1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 dup_anon_vma_name(orig, new); 370 } 371 return new; 372 } 373 374 void vm_area_free(struct vm_area_struct *vma) 375 { 376 free_anon_vma_name(vma); 377 kmem_cache_free(vm_area_cachep, vma); 378 } 379 380 static void account_kernel_stack(struct task_struct *tsk, int account) 381 { 382 void *stack = task_stack_page(tsk); 383 struct vm_struct *vm = task_stack_vm_area(tsk); 384 385 if (vm) { 386 int i; 387 388 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 389 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 390 account * (PAGE_SIZE / 1024)); 391 } else { 392 /* All stack pages are in the same node. */ 393 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 394 account * (THREAD_SIZE / 1024)); 395 } 396 } 397 398 static int memcg_charge_kernel_stack(struct task_struct *tsk) 399 { 400 #ifdef CONFIG_VMAP_STACK 401 struct vm_struct *vm = task_stack_vm_area(tsk); 402 int ret; 403 404 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 405 406 if (vm) { 407 int i; 408 409 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 410 411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 412 /* 413 * If memcg_kmem_charge_page() fails, page's 414 * memory cgroup pointer is NULL, and 415 * memcg_kmem_uncharge_page() in free_thread_stack() 416 * will ignore this page. 417 */ 418 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 419 0); 420 if (ret) 421 return ret; 422 } 423 } 424 #endif 425 return 0; 426 } 427 428 static void release_task_stack(struct task_struct *tsk) 429 { 430 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 431 return; /* Better to leak the stack than to free prematurely */ 432 433 account_kernel_stack(tsk, -1); 434 free_thread_stack(tsk); 435 tsk->stack = NULL; 436 #ifdef CONFIG_VMAP_STACK 437 tsk->stack_vm_area = NULL; 438 #endif 439 } 440 441 #ifdef CONFIG_THREAD_INFO_IN_TASK 442 void put_task_stack(struct task_struct *tsk) 443 { 444 if (refcount_dec_and_test(&tsk->stack_refcount)) 445 release_task_stack(tsk); 446 } 447 #endif 448 449 void free_task(struct task_struct *tsk) 450 { 451 release_user_cpus_ptr(tsk); 452 scs_release(tsk); 453 454 #ifndef CONFIG_THREAD_INFO_IN_TASK 455 /* 456 * The task is finally done with both the stack and thread_info, 457 * so free both. 458 */ 459 release_task_stack(tsk); 460 #else 461 /* 462 * If the task had a separate stack allocation, it should be gone 463 * by now. 464 */ 465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 466 #endif 467 rt_mutex_debug_task_free(tsk); 468 ftrace_graph_exit_task(tsk); 469 arch_release_task_struct(tsk); 470 if (tsk->flags & PF_KTHREAD) 471 free_kthread_struct(tsk); 472 free_task_struct(tsk); 473 } 474 EXPORT_SYMBOL(free_task); 475 476 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 477 { 478 struct file *exe_file; 479 480 exe_file = get_mm_exe_file(oldmm); 481 RCU_INIT_POINTER(mm->exe_file, exe_file); 482 /* 483 * We depend on the oldmm having properly denied write access to the 484 * exe_file already. 485 */ 486 if (exe_file && deny_write_access(exe_file)) 487 pr_warn_once("deny_write_access() failed in %s\n", __func__); 488 } 489 490 #ifdef CONFIG_MMU 491 static __latent_entropy int dup_mmap(struct mm_struct *mm, 492 struct mm_struct *oldmm) 493 { 494 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 495 struct rb_node **rb_link, *rb_parent; 496 int retval; 497 unsigned long charge; 498 LIST_HEAD(uf); 499 500 uprobe_start_dup_mmap(); 501 if (mmap_write_lock_killable(oldmm)) { 502 retval = -EINTR; 503 goto fail_uprobe_end; 504 } 505 flush_cache_dup_mm(oldmm); 506 uprobe_dup_mmap(oldmm, mm); 507 /* 508 * Not linked in yet - no deadlock potential: 509 */ 510 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 511 512 /* No ordering required: file already has been exposed. */ 513 dup_mm_exe_file(mm, oldmm); 514 515 mm->total_vm = oldmm->total_vm; 516 mm->data_vm = oldmm->data_vm; 517 mm->exec_vm = oldmm->exec_vm; 518 mm->stack_vm = oldmm->stack_vm; 519 520 rb_link = &mm->mm_rb.rb_node; 521 rb_parent = NULL; 522 pprev = &mm->mmap; 523 retval = ksm_fork(mm, oldmm); 524 if (retval) 525 goto out; 526 retval = khugepaged_fork(mm, oldmm); 527 if (retval) 528 goto out; 529 530 prev = NULL; 531 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 532 struct file *file; 533 534 if (mpnt->vm_flags & VM_DONTCOPY) { 535 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 536 continue; 537 } 538 charge = 0; 539 /* 540 * Don't duplicate many vmas if we've been oom-killed (for 541 * example) 542 */ 543 if (fatal_signal_pending(current)) { 544 retval = -EINTR; 545 goto out; 546 } 547 if (mpnt->vm_flags & VM_ACCOUNT) { 548 unsigned long len = vma_pages(mpnt); 549 550 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 551 goto fail_nomem; 552 charge = len; 553 } 554 tmp = vm_area_dup(mpnt); 555 if (!tmp) 556 goto fail_nomem; 557 retval = vma_dup_policy(mpnt, tmp); 558 if (retval) 559 goto fail_nomem_policy; 560 tmp->vm_mm = mm; 561 retval = dup_userfaultfd(tmp, &uf); 562 if (retval) 563 goto fail_nomem_anon_vma_fork; 564 if (tmp->vm_flags & VM_WIPEONFORK) { 565 /* 566 * VM_WIPEONFORK gets a clean slate in the child. 567 * Don't prepare anon_vma until fault since we don't 568 * copy page for current vma. 569 */ 570 tmp->anon_vma = NULL; 571 } else if (anon_vma_fork(tmp, mpnt)) 572 goto fail_nomem_anon_vma_fork; 573 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 574 file = tmp->vm_file; 575 if (file) { 576 struct address_space *mapping = file->f_mapping; 577 578 get_file(file); 579 i_mmap_lock_write(mapping); 580 if (tmp->vm_flags & VM_SHARED) 581 mapping_allow_writable(mapping); 582 flush_dcache_mmap_lock(mapping); 583 /* insert tmp into the share list, just after mpnt */ 584 vma_interval_tree_insert_after(tmp, mpnt, 585 &mapping->i_mmap); 586 flush_dcache_mmap_unlock(mapping); 587 i_mmap_unlock_write(mapping); 588 } 589 590 /* 591 * Clear hugetlb-related page reserves for children. This only 592 * affects MAP_PRIVATE mappings. Faults generated by the child 593 * are not guaranteed to succeed, even if read-only 594 */ 595 if (is_vm_hugetlb_page(tmp)) 596 reset_vma_resv_huge_pages(tmp); 597 598 /* 599 * Link in the new vma and copy the page table entries. 600 */ 601 *pprev = tmp; 602 pprev = &tmp->vm_next; 603 tmp->vm_prev = prev; 604 prev = tmp; 605 606 __vma_link_rb(mm, tmp, rb_link, rb_parent); 607 rb_link = &tmp->vm_rb.rb_right; 608 rb_parent = &tmp->vm_rb; 609 610 mm->map_count++; 611 if (!(tmp->vm_flags & VM_WIPEONFORK)) 612 retval = copy_page_range(tmp, mpnt); 613 614 if (tmp->vm_ops && tmp->vm_ops->open) 615 tmp->vm_ops->open(tmp); 616 617 if (retval) 618 goto out; 619 } 620 /* a new mm has just been created */ 621 retval = arch_dup_mmap(oldmm, mm); 622 out: 623 mmap_write_unlock(mm); 624 flush_tlb_mm(oldmm); 625 mmap_write_unlock(oldmm); 626 dup_userfaultfd_complete(&uf); 627 fail_uprobe_end: 628 uprobe_end_dup_mmap(); 629 return retval; 630 fail_nomem_anon_vma_fork: 631 mpol_put(vma_policy(tmp)); 632 fail_nomem_policy: 633 vm_area_free(tmp); 634 fail_nomem: 635 retval = -ENOMEM; 636 vm_unacct_memory(charge); 637 goto out; 638 } 639 640 static inline int mm_alloc_pgd(struct mm_struct *mm) 641 { 642 mm->pgd = pgd_alloc(mm); 643 if (unlikely(!mm->pgd)) 644 return -ENOMEM; 645 return 0; 646 } 647 648 static inline void mm_free_pgd(struct mm_struct *mm) 649 { 650 pgd_free(mm, mm->pgd); 651 } 652 #else 653 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 654 { 655 mmap_write_lock(oldmm); 656 dup_mm_exe_file(mm, oldmm); 657 mmap_write_unlock(oldmm); 658 return 0; 659 } 660 #define mm_alloc_pgd(mm) (0) 661 #define mm_free_pgd(mm) 662 #endif /* CONFIG_MMU */ 663 664 static void check_mm(struct mm_struct *mm) 665 { 666 int i; 667 668 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 669 "Please make sure 'struct resident_page_types[]' is updated as well"); 670 671 for (i = 0; i < NR_MM_COUNTERS; i++) { 672 long x = atomic_long_read(&mm->rss_stat.count[i]); 673 674 if (unlikely(x)) 675 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 676 mm, resident_page_types[i], x); 677 } 678 679 if (mm_pgtables_bytes(mm)) 680 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 681 mm_pgtables_bytes(mm)); 682 683 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 684 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 685 #endif 686 } 687 688 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 689 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 690 691 /* 692 * Called when the last reference to the mm 693 * is dropped: either by a lazy thread or by 694 * mmput. Free the page directory and the mm. 695 */ 696 void __mmdrop(struct mm_struct *mm) 697 { 698 BUG_ON(mm == &init_mm); 699 WARN_ON_ONCE(mm == current->mm); 700 WARN_ON_ONCE(mm == current->active_mm); 701 mm_free_pgd(mm); 702 destroy_context(mm); 703 mmu_notifier_subscriptions_destroy(mm); 704 check_mm(mm); 705 put_user_ns(mm->user_ns); 706 free_mm(mm); 707 } 708 EXPORT_SYMBOL_GPL(__mmdrop); 709 710 static void mmdrop_async_fn(struct work_struct *work) 711 { 712 struct mm_struct *mm; 713 714 mm = container_of(work, struct mm_struct, async_put_work); 715 __mmdrop(mm); 716 } 717 718 static void mmdrop_async(struct mm_struct *mm) 719 { 720 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 721 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 722 schedule_work(&mm->async_put_work); 723 } 724 } 725 726 static inline void free_signal_struct(struct signal_struct *sig) 727 { 728 taskstats_tgid_free(sig); 729 sched_autogroup_exit(sig); 730 /* 731 * __mmdrop is not safe to call from softirq context on x86 due to 732 * pgd_dtor so postpone it to the async context 733 */ 734 if (sig->oom_mm) 735 mmdrop_async(sig->oom_mm); 736 kmem_cache_free(signal_cachep, sig); 737 } 738 739 static inline void put_signal_struct(struct signal_struct *sig) 740 { 741 if (refcount_dec_and_test(&sig->sigcnt)) 742 free_signal_struct(sig); 743 } 744 745 void __put_task_struct(struct task_struct *tsk) 746 { 747 WARN_ON(!tsk->exit_state); 748 WARN_ON(refcount_read(&tsk->usage)); 749 WARN_ON(tsk == current); 750 751 io_uring_free(tsk); 752 cgroup_free(tsk); 753 task_numa_free(tsk, true); 754 security_task_free(tsk); 755 bpf_task_storage_free(tsk); 756 exit_creds(tsk); 757 delayacct_tsk_free(tsk); 758 put_signal_struct(tsk->signal); 759 sched_core_free(tsk); 760 free_task(tsk); 761 } 762 EXPORT_SYMBOL_GPL(__put_task_struct); 763 764 void __init __weak arch_task_cache_init(void) { } 765 766 /* 767 * set_max_threads 768 */ 769 static void set_max_threads(unsigned int max_threads_suggested) 770 { 771 u64 threads; 772 unsigned long nr_pages = totalram_pages(); 773 774 /* 775 * The number of threads shall be limited such that the thread 776 * structures may only consume a small part of the available memory. 777 */ 778 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 779 threads = MAX_THREADS; 780 else 781 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 782 (u64) THREAD_SIZE * 8UL); 783 784 if (threads > max_threads_suggested) 785 threads = max_threads_suggested; 786 787 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 788 } 789 790 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 791 /* Initialized by the architecture: */ 792 int arch_task_struct_size __read_mostly; 793 #endif 794 795 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 796 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 797 { 798 /* Fetch thread_struct whitelist for the architecture. */ 799 arch_thread_struct_whitelist(offset, size); 800 801 /* 802 * Handle zero-sized whitelist or empty thread_struct, otherwise 803 * adjust offset to position of thread_struct in task_struct. 804 */ 805 if (unlikely(*size == 0)) 806 *offset = 0; 807 else 808 *offset += offsetof(struct task_struct, thread); 809 } 810 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 811 812 void __init fork_init(void) 813 { 814 int i; 815 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 816 #ifndef ARCH_MIN_TASKALIGN 817 #define ARCH_MIN_TASKALIGN 0 818 #endif 819 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 820 unsigned long useroffset, usersize; 821 822 /* create a slab on which task_structs can be allocated */ 823 task_struct_whitelist(&useroffset, &usersize); 824 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 825 arch_task_struct_size, align, 826 SLAB_PANIC|SLAB_ACCOUNT, 827 useroffset, usersize, NULL); 828 #endif 829 830 /* do the arch specific task caches init */ 831 arch_task_cache_init(); 832 833 set_max_threads(MAX_THREADS); 834 835 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 836 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 837 init_task.signal->rlim[RLIMIT_SIGPENDING] = 838 init_task.signal->rlim[RLIMIT_NPROC]; 839 840 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 841 init_user_ns.ucount_max[i] = max_threads/2; 842 843 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 844 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 845 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 846 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 847 848 #ifdef CONFIG_VMAP_STACK 849 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 850 NULL, free_vm_stack_cache); 851 #endif 852 853 scs_init(); 854 855 lockdep_init_task(&init_task); 856 uprobes_init(); 857 } 858 859 int __weak arch_dup_task_struct(struct task_struct *dst, 860 struct task_struct *src) 861 { 862 *dst = *src; 863 return 0; 864 } 865 866 void set_task_stack_end_magic(struct task_struct *tsk) 867 { 868 unsigned long *stackend; 869 870 stackend = end_of_stack(tsk); 871 *stackend = STACK_END_MAGIC; /* for overflow detection */ 872 } 873 874 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 875 { 876 struct task_struct *tsk; 877 unsigned long *stack; 878 struct vm_struct *stack_vm_area __maybe_unused; 879 int err; 880 881 if (node == NUMA_NO_NODE) 882 node = tsk_fork_get_node(orig); 883 tsk = alloc_task_struct_node(node); 884 if (!tsk) 885 return NULL; 886 887 stack = alloc_thread_stack_node(tsk, node); 888 if (!stack) 889 goto free_tsk; 890 891 if (memcg_charge_kernel_stack(tsk)) 892 goto free_stack; 893 894 stack_vm_area = task_stack_vm_area(tsk); 895 896 err = arch_dup_task_struct(tsk, orig); 897 898 /* 899 * arch_dup_task_struct() clobbers the stack-related fields. Make 900 * sure they're properly initialized before using any stack-related 901 * functions again. 902 */ 903 tsk->stack = stack; 904 #ifdef CONFIG_VMAP_STACK 905 tsk->stack_vm_area = stack_vm_area; 906 #endif 907 #ifdef CONFIG_THREAD_INFO_IN_TASK 908 refcount_set(&tsk->stack_refcount, 1); 909 #endif 910 911 if (err) 912 goto free_stack; 913 914 err = scs_prepare(tsk, node); 915 if (err) 916 goto free_stack; 917 918 #ifdef CONFIG_SECCOMP 919 /* 920 * We must handle setting up seccomp filters once we're under 921 * the sighand lock in case orig has changed between now and 922 * then. Until then, filter must be NULL to avoid messing up 923 * the usage counts on the error path calling free_task. 924 */ 925 tsk->seccomp.filter = NULL; 926 #endif 927 928 setup_thread_stack(tsk, orig); 929 clear_user_return_notifier(tsk); 930 clear_tsk_need_resched(tsk); 931 set_task_stack_end_magic(tsk); 932 clear_syscall_work_syscall_user_dispatch(tsk); 933 934 #ifdef CONFIG_STACKPROTECTOR 935 tsk->stack_canary = get_random_canary(); 936 #endif 937 if (orig->cpus_ptr == &orig->cpus_mask) 938 tsk->cpus_ptr = &tsk->cpus_mask; 939 dup_user_cpus_ptr(tsk, orig, node); 940 941 /* 942 * One for the user space visible state that goes away when reaped. 943 * One for the scheduler. 944 */ 945 refcount_set(&tsk->rcu_users, 2); 946 /* One for the rcu users */ 947 refcount_set(&tsk->usage, 1); 948 #ifdef CONFIG_BLK_DEV_IO_TRACE 949 tsk->btrace_seq = 0; 950 #endif 951 tsk->splice_pipe = NULL; 952 tsk->task_frag.page = NULL; 953 tsk->wake_q.next = NULL; 954 tsk->worker_private = NULL; 955 956 account_kernel_stack(tsk, 1); 957 958 kcov_task_init(tsk); 959 kmap_local_fork(tsk); 960 961 #ifdef CONFIG_FAULT_INJECTION 962 tsk->fail_nth = 0; 963 #endif 964 965 #ifdef CONFIG_BLK_CGROUP 966 tsk->throttle_queue = NULL; 967 tsk->use_memdelay = 0; 968 #endif 969 970 #ifdef CONFIG_MEMCG 971 tsk->active_memcg = NULL; 972 #endif 973 return tsk; 974 975 free_stack: 976 free_thread_stack(tsk); 977 free_tsk: 978 free_task_struct(tsk); 979 return NULL; 980 } 981 982 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 983 984 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 985 986 static int __init coredump_filter_setup(char *s) 987 { 988 default_dump_filter = 989 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 990 MMF_DUMP_FILTER_MASK; 991 return 1; 992 } 993 994 __setup("coredump_filter=", coredump_filter_setup); 995 996 #include <linux/init_task.h> 997 998 static void mm_init_aio(struct mm_struct *mm) 999 { 1000 #ifdef CONFIG_AIO 1001 spin_lock_init(&mm->ioctx_lock); 1002 mm->ioctx_table = NULL; 1003 #endif 1004 } 1005 1006 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1007 struct task_struct *p) 1008 { 1009 #ifdef CONFIG_MEMCG 1010 if (mm->owner == p) 1011 WRITE_ONCE(mm->owner, NULL); 1012 #endif 1013 } 1014 1015 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1016 { 1017 #ifdef CONFIG_MEMCG 1018 mm->owner = p; 1019 #endif 1020 } 1021 1022 static void mm_init_pasid(struct mm_struct *mm) 1023 { 1024 #ifdef CONFIG_IOMMU_SUPPORT 1025 mm->pasid = INIT_PASID; 1026 #endif 1027 } 1028 1029 static void mm_init_uprobes_state(struct mm_struct *mm) 1030 { 1031 #ifdef CONFIG_UPROBES 1032 mm->uprobes_state.xol_area = NULL; 1033 #endif 1034 } 1035 1036 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1037 struct user_namespace *user_ns) 1038 { 1039 mm->mmap = NULL; 1040 mm->mm_rb = RB_ROOT; 1041 mm->vmacache_seqnum = 0; 1042 atomic_set(&mm->mm_users, 1); 1043 atomic_set(&mm->mm_count, 1); 1044 seqcount_init(&mm->write_protect_seq); 1045 mmap_init_lock(mm); 1046 INIT_LIST_HEAD(&mm->mmlist); 1047 mm_pgtables_bytes_init(mm); 1048 mm->map_count = 0; 1049 mm->locked_vm = 0; 1050 atomic64_set(&mm->pinned_vm, 0); 1051 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1052 spin_lock_init(&mm->page_table_lock); 1053 spin_lock_init(&mm->arg_lock); 1054 mm_init_cpumask(mm); 1055 mm_init_aio(mm); 1056 mm_init_owner(mm, p); 1057 mm_init_pasid(mm); 1058 RCU_INIT_POINTER(mm->exe_file, NULL); 1059 mmu_notifier_subscriptions_init(mm); 1060 init_tlb_flush_pending(mm); 1061 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1062 mm->pmd_huge_pte = NULL; 1063 #endif 1064 mm_init_uprobes_state(mm); 1065 hugetlb_count_init(mm); 1066 1067 if (current->mm) { 1068 mm->flags = current->mm->flags & MMF_INIT_MASK; 1069 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1070 } else { 1071 mm->flags = default_dump_filter; 1072 mm->def_flags = 0; 1073 } 1074 1075 if (mm_alloc_pgd(mm)) 1076 goto fail_nopgd; 1077 1078 if (init_new_context(p, mm)) 1079 goto fail_nocontext; 1080 1081 mm->user_ns = get_user_ns(user_ns); 1082 return mm; 1083 1084 fail_nocontext: 1085 mm_free_pgd(mm); 1086 fail_nopgd: 1087 free_mm(mm); 1088 return NULL; 1089 } 1090 1091 /* 1092 * Allocate and initialize an mm_struct. 1093 */ 1094 struct mm_struct *mm_alloc(void) 1095 { 1096 struct mm_struct *mm; 1097 1098 mm = allocate_mm(); 1099 if (!mm) 1100 return NULL; 1101 1102 memset(mm, 0, sizeof(*mm)); 1103 return mm_init(mm, current, current_user_ns()); 1104 } 1105 1106 static inline void __mmput(struct mm_struct *mm) 1107 { 1108 VM_BUG_ON(atomic_read(&mm->mm_users)); 1109 1110 uprobe_clear_state(mm); 1111 exit_aio(mm); 1112 ksm_exit(mm); 1113 khugepaged_exit(mm); /* must run before exit_mmap */ 1114 exit_mmap(mm); 1115 mm_put_huge_zero_page(mm); 1116 set_mm_exe_file(mm, NULL); 1117 if (!list_empty(&mm->mmlist)) { 1118 spin_lock(&mmlist_lock); 1119 list_del(&mm->mmlist); 1120 spin_unlock(&mmlist_lock); 1121 } 1122 if (mm->binfmt) 1123 module_put(mm->binfmt->module); 1124 mmdrop(mm); 1125 } 1126 1127 /* 1128 * Decrement the use count and release all resources for an mm. 1129 */ 1130 void mmput(struct mm_struct *mm) 1131 { 1132 might_sleep(); 1133 1134 if (atomic_dec_and_test(&mm->mm_users)) 1135 __mmput(mm); 1136 } 1137 EXPORT_SYMBOL_GPL(mmput); 1138 1139 #ifdef CONFIG_MMU 1140 static void mmput_async_fn(struct work_struct *work) 1141 { 1142 struct mm_struct *mm = container_of(work, struct mm_struct, 1143 async_put_work); 1144 1145 __mmput(mm); 1146 } 1147 1148 void mmput_async(struct mm_struct *mm) 1149 { 1150 if (atomic_dec_and_test(&mm->mm_users)) { 1151 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1152 schedule_work(&mm->async_put_work); 1153 } 1154 } 1155 #endif 1156 1157 /** 1158 * set_mm_exe_file - change a reference to the mm's executable file 1159 * 1160 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1161 * 1162 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1163 * invocations: in mmput() nobody alive left, in execve task is single 1164 * threaded. 1165 * 1166 * Can only fail if new_exe_file != NULL. 1167 */ 1168 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1169 { 1170 struct file *old_exe_file; 1171 1172 /* 1173 * It is safe to dereference the exe_file without RCU as 1174 * this function is only called if nobody else can access 1175 * this mm -- see comment above for justification. 1176 */ 1177 old_exe_file = rcu_dereference_raw(mm->exe_file); 1178 1179 if (new_exe_file) { 1180 /* 1181 * We expect the caller (i.e., sys_execve) to already denied 1182 * write access, so this is unlikely to fail. 1183 */ 1184 if (unlikely(deny_write_access(new_exe_file))) 1185 return -EACCES; 1186 get_file(new_exe_file); 1187 } 1188 rcu_assign_pointer(mm->exe_file, new_exe_file); 1189 if (old_exe_file) { 1190 allow_write_access(old_exe_file); 1191 fput(old_exe_file); 1192 } 1193 return 0; 1194 } 1195 1196 /** 1197 * replace_mm_exe_file - replace a reference to the mm's executable file 1198 * 1199 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1200 * dealing with concurrent invocation and without grabbing the mmap lock in 1201 * write mode. 1202 * 1203 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1204 */ 1205 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1206 { 1207 struct vm_area_struct *vma; 1208 struct file *old_exe_file; 1209 int ret = 0; 1210 1211 /* Forbid mm->exe_file change if old file still mapped. */ 1212 old_exe_file = get_mm_exe_file(mm); 1213 if (old_exe_file) { 1214 mmap_read_lock(mm); 1215 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) { 1216 if (!vma->vm_file) 1217 continue; 1218 if (path_equal(&vma->vm_file->f_path, 1219 &old_exe_file->f_path)) 1220 ret = -EBUSY; 1221 } 1222 mmap_read_unlock(mm); 1223 fput(old_exe_file); 1224 if (ret) 1225 return ret; 1226 } 1227 1228 /* set the new file, lockless */ 1229 ret = deny_write_access(new_exe_file); 1230 if (ret) 1231 return -EACCES; 1232 get_file(new_exe_file); 1233 1234 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1235 if (old_exe_file) { 1236 /* 1237 * Don't race with dup_mmap() getting the file and disallowing 1238 * write access while someone might open the file writable. 1239 */ 1240 mmap_read_lock(mm); 1241 allow_write_access(old_exe_file); 1242 fput(old_exe_file); 1243 mmap_read_unlock(mm); 1244 } 1245 return 0; 1246 } 1247 1248 /** 1249 * get_mm_exe_file - acquire a reference to the mm's executable file 1250 * 1251 * Returns %NULL if mm has no associated executable file. 1252 * User must release file via fput(). 1253 */ 1254 struct file *get_mm_exe_file(struct mm_struct *mm) 1255 { 1256 struct file *exe_file; 1257 1258 rcu_read_lock(); 1259 exe_file = rcu_dereference(mm->exe_file); 1260 if (exe_file && !get_file_rcu(exe_file)) 1261 exe_file = NULL; 1262 rcu_read_unlock(); 1263 return exe_file; 1264 } 1265 1266 /** 1267 * get_task_exe_file - acquire a reference to the task's executable file 1268 * 1269 * Returns %NULL if task's mm (if any) has no associated executable file or 1270 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1271 * User must release file via fput(). 1272 */ 1273 struct file *get_task_exe_file(struct task_struct *task) 1274 { 1275 struct file *exe_file = NULL; 1276 struct mm_struct *mm; 1277 1278 task_lock(task); 1279 mm = task->mm; 1280 if (mm) { 1281 if (!(task->flags & PF_KTHREAD)) 1282 exe_file = get_mm_exe_file(mm); 1283 } 1284 task_unlock(task); 1285 return exe_file; 1286 } 1287 1288 /** 1289 * get_task_mm - acquire a reference to the task's mm 1290 * 1291 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1292 * this kernel workthread has transiently adopted a user mm with use_mm, 1293 * to do its AIO) is not set and if so returns a reference to it, after 1294 * bumping up the use count. User must release the mm via mmput() 1295 * after use. Typically used by /proc and ptrace. 1296 */ 1297 struct mm_struct *get_task_mm(struct task_struct *task) 1298 { 1299 struct mm_struct *mm; 1300 1301 task_lock(task); 1302 mm = task->mm; 1303 if (mm) { 1304 if (task->flags & PF_KTHREAD) 1305 mm = NULL; 1306 else 1307 mmget(mm); 1308 } 1309 task_unlock(task); 1310 return mm; 1311 } 1312 EXPORT_SYMBOL_GPL(get_task_mm); 1313 1314 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1315 { 1316 struct mm_struct *mm; 1317 int err; 1318 1319 err = down_read_killable(&task->signal->exec_update_lock); 1320 if (err) 1321 return ERR_PTR(err); 1322 1323 mm = get_task_mm(task); 1324 if (mm && mm != current->mm && 1325 !ptrace_may_access(task, mode)) { 1326 mmput(mm); 1327 mm = ERR_PTR(-EACCES); 1328 } 1329 up_read(&task->signal->exec_update_lock); 1330 1331 return mm; 1332 } 1333 1334 static void complete_vfork_done(struct task_struct *tsk) 1335 { 1336 struct completion *vfork; 1337 1338 task_lock(tsk); 1339 vfork = tsk->vfork_done; 1340 if (likely(vfork)) { 1341 tsk->vfork_done = NULL; 1342 complete(vfork); 1343 } 1344 task_unlock(tsk); 1345 } 1346 1347 static int wait_for_vfork_done(struct task_struct *child, 1348 struct completion *vfork) 1349 { 1350 int killed; 1351 1352 freezer_do_not_count(); 1353 cgroup_enter_frozen(); 1354 killed = wait_for_completion_killable(vfork); 1355 cgroup_leave_frozen(false); 1356 freezer_count(); 1357 1358 if (killed) { 1359 task_lock(child); 1360 child->vfork_done = NULL; 1361 task_unlock(child); 1362 } 1363 1364 put_task_struct(child); 1365 return killed; 1366 } 1367 1368 /* Please note the differences between mmput and mm_release. 1369 * mmput is called whenever we stop holding onto a mm_struct, 1370 * error success whatever. 1371 * 1372 * mm_release is called after a mm_struct has been removed 1373 * from the current process. 1374 * 1375 * This difference is important for error handling, when we 1376 * only half set up a mm_struct for a new process and need to restore 1377 * the old one. Because we mmput the new mm_struct before 1378 * restoring the old one. . . 1379 * Eric Biederman 10 January 1998 1380 */ 1381 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1382 { 1383 uprobe_free_utask(tsk); 1384 1385 /* Get rid of any cached register state */ 1386 deactivate_mm(tsk, mm); 1387 1388 /* 1389 * Signal userspace if we're not exiting with a core dump 1390 * because we want to leave the value intact for debugging 1391 * purposes. 1392 */ 1393 if (tsk->clear_child_tid) { 1394 if (atomic_read(&mm->mm_users) > 1) { 1395 /* 1396 * We don't check the error code - if userspace has 1397 * not set up a proper pointer then tough luck. 1398 */ 1399 put_user(0, tsk->clear_child_tid); 1400 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1401 1, NULL, NULL, 0, 0); 1402 } 1403 tsk->clear_child_tid = NULL; 1404 } 1405 1406 /* 1407 * All done, finally we can wake up parent and return this mm to him. 1408 * Also kthread_stop() uses this completion for synchronization. 1409 */ 1410 if (tsk->vfork_done) 1411 complete_vfork_done(tsk); 1412 } 1413 1414 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1415 { 1416 futex_exit_release(tsk); 1417 mm_release(tsk, mm); 1418 } 1419 1420 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1421 { 1422 futex_exec_release(tsk); 1423 mm_release(tsk, mm); 1424 } 1425 1426 /** 1427 * dup_mm() - duplicates an existing mm structure 1428 * @tsk: the task_struct with which the new mm will be associated. 1429 * @oldmm: the mm to duplicate. 1430 * 1431 * Allocates a new mm structure and duplicates the provided @oldmm structure 1432 * content into it. 1433 * 1434 * Return: the duplicated mm or NULL on failure. 1435 */ 1436 static struct mm_struct *dup_mm(struct task_struct *tsk, 1437 struct mm_struct *oldmm) 1438 { 1439 struct mm_struct *mm; 1440 int err; 1441 1442 mm = allocate_mm(); 1443 if (!mm) 1444 goto fail_nomem; 1445 1446 memcpy(mm, oldmm, sizeof(*mm)); 1447 1448 if (!mm_init(mm, tsk, mm->user_ns)) 1449 goto fail_nomem; 1450 1451 err = dup_mmap(mm, oldmm); 1452 if (err) 1453 goto free_pt; 1454 1455 mm->hiwater_rss = get_mm_rss(mm); 1456 mm->hiwater_vm = mm->total_vm; 1457 1458 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1459 goto free_pt; 1460 1461 return mm; 1462 1463 free_pt: 1464 /* don't put binfmt in mmput, we haven't got module yet */ 1465 mm->binfmt = NULL; 1466 mm_init_owner(mm, NULL); 1467 mmput(mm); 1468 1469 fail_nomem: 1470 return NULL; 1471 } 1472 1473 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1474 { 1475 struct mm_struct *mm, *oldmm; 1476 1477 tsk->min_flt = tsk->maj_flt = 0; 1478 tsk->nvcsw = tsk->nivcsw = 0; 1479 #ifdef CONFIG_DETECT_HUNG_TASK 1480 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1481 tsk->last_switch_time = 0; 1482 #endif 1483 1484 tsk->mm = NULL; 1485 tsk->active_mm = NULL; 1486 1487 /* 1488 * Are we cloning a kernel thread? 1489 * 1490 * We need to steal a active VM for that.. 1491 */ 1492 oldmm = current->mm; 1493 if (!oldmm) 1494 return 0; 1495 1496 /* initialize the new vmacache entries */ 1497 vmacache_flush(tsk); 1498 1499 if (clone_flags & CLONE_VM) { 1500 mmget(oldmm); 1501 mm = oldmm; 1502 } else { 1503 mm = dup_mm(tsk, current->mm); 1504 if (!mm) 1505 return -ENOMEM; 1506 } 1507 1508 tsk->mm = mm; 1509 tsk->active_mm = mm; 1510 return 0; 1511 } 1512 1513 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1514 { 1515 struct fs_struct *fs = current->fs; 1516 if (clone_flags & CLONE_FS) { 1517 /* tsk->fs is already what we want */ 1518 spin_lock(&fs->lock); 1519 if (fs->in_exec) { 1520 spin_unlock(&fs->lock); 1521 return -EAGAIN; 1522 } 1523 fs->users++; 1524 spin_unlock(&fs->lock); 1525 return 0; 1526 } 1527 tsk->fs = copy_fs_struct(fs); 1528 if (!tsk->fs) 1529 return -ENOMEM; 1530 return 0; 1531 } 1532 1533 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1534 { 1535 struct files_struct *oldf, *newf; 1536 int error = 0; 1537 1538 /* 1539 * A background process may not have any files ... 1540 */ 1541 oldf = current->files; 1542 if (!oldf) 1543 goto out; 1544 1545 if (clone_flags & CLONE_FILES) { 1546 atomic_inc(&oldf->count); 1547 goto out; 1548 } 1549 1550 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1551 if (!newf) 1552 goto out; 1553 1554 tsk->files = newf; 1555 error = 0; 1556 out: 1557 return error; 1558 } 1559 1560 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1561 { 1562 struct sighand_struct *sig; 1563 1564 if (clone_flags & CLONE_SIGHAND) { 1565 refcount_inc(¤t->sighand->count); 1566 return 0; 1567 } 1568 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1569 RCU_INIT_POINTER(tsk->sighand, sig); 1570 if (!sig) 1571 return -ENOMEM; 1572 1573 refcount_set(&sig->count, 1); 1574 spin_lock_irq(¤t->sighand->siglock); 1575 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1576 spin_unlock_irq(¤t->sighand->siglock); 1577 1578 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1579 if (clone_flags & CLONE_CLEAR_SIGHAND) 1580 flush_signal_handlers(tsk, 0); 1581 1582 return 0; 1583 } 1584 1585 void __cleanup_sighand(struct sighand_struct *sighand) 1586 { 1587 if (refcount_dec_and_test(&sighand->count)) { 1588 signalfd_cleanup(sighand); 1589 /* 1590 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1591 * without an RCU grace period, see __lock_task_sighand(). 1592 */ 1593 kmem_cache_free(sighand_cachep, sighand); 1594 } 1595 } 1596 1597 /* 1598 * Initialize POSIX timer handling for a thread group. 1599 */ 1600 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1601 { 1602 struct posix_cputimers *pct = &sig->posix_cputimers; 1603 unsigned long cpu_limit; 1604 1605 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1606 posix_cputimers_group_init(pct, cpu_limit); 1607 } 1608 1609 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1610 { 1611 struct signal_struct *sig; 1612 1613 if (clone_flags & CLONE_THREAD) 1614 return 0; 1615 1616 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1617 tsk->signal = sig; 1618 if (!sig) 1619 return -ENOMEM; 1620 1621 sig->nr_threads = 1; 1622 atomic_set(&sig->live, 1); 1623 refcount_set(&sig->sigcnt, 1); 1624 1625 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1626 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1627 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1628 1629 init_waitqueue_head(&sig->wait_chldexit); 1630 sig->curr_target = tsk; 1631 init_sigpending(&sig->shared_pending); 1632 INIT_HLIST_HEAD(&sig->multiprocess); 1633 seqlock_init(&sig->stats_lock); 1634 prev_cputime_init(&sig->prev_cputime); 1635 1636 #ifdef CONFIG_POSIX_TIMERS 1637 INIT_LIST_HEAD(&sig->posix_timers); 1638 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1639 sig->real_timer.function = it_real_fn; 1640 #endif 1641 1642 task_lock(current->group_leader); 1643 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1644 task_unlock(current->group_leader); 1645 1646 posix_cpu_timers_init_group(sig); 1647 1648 tty_audit_fork(sig); 1649 sched_autogroup_fork(sig); 1650 1651 sig->oom_score_adj = current->signal->oom_score_adj; 1652 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1653 1654 mutex_init(&sig->cred_guard_mutex); 1655 init_rwsem(&sig->exec_update_lock); 1656 1657 return 0; 1658 } 1659 1660 static void copy_seccomp(struct task_struct *p) 1661 { 1662 #ifdef CONFIG_SECCOMP 1663 /* 1664 * Must be called with sighand->lock held, which is common to 1665 * all threads in the group. Holding cred_guard_mutex is not 1666 * needed because this new task is not yet running and cannot 1667 * be racing exec. 1668 */ 1669 assert_spin_locked(¤t->sighand->siglock); 1670 1671 /* Ref-count the new filter user, and assign it. */ 1672 get_seccomp_filter(current); 1673 p->seccomp = current->seccomp; 1674 1675 /* 1676 * Explicitly enable no_new_privs here in case it got set 1677 * between the task_struct being duplicated and holding the 1678 * sighand lock. The seccomp state and nnp must be in sync. 1679 */ 1680 if (task_no_new_privs(current)) 1681 task_set_no_new_privs(p); 1682 1683 /* 1684 * If the parent gained a seccomp mode after copying thread 1685 * flags and between before we held the sighand lock, we have 1686 * to manually enable the seccomp thread flag here. 1687 */ 1688 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1689 set_task_syscall_work(p, SECCOMP); 1690 #endif 1691 } 1692 1693 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1694 { 1695 current->clear_child_tid = tidptr; 1696 1697 return task_pid_vnr(current); 1698 } 1699 1700 static void rt_mutex_init_task(struct task_struct *p) 1701 { 1702 raw_spin_lock_init(&p->pi_lock); 1703 #ifdef CONFIG_RT_MUTEXES 1704 p->pi_waiters = RB_ROOT_CACHED; 1705 p->pi_top_task = NULL; 1706 p->pi_blocked_on = NULL; 1707 #endif 1708 } 1709 1710 static inline void init_task_pid_links(struct task_struct *task) 1711 { 1712 enum pid_type type; 1713 1714 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1715 INIT_HLIST_NODE(&task->pid_links[type]); 1716 } 1717 1718 static inline void 1719 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1720 { 1721 if (type == PIDTYPE_PID) 1722 task->thread_pid = pid; 1723 else 1724 task->signal->pids[type] = pid; 1725 } 1726 1727 static inline void rcu_copy_process(struct task_struct *p) 1728 { 1729 #ifdef CONFIG_PREEMPT_RCU 1730 p->rcu_read_lock_nesting = 0; 1731 p->rcu_read_unlock_special.s = 0; 1732 p->rcu_blocked_node = NULL; 1733 INIT_LIST_HEAD(&p->rcu_node_entry); 1734 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1735 #ifdef CONFIG_TASKS_RCU 1736 p->rcu_tasks_holdout = false; 1737 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1738 p->rcu_tasks_idle_cpu = -1; 1739 #endif /* #ifdef CONFIG_TASKS_RCU */ 1740 #ifdef CONFIG_TASKS_TRACE_RCU 1741 p->trc_reader_nesting = 0; 1742 p->trc_reader_special.s = 0; 1743 INIT_LIST_HEAD(&p->trc_holdout_list); 1744 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1745 } 1746 1747 struct pid *pidfd_pid(const struct file *file) 1748 { 1749 if (file->f_op == &pidfd_fops) 1750 return file->private_data; 1751 1752 return ERR_PTR(-EBADF); 1753 } 1754 1755 static int pidfd_release(struct inode *inode, struct file *file) 1756 { 1757 struct pid *pid = file->private_data; 1758 1759 file->private_data = NULL; 1760 put_pid(pid); 1761 return 0; 1762 } 1763 1764 #ifdef CONFIG_PROC_FS 1765 /** 1766 * pidfd_show_fdinfo - print information about a pidfd 1767 * @m: proc fdinfo file 1768 * @f: file referencing a pidfd 1769 * 1770 * Pid: 1771 * This function will print the pid that a given pidfd refers to in the 1772 * pid namespace of the procfs instance. 1773 * If the pid namespace of the process is not a descendant of the pid 1774 * namespace of the procfs instance 0 will be shown as its pid. This is 1775 * similar to calling getppid() on a process whose parent is outside of 1776 * its pid namespace. 1777 * 1778 * NSpid: 1779 * If pid namespaces are supported then this function will also print 1780 * the pid of a given pidfd refers to for all descendant pid namespaces 1781 * starting from the current pid namespace of the instance, i.e. the 1782 * Pid field and the first entry in the NSpid field will be identical. 1783 * If the pid namespace of the process is not a descendant of the pid 1784 * namespace of the procfs instance 0 will be shown as its first NSpid 1785 * entry and no others will be shown. 1786 * Note that this differs from the Pid and NSpid fields in 1787 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1788 * the pid namespace of the procfs instance. The difference becomes 1789 * obvious when sending around a pidfd between pid namespaces from a 1790 * different branch of the tree, i.e. where no ancestral relation is 1791 * present between the pid namespaces: 1792 * - create two new pid namespaces ns1 and ns2 in the initial pid 1793 * namespace (also take care to create new mount namespaces in the 1794 * new pid namespace and mount procfs) 1795 * - create a process with a pidfd in ns1 1796 * - send pidfd from ns1 to ns2 1797 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1798 * have exactly one entry, which is 0 1799 */ 1800 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1801 { 1802 struct pid *pid = f->private_data; 1803 struct pid_namespace *ns; 1804 pid_t nr = -1; 1805 1806 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1807 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1808 nr = pid_nr_ns(pid, ns); 1809 } 1810 1811 seq_put_decimal_ll(m, "Pid:\t", nr); 1812 1813 #ifdef CONFIG_PID_NS 1814 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1815 if (nr > 0) { 1816 int i; 1817 1818 /* If nr is non-zero it means that 'pid' is valid and that 1819 * ns, i.e. the pid namespace associated with the procfs 1820 * instance, is in the pid namespace hierarchy of pid. 1821 * Start at one below the already printed level. 1822 */ 1823 for (i = ns->level + 1; i <= pid->level; i++) 1824 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1825 } 1826 #endif 1827 seq_putc(m, '\n'); 1828 } 1829 #endif 1830 1831 /* 1832 * Poll support for process exit notification. 1833 */ 1834 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1835 { 1836 struct pid *pid = file->private_data; 1837 __poll_t poll_flags = 0; 1838 1839 poll_wait(file, &pid->wait_pidfd, pts); 1840 1841 /* 1842 * Inform pollers only when the whole thread group exits. 1843 * If the thread group leader exits before all other threads in the 1844 * group, then poll(2) should block, similar to the wait(2) family. 1845 */ 1846 if (thread_group_exited(pid)) 1847 poll_flags = EPOLLIN | EPOLLRDNORM; 1848 1849 return poll_flags; 1850 } 1851 1852 const struct file_operations pidfd_fops = { 1853 .release = pidfd_release, 1854 .poll = pidfd_poll, 1855 #ifdef CONFIG_PROC_FS 1856 .show_fdinfo = pidfd_show_fdinfo, 1857 #endif 1858 }; 1859 1860 static void __delayed_free_task(struct rcu_head *rhp) 1861 { 1862 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1863 1864 free_task(tsk); 1865 } 1866 1867 static __always_inline void delayed_free_task(struct task_struct *tsk) 1868 { 1869 if (IS_ENABLED(CONFIG_MEMCG)) 1870 call_rcu(&tsk->rcu, __delayed_free_task); 1871 else 1872 free_task(tsk); 1873 } 1874 1875 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1876 { 1877 /* Skip if kernel thread */ 1878 if (!tsk->mm) 1879 return; 1880 1881 /* Skip if spawning a thread or using vfork */ 1882 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1883 return; 1884 1885 /* We need to synchronize with __set_oom_adj */ 1886 mutex_lock(&oom_adj_mutex); 1887 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1888 /* Update the values in case they were changed after copy_signal */ 1889 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1890 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1891 mutex_unlock(&oom_adj_mutex); 1892 } 1893 1894 /* 1895 * This creates a new process as a copy of the old one, 1896 * but does not actually start it yet. 1897 * 1898 * It copies the registers, and all the appropriate 1899 * parts of the process environment (as per the clone 1900 * flags). The actual kick-off is left to the caller. 1901 */ 1902 static __latent_entropy struct task_struct *copy_process( 1903 struct pid *pid, 1904 int trace, 1905 int node, 1906 struct kernel_clone_args *args) 1907 { 1908 int pidfd = -1, retval; 1909 struct task_struct *p; 1910 struct multiprocess_signals delayed; 1911 struct file *pidfile = NULL; 1912 u64 clone_flags = args->flags; 1913 struct nsproxy *nsp = current->nsproxy; 1914 1915 /* 1916 * Don't allow sharing the root directory with processes in a different 1917 * namespace 1918 */ 1919 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1920 return ERR_PTR(-EINVAL); 1921 1922 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1923 return ERR_PTR(-EINVAL); 1924 1925 /* 1926 * Thread groups must share signals as well, and detached threads 1927 * can only be started up within the thread group. 1928 */ 1929 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1930 return ERR_PTR(-EINVAL); 1931 1932 /* 1933 * Shared signal handlers imply shared VM. By way of the above, 1934 * thread groups also imply shared VM. Blocking this case allows 1935 * for various simplifications in other code. 1936 */ 1937 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1938 return ERR_PTR(-EINVAL); 1939 1940 /* 1941 * Siblings of global init remain as zombies on exit since they are 1942 * not reaped by their parent (swapper). To solve this and to avoid 1943 * multi-rooted process trees, prevent global and container-inits 1944 * from creating siblings. 1945 */ 1946 if ((clone_flags & CLONE_PARENT) && 1947 current->signal->flags & SIGNAL_UNKILLABLE) 1948 return ERR_PTR(-EINVAL); 1949 1950 /* 1951 * If the new process will be in a different pid or user namespace 1952 * do not allow it to share a thread group with the forking task. 1953 */ 1954 if (clone_flags & CLONE_THREAD) { 1955 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1956 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1957 return ERR_PTR(-EINVAL); 1958 } 1959 1960 /* 1961 * If the new process will be in a different time namespace 1962 * do not allow it to share VM or a thread group with the forking task. 1963 */ 1964 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1965 if (nsp->time_ns != nsp->time_ns_for_children) 1966 return ERR_PTR(-EINVAL); 1967 } 1968 1969 if (clone_flags & CLONE_PIDFD) { 1970 /* 1971 * - CLONE_DETACHED is blocked so that we can potentially 1972 * reuse it later for CLONE_PIDFD. 1973 * - CLONE_THREAD is blocked until someone really needs it. 1974 */ 1975 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1976 return ERR_PTR(-EINVAL); 1977 } 1978 1979 /* 1980 * Force any signals received before this point to be delivered 1981 * before the fork happens. Collect up signals sent to multiple 1982 * processes that happen during the fork and delay them so that 1983 * they appear to happen after the fork. 1984 */ 1985 sigemptyset(&delayed.signal); 1986 INIT_HLIST_NODE(&delayed.node); 1987 1988 spin_lock_irq(¤t->sighand->siglock); 1989 if (!(clone_flags & CLONE_THREAD)) 1990 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1991 recalc_sigpending(); 1992 spin_unlock_irq(¤t->sighand->siglock); 1993 retval = -ERESTARTNOINTR; 1994 if (task_sigpending(current)) 1995 goto fork_out; 1996 1997 retval = -ENOMEM; 1998 p = dup_task_struct(current, node); 1999 if (!p) 2000 goto fork_out; 2001 if (args->io_thread) { 2002 /* 2003 * Mark us an IO worker, and block any signal that isn't 2004 * fatal or STOP 2005 */ 2006 p->flags |= PF_IO_WORKER; 2007 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2008 } 2009 2010 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2011 /* 2012 * Clear TID on mm_release()? 2013 */ 2014 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2015 2016 ftrace_graph_init_task(p); 2017 2018 rt_mutex_init_task(p); 2019 2020 lockdep_assert_irqs_enabled(); 2021 #ifdef CONFIG_PROVE_LOCKING 2022 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2023 #endif 2024 retval = copy_creds(p, clone_flags); 2025 if (retval < 0) 2026 goto bad_fork_free; 2027 2028 retval = -EAGAIN; 2029 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2030 if (p->real_cred->user != INIT_USER && 2031 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2032 goto bad_fork_cleanup_count; 2033 } 2034 current->flags &= ~PF_NPROC_EXCEEDED; 2035 2036 /* 2037 * If multiple threads are within copy_process(), then this check 2038 * triggers too late. This doesn't hurt, the check is only there 2039 * to stop root fork bombs. 2040 */ 2041 retval = -EAGAIN; 2042 if (data_race(nr_threads >= max_threads)) 2043 goto bad_fork_cleanup_count; 2044 2045 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2046 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2047 p->flags |= PF_FORKNOEXEC; 2048 INIT_LIST_HEAD(&p->children); 2049 INIT_LIST_HEAD(&p->sibling); 2050 rcu_copy_process(p); 2051 p->vfork_done = NULL; 2052 spin_lock_init(&p->alloc_lock); 2053 2054 init_sigpending(&p->pending); 2055 2056 p->utime = p->stime = p->gtime = 0; 2057 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2058 p->utimescaled = p->stimescaled = 0; 2059 #endif 2060 prev_cputime_init(&p->prev_cputime); 2061 2062 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2063 seqcount_init(&p->vtime.seqcount); 2064 p->vtime.starttime = 0; 2065 p->vtime.state = VTIME_INACTIVE; 2066 #endif 2067 2068 #ifdef CONFIG_IO_URING 2069 p->io_uring = NULL; 2070 #endif 2071 2072 #if defined(SPLIT_RSS_COUNTING) 2073 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2074 #endif 2075 2076 p->default_timer_slack_ns = current->timer_slack_ns; 2077 2078 #ifdef CONFIG_PSI 2079 p->psi_flags = 0; 2080 #endif 2081 2082 task_io_accounting_init(&p->ioac); 2083 acct_clear_integrals(p); 2084 2085 posix_cputimers_init(&p->posix_cputimers); 2086 2087 p->io_context = NULL; 2088 audit_set_context(p, NULL); 2089 cgroup_fork(p); 2090 if (p->flags & PF_KTHREAD) { 2091 if (!set_kthread_struct(p)) 2092 goto bad_fork_cleanup_delayacct; 2093 } 2094 #ifdef CONFIG_NUMA 2095 p->mempolicy = mpol_dup(p->mempolicy); 2096 if (IS_ERR(p->mempolicy)) { 2097 retval = PTR_ERR(p->mempolicy); 2098 p->mempolicy = NULL; 2099 goto bad_fork_cleanup_delayacct; 2100 } 2101 #endif 2102 #ifdef CONFIG_CPUSETS 2103 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2104 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2105 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2106 #endif 2107 #ifdef CONFIG_TRACE_IRQFLAGS 2108 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2109 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2110 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2111 p->softirqs_enabled = 1; 2112 p->softirq_context = 0; 2113 #endif 2114 2115 p->pagefault_disabled = 0; 2116 2117 #ifdef CONFIG_LOCKDEP 2118 lockdep_init_task(p); 2119 #endif 2120 2121 #ifdef CONFIG_DEBUG_MUTEXES 2122 p->blocked_on = NULL; /* not blocked yet */ 2123 #endif 2124 #ifdef CONFIG_BCACHE 2125 p->sequential_io = 0; 2126 p->sequential_io_avg = 0; 2127 #endif 2128 #ifdef CONFIG_BPF_SYSCALL 2129 RCU_INIT_POINTER(p->bpf_storage, NULL); 2130 p->bpf_ctx = NULL; 2131 #endif 2132 2133 /* Perform scheduler related setup. Assign this task to a CPU. */ 2134 retval = sched_fork(clone_flags, p); 2135 if (retval) 2136 goto bad_fork_cleanup_policy; 2137 2138 retval = perf_event_init_task(p, clone_flags); 2139 if (retval) 2140 goto bad_fork_cleanup_policy; 2141 retval = audit_alloc(p); 2142 if (retval) 2143 goto bad_fork_cleanup_perf; 2144 /* copy all the process information */ 2145 shm_init_task(p); 2146 retval = security_task_alloc(p, clone_flags); 2147 if (retval) 2148 goto bad_fork_cleanup_audit; 2149 retval = copy_semundo(clone_flags, p); 2150 if (retval) 2151 goto bad_fork_cleanup_security; 2152 retval = copy_files(clone_flags, p); 2153 if (retval) 2154 goto bad_fork_cleanup_semundo; 2155 retval = copy_fs(clone_flags, p); 2156 if (retval) 2157 goto bad_fork_cleanup_files; 2158 retval = copy_sighand(clone_flags, p); 2159 if (retval) 2160 goto bad_fork_cleanup_fs; 2161 retval = copy_signal(clone_flags, p); 2162 if (retval) 2163 goto bad_fork_cleanup_sighand; 2164 retval = copy_mm(clone_flags, p); 2165 if (retval) 2166 goto bad_fork_cleanup_signal; 2167 retval = copy_namespaces(clone_flags, p); 2168 if (retval) 2169 goto bad_fork_cleanup_mm; 2170 retval = copy_io(clone_flags, p); 2171 if (retval) 2172 goto bad_fork_cleanup_namespaces; 2173 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2174 if (retval) 2175 goto bad_fork_cleanup_io; 2176 2177 stackleak_task_init(p); 2178 2179 if (pid != &init_struct_pid) { 2180 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2181 args->set_tid_size); 2182 if (IS_ERR(pid)) { 2183 retval = PTR_ERR(pid); 2184 goto bad_fork_cleanup_thread; 2185 } 2186 } 2187 2188 /* 2189 * This has to happen after we've potentially unshared the file 2190 * descriptor table (so that the pidfd doesn't leak into the child 2191 * if the fd table isn't shared). 2192 */ 2193 if (clone_flags & CLONE_PIDFD) { 2194 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2195 if (retval < 0) 2196 goto bad_fork_free_pid; 2197 2198 pidfd = retval; 2199 2200 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2201 O_RDWR | O_CLOEXEC); 2202 if (IS_ERR(pidfile)) { 2203 put_unused_fd(pidfd); 2204 retval = PTR_ERR(pidfile); 2205 goto bad_fork_free_pid; 2206 } 2207 get_pid(pid); /* held by pidfile now */ 2208 2209 retval = put_user(pidfd, args->pidfd); 2210 if (retval) 2211 goto bad_fork_put_pidfd; 2212 } 2213 2214 #ifdef CONFIG_BLOCK 2215 p->plug = NULL; 2216 #endif 2217 futex_init_task(p); 2218 2219 /* 2220 * sigaltstack should be cleared when sharing the same VM 2221 */ 2222 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2223 sas_ss_reset(p); 2224 2225 /* 2226 * Syscall tracing and stepping should be turned off in the 2227 * child regardless of CLONE_PTRACE. 2228 */ 2229 user_disable_single_step(p); 2230 clear_task_syscall_work(p, SYSCALL_TRACE); 2231 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2232 clear_task_syscall_work(p, SYSCALL_EMU); 2233 #endif 2234 clear_tsk_latency_tracing(p); 2235 2236 /* ok, now we should be set up.. */ 2237 p->pid = pid_nr(pid); 2238 if (clone_flags & CLONE_THREAD) { 2239 p->group_leader = current->group_leader; 2240 p->tgid = current->tgid; 2241 } else { 2242 p->group_leader = p; 2243 p->tgid = p->pid; 2244 } 2245 2246 p->nr_dirtied = 0; 2247 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2248 p->dirty_paused_when = 0; 2249 2250 p->pdeath_signal = 0; 2251 INIT_LIST_HEAD(&p->thread_group); 2252 p->task_works = NULL; 2253 clear_posix_cputimers_work(p); 2254 2255 #ifdef CONFIG_KRETPROBES 2256 p->kretprobe_instances.first = NULL; 2257 #endif 2258 2259 /* 2260 * Ensure that the cgroup subsystem policies allow the new process to be 2261 * forked. It should be noted that the new process's css_set can be changed 2262 * between here and cgroup_post_fork() if an organisation operation is in 2263 * progress. 2264 */ 2265 retval = cgroup_can_fork(p, args); 2266 if (retval) 2267 goto bad_fork_put_pidfd; 2268 2269 /* 2270 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2271 * the new task on the correct runqueue. All this *before* the task 2272 * becomes visible. 2273 * 2274 * This isn't part of ->can_fork() because while the re-cloning is 2275 * cgroup specific, it unconditionally needs to place the task on a 2276 * runqueue. 2277 */ 2278 sched_cgroup_fork(p, args); 2279 2280 /* 2281 * From this point on we must avoid any synchronous user-space 2282 * communication until we take the tasklist-lock. In particular, we do 2283 * not want user-space to be able to predict the process start-time by 2284 * stalling fork(2) after we recorded the start_time but before it is 2285 * visible to the system. 2286 */ 2287 2288 p->start_time = ktime_get_ns(); 2289 p->start_boottime = ktime_get_boottime_ns(); 2290 2291 /* 2292 * Make it visible to the rest of the system, but dont wake it up yet. 2293 * Need tasklist lock for parent etc handling! 2294 */ 2295 write_lock_irq(&tasklist_lock); 2296 2297 /* CLONE_PARENT re-uses the old parent */ 2298 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2299 p->real_parent = current->real_parent; 2300 p->parent_exec_id = current->parent_exec_id; 2301 if (clone_flags & CLONE_THREAD) 2302 p->exit_signal = -1; 2303 else 2304 p->exit_signal = current->group_leader->exit_signal; 2305 } else { 2306 p->real_parent = current; 2307 p->parent_exec_id = current->self_exec_id; 2308 p->exit_signal = args->exit_signal; 2309 } 2310 2311 klp_copy_process(p); 2312 2313 sched_core_fork(p); 2314 2315 spin_lock(¤t->sighand->siglock); 2316 2317 /* 2318 * Copy seccomp details explicitly here, in case they were changed 2319 * before holding sighand lock. 2320 */ 2321 copy_seccomp(p); 2322 2323 rseq_fork(p, clone_flags); 2324 2325 /* Don't start children in a dying pid namespace */ 2326 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2327 retval = -ENOMEM; 2328 goto bad_fork_cancel_cgroup; 2329 } 2330 2331 /* Let kill terminate clone/fork in the middle */ 2332 if (fatal_signal_pending(current)) { 2333 retval = -EINTR; 2334 goto bad_fork_cancel_cgroup; 2335 } 2336 2337 init_task_pid_links(p); 2338 if (likely(p->pid)) { 2339 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2340 2341 init_task_pid(p, PIDTYPE_PID, pid); 2342 if (thread_group_leader(p)) { 2343 init_task_pid(p, PIDTYPE_TGID, pid); 2344 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2345 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2346 2347 if (is_child_reaper(pid)) { 2348 ns_of_pid(pid)->child_reaper = p; 2349 p->signal->flags |= SIGNAL_UNKILLABLE; 2350 } 2351 p->signal->shared_pending.signal = delayed.signal; 2352 p->signal->tty = tty_kref_get(current->signal->tty); 2353 /* 2354 * Inherit has_child_subreaper flag under the same 2355 * tasklist_lock with adding child to the process tree 2356 * for propagate_has_child_subreaper optimization. 2357 */ 2358 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2359 p->real_parent->signal->is_child_subreaper; 2360 list_add_tail(&p->sibling, &p->real_parent->children); 2361 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2362 attach_pid(p, PIDTYPE_TGID); 2363 attach_pid(p, PIDTYPE_PGID); 2364 attach_pid(p, PIDTYPE_SID); 2365 __this_cpu_inc(process_counts); 2366 } else { 2367 current->signal->nr_threads++; 2368 atomic_inc(¤t->signal->live); 2369 refcount_inc(¤t->signal->sigcnt); 2370 task_join_group_stop(p); 2371 list_add_tail_rcu(&p->thread_group, 2372 &p->group_leader->thread_group); 2373 list_add_tail_rcu(&p->thread_node, 2374 &p->signal->thread_head); 2375 } 2376 attach_pid(p, PIDTYPE_PID); 2377 nr_threads++; 2378 } 2379 total_forks++; 2380 hlist_del_init(&delayed.node); 2381 spin_unlock(¤t->sighand->siglock); 2382 syscall_tracepoint_update(p); 2383 write_unlock_irq(&tasklist_lock); 2384 2385 if (pidfile) 2386 fd_install(pidfd, pidfile); 2387 2388 proc_fork_connector(p); 2389 sched_post_fork(p); 2390 cgroup_post_fork(p, args); 2391 perf_event_fork(p); 2392 2393 trace_task_newtask(p, clone_flags); 2394 uprobe_copy_process(p, clone_flags); 2395 2396 copy_oom_score_adj(clone_flags, p); 2397 2398 return p; 2399 2400 bad_fork_cancel_cgroup: 2401 sched_core_free(p); 2402 spin_unlock(¤t->sighand->siglock); 2403 write_unlock_irq(&tasklist_lock); 2404 cgroup_cancel_fork(p, args); 2405 bad_fork_put_pidfd: 2406 if (clone_flags & CLONE_PIDFD) { 2407 fput(pidfile); 2408 put_unused_fd(pidfd); 2409 } 2410 bad_fork_free_pid: 2411 if (pid != &init_struct_pid) 2412 free_pid(pid); 2413 bad_fork_cleanup_thread: 2414 exit_thread(p); 2415 bad_fork_cleanup_io: 2416 if (p->io_context) 2417 exit_io_context(p); 2418 bad_fork_cleanup_namespaces: 2419 exit_task_namespaces(p); 2420 bad_fork_cleanup_mm: 2421 if (p->mm) { 2422 mm_clear_owner(p->mm, p); 2423 mmput(p->mm); 2424 } 2425 bad_fork_cleanup_signal: 2426 if (!(clone_flags & CLONE_THREAD)) 2427 free_signal_struct(p->signal); 2428 bad_fork_cleanup_sighand: 2429 __cleanup_sighand(p->sighand); 2430 bad_fork_cleanup_fs: 2431 exit_fs(p); /* blocking */ 2432 bad_fork_cleanup_files: 2433 exit_files(p); /* blocking */ 2434 bad_fork_cleanup_semundo: 2435 exit_sem(p); 2436 bad_fork_cleanup_security: 2437 security_task_free(p); 2438 bad_fork_cleanup_audit: 2439 audit_free(p); 2440 bad_fork_cleanup_perf: 2441 perf_event_free_task(p); 2442 bad_fork_cleanup_policy: 2443 lockdep_free_task(p); 2444 #ifdef CONFIG_NUMA 2445 mpol_put(p->mempolicy); 2446 #endif 2447 bad_fork_cleanup_delayacct: 2448 delayacct_tsk_free(p); 2449 bad_fork_cleanup_count: 2450 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2451 exit_creds(p); 2452 bad_fork_free: 2453 WRITE_ONCE(p->__state, TASK_DEAD); 2454 put_task_stack(p); 2455 delayed_free_task(p); 2456 fork_out: 2457 spin_lock_irq(¤t->sighand->siglock); 2458 hlist_del_init(&delayed.node); 2459 spin_unlock_irq(¤t->sighand->siglock); 2460 return ERR_PTR(retval); 2461 } 2462 2463 static inline void init_idle_pids(struct task_struct *idle) 2464 { 2465 enum pid_type type; 2466 2467 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2468 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2469 init_task_pid(idle, type, &init_struct_pid); 2470 } 2471 } 2472 2473 struct task_struct * __init fork_idle(int cpu) 2474 { 2475 struct task_struct *task; 2476 struct kernel_clone_args args = { 2477 .flags = CLONE_VM, 2478 }; 2479 2480 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2481 if (!IS_ERR(task)) { 2482 init_idle_pids(task); 2483 init_idle(task, cpu); 2484 } 2485 2486 return task; 2487 } 2488 2489 struct mm_struct *copy_init_mm(void) 2490 { 2491 return dup_mm(NULL, &init_mm); 2492 } 2493 2494 /* 2495 * This is like kernel_clone(), but shaved down and tailored to just 2496 * creating io_uring workers. It returns a created task, or an error pointer. 2497 * The returned task is inactive, and the caller must fire it up through 2498 * wake_up_new_task(p). All signals are blocked in the created task. 2499 */ 2500 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2501 { 2502 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2503 CLONE_IO; 2504 struct kernel_clone_args args = { 2505 .flags = ((lower_32_bits(flags) | CLONE_VM | 2506 CLONE_UNTRACED) & ~CSIGNAL), 2507 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2508 .stack = (unsigned long)fn, 2509 .stack_size = (unsigned long)arg, 2510 .io_thread = 1, 2511 }; 2512 2513 return copy_process(NULL, 0, node, &args); 2514 } 2515 2516 /* 2517 * Ok, this is the main fork-routine. 2518 * 2519 * It copies the process, and if successful kick-starts 2520 * it and waits for it to finish using the VM if required. 2521 * 2522 * args->exit_signal is expected to be checked for sanity by the caller. 2523 */ 2524 pid_t kernel_clone(struct kernel_clone_args *args) 2525 { 2526 u64 clone_flags = args->flags; 2527 struct completion vfork; 2528 struct pid *pid; 2529 struct task_struct *p; 2530 int trace = 0; 2531 pid_t nr; 2532 2533 /* 2534 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2535 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2536 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2537 * field in struct clone_args and it still doesn't make sense to have 2538 * them both point at the same memory location. Performing this check 2539 * here has the advantage that we don't need to have a separate helper 2540 * to check for legacy clone(). 2541 */ 2542 if ((args->flags & CLONE_PIDFD) && 2543 (args->flags & CLONE_PARENT_SETTID) && 2544 (args->pidfd == args->parent_tid)) 2545 return -EINVAL; 2546 2547 /* 2548 * Determine whether and which event to report to ptracer. When 2549 * called from kernel_thread or CLONE_UNTRACED is explicitly 2550 * requested, no event is reported; otherwise, report if the event 2551 * for the type of forking is enabled. 2552 */ 2553 if (!(clone_flags & CLONE_UNTRACED)) { 2554 if (clone_flags & CLONE_VFORK) 2555 trace = PTRACE_EVENT_VFORK; 2556 else if (args->exit_signal != SIGCHLD) 2557 trace = PTRACE_EVENT_CLONE; 2558 else 2559 trace = PTRACE_EVENT_FORK; 2560 2561 if (likely(!ptrace_event_enabled(current, trace))) 2562 trace = 0; 2563 } 2564 2565 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2566 add_latent_entropy(); 2567 2568 if (IS_ERR(p)) 2569 return PTR_ERR(p); 2570 2571 /* 2572 * Do this prior waking up the new thread - the thread pointer 2573 * might get invalid after that point, if the thread exits quickly. 2574 */ 2575 trace_sched_process_fork(current, p); 2576 2577 pid = get_task_pid(p, PIDTYPE_PID); 2578 nr = pid_vnr(pid); 2579 2580 if (clone_flags & CLONE_PARENT_SETTID) 2581 put_user(nr, args->parent_tid); 2582 2583 if (clone_flags & CLONE_VFORK) { 2584 p->vfork_done = &vfork; 2585 init_completion(&vfork); 2586 get_task_struct(p); 2587 } 2588 2589 wake_up_new_task(p); 2590 2591 /* forking complete and child started to run, tell ptracer */ 2592 if (unlikely(trace)) 2593 ptrace_event_pid(trace, pid); 2594 2595 if (clone_flags & CLONE_VFORK) { 2596 if (!wait_for_vfork_done(p, &vfork)) 2597 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2598 } 2599 2600 put_pid(pid); 2601 return nr; 2602 } 2603 2604 /* 2605 * Create a kernel thread. 2606 */ 2607 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2608 { 2609 struct kernel_clone_args args = { 2610 .flags = ((lower_32_bits(flags) | CLONE_VM | 2611 CLONE_UNTRACED) & ~CSIGNAL), 2612 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2613 .stack = (unsigned long)fn, 2614 .stack_size = (unsigned long)arg, 2615 }; 2616 2617 return kernel_clone(&args); 2618 } 2619 2620 #ifdef __ARCH_WANT_SYS_FORK 2621 SYSCALL_DEFINE0(fork) 2622 { 2623 #ifdef CONFIG_MMU 2624 struct kernel_clone_args args = { 2625 .exit_signal = SIGCHLD, 2626 }; 2627 2628 return kernel_clone(&args); 2629 #else 2630 /* can not support in nommu mode */ 2631 return -EINVAL; 2632 #endif 2633 } 2634 #endif 2635 2636 #ifdef __ARCH_WANT_SYS_VFORK 2637 SYSCALL_DEFINE0(vfork) 2638 { 2639 struct kernel_clone_args args = { 2640 .flags = CLONE_VFORK | CLONE_VM, 2641 .exit_signal = SIGCHLD, 2642 }; 2643 2644 return kernel_clone(&args); 2645 } 2646 #endif 2647 2648 #ifdef __ARCH_WANT_SYS_CLONE 2649 #ifdef CONFIG_CLONE_BACKWARDS 2650 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2651 int __user *, parent_tidptr, 2652 unsigned long, tls, 2653 int __user *, child_tidptr) 2654 #elif defined(CONFIG_CLONE_BACKWARDS2) 2655 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2656 int __user *, parent_tidptr, 2657 int __user *, child_tidptr, 2658 unsigned long, tls) 2659 #elif defined(CONFIG_CLONE_BACKWARDS3) 2660 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2661 int, stack_size, 2662 int __user *, parent_tidptr, 2663 int __user *, child_tidptr, 2664 unsigned long, tls) 2665 #else 2666 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2667 int __user *, parent_tidptr, 2668 int __user *, child_tidptr, 2669 unsigned long, tls) 2670 #endif 2671 { 2672 struct kernel_clone_args args = { 2673 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2674 .pidfd = parent_tidptr, 2675 .child_tid = child_tidptr, 2676 .parent_tid = parent_tidptr, 2677 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2678 .stack = newsp, 2679 .tls = tls, 2680 }; 2681 2682 return kernel_clone(&args); 2683 } 2684 #endif 2685 2686 #ifdef __ARCH_WANT_SYS_CLONE3 2687 2688 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2689 struct clone_args __user *uargs, 2690 size_t usize) 2691 { 2692 int err; 2693 struct clone_args args; 2694 pid_t *kset_tid = kargs->set_tid; 2695 2696 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2697 CLONE_ARGS_SIZE_VER0); 2698 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2699 CLONE_ARGS_SIZE_VER1); 2700 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2701 CLONE_ARGS_SIZE_VER2); 2702 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2703 2704 if (unlikely(usize > PAGE_SIZE)) 2705 return -E2BIG; 2706 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2707 return -EINVAL; 2708 2709 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2710 if (err) 2711 return err; 2712 2713 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2714 return -EINVAL; 2715 2716 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2717 return -EINVAL; 2718 2719 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2720 return -EINVAL; 2721 2722 /* 2723 * Verify that higher 32bits of exit_signal are unset and that 2724 * it is a valid signal 2725 */ 2726 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2727 !valid_signal(args.exit_signal))) 2728 return -EINVAL; 2729 2730 if ((args.flags & CLONE_INTO_CGROUP) && 2731 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2732 return -EINVAL; 2733 2734 *kargs = (struct kernel_clone_args){ 2735 .flags = args.flags, 2736 .pidfd = u64_to_user_ptr(args.pidfd), 2737 .child_tid = u64_to_user_ptr(args.child_tid), 2738 .parent_tid = u64_to_user_ptr(args.parent_tid), 2739 .exit_signal = args.exit_signal, 2740 .stack = args.stack, 2741 .stack_size = args.stack_size, 2742 .tls = args.tls, 2743 .set_tid_size = args.set_tid_size, 2744 .cgroup = args.cgroup, 2745 }; 2746 2747 if (args.set_tid && 2748 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2749 (kargs->set_tid_size * sizeof(pid_t)))) 2750 return -EFAULT; 2751 2752 kargs->set_tid = kset_tid; 2753 2754 return 0; 2755 } 2756 2757 /** 2758 * clone3_stack_valid - check and prepare stack 2759 * @kargs: kernel clone args 2760 * 2761 * Verify that the stack arguments userspace gave us are sane. 2762 * In addition, set the stack direction for userspace since it's easy for us to 2763 * determine. 2764 */ 2765 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2766 { 2767 if (kargs->stack == 0) { 2768 if (kargs->stack_size > 0) 2769 return false; 2770 } else { 2771 if (kargs->stack_size == 0) 2772 return false; 2773 2774 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2775 return false; 2776 2777 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2778 kargs->stack += kargs->stack_size; 2779 #endif 2780 } 2781 2782 return true; 2783 } 2784 2785 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2786 { 2787 /* Verify that no unknown flags are passed along. */ 2788 if (kargs->flags & 2789 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2790 return false; 2791 2792 /* 2793 * - make the CLONE_DETACHED bit reusable for clone3 2794 * - make the CSIGNAL bits reusable for clone3 2795 */ 2796 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2797 return false; 2798 2799 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2800 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2801 return false; 2802 2803 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2804 kargs->exit_signal) 2805 return false; 2806 2807 if (!clone3_stack_valid(kargs)) 2808 return false; 2809 2810 return true; 2811 } 2812 2813 /** 2814 * clone3 - create a new process with specific properties 2815 * @uargs: argument structure 2816 * @size: size of @uargs 2817 * 2818 * clone3() is the extensible successor to clone()/clone2(). 2819 * It takes a struct as argument that is versioned by its size. 2820 * 2821 * Return: On success, a positive PID for the child process. 2822 * On error, a negative errno number. 2823 */ 2824 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2825 { 2826 int err; 2827 2828 struct kernel_clone_args kargs; 2829 pid_t set_tid[MAX_PID_NS_LEVEL]; 2830 2831 kargs.set_tid = set_tid; 2832 2833 err = copy_clone_args_from_user(&kargs, uargs, size); 2834 if (err) 2835 return err; 2836 2837 if (!clone3_args_valid(&kargs)) 2838 return -EINVAL; 2839 2840 return kernel_clone(&kargs); 2841 } 2842 #endif 2843 2844 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2845 { 2846 struct task_struct *leader, *parent, *child; 2847 int res; 2848 2849 read_lock(&tasklist_lock); 2850 leader = top = top->group_leader; 2851 down: 2852 for_each_thread(leader, parent) { 2853 list_for_each_entry(child, &parent->children, sibling) { 2854 res = visitor(child, data); 2855 if (res) { 2856 if (res < 0) 2857 goto out; 2858 leader = child; 2859 goto down; 2860 } 2861 up: 2862 ; 2863 } 2864 } 2865 2866 if (leader != top) { 2867 child = leader; 2868 parent = child->real_parent; 2869 leader = parent->group_leader; 2870 goto up; 2871 } 2872 out: 2873 read_unlock(&tasklist_lock); 2874 } 2875 2876 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2877 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2878 #endif 2879 2880 static void sighand_ctor(void *data) 2881 { 2882 struct sighand_struct *sighand = data; 2883 2884 spin_lock_init(&sighand->siglock); 2885 init_waitqueue_head(&sighand->signalfd_wqh); 2886 } 2887 2888 void __init proc_caches_init(void) 2889 { 2890 unsigned int mm_size; 2891 2892 sighand_cachep = kmem_cache_create("sighand_cache", 2893 sizeof(struct sighand_struct), 0, 2894 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2895 SLAB_ACCOUNT, sighand_ctor); 2896 signal_cachep = kmem_cache_create("signal_cache", 2897 sizeof(struct signal_struct), 0, 2898 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2899 NULL); 2900 files_cachep = kmem_cache_create("files_cache", 2901 sizeof(struct files_struct), 0, 2902 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2903 NULL); 2904 fs_cachep = kmem_cache_create("fs_cache", 2905 sizeof(struct fs_struct), 0, 2906 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2907 NULL); 2908 2909 /* 2910 * The mm_cpumask is located at the end of mm_struct, and is 2911 * dynamically sized based on the maximum CPU number this system 2912 * can have, taking hotplug into account (nr_cpu_ids). 2913 */ 2914 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2915 2916 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2917 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2918 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2919 offsetof(struct mm_struct, saved_auxv), 2920 sizeof_field(struct mm_struct, saved_auxv), 2921 NULL); 2922 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2923 mmap_init(); 2924 nsproxy_cache_init(); 2925 } 2926 2927 /* 2928 * Check constraints on flags passed to the unshare system call. 2929 */ 2930 static int check_unshare_flags(unsigned long unshare_flags) 2931 { 2932 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2933 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2934 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2935 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2936 CLONE_NEWTIME)) 2937 return -EINVAL; 2938 /* 2939 * Not implemented, but pretend it works if there is nothing 2940 * to unshare. Note that unsharing the address space or the 2941 * signal handlers also need to unshare the signal queues (aka 2942 * CLONE_THREAD). 2943 */ 2944 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2945 if (!thread_group_empty(current)) 2946 return -EINVAL; 2947 } 2948 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2949 if (refcount_read(¤t->sighand->count) > 1) 2950 return -EINVAL; 2951 } 2952 if (unshare_flags & CLONE_VM) { 2953 if (!current_is_single_threaded()) 2954 return -EINVAL; 2955 } 2956 2957 return 0; 2958 } 2959 2960 /* 2961 * Unshare the filesystem structure if it is being shared 2962 */ 2963 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2964 { 2965 struct fs_struct *fs = current->fs; 2966 2967 if (!(unshare_flags & CLONE_FS) || !fs) 2968 return 0; 2969 2970 /* don't need lock here; in the worst case we'll do useless copy */ 2971 if (fs->users == 1) 2972 return 0; 2973 2974 *new_fsp = copy_fs_struct(fs); 2975 if (!*new_fsp) 2976 return -ENOMEM; 2977 2978 return 0; 2979 } 2980 2981 /* 2982 * Unshare file descriptor table if it is being shared 2983 */ 2984 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2985 struct files_struct **new_fdp) 2986 { 2987 struct files_struct *fd = current->files; 2988 int error = 0; 2989 2990 if ((unshare_flags & CLONE_FILES) && 2991 (fd && atomic_read(&fd->count) > 1)) { 2992 *new_fdp = dup_fd(fd, max_fds, &error); 2993 if (!*new_fdp) 2994 return error; 2995 } 2996 2997 return 0; 2998 } 2999 3000 /* 3001 * unshare allows a process to 'unshare' part of the process 3002 * context which was originally shared using clone. copy_* 3003 * functions used by kernel_clone() cannot be used here directly 3004 * because they modify an inactive task_struct that is being 3005 * constructed. Here we are modifying the current, active, 3006 * task_struct. 3007 */ 3008 int ksys_unshare(unsigned long unshare_flags) 3009 { 3010 struct fs_struct *fs, *new_fs = NULL; 3011 struct files_struct *new_fd = NULL; 3012 struct cred *new_cred = NULL; 3013 struct nsproxy *new_nsproxy = NULL; 3014 int do_sysvsem = 0; 3015 int err; 3016 3017 /* 3018 * If unsharing a user namespace must also unshare the thread group 3019 * and unshare the filesystem root and working directories. 3020 */ 3021 if (unshare_flags & CLONE_NEWUSER) 3022 unshare_flags |= CLONE_THREAD | CLONE_FS; 3023 /* 3024 * If unsharing vm, must also unshare signal handlers. 3025 */ 3026 if (unshare_flags & CLONE_VM) 3027 unshare_flags |= CLONE_SIGHAND; 3028 /* 3029 * If unsharing a signal handlers, must also unshare the signal queues. 3030 */ 3031 if (unshare_flags & CLONE_SIGHAND) 3032 unshare_flags |= CLONE_THREAD; 3033 /* 3034 * If unsharing namespace, must also unshare filesystem information. 3035 */ 3036 if (unshare_flags & CLONE_NEWNS) 3037 unshare_flags |= CLONE_FS; 3038 3039 err = check_unshare_flags(unshare_flags); 3040 if (err) 3041 goto bad_unshare_out; 3042 /* 3043 * CLONE_NEWIPC must also detach from the undolist: after switching 3044 * to a new ipc namespace, the semaphore arrays from the old 3045 * namespace are unreachable. 3046 */ 3047 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3048 do_sysvsem = 1; 3049 err = unshare_fs(unshare_flags, &new_fs); 3050 if (err) 3051 goto bad_unshare_out; 3052 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3053 if (err) 3054 goto bad_unshare_cleanup_fs; 3055 err = unshare_userns(unshare_flags, &new_cred); 3056 if (err) 3057 goto bad_unshare_cleanup_fd; 3058 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3059 new_cred, new_fs); 3060 if (err) 3061 goto bad_unshare_cleanup_cred; 3062 3063 if (new_cred) { 3064 err = set_cred_ucounts(new_cred); 3065 if (err) 3066 goto bad_unshare_cleanup_cred; 3067 } 3068 3069 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3070 if (do_sysvsem) { 3071 /* 3072 * CLONE_SYSVSEM is equivalent to sys_exit(). 3073 */ 3074 exit_sem(current); 3075 } 3076 if (unshare_flags & CLONE_NEWIPC) { 3077 /* Orphan segments in old ns (see sem above). */ 3078 exit_shm(current); 3079 shm_init_task(current); 3080 } 3081 3082 if (new_nsproxy) 3083 switch_task_namespaces(current, new_nsproxy); 3084 3085 task_lock(current); 3086 3087 if (new_fs) { 3088 fs = current->fs; 3089 spin_lock(&fs->lock); 3090 current->fs = new_fs; 3091 if (--fs->users) 3092 new_fs = NULL; 3093 else 3094 new_fs = fs; 3095 spin_unlock(&fs->lock); 3096 } 3097 3098 if (new_fd) 3099 swap(current->files, new_fd); 3100 3101 task_unlock(current); 3102 3103 if (new_cred) { 3104 /* Install the new user namespace */ 3105 commit_creds(new_cred); 3106 new_cred = NULL; 3107 } 3108 } 3109 3110 perf_event_namespaces(current); 3111 3112 bad_unshare_cleanup_cred: 3113 if (new_cred) 3114 put_cred(new_cred); 3115 bad_unshare_cleanup_fd: 3116 if (new_fd) 3117 put_files_struct(new_fd); 3118 3119 bad_unshare_cleanup_fs: 3120 if (new_fs) 3121 free_fs_struct(new_fs); 3122 3123 bad_unshare_out: 3124 return err; 3125 } 3126 3127 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3128 { 3129 return ksys_unshare(unshare_flags); 3130 } 3131 3132 /* 3133 * Helper to unshare the files of the current task. 3134 * We don't want to expose copy_files internals to 3135 * the exec layer of the kernel. 3136 */ 3137 3138 int unshare_files(void) 3139 { 3140 struct task_struct *task = current; 3141 struct files_struct *old, *copy = NULL; 3142 int error; 3143 3144 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3145 if (error || !copy) 3146 return error; 3147 3148 old = task->files; 3149 task_lock(task); 3150 task->files = copy; 3151 task_unlock(task); 3152 put_files_struct(old); 3153 return 0; 3154 } 3155 3156 int sysctl_max_threads(struct ctl_table *table, int write, 3157 void *buffer, size_t *lenp, loff_t *ppos) 3158 { 3159 struct ctl_table t; 3160 int ret; 3161 int threads = max_threads; 3162 int min = 1; 3163 int max = MAX_THREADS; 3164 3165 t = *table; 3166 t.data = &threads; 3167 t.extra1 = &min; 3168 t.extra2 = &max; 3169 3170 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3171 if (ret || !write) 3172 return ret; 3173 3174 max_threads = threads; 3175 3176 return 0; 3177 } 3178