1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/seccomp.h> 38 #include <linux/swap.h> 39 #include <linux/syscalls.h> 40 #include <linux/jiffies.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/kthread.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/rmap.h> 54 #include <linux/ksm.h> 55 #include <linux/acct.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/freezer.h> 59 #include <linux/delayacct.h> 60 #include <linux/taskstats_kern.h> 61 #include <linux/random.h> 62 #include <linux/tty.h> 63 #include <linux/blkdev.h> 64 #include <linux/fs_struct.h> 65 #include <linux/magic.h> 66 #include <linux/perf_event.h> 67 #include <linux/posix-timers.h> 68 #include <linux/user-return-notifier.h> 69 #include <linux/oom.h> 70 #include <linux/khugepaged.h> 71 #include <linux/signalfd.h> 72 #include <linux/uprobes.h> 73 #include <linux/aio.h> 74 75 #include <asm/pgtable.h> 76 #include <asm/pgalloc.h> 77 #include <asm/uaccess.h> 78 #include <asm/mmu_context.h> 79 #include <asm/cacheflush.h> 80 #include <asm/tlbflush.h> 81 82 #include <trace/events/sched.h> 83 84 #define CREATE_TRACE_POINTS 85 #include <trace/events/task.h> 86 87 /* 88 * Protected counters by write_lock_irq(&tasklist_lock) 89 */ 90 unsigned long total_forks; /* Handle normal Linux uptimes. */ 91 int nr_threads; /* The idle threads do not count.. */ 92 93 int max_threads; /* tunable limit on nr_threads */ 94 95 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 96 97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 98 99 #ifdef CONFIG_PROVE_RCU 100 int lockdep_tasklist_lock_is_held(void) 101 { 102 return lockdep_is_held(&tasklist_lock); 103 } 104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 105 #endif /* #ifdef CONFIG_PROVE_RCU */ 106 107 int nr_processes(void) 108 { 109 int cpu; 110 int total = 0; 111 112 for_each_possible_cpu(cpu) 113 total += per_cpu(process_counts, cpu); 114 115 return total; 116 } 117 118 void __weak arch_release_task_struct(struct task_struct *tsk) 119 { 120 } 121 122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 123 static struct kmem_cache *task_struct_cachep; 124 125 static inline struct task_struct *alloc_task_struct_node(int node) 126 { 127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 128 } 129 130 static inline void free_task_struct(struct task_struct *tsk) 131 { 132 kmem_cache_free(task_struct_cachep, tsk); 133 } 134 #endif 135 136 void __weak arch_release_thread_info(struct thread_info *ti) 137 { 138 } 139 140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 141 142 /* 143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 144 * kmemcache based allocator. 145 */ 146 # if THREAD_SIZE >= PAGE_SIZE 147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 148 int node) 149 { 150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED, 151 THREAD_SIZE_ORDER); 152 153 return page ? page_address(page) : NULL; 154 } 155 156 static inline void free_thread_info(struct thread_info *ti) 157 { 158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER); 159 } 160 # else 161 static struct kmem_cache *thread_info_cache; 162 163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 164 int node) 165 { 166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 167 } 168 169 static void free_thread_info(struct thread_info *ti) 170 { 171 kmem_cache_free(thread_info_cache, ti); 172 } 173 174 void thread_info_cache_init(void) 175 { 176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 177 THREAD_SIZE, 0, NULL); 178 BUG_ON(thread_info_cache == NULL); 179 } 180 # endif 181 #endif 182 183 /* SLAB cache for signal_struct structures (tsk->signal) */ 184 static struct kmem_cache *signal_cachep; 185 186 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 187 struct kmem_cache *sighand_cachep; 188 189 /* SLAB cache for files_struct structures (tsk->files) */ 190 struct kmem_cache *files_cachep; 191 192 /* SLAB cache for fs_struct structures (tsk->fs) */ 193 struct kmem_cache *fs_cachep; 194 195 /* SLAB cache for vm_area_struct structures */ 196 struct kmem_cache *vm_area_cachep; 197 198 /* SLAB cache for mm_struct structures (tsk->mm) */ 199 static struct kmem_cache *mm_cachep; 200 201 static void account_kernel_stack(struct thread_info *ti, int account) 202 { 203 struct zone *zone = page_zone(virt_to_page(ti)); 204 205 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 206 } 207 208 void free_task(struct task_struct *tsk) 209 { 210 account_kernel_stack(tsk->stack, -1); 211 arch_release_thread_info(tsk->stack); 212 free_thread_info(tsk->stack); 213 rt_mutex_debug_task_free(tsk); 214 ftrace_graph_exit_task(tsk); 215 put_seccomp_filter(tsk); 216 arch_release_task_struct(tsk); 217 free_task_struct(tsk); 218 } 219 EXPORT_SYMBOL(free_task); 220 221 static inline void free_signal_struct(struct signal_struct *sig) 222 { 223 taskstats_tgid_free(sig); 224 sched_autogroup_exit(sig); 225 kmem_cache_free(signal_cachep, sig); 226 } 227 228 static inline void put_signal_struct(struct signal_struct *sig) 229 { 230 if (atomic_dec_and_test(&sig->sigcnt)) 231 free_signal_struct(sig); 232 } 233 234 void __put_task_struct(struct task_struct *tsk) 235 { 236 WARN_ON(!tsk->exit_state); 237 WARN_ON(atomic_read(&tsk->usage)); 238 WARN_ON(tsk == current); 239 240 security_task_free(tsk); 241 exit_creds(tsk); 242 delayacct_tsk_free(tsk); 243 put_signal_struct(tsk->signal); 244 245 if (!profile_handoff_task(tsk)) 246 free_task(tsk); 247 } 248 EXPORT_SYMBOL_GPL(__put_task_struct); 249 250 void __init __weak arch_task_cache_init(void) { } 251 252 void __init fork_init(unsigned long mempages) 253 { 254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 255 #ifndef ARCH_MIN_TASKALIGN 256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 257 #endif 258 /* create a slab on which task_structs can be allocated */ 259 task_struct_cachep = 260 kmem_cache_create("task_struct", sizeof(struct task_struct), 261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 262 #endif 263 264 /* do the arch specific task caches init */ 265 arch_task_cache_init(); 266 267 /* 268 * The default maximum number of threads is set to a safe 269 * value: the thread structures can take up at most half 270 * of memory. 271 */ 272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 273 274 /* 275 * we need to allow at least 20 threads to boot a system 276 */ 277 if (max_threads < 20) 278 max_threads = 20; 279 280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 282 init_task.signal->rlim[RLIMIT_SIGPENDING] = 283 init_task.signal->rlim[RLIMIT_NPROC]; 284 } 285 286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 287 struct task_struct *src) 288 { 289 *dst = *src; 290 return 0; 291 } 292 293 static struct task_struct *dup_task_struct(struct task_struct *orig) 294 { 295 struct task_struct *tsk; 296 struct thread_info *ti; 297 unsigned long *stackend; 298 int node = tsk_fork_get_node(orig); 299 int err; 300 301 tsk = alloc_task_struct_node(node); 302 if (!tsk) 303 return NULL; 304 305 ti = alloc_thread_info_node(tsk, node); 306 if (!ti) 307 goto free_tsk; 308 309 err = arch_dup_task_struct(tsk, orig); 310 if (err) 311 goto free_ti; 312 313 tsk->stack = ti; 314 315 setup_thread_stack(tsk, orig); 316 clear_user_return_notifier(tsk); 317 clear_tsk_need_resched(tsk); 318 stackend = end_of_stack(tsk); 319 *stackend = STACK_END_MAGIC; /* for overflow detection */ 320 321 #ifdef CONFIG_CC_STACKPROTECTOR 322 tsk->stack_canary = get_random_int(); 323 #endif 324 325 /* 326 * One for us, one for whoever does the "release_task()" (usually 327 * parent) 328 */ 329 atomic_set(&tsk->usage, 2); 330 #ifdef CONFIG_BLK_DEV_IO_TRACE 331 tsk->btrace_seq = 0; 332 #endif 333 tsk->splice_pipe = NULL; 334 tsk->task_frag.page = NULL; 335 336 account_kernel_stack(ti, 1); 337 338 return tsk; 339 340 free_ti: 341 free_thread_info(ti); 342 free_tsk: 343 free_task_struct(tsk); 344 return NULL; 345 } 346 347 #ifdef CONFIG_MMU 348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 349 { 350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 351 struct rb_node **rb_link, *rb_parent; 352 int retval; 353 unsigned long charge; 354 struct mempolicy *pol; 355 356 uprobe_start_dup_mmap(); 357 down_write(&oldmm->mmap_sem); 358 flush_cache_dup_mm(oldmm); 359 uprobe_dup_mmap(oldmm, mm); 360 /* 361 * Not linked in yet - no deadlock potential: 362 */ 363 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 364 365 mm->locked_vm = 0; 366 mm->mmap = NULL; 367 mm->mmap_cache = NULL; 368 mm->free_area_cache = oldmm->mmap_base; 369 mm->cached_hole_size = ~0UL; 370 mm->map_count = 0; 371 cpumask_clear(mm_cpumask(mm)); 372 mm->mm_rb = RB_ROOT; 373 rb_link = &mm->mm_rb.rb_node; 374 rb_parent = NULL; 375 pprev = &mm->mmap; 376 retval = ksm_fork(mm, oldmm); 377 if (retval) 378 goto out; 379 retval = khugepaged_fork(mm, oldmm); 380 if (retval) 381 goto out; 382 383 prev = NULL; 384 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 385 struct file *file; 386 387 if (mpnt->vm_flags & VM_DONTCOPY) { 388 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 389 -vma_pages(mpnt)); 390 continue; 391 } 392 charge = 0; 393 if (mpnt->vm_flags & VM_ACCOUNT) { 394 unsigned long len = vma_pages(mpnt); 395 396 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 397 goto fail_nomem; 398 charge = len; 399 } 400 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 401 if (!tmp) 402 goto fail_nomem; 403 *tmp = *mpnt; 404 INIT_LIST_HEAD(&tmp->anon_vma_chain); 405 pol = mpol_dup(vma_policy(mpnt)); 406 retval = PTR_ERR(pol); 407 if (IS_ERR(pol)) 408 goto fail_nomem_policy; 409 vma_set_policy(tmp, pol); 410 tmp->vm_mm = mm; 411 if (anon_vma_fork(tmp, mpnt)) 412 goto fail_nomem_anon_vma_fork; 413 tmp->vm_flags &= ~VM_LOCKED; 414 tmp->vm_next = tmp->vm_prev = NULL; 415 file = tmp->vm_file; 416 if (file) { 417 struct inode *inode = file_inode(file); 418 struct address_space *mapping = file->f_mapping; 419 420 get_file(file); 421 if (tmp->vm_flags & VM_DENYWRITE) 422 atomic_dec(&inode->i_writecount); 423 mutex_lock(&mapping->i_mmap_mutex); 424 if (tmp->vm_flags & VM_SHARED) 425 mapping->i_mmap_writable++; 426 flush_dcache_mmap_lock(mapping); 427 /* insert tmp into the share list, just after mpnt */ 428 if (unlikely(tmp->vm_flags & VM_NONLINEAR)) 429 vma_nonlinear_insert(tmp, 430 &mapping->i_mmap_nonlinear); 431 else 432 vma_interval_tree_insert_after(tmp, mpnt, 433 &mapping->i_mmap); 434 flush_dcache_mmap_unlock(mapping); 435 mutex_unlock(&mapping->i_mmap_mutex); 436 } 437 438 /* 439 * Clear hugetlb-related page reserves for children. This only 440 * affects MAP_PRIVATE mappings. Faults generated by the child 441 * are not guaranteed to succeed, even if read-only 442 */ 443 if (is_vm_hugetlb_page(tmp)) 444 reset_vma_resv_huge_pages(tmp); 445 446 /* 447 * Link in the new vma and copy the page table entries. 448 */ 449 *pprev = tmp; 450 pprev = &tmp->vm_next; 451 tmp->vm_prev = prev; 452 prev = tmp; 453 454 __vma_link_rb(mm, tmp, rb_link, rb_parent); 455 rb_link = &tmp->vm_rb.rb_right; 456 rb_parent = &tmp->vm_rb; 457 458 mm->map_count++; 459 retval = copy_page_range(mm, oldmm, mpnt); 460 461 if (tmp->vm_ops && tmp->vm_ops->open) 462 tmp->vm_ops->open(tmp); 463 464 if (retval) 465 goto out; 466 } 467 /* a new mm has just been created */ 468 arch_dup_mmap(oldmm, mm); 469 retval = 0; 470 out: 471 up_write(&mm->mmap_sem); 472 flush_tlb_mm(oldmm); 473 up_write(&oldmm->mmap_sem); 474 uprobe_end_dup_mmap(); 475 return retval; 476 fail_nomem_anon_vma_fork: 477 mpol_put(pol); 478 fail_nomem_policy: 479 kmem_cache_free(vm_area_cachep, tmp); 480 fail_nomem: 481 retval = -ENOMEM; 482 vm_unacct_memory(charge); 483 goto out; 484 } 485 486 static inline int mm_alloc_pgd(struct mm_struct *mm) 487 { 488 mm->pgd = pgd_alloc(mm); 489 if (unlikely(!mm->pgd)) 490 return -ENOMEM; 491 return 0; 492 } 493 494 static inline void mm_free_pgd(struct mm_struct *mm) 495 { 496 pgd_free(mm, mm->pgd); 497 } 498 #else 499 #define dup_mmap(mm, oldmm) (0) 500 #define mm_alloc_pgd(mm) (0) 501 #define mm_free_pgd(mm) 502 #endif /* CONFIG_MMU */ 503 504 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 505 506 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 507 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 508 509 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 510 511 static int __init coredump_filter_setup(char *s) 512 { 513 default_dump_filter = 514 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 515 MMF_DUMP_FILTER_MASK; 516 return 1; 517 } 518 519 __setup("coredump_filter=", coredump_filter_setup); 520 521 #include <linux/init_task.h> 522 523 static void mm_init_aio(struct mm_struct *mm) 524 { 525 #ifdef CONFIG_AIO 526 spin_lock_init(&mm->ioctx_lock); 527 INIT_HLIST_HEAD(&mm->ioctx_list); 528 #endif 529 } 530 531 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 532 { 533 atomic_set(&mm->mm_users, 1); 534 atomic_set(&mm->mm_count, 1); 535 init_rwsem(&mm->mmap_sem); 536 INIT_LIST_HEAD(&mm->mmlist); 537 mm->flags = (current->mm) ? 538 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 539 mm->core_state = NULL; 540 mm->nr_ptes = 0; 541 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 542 spin_lock_init(&mm->page_table_lock); 543 mm->free_area_cache = TASK_UNMAPPED_BASE; 544 mm->cached_hole_size = ~0UL; 545 mm_init_aio(mm); 546 mm_init_owner(mm, p); 547 548 if (likely(!mm_alloc_pgd(mm))) { 549 mm->def_flags = 0; 550 mmu_notifier_mm_init(mm); 551 return mm; 552 } 553 554 free_mm(mm); 555 return NULL; 556 } 557 558 static void check_mm(struct mm_struct *mm) 559 { 560 int i; 561 562 for (i = 0; i < NR_MM_COUNTERS; i++) { 563 long x = atomic_long_read(&mm->rss_stat.count[i]); 564 565 if (unlikely(x)) 566 printk(KERN_ALERT "BUG: Bad rss-counter state " 567 "mm:%p idx:%d val:%ld\n", mm, i, x); 568 } 569 570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 571 VM_BUG_ON(mm->pmd_huge_pte); 572 #endif 573 } 574 575 /* 576 * Allocate and initialize an mm_struct. 577 */ 578 struct mm_struct *mm_alloc(void) 579 { 580 struct mm_struct *mm; 581 582 mm = allocate_mm(); 583 if (!mm) 584 return NULL; 585 586 memset(mm, 0, sizeof(*mm)); 587 mm_init_cpumask(mm); 588 return mm_init(mm, current); 589 } 590 591 /* 592 * Called when the last reference to the mm 593 * is dropped: either by a lazy thread or by 594 * mmput. Free the page directory and the mm. 595 */ 596 void __mmdrop(struct mm_struct *mm) 597 { 598 BUG_ON(mm == &init_mm); 599 mm_free_pgd(mm); 600 destroy_context(mm); 601 mmu_notifier_mm_destroy(mm); 602 check_mm(mm); 603 free_mm(mm); 604 } 605 EXPORT_SYMBOL_GPL(__mmdrop); 606 607 /* 608 * Decrement the use count and release all resources for an mm. 609 */ 610 void mmput(struct mm_struct *mm) 611 { 612 might_sleep(); 613 614 if (atomic_dec_and_test(&mm->mm_users)) { 615 uprobe_clear_state(mm); 616 exit_aio(mm); 617 ksm_exit(mm); 618 khugepaged_exit(mm); /* must run before exit_mmap */ 619 exit_mmap(mm); 620 set_mm_exe_file(mm, NULL); 621 if (!list_empty(&mm->mmlist)) { 622 spin_lock(&mmlist_lock); 623 list_del(&mm->mmlist); 624 spin_unlock(&mmlist_lock); 625 } 626 if (mm->binfmt) 627 module_put(mm->binfmt->module); 628 mmdrop(mm); 629 } 630 } 631 EXPORT_SYMBOL_GPL(mmput); 632 633 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 634 { 635 if (new_exe_file) 636 get_file(new_exe_file); 637 if (mm->exe_file) 638 fput(mm->exe_file); 639 mm->exe_file = new_exe_file; 640 } 641 642 struct file *get_mm_exe_file(struct mm_struct *mm) 643 { 644 struct file *exe_file; 645 646 /* We need mmap_sem to protect against races with removal of exe_file */ 647 down_read(&mm->mmap_sem); 648 exe_file = mm->exe_file; 649 if (exe_file) 650 get_file(exe_file); 651 up_read(&mm->mmap_sem); 652 return exe_file; 653 } 654 655 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 656 { 657 /* It's safe to write the exe_file pointer without exe_file_lock because 658 * this is called during fork when the task is not yet in /proc */ 659 newmm->exe_file = get_mm_exe_file(oldmm); 660 } 661 662 /** 663 * get_task_mm - acquire a reference to the task's mm 664 * 665 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 666 * this kernel workthread has transiently adopted a user mm with use_mm, 667 * to do its AIO) is not set and if so returns a reference to it, after 668 * bumping up the use count. User must release the mm via mmput() 669 * after use. Typically used by /proc and ptrace. 670 */ 671 struct mm_struct *get_task_mm(struct task_struct *task) 672 { 673 struct mm_struct *mm; 674 675 task_lock(task); 676 mm = task->mm; 677 if (mm) { 678 if (task->flags & PF_KTHREAD) 679 mm = NULL; 680 else 681 atomic_inc(&mm->mm_users); 682 } 683 task_unlock(task); 684 return mm; 685 } 686 EXPORT_SYMBOL_GPL(get_task_mm); 687 688 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 689 { 690 struct mm_struct *mm; 691 int err; 692 693 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 694 if (err) 695 return ERR_PTR(err); 696 697 mm = get_task_mm(task); 698 if (mm && mm != current->mm && 699 !ptrace_may_access(task, mode)) { 700 mmput(mm); 701 mm = ERR_PTR(-EACCES); 702 } 703 mutex_unlock(&task->signal->cred_guard_mutex); 704 705 return mm; 706 } 707 708 static void complete_vfork_done(struct task_struct *tsk) 709 { 710 struct completion *vfork; 711 712 task_lock(tsk); 713 vfork = tsk->vfork_done; 714 if (likely(vfork)) { 715 tsk->vfork_done = NULL; 716 complete(vfork); 717 } 718 task_unlock(tsk); 719 } 720 721 static int wait_for_vfork_done(struct task_struct *child, 722 struct completion *vfork) 723 { 724 int killed; 725 726 freezer_do_not_count(); 727 killed = wait_for_completion_killable(vfork); 728 freezer_count(); 729 730 if (killed) { 731 task_lock(child); 732 child->vfork_done = NULL; 733 task_unlock(child); 734 } 735 736 put_task_struct(child); 737 return killed; 738 } 739 740 /* Please note the differences between mmput and mm_release. 741 * mmput is called whenever we stop holding onto a mm_struct, 742 * error success whatever. 743 * 744 * mm_release is called after a mm_struct has been removed 745 * from the current process. 746 * 747 * This difference is important for error handling, when we 748 * only half set up a mm_struct for a new process and need to restore 749 * the old one. Because we mmput the new mm_struct before 750 * restoring the old one. . . 751 * Eric Biederman 10 January 1998 752 */ 753 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 754 { 755 /* Get rid of any futexes when releasing the mm */ 756 #ifdef CONFIG_FUTEX 757 if (unlikely(tsk->robust_list)) { 758 exit_robust_list(tsk); 759 tsk->robust_list = NULL; 760 } 761 #ifdef CONFIG_COMPAT 762 if (unlikely(tsk->compat_robust_list)) { 763 compat_exit_robust_list(tsk); 764 tsk->compat_robust_list = NULL; 765 } 766 #endif 767 if (unlikely(!list_empty(&tsk->pi_state_list))) 768 exit_pi_state_list(tsk); 769 #endif 770 771 uprobe_free_utask(tsk); 772 773 /* Get rid of any cached register state */ 774 deactivate_mm(tsk, mm); 775 776 /* 777 * If we're exiting normally, clear a user-space tid field if 778 * requested. We leave this alone when dying by signal, to leave 779 * the value intact in a core dump, and to save the unnecessary 780 * trouble, say, a killed vfork parent shouldn't touch this mm. 781 * Userland only wants this done for a sys_exit. 782 */ 783 if (tsk->clear_child_tid) { 784 if (!(tsk->flags & PF_SIGNALED) && 785 atomic_read(&mm->mm_users) > 1) { 786 /* 787 * We don't check the error code - if userspace has 788 * not set up a proper pointer then tough luck. 789 */ 790 put_user(0, tsk->clear_child_tid); 791 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 792 1, NULL, NULL, 0); 793 } 794 tsk->clear_child_tid = NULL; 795 } 796 797 /* 798 * All done, finally we can wake up parent and return this mm to him. 799 * Also kthread_stop() uses this completion for synchronization. 800 */ 801 if (tsk->vfork_done) 802 complete_vfork_done(tsk); 803 } 804 805 /* 806 * Allocate a new mm structure and copy contents from the 807 * mm structure of the passed in task structure. 808 */ 809 struct mm_struct *dup_mm(struct task_struct *tsk) 810 { 811 struct mm_struct *mm, *oldmm = current->mm; 812 int err; 813 814 if (!oldmm) 815 return NULL; 816 817 mm = allocate_mm(); 818 if (!mm) 819 goto fail_nomem; 820 821 memcpy(mm, oldmm, sizeof(*mm)); 822 mm_init_cpumask(mm); 823 824 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 825 mm->pmd_huge_pte = NULL; 826 #endif 827 #ifdef CONFIG_NUMA_BALANCING 828 mm->first_nid = NUMA_PTE_SCAN_INIT; 829 #endif 830 if (!mm_init(mm, tsk)) 831 goto fail_nomem; 832 833 if (init_new_context(tsk, mm)) 834 goto fail_nocontext; 835 836 dup_mm_exe_file(oldmm, mm); 837 838 err = dup_mmap(mm, oldmm); 839 if (err) 840 goto free_pt; 841 842 mm->hiwater_rss = get_mm_rss(mm); 843 mm->hiwater_vm = mm->total_vm; 844 845 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 846 goto free_pt; 847 848 return mm; 849 850 free_pt: 851 /* don't put binfmt in mmput, we haven't got module yet */ 852 mm->binfmt = NULL; 853 mmput(mm); 854 855 fail_nomem: 856 return NULL; 857 858 fail_nocontext: 859 /* 860 * If init_new_context() failed, we cannot use mmput() to free the mm 861 * because it calls destroy_context() 862 */ 863 mm_free_pgd(mm); 864 free_mm(mm); 865 return NULL; 866 } 867 868 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 869 { 870 struct mm_struct *mm, *oldmm; 871 int retval; 872 873 tsk->min_flt = tsk->maj_flt = 0; 874 tsk->nvcsw = tsk->nivcsw = 0; 875 #ifdef CONFIG_DETECT_HUNG_TASK 876 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 877 #endif 878 879 tsk->mm = NULL; 880 tsk->active_mm = NULL; 881 882 /* 883 * Are we cloning a kernel thread? 884 * 885 * We need to steal a active VM for that.. 886 */ 887 oldmm = current->mm; 888 if (!oldmm) 889 return 0; 890 891 if (clone_flags & CLONE_VM) { 892 atomic_inc(&oldmm->mm_users); 893 mm = oldmm; 894 goto good_mm; 895 } 896 897 retval = -ENOMEM; 898 mm = dup_mm(tsk); 899 if (!mm) 900 goto fail_nomem; 901 902 good_mm: 903 tsk->mm = mm; 904 tsk->active_mm = mm; 905 return 0; 906 907 fail_nomem: 908 return retval; 909 } 910 911 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 912 { 913 struct fs_struct *fs = current->fs; 914 if (clone_flags & CLONE_FS) { 915 /* tsk->fs is already what we want */ 916 spin_lock(&fs->lock); 917 if (fs->in_exec) { 918 spin_unlock(&fs->lock); 919 return -EAGAIN; 920 } 921 fs->users++; 922 spin_unlock(&fs->lock); 923 return 0; 924 } 925 tsk->fs = copy_fs_struct(fs); 926 if (!tsk->fs) 927 return -ENOMEM; 928 return 0; 929 } 930 931 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 932 { 933 struct files_struct *oldf, *newf; 934 int error = 0; 935 936 /* 937 * A background process may not have any files ... 938 */ 939 oldf = current->files; 940 if (!oldf) 941 goto out; 942 943 if (clone_flags & CLONE_FILES) { 944 atomic_inc(&oldf->count); 945 goto out; 946 } 947 948 newf = dup_fd(oldf, &error); 949 if (!newf) 950 goto out; 951 952 tsk->files = newf; 953 error = 0; 954 out: 955 return error; 956 } 957 958 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 959 { 960 #ifdef CONFIG_BLOCK 961 struct io_context *ioc = current->io_context; 962 struct io_context *new_ioc; 963 964 if (!ioc) 965 return 0; 966 /* 967 * Share io context with parent, if CLONE_IO is set 968 */ 969 if (clone_flags & CLONE_IO) { 970 ioc_task_link(ioc); 971 tsk->io_context = ioc; 972 } else if (ioprio_valid(ioc->ioprio)) { 973 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 974 if (unlikely(!new_ioc)) 975 return -ENOMEM; 976 977 new_ioc->ioprio = ioc->ioprio; 978 put_io_context(new_ioc); 979 } 980 #endif 981 return 0; 982 } 983 984 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 985 { 986 struct sighand_struct *sig; 987 988 if (clone_flags & CLONE_SIGHAND) { 989 atomic_inc(¤t->sighand->count); 990 return 0; 991 } 992 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 993 rcu_assign_pointer(tsk->sighand, sig); 994 if (!sig) 995 return -ENOMEM; 996 atomic_set(&sig->count, 1); 997 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 998 return 0; 999 } 1000 1001 void __cleanup_sighand(struct sighand_struct *sighand) 1002 { 1003 if (atomic_dec_and_test(&sighand->count)) { 1004 signalfd_cleanup(sighand); 1005 kmem_cache_free(sighand_cachep, sighand); 1006 } 1007 } 1008 1009 1010 /* 1011 * Initialize POSIX timer handling for a thread group. 1012 */ 1013 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1014 { 1015 unsigned long cpu_limit; 1016 1017 /* Thread group counters. */ 1018 thread_group_cputime_init(sig); 1019 1020 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1021 if (cpu_limit != RLIM_INFINITY) { 1022 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1023 sig->cputimer.running = 1; 1024 } 1025 1026 /* The timer lists. */ 1027 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1028 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1029 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1030 } 1031 1032 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1033 { 1034 struct signal_struct *sig; 1035 1036 if (clone_flags & CLONE_THREAD) 1037 return 0; 1038 1039 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1040 tsk->signal = sig; 1041 if (!sig) 1042 return -ENOMEM; 1043 1044 sig->nr_threads = 1; 1045 atomic_set(&sig->live, 1); 1046 atomic_set(&sig->sigcnt, 1); 1047 init_waitqueue_head(&sig->wait_chldexit); 1048 sig->curr_target = tsk; 1049 init_sigpending(&sig->shared_pending); 1050 INIT_LIST_HEAD(&sig->posix_timers); 1051 1052 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1053 sig->real_timer.function = it_real_fn; 1054 1055 task_lock(current->group_leader); 1056 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1057 task_unlock(current->group_leader); 1058 1059 posix_cpu_timers_init_group(sig); 1060 1061 tty_audit_fork(sig); 1062 sched_autogroup_fork(sig); 1063 1064 #ifdef CONFIG_CGROUPS 1065 init_rwsem(&sig->group_rwsem); 1066 #endif 1067 1068 sig->oom_score_adj = current->signal->oom_score_adj; 1069 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1070 1071 sig->has_child_subreaper = current->signal->has_child_subreaper || 1072 current->signal->is_child_subreaper; 1073 1074 mutex_init(&sig->cred_guard_mutex); 1075 1076 return 0; 1077 } 1078 1079 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 1080 { 1081 unsigned long new_flags = p->flags; 1082 1083 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1084 new_flags |= PF_FORKNOEXEC; 1085 p->flags = new_flags; 1086 } 1087 1088 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1089 { 1090 current->clear_child_tid = tidptr; 1091 1092 return task_pid_vnr(current); 1093 } 1094 1095 static void rt_mutex_init_task(struct task_struct *p) 1096 { 1097 raw_spin_lock_init(&p->pi_lock); 1098 #ifdef CONFIG_RT_MUTEXES 1099 plist_head_init(&p->pi_waiters); 1100 p->pi_blocked_on = NULL; 1101 #endif 1102 } 1103 1104 #ifdef CONFIG_MM_OWNER 1105 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1106 { 1107 mm->owner = p; 1108 } 1109 #endif /* CONFIG_MM_OWNER */ 1110 1111 /* 1112 * Initialize POSIX timer handling for a single task. 1113 */ 1114 static void posix_cpu_timers_init(struct task_struct *tsk) 1115 { 1116 tsk->cputime_expires.prof_exp = 0; 1117 tsk->cputime_expires.virt_exp = 0; 1118 tsk->cputime_expires.sched_exp = 0; 1119 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1120 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1121 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1122 } 1123 1124 static inline void 1125 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1126 { 1127 task->pids[type].pid = pid; 1128 } 1129 1130 /* 1131 * This creates a new process as a copy of the old one, 1132 * but does not actually start it yet. 1133 * 1134 * It copies the registers, and all the appropriate 1135 * parts of the process environment (as per the clone 1136 * flags). The actual kick-off is left to the caller. 1137 */ 1138 static struct task_struct *copy_process(unsigned long clone_flags, 1139 unsigned long stack_start, 1140 unsigned long stack_size, 1141 int __user *child_tidptr, 1142 struct pid *pid, 1143 int trace) 1144 { 1145 int retval; 1146 struct task_struct *p; 1147 1148 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1149 return ERR_PTR(-EINVAL); 1150 1151 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1152 return ERR_PTR(-EINVAL); 1153 1154 /* 1155 * Thread groups must share signals as well, and detached threads 1156 * can only be started up within the thread group. 1157 */ 1158 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1159 return ERR_PTR(-EINVAL); 1160 1161 /* 1162 * Shared signal handlers imply shared VM. By way of the above, 1163 * thread groups also imply shared VM. Blocking this case allows 1164 * for various simplifications in other code. 1165 */ 1166 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1167 return ERR_PTR(-EINVAL); 1168 1169 /* 1170 * Siblings of global init remain as zombies on exit since they are 1171 * not reaped by their parent (swapper). To solve this and to avoid 1172 * multi-rooted process trees, prevent global and container-inits 1173 * from creating siblings. 1174 */ 1175 if ((clone_flags & CLONE_PARENT) && 1176 current->signal->flags & SIGNAL_UNKILLABLE) 1177 return ERR_PTR(-EINVAL); 1178 1179 /* 1180 * If the new process will be in a different pid namespace 1181 * don't allow the creation of threads. 1182 */ 1183 if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) && 1184 (task_active_pid_ns(current) != current->nsproxy->pid_ns)) 1185 return ERR_PTR(-EINVAL); 1186 1187 retval = security_task_create(clone_flags); 1188 if (retval) 1189 goto fork_out; 1190 1191 retval = -ENOMEM; 1192 p = dup_task_struct(current); 1193 if (!p) 1194 goto fork_out; 1195 1196 ftrace_graph_init_task(p); 1197 get_seccomp_filter(p); 1198 1199 rt_mutex_init_task(p); 1200 1201 #ifdef CONFIG_PROVE_LOCKING 1202 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1203 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1204 #endif 1205 retval = -EAGAIN; 1206 if (atomic_read(&p->real_cred->user->processes) >= 1207 task_rlimit(p, RLIMIT_NPROC)) { 1208 if (p->real_cred->user != INIT_USER && 1209 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1210 goto bad_fork_free; 1211 } 1212 current->flags &= ~PF_NPROC_EXCEEDED; 1213 1214 retval = copy_creds(p, clone_flags); 1215 if (retval < 0) 1216 goto bad_fork_free; 1217 1218 /* 1219 * If multiple threads are within copy_process(), then this check 1220 * triggers too late. This doesn't hurt, the check is only there 1221 * to stop root fork bombs. 1222 */ 1223 retval = -EAGAIN; 1224 if (nr_threads >= max_threads) 1225 goto bad_fork_cleanup_count; 1226 1227 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1228 goto bad_fork_cleanup_count; 1229 1230 p->did_exec = 0; 1231 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1232 copy_flags(clone_flags, p); 1233 INIT_LIST_HEAD(&p->children); 1234 INIT_LIST_HEAD(&p->sibling); 1235 rcu_copy_process(p); 1236 p->vfork_done = NULL; 1237 spin_lock_init(&p->alloc_lock); 1238 1239 init_sigpending(&p->pending); 1240 1241 p->utime = p->stime = p->gtime = 0; 1242 p->utimescaled = p->stimescaled = 0; 1243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1244 p->prev_cputime.utime = p->prev_cputime.stime = 0; 1245 #endif 1246 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1247 seqlock_init(&p->vtime_seqlock); 1248 p->vtime_snap = 0; 1249 p->vtime_snap_whence = VTIME_SLEEPING; 1250 #endif 1251 1252 #if defined(SPLIT_RSS_COUNTING) 1253 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1254 #endif 1255 1256 p->default_timer_slack_ns = current->timer_slack_ns; 1257 1258 task_io_accounting_init(&p->ioac); 1259 acct_clear_integrals(p); 1260 1261 posix_cpu_timers_init(p); 1262 1263 do_posix_clock_monotonic_gettime(&p->start_time); 1264 p->real_start_time = p->start_time; 1265 monotonic_to_bootbased(&p->real_start_time); 1266 p->io_context = NULL; 1267 p->audit_context = NULL; 1268 if (clone_flags & CLONE_THREAD) 1269 threadgroup_change_begin(current); 1270 cgroup_fork(p); 1271 #ifdef CONFIG_NUMA 1272 p->mempolicy = mpol_dup(p->mempolicy); 1273 if (IS_ERR(p->mempolicy)) { 1274 retval = PTR_ERR(p->mempolicy); 1275 p->mempolicy = NULL; 1276 goto bad_fork_cleanup_cgroup; 1277 } 1278 mpol_fix_fork_child_flag(p); 1279 #endif 1280 #ifdef CONFIG_CPUSETS 1281 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1282 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1283 seqcount_init(&p->mems_allowed_seq); 1284 #endif 1285 #ifdef CONFIG_TRACE_IRQFLAGS 1286 p->irq_events = 0; 1287 p->hardirqs_enabled = 0; 1288 p->hardirq_enable_ip = 0; 1289 p->hardirq_enable_event = 0; 1290 p->hardirq_disable_ip = _THIS_IP_; 1291 p->hardirq_disable_event = 0; 1292 p->softirqs_enabled = 1; 1293 p->softirq_enable_ip = _THIS_IP_; 1294 p->softirq_enable_event = 0; 1295 p->softirq_disable_ip = 0; 1296 p->softirq_disable_event = 0; 1297 p->hardirq_context = 0; 1298 p->softirq_context = 0; 1299 #endif 1300 #ifdef CONFIG_LOCKDEP 1301 p->lockdep_depth = 0; /* no locks held yet */ 1302 p->curr_chain_key = 0; 1303 p->lockdep_recursion = 0; 1304 #endif 1305 1306 #ifdef CONFIG_DEBUG_MUTEXES 1307 p->blocked_on = NULL; /* not blocked yet */ 1308 #endif 1309 #ifdef CONFIG_MEMCG 1310 p->memcg_batch.do_batch = 0; 1311 p->memcg_batch.memcg = NULL; 1312 #endif 1313 #ifdef CONFIG_BCACHE 1314 p->sequential_io = 0; 1315 p->sequential_io_avg = 0; 1316 #endif 1317 1318 /* Perform scheduler related setup. Assign this task to a CPU. */ 1319 sched_fork(p); 1320 1321 retval = perf_event_init_task(p); 1322 if (retval) 1323 goto bad_fork_cleanup_policy; 1324 retval = audit_alloc(p); 1325 if (retval) 1326 goto bad_fork_cleanup_policy; 1327 /* copy all the process information */ 1328 retval = copy_semundo(clone_flags, p); 1329 if (retval) 1330 goto bad_fork_cleanup_audit; 1331 retval = copy_files(clone_flags, p); 1332 if (retval) 1333 goto bad_fork_cleanup_semundo; 1334 retval = copy_fs(clone_flags, p); 1335 if (retval) 1336 goto bad_fork_cleanup_files; 1337 retval = copy_sighand(clone_flags, p); 1338 if (retval) 1339 goto bad_fork_cleanup_fs; 1340 retval = copy_signal(clone_flags, p); 1341 if (retval) 1342 goto bad_fork_cleanup_sighand; 1343 retval = copy_mm(clone_flags, p); 1344 if (retval) 1345 goto bad_fork_cleanup_signal; 1346 retval = copy_namespaces(clone_flags, p); 1347 if (retval) 1348 goto bad_fork_cleanup_mm; 1349 retval = copy_io(clone_flags, p); 1350 if (retval) 1351 goto bad_fork_cleanup_namespaces; 1352 retval = copy_thread(clone_flags, stack_start, stack_size, p); 1353 if (retval) 1354 goto bad_fork_cleanup_io; 1355 1356 if (pid != &init_struct_pid) { 1357 retval = -ENOMEM; 1358 pid = alloc_pid(p->nsproxy->pid_ns); 1359 if (!pid) 1360 goto bad_fork_cleanup_io; 1361 } 1362 1363 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1364 /* 1365 * Clear TID on mm_release()? 1366 */ 1367 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1368 #ifdef CONFIG_BLOCK 1369 p->plug = NULL; 1370 #endif 1371 #ifdef CONFIG_FUTEX 1372 p->robust_list = NULL; 1373 #ifdef CONFIG_COMPAT 1374 p->compat_robust_list = NULL; 1375 #endif 1376 INIT_LIST_HEAD(&p->pi_state_list); 1377 p->pi_state_cache = NULL; 1378 #endif 1379 uprobe_copy_process(p); 1380 /* 1381 * sigaltstack should be cleared when sharing the same VM 1382 */ 1383 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1384 p->sas_ss_sp = p->sas_ss_size = 0; 1385 1386 /* 1387 * Syscall tracing and stepping should be turned off in the 1388 * child regardless of CLONE_PTRACE. 1389 */ 1390 user_disable_single_step(p); 1391 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1392 #ifdef TIF_SYSCALL_EMU 1393 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1394 #endif 1395 clear_all_latency_tracing(p); 1396 1397 /* ok, now we should be set up.. */ 1398 p->pid = pid_nr(pid); 1399 if (clone_flags & CLONE_THREAD) { 1400 p->exit_signal = -1; 1401 p->group_leader = current->group_leader; 1402 p->tgid = current->tgid; 1403 } else { 1404 if (clone_flags & CLONE_PARENT) 1405 p->exit_signal = current->group_leader->exit_signal; 1406 else 1407 p->exit_signal = (clone_flags & CSIGNAL); 1408 p->group_leader = p; 1409 p->tgid = p->pid; 1410 } 1411 1412 p->pdeath_signal = 0; 1413 p->exit_state = 0; 1414 1415 p->nr_dirtied = 0; 1416 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1417 p->dirty_paused_when = 0; 1418 1419 INIT_LIST_HEAD(&p->thread_group); 1420 p->task_works = NULL; 1421 1422 /* 1423 * Make it visible to the rest of the system, but dont wake it up yet. 1424 * Need tasklist lock for parent etc handling! 1425 */ 1426 write_lock_irq(&tasklist_lock); 1427 1428 /* CLONE_PARENT re-uses the old parent */ 1429 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1430 p->real_parent = current->real_parent; 1431 p->parent_exec_id = current->parent_exec_id; 1432 } else { 1433 p->real_parent = current; 1434 p->parent_exec_id = current->self_exec_id; 1435 } 1436 1437 spin_lock(¤t->sighand->siglock); 1438 1439 /* 1440 * Process group and session signals need to be delivered to just the 1441 * parent before the fork or both the parent and the child after the 1442 * fork. Restart if a signal comes in before we add the new process to 1443 * it's process group. 1444 * A fatal signal pending means that current will exit, so the new 1445 * thread can't slip out of an OOM kill (or normal SIGKILL). 1446 */ 1447 recalc_sigpending(); 1448 if (signal_pending(current)) { 1449 spin_unlock(¤t->sighand->siglock); 1450 write_unlock_irq(&tasklist_lock); 1451 retval = -ERESTARTNOINTR; 1452 goto bad_fork_free_pid; 1453 } 1454 1455 if (likely(p->pid)) { 1456 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1457 1458 init_task_pid(p, PIDTYPE_PID, pid); 1459 if (thread_group_leader(p)) { 1460 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1461 init_task_pid(p, PIDTYPE_SID, task_session(current)); 1462 1463 if (is_child_reaper(pid)) { 1464 ns_of_pid(pid)->child_reaper = p; 1465 p->signal->flags |= SIGNAL_UNKILLABLE; 1466 } 1467 1468 p->signal->leader_pid = pid; 1469 p->signal->tty = tty_kref_get(current->signal->tty); 1470 list_add_tail(&p->sibling, &p->real_parent->children); 1471 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1472 attach_pid(p, PIDTYPE_PGID); 1473 attach_pid(p, PIDTYPE_SID); 1474 __this_cpu_inc(process_counts); 1475 } else { 1476 current->signal->nr_threads++; 1477 atomic_inc(¤t->signal->live); 1478 atomic_inc(¤t->signal->sigcnt); 1479 list_add_tail_rcu(&p->thread_group, 1480 &p->group_leader->thread_group); 1481 } 1482 attach_pid(p, PIDTYPE_PID); 1483 nr_threads++; 1484 } 1485 1486 total_forks++; 1487 spin_unlock(¤t->sighand->siglock); 1488 write_unlock_irq(&tasklist_lock); 1489 proc_fork_connector(p); 1490 cgroup_post_fork(p); 1491 if (clone_flags & CLONE_THREAD) 1492 threadgroup_change_end(current); 1493 perf_event_fork(p); 1494 1495 trace_task_newtask(p, clone_flags); 1496 1497 return p; 1498 1499 bad_fork_free_pid: 1500 if (pid != &init_struct_pid) 1501 free_pid(pid); 1502 bad_fork_cleanup_io: 1503 if (p->io_context) 1504 exit_io_context(p); 1505 bad_fork_cleanup_namespaces: 1506 exit_task_namespaces(p); 1507 bad_fork_cleanup_mm: 1508 if (p->mm) 1509 mmput(p->mm); 1510 bad_fork_cleanup_signal: 1511 if (!(clone_flags & CLONE_THREAD)) 1512 free_signal_struct(p->signal); 1513 bad_fork_cleanup_sighand: 1514 __cleanup_sighand(p->sighand); 1515 bad_fork_cleanup_fs: 1516 exit_fs(p); /* blocking */ 1517 bad_fork_cleanup_files: 1518 exit_files(p); /* blocking */ 1519 bad_fork_cleanup_semundo: 1520 exit_sem(p); 1521 bad_fork_cleanup_audit: 1522 audit_free(p); 1523 bad_fork_cleanup_policy: 1524 perf_event_free_task(p); 1525 #ifdef CONFIG_NUMA 1526 mpol_put(p->mempolicy); 1527 bad_fork_cleanup_cgroup: 1528 #endif 1529 if (clone_flags & CLONE_THREAD) 1530 threadgroup_change_end(current); 1531 cgroup_exit(p, 0); 1532 delayacct_tsk_free(p); 1533 module_put(task_thread_info(p)->exec_domain->module); 1534 bad_fork_cleanup_count: 1535 atomic_dec(&p->cred->user->processes); 1536 exit_creds(p); 1537 bad_fork_free: 1538 free_task(p); 1539 fork_out: 1540 return ERR_PTR(retval); 1541 } 1542 1543 static inline void init_idle_pids(struct pid_link *links) 1544 { 1545 enum pid_type type; 1546 1547 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1548 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1549 links[type].pid = &init_struct_pid; 1550 } 1551 } 1552 1553 struct task_struct * __cpuinit fork_idle(int cpu) 1554 { 1555 struct task_struct *task; 1556 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0); 1557 if (!IS_ERR(task)) { 1558 init_idle_pids(task->pids); 1559 init_idle(task, cpu); 1560 } 1561 1562 return task; 1563 } 1564 1565 /* 1566 * Ok, this is the main fork-routine. 1567 * 1568 * It copies the process, and if successful kick-starts 1569 * it and waits for it to finish using the VM if required. 1570 */ 1571 long do_fork(unsigned long clone_flags, 1572 unsigned long stack_start, 1573 unsigned long stack_size, 1574 int __user *parent_tidptr, 1575 int __user *child_tidptr) 1576 { 1577 struct task_struct *p; 1578 int trace = 0; 1579 long nr; 1580 1581 /* 1582 * Do some preliminary argument and permissions checking before we 1583 * actually start allocating stuff 1584 */ 1585 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) { 1586 if (clone_flags & (CLONE_THREAD|CLONE_PARENT)) 1587 return -EINVAL; 1588 } 1589 1590 /* 1591 * Determine whether and which event to report to ptracer. When 1592 * called from kernel_thread or CLONE_UNTRACED is explicitly 1593 * requested, no event is reported; otherwise, report if the event 1594 * for the type of forking is enabled. 1595 */ 1596 if (!(clone_flags & CLONE_UNTRACED)) { 1597 if (clone_flags & CLONE_VFORK) 1598 trace = PTRACE_EVENT_VFORK; 1599 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1600 trace = PTRACE_EVENT_CLONE; 1601 else 1602 trace = PTRACE_EVENT_FORK; 1603 1604 if (likely(!ptrace_event_enabled(current, trace))) 1605 trace = 0; 1606 } 1607 1608 p = copy_process(clone_flags, stack_start, stack_size, 1609 child_tidptr, NULL, trace); 1610 /* 1611 * Do this prior waking up the new thread - the thread pointer 1612 * might get invalid after that point, if the thread exits quickly. 1613 */ 1614 if (!IS_ERR(p)) { 1615 struct completion vfork; 1616 1617 trace_sched_process_fork(current, p); 1618 1619 nr = task_pid_vnr(p); 1620 1621 if (clone_flags & CLONE_PARENT_SETTID) 1622 put_user(nr, parent_tidptr); 1623 1624 if (clone_flags & CLONE_VFORK) { 1625 p->vfork_done = &vfork; 1626 init_completion(&vfork); 1627 get_task_struct(p); 1628 } 1629 1630 wake_up_new_task(p); 1631 1632 /* forking complete and child started to run, tell ptracer */ 1633 if (unlikely(trace)) 1634 ptrace_event(trace, nr); 1635 1636 if (clone_flags & CLONE_VFORK) { 1637 if (!wait_for_vfork_done(p, &vfork)) 1638 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); 1639 } 1640 } else { 1641 nr = PTR_ERR(p); 1642 } 1643 return nr; 1644 } 1645 1646 /* 1647 * Create a kernel thread. 1648 */ 1649 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 1650 { 1651 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 1652 (unsigned long)arg, NULL, NULL); 1653 } 1654 1655 #ifdef __ARCH_WANT_SYS_FORK 1656 SYSCALL_DEFINE0(fork) 1657 { 1658 #ifdef CONFIG_MMU 1659 return do_fork(SIGCHLD, 0, 0, NULL, NULL); 1660 #else 1661 /* can not support in nommu mode */ 1662 return(-EINVAL); 1663 #endif 1664 } 1665 #endif 1666 1667 #ifdef __ARCH_WANT_SYS_VFORK 1668 SYSCALL_DEFINE0(vfork) 1669 { 1670 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 1671 0, NULL, NULL); 1672 } 1673 #endif 1674 1675 #ifdef __ARCH_WANT_SYS_CLONE 1676 #ifdef CONFIG_CLONE_BACKWARDS 1677 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1678 int __user *, parent_tidptr, 1679 int, tls_val, 1680 int __user *, child_tidptr) 1681 #elif defined(CONFIG_CLONE_BACKWARDS2) 1682 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 1683 int __user *, parent_tidptr, 1684 int __user *, child_tidptr, 1685 int, tls_val) 1686 #else 1687 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1688 int __user *, parent_tidptr, 1689 int __user *, child_tidptr, 1690 int, tls_val) 1691 #endif 1692 { 1693 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr); 1694 } 1695 #endif 1696 1697 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1698 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1699 #endif 1700 1701 static void sighand_ctor(void *data) 1702 { 1703 struct sighand_struct *sighand = data; 1704 1705 spin_lock_init(&sighand->siglock); 1706 init_waitqueue_head(&sighand->signalfd_wqh); 1707 } 1708 1709 void __init proc_caches_init(void) 1710 { 1711 sighand_cachep = kmem_cache_create("sighand_cache", 1712 sizeof(struct sighand_struct), 0, 1713 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1714 SLAB_NOTRACK, sighand_ctor); 1715 signal_cachep = kmem_cache_create("signal_cache", 1716 sizeof(struct signal_struct), 0, 1717 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1718 files_cachep = kmem_cache_create("files_cache", 1719 sizeof(struct files_struct), 0, 1720 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1721 fs_cachep = kmem_cache_create("fs_cache", 1722 sizeof(struct fs_struct), 0, 1723 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1724 /* 1725 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1726 * whole struct cpumask for the OFFSTACK case. We could change 1727 * this to *only* allocate as much of it as required by the 1728 * maximum number of CPU's we can ever have. The cpumask_allocation 1729 * is at the end of the structure, exactly for that reason. 1730 */ 1731 mm_cachep = kmem_cache_create("mm_struct", 1732 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1733 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1734 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1735 mmap_init(); 1736 nsproxy_cache_init(); 1737 } 1738 1739 /* 1740 * Check constraints on flags passed to the unshare system call. 1741 */ 1742 static int check_unshare_flags(unsigned long unshare_flags) 1743 { 1744 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1745 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1746 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 1747 CLONE_NEWUSER|CLONE_NEWPID)) 1748 return -EINVAL; 1749 /* 1750 * Not implemented, but pretend it works if there is nothing to 1751 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1752 * needs to unshare vm. 1753 */ 1754 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1755 /* FIXME: get_task_mm() increments ->mm_users */ 1756 if (atomic_read(¤t->mm->mm_users) > 1) 1757 return -EINVAL; 1758 } 1759 1760 return 0; 1761 } 1762 1763 /* 1764 * Unshare the filesystem structure if it is being shared 1765 */ 1766 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1767 { 1768 struct fs_struct *fs = current->fs; 1769 1770 if (!(unshare_flags & CLONE_FS) || !fs) 1771 return 0; 1772 1773 /* don't need lock here; in the worst case we'll do useless copy */ 1774 if (fs->users == 1) 1775 return 0; 1776 1777 *new_fsp = copy_fs_struct(fs); 1778 if (!*new_fsp) 1779 return -ENOMEM; 1780 1781 return 0; 1782 } 1783 1784 /* 1785 * Unshare file descriptor table if it is being shared 1786 */ 1787 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1788 { 1789 struct files_struct *fd = current->files; 1790 int error = 0; 1791 1792 if ((unshare_flags & CLONE_FILES) && 1793 (fd && atomic_read(&fd->count) > 1)) { 1794 *new_fdp = dup_fd(fd, &error); 1795 if (!*new_fdp) 1796 return error; 1797 } 1798 1799 return 0; 1800 } 1801 1802 /* 1803 * unshare allows a process to 'unshare' part of the process 1804 * context which was originally shared using clone. copy_* 1805 * functions used by do_fork() cannot be used here directly 1806 * because they modify an inactive task_struct that is being 1807 * constructed. Here we are modifying the current, active, 1808 * task_struct. 1809 */ 1810 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1811 { 1812 struct fs_struct *fs, *new_fs = NULL; 1813 struct files_struct *fd, *new_fd = NULL; 1814 struct cred *new_cred = NULL; 1815 struct nsproxy *new_nsproxy = NULL; 1816 int do_sysvsem = 0; 1817 int err; 1818 1819 /* 1820 * If unsharing a user namespace must also unshare the thread. 1821 */ 1822 if (unshare_flags & CLONE_NEWUSER) 1823 unshare_flags |= CLONE_THREAD | CLONE_FS; 1824 /* 1825 * If unsharing a pid namespace must also unshare the thread. 1826 */ 1827 if (unshare_flags & CLONE_NEWPID) 1828 unshare_flags |= CLONE_THREAD; 1829 /* 1830 * If unsharing a thread from a thread group, must also unshare vm. 1831 */ 1832 if (unshare_flags & CLONE_THREAD) 1833 unshare_flags |= CLONE_VM; 1834 /* 1835 * If unsharing vm, must also unshare signal handlers. 1836 */ 1837 if (unshare_flags & CLONE_VM) 1838 unshare_flags |= CLONE_SIGHAND; 1839 /* 1840 * If unsharing namespace, must also unshare filesystem information. 1841 */ 1842 if (unshare_flags & CLONE_NEWNS) 1843 unshare_flags |= CLONE_FS; 1844 1845 err = check_unshare_flags(unshare_flags); 1846 if (err) 1847 goto bad_unshare_out; 1848 /* 1849 * CLONE_NEWIPC must also detach from the undolist: after switching 1850 * to a new ipc namespace, the semaphore arrays from the old 1851 * namespace are unreachable. 1852 */ 1853 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1854 do_sysvsem = 1; 1855 err = unshare_fs(unshare_flags, &new_fs); 1856 if (err) 1857 goto bad_unshare_out; 1858 err = unshare_fd(unshare_flags, &new_fd); 1859 if (err) 1860 goto bad_unshare_cleanup_fs; 1861 err = unshare_userns(unshare_flags, &new_cred); 1862 if (err) 1863 goto bad_unshare_cleanup_fd; 1864 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1865 new_cred, new_fs); 1866 if (err) 1867 goto bad_unshare_cleanup_cred; 1868 1869 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 1870 if (do_sysvsem) { 1871 /* 1872 * CLONE_SYSVSEM is equivalent to sys_exit(). 1873 */ 1874 exit_sem(current); 1875 } 1876 1877 if (new_nsproxy) 1878 switch_task_namespaces(current, new_nsproxy); 1879 1880 task_lock(current); 1881 1882 if (new_fs) { 1883 fs = current->fs; 1884 spin_lock(&fs->lock); 1885 current->fs = new_fs; 1886 if (--fs->users) 1887 new_fs = NULL; 1888 else 1889 new_fs = fs; 1890 spin_unlock(&fs->lock); 1891 } 1892 1893 if (new_fd) { 1894 fd = current->files; 1895 current->files = new_fd; 1896 new_fd = fd; 1897 } 1898 1899 task_unlock(current); 1900 1901 if (new_cred) { 1902 /* Install the new user namespace */ 1903 commit_creds(new_cred); 1904 new_cred = NULL; 1905 } 1906 } 1907 1908 bad_unshare_cleanup_cred: 1909 if (new_cred) 1910 put_cred(new_cred); 1911 bad_unshare_cleanup_fd: 1912 if (new_fd) 1913 put_files_struct(new_fd); 1914 1915 bad_unshare_cleanup_fs: 1916 if (new_fs) 1917 free_fs_struct(new_fs); 1918 1919 bad_unshare_out: 1920 return err; 1921 } 1922 1923 /* 1924 * Helper to unshare the files of the current task. 1925 * We don't want to expose copy_files internals to 1926 * the exec layer of the kernel. 1927 */ 1928 1929 int unshare_files(struct files_struct **displaced) 1930 { 1931 struct task_struct *task = current; 1932 struct files_struct *copy = NULL; 1933 int error; 1934 1935 error = unshare_fd(CLONE_FILES, ©); 1936 if (error || !copy) { 1937 *displaced = NULL; 1938 return error; 1939 } 1940 *displaced = task->files; 1941 task_lock(task); 1942 task->files = copy; 1943 task_unlock(task); 1944 return 0; 1945 } 1946