xref: /openbmc/linux/kernel/fork.c (revision 7bcae826)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/userfaultfd_k.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/cn_proc.h>
61 #include <linux/freezer.h>
62 #include <linux/delayacct.h>
63 #include <linux/taskstats_kern.h>
64 #include <linux/random.h>
65 #include <linux/tty.h>
66 #include <linux/blkdev.h>
67 #include <linux/fs_struct.h>
68 #include <linux/magic.h>
69 #include <linux/perf_event.h>
70 #include <linux/posix-timers.h>
71 #include <linux/user-return-notifier.h>
72 #include <linux/oom.h>
73 #include <linux/khugepaged.h>
74 #include <linux/signalfd.h>
75 #include <linux/uprobes.h>
76 #include <linux/aio.h>
77 #include <linux/compiler.h>
78 #include <linux/sysctl.h>
79 #include <linux/kcov.h>
80 
81 #include <asm/pgtable.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/mmu_context.h>
85 #include <asm/cacheflush.h>
86 #include <asm/tlbflush.h>
87 
88 #include <trace/events/sched.h>
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/task.h>
92 
93 /*
94  * Minimum number of threads to boot the kernel
95  */
96 #define MIN_THREADS 20
97 
98 /*
99  * Maximum number of threads
100  */
101 #define MAX_THREADS FUTEX_TID_MASK
102 
103 /*
104  * Protected counters by write_lock_irq(&tasklist_lock)
105  */
106 unsigned long total_forks;	/* Handle normal Linux uptimes. */
107 int nr_threads;			/* The idle threads do not count.. */
108 
109 int max_threads;		/* tunable limit on nr_threads */
110 
111 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
112 
113 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
114 
115 #ifdef CONFIG_PROVE_RCU
116 int lockdep_tasklist_lock_is_held(void)
117 {
118 	return lockdep_is_held(&tasklist_lock);
119 }
120 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
121 #endif /* #ifdef CONFIG_PROVE_RCU */
122 
123 int nr_processes(void)
124 {
125 	int cpu;
126 	int total = 0;
127 
128 	for_each_possible_cpu(cpu)
129 		total += per_cpu(process_counts, cpu);
130 
131 	return total;
132 }
133 
134 void __weak arch_release_task_struct(struct task_struct *tsk)
135 {
136 }
137 
138 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
139 static struct kmem_cache *task_struct_cachep;
140 
141 static inline struct task_struct *alloc_task_struct_node(int node)
142 {
143 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
144 }
145 
146 static inline void free_task_struct(struct task_struct *tsk)
147 {
148 	kmem_cache_free(task_struct_cachep, tsk);
149 }
150 #endif
151 
152 void __weak arch_release_thread_stack(unsigned long *stack)
153 {
154 }
155 
156 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
157 
158 /*
159  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
160  * kmemcache based allocator.
161  */
162 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
163 
164 #ifdef CONFIG_VMAP_STACK
165 /*
166  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
167  * flush.  Try to minimize the number of calls by caching stacks.
168  */
169 #define NR_CACHED_STACKS 2
170 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
171 #endif
172 
173 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
174 {
175 #ifdef CONFIG_VMAP_STACK
176 	void *stack;
177 	int i;
178 
179 	local_irq_disable();
180 	for (i = 0; i < NR_CACHED_STACKS; i++) {
181 		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
182 
183 		if (!s)
184 			continue;
185 		this_cpu_write(cached_stacks[i], NULL);
186 
187 		tsk->stack_vm_area = s;
188 		local_irq_enable();
189 		return s->addr;
190 	}
191 	local_irq_enable();
192 
193 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
194 				     VMALLOC_START, VMALLOC_END,
195 				     THREADINFO_GFP | __GFP_HIGHMEM,
196 				     PAGE_KERNEL,
197 				     0, node, __builtin_return_address(0));
198 
199 	/*
200 	 * We can't call find_vm_area() in interrupt context, and
201 	 * free_thread_stack() can be called in interrupt context,
202 	 * so cache the vm_struct.
203 	 */
204 	if (stack)
205 		tsk->stack_vm_area = find_vm_area(stack);
206 	return stack;
207 #else
208 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
209 					     THREAD_SIZE_ORDER);
210 
211 	return page ? page_address(page) : NULL;
212 #endif
213 }
214 
215 static inline void free_thread_stack(struct task_struct *tsk)
216 {
217 #ifdef CONFIG_VMAP_STACK
218 	if (task_stack_vm_area(tsk)) {
219 		unsigned long flags;
220 		int i;
221 
222 		local_irq_save(flags);
223 		for (i = 0; i < NR_CACHED_STACKS; i++) {
224 			if (this_cpu_read(cached_stacks[i]))
225 				continue;
226 
227 			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
228 			local_irq_restore(flags);
229 			return;
230 		}
231 		local_irq_restore(flags);
232 
233 		vfree_atomic(tsk->stack);
234 		return;
235 	}
236 #endif
237 
238 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
239 }
240 # else
241 static struct kmem_cache *thread_stack_cache;
242 
243 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
244 						  int node)
245 {
246 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
247 }
248 
249 static void free_thread_stack(struct task_struct *tsk)
250 {
251 	kmem_cache_free(thread_stack_cache, tsk->stack);
252 }
253 
254 void thread_stack_cache_init(void)
255 {
256 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
257 					      THREAD_SIZE, 0, NULL);
258 	BUG_ON(thread_stack_cache == NULL);
259 }
260 # endif
261 #endif
262 
263 /* SLAB cache for signal_struct structures (tsk->signal) */
264 static struct kmem_cache *signal_cachep;
265 
266 /* SLAB cache for sighand_struct structures (tsk->sighand) */
267 struct kmem_cache *sighand_cachep;
268 
269 /* SLAB cache for files_struct structures (tsk->files) */
270 struct kmem_cache *files_cachep;
271 
272 /* SLAB cache for fs_struct structures (tsk->fs) */
273 struct kmem_cache *fs_cachep;
274 
275 /* SLAB cache for vm_area_struct structures */
276 struct kmem_cache *vm_area_cachep;
277 
278 /* SLAB cache for mm_struct structures (tsk->mm) */
279 static struct kmem_cache *mm_cachep;
280 
281 static void account_kernel_stack(struct task_struct *tsk, int account)
282 {
283 	void *stack = task_stack_page(tsk);
284 	struct vm_struct *vm = task_stack_vm_area(tsk);
285 
286 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
287 
288 	if (vm) {
289 		int i;
290 
291 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
292 
293 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
294 			mod_zone_page_state(page_zone(vm->pages[i]),
295 					    NR_KERNEL_STACK_KB,
296 					    PAGE_SIZE / 1024 * account);
297 		}
298 
299 		/* All stack pages belong to the same memcg. */
300 		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
301 					    account * (THREAD_SIZE / 1024));
302 	} else {
303 		/*
304 		 * All stack pages are in the same zone and belong to the
305 		 * same memcg.
306 		 */
307 		struct page *first_page = virt_to_page(stack);
308 
309 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
310 				    THREAD_SIZE / 1024 * account);
311 
312 		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
313 					    account * (THREAD_SIZE / 1024));
314 	}
315 }
316 
317 static void release_task_stack(struct task_struct *tsk)
318 {
319 	if (WARN_ON(tsk->state != TASK_DEAD))
320 		return;  /* Better to leak the stack than to free prematurely */
321 
322 	account_kernel_stack(tsk, -1);
323 	arch_release_thread_stack(tsk->stack);
324 	free_thread_stack(tsk);
325 	tsk->stack = NULL;
326 #ifdef CONFIG_VMAP_STACK
327 	tsk->stack_vm_area = NULL;
328 #endif
329 }
330 
331 #ifdef CONFIG_THREAD_INFO_IN_TASK
332 void put_task_stack(struct task_struct *tsk)
333 {
334 	if (atomic_dec_and_test(&tsk->stack_refcount))
335 		release_task_stack(tsk);
336 }
337 #endif
338 
339 void free_task(struct task_struct *tsk)
340 {
341 #ifndef CONFIG_THREAD_INFO_IN_TASK
342 	/*
343 	 * The task is finally done with both the stack and thread_info,
344 	 * so free both.
345 	 */
346 	release_task_stack(tsk);
347 #else
348 	/*
349 	 * If the task had a separate stack allocation, it should be gone
350 	 * by now.
351 	 */
352 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
353 #endif
354 	rt_mutex_debug_task_free(tsk);
355 	ftrace_graph_exit_task(tsk);
356 	put_seccomp_filter(tsk);
357 	arch_release_task_struct(tsk);
358 	if (tsk->flags & PF_KTHREAD)
359 		free_kthread_struct(tsk);
360 	free_task_struct(tsk);
361 }
362 EXPORT_SYMBOL(free_task);
363 
364 static inline void free_signal_struct(struct signal_struct *sig)
365 {
366 	taskstats_tgid_free(sig);
367 	sched_autogroup_exit(sig);
368 	/*
369 	 * __mmdrop is not safe to call from softirq context on x86 due to
370 	 * pgd_dtor so postpone it to the async context
371 	 */
372 	if (sig->oom_mm)
373 		mmdrop_async(sig->oom_mm);
374 	kmem_cache_free(signal_cachep, sig);
375 }
376 
377 static inline void put_signal_struct(struct signal_struct *sig)
378 {
379 	if (atomic_dec_and_test(&sig->sigcnt))
380 		free_signal_struct(sig);
381 }
382 
383 void __put_task_struct(struct task_struct *tsk)
384 {
385 	WARN_ON(!tsk->exit_state);
386 	WARN_ON(atomic_read(&tsk->usage));
387 	WARN_ON(tsk == current);
388 
389 	cgroup_free(tsk);
390 	task_numa_free(tsk);
391 	security_task_free(tsk);
392 	exit_creds(tsk);
393 	delayacct_tsk_free(tsk);
394 	put_signal_struct(tsk->signal);
395 
396 	if (!profile_handoff_task(tsk))
397 		free_task(tsk);
398 }
399 EXPORT_SYMBOL_GPL(__put_task_struct);
400 
401 void __init __weak arch_task_cache_init(void) { }
402 
403 /*
404  * set_max_threads
405  */
406 static void set_max_threads(unsigned int max_threads_suggested)
407 {
408 	u64 threads;
409 
410 	/*
411 	 * The number of threads shall be limited such that the thread
412 	 * structures may only consume a small part of the available memory.
413 	 */
414 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
415 		threads = MAX_THREADS;
416 	else
417 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
418 				    (u64) THREAD_SIZE * 8UL);
419 
420 	if (threads > max_threads_suggested)
421 		threads = max_threads_suggested;
422 
423 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
424 }
425 
426 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
427 /* Initialized by the architecture: */
428 int arch_task_struct_size __read_mostly;
429 #endif
430 
431 void __init fork_init(void)
432 {
433 	int i;
434 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
435 #ifndef ARCH_MIN_TASKALIGN
436 #define ARCH_MIN_TASKALIGN	0
437 #endif
438 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
439 
440 	/* create a slab on which task_structs can be allocated */
441 	task_struct_cachep = kmem_cache_create("task_struct",
442 			arch_task_struct_size, align,
443 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
444 #endif
445 
446 	/* do the arch specific task caches init */
447 	arch_task_cache_init();
448 
449 	set_max_threads(MAX_THREADS);
450 
451 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
452 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
453 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
454 		init_task.signal->rlim[RLIMIT_NPROC];
455 
456 	for (i = 0; i < UCOUNT_COUNTS; i++) {
457 		init_user_ns.ucount_max[i] = max_threads/2;
458 	}
459 }
460 
461 int __weak arch_dup_task_struct(struct task_struct *dst,
462 					       struct task_struct *src)
463 {
464 	*dst = *src;
465 	return 0;
466 }
467 
468 void set_task_stack_end_magic(struct task_struct *tsk)
469 {
470 	unsigned long *stackend;
471 
472 	stackend = end_of_stack(tsk);
473 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
474 }
475 
476 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
477 {
478 	struct task_struct *tsk;
479 	unsigned long *stack;
480 	struct vm_struct *stack_vm_area;
481 	int err;
482 
483 	if (node == NUMA_NO_NODE)
484 		node = tsk_fork_get_node(orig);
485 	tsk = alloc_task_struct_node(node);
486 	if (!tsk)
487 		return NULL;
488 
489 	stack = alloc_thread_stack_node(tsk, node);
490 	if (!stack)
491 		goto free_tsk;
492 
493 	stack_vm_area = task_stack_vm_area(tsk);
494 
495 	err = arch_dup_task_struct(tsk, orig);
496 
497 	/*
498 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
499 	 * sure they're properly initialized before using any stack-related
500 	 * functions again.
501 	 */
502 	tsk->stack = stack;
503 #ifdef CONFIG_VMAP_STACK
504 	tsk->stack_vm_area = stack_vm_area;
505 #endif
506 #ifdef CONFIG_THREAD_INFO_IN_TASK
507 	atomic_set(&tsk->stack_refcount, 1);
508 #endif
509 
510 	if (err)
511 		goto free_stack;
512 
513 #ifdef CONFIG_SECCOMP
514 	/*
515 	 * We must handle setting up seccomp filters once we're under
516 	 * the sighand lock in case orig has changed between now and
517 	 * then. Until then, filter must be NULL to avoid messing up
518 	 * the usage counts on the error path calling free_task.
519 	 */
520 	tsk->seccomp.filter = NULL;
521 #endif
522 
523 	setup_thread_stack(tsk, orig);
524 	clear_user_return_notifier(tsk);
525 	clear_tsk_need_resched(tsk);
526 	set_task_stack_end_magic(tsk);
527 
528 #ifdef CONFIG_CC_STACKPROTECTOR
529 	tsk->stack_canary = get_random_int();
530 #endif
531 
532 	/*
533 	 * One for us, one for whoever does the "release_task()" (usually
534 	 * parent)
535 	 */
536 	atomic_set(&tsk->usage, 2);
537 #ifdef CONFIG_BLK_DEV_IO_TRACE
538 	tsk->btrace_seq = 0;
539 #endif
540 	tsk->splice_pipe = NULL;
541 	tsk->task_frag.page = NULL;
542 	tsk->wake_q.next = NULL;
543 
544 	account_kernel_stack(tsk, 1);
545 
546 	kcov_task_init(tsk);
547 
548 	return tsk;
549 
550 free_stack:
551 	free_thread_stack(tsk);
552 free_tsk:
553 	free_task_struct(tsk);
554 	return NULL;
555 }
556 
557 #ifdef CONFIG_MMU
558 static __latent_entropy int dup_mmap(struct mm_struct *mm,
559 					struct mm_struct *oldmm)
560 {
561 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
562 	struct rb_node **rb_link, *rb_parent;
563 	int retval;
564 	unsigned long charge;
565 	LIST_HEAD(uf);
566 
567 	uprobe_start_dup_mmap();
568 	if (down_write_killable(&oldmm->mmap_sem)) {
569 		retval = -EINTR;
570 		goto fail_uprobe_end;
571 	}
572 	flush_cache_dup_mm(oldmm);
573 	uprobe_dup_mmap(oldmm, mm);
574 	/*
575 	 * Not linked in yet - no deadlock potential:
576 	 */
577 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
578 
579 	/* No ordering required: file already has been exposed. */
580 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
581 
582 	mm->total_vm = oldmm->total_vm;
583 	mm->data_vm = oldmm->data_vm;
584 	mm->exec_vm = oldmm->exec_vm;
585 	mm->stack_vm = oldmm->stack_vm;
586 
587 	rb_link = &mm->mm_rb.rb_node;
588 	rb_parent = NULL;
589 	pprev = &mm->mmap;
590 	retval = ksm_fork(mm, oldmm);
591 	if (retval)
592 		goto out;
593 	retval = khugepaged_fork(mm, oldmm);
594 	if (retval)
595 		goto out;
596 
597 	prev = NULL;
598 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
599 		struct file *file;
600 
601 		if (mpnt->vm_flags & VM_DONTCOPY) {
602 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
603 			continue;
604 		}
605 		charge = 0;
606 		if (mpnt->vm_flags & VM_ACCOUNT) {
607 			unsigned long len = vma_pages(mpnt);
608 
609 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
610 				goto fail_nomem;
611 			charge = len;
612 		}
613 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
614 		if (!tmp)
615 			goto fail_nomem;
616 		*tmp = *mpnt;
617 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
618 		retval = vma_dup_policy(mpnt, tmp);
619 		if (retval)
620 			goto fail_nomem_policy;
621 		tmp->vm_mm = mm;
622 		retval = dup_userfaultfd(tmp, &uf);
623 		if (retval)
624 			goto fail_nomem_anon_vma_fork;
625 		if (anon_vma_fork(tmp, mpnt))
626 			goto fail_nomem_anon_vma_fork;
627 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
628 		tmp->vm_next = tmp->vm_prev = NULL;
629 		file = tmp->vm_file;
630 		if (file) {
631 			struct inode *inode = file_inode(file);
632 			struct address_space *mapping = file->f_mapping;
633 
634 			get_file(file);
635 			if (tmp->vm_flags & VM_DENYWRITE)
636 				atomic_dec(&inode->i_writecount);
637 			i_mmap_lock_write(mapping);
638 			if (tmp->vm_flags & VM_SHARED)
639 				atomic_inc(&mapping->i_mmap_writable);
640 			flush_dcache_mmap_lock(mapping);
641 			/* insert tmp into the share list, just after mpnt */
642 			vma_interval_tree_insert_after(tmp, mpnt,
643 					&mapping->i_mmap);
644 			flush_dcache_mmap_unlock(mapping);
645 			i_mmap_unlock_write(mapping);
646 		}
647 
648 		/*
649 		 * Clear hugetlb-related page reserves for children. This only
650 		 * affects MAP_PRIVATE mappings. Faults generated by the child
651 		 * are not guaranteed to succeed, even if read-only
652 		 */
653 		if (is_vm_hugetlb_page(tmp))
654 			reset_vma_resv_huge_pages(tmp);
655 
656 		/*
657 		 * Link in the new vma and copy the page table entries.
658 		 */
659 		*pprev = tmp;
660 		pprev = &tmp->vm_next;
661 		tmp->vm_prev = prev;
662 		prev = tmp;
663 
664 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
665 		rb_link = &tmp->vm_rb.rb_right;
666 		rb_parent = &tmp->vm_rb;
667 
668 		mm->map_count++;
669 		retval = copy_page_range(mm, oldmm, mpnt);
670 
671 		if (tmp->vm_ops && tmp->vm_ops->open)
672 			tmp->vm_ops->open(tmp);
673 
674 		if (retval)
675 			goto out;
676 	}
677 	/* a new mm has just been created */
678 	arch_dup_mmap(oldmm, mm);
679 	retval = 0;
680 out:
681 	up_write(&mm->mmap_sem);
682 	flush_tlb_mm(oldmm);
683 	up_write(&oldmm->mmap_sem);
684 	dup_userfaultfd_complete(&uf);
685 fail_uprobe_end:
686 	uprobe_end_dup_mmap();
687 	return retval;
688 fail_nomem_anon_vma_fork:
689 	mpol_put(vma_policy(tmp));
690 fail_nomem_policy:
691 	kmem_cache_free(vm_area_cachep, tmp);
692 fail_nomem:
693 	retval = -ENOMEM;
694 	vm_unacct_memory(charge);
695 	goto out;
696 }
697 
698 static inline int mm_alloc_pgd(struct mm_struct *mm)
699 {
700 	mm->pgd = pgd_alloc(mm);
701 	if (unlikely(!mm->pgd))
702 		return -ENOMEM;
703 	return 0;
704 }
705 
706 static inline void mm_free_pgd(struct mm_struct *mm)
707 {
708 	pgd_free(mm, mm->pgd);
709 }
710 #else
711 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
712 {
713 	down_write(&oldmm->mmap_sem);
714 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
715 	up_write(&oldmm->mmap_sem);
716 	return 0;
717 }
718 #define mm_alloc_pgd(mm)	(0)
719 #define mm_free_pgd(mm)
720 #endif /* CONFIG_MMU */
721 
722 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
723 
724 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
725 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
726 
727 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
728 
729 static int __init coredump_filter_setup(char *s)
730 {
731 	default_dump_filter =
732 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
733 		MMF_DUMP_FILTER_MASK;
734 	return 1;
735 }
736 
737 __setup("coredump_filter=", coredump_filter_setup);
738 
739 #include <linux/init_task.h>
740 
741 static void mm_init_aio(struct mm_struct *mm)
742 {
743 #ifdef CONFIG_AIO
744 	spin_lock_init(&mm->ioctx_lock);
745 	mm->ioctx_table = NULL;
746 #endif
747 }
748 
749 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
750 {
751 #ifdef CONFIG_MEMCG
752 	mm->owner = p;
753 #endif
754 }
755 
756 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
757 	struct user_namespace *user_ns)
758 {
759 	mm->mmap = NULL;
760 	mm->mm_rb = RB_ROOT;
761 	mm->vmacache_seqnum = 0;
762 	atomic_set(&mm->mm_users, 1);
763 	atomic_set(&mm->mm_count, 1);
764 	init_rwsem(&mm->mmap_sem);
765 	INIT_LIST_HEAD(&mm->mmlist);
766 	mm->core_state = NULL;
767 	atomic_long_set(&mm->nr_ptes, 0);
768 	mm_nr_pmds_init(mm);
769 	mm->map_count = 0;
770 	mm->locked_vm = 0;
771 	mm->pinned_vm = 0;
772 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
773 	spin_lock_init(&mm->page_table_lock);
774 	mm_init_cpumask(mm);
775 	mm_init_aio(mm);
776 	mm_init_owner(mm, p);
777 	mmu_notifier_mm_init(mm);
778 	clear_tlb_flush_pending(mm);
779 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
780 	mm->pmd_huge_pte = NULL;
781 #endif
782 
783 	if (current->mm) {
784 		mm->flags = current->mm->flags & MMF_INIT_MASK;
785 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
786 	} else {
787 		mm->flags = default_dump_filter;
788 		mm->def_flags = 0;
789 	}
790 
791 	if (mm_alloc_pgd(mm))
792 		goto fail_nopgd;
793 
794 	if (init_new_context(p, mm))
795 		goto fail_nocontext;
796 
797 	mm->user_ns = get_user_ns(user_ns);
798 	return mm;
799 
800 fail_nocontext:
801 	mm_free_pgd(mm);
802 fail_nopgd:
803 	free_mm(mm);
804 	return NULL;
805 }
806 
807 static void check_mm(struct mm_struct *mm)
808 {
809 	int i;
810 
811 	for (i = 0; i < NR_MM_COUNTERS; i++) {
812 		long x = atomic_long_read(&mm->rss_stat.count[i]);
813 
814 		if (unlikely(x))
815 			printk(KERN_ALERT "BUG: Bad rss-counter state "
816 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
817 	}
818 
819 	if (atomic_long_read(&mm->nr_ptes))
820 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
821 				atomic_long_read(&mm->nr_ptes));
822 	if (mm_nr_pmds(mm))
823 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
824 				mm_nr_pmds(mm));
825 
826 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
827 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
828 #endif
829 }
830 
831 /*
832  * Allocate and initialize an mm_struct.
833  */
834 struct mm_struct *mm_alloc(void)
835 {
836 	struct mm_struct *mm;
837 
838 	mm = allocate_mm();
839 	if (!mm)
840 		return NULL;
841 
842 	memset(mm, 0, sizeof(*mm));
843 	return mm_init(mm, current, current_user_ns());
844 }
845 
846 /*
847  * Called when the last reference to the mm
848  * is dropped: either by a lazy thread or by
849  * mmput. Free the page directory and the mm.
850  */
851 void __mmdrop(struct mm_struct *mm)
852 {
853 	BUG_ON(mm == &init_mm);
854 	mm_free_pgd(mm);
855 	destroy_context(mm);
856 	mmu_notifier_mm_destroy(mm);
857 	check_mm(mm);
858 	put_user_ns(mm->user_ns);
859 	free_mm(mm);
860 }
861 EXPORT_SYMBOL_GPL(__mmdrop);
862 
863 static inline void __mmput(struct mm_struct *mm)
864 {
865 	VM_BUG_ON(atomic_read(&mm->mm_users));
866 
867 	uprobe_clear_state(mm);
868 	exit_aio(mm);
869 	ksm_exit(mm);
870 	khugepaged_exit(mm); /* must run before exit_mmap */
871 	exit_mmap(mm);
872 	mm_put_huge_zero_page(mm);
873 	set_mm_exe_file(mm, NULL);
874 	if (!list_empty(&mm->mmlist)) {
875 		spin_lock(&mmlist_lock);
876 		list_del(&mm->mmlist);
877 		spin_unlock(&mmlist_lock);
878 	}
879 	if (mm->binfmt)
880 		module_put(mm->binfmt->module);
881 	set_bit(MMF_OOM_SKIP, &mm->flags);
882 	mmdrop(mm);
883 }
884 
885 /*
886  * Decrement the use count and release all resources for an mm.
887  */
888 void mmput(struct mm_struct *mm)
889 {
890 	might_sleep();
891 
892 	if (atomic_dec_and_test(&mm->mm_users))
893 		__mmput(mm);
894 }
895 EXPORT_SYMBOL_GPL(mmput);
896 
897 #ifdef CONFIG_MMU
898 static void mmput_async_fn(struct work_struct *work)
899 {
900 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
901 	__mmput(mm);
902 }
903 
904 void mmput_async(struct mm_struct *mm)
905 {
906 	if (atomic_dec_and_test(&mm->mm_users)) {
907 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
908 		schedule_work(&mm->async_put_work);
909 	}
910 }
911 #endif
912 
913 /**
914  * set_mm_exe_file - change a reference to the mm's executable file
915  *
916  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
917  *
918  * Main users are mmput() and sys_execve(). Callers prevent concurrent
919  * invocations: in mmput() nobody alive left, in execve task is single
920  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
921  * mm->exe_file, but does so without using set_mm_exe_file() in order
922  * to do avoid the need for any locks.
923  */
924 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
925 {
926 	struct file *old_exe_file;
927 
928 	/*
929 	 * It is safe to dereference the exe_file without RCU as
930 	 * this function is only called if nobody else can access
931 	 * this mm -- see comment above for justification.
932 	 */
933 	old_exe_file = rcu_dereference_raw(mm->exe_file);
934 
935 	if (new_exe_file)
936 		get_file(new_exe_file);
937 	rcu_assign_pointer(mm->exe_file, new_exe_file);
938 	if (old_exe_file)
939 		fput(old_exe_file);
940 }
941 
942 /**
943  * get_mm_exe_file - acquire a reference to the mm's executable file
944  *
945  * Returns %NULL if mm has no associated executable file.
946  * User must release file via fput().
947  */
948 struct file *get_mm_exe_file(struct mm_struct *mm)
949 {
950 	struct file *exe_file;
951 
952 	rcu_read_lock();
953 	exe_file = rcu_dereference(mm->exe_file);
954 	if (exe_file && !get_file_rcu(exe_file))
955 		exe_file = NULL;
956 	rcu_read_unlock();
957 	return exe_file;
958 }
959 EXPORT_SYMBOL(get_mm_exe_file);
960 
961 /**
962  * get_task_exe_file - acquire a reference to the task's executable file
963  *
964  * Returns %NULL if task's mm (if any) has no associated executable file or
965  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
966  * User must release file via fput().
967  */
968 struct file *get_task_exe_file(struct task_struct *task)
969 {
970 	struct file *exe_file = NULL;
971 	struct mm_struct *mm;
972 
973 	task_lock(task);
974 	mm = task->mm;
975 	if (mm) {
976 		if (!(task->flags & PF_KTHREAD))
977 			exe_file = get_mm_exe_file(mm);
978 	}
979 	task_unlock(task);
980 	return exe_file;
981 }
982 EXPORT_SYMBOL(get_task_exe_file);
983 
984 /**
985  * get_task_mm - acquire a reference to the task's mm
986  *
987  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
988  * this kernel workthread has transiently adopted a user mm with use_mm,
989  * to do its AIO) is not set and if so returns a reference to it, after
990  * bumping up the use count.  User must release the mm via mmput()
991  * after use.  Typically used by /proc and ptrace.
992  */
993 struct mm_struct *get_task_mm(struct task_struct *task)
994 {
995 	struct mm_struct *mm;
996 
997 	task_lock(task);
998 	mm = task->mm;
999 	if (mm) {
1000 		if (task->flags & PF_KTHREAD)
1001 			mm = NULL;
1002 		else
1003 			atomic_inc(&mm->mm_users);
1004 	}
1005 	task_unlock(task);
1006 	return mm;
1007 }
1008 EXPORT_SYMBOL_GPL(get_task_mm);
1009 
1010 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1011 {
1012 	struct mm_struct *mm;
1013 	int err;
1014 
1015 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1016 	if (err)
1017 		return ERR_PTR(err);
1018 
1019 	mm = get_task_mm(task);
1020 	if (mm && mm != current->mm &&
1021 			!ptrace_may_access(task, mode)) {
1022 		mmput(mm);
1023 		mm = ERR_PTR(-EACCES);
1024 	}
1025 	mutex_unlock(&task->signal->cred_guard_mutex);
1026 
1027 	return mm;
1028 }
1029 
1030 static void complete_vfork_done(struct task_struct *tsk)
1031 {
1032 	struct completion *vfork;
1033 
1034 	task_lock(tsk);
1035 	vfork = tsk->vfork_done;
1036 	if (likely(vfork)) {
1037 		tsk->vfork_done = NULL;
1038 		complete(vfork);
1039 	}
1040 	task_unlock(tsk);
1041 }
1042 
1043 static int wait_for_vfork_done(struct task_struct *child,
1044 				struct completion *vfork)
1045 {
1046 	int killed;
1047 
1048 	freezer_do_not_count();
1049 	killed = wait_for_completion_killable(vfork);
1050 	freezer_count();
1051 
1052 	if (killed) {
1053 		task_lock(child);
1054 		child->vfork_done = NULL;
1055 		task_unlock(child);
1056 	}
1057 
1058 	put_task_struct(child);
1059 	return killed;
1060 }
1061 
1062 /* Please note the differences between mmput and mm_release.
1063  * mmput is called whenever we stop holding onto a mm_struct,
1064  * error success whatever.
1065  *
1066  * mm_release is called after a mm_struct has been removed
1067  * from the current process.
1068  *
1069  * This difference is important for error handling, when we
1070  * only half set up a mm_struct for a new process and need to restore
1071  * the old one.  Because we mmput the new mm_struct before
1072  * restoring the old one. . .
1073  * Eric Biederman 10 January 1998
1074  */
1075 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1076 {
1077 	/* Get rid of any futexes when releasing the mm */
1078 #ifdef CONFIG_FUTEX
1079 	if (unlikely(tsk->robust_list)) {
1080 		exit_robust_list(tsk);
1081 		tsk->robust_list = NULL;
1082 	}
1083 #ifdef CONFIG_COMPAT
1084 	if (unlikely(tsk->compat_robust_list)) {
1085 		compat_exit_robust_list(tsk);
1086 		tsk->compat_robust_list = NULL;
1087 	}
1088 #endif
1089 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1090 		exit_pi_state_list(tsk);
1091 #endif
1092 
1093 	uprobe_free_utask(tsk);
1094 
1095 	/* Get rid of any cached register state */
1096 	deactivate_mm(tsk, mm);
1097 
1098 	/*
1099 	 * Signal userspace if we're not exiting with a core dump
1100 	 * because we want to leave the value intact for debugging
1101 	 * purposes.
1102 	 */
1103 	if (tsk->clear_child_tid) {
1104 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1105 		    atomic_read(&mm->mm_users) > 1) {
1106 			/*
1107 			 * We don't check the error code - if userspace has
1108 			 * not set up a proper pointer then tough luck.
1109 			 */
1110 			put_user(0, tsk->clear_child_tid);
1111 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1112 					1, NULL, NULL, 0);
1113 		}
1114 		tsk->clear_child_tid = NULL;
1115 	}
1116 
1117 	/*
1118 	 * All done, finally we can wake up parent and return this mm to him.
1119 	 * Also kthread_stop() uses this completion for synchronization.
1120 	 */
1121 	if (tsk->vfork_done)
1122 		complete_vfork_done(tsk);
1123 }
1124 
1125 /*
1126  * Allocate a new mm structure and copy contents from the
1127  * mm structure of the passed in task structure.
1128  */
1129 static struct mm_struct *dup_mm(struct task_struct *tsk)
1130 {
1131 	struct mm_struct *mm, *oldmm = current->mm;
1132 	int err;
1133 
1134 	mm = allocate_mm();
1135 	if (!mm)
1136 		goto fail_nomem;
1137 
1138 	memcpy(mm, oldmm, sizeof(*mm));
1139 
1140 	if (!mm_init(mm, tsk, mm->user_ns))
1141 		goto fail_nomem;
1142 
1143 	err = dup_mmap(mm, oldmm);
1144 	if (err)
1145 		goto free_pt;
1146 
1147 	mm->hiwater_rss = get_mm_rss(mm);
1148 	mm->hiwater_vm = mm->total_vm;
1149 
1150 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1151 		goto free_pt;
1152 
1153 	return mm;
1154 
1155 free_pt:
1156 	/* don't put binfmt in mmput, we haven't got module yet */
1157 	mm->binfmt = NULL;
1158 	mmput(mm);
1159 
1160 fail_nomem:
1161 	return NULL;
1162 }
1163 
1164 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1165 {
1166 	struct mm_struct *mm, *oldmm;
1167 	int retval;
1168 
1169 	tsk->min_flt = tsk->maj_flt = 0;
1170 	tsk->nvcsw = tsk->nivcsw = 0;
1171 #ifdef CONFIG_DETECT_HUNG_TASK
1172 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1173 #endif
1174 
1175 	tsk->mm = NULL;
1176 	tsk->active_mm = NULL;
1177 
1178 	/*
1179 	 * Are we cloning a kernel thread?
1180 	 *
1181 	 * We need to steal a active VM for that..
1182 	 */
1183 	oldmm = current->mm;
1184 	if (!oldmm)
1185 		return 0;
1186 
1187 	/* initialize the new vmacache entries */
1188 	vmacache_flush(tsk);
1189 
1190 	if (clone_flags & CLONE_VM) {
1191 		atomic_inc(&oldmm->mm_users);
1192 		mm = oldmm;
1193 		goto good_mm;
1194 	}
1195 
1196 	retval = -ENOMEM;
1197 	mm = dup_mm(tsk);
1198 	if (!mm)
1199 		goto fail_nomem;
1200 
1201 good_mm:
1202 	tsk->mm = mm;
1203 	tsk->active_mm = mm;
1204 	return 0;
1205 
1206 fail_nomem:
1207 	return retval;
1208 }
1209 
1210 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1211 {
1212 	struct fs_struct *fs = current->fs;
1213 	if (clone_flags & CLONE_FS) {
1214 		/* tsk->fs is already what we want */
1215 		spin_lock(&fs->lock);
1216 		if (fs->in_exec) {
1217 			spin_unlock(&fs->lock);
1218 			return -EAGAIN;
1219 		}
1220 		fs->users++;
1221 		spin_unlock(&fs->lock);
1222 		return 0;
1223 	}
1224 	tsk->fs = copy_fs_struct(fs);
1225 	if (!tsk->fs)
1226 		return -ENOMEM;
1227 	return 0;
1228 }
1229 
1230 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1231 {
1232 	struct files_struct *oldf, *newf;
1233 	int error = 0;
1234 
1235 	/*
1236 	 * A background process may not have any files ...
1237 	 */
1238 	oldf = current->files;
1239 	if (!oldf)
1240 		goto out;
1241 
1242 	if (clone_flags & CLONE_FILES) {
1243 		atomic_inc(&oldf->count);
1244 		goto out;
1245 	}
1246 
1247 	newf = dup_fd(oldf, &error);
1248 	if (!newf)
1249 		goto out;
1250 
1251 	tsk->files = newf;
1252 	error = 0;
1253 out:
1254 	return error;
1255 }
1256 
1257 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1258 {
1259 #ifdef CONFIG_BLOCK
1260 	struct io_context *ioc = current->io_context;
1261 	struct io_context *new_ioc;
1262 
1263 	if (!ioc)
1264 		return 0;
1265 	/*
1266 	 * Share io context with parent, if CLONE_IO is set
1267 	 */
1268 	if (clone_flags & CLONE_IO) {
1269 		ioc_task_link(ioc);
1270 		tsk->io_context = ioc;
1271 	} else if (ioprio_valid(ioc->ioprio)) {
1272 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1273 		if (unlikely(!new_ioc))
1274 			return -ENOMEM;
1275 
1276 		new_ioc->ioprio = ioc->ioprio;
1277 		put_io_context(new_ioc);
1278 	}
1279 #endif
1280 	return 0;
1281 }
1282 
1283 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1284 {
1285 	struct sighand_struct *sig;
1286 
1287 	if (clone_flags & CLONE_SIGHAND) {
1288 		atomic_inc(&current->sighand->count);
1289 		return 0;
1290 	}
1291 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1292 	rcu_assign_pointer(tsk->sighand, sig);
1293 	if (!sig)
1294 		return -ENOMEM;
1295 
1296 	atomic_set(&sig->count, 1);
1297 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1298 	return 0;
1299 }
1300 
1301 void __cleanup_sighand(struct sighand_struct *sighand)
1302 {
1303 	if (atomic_dec_and_test(&sighand->count)) {
1304 		signalfd_cleanup(sighand);
1305 		/*
1306 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1307 		 * without an RCU grace period, see __lock_task_sighand().
1308 		 */
1309 		kmem_cache_free(sighand_cachep, sighand);
1310 	}
1311 }
1312 
1313 #ifdef CONFIG_POSIX_TIMERS
1314 /*
1315  * Initialize POSIX timer handling for a thread group.
1316  */
1317 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1318 {
1319 	unsigned long cpu_limit;
1320 
1321 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1322 	if (cpu_limit != RLIM_INFINITY) {
1323 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1324 		sig->cputimer.running = true;
1325 	}
1326 
1327 	/* The timer lists. */
1328 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1329 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1330 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1331 }
1332 #else
1333 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1334 #endif
1335 
1336 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1337 {
1338 	struct signal_struct *sig;
1339 
1340 	if (clone_flags & CLONE_THREAD)
1341 		return 0;
1342 
1343 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1344 	tsk->signal = sig;
1345 	if (!sig)
1346 		return -ENOMEM;
1347 
1348 	sig->nr_threads = 1;
1349 	atomic_set(&sig->live, 1);
1350 	atomic_set(&sig->sigcnt, 1);
1351 
1352 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1353 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1354 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1355 
1356 	init_waitqueue_head(&sig->wait_chldexit);
1357 	sig->curr_target = tsk;
1358 	init_sigpending(&sig->shared_pending);
1359 	seqlock_init(&sig->stats_lock);
1360 	prev_cputime_init(&sig->prev_cputime);
1361 
1362 #ifdef CONFIG_POSIX_TIMERS
1363 	INIT_LIST_HEAD(&sig->posix_timers);
1364 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1365 	sig->real_timer.function = it_real_fn;
1366 #endif
1367 
1368 	task_lock(current->group_leader);
1369 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1370 	task_unlock(current->group_leader);
1371 
1372 	posix_cpu_timers_init_group(sig);
1373 
1374 	tty_audit_fork(sig);
1375 	sched_autogroup_fork(sig);
1376 
1377 	sig->oom_score_adj = current->signal->oom_score_adj;
1378 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1379 
1380 	mutex_init(&sig->cred_guard_mutex);
1381 
1382 	return 0;
1383 }
1384 
1385 static void copy_seccomp(struct task_struct *p)
1386 {
1387 #ifdef CONFIG_SECCOMP
1388 	/*
1389 	 * Must be called with sighand->lock held, which is common to
1390 	 * all threads in the group. Holding cred_guard_mutex is not
1391 	 * needed because this new task is not yet running and cannot
1392 	 * be racing exec.
1393 	 */
1394 	assert_spin_locked(&current->sighand->siglock);
1395 
1396 	/* Ref-count the new filter user, and assign it. */
1397 	get_seccomp_filter(current);
1398 	p->seccomp = current->seccomp;
1399 
1400 	/*
1401 	 * Explicitly enable no_new_privs here in case it got set
1402 	 * between the task_struct being duplicated and holding the
1403 	 * sighand lock. The seccomp state and nnp must be in sync.
1404 	 */
1405 	if (task_no_new_privs(current))
1406 		task_set_no_new_privs(p);
1407 
1408 	/*
1409 	 * If the parent gained a seccomp mode after copying thread
1410 	 * flags and between before we held the sighand lock, we have
1411 	 * to manually enable the seccomp thread flag here.
1412 	 */
1413 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1414 		set_tsk_thread_flag(p, TIF_SECCOMP);
1415 #endif
1416 }
1417 
1418 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1419 {
1420 	current->clear_child_tid = tidptr;
1421 
1422 	return task_pid_vnr(current);
1423 }
1424 
1425 static void rt_mutex_init_task(struct task_struct *p)
1426 {
1427 	raw_spin_lock_init(&p->pi_lock);
1428 #ifdef CONFIG_RT_MUTEXES
1429 	p->pi_waiters = RB_ROOT;
1430 	p->pi_waiters_leftmost = NULL;
1431 	p->pi_blocked_on = NULL;
1432 #endif
1433 }
1434 
1435 #ifdef CONFIG_POSIX_TIMERS
1436 /*
1437  * Initialize POSIX timer handling for a single task.
1438  */
1439 static void posix_cpu_timers_init(struct task_struct *tsk)
1440 {
1441 	tsk->cputime_expires.prof_exp = 0;
1442 	tsk->cputime_expires.virt_exp = 0;
1443 	tsk->cputime_expires.sched_exp = 0;
1444 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1445 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1446 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1447 }
1448 #else
1449 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1450 #endif
1451 
1452 static inline void
1453 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1454 {
1455 	 task->pids[type].pid = pid;
1456 }
1457 
1458 /*
1459  * This creates a new process as a copy of the old one,
1460  * but does not actually start it yet.
1461  *
1462  * It copies the registers, and all the appropriate
1463  * parts of the process environment (as per the clone
1464  * flags). The actual kick-off is left to the caller.
1465  */
1466 static __latent_entropy struct task_struct *copy_process(
1467 					unsigned long clone_flags,
1468 					unsigned long stack_start,
1469 					unsigned long stack_size,
1470 					int __user *child_tidptr,
1471 					struct pid *pid,
1472 					int trace,
1473 					unsigned long tls,
1474 					int node)
1475 {
1476 	int retval;
1477 	struct task_struct *p;
1478 
1479 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1480 		return ERR_PTR(-EINVAL);
1481 
1482 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1483 		return ERR_PTR(-EINVAL);
1484 
1485 	/*
1486 	 * Thread groups must share signals as well, and detached threads
1487 	 * can only be started up within the thread group.
1488 	 */
1489 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1490 		return ERR_PTR(-EINVAL);
1491 
1492 	/*
1493 	 * Shared signal handlers imply shared VM. By way of the above,
1494 	 * thread groups also imply shared VM. Blocking this case allows
1495 	 * for various simplifications in other code.
1496 	 */
1497 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1498 		return ERR_PTR(-EINVAL);
1499 
1500 	/*
1501 	 * Siblings of global init remain as zombies on exit since they are
1502 	 * not reaped by their parent (swapper). To solve this and to avoid
1503 	 * multi-rooted process trees, prevent global and container-inits
1504 	 * from creating siblings.
1505 	 */
1506 	if ((clone_flags & CLONE_PARENT) &&
1507 				current->signal->flags & SIGNAL_UNKILLABLE)
1508 		return ERR_PTR(-EINVAL);
1509 
1510 	/*
1511 	 * If the new process will be in a different pid or user namespace
1512 	 * do not allow it to share a thread group with the forking task.
1513 	 */
1514 	if (clone_flags & CLONE_THREAD) {
1515 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1516 		    (task_active_pid_ns(current) !=
1517 				current->nsproxy->pid_ns_for_children))
1518 			return ERR_PTR(-EINVAL);
1519 	}
1520 
1521 	retval = security_task_create(clone_flags);
1522 	if (retval)
1523 		goto fork_out;
1524 
1525 	retval = -ENOMEM;
1526 	p = dup_task_struct(current, node);
1527 	if (!p)
1528 		goto fork_out;
1529 
1530 	ftrace_graph_init_task(p);
1531 
1532 	rt_mutex_init_task(p);
1533 
1534 #ifdef CONFIG_PROVE_LOCKING
1535 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1536 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1537 #endif
1538 	retval = -EAGAIN;
1539 	if (atomic_read(&p->real_cred->user->processes) >=
1540 			task_rlimit(p, RLIMIT_NPROC)) {
1541 		if (p->real_cred->user != INIT_USER &&
1542 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1543 			goto bad_fork_free;
1544 	}
1545 	current->flags &= ~PF_NPROC_EXCEEDED;
1546 
1547 	retval = copy_creds(p, clone_flags);
1548 	if (retval < 0)
1549 		goto bad_fork_free;
1550 
1551 	/*
1552 	 * If multiple threads are within copy_process(), then this check
1553 	 * triggers too late. This doesn't hurt, the check is only there
1554 	 * to stop root fork bombs.
1555 	 */
1556 	retval = -EAGAIN;
1557 	if (nr_threads >= max_threads)
1558 		goto bad_fork_cleanup_count;
1559 
1560 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1561 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1562 	p->flags |= PF_FORKNOEXEC;
1563 	INIT_LIST_HEAD(&p->children);
1564 	INIT_LIST_HEAD(&p->sibling);
1565 	rcu_copy_process(p);
1566 	p->vfork_done = NULL;
1567 	spin_lock_init(&p->alloc_lock);
1568 
1569 	init_sigpending(&p->pending);
1570 
1571 	p->utime = p->stime = p->gtime = 0;
1572 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1573 	p->utimescaled = p->stimescaled = 0;
1574 #endif
1575 	prev_cputime_init(&p->prev_cputime);
1576 
1577 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1578 	seqcount_init(&p->vtime_seqcount);
1579 	p->vtime_snap = 0;
1580 	p->vtime_snap_whence = VTIME_INACTIVE;
1581 #endif
1582 
1583 #if defined(SPLIT_RSS_COUNTING)
1584 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1585 #endif
1586 
1587 	p->default_timer_slack_ns = current->timer_slack_ns;
1588 
1589 	task_io_accounting_init(&p->ioac);
1590 	acct_clear_integrals(p);
1591 
1592 	posix_cpu_timers_init(p);
1593 
1594 	p->start_time = ktime_get_ns();
1595 	p->real_start_time = ktime_get_boot_ns();
1596 	p->io_context = NULL;
1597 	p->audit_context = NULL;
1598 	cgroup_fork(p);
1599 #ifdef CONFIG_NUMA
1600 	p->mempolicy = mpol_dup(p->mempolicy);
1601 	if (IS_ERR(p->mempolicy)) {
1602 		retval = PTR_ERR(p->mempolicy);
1603 		p->mempolicy = NULL;
1604 		goto bad_fork_cleanup_threadgroup_lock;
1605 	}
1606 #endif
1607 #ifdef CONFIG_CPUSETS
1608 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1609 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1610 	seqcount_init(&p->mems_allowed_seq);
1611 #endif
1612 #ifdef CONFIG_TRACE_IRQFLAGS
1613 	p->irq_events = 0;
1614 	p->hardirqs_enabled = 0;
1615 	p->hardirq_enable_ip = 0;
1616 	p->hardirq_enable_event = 0;
1617 	p->hardirq_disable_ip = _THIS_IP_;
1618 	p->hardirq_disable_event = 0;
1619 	p->softirqs_enabled = 1;
1620 	p->softirq_enable_ip = _THIS_IP_;
1621 	p->softirq_enable_event = 0;
1622 	p->softirq_disable_ip = 0;
1623 	p->softirq_disable_event = 0;
1624 	p->hardirq_context = 0;
1625 	p->softirq_context = 0;
1626 #endif
1627 
1628 	p->pagefault_disabled = 0;
1629 
1630 #ifdef CONFIG_LOCKDEP
1631 	p->lockdep_depth = 0; /* no locks held yet */
1632 	p->curr_chain_key = 0;
1633 	p->lockdep_recursion = 0;
1634 #endif
1635 
1636 #ifdef CONFIG_DEBUG_MUTEXES
1637 	p->blocked_on = NULL; /* not blocked yet */
1638 #endif
1639 #ifdef CONFIG_BCACHE
1640 	p->sequential_io	= 0;
1641 	p->sequential_io_avg	= 0;
1642 #endif
1643 
1644 	/* Perform scheduler related setup. Assign this task to a CPU. */
1645 	retval = sched_fork(clone_flags, p);
1646 	if (retval)
1647 		goto bad_fork_cleanup_policy;
1648 
1649 	retval = perf_event_init_task(p);
1650 	if (retval)
1651 		goto bad_fork_cleanup_policy;
1652 	retval = audit_alloc(p);
1653 	if (retval)
1654 		goto bad_fork_cleanup_perf;
1655 	/* copy all the process information */
1656 	shm_init_task(p);
1657 	retval = copy_semundo(clone_flags, p);
1658 	if (retval)
1659 		goto bad_fork_cleanup_audit;
1660 	retval = copy_files(clone_flags, p);
1661 	if (retval)
1662 		goto bad_fork_cleanup_semundo;
1663 	retval = copy_fs(clone_flags, p);
1664 	if (retval)
1665 		goto bad_fork_cleanup_files;
1666 	retval = copy_sighand(clone_flags, p);
1667 	if (retval)
1668 		goto bad_fork_cleanup_fs;
1669 	retval = copy_signal(clone_flags, p);
1670 	if (retval)
1671 		goto bad_fork_cleanup_sighand;
1672 	retval = copy_mm(clone_flags, p);
1673 	if (retval)
1674 		goto bad_fork_cleanup_signal;
1675 	retval = copy_namespaces(clone_flags, p);
1676 	if (retval)
1677 		goto bad_fork_cleanup_mm;
1678 	retval = copy_io(clone_flags, p);
1679 	if (retval)
1680 		goto bad_fork_cleanup_namespaces;
1681 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1682 	if (retval)
1683 		goto bad_fork_cleanup_io;
1684 
1685 	if (pid != &init_struct_pid) {
1686 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1687 		if (IS_ERR(pid)) {
1688 			retval = PTR_ERR(pid);
1689 			goto bad_fork_cleanup_thread;
1690 		}
1691 	}
1692 
1693 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1694 	/*
1695 	 * Clear TID on mm_release()?
1696 	 */
1697 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1698 #ifdef CONFIG_BLOCK
1699 	p->plug = NULL;
1700 #endif
1701 #ifdef CONFIG_FUTEX
1702 	p->robust_list = NULL;
1703 #ifdef CONFIG_COMPAT
1704 	p->compat_robust_list = NULL;
1705 #endif
1706 	INIT_LIST_HEAD(&p->pi_state_list);
1707 	p->pi_state_cache = NULL;
1708 #endif
1709 	/*
1710 	 * sigaltstack should be cleared when sharing the same VM
1711 	 */
1712 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1713 		sas_ss_reset(p);
1714 
1715 	/*
1716 	 * Syscall tracing and stepping should be turned off in the
1717 	 * child regardless of CLONE_PTRACE.
1718 	 */
1719 	user_disable_single_step(p);
1720 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1721 #ifdef TIF_SYSCALL_EMU
1722 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1723 #endif
1724 	clear_all_latency_tracing(p);
1725 
1726 	/* ok, now we should be set up.. */
1727 	p->pid = pid_nr(pid);
1728 	if (clone_flags & CLONE_THREAD) {
1729 		p->exit_signal = -1;
1730 		p->group_leader = current->group_leader;
1731 		p->tgid = current->tgid;
1732 	} else {
1733 		if (clone_flags & CLONE_PARENT)
1734 			p->exit_signal = current->group_leader->exit_signal;
1735 		else
1736 			p->exit_signal = (clone_flags & CSIGNAL);
1737 		p->group_leader = p;
1738 		p->tgid = p->pid;
1739 	}
1740 
1741 	p->nr_dirtied = 0;
1742 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1743 	p->dirty_paused_when = 0;
1744 
1745 	p->pdeath_signal = 0;
1746 	INIT_LIST_HEAD(&p->thread_group);
1747 	p->task_works = NULL;
1748 
1749 	threadgroup_change_begin(current);
1750 	/*
1751 	 * Ensure that the cgroup subsystem policies allow the new process to be
1752 	 * forked. It should be noted the the new process's css_set can be changed
1753 	 * between here and cgroup_post_fork() if an organisation operation is in
1754 	 * progress.
1755 	 */
1756 	retval = cgroup_can_fork(p);
1757 	if (retval)
1758 		goto bad_fork_free_pid;
1759 
1760 	/*
1761 	 * Make it visible to the rest of the system, but dont wake it up yet.
1762 	 * Need tasklist lock for parent etc handling!
1763 	 */
1764 	write_lock_irq(&tasklist_lock);
1765 
1766 	/* CLONE_PARENT re-uses the old parent */
1767 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1768 		p->real_parent = current->real_parent;
1769 		p->parent_exec_id = current->parent_exec_id;
1770 	} else {
1771 		p->real_parent = current;
1772 		p->parent_exec_id = current->self_exec_id;
1773 	}
1774 
1775 	spin_lock(&current->sighand->siglock);
1776 
1777 	/*
1778 	 * Copy seccomp details explicitly here, in case they were changed
1779 	 * before holding sighand lock.
1780 	 */
1781 	copy_seccomp(p);
1782 
1783 	/*
1784 	 * Process group and session signals need to be delivered to just the
1785 	 * parent before the fork or both the parent and the child after the
1786 	 * fork. Restart if a signal comes in before we add the new process to
1787 	 * it's process group.
1788 	 * A fatal signal pending means that current will exit, so the new
1789 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1790 	*/
1791 	recalc_sigpending();
1792 	if (signal_pending(current)) {
1793 		spin_unlock(&current->sighand->siglock);
1794 		write_unlock_irq(&tasklist_lock);
1795 		retval = -ERESTARTNOINTR;
1796 		goto bad_fork_cancel_cgroup;
1797 	}
1798 
1799 	if (likely(p->pid)) {
1800 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1801 
1802 		init_task_pid(p, PIDTYPE_PID, pid);
1803 		if (thread_group_leader(p)) {
1804 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1805 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1806 
1807 			if (is_child_reaper(pid)) {
1808 				ns_of_pid(pid)->child_reaper = p;
1809 				p->signal->flags |= SIGNAL_UNKILLABLE;
1810 			}
1811 
1812 			p->signal->leader_pid = pid;
1813 			p->signal->tty = tty_kref_get(current->signal->tty);
1814 			/*
1815 			 * Inherit has_child_subreaper flag under the same
1816 			 * tasklist_lock with adding child to the process tree
1817 			 * for propagate_has_child_subreaper optimization.
1818 			 */
1819 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1820 							 p->real_parent->signal->is_child_subreaper;
1821 			list_add_tail(&p->sibling, &p->real_parent->children);
1822 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1823 			attach_pid(p, PIDTYPE_PGID);
1824 			attach_pid(p, PIDTYPE_SID);
1825 			__this_cpu_inc(process_counts);
1826 		} else {
1827 			current->signal->nr_threads++;
1828 			atomic_inc(&current->signal->live);
1829 			atomic_inc(&current->signal->sigcnt);
1830 			list_add_tail_rcu(&p->thread_group,
1831 					  &p->group_leader->thread_group);
1832 			list_add_tail_rcu(&p->thread_node,
1833 					  &p->signal->thread_head);
1834 		}
1835 		attach_pid(p, PIDTYPE_PID);
1836 		nr_threads++;
1837 	}
1838 
1839 	total_forks++;
1840 	spin_unlock(&current->sighand->siglock);
1841 	syscall_tracepoint_update(p);
1842 	write_unlock_irq(&tasklist_lock);
1843 
1844 	proc_fork_connector(p);
1845 	cgroup_post_fork(p);
1846 	threadgroup_change_end(current);
1847 	perf_event_fork(p);
1848 
1849 	trace_task_newtask(p, clone_flags);
1850 	uprobe_copy_process(p, clone_flags);
1851 
1852 	return p;
1853 
1854 bad_fork_cancel_cgroup:
1855 	cgroup_cancel_fork(p);
1856 bad_fork_free_pid:
1857 	threadgroup_change_end(current);
1858 	if (pid != &init_struct_pid)
1859 		free_pid(pid);
1860 bad_fork_cleanup_thread:
1861 	exit_thread(p);
1862 bad_fork_cleanup_io:
1863 	if (p->io_context)
1864 		exit_io_context(p);
1865 bad_fork_cleanup_namespaces:
1866 	exit_task_namespaces(p);
1867 bad_fork_cleanup_mm:
1868 	if (p->mm)
1869 		mmput(p->mm);
1870 bad_fork_cleanup_signal:
1871 	if (!(clone_flags & CLONE_THREAD))
1872 		free_signal_struct(p->signal);
1873 bad_fork_cleanup_sighand:
1874 	__cleanup_sighand(p->sighand);
1875 bad_fork_cleanup_fs:
1876 	exit_fs(p); /* blocking */
1877 bad_fork_cleanup_files:
1878 	exit_files(p); /* blocking */
1879 bad_fork_cleanup_semundo:
1880 	exit_sem(p);
1881 bad_fork_cleanup_audit:
1882 	audit_free(p);
1883 bad_fork_cleanup_perf:
1884 	perf_event_free_task(p);
1885 bad_fork_cleanup_policy:
1886 #ifdef CONFIG_NUMA
1887 	mpol_put(p->mempolicy);
1888 bad_fork_cleanup_threadgroup_lock:
1889 #endif
1890 	delayacct_tsk_free(p);
1891 bad_fork_cleanup_count:
1892 	atomic_dec(&p->cred->user->processes);
1893 	exit_creds(p);
1894 bad_fork_free:
1895 	p->state = TASK_DEAD;
1896 	put_task_stack(p);
1897 	free_task(p);
1898 fork_out:
1899 	return ERR_PTR(retval);
1900 }
1901 
1902 static inline void init_idle_pids(struct pid_link *links)
1903 {
1904 	enum pid_type type;
1905 
1906 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1907 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1908 		links[type].pid = &init_struct_pid;
1909 	}
1910 }
1911 
1912 struct task_struct *fork_idle(int cpu)
1913 {
1914 	struct task_struct *task;
1915 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1916 			    cpu_to_node(cpu));
1917 	if (!IS_ERR(task)) {
1918 		init_idle_pids(task->pids);
1919 		init_idle(task, cpu);
1920 	}
1921 
1922 	return task;
1923 }
1924 
1925 /*
1926  *  Ok, this is the main fork-routine.
1927  *
1928  * It copies the process, and if successful kick-starts
1929  * it and waits for it to finish using the VM if required.
1930  */
1931 long _do_fork(unsigned long clone_flags,
1932 	      unsigned long stack_start,
1933 	      unsigned long stack_size,
1934 	      int __user *parent_tidptr,
1935 	      int __user *child_tidptr,
1936 	      unsigned long tls)
1937 {
1938 	struct task_struct *p;
1939 	int trace = 0;
1940 	long nr;
1941 
1942 	/*
1943 	 * Determine whether and which event to report to ptracer.  When
1944 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1945 	 * requested, no event is reported; otherwise, report if the event
1946 	 * for the type of forking is enabled.
1947 	 */
1948 	if (!(clone_flags & CLONE_UNTRACED)) {
1949 		if (clone_flags & CLONE_VFORK)
1950 			trace = PTRACE_EVENT_VFORK;
1951 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1952 			trace = PTRACE_EVENT_CLONE;
1953 		else
1954 			trace = PTRACE_EVENT_FORK;
1955 
1956 		if (likely(!ptrace_event_enabled(current, trace)))
1957 			trace = 0;
1958 	}
1959 
1960 	p = copy_process(clone_flags, stack_start, stack_size,
1961 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1962 	add_latent_entropy();
1963 	/*
1964 	 * Do this prior waking up the new thread - the thread pointer
1965 	 * might get invalid after that point, if the thread exits quickly.
1966 	 */
1967 	if (!IS_ERR(p)) {
1968 		struct completion vfork;
1969 		struct pid *pid;
1970 
1971 		trace_sched_process_fork(current, p);
1972 
1973 		pid = get_task_pid(p, PIDTYPE_PID);
1974 		nr = pid_vnr(pid);
1975 
1976 		if (clone_flags & CLONE_PARENT_SETTID)
1977 			put_user(nr, parent_tidptr);
1978 
1979 		if (clone_flags & CLONE_VFORK) {
1980 			p->vfork_done = &vfork;
1981 			init_completion(&vfork);
1982 			get_task_struct(p);
1983 		}
1984 
1985 		wake_up_new_task(p);
1986 
1987 		/* forking complete and child started to run, tell ptracer */
1988 		if (unlikely(trace))
1989 			ptrace_event_pid(trace, pid);
1990 
1991 		if (clone_flags & CLONE_VFORK) {
1992 			if (!wait_for_vfork_done(p, &vfork))
1993 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1994 		}
1995 
1996 		put_pid(pid);
1997 	} else {
1998 		nr = PTR_ERR(p);
1999 	}
2000 	return nr;
2001 }
2002 
2003 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2004 /* For compatibility with architectures that call do_fork directly rather than
2005  * using the syscall entry points below. */
2006 long do_fork(unsigned long clone_flags,
2007 	      unsigned long stack_start,
2008 	      unsigned long stack_size,
2009 	      int __user *parent_tidptr,
2010 	      int __user *child_tidptr)
2011 {
2012 	return _do_fork(clone_flags, stack_start, stack_size,
2013 			parent_tidptr, child_tidptr, 0);
2014 }
2015 #endif
2016 
2017 /*
2018  * Create a kernel thread.
2019  */
2020 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2021 {
2022 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2023 		(unsigned long)arg, NULL, NULL, 0);
2024 }
2025 
2026 #ifdef __ARCH_WANT_SYS_FORK
2027 SYSCALL_DEFINE0(fork)
2028 {
2029 #ifdef CONFIG_MMU
2030 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2031 #else
2032 	/* can not support in nommu mode */
2033 	return -EINVAL;
2034 #endif
2035 }
2036 #endif
2037 
2038 #ifdef __ARCH_WANT_SYS_VFORK
2039 SYSCALL_DEFINE0(vfork)
2040 {
2041 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2042 			0, NULL, NULL, 0);
2043 }
2044 #endif
2045 
2046 #ifdef __ARCH_WANT_SYS_CLONE
2047 #ifdef CONFIG_CLONE_BACKWARDS
2048 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2049 		 int __user *, parent_tidptr,
2050 		 unsigned long, tls,
2051 		 int __user *, child_tidptr)
2052 #elif defined(CONFIG_CLONE_BACKWARDS2)
2053 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2054 		 int __user *, parent_tidptr,
2055 		 int __user *, child_tidptr,
2056 		 unsigned long, tls)
2057 #elif defined(CONFIG_CLONE_BACKWARDS3)
2058 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2059 		int, stack_size,
2060 		int __user *, parent_tidptr,
2061 		int __user *, child_tidptr,
2062 		unsigned long, tls)
2063 #else
2064 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2065 		 int __user *, parent_tidptr,
2066 		 int __user *, child_tidptr,
2067 		 unsigned long, tls)
2068 #endif
2069 {
2070 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2071 }
2072 #endif
2073 
2074 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2075 {
2076 	struct task_struct *leader, *parent, *child;
2077 	int res;
2078 
2079 	read_lock(&tasklist_lock);
2080 	leader = top = top->group_leader;
2081 down:
2082 	for_each_thread(leader, parent) {
2083 		list_for_each_entry(child, &parent->children, sibling) {
2084 			res = visitor(child, data);
2085 			if (res) {
2086 				if (res < 0)
2087 					goto out;
2088 				leader = child;
2089 				goto down;
2090 			}
2091 up:
2092 			;
2093 		}
2094 	}
2095 
2096 	if (leader != top) {
2097 		child = leader;
2098 		parent = child->real_parent;
2099 		leader = parent->group_leader;
2100 		goto up;
2101 	}
2102 out:
2103 	read_unlock(&tasklist_lock);
2104 }
2105 
2106 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2107 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2108 #endif
2109 
2110 static void sighand_ctor(void *data)
2111 {
2112 	struct sighand_struct *sighand = data;
2113 
2114 	spin_lock_init(&sighand->siglock);
2115 	init_waitqueue_head(&sighand->signalfd_wqh);
2116 }
2117 
2118 void __init proc_caches_init(void)
2119 {
2120 	sighand_cachep = kmem_cache_create("sighand_cache",
2121 			sizeof(struct sighand_struct), 0,
2122 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2123 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2124 	signal_cachep = kmem_cache_create("signal_cache",
2125 			sizeof(struct signal_struct), 0,
2126 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2127 			NULL);
2128 	files_cachep = kmem_cache_create("files_cache",
2129 			sizeof(struct files_struct), 0,
2130 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2131 			NULL);
2132 	fs_cachep = kmem_cache_create("fs_cache",
2133 			sizeof(struct fs_struct), 0,
2134 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2135 			NULL);
2136 	/*
2137 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2138 	 * whole struct cpumask for the OFFSTACK case. We could change
2139 	 * this to *only* allocate as much of it as required by the
2140 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2141 	 * is at the end of the structure, exactly for that reason.
2142 	 */
2143 	mm_cachep = kmem_cache_create("mm_struct",
2144 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2145 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2146 			NULL);
2147 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2148 	mmap_init();
2149 	nsproxy_cache_init();
2150 }
2151 
2152 /*
2153  * Check constraints on flags passed to the unshare system call.
2154  */
2155 static int check_unshare_flags(unsigned long unshare_flags)
2156 {
2157 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2158 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2159 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2160 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2161 		return -EINVAL;
2162 	/*
2163 	 * Not implemented, but pretend it works if there is nothing
2164 	 * to unshare.  Note that unsharing the address space or the
2165 	 * signal handlers also need to unshare the signal queues (aka
2166 	 * CLONE_THREAD).
2167 	 */
2168 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2169 		if (!thread_group_empty(current))
2170 			return -EINVAL;
2171 	}
2172 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2173 		if (atomic_read(&current->sighand->count) > 1)
2174 			return -EINVAL;
2175 	}
2176 	if (unshare_flags & CLONE_VM) {
2177 		if (!current_is_single_threaded())
2178 			return -EINVAL;
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 /*
2185  * Unshare the filesystem structure if it is being shared
2186  */
2187 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2188 {
2189 	struct fs_struct *fs = current->fs;
2190 
2191 	if (!(unshare_flags & CLONE_FS) || !fs)
2192 		return 0;
2193 
2194 	/* don't need lock here; in the worst case we'll do useless copy */
2195 	if (fs->users == 1)
2196 		return 0;
2197 
2198 	*new_fsp = copy_fs_struct(fs);
2199 	if (!*new_fsp)
2200 		return -ENOMEM;
2201 
2202 	return 0;
2203 }
2204 
2205 /*
2206  * Unshare file descriptor table if it is being shared
2207  */
2208 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2209 {
2210 	struct files_struct *fd = current->files;
2211 	int error = 0;
2212 
2213 	if ((unshare_flags & CLONE_FILES) &&
2214 	    (fd && atomic_read(&fd->count) > 1)) {
2215 		*new_fdp = dup_fd(fd, &error);
2216 		if (!*new_fdp)
2217 			return error;
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 /*
2224  * unshare allows a process to 'unshare' part of the process
2225  * context which was originally shared using clone.  copy_*
2226  * functions used by do_fork() cannot be used here directly
2227  * because they modify an inactive task_struct that is being
2228  * constructed. Here we are modifying the current, active,
2229  * task_struct.
2230  */
2231 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2232 {
2233 	struct fs_struct *fs, *new_fs = NULL;
2234 	struct files_struct *fd, *new_fd = NULL;
2235 	struct cred *new_cred = NULL;
2236 	struct nsproxy *new_nsproxy = NULL;
2237 	int do_sysvsem = 0;
2238 	int err;
2239 
2240 	/*
2241 	 * If unsharing a user namespace must also unshare the thread group
2242 	 * and unshare the filesystem root and working directories.
2243 	 */
2244 	if (unshare_flags & CLONE_NEWUSER)
2245 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2246 	/*
2247 	 * If unsharing vm, must also unshare signal handlers.
2248 	 */
2249 	if (unshare_flags & CLONE_VM)
2250 		unshare_flags |= CLONE_SIGHAND;
2251 	/*
2252 	 * If unsharing a signal handlers, must also unshare the signal queues.
2253 	 */
2254 	if (unshare_flags & CLONE_SIGHAND)
2255 		unshare_flags |= CLONE_THREAD;
2256 	/*
2257 	 * If unsharing namespace, must also unshare filesystem information.
2258 	 */
2259 	if (unshare_flags & CLONE_NEWNS)
2260 		unshare_flags |= CLONE_FS;
2261 
2262 	err = check_unshare_flags(unshare_flags);
2263 	if (err)
2264 		goto bad_unshare_out;
2265 	/*
2266 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2267 	 * to a new ipc namespace, the semaphore arrays from the old
2268 	 * namespace are unreachable.
2269 	 */
2270 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2271 		do_sysvsem = 1;
2272 	err = unshare_fs(unshare_flags, &new_fs);
2273 	if (err)
2274 		goto bad_unshare_out;
2275 	err = unshare_fd(unshare_flags, &new_fd);
2276 	if (err)
2277 		goto bad_unshare_cleanup_fs;
2278 	err = unshare_userns(unshare_flags, &new_cred);
2279 	if (err)
2280 		goto bad_unshare_cleanup_fd;
2281 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2282 					 new_cred, new_fs);
2283 	if (err)
2284 		goto bad_unshare_cleanup_cred;
2285 
2286 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2287 		if (do_sysvsem) {
2288 			/*
2289 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2290 			 */
2291 			exit_sem(current);
2292 		}
2293 		if (unshare_flags & CLONE_NEWIPC) {
2294 			/* Orphan segments in old ns (see sem above). */
2295 			exit_shm(current);
2296 			shm_init_task(current);
2297 		}
2298 
2299 		if (new_nsproxy)
2300 			switch_task_namespaces(current, new_nsproxy);
2301 
2302 		task_lock(current);
2303 
2304 		if (new_fs) {
2305 			fs = current->fs;
2306 			spin_lock(&fs->lock);
2307 			current->fs = new_fs;
2308 			if (--fs->users)
2309 				new_fs = NULL;
2310 			else
2311 				new_fs = fs;
2312 			spin_unlock(&fs->lock);
2313 		}
2314 
2315 		if (new_fd) {
2316 			fd = current->files;
2317 			current->files = new_fd;
2318 			new_fd = fd;
2319 		}
2320 
2321 		task_unlock(current);
2322 
2323 		if (new_cred) {
2324 			/* Install the new user namespace */
2325 			commit_creds(new_cred);
2326 			new_cred = NULL;
2327 		}
2328 	}
2329 
2330 bad_unshare_cleanup_cred:
2331 	if (new_cred)
2332 		put_cred(new_cred);
2333 bad_unshare_cleanup_fd:
2334 	if (new_fd)
2335 		put_files_struct(new_fd);
2336 
2337 bad_unshare_cleanup_fs:
2338 	if (new_fs)
2339 		free_fs_struct(new_fs);
2340 
2341 bad_unshare_out:
2342 	return err;
2343 }
2344 
2345 /*
2346  *	Helper to unshare the files of the current task.
2347  *	We don't want to expose copy_files internals to
2348  *	the exec layer of the kernel.
2349  */
2350 
2351 int unshare_files(struct files_struct **displaced)
2352 {
2353 	struct task_struct *task = current;
2354 	struct files_struct *copy = NULL;
2355 	int error;
2356 
2357 	error = unshare_fd(CLONE_FILES, &copy);
2358 	if (error || !copy) {
2359 		*displaced = NULL;
2360 		return error;
2361 	}
2362 	*displaced = task->files;
2363 	task_lock(task);
2364 	task->files = copy;
2365 	task_unlock(task);
2366 	return 0;
2367 }
2368 
2369 int sysctl_max_threads(struct ctl_table *table, int write,
2370 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2371 {
2372 	struct ctl_table t;
2373 	int ret;
2374 	int threads = max_threads;
2375 	int min = MIN_THREADS;
2376 	int max = MAX_THREADS;
2377 
2378 	t = *table;
2379 	t.data = &threads;
2380 	t.extra1 = &min;
2381 	t.extra2 = &max;
2382 
2383 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2384 	if (ret || !write)
2385 		return ret;
2386 
2387 	set_max_threads(threads);
2388 
2389 	return 0;
2390 }
2391