1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 } 370 return new; 371 } 372 373 void vm_area_free(struct vm_area_struct *vma) 374 { 375 kmem_cache_free(vm_area_cachep, vma); 376 } 377 378 static void account_kernel_stack(struct task_struct *tsk, int account) 379 { 380 void *stack = task_stack_page(tsk); 381 struct vm_struct *vm = task_stack_vm_area(tsk); 382 383 if (vm) { 384 int i; 385 386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 387 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 388 account * (PAGE_SIZE / 1024)); 389 } else { 390 /* All stack pages are in the same node. */ 391 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 392 account * (THREAD_SIZE / 1024)); 393 } 394 } 395 396 static int memcg_charge_kernel_stack(struct task_struct *tsk) 397 { 398 #ifdef CONFIG_VMAP_STACK 399 struct vm_struct *vm = task_stack_vm_area(tsk); 400 int ret; 401 402 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 403 404 if (vm) { 405 int i; 406 407 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 408 409 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 410 /* 411 * If memcg_kmem_charge_page() fails, page's 412 * memory cgroup pointer is NULL, and 413 * memcg_kmem_uncharge_page() in free_thread_stack() 414 * will ignore this page. 415 */ 416 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 417 0); 418 if (ret) 419 return ret; 420 } 421 } 422 #endif 423 return 0; 424 } 425 426 static void release_task_stack(struct task_struct *tsk) 427 { 428 if (WARN_ON(tsk->state != TASK_DEAD)) 429 return; /* Better to leak the stack than to free prematurely */ 430 431 account_kernel_stack(tsk, -1); 432 free_thread_stack(tsk); 433 tsk->stack = NULL; 434 #ifdef CONFIG_VMAP_STACK 435 tsk->stack_vm_area = NULL; 436 #endif 437 } 438 439 #ifdef CONFIG_THREAD_INFO_IN_TASK 440 void put_task_stack(struct task_struct *tsk) 441 { 442 if (refcount_dec_and_test(&tsk->stack_refcount)) 443 release_task_stack(tsk); 444 } 445 #endif 446 447 void free_task(struct task_struct *tsk) 448 { 449 scs_release(tsk); 450 451 #ifndef CONFIG_THREAD_INFO_IN_TASK 452 /* 453 * The task is finally done with both the stack and thread_info, 454 * so free both. 455 */ 456 release_task_stack(tsk); 457 #else 458 /* 459 * If the task had a separate stack allocation, it should be gone 460 * by now. 461 */ 462 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 463 #endif 464 rt_mutex_debug_task_free(tsk); 465 ftrace_graph_exit_task(tsk); 466 arch_release_task_struct(tsk); 467 if (tsk->flags & PF_KTHREAD) 468 free_kthread_struct(tsk); 469 free_task_struct(tsk); 470 } 471 EXPORT_SYMBOL(free_task); 472 473 #ifdef CONFIG_MMU 474 static __latent_entropy int dup_mmap(struct mm_struct *mm, 475 struct mm_struct *oldmm) 476 { 477 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 478 struct rb_node **rb_link, *rb_parent; 479 int retval; 480 unsigned long charge; 481 LIST_HEAD(uf); 482 483 uprobe_start_dup_mmap(); 484 if (mmap_write_lock_killable(oldmm)) { 485 retval = -EINTR; 486 goto fail_uprobe_end; 487 } 488 flush_cache_dup_mm(oldmm); 489 uprobe_dup_mmap(oldmm, mm); 490 /* 491 * Not linked in yet - no deadlock potential: 492 */ 493 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 494 495 /* No ordering required: file already has been exposed. */ 496 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 497 498 mm->total_vm = oldmm->total_vm; 499 mm->data_vm = oldmm->data_vm; 500 mm->exec_vm = oldmm->exec_vm; 501 mm->stack_vm = oldmm->stack_vm; 502 503 rb_link = &mm->mm_rb.rb_node; 504 rb_parent = NULL; 505 pprev = &mm->mmap; 506 retval = ksm_fork(mm, oldmm); 507 if (retval) 508 goto out; 509 retval = khugepaged_fork(mm, oldmm); 510 if (retval) 511 goto out; 512 513 prev = NULL; 514 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 515 struct file *file; 516 517 if (mpnt->vm_flags & VM_DONTCOPY) { 518 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 519 continue; 520 } 521 charge = 0; 522 /* 523 * Don't duplicate many vmas if we've been oom-killed (for 524 * example) 525 */ 526 if (fatal_signal_pending(current)) { 527 retval = -EINTR; 528 goto out; 529 } 530 if (mpnt->vm_flags & VM_ACCOUNT) { 531 unsigned long len = vma_pages(mpnt); 532 533 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 534 goto fail_nomem; 535 charge = len; 536 } 537 tmp = vm_area_dup(mpnt); 538 if (!tmp) 539 goto fail_nomem; 540 retval = vma_dup_policy(mpnt, tmp); 541 if (retval) 542 goto fail_nomem_policy; 543 tmp->vm_mm = mm; 544 retval = dup_userfaultfd(tmp, &uf); 545 if (retval) 546 goto fail_nomem_anon_vma_fork; 547 if (tmp->vm_flags & VM_WIPEONFORK) { 548 /* 549 * VM_WIPEONFORK gets a clean slate in the child. 550 * Don't prepare anon_vma until fault since we don't 551 * copy page for current vma. 552 */ 553 tmp->anon_vma = NULL; 554 } else if (anon_vma_fork(tmp, mpnt)) 555 goto fail_nomem_anon_vma_fork; 556 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 557 file = tmp->vm_file; 558 if (file) { 559 struct inode *inode = file_inode(file); 560 struct address_space *mapping = file->f_mapping; 561 562 get_file(file); 563 if (tmp->vm_flags & VM_DENYWRITE) 564 put_write_access(inode); 565 i_mmap_lock_write(mapping); 566 if (tmp->vm_flags & VM_SHARED) 567 mapping_allow_writable(mapping); 568 flush_dcache_mmap_lock(mapping); 569 /* insert tmp into the share list, just after mpnt */ 570 vma_interval_tree_insert_after(tmp, mpnt, 571 &mapping->i_mmap); 572 flush_dcache_mmap_unlock(mapping); 573 i_mmap_unlock_write(mapping); 574 } 575 576 /* 577 * Clear hugetlb-related page reserves for children. This only 578 * affects MAP_PRIVATE mappings. Faults generated by the child 579 * are not guaranteed to succeed, even if read-only 580 */ 581 if (is_vm_hugetlb_page(tmp)) 582 reset_vma_resv_huge_pages(tmp); 583 584 /* 585 * Link in the new vma and copy the page table entries. 586 */ 587 *pprev = tmp; 588 pprev = &tmp->vm_next; 589 tmp->vm_prev = prev; 590 prev = tmp; 591 592 __vma_link_rb(mm, tmp, rb_link, rb_parent); 593 rb_link = &tmp->vm_rb.rb_right; 594 rb_parent = &tmp->vm_rb; 595 596 mm->map_count++; 597 if (!(tmp->vm_flags & VM_WIPEONFORK)) 598 retval = copy_page_range(tmp, mpnt); 599 600 if (tmp->vm_ops && tmp->vm_ops->open) 601 tmp->vm_ops->open(tmp); 602 603 if (retval) 604 goto out; 605 } 606 /* a new mm has just been created */ 607 retval = arch_dup_mmap(oldmm, mm); 608 out: 609 mmap_write_unlock(mm); 610 flush_tlb_mm(oldmm); 611 mmap_write_unlock(oldmm); 612 dup_userfaultfd_complete(&uf); 613 fail_uprobe_end: 614 uprobe_end_dup_mmap(); 615 return retval; 616 fail_nomem_anon_vma_fork: 617 mpol_put(vma_policy(tmp)); 618 fail_nomem_policy: 619 vm_area_free(tmp); 620 fail_nomem: 621 retval = -ENOMEM; 622 vm_unacct_memory(charge); 623 goto out; 624 } 625 626 static inline int mm_alloc_pgd(struct mm_struct *mm) 627 { 628 mm->pgd = pgd_alloc(mm); 629 if (unlikely(!mm->pgd)) 630 return -ENOMEM; 631 return 0; 632 } 633 634 static inline void mm_free_pgd(struct mm_struct *mm) 635 { 636 pgd_free(mm, mm->pgd); 637 } 638 #else 639 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 640 { 641 mmap_write_lock(oldmm); 642 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 643 mmap_write_unlock(oldmm); 644 return 0; 645 } 646 #define mm_alloc_pgd(mm) (0) 647 #define mm_free_pgd(mm) 648 #endif /* CONFIG_MMU */ 649 650 static void check_mm(struct mm_struct *mm) 651 { 652 int i; 653 654 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 655 "Please make sure 'struct resident_page_types[]' is updated as well"); 656 657 for (i = 0; i < NR_MM_COUNTERS; i++) { 658 long x = atomic_long_read(&mm->rss_stat.count[i]); 659 660 if (unlikely(x)) 661 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 662 mm, resident_page_types[i], x); 663 } 664 665 if (mm_pgtables_bytes(mm)) 666 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 667 mm_pgtables_bytes(mm)); 668 669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 670 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 671 #endif 672 } 673 674 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 675 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 676 677 /* 678 * Called when the last reference to the mm 679 * is dropped: either by a lazy thread or by 680 * mmput. Free the page directory and the mm. 681 */ 682 void __mmdrop(struct mm_struct *mm) 683 { 684 BUG_ON(mm == &init_mm); 685 WARN_ON_ONCE(mm == current->mm); 686 WARN_ON_ONCE(mm == current->active_mm); 687 mm_free_pgd(mm); 688 destroy_context(mm); 689 mmu_notifier_subscriptions_destroy(mm); 690 check_mm(mm); 691 put_user_ns(mm->user_ns); 692 free_mm(mm); 693 } 694 EXPORT_SYMBOL_GPL(__mmdrop); 695 696 static void mmdrop_async_fn(struct work_struct *work) 697 { 698 struct mm_struct *mm; 699 700 mm = container_of(work, struct mm_struct, async_put_work); 701 __mmdrop(mm); 702 } 703 704 static void mmdrop_async(struct mm_struct *mm) 705 { 706 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 707 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 708 schedule_work(&mm->async_put_work); 709 } 710 } 711 712 static inline void free_signal_struct(struct signal_struct *sig) 713 { 714 taskstats_tgid_free(sig); 715 sched_autogroup_exit(sig); 716 /* 717 * __mmdrop is not safe to call from softirq context on x86 due to 718 * pgd_dtor so postpone it to the async context 719 */ 720 if (sig->oom_mm) 721 mmdrop_async(sig->oom_mm); 722 kmem_cache_free(signal_cachep, sig); 723 } 724 725 static inline void put_signal_struct(struct signal_struct *sig) 726 { 727 if (refcount_dec_and_test(&sig->sigcnt)) 728 free_signal_struct(sig); 729 } 730 731 void __put_task_struct(struct task_struct *tsk) 732 { 733 WARN_ON(!tsk->exit_state); 734 WARN_ON(refcount_read(&tsk->usage)); 735 WARN_ON(tsk == current); 736 737 io_uring_free(tsk); 738 cgroup_free(tsk); 739 task_numa_free(tsk, true); 740 security_task_free(tsk); 741 bpf_task_storage_free(tsk); 742 exit_creds(tsk); 743 delayacct_tsk_free(tsk); 744 put_signal_struct(tsk->signal); 745 746 if (!profile_handoff_task(tsk)) 747 free_task(tsk); 748 } 749 EXPORT_SYMBOL_GPL(__put_task_struct); 750 751 void __init __weak arch_task_cache_init(void) { } 752 753 /* 754 * set_max_threads 755 */ 756 static void set_max_threads(unsigned int max_threads_suggested) 757 { 758 u64 threads; 759 unsigned long nr_pages = totalram_pages(); 760 761 /* 762 * The number of threads shall be limited such that the thread 763 * structures may only consume a small part of the available memory. 764 */ 765 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 766 threads = MAX_THREADS; 767 else 768 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 769 (u64) THREAD_SIZE * 8UL); 770 771 if (threads > max_threads_suggested) 772 threads = max_threads_suggested; 773 774 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 775 } 776 777 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 778 /* Initialized by the architecture: */ 779 int arch_task_struct_size __read_mostly; 780 #endif 781 782 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 783 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 784 { 785 /* Fetch thread_struct whitelist for the architecture. */ 786 arch_thread_struct_whitelist(offset, size); 787 788 /* 789 * Handle zero-sized whitelist or empty thread_struct, otherwise 790 * adjust offset to position of thread_struct in task_struct. 791 */ 792 if (unlikely(*size == 0)) 793 *offset = 0; 794 else 795 *offset += offsetof(struct task_struct, thread); 796 } 797 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 798 799 void __init fork_init(void) 800 { 801 int i; 802 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 803 #ifndef ARCH_MIN_TASKALIGN 804 #define ARCH_MIN_TASKALIGN 0 805 #endif 806 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 807 unsigned long useroffset, usersize; 808 809 /* create a slab on which task_structs can be allocated */ 810 task_struct_whitelist(&useroffset, &usersize); 811 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 812 arch_task_struct_size, align, 813 SLAB_PANIC|SLAB_ACCOUNT, 814 useroffset, usersize, NULL); 815 #endif 816 817 /* do the arch specific task caches init */ 818 arch_task_cache_init(); 819 820 set_max_threads(MAX_THREADS); 821 822 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 823 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 824 init_task.signal->rlim[RLIMIT_SIGPENDING] = 825 init_task.signal->rlim[RLIMIT_NPROC]; 826 827 for (i = 0; i < UCOUNT_COUNTS; i++) 828 init_user_ns.ucount_max[i] = max_threads/2; 829 830 #ifdef CONFIG_VMAP_STACK 831 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 832 NULL, free_vm_stack_cache); 833 #endif 834 835 scs_init(); 836 837 lockdep_init_task(&init_task); 838 uprobes_init(); 839 } 840 841 int __weak arch_dup_task_struct(struct task_struct *dst, 842 struct task_struct *src) 843 { 844 *dst = *src; 845 return 0; 846 } 847 848 void set_task_stack_end_magic(struct task_struct *tsk) 849 { 850 unsigned long *stackend; 851 852 stackend = end_of_stack(tsk); 853 *stackend = STACK_END_MAGIC; /* for overflow detection */ 854 } 855 856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 857 { 858 struct task_struct *tsk; 859 unsigned long *stack; 860 struct vm_struct *stack_vm_area __maybe_unused; 861 int err; 862 863 if (node == NUMA_NO_NODE) 864 node = tsk_fork_get_node(orig); 865 tsk = alloc_task_struct_node(node); 866 if (!tsk) 867 return NULL; 868 869 stack = alloc_thread_stack_node(tsk, node); 870 if (!stack) 871 goto free_tsk; 872 873 if (memcg_charge_kernel_stack(tsk)) 874 goto free_stack; 875 876 stack_vm_area = task_stack_vm_area(tsk); 877 878 err = arch_dup_task_struct(tsk, orig); 879 880 /* 881 * arch_dup_task_struct() clobbers the stack-related fields. Make 882 * sure they're properly initialized before using any stack-related 883 * functions again. 884 */ 885 tsk->stack = stack; 886 #ifdef CONFIG_VMAP_STACK 887 tsk->stack_vm_area = stack_vm_area; 888 #endif 889 #ifdef CONFIG_THREAD_INFO_IN_TASK 890 refcount_set(&tsk->stack_refcount, 1); 891 #endif 892 893 if (err) 894 goto free_stack; 895 896 err = scs_prepare(tsk, node); 897 if (err) 898 goto free_stack; 899 900 #ifdef CONFIG_SECCOMP 901 /* 902 * We must handle setting up seccomp filters once we're under 903 * the sighand lock in case orig has changed between now and 904 * then. Until then, filter must be NULL to avoid messing up 905 * the usage counts on the error path calling free_task. 906 */ 907 tsk->seccomp.filter = NULL; 908 #endif 909 910 setup_thread_stack(tsk, orig); 911 clear_user_return_notifier(tsk); 912 clear_tsk_need_resched(tsk); 913 set_task_stack_end_magic(tsk); 914 clear_syscall_work_syscall_user_dispatch(tsk); 915 916 #ifdef CONFIG_STACKPROTECTOR 917 tsk->stack_canary = get_random_canary(); 918 #endif 919 if (orig->cpus_ptr == &orig->cpus_mask) 920 tsk->cpus_ptr = &tsk->cpus_mask; 921 922 /* 923 * One for the user space visible state that goes away when reaped. 924 * One for the scheduler. 925 */ 926 refcount_set(&tsk->rcu_users, 2); 927 /* One for the rcu users */ 928 refcount_set(&tsk->usage, 1); 929 #ifdef CONFIG_BLK_DEV_IO_TRACE 930 tsk->btrace_seq = 0; 931 #endif 932 tsk->splice_pipe = NULL; 933 tsk->task_frag.page = NULL; 934 tsk->wake_q.next = NULL; 935 tsk->pf_io_worker = NULL; 936 937 account_kernel_stack(tsk, 1); 938 939 kcov_task_init(tsk); 940 kmap_local_fork(tsk); 941 942 #ifdef CONFIG_FAULT_INJECTION 943 tsk->fail_nth = 0; 944 #endif 945 946 #ifdef CONFIG_BLK_CGROUP 947 tsk->throttle_queue = NULL; 948 tsk->use_memdelay = 0; 949 #endif 950 951 #ifdef CONFIG_MEMCG 952 tsk->active_memcg = NULL; 953 #endif 954 return tsk; 955 956 free_stack: 957 free_thread_stack(tsk); 958 free_tsk: 959 free_task_struct(tsk); 960 return NULL; 961 } 962 963 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 964 965 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 966 967 static int __init coredump_filter_setup(char *s) 968 { 969 default_dump_filter = 970 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 971 MMF_DUMP_FILTER_MASK; 972 return 1; 973 } 974 975 __setup("coredump_filter=", coredump_filter_setup); 976 977 #include <linux/init_task.h> 978 979 static void mm_init_aio(struct mm_struct *mm) 980 { 981 #ifdef CONFIG_AIO 982 spin_lock_init(&mm->ioctx_lock); 983 mm->ioctx_table = NULL; 984 #endif 985 } 986 987 static __always_inline void mm_clear_owner(struct mm_struct *mm, 988 struct task_struct *p) 989 { 990 #ifdef CONFIG_MEMCG 991 if (mm->owner == p) 992 WRITE_ONCE(mm->owner, NULL); 993 #endif 994 } 995 996 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 997 { 998 #ifdef CONFIG_MEMCG 999 mm->owner = p; 1000 #endif 1001 } 1002 1003 static void mm_init_pasid(struct mm_struct *mm) 1004 { 1005 #ifdef CONFIG_IOMMU_SUPPORT 1006 mm->pasid = INIT_PASID; 1007 #endif 1008 } 1009 1010 static void mm_init_uprobes_state(struct mm_struct *mm) 1011 { 1012 #ifdef CONFIG_UPROBES 1013 mm->uprobes_state.xol_area = NULL; 1014 #endif 1015 } 1016 1017 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1018 struct user_namespace *user_ns) 1019 { 1020 mm->mmap = NULL; 1021 mm->mm_rb = RB_ROOT; 1022 mm->vmacache_seqnum = 0; 1023 atomic_set(&mm->mm_users, 1); 1024 atomic_set(&mm->mm_count, 1); 1025 seqcount_init(&mm->write_protect_seq); 1026 mmap_init_lock(mm); 1027 INIT_LIST_HEAD(&mm->mmlist); 1028 mm->core_state = NULL; 1029 mm_pgtables_bytes_init(mm); 1030 mm->map_count = 0; 1031 mm->locked_vm = 0; 1032 atomic64_set(&mm->pinned_vm, 0); 1033 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1034 spin_lock_init(&mm->page_table_lock); 1035 spin_lock_init(&mm->arg_lock); 1036 mm_init_cpumask(mm); 1037 mm_init_aio(mm); 1038 mm_init_owner(mm, p); 1039 mm_init_pasid(mm); 1040 RCU_INIT_POINTER(mm->exe_file, NULL); 1041 mmu_notifier_subscriptions_init(mm); 1042 init_tlb_flush_pending(mm); 1043 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1044 mm->pmd_huge_pte = NULL; 1045 #endif 1046 mm_init_uprobes_state(mm); 1047 1048 if (current->mm) { 1049 mm->flags = current->mm->flags & MMF_INIT_MASK; 1050 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1051 } else { 1052 mm->flags = default_dump_filter; 1053 mm->def_flags = 0; 1054 } 1055 1056 if (mm_alloc_pgd(mm)) 1057 goto fail_nopgd; 1058 1059 if (init_new_context(p, mm)) 1060 goto fail_nocontext; 1061 1062 mm->user_ns = get_user_ns(user_ns); 1063 return mm; 1064 1065 fail_nocontext: 1066 mm_free_pgd(mm); 1067 fail_nopgd: 1068 free_mm(mm); 1069 return NULL; 1070 } 1071 1072 /* 1073 * Allocate and initialize an mm_struct. 1074 */ 1075 struct mm_struct *mm_alloc(void) 1076 { 1077 struct mm_struct *mm; 1078 1079 mm = allocate_mm(); 1080 if (!mm) 1081 return NULL; 1082 1083 memset(mm, 0, sizeof(*mm)); 1084 return mm_init(mm, current, current_user_ns()); 1085 } 1086 1087 static inline void __mmput(struct mm_struct *mm) 1088 { 1089 VM_BUG_ON(atomic_read(&mm->mm_users)); 1090 1091 uprobe_clear_state(mm); 1092 exit_aio(mm); 1093 ksm_exit(mm); 1094 khugepaged_exit(mm); /* must run before exit_mmap */ 1095 exit_mmap(mm); 1096 mm_put_huge_zero_page(mm); 1097 set_mm_exe_file(mm, NULL); 1098 if (!list_empty(&mm->mmlist)) { 1099 spin_lock(&mmlist_lock); 1100 list_del(&mm->mmlist); 1101 spin_unlock(&mmlist_lock); 1102 } 1103 if (mm->binfmt) 1104 module_put(mm->binfmt->module); 1105 mmdrop(mm); 1106 } 1107 1108 /* 1109 * Decrement the use count and release all resources for an mm. 1110 */ 1111 void mmput(struct mm_struct *mm) 1112 { 1113 might_sleep(); 1114 1115 if (atomic_dec_and_test(&mm->mm_users)) 1116 __mmput(mm); 1117 } 1118 EXPORT_SYMBOL_GPL(mmput); 1119 1120 #ifdef CONFIG_MMU 1121 static void mmput_async_fn(struct work_struct *work) 1122 { 1123 struct mm_struct *mm = container_of(work, struct mm_struct, 1124 async_put_work); 1125 1126 __mmput(mm); 1127 } 1128 1129 void mmput_async(struct mm_struct *mm) 1130 { 1131 if (atomic_dec_and_test(&mm->mm_users)) { 1132 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1133 schedule_work(&mm->async_put_work); 1134 } 1135 } 1136 #endif 1137 1138 /** 1139 * set_mm_exe_file - change a reference to the mm's executable file 1140 * 1141 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1142 * 1143 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1144 * invocations: in mmput() nobody alive left, in execve task is single 1145 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1146 * mm->exe_file, but does so without using set_mm_exe_file() in order 1147 * to avoid the need for any locks. 1148 */ 1149 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1150 { 1151 struct file *old_exe_file; 1152 1153 /* 1154 * It is safe to dereference the exe_file without RCU as 1155 * this function is only called if nobody else can access 1156 * this mm -- see comment above for justification. 1157 */ 1158 old_exe_file = rcu_dereference_raw(mm->exe_file); 1159 1160 if (new_exe_file) 1161 get_file(new_exe_file); 1162 rcu_assign_pointer(mm->exe_file, new_exe_file); 1163 if (old_exe_file) 1164 fput(old_exe_file); 1165 } 1166 1167 /** 1168 * get_mm_exe_file - acquire a reference to the mm's executable file 1169 * 1170 * Returns %NULL if mm has no associated executable file. 1171 * User must release file via fput(). 1172 */ 1173 struct file *get_mm_exe_file(struct mm_struct *mm) 1174 { 1175 struct file *exe_file; 1176 1177 rcu_read_lock(); 1178 exe_file = rcu_dereference(mm->exe_file); 1179 if (exe_file && !get_file_rcu(exe_file)) 1180 exe_file = NULL; 1181 rcu_read_unlock(); 1182 return exe_file; 1183 } 1184 EXPORT_SYMBOL(get_mm_exe_file); 1185 1186 /** 1187 * get_task_exe_file - acquire a reference to the task's executable file 1188 * 1189 * Returns %NULL if task's mm (if any) has no associated executable file or 1190 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1191 * User must release file via fput(). 1192 */ 1193 struct file *get_task_exe_file(struct task_struct *task) 1194 { 1195 struct file *exe_file = NULL; 1196 struct mm_struct *mm; 1197 1198 task_lock(task); 1199 mm = task->mm; 1200 if (mm) { 1201 if (!(task->flags & PF_KTHREAD)) 1202 exe_file = get_mm_exe_file(mm); 1203 } 1204 task_unlock(task); 1205 return exe_file; 1206 } 1207 EXPORT_SYMBOL(get_task_exe_file); 1208 1209 /** 1210 * get_task_mm - acquire a reference to the task's mm 1211 * 1212 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1213 * this kernel workthread has transiently adopted a user mm with use_mm, 1214 * to do its AIO) is not set and if so returns a reference to it, after 1215 * bumping up the use count. User must release the mm via mmput() 1216 * after use. Typically used by /proc and ptrace. 1217 */ 1218 struct mm_struct *get_task_mm(struct task_struct *task) 1219 { 1220 struct mm_struct *mm; 1221 1222 task_lock(task); 1223 mm = task->mm; 1224 if (mm) { 1225 if (task->flags & PF_KTHREAD) 1226 mm = NULL; 1227 else 1228 mmget(mm); 1229 } 1230 task_unlock(task); 1231 return mm; 1232 } 1233 EXPORT_SYMBOL_GPL(get_task_mm); 1234 1235 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1236 { 1237 struct mm_struct *mm; 1238 int err; 1239 1240 err = down_read_killable(&task->signal->exec_update_lock); 1241 if (err) 1242 return ERR_PTR(err); 1243 1244 mm = get_task_mm(task); 1245 if (mm && mm != current->mm && 1246 !ptrace_may_access(task, mode)) { 1247 mmput(mm); 1248 mm = ERR_PTR(-EACCES); 1249 } 1250 up_read(&task->signal->exec_update_lock); 1251 1252 return mm; 1253 } 1254 1255 static void complete_vfork_done(struct task_struct *tsk) 1256 { 1257 struct completion *vfork; 1258 1259 task_lock(tsk); 1260 vfork = tsk->vfork_done; 1261 if (likely(vfork)) { 1262 tsk->vfork_done = NULL; 1263 complete(vfork); 1264 } 1265 task_unlock(tsk); 1266 } 1267 1268 static int wait_for_vfork_done(struct task_struct *child, 1269 struct completion *vfork) 1270 { 1271 int killed; 1272 1273 freezer_do_not_count(); 1274 cgroup_enter_frozen(); 1275 killed = wait_for_completion_killable(vfork); 1276 cgroup_leave_frozen(false); 1277 freezer_count(); 1278 1279 if (killed) { 1280 task_lock(child); 1281 child->vfork_done = NULL; 1282 task_unlock(child); 1283 } 1284 1285 put_task_struct(child); 1286 return killed; 1287 } 1288 1289 /* Please note the differences between mmput and mm_release. 1290 * mmput is called whenever we stop holding onto a mm_struct, 1291 * error success whatever. 1292 * 1293 * mm_release is called after a mm_struct has been removed 1294 * from the current process. 1295 * 1296 * This difference is important for error handling, when we 1297 * only half set up a mm_struct for a new process and need to restore 1298 * the old one. Because we mmput the new mm_struct before 1299 * restoring the old one. . . 1300 * Eric Biederman 10 January 1998 1301 */ 1302 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1303 { 1304 uprobe_free_utask(tsk); 1305 1306 /* Get rid of any cached register state */ 1307 deactivate_mm(tsk, mm); 1308 1309 /* 1310 * Signal userspace if we're not exiting with a core dump 1311 * because we want to leave the value intact for debugging 1312 * purposes. 1313 */ 1314 if (tsk->clear_child_tid) { 1315 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1316 atomic_read(&mm->mm_users) > 1) { 1317 /* 1318 * We don't check the error code - if userspace has 1319 * not set up a proper pointer then tough luck. 1320 */ 1321 put_user(0, tsk->clear_child_tid); 1322 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1323 1, NULL, NULL, 0, 0); 1324 } 1325 tsk->clear_child_tid = NULL; 1326 } 1327 1328 /* 1329 * All done, finally we can wake up parent and return this mm to him. 1330 * Also kthread_stop() uses this completion for synchronization. 1331 */ 1332 if (tsk->vfork_done) 1333 complete_vfork_done(tsk); 1334 } 1335 1336 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1337 { 1338 futex_exit_release(tsk); 1339 mm_release(tsk, mm); 1340 } 1341 1342 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1343 { 1344 futex_exec_release(tsk); 1345 mm_release(tsk, mm); 1346 } 1347 1348 /** 1349 * dup_mm() - duplicates an existing mm structure 1350 * @tsk: the task_struct with which the new mm will be associated. 1351 * @oldmm: the mm to duplicate. 1352 * 1353 * Allocates a new mm structure and duplicates the provided @oldmm structure 1354 * content into it. 1355 * 1356 * Return: the duplicated mm or NULL on failure. 1357 */ 1358 static struct mm_struct *dup_mm(struct task_struct *tsk, 1359 struct mm_struct *oldmm) 1360 { 1361 struct mm_struct *mm; 1362 int err; 1363 1364 mm = allocate_mm(); 1365 if (!mm) 1366 goto fail_nomem; 1367 1368 memcpy(mm, oldmm, sizeof(*mm)); 1369 1370 if (!mm_init(mm, tsk, mm->user_ns)) 1371 goto fail_nomem; 1372 1373 err = dup_mmap(mm, oldmm); 1374 if (err) 1375 goto free_pt; 1376 1377 mm->hiwater_rss = get_mm_rss(mm); 1378 mm->hiwater_vm = mm->total_vm; 1379 1380 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1381 goto free_pt; 1382 1383 return mm; 1384 1385 free_pt: 1386 /* don't put binfmt in mmput, we haven't got module yet */ 1387 mm->binfmt = NULL; 1388 mm_init_owner(mm, NULL); 1389 mmput(mm); 1390 1391 fail_nomem: 1392 return NULL; 1393 } 1394 1395 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1396 { 1397 struct mm_struct *mm, *oldmm; 1398 1399 tsk->min_flt = tsk->maj_flt = 0; 1400 tsk->nvcsw = tsk->nivcsw = 0; 1401 #ifdef CONFIG_DETECT_HUNG_TASK 1402 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1403 tsk->last_switch_time = 0; 1404 #endif 1405 1406 tsk->mm = NULL; 1407 tsk->active_mm = NULL; 1408 1409 /* 1410 * Are we cloning a kernel thread? 1411 * 1412 * We need to steal a active VM for that.. 1413 */ 1414 oldmm = current->mm; 1415 if (!oldmm) 1416 return 0; 1417 1418 /* initialize the new vmacache entries */ 1419 vmacache_flush(tsk); 1420 1421 if (clone_flags & CLONE_VM) { 1422 mmget(oldmm); 1423 mm = oldmm; 1424 } else { 1425 mm = dup_mm(tsk, current->mm); 1426 if (!mm) 1427 return -ENOMEM; 1428 } 1429 1430 tsk->mm = mm; 1431 tsk->active_mm = mm; 1432 return 0; 1433 } 1434 1435 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1436 { 1437 struct fs_struct *fs = current->fs; 1438 if (clone_flags & CLONE_FS) { 1439 /* tsk->fs is already what we want */ 1440 spin_lock(&fs->lock); 1441 if (fs->in_exec) { 1442 spin_unlock(&fs->lock); 1443 return -EAGAIN; 1444 } 1445 fs->users++; 1446 spin_unlock(&fs->lock); 1447 return 0; 1448 } 1449 tsk->fs = copy_fs_struct(fs); 1450 if (!tsk->fs) 1451 return -ENOMEM; 1452 return 0; 1453 } 1454 1455 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1456 { 1457 struct files_struct *oldf, *newf; 1458 int error = 0; 1459 1460 /* 1461 * A background process may not have any files ... 1462 */ 1463 oldf = current->files; 1464 if (!oldf) 1465 goto out; 1466 1467 if (clone_flags & CLONE_FILES) { 1468 atomic_inc(&oldf->count); 1469 goto out; 1470 } 1471 1472 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1473 if (!newf) 1474 goto out; 1475 1476 tsk->files = newf; 1477 error = 0; 1478 out: 1479 return error; 1480 } 1481 1482 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1483 { 1484 #ifdef CONFIG_BLOCK 1485 struct io_context *ioc = current->io_context; 1486 struct io_context *new_ioc; 1487 1488 if (!ioc) 1489 return 0; 1490 /* 1491 * Share io context with parent, if CLONE_IO is set 1492 */ 1493 if (clone_flags & CLONE_IO) { 1494 ioc_task_link(ioc); 1495 tsk->io_context = ioc; 1496 } else if (ioprio_valid(ioc->ioprio)) { 1497 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1498 if (unlikely(!new_ioc)) 1499 return -ENOMEM; 1500 1501 new_ioc->ioprio = ioc->ioprio; 1502 put_io_context(new_ioc); 1503 } 1504 #endif 1505 return 0; 1506 } 1507 1508 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1509 { 1510 struct sighand_struct *sig; 1511 1512 if (clone_flags & CLONE_SIGHAND) { 1513 refcount_inc(¤t->sighand->count); 1514 return 0; 1515 } 1516 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1517 RCU_INIT_POINTER(tsk->sighand, sig); 1518 if (!sig) 1519 return -ENOMEM; 1520 1521 refcount_set(&sig->count, 1); 1522 spin_lock_irq(¤t->sighand->siglock); 1523 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1524 spin_unlock_irq(¤t->sighand->siglock); 1525 1526 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1527 if (clone_flags & CLONE_CLEAR_SIGHAND) 1528 flush_signal_handlers(tsk, 0); 1529 1530 return 0; 1531 } 1532 1533 void __cleanup_sighand(struct sighand_struct *sighand) 1534 { 1535 if (refcount_dec_and_test(&sighand->count)) { 1536 signalfd_cleanup(sighand); 1537 /* 1538 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1539 * without an RCU grace period, see __lock_task_sighand(). 1540 */ 1541 kmem_cache_free(sighand_cachep, sighand); 1542 } 1543 } 1544 1545 /* 1546 * Initialize POSIX timer handling for a thread group. 1547 */ 1548 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1549 { 1550 struct posix_cputimers *pct = &sig->posix_cputimers; 1551 unsigned long cpu_limit; 1552 1553 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1554 posix_cputimers_group_init(pct, cpu_limit); 1555 } 1556 1557 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1558 { 1559 struct signal_struct *sig; 1560 1561 if (clone_flags & CLONE_THREAD) 1562 return 0; 1563 1564 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1565 tsk->signal = sig; 1566 if (!sig) 1567 return -ENOMEM; 1568 1569 sig->nr_threads = 1; 1570 atomic_set(&sig->live, 1); 1571 refcount_set(&sig->sigcnt, 1); 1572 1573 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1574 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1575 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1576 1577 init_waitqueue_head(&sig->wait_chldexit); 1578 sig->curr_target = tsk; 1579 init_sigpending(&sig->shared_pending); 1580 INIT_HLIST_HEAD(&sig->multiprocess); 1581 seqlock_init(&sig->stats_lock); 1582 prev_cputime_init(&sig->prev_cputime); 1583 1584 #ifdef CONFIG_POSIX_TIMERS 1585 INIT_LIST_HEAD(&sig->posix_timers); 1586 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1587 sig->real_timer.function = it_real_fn; 1588 #endif 1589 1590 task_lock(current->group_leader); 1591 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1592 task_unlock(current->group_leader); 1593 1594 posix_cpu_timers_init_group(sig); 1595 1596 tty_audit_fork(sig); 1597 sched_autogroup_fork(sig); 1598 1599 sig->oom_score_adj = current->signal->oom_score_adj; 1600 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1601 1602 mutex_init(&sig->cred_guard_mutex); 1603 init_rwsem(&sig->exec_update_lock); 1604 1605 return 0; 1606 } 1607 1608 static void copy_seccomp(struct task_struct *p) 1609 { 1610 #ifdef CONFIG_SECCOMP 1611 /* 1612 * Must be called with sighand->lock held, which is common to 1613 * all threads in the group. Holding cred_guard_mutex is not 1614 * needed because this new task is not yet running and cannot 1615 * be racing exec. 1616 */ 1617 assert_spin_locked(¤t->sighand->siglock); 1618 1619 /* Ref-count the new filter user, and assign it. */ 1620 get_seccomp_filter(current); 1621 p->seccomp = current->seccomp; 1622 1623 /* 1624 * Explicitly enable no_new_privs here in case it got set 1625 * between the task_struct being duplicated and holding the 1626 * sighand lock. The seccomp state and nnp must be in sync. 1627 */ 1628 if (task_no_new_privs(current)) 1629 task_set_no_new_privs(p); 1630 1631 /* 1632 * If the parent gained a seccomp mode after copying thread 1633 * flags and between before we held the sighand lock, we have 1634 * to manually enable the seccomp thread flag here. 1635 */ 1636 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1637 set_task_syscall_work(p, SECCOMP); 1638 #endif 1639 } 1640 1641 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1642 { 1643 current->clear_child_tid = tidptr; 1644 1645 return task_pid_vnr(current); 1646 } 1647 1648 static void rt_mutex_init_task(struct task_struct *p) 1649 { 1650 raw_spin_lock_init(&p->pi_lock); 1651 #ifdef CONFIG_RT_MUTEXES 1652 p->pi_waiters = RB_ROOT_CACHED; 1653 p->pi_top_task = NULL; 1654 p->pi_blocked_on = NULL; 1655 #endif 1656 } 1657 1658 static inline void init_task_pid_links(struct task_struct *task) 1659 { 1660 enum pid_type type; 1661 1662 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1663 INIT_HLIST_NODE(&task->pid_links[type]); 1664 } 1665 1666 static inline void 1667 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1668 { 1669 if (type == PIDTYPE_PID) 1670 task->thread_pid = pid; 1671 else 1672 task->signal->pids[type] = pid; 1673 } 1674 1675 static inline void rcu_copy_process(struct task_struct *p) 1676 { 1677 #ifdef CONFIG_PREEMPT_RCU 1678 p->rcu_read_lock_nesting = 0; 1679 p->rcu_read_unlock_special.s = 0; 1680 p->rcu_blocked_node = NULL; 1681 INIT_LIST_HEAD(&p->rcu_node_entry); 1682 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1683 #ifdef CONFIG_TASKS_RCU 1684 p->rcu_tasks_holdout = false; 1685 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1686 p->rcu_tasks_idle_cpu = -1; 1687 #endif /* #ifdef CONFIG_TASKS_RCU */ 1688 #ifdef CONFIG_TASKS_TRACE_RCU 1689 p->trc_reader_nesting = 0; 1690 p->trc_reader_special.s = 0; 1691 INIT_LIST_HEAD(&p->trc_holdout_list); 1692 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1693 } 1694 1695 struct pid *pidfd_pid(const struct file *file) 1696 { 1697 if (file->f_op == &pidfd_fops) 1698 return file->private_data; 1699 1700 return ERR_PTR(-EBADF); 1701 } 1702 1703 static int pidfd_release(struct inode *inode, struct file *file) 1704 { 1705 struct pid *pid = file->private_data; 1706 1707 file->private_data = NULL; 1708 put_pid(pid); 1709 return 0; 1710 } 1711 1712 #ifdef CONFIG_PROC_FS 1713 /** 1714 * pidfd_show_fdinfo - print information about a pidfd 1715 * @m: proc fdinfo file 1716 * @f: file referencing a pidfd 1717 * 1718 * Pid: 1719 * This function will print the pid that a given pidfd refers to in the 1720 * pid namespace of the procfs instance. 1721 * If the pid namespace of the process is not a descendant of the pid 1722 * namespace of the procfs instance 0 will be shown as its pid. This is 1723 * similar to calling getppid() on a process whose parent is outside of 1724 * its pid namespace. 1725 * 1726 * NSpid: 1727 * If pid namespaces are supported then this function will also print 1728 * the pid of a given pidfd refers to for all descendant pid namespaces 1729 * starting from the current pid namespace of the instance, i.e. the 1730 * Pid field and the first entry in the NSpid field will be identical. 1731 * If the pid namespace of the process is not a descendant of the pid 1732 * namespace of the procfs instance 0 will be shown as its first NSpid 1733 * entry and no others will be shown. 1734 * Note that this differs from the Pid and NSpid fields in 1735 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1736 * the pid namespace of the procfs instance. The difference becomes 1737 * obvious when sending around a pidfd between pid namespaces from a 1738 * different branch of the tree, i.e. where no ancestral relation is 1739 * present between the pid namespaces: 1740 * - create two new pid namespaces ns1 and ns2 in the initial pid 1741 * namespace (also take care to create new mount namespaces in the 1742 * new pid namespace and mount procfs) 1743 * - create a process with a pidfd in ns1 1744 * - send pidfd from ns1 to ns2 1745 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1746 * have exactly one entry, which is 0 1747 */ 1748 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1749 { 1750 struct pid *pid = f->private_data; 1751 struct pid_namespace *ns; 1752 pid_t nr = -1; 1753 1754 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1755 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1756 nr = pid_nr_ns(pid, ns); 1757 } 1758 1759 seq_put_decimal_ll(m, "Pid:\t", nr); 1760 1761 #ifdef CONFIG_PID_NS 1762 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1763 if (nr > 0) { 1764 int i; 1765 1766 /* If nr is non-zero it means that 'pid' is valid and that 1767 * ns, i.e. the pid namespace associated with the procfs 1768 * instance, is in the pid namespace hierarchy of pid. 1769 * Start at one below the already printed level. 1770 */ 1771 for (i = ns->level + 1; i <= pid->level; i++) 1772 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1773 } 1774 #endif 1775 seq_putc(m, '\n'); 1776 } 1777 #endif 1778 1779 /* 1780 * Poll support for process exit notification. 1781 */ 1782 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1783 { 1784 struct pid *pid = file->private_data; 1785 __poll_t poll_flags = 0; 1786 1787 poll_wait(file, &pid->wait_pidfd, pts); 1788 1789 /* 1790 * Inform pollers only when the whole thread group exits. 1791 * If the thread group leader exits before all other threads in the 1792 * group, then poll(2) should block, similar to the wait(2) family. 1793 */ 1794 if (thread_group_exited(pid)) 1795 poll_flags = EPOLLIN | EPOLLRDNORM; 1796 1797 return poll_flags; 1798 } 1799 1800 const struct file_operations pidfd_fops = { 1801 .release = pidfd_release, 1802 .poll = pidfd_poll, 1803 #ifdef CONFIG_PROC_FS 1804 .show_fdinfo = pidfd_show_fdinfo, 1805 #endif 1806 }; 1807 1808 static void __delayed_free_task(struct rcu_head *rhp) 1809 { 1810 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1811 1812 free_task(tsk); 1813 } 1814 1815 static __always_inline void delayed_free_task(struct task_struct *tsk) 1816 { 1817 if (IS_ENABLED(CONFIG_MEMCG)) 1818 call_rcu(&tsk->rcu, __delayed_free_task); 1819 else 1820 free_task(tsk); 1821 } 1822 1823 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1824 { 1825 /* Skip if kernel thread */ 1826 if (!tsk->mm) 1827 return; 1828 1829 /* Skip if spawning a thread or using vfork */ 1830 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1831 return; 1832 1833 /* We need to synchronize with __set_oom_adj */ 1834 mutex_lock(&oom_adj_mutex); 1835 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1836 /* Update the values in case they were changed after copy_signal */ 1837 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1838 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1839 mutex_unlock(&oom_adj_mutex); 1840 } 1841 1842 /* 1843 * This creates a new process as a copy of the old one, 1844 * but does not actually start it yet. 1845 * 1846 * It copies the registers, and all the appropriate 1847 * parts of the process environment (as per the clone 1848 * flags). The actual kick-off is left to the caller. 1849 */ 1850 static __latent_entropy struct task_struct *copy_process( 1851 struct pid *pid, 1852 int trace, 1853 int node, 1854 struct kernel_clone_args *args) 1855 { 1856 int pidfd = -1, retval; 1857 struct task_struct *p; 1858 struct multiprocess_signals delayed; 1859 struct file *pidfile = NULL; 1860 u64 clone_flags = args->flags; 1861 struct nsproxy *nsp = current->nsproxy; 1862 1863 /* 1864 * Don't allow sharing the root directory with processes in a different 1865 * namespace 1866 */ 1867 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1868 return ERR_PTR(-EINVAL); 1869 1870 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1871 return ERR_PTR(-EINVAL); 1872 1873 /* 1874 * Thread groups must share signals as well, and detached threads 1875 * can only be started up within the thread group. 1876 */ 1877 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1878 return ERR_PTR(-EINVAL); 1879 1880 /* 1881 * Shared signal handlers imply shared VM. By way of the above, 1882 * thread groups also imply shared VM. Blocking this case allows 1883 * for various simplifications in other code. 1884 */ 1885 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1886 return ERR_PTR(-EINVAL); 1887 1888 /* 1889 * Siblings of global init remain as zombies on exit since they are 1890 * not reaped by their parent (swapper). To solve this and to avoid 1891 * multi-rooted process trees, prevent global and container-inits 1892 * from creating siblings. 1893 */ 1894 if ((clone_flags & CLONE_PARENT) && 1895 current->signal->flags & SIGNAL_UNKILLABLE) 1896 return ERR_PTR(-EINVAL); 1897 1898 /* 1899 * If the new process will be in a different pid or user namespace 1900 * do not allow it to share a thread group with the forking task. 1901 */ 1902 if (clone_flags & CLONE_THREAD) { 1903 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1904 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1905 return ERR_PTR(-EINVAL); 1906 } 1907 1908 /* 1909 * If the new process will be in a different time namespace 1910 * do not allow it to share VM or a thread group with the forking task. 1911 */ 1912 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1913 if (nsp->time_ns != nsp->time_ns_for_children) 1914 return ERR_PTR(-EINVAL); 1915 } 1916 1917 if (clone_flags & CLONE_PIDFD) { 1918 /* 1919 * - CLONE_DETACHED is blocked so that we can potentially 1920 * reuse it later for CLONE_PIDFD. 1921 * - CLONE_THREAD is blocked until someone really needs it. 1922 */ 1923 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1924 return ERR_PTR(-EINVAL); 1925 } 1926 1927 /* 1928 * Force any signals received before this point to be delivered 1929 * before the fork happens. Collect up signals sent to multiple 1930 * processes that happen during the fork and delay them so that 1931 * they appear to happen after the fork. 1932 */ 1933 sigemptyset(&delayed.signal); 1934 INIT_HLIST_NODE(&delayed.node); 1935 1936 spin_lock_irq(¤t->sighand->siglock); 1937 if (!(clone_flags & CLONE_THREAD)) 1938 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1939 recalc_sigpending(); 1940 spin_unlock_irq(¤t->sighand->siglock); 1941 retval = -ERESTARTNOINTR; 1942 if (task_sigpending(current)) 1943 goto fork_out; 1944 1945 retval = -ENOMEM; 1946 p = dup_task_struct(current, node); 1947 if (!p) 1948 goto fork_out; 1949 if (args->io_thread) { 1950 /* 1951 * Mark us an IO worker, and block any signal that isn't 1952 * fatal or STOP 1953 */ 1954 p->flags |= PF_IO_WORKER; 1955 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1956 } 1957 1958 /* 1959 * This _must_ happen before we call free_task(), i.e. before we jump 1960 * to any of the bad_fork_* labels. This is to avoid freeing 1961 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1962 * kernel threads (PF_KTHREAD). 1963 */ 1964 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1965 /* 1966 * Clear TID on mm_release()? 1967 */ 1968 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1969 1970 ftrace_graph_init_task(p); 1971 1972 rt_mutex_init_task(p); 1973 1974 lockdep_assert_irqs_enabled(); 1975 #ifdef CONFIG_PROVE_LOCKING 1976 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1977 #endif 1978 retval = -EAGAIN; 1979 if (atomic_read(&p->real_cred->user->processes) >= 1980 task_rlimit(p, RLIMIT_NPROC)) { 1981 if (p->real_cred->user != INIT_USER && 1982 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1983 goto bad_fork_free; 1984 } 1985 current->flags &= ~PF_NPROC_EXCEEDED; 1986 1987 retval = copy_creds(p, clone_flags); 1988 if (retval < 0) 1989 goto bad_fork_free; 1990 1991 /* 1992 * If multiple threads are within copy_process(), then this check 1993 * triggers too late. This doesn't hurt, the check is only there 1994 * to stop root fork bombs. 1995 */ 1996 retval = -EAGAIN; 1997 if (data_race(nr_threads >= max_threads)) 1998 goto bad_fork_cleanup_count; 1999 2000 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2001 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 2002 p->flags |= PF_FORKNOEXEC; 2003 INIT_LIST_HEAD(&p->children); 2004 INIT_LIST_HEAD(&p->sibling); 2005 rcu_copy_process(p); 2006 p->vfork_done = NULL; 2007 spin_lock_init(&p->alloc_lock); 2008 2009 init_sigpending(&p->pending); 2010 2011 p->utime = p->stime = p->gtime = 0; 2012 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2013 p->utimescaled = p->stimescaled = 0; 2014 #endif 2015 prev_cputime_init(&p->prev_cputime); 2016 2017 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2018 seqcount_init(&p->vtime.seqcount); 2019 p->vtime.starttime = 0; 2020 p->vtime.state = VTIME_INACTIVE; 2021 #endif 2022 2023 #ifdef CONFIG_IO_URING 2024 p->io_uring = NULL; 2025 #endif 2026 2027 #if defined(SPLIT_RSS_COUNTING) 2028 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2029 #endif 2030 2031 p->default_timer_slack_ns = current->timer_slack_ns; 2032 2033 #ifdef CONFIG_PSI 2034 p->psi_flags = 0; 2035 #endif 2036 2037 task_io_accounting_init(&p->ioac); 2038 acct_clear_integrals(p); 2039 2040 posix_cputimers_init(&p->posix_cputimers); 2041 2042 p->io_context = NULL; 2043 audit_set_context(p, NULL); 2044 cgroup_fork(p); 2045 #ifdef CONFIG_NUMA 2046 p->mempolicy = mpol_dup(p->mempolicy); 2047 if (IS_ERR(p->mempolicy)) { 2048 retval = PTR_ERR(p->mempolicy); 2049 p->mempolicy = NULL; 2050 goto bad_fork_cleanup_threadgroup_lock; 2051 } 2052 #endif 2053 #ifdef CONFIG_CPUSETS 2054 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2055 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2056 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2057 #endif 2058 #ifdef CONFIG_TRACE_IRQFLAGS 2059 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2060 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2061 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2062 p->softirqs_enabled = 1; 2063 p->softirq_context = 0; 2064 #endif 2065 2066 p->pagefault_disabled = 0; 2067 2068 #ifdef CONFIG_LOCKDEP 2069 lockdep_init_task(p); 2070 #endif 2071 2072 #ifdef CONFIG_DEBUG_MUTEXES 2073 p->blocked_on = NULL; /* not blocked yet */ 2074 #endif 2075 #ifdef CONFIG_BCACHE 2076 p->sequential_io = 0; 2077 p->sequential_io_avg = 0; 2078 #endif 2079 #ifdef CONFIG_BPF_SYSCALL 2080 RCU_INIT_POINTER(p->bpf_storage, NULL); 2081 #endif 2082 2083 /* Perform scheduler related setup. Assign this task to a CPU. */ 2084 retval = sched_fork(clone_flags, p); 2085 if (retval) 2086 goto bad_fork_cleanup_policy; 2087 2088 retval = perf_event_init_task(p, clone_flags); 2089 if (retval) 2090 goto bad_fork_cleanup_policy; 2091 retval = audit_alloc(p); 2092 if (retval) 2093 goto bad_fork_cleanup_perf; 2094 /* copy all the process information */ 2095 shm_init_task(p); 2096 retval = security_task_alloc(p, clone_flags); 2097 if (retval) 2098 goto bad_fork_cleanup_audit; 2099 retval = copy_semundo(clone_flags, p); 2100 if (retval) 2101 goto bad_fork_cleanup_security; 2102 retval = copy_files(clone_flags, p); 2103 if (retval) 2104 goto bad_fork_cleanup_semundo; 2105 retval = copy_fs(clone_flags, p); 2106 if (retval) 2107 goto bad_fork_cleanup_files; 2108 retval = copy_sighand(clone_flags, p); 2109 if (retval) 2110 goto bad_fork_cleanup_fs; 2111 retval = copy_signal(clone_flags, p); 2112 if (retval) 2113 goto bad_fork_cleanup_sighand; 2114 retval = copy_mm(clone_flags, p); 2115 if (retval) 2116 goto bad_fork_cleanup_signal; 2117 retval = copy_namespaces(clone_flags, p); 2118 if (retval) 2119 goto bad_fork_cleanup_mm; 2120 retval = copy_io(clone_flags, p); 2121 if (retval) 2122 goto bad_fork_cleanup_namespaces; 2123 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2124 if (retval) 2125 goto bad_fork_cleanup_io; 2126 2127 stackleak_task_init(p); 2128 2129 if (pid != &init_struct_pid) { 2130 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2131 args->set_tid_size); 2132 if (IS_ERR(pid)) { 2133 retval = PTR_ERR(pid); 2134 goto bad_fork_cleanup_thread; 2135 } 2136 } 2137 2138 /* 2139 * This has to happen after we've potentially unshared the file 2140 * descriptor table (so that the pidfd doesn't leak into the child 2141 * if the fd table isn't shared). 2142 */ 2143 if (clone_flags & CLONE_PIDFD) { 2144 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2145 if (retval < 0) 2146 goto bad_fork_free_pid; 2147 2148 pidfd = retval; 2149 2150 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2151 O_RDWR | O_CLOEXEC); 2152 if (IS_ERR(pidfile)) { 2153 put_unused_fd(pidfd); 2154 retval = PTR_ERR(pidfile); 2155 goto bad_fork_free_pid; 2156 } 2157 get_pid(pid); /* held by pidfile now */ 2158 2159 retval = put_user(pidfd, args->pidfd); 2160 if (retval) 2161 goto bad_fork_put_pidfd; 2162 } 2163 2164 #ifdef CONFIG_BLOCK 2165 p->plug = NULL; 2166 #endif 2167 futex_init_task(p); 2168 2169 /* 2170 * sigaltstack should be cleared when sharing the same VM 2171 */ 2172 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2173 sas_ss_reset(p); 2174 2175 /* 2176 * Syscall tracing and stepping should be turned off in the 2177 * child regardless of CLONE_PTRACE. 2178 */ 2179 user_disable_single_step(p); 2180 clear_task_syscall_work(p, SYSCALL_TRACE); 2181 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2182 clear_task_syscall_work(p, SYSCALL_EMU); 2183 #endif 2184 clear_tsk_latency_tracing(p); 2185 2186 /* ok, now we should be set up.. */ 2187 p->pid = pid_nr(pid); 2188 if (clone_flags & CLONE_THREAD) { 2189 p->group_leader = current->group_leader; 2190 p->tgid = current->tgid; 2191 } else { 2192 p->group_leader = p; 2193 p->tgid = p->pid; 2194 } 2195 2196 p->nr_dirtied = 0; 2197 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2198 p->dirty_paused_when = 0; 2199 2200 p->pdeath_signal = 0; 2201 INIT_LIST_HEAD(&p->thread_group); 2202 p->task_works = NULL; 2203 2204 #ifdef CONFIG_KRETPROBES 2205 p->kretprobe_instances.first = NULL; 2206 #endif 2207 2208 /* 2209 * Ensure that the cgroup subsystem policies allow the new process to be 2210 * forked. It should be noted that the new process's css_set can be changed 2211 * between here and cgroup_post_fork() if an organisation operation is in 2212 * progress. 2213 */ 2214 retval = cgroup_can_fork(p, args); 2215 if (retval) 2216 goto bad_fork_put_pidfd; 2217 2218 /* 2219 * From this point on we must avoid any synchronous user-space 2220 * communication until we take the tasklist-lock. In particular, we do 2221 * not want user-space to be able to predict the process start-time by 2222 * stalling fork(2) after we recorded the start_time but before it is 2223 * visible to the system. 2224 */ 2225 2226 p->start_time = ktime_get_ns(); 2227 p->start_boottime = ktime_get_boottime_ns(); 2228 2229 /* 2230 * Make it visible to the rest of the system, but dont wake it up yet. 2231 * Need tasklist lock for parent etc handling! 2232 */ 2233 write_lock_irq(&tasklist_lock); 2234 2235 /* CLONE_PARENT re-uses the old parent */ 2236 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2237 p->real_parent = current->real_parent; 2238 p->parent_exec_id = current->parent_exec_id; 2239 if (clone_flags & CLONE_THREAD) 2240 p->exit_signal = -1; 2241 else 2242 p->exit_signal = current->group_leader->exit_signal; 2243 } else { 2244 p->real_parent = current; 2245 p->parent_exec_id = current->self_exec_id; 2246 p->exit_signal = args->exit_signal; 2247 } 2248 2249 klp_copy_process(p); 2250 2251 spin_lock(¤t->sighand->siglock); 2252 2253 /* 2254 * Copy seccomp details explicitly here, in case they were changed 2255 * before holding sighand lock. 2256 */ 2257 copy_seccomp(p); 2258 2259 rseq_fork(p, clone_flags); 2260 2261 /* Don't start children in a dying pid namespace */ 2262 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2263 retval = -ENOMEM; 2264 goto bad_fork_cancel_cgroup; 2265 } 2266 2267 /* Let kill terminate clone/fork in the middle */ 2268 if (fatal_signal_pending(current)) { 2269 retval = -EINTR; 2270 goto bad_fork_cancel_cgroup; 2271 } 2272 2273 /* past the last point of failure */ 2274 if (pidfile) 2275 fd_install(pidfd, pidfile); 2276 2277 init_task_pid_links(p); 2278 if (likely(p->pid)) { 2279 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2280 2281 init_task_pid(p, PIDTYPE_PID, pid); 2282 if (thread_group_leader(p)) { 2283 init_task_pid(p, PIDTYPE_TGID, pid); 2284 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2285 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2286 2287 if (is_child_reaper(pid)) { 2288 ns_of_pid(pid)->child_reaper = p; 2289 p->signal->flags |= SIGNAL_UNKILLABLE; 2290 } 2291 p->signal->shared_pending.signal = delayed.signal; 2292 p->signal->tty = tty_kref_get(current->signal->tty); 2293 /* 2294 * Inherit has_child_subreaper flag under the same 2295 * tasklist_lock with adding child to the process tree 2296 * for propagate_has_child_subreaper optimization. 2297 */ 2298 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2299 p->real_parent->signal->is_child_subreaper; 2300 list_add_tail(&p->sibling, &p->real_parent->children); 2301 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2302 attach_pid(p, PIDTYPE_TGID); 2303 attach_pid(p, PIDTYPE_PGID); 2304 attach_pid(p, PIDTYPE_SID); 2305 __this_cpu_inc(process_counts); 2306 } else { 2307 current->signal->nr_threads++; 2308 atomic_inc(¤t->signal->live); 2309 refcount_inc(¤t->signal->sigcnt); 2310 task_join_group_stop(p); 2311 list_add_tail_rcu(&p->thread_group, 2312 &p->group_leader->thread_group); 2313 list_add_tail_rcu(&p->thread_node, 2314 &p->signal->thread_head); 2315 } 2316 attach_pid(p, PIDTYPE_PID); 2317 nr_threads++; 2318 } 2319 total_forks++; 2320 hlist_del_init(&delayed.node); 2321 spin_unlock(¤t->sighand->siglock); 2322 syscall_tracepoint_update(p); 2323 write_unlock_irq(&tasklist_lock); 2324 2325 proc_fork_connector(p); 2326 sched_post_fork(p); 2327 cgroup_post_fork(p, args); 2328 perf_event_fork(p); 2329 2330 trace_task_newtask(p, clone_flags); 2331 uprobe_copy_process(p, clone_flags); 2332 2333 copy_oom_score_adj(clone_flags, p); 2334 2335 return p; 2336 2337 bad_fork_cancel_cgroup: 2338 spin_unlock(¤t->sighand->siglock); 2339 write_unlock_irq(&tasklist_lock); 2340 cgroup_cancel_fork(p, args); 2341 bad_fork_put_pidfd: 2342 if (clone_flags & CLONE_PIDFD) { 2343 fput(pidfile); 2344 put_unused_fd(pidfd); 2345 } 2346 bad_fork_free_pid: 2347 if (pid != &init_struct_pid) 2348 free_pid(pid); 2349 bad_fork_cleanup_thread: 2350 exit_thread(p); 2351 bad_fork_cleanup_io: 2352 if (p->io_context) 2353 exit_io_context(p); 2354 bad_fork_cleanup_namespaces: 2355 exit_task_namespaces(p); 2356 bad_fork_cleanup_mm: 2357 if (p->mm) { 2358 mm_clear_owner(p->mm, p); 2359 mmput(p->mm); 2360 } 2361 bad_fork_cleanup_signal: 2362 if (!(clone_flags & CLONE_THREAD)) 2363 free_signal_struct(p->signal); 2364 bad_fork_cleanup_sighand: 2365 __cleanup_sighand(p->sighand); 2366 bad_fork_cleanup_fs: 2367 exit_fs(p); /* blocking */ 2368 bad_fork_cleanup_files: 2369 exit_files(p); /* blocking */ 2370 bad_fork_cleanup_semundo: 2371 exit_sem(p); 2372 bad_fork_cleanup_security: 2373 security_task_free(p); 2374 bad_fork_cleanup_audit: 2375 audit_free(p); 2376 bad_fork_cleanup_perf: 2377 perf_event_free_task(p); 2378 bad_fork_cleanup_policy: 2379 lockdep_free_task(p); 2380 #ifdef CONFIG_NUMA 2381 mpol_put(p->mempolicy); 2382 bad_fork_cleanup_threadgroup_lock: 2383 #endif 2384 delayacct_tsk_free(p); 2385 bad_fork_cleanup_count: 2386 atomic_dec(&p->cred->user->processes); 2387 exit_creds(p); 2388 bad_fork_free: 2389 p->state = TASK_DEAD; 2390 put_task_stack(p); 2391 delayed_free_task(p); 2392 fork_out: 2393 spin_lock_irq(¤t->sighand->siglock); 2394 hlist_del_init(&delayed.node); 2395 spin_unlock_irq(¤t->sighand->siglock); 2396 return ERR_PTR(retval); 2397 } 2398 2399 static inline void init_idle_pids(struct task_struct *idle) 2400 { 2401 enum pid_type type; 2402 2403 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2404 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2405 init_task_pid(idle, type, &init_struct_pid); 2406 } 2407 } 2408 2409 struct task_struct *fork_idle(int cpu) 2410 { 2411 struct task_struct *task; 2412 struct kernel_clone_args args = { 2413 .flags = CLONE_VM, 2414 }; 2415 2416 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2417 if (!IS_ERR(task)) { 2418 init_idle_pids(task); 2419 init_idle(task, cpu); 2420 } 2421 2422 return task; 2423 } 2424 2425 struct mm_struct *copy_init_mm(void) 2426 { 2427 return dup_mm(NULL, &init_mm); 2428 } 2429 2430 /* 2431 * This is like kernel_clone(), but shaved down and tailored to just 2432 * creating io_uring workers. It returns a created task, or an error pointer. 2433 * The returned task is inactive, and the caller must fire it up through 2434 * wake_up_new_task(p). All signals are blocked in the created task. 2435 */ 2436 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2437 { 2438 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2439 CLONE_IO; 2440 struct kernel_clone_args args = { 2441 .flags = ((lower_32_bits(flags) | CLONE_VM | 2442 CLONE_UNTRACED) & ~CSIGNAL), 2443 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2444 .stack = (unsigned long)fn, 2445 .stack_size = (unsigned long)arg, 2446 .io_thread = 1, 2447 }; 2448 2449 return copy_process(NULL, 0, node, &args); 2450 } 2451 2452 /* 2453 * Ok, this is the main fork-routine. 2454 * 2455 * It copies the process, and if successful kick-starts 2456 * it and waits for it to finish using the VM if required. 2457 * 2458 * args->exit_signal is expected to be checked for sanity by the caller. 2459 */ 2460 pid_t kernel_clone(struct kernel_clone_args *args) 2461 { 2462 u64 clone_flags = args->flags; 2463 struct completion vfork; 2464 struct pid *pid; 2465 struct task_struct *p; 2466 int trace = 0; 2467 pid_t nr; 2468 2469 /* 2470 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2471 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2472 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2473 * field in struct clone_args and it still doesn't make sense to have 2474 * them both point at the same memory location. Performing this check 2475 * here has the advantage that we don't need to have a separate helper 2476 * to check for legacy clone(). 2477 */ 2478 if ((args->flags & CLONE_PIDFD) && 2479 (args->flags & CLONE_PARENT_SETTID) && 2480 (args->pidfd == args->parent_tid)) 2481 return -EINVAL; 2482 2483 /* 2484 * Determine whether and which event to report to ptracer. When 2485 * called from kernel_thread or CLONE_UNTRACED is explicitly 2486 * requested, no event is reported; otherwise, report if the event 2487 * for the type of forking is enabled. 2488 */ 2489 if (!(clone_flags & CLONE_UNTRACED)) { 2490 if (clone_flags & CLONE_VFORK) 2491 trace = PTRACE_EVENT_VFORK; 2492 else if (args->exit_signal != SIGCHLD) 2493 trace = PTRACE_EVENT_CLONE; 2494 else 2495 trace = PTRACE_EVENT_FORK; 2496 2497 if (likely(!ptrace_event_enabled(current, trace))) 2498 trace = 0; 2499 } 2500 2501 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2502 add_latent_entropy(); 2503 2504 if (IS_ERR(p)) 2505 return PTR_ERR(p); 2506 2507 /* 2508 * Do this prior waking up the new thread - the thread pointer 2509 * might get invalid after that point, if the thread exits quickly. 2510 */ 2511 trace_sched_process_fork(current, p); 2512 2513 pid = get_task_pid(p, PIDTYPE_PID); 2514 nr = pid_vnr(pid); 2515 2516 if (clone_flags & CLONE_PARENT_SETTID) 2517 put_user(nr, args->parent_tid); 2518 2519 if (clone_flags & CLONE_VFORK) { 2520 p->vfork_done = &vfork; 2521 init_completion(&vfork); 2522 get_task_struct(p); 2523 } 2524 2525 wake_up_new_task(p); 2526 2527 /* forking complete and child started to run, tell ptracer */ 2528 if (unlikely(trace)) 2529 ptrace_event_pid(trace, pid); 2530 2531 if (clone_flags & CLONE_VFORK) { 2532 if (!wait_for_vfork_done(p, &vfork)) 2533 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2534 } 2535 2536 put_pid(pid); 2537 return nr; 2538 } 2539 2540 /* 2541 * Create a kernel thread. 2542 */ 2543 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2544 { 2545 struct kernel_clone_args args = { 2546 .flags = ((lower_32_bits(flags) | CLONE_VM | 2547 CLONE_UNTRACED) & ~CSIGNAL), 2548 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2549 .stack = (unsigned long)fn, 2550 .stack_size = (unsigned long)arg, 2551 }; 2552 2553 return kernel_clone(&args); 2554 } 2555 2556 #ifdef __ARCH_WANT_SYS_FORK 2557 SYSCALL_DEFINE0(fork) 2558 { 2559 #ifdef CONFIG_MMU 2560 struct kernel_clone_args args = { 2561 .exit_signal = SIGCHLD, 2562 }; 2563 2564 return kernel_clone(&args); 2565 #else 2566 /* can not support in nommu mode */ 2567 return -EINVAL; 2568 #endif 2569 } 2570 #endif 2571 2572 #ifdef __ARCH_WANT_SYS_VFORK 2573 SYSCALL_DEFINE0(vfork) 2574 { 2575 struct kernel_clone_args args = { 2576 .flags = CLONE_VFORK | CLONE_VM, 2577 .exit_signal = SIGCHLD, 2578 }; 2579 2580 return kernel_clone(&args); 2581 } 2582 #endif 2583 2584 #ifdef __ARCH_WANT_SYS_CLONE 2585 #ifdef CONFIG_CLONE_BACKWARDS 2586 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2587 int __user *, parent_tidptr, 2588 unsigned long, tls, 2589 int __user *, child_tidptr) 2590 #elif defined(CONFIG_CLONE_BACKWARDS2) 2591 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2592 int __user *, parent_tidptr, 2593 int __user *, child_tidptr, 2594 unsigned long, tls) 2595 #elif defined(CONFIG_CLONE_BACKWARDS3) 2596 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2597 int, stack_size, 2598 int __user *, parent_tidptr, 2599 int __user *, child_tidptr, 2600 unsigned long, tls) 2601 #else 2602 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2603 int __user *, parent_tidptr, 2604 int __user *, child_tidptr, 2605 unsigned long, tls) 2606 #endif 2607 { 2608 struct kernel_clone_args args = { 2609 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2610 .pidfd = parent_tidptr, 2611 .child_tid = child_tidptr, 2612 .parent_tid = parent_tidptr, 2613 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2614 .stack = newsp, 2615 .tls = tls, 2616 }; 2617 2618 return kernel_clone(&args); 2619 } 2620 #endif 2621 2622 #ifdef __ARCH_WANT_SYS_CLONE3 2623 2624 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2625 struct clone_args __user *uargs, 2626 size_t usize) 2627 { 2628 int err; 2629 struct clone_args args; 2630 pid_t *kset_tid = kargs->set_tid; 2631 2632 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2633 CLONE_ARGS_SIZE_VER0); 2634 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2635 CLONE_ARGS_SIZE_VER1); 2636 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2637 CLONE_ARGS_SIZE_VER2); 2638 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2639 2640 if (unlikely(usize > PAGE_SIZE)) 2641 return -E2BIG; 2642 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2643 return -EINVAL; 2644 2645 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2646 if (err) 2647 return err; 2648 2649 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2650 return -EINVAL; 2651 2652 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2653 return -EINVAL; 2654 2655 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2656 return -EINVAL; 2657 2658 /* 2659 * Verify that higher 32bits of exit_signal are unset and that 2660 * it is a valid signal 2661 */ 2662 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2663 !valid_signal(args.exit_signal))) 2664 return -EINVAL; 2665 2666 if ((args.flags & CLONE_INTO_CGROUP) && 2667 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2668 return -EINVAL; 2669 2670 *kargs = (struct kernel_clone_args){ 2671 .flags = args.flags, 2672 .pidfd = u64_to_user_ptr(args.pidfd), 2673 .child_tid = u64_to_user_ptr(args.child_tid), 2674 .parent_tid = u64_to_user_ptr(args.parent_tid), 2675 .exit_signal = args.exit_signal, 2676 .stack = args.stack, 2677 .stack_size = args.stack_size, 2678 .tls = args.tls, 2679 .set_tid_size = args.set_tid_size, 2680 .cgroup = args.cgroup, 2681 }; 2682 2683 if (args.set_tid && 2684 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2685 (kargs->set_tid_size * sizeof(pid_t)))) 2686 return -EFAULT; 2687 2688 kargs->set_tid = kset_tid; 2689 2690 return 0; 2691 } 2692 2693 /** 2694 * clone3_stack_valid - check and prepare stack 2695 * @kargs: kernel clone args 2696 * 2697 * Verify that the stack arguments userspace gave us are sane. 2698 * In addition, set the stack direction for userspace since it's easy for us to 2699 * determine. 2700 */ 2701 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2702 { 2703 if (kargs->stack == 0) { 2704 if (kargs->stack_size > 0) 2705 return false; 2706 } else { 2707 if (kargs->stack_size == 0) 2708 return false; 2709 2710 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2711 return false; 2712 2713 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2714 kargs->stack += kargs->stack_size; 2715 #endif 2716 } 2717 2718 return true; 2719 } 2720 2721 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2722 { 2723 /* Verify that no unknown flags are passed along. */ 2724 if (kargs->flags & 2725 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2726 return false; 2727 2728 /* 2729 * - make the CLONE_DETACHED bit reusable for clone3 2730 * - make the CSIGNAL bits reusable for clone3 2731 */ 2732 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2733 return false; 2734 2735 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2736 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2737 return false; 2738 2739 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2740 kargs->exit_signal) 2741 return false; 2742 2743 if (!clone3_stack_valid(kargs)) 2744 return false; 2745 2746 return true; 2747 } 2748 2749 /** 2750 * clone3 - create a new process with specific properties 2751 * @uargs: argument structure 2752 * @size: size of @uargs 2753 * 2754 * clone3() is the extensible successor to clone()/clone2(). 2755 * It takes a struct as argument that is versioned by its size. 2756 * 2757 * Return: On success, a positive PID for the child process. 2758 * On error, a negative errno number. 2759 */ 2760 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2761 { 2762 int err; 2763 2764 struct kernel_clone_args kargs; 2765 pid_t set_tid[MAX_PID_NS_LEVEL]; 2766 2767 kargs.set_tid = set_tid; 2768 2769 err = copy_clone_args_from_user(&kargs, uargs, size); 2770 if (err) 2771 return err; 2772 2773 if (!clone3_args_valid(&kargs)) 2774 return -EINVAL; 2775 2776 return kernel_clone(&kargs); 2777 } 2778 #endif 2779 2780 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2781 { 2782 struct task_struct *leader, *parent, *child; 2783 int res; 2784 2785 read_lock(&tasklist_lock); 2786 leader = top = top->group_leader; 2787 down: 2788 for_each_thread(leader, parent) { 2789 list_for_each_entry(child, &parent->children, sibling) { 2790 res = visitor(child, data); 2791 if (res) { 2792 if (res < 0) 2793 goto out; 2794 leader = child; 2795 goto down; 2796 } 2797 up: 2798 ; 2799 } 2800 } 2801 2802 if (leader != top) { 2803 child = leader; 2804 parent = child->real_parent; 2805 leader = parent->group_leader; 2806 goto up; 2807 } 2808 out: 2809 read_unlock(&tasklist_lock); 2810 } 2811 2812 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2813 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2814 #endif 2815 2816 static void sighand_ctor(void *data) 2817 { 2818 struct sighand_struct *sighand = data; 2819 2820 spin_lock_init(&sighand->siglock); 2821 init_waitqueue_head(&sighand->signalfd_wqh); 2822 } 2823 2824 void __init proc_caches_init(void) 2825 { 2826 unsigned int mm_size; 2827 2828 sighand_cachep = kmem_cache_create("sighand_cache", 2829 sizeof(struct sighand_struct), 0, 2830 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2831 SLAB_ACCOUNT, sighand_ctor); 2832 signal_cachep = kmem_cache_create("signal_cache", 2833 sizeof(struct signal_struct), 0, 2834 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2835 NULL); 2836 files_cachep = kmem_cache_create("files_cache", 2837 sizeof(struct files_struct), 0, 2838 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2839 NULL); 2840 fs_cachep = kmem_cache_create("fs_cache", 2841 sizeof(struct fs_struct), 0, 2842 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2843 NULL); 2844 2845 /* 2846 * The mm_cpumask is located at the end of mm_struct, and is 2847 * dynamically sized based on the maximum CPU number this system 2848 * can have, taking hotplug into account (nr_cpu_ids). 2849 */ 2850 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2851 2852 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2853 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2854 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2855 offsetof(struct mm_struct, saved_auxv), 2856 sizeof_field(struct mm_struct, saved_auxv), 2857 NULL); 2858 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2859 mmap_init(); 2860 nsproxy_cache_init(); 2861 } 2862 2863 /* 2864 * Check constraints on flags passed to the unshare system call. 2865 */ 2866 static int check_unshare_flags(unsigned long unshare_flags) 2867 { 2868 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2869 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2870 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2871 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2872 CLONE_NEWTIME)) 2873 return -EINVAL; 2874 /* 2875 * Not implemented, but pretend it works if there is nothing 2876 * to unshare. Note that unsharing the address space or the 2877 * signal handlers also need to unshare the signal queues (aka 2878 * CLONE_THREAD). 2879 */ 2880 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2881 if (!thread_group_empty(current)) 2882 return -EINVAL; 2883 } 2884 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2885 if (refcount_read(¤t->sighand->count) > 1) 2886 return -EINVAL; 2887 } 2888 if (unshare_flags & CLONE_VM) { 2889 if (!current_is_single_threaded()) 2890 return -EINVAL; 2891 } 2892 2893 return 0; 2894 } 2895 2896 /* 2897 * Unshare the filesystem structure if it is being shared 2898 */ 2899 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2900 { 2901 struct fs_struct *fs = current->fs; 2902 2903 if (!(unshare_flags & CLONE_FS) || !fs) 2904 return 0; 2905 2906 /* don't need lock here; in the worst case we'll do useless copy */ 2907 if (fs->users == 1) 2908 return 0; 2909 2910 *new_fsp = copy_fs_struct(fs); 2911 if (!*new_fsp) 2912 return -ENOMEM; 2913 2914 return 0; 2915 } 2916 2917 /* 2918 * Unshare file descriptor table if it is being shared 2919 */ 2920 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2921 struct files_struct **new_fdp) 2922 { 2923 struct files_struct *fd = current->files; 2924 int error = 0; 2925 2926 if ((unshare_flags & CLONE_FILES) && 2927 (fd && atomic_read(&fd->count) > 1)) { 2928 *new_fdp = dup_fd(fd, max_fds, &error); 2929 if (!*new_fdp) 2930 return error; 2931 } 2932 2933 return 0; 2934 } 2935 2936 /* 2937 * unshare allows a process to 'unshare' part of the process 2938 * context which was originally shared using clone. copy_* 2939 * functions used by kernel_clone() cannot be used here directly 2940 * because they modify an inactive task_struct that is being 2941 * constructed. Here we are modifying the current, active, 2942 * task_struct. 2943 */ 2944 int ksys_unshare(unsigned long unshare_flags) 2945 { 2946 struct fs_struct *fs, *new_fs = NULL; 2947 struct files_struct *fd, *new_fd = NULL; 2948 struct cred *new_cred = NULL; 2949 struct nsproxy *new_nsproxy = NULL; 2950 int do_sysvsem = 0; 2951 int err; 2952 2953 /* 2954 * If unsharing a user namespace must also unshare the thread group 2955 * and unshare the filesystem root and working directories. 2956 */ 2957 if (unshare_flags & CLONE_NEWUSER) 2958 unshare_flags |= CLONE_THREAD | CLONE_FS; 2959 /* 2960 * If unsharing vm, must also unshare signal handlers. 2961 */ 2962 if (unshare_flags & CLONE_VM) 2963 unshare_flags |= CLONE_SIGHAND; 2964 /* 2965 * If unsharing a signal handlers, must also unshare the signal queues. 2966 */ 2967 if (unshare_flags & CLONE_SIGHAND) 2968 unshare_flags |= CLONE_THREAD; 2969 /* 2970 * If unsharing namespace, must also unshare filesystem information. 2971 */ 2972 if (unshare_flags & CLONE_NEWNS) 2973 unshare_flags |= CLONE_FS; 2974 2975 err = check_unshare_flags(unshare_flags); 2976 if (err) 2977 goto bad_unshare_out; 2978 /* 2979 * CLONE_NEWIPC must also detach from the undolist: after switching 2980 * to a new ipc namespace, the semaphore arrays from the old 2981 * namespace are unreachable. 2982 */ 2983 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2984 do_sysvsem = 1; 2985 err = unshare_fs(unshare_flags, &new_fs); 2986 if (err) 2987 goto bad_unshare_out; 2988 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2989 if (err) 2990 goto bad_unshare_cleanup_fs; 2991 err = unshare_userns(unshare_flags, &new_cred); 2992 if (err) 2993 goto bad_unshare_cleanup_fd; 2994 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2995 new_cred, new_fs); 2996 if (err) 2997 goto bad_unshare_cleanup_cred; 2998 2999 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3000 if (do_sysvsem) { 3001 /* 3002 * CLONE_SYSVSEM is equivalent to sys_exit(). 3003 */ 3004 exit_sem(current); 3005 } 3006 if (unshare_flags & CLONE_NEWIPC) { 3007 /* Orphan segments in old ns (see sem above). */ 3008 exit_shm(current); 3009 shm_init_task(current); 3010 } 3011 3012 if (new_nsproxy) 3013 switch_task_namespaces(current, new_nsproxy); 3014 3015 task_lock(current); 3016 3017 if (new_fs) { 3018 fs = current->fs; 3019 spin_lock(&fs->lock); 3020 current->fs = new_fs; 3021 if (--fs->users) 3022 new_fs = NULL; 3023 else 3024 new_fs = fs; 3025 spin_unlock(&fs->lock); 3026 } 3027 3028 if (new_fd) { 3029 fd = current->files; 3030 current->files = new_fd; 3031 new_fd = fd; 3032 } 3033 3034 task_unlock(current); 3035 3036 if (new_cred) { 3037 /* Install the new user namespace */ 3038 commit_creds(new_cred); 3039 new_cred = NULL; 3040 } 3041 } 3042 3043 perf_event_namespaces(current); 3044 3045 bad_unshare_cleanup_cred: 3046 if (new_cred) 3047 put_cred(new_cred); 3048 bad_unshare_cleanup_fd: 3049 if (new_fd) 3050 put_files_struct(new_fd); 3051 3052 bad_unshare_cleanup_fs: 3053 if (new_fs) 3054 free_fs_struct(new_fs); 3055 3056 bad_unshare_out: 3057 return err; 3058 } 3059 3060 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3061 { 3062 return ksys_unshare(unshare_flags); 3063 } 3064 3065 /* 3066 * Helper to unshare the files of the current task. 3067 * We don't want to expose copy_files internals to 3068 * the exec layer of the kernel. 3069 */ 3070 3071 int unshare_files(void) 3072 { 3073 struct task_struct *task = current; 3074 struct files_struct *old, *copy = NULL; 3075 int error; 3076 3077 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3078 if (error || !copy) 3079 return error; 3080 3081 old = task->files; 3082 task_lock(task); 3083 task->files = copy; 3084 task_unlock(task); 3085 put_files_struct(old); 3086 return 0; 3087 } 3088 3089 int sysctl_max_threads(struct ctl_table *table, int write, 3090 void *buffer, size_t *lenp, loff_t *ppos) 3091 { 3092 struct ctl_table t; 3093 int ret; 3094 int threads = max_threads; 3095 int min = 1; 3096 int max = MAX_THREADS; 3097 3098 t = *table; 3099 t.data = &threads; 3100 t.extra1 = &min; 3101 t.extra2 = &max; 3102 3103 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3104 if (ret || !write) 3105 return ret; 3106 3107 max_threads = threads; 3108 3109 return 0; 3110 } 3111