUNT, sighand_ctor);
2248 	signal_cachep = kmem_cache_create("signal_cache",
2249 			sizeof(struct signal_struct), 0,
2250 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2251 			NULL);
2252 	files_cachep = kmem_cache_create("files_cache",
2253 			sizeof(struct files_struct), 0,
2254 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2255 			NULL);
2256 	fs_cachep = kmem_cache_create("fs_cache",
2257 			sizeof(struct fs_struct), 0,
2258 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2259 			NULL);
2260 	/*
2261 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2262 	 * whole struct cpumask for the OFFSTACK case. We could change
2263 	 * this to *only* allocate as much of it as required by the
2264 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2265 	 * is at the end of the structure, exactly for that reason.
2266 	 */
2267 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2268 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2269 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2270 			offsetof(struct mm_struct, saved_auxv),
2271 			sizeof_field(struct mm_struct, saved_auxv),
2272 			NULL);
2273 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2274 	mmap_init();
2275 	nsproxy_cache_init();
2276 }
2277 
2278 /*
2279  * Check constraints on flags passed to the unshare system call.
2280  */
2281 static int check_unshare_flags(unsigned long unshare_flags)
2282 {
2283 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2284 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2285 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2286 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2287 		return -EINVAL;
2288 	/*
2289 	 * Not implemented, but pretend it works if there is nothing
2290 	 * to unshare.  Note that unsharing the address space or the
2291 	 * signal handlers also need to unshare the signal queues (aka
2292 	 * CLONE_THREAD).
2293 	 */
2294 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2295 		if (!thread_group_empty(current))
2296 			return -EINVAL;
2297 	}
2298 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2299 		if (atomic_read(&current->sighand->count) > 1)
2300 			return -EINVAL;
2301 	}
2302 	if (unshare_flags & CLONE_VM) {
2303 		if (!current_is_single_threaded())
2304 			return -EINVAL;
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 /*
2311  * Unshare the filesystem structure if it is being shared
2312  */
2313 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2314 {
2315 	struct fs_struct *fs = current->fs;
2316 
2317 	if (!(unshare_flags & CLONE_FS) || !fs)
2318 		return 0;
2319 
2320 	/* don't need lock here; in the worst case we'll do useless copy */
2321 	if (fs->users == 1)
2322 		return 0;
2323 
2324 	*new_fsp = copy_fs_struct(fs);
2325 	if (!*new_fsp)
2326 		return -ENOMEM;
2327 
2328 	return 0;
2329 }
2330 
2331 /*
2332  * Unshare file descriptor table if it is being shared
2333  */
2334 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2335 {
2336 	struct files_struct *fd = current->files;
2337 	int error = 0;
2338 
2339 	if ((unshare_flags & CLONE_FILES) &&
2340 	    (fd && atomic_read(&fd->count) > 1)) {
2341 		*new_fdp = dup_fd(fd, &error);
2342 		if (!*new_fdp)
2343 			return error;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 /*
2350  * unshare allows a process to 'unshare' part of the process
2351  * context which was originally shared using clone.  copy_*
2352  * functions used by do_fork() cannot be used here directly
2353  * because they modify an inactive task_struct that is being
2354  * constructed. Here we are modifying the current, active,
2355  * task_struct.
2356  */
2357 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2358 {
2359 	struct fs_struct *fs, *new_fs = NULL;
2360 	struct files_struct *fd, *new_fd = NULL;
2361 	struct cred *new_cred = NULL;
2362 	struct nsproxy *new_nsproxy = NULL;
2363 	int do_sysvsem = 0;
2364 	int err;
2365 
2366 	/*
2367 	 * If unsharing a user namespace must also unshare the thread group
2368 	 * and unshare the filesystem root and working directories.
2369 	 */
2370 	if (unshare_flags & CLONE_NEWUSER)
2371 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2372 	/*
2373 	 * If unsharing vm, must also unshare signal handlers.
2374 	 */
2375 	if (unshare_flags & CLONE_VM)
2376 		unshare_flags |= CLONE_SIGHAND;
2377 	/*
2378 	 * If unsharing a signal handlers, must also unshare the signal queues.
2379 	 */
2380 	if (unshare_flags & CLONE_SIGHAND)
2381 		unshare_flags |= CLONE_THREAD;
2382 	/*
2383 	 * If unsharing namespace, must also unshare filesystem information.
2384 	 */
2385 	if (unshare_flags & CLONE_NEWNS)
2386 		unshare_flags |= CLONE_FS;
2387 
2388 	err = check_unshare_flags(unshare_flags);
2389 	if (err)
2390 		goto bad_unshare_out;
2391 	/*
2392 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2393 	 * to a new ipc namespace, the semaphore arrays from the old
2394 	 * namespace are unreachable.
2395 	 */
2396 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2397 		do_sysvsem = 1;
2398 	err = unshare_fs(unshare_flags, &new_fs);
2399 	if (err)
2400 		goto bad_unshare_out;
2401 	err = unshare_fd(unshare_flags, &new_fd);
2402 	if (err)
2403 		goto bad_unshare_cleanup_fs;
2404 	err = unshare_userns(unshare_flags, &new_cred);
2405 	if (err)
2406 		goto bad_unshare_cleanup_fd;
2407 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2408 					 new_cred, new_fs);
2409 	if (err)
2410 		goto bad_unshare_cleanup_cred;
2411 
2412 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2413 		if (do_sysvsem) {
2414 			/*
2415 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2416 			 */
2417 			exit_sem(current);
2418 		}
2419 		if (unshare_flags & CLONE_NEWIPC) {
2420 			/* Orphan segments in old ns (see sem above). */
2421 			exit_shm(current);
2422 			shm_init_task(current);
2423 		}
2424 
2425 		if (new_nsproxy)
2426 			switch_task_namespaces(current, new_nsproxy);
2427 
2428 		task_lock(current);
2429 
2430 		if (new_fs) {
2431 			fs = current->fs;
2432 			spin_lock(&fs->lock);
2433 			current->fs = new_fs;
2434 			if (--fs->users)
2435 				new_fs = NULL;
2436 			else
2437 				new_fs = fs;
2438 			spin_unlock(&fs->lock);
2439 		}
2440 
2441 		if (new_fd) {
2442 			fd = current->files;
2443 			current->files = new_fd;
2444 			new_fd = fd;
2445 		}
2446 
2447 		task_unlock(current);
2448 
2449 		if (new_cred) {
2450 			/* Install the new user namespace */
2451 			commit_creds(new_cred);
2452 			new_cred = NULL;
2453 		}
2454 	}
2455 
2456 	perf_event_namespaces(current);
2457 
2458 bad_unshare_cleanup_cred:
2459 	if (new_cred)
2460 		put_cred(new_cred);
2461 bad_unshare_cleanup_fd:
2462 	if (new_fd)
2463 		put_files_struct(new_fd);
2464 
2465 bad_unshare_cleanup_fs:
2466 	if (new_fs)
2467 		free_fs_struct(new_fs);
2468 
2469 bad_unshare_out:
2470 	return err;
2471 }
2472 
2473 /*
2474  *	Helper to unshare the files of the current task.
2475  *	We don't want to expose copy_files internals to
2476  *	the exec layer of the kernel.
2477  */
2478 
2479 int unshare_files(struct files_struct **displaced)
2480 {
2481 	struct task_struct *task = current;
2482 	struct files_struct *copy = NULL;
2483 	int error;
2484 
2485 	error = unshare_fd(CLONE_FILES, &copy);
2486 	if (error || !copy) {
2487 		*displaced = NULL;
2488 		return error;
2489 	}
2490 	*displaced = task->files;
2491 	task_lock(task);
2492 	task->files = copy;
2493 	task_unlock(task);
2494 	return 0;
2495 }
2496 
2497 int sysctl_max_threads(struct ctl_table *table, int write,
2498 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2499 {
2500 	struct ctl_table t;
2501 	int ret;
2502 	int threads = max_threads;
2503 	int min = MIN_THREADS;
2504 	int max = MAX_THREADS;
2505 
2506 	t = *table;
2507 	t.data = &threads;
2508 	t.extra1 = &min;
2509 	t.extra2 = &max;
2510 
2511 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2512 	if (ret || !write)
2513 		return ret;
2514 
2515 	set_max_threads(threads);
2516 
2517 	return 0;
2518 }
2519