xref: /openbmc/linux/kernel/fork.c (revision 79a93295)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79 
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86 
87 #include <trace/events/sched.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91 
92 /*
93  * Minimum number of threads to boot the kernel
94  */
95 #define MIN_THREADS 20
96 
97 /*
98  * Maximum number of threads
99  */
100 #define MAX_THREADS FUTEX_TID_MASK
101 
102 /*
103  * Protected counters by write_lock_irq(&tasklist_lock)
104  */
105 unsigned long total_forks;	/* Handle normal Linux uptimes. */
106 int nr_threads;			/* The idle threads do not count.. */
107 
108 int max_threads;		/* tunable limit on nr_threads */
109 
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
113 
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 	return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121 
122 int nr_processes(void)
123 {
124 	int cpu;
125 	int total = 0;
126 
127 	for_each_possible_cpu(cpu)
128 		total += per_cpu(process_counts, cpu);
129 
130 	return total;
131 }
132 
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136 
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139 
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144 
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 	kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150 
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156 
157 /*
158  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159  * kmemcache based allocator.
160  */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162 
163 #ifdef CONFIG_VMAP_STACK
164 /*
165  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166  * flush.  Try to minimize the number of calls by caching stacks.
167  */
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
170 #endif
171 
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
173 {
174 #ifdef CONFIG_VMAP_STACK
175 	void *stack;
176 	int i;
177 
178 	local_irq_disable();
179 	for (i = 0; i < NR_CACHED_STACKS; i++) {
180 		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
181 
182 		if (!s)
183 			continue;
184 		this_cpu_write(cached_stacks[i], NULL);
185 
186 		tsk->stack_vm_area = s;
187 		local_irq_enable();
188 		return s->addr;
189 	}
190 	local_irq_enable();
191 
192 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 				     VMALLOC_START, VMALLOC_END,
194 				     THREADINFO_GFP | __GFP_HIGHMEM,
195 				     PAGE_KERNEL,
196 				     0, node, __builtin_return_address(0));
197 
198 	/*
199 	 * We can't call find_vm_area() in interrupt context, and
200 	 * free_thread_stack() can be called in interrupt context,
201 	 * so cache the vm_struct.
202 	 */
203 	if (stack)
204 		tsk->stack_vm_area = find_vm_area(stack);
205 	return stack;
206 #else
207 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
208 					     THREAD_SIZE_ORDER);
209 
210 	return page ? page_address(page) : NULL;
211 #endif
212 }
213 
214 static inline void free_thread_stack(struct task_struct *tsk)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	if (task_stack_vm_area(tsk)) {
218 		unsigned long flags;
219 		int i;
220 
221 		local_irq_save(flags);
222 		for (i = 0; i < NR_CACHED_STACKS; i++) {
223 			if (this_cpu_read(cached_stacks[i]))
224 				continue;
225 
226 			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 			local_irq_restore(flags);
228 			return;
229 		}
230 		local_irq_restore(flags);
231 
232 		vfree_atomic(tsk->stack);
233 		return;
234 	}
235 #endif
236 
237 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
238 }
239 # else
240 static struct kmem_cache *thread_stack_cache;
241 
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
243 						  int node)
244 {
245 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
246 }
247 
248 static void free_thread_stack(struct task_struct *tsk)
249 {
250 	kmem_cache_free(thread_stack_cache, tsk->stack);
251 }
252 
253 void thread_stack_cache_init(void)
254 {
255 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 					      THREAD_SIZE, 0, NULL);
257 	BUG_ON(thread_stack_cache == NULL);
258 }
259 # endif
260 #endif
261 
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
264 
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
267 
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
270 
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
273 
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
276 
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
279 
280 static void account_kernel_stack(struct task_struct *tsk, int account)
281 {
282 	void *stack = task_stack_page(tsk);
283 	struct vm_struct *vm = task_stack_vm_area(tsk);
284 
285 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
286 
287 	if (vm) {
288 		int i;
289 
290 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
291 
292 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 			mod_zone_page_state(page_zone(vm->pages[i]),
294 					    NR_KERNEL_STACK_KB,
295 					    PAGE_SIZE / 1024 * account);
296 		}
297 
298 		/* All stack pages belong to the same memcg. */
299 		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 					    account * (THREAD_SIZE / 1024));
301 	} else {
302 		/*
303 		 * All stack pages are in the same zone and belong to the
304 		 * same memcg.
305 		 */
306 		struct page *first_page = virt_to_page(stack);
307 
308 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 				    THREAD_SIZE / 1024 * account);
310 
311 		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 					    account * (THREAD_SIZE / 1024));
313 	}
314 }
315 
316 static void release_task_stack(struct task_struct *tsk)
317 {
318 	if (WARN_ON(tsk->state != TASK_DEAD))
319 		return;  /* Better to leak the stack than to free prematurely */
320 
321 	account_kernel_stack(tsk, -1);
322 	arch_release_thread_stack(tsk->stack);
323 	free_thread_stack(tsk);
324 	tsk->stack = NULL;
325 #ifdef CONFIG_VMAP_STACK
326 	tsk->stack_vm_area = NULL;
327 #endif
328 }
329 
330 #ifdef CONFIG_THREAD_INFO_IN_TASK
331 void put_task_stack(struct task_struct *tsk)
332 {
333 	if (atomic_dec_and_test(&tsk->stack_refcount))
334 		release_task_stack(tsk);
335 }
336 #endif
337 
338 void free_task(struct task_struct *tsk)
339 {
340 #ifndef CONFIG_THREAD_INFO_IN_TASK
341 	/*
342 	 * The task is finally done with both the stack and thread_info,
343 	 * so free both.
344 	 */
345 	release_task_stack(tsk);
346 #else
347 	/*
348 	 * If the task had a separate stack allocation, it should be gone
349 	 * by now.
350 	 */
351 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
352 #endif
353 	rt_mutex_debug_task_free(tsk);
354 	ftrace_graph_exit_task(tsk);
355 	put_seccomp_filter(tsk);
356 	arch_release_task_struct(tsk);
357 	if (tsk->flags & PF_KTHREAD)
358 		free_kthread_struct(tsk);
359 	free_task_struct(tsk);
360 }
361 EXPORT_SYMBOL(free_task);
362 
363 static inline void free_signal_struct(struct signal_struct *sig)
364 {
365 	taskstats_tgid_free(sig);
366 	sched_autogroup_exit(sig);
367 	/*
368 	 * __mmdrop is not safe to call from softirq context on x86 due to
369 	 * pgd_dtor so postpone it to the async context
370 	 */
371 	if (sig->oom_mm)
372 		mmdrop_async(sig->oom_mm);
373 	kmem_cache_free(signal_cachep, sig);
374 }
375 
376 static inline void put_signal_struct(struct signal_struct *sig)
377 {
378 	if (atomic_dec_and_test(&sig->sigcnt))
379 		free_signal_struct(sig);
380 }
381 
382 void __put_task_struct(struct task_struct *tsk)
383 {
384 	WARN_ON(!tsk->exit_state);
385 	WARN_ON(atomic_read(&tsk->usage));
386 	WARN_ON(tsk == current);
387 
388 	cgroup_free(tsk);
389 	task_numa_free(tsk);
390 	security_task_free(tsk);
391 	exit_creds(tsk);
392 	delayacct_tsk_free(tsk);
393 	put_signal_struct(tsk->signal);
394 
395 	if (!profile_handoff_task(tsk))
396 		free_task(tsk);
397 }
398 EXPORT_SYMBOL_GPL(__put_task_struct);
399 
400 void __init __weak arch_task_cache_init(void) { }
401 
402 /*
403  * set_max_threads
404  */
405 static void set_max_threads(unsigned int max_threads_suggested)
406 {
407 	u64 threads;
408 
409 	/*
410 	 * The number of threads shall be limited such that the thread
411 	 * structures may only consume a small part of the available memory.
412 	 */
413 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
414 		threads = MAX_THREADS;
415 	else
416 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
417 				    (u64) THREAD_SIZE * 8UL);
418 
419 	if (threads > max_threads_suggested)
420 		threads = max_threads_suggested;
421 
422 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
423 }
424 
425 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
426 /* Initialized by the architecture: */
427 int arch_task_struct_size __read_mostly;
428 #endif
429 
430 void __init fork_init(void)
431 {
432 	int i;
433 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
434 #ifndef ARCH_MIN_TASKALIGN
435 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
436 #endif
437 	/* create a slab on which task_structs can be allocated */
438 	task_struct_cachep = kmem_cache_create("task_struct",
439 			arch_task_struct_size, ARCH_MIN_TASKALIGN,
440 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
441 #endif
442 
443 	/* do the arch specific task caches init */
444 	arch_task_cache_init();
445 
446 	set_max_threads(MAX_THREADS);
447 
448 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
449 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
450 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
451 		init_task.signal->rlim[RLIMIT_NPROC];
452 
453 	for (i = 0; i < UCOUNT_COUNTS; i++) {
454 		init_user_ns.ucount_max[i] = max_threads/2;
455 	}
456 }
457 
458 int __weak arch_dup_task_struct(struct task_struct *dst,
459 					       struct task_struct *src)
460 {
461 	*dst = *src;
462 	return 0;
463 }
464 
465 void set_task_stack_end_magic(struct task_struct *tsk)
466 {
467 	unsigned long *stackend;
468 
469 	stackend = end_of_stack(tsk);
470 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
471 }
472 
473 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
474 {
475 	struct task_struct *tsk;
476 	unsigned long *stack;
477 	struct vm_struct *stack_vm_area;
478 	int err;
479 
480 	if (node == NUMA_NO_NODE)
481 		node = tsk_fork_get_node(orig);
482 	tsk = alloc_task_struct_node(node);
483 	if (!tsk)
484 		return NULL;
485 
486 	stack = alloc_thread_stack_node(tsk, node);
487 	if (!stack)
488 		goto free_tsk;
489 
490 	stack_vm_area = task_stack_vm_area(tsk);
491 
492 	err = arch_dup_task_struct(tsk, orig);
493 
494 	/*
495 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
496 	 * sure they're properly initialized before using any stack-related
497 	 * functions again.
498 	 */
499 	tsk->stack = stack;
500 #ifdef CONFIG_VMAP_STACK
501 	tsk->stack_vm_area = stack_vm_area;
502 #endif
503 #ifdef CONFIG_THREAD_INFO_IN_TASK
504 	atomic_set(&tsk->stack_refcount, 1);
505 #endif
506 
507 	if (err)
508 		goto free_stack;
509 
510 #ifdef CONFIG_SECCOMP
511 	/*
512 	 * We must handle setting up seccomp filters once we're under
513 	 * the sighand lock in case orig has changed between now and
514 	 * then. Until then, filter must be NULL to avoid messing up
515 	 * the usage counts on the error path calling free_task.
516 	 */
517 	tsk->seccomp.filter = NULL;
518 #endif
519 
520 	setup_thread_stack(tsk, orig);
521 	clear_user_return_notifier(tsk);
522 	clear_tsk_need_resched(tsk);
523 	set_task_stack_end_magic(tsk);
524 
525 #ifdef CONFIG_CC_STACKPROTECTOR
526 	tsk->stack_canary = get_random_int();
527 #endif
528 
529 	/*
530 	 * One for us, one for whoever does the "release_task()" (usually
531 	 * parent)
532 	 */
533 	atomic_set(&tsk->usage, 2);
534 #ifdef CONFIG_BLK_DEV_IO_TRACE
535 	tsk->btrace_seq = 0;
536 #endif
537 	tsk->splice_pipe = NULL;
538 	tsk->task_frag.page = NULL;
539 	tsk->wake_q.next = NULL;
540 
541 	account_kernel_stack(tsk, 1);
542 
543 	kcov_task_init(tsk);
544 
545 	return tsk;
546 
547 free_stack:
548 	free_thread_stack(tsk);
549 free_tsk:
550 	free_task_struct(tsk);
551 	return NULL;
552 }
553 
554 #ifdef CONFIG_MMU
555 static __latent_entropy int dup_mmap(struct mm_struct *mm,
556 					struct mm_struct *oldmm)
557 {
558 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
559 	struct rb_node **rb_link, *rb_parent;
560 	int retval;
561 	unsigned long charge;
562 
563 	uprobe_start_dup_mmap();
564 	if (down_write_killable(&oldmm->mmap_sem)) {
565 		retval = -EINTR;
566 		goto fail_uprobe_end;
567 	}
568 	flush_cache_dup_mm(oldmm);
569 	uprobe_dup_mmap(oldmm, mm);
570 	/*
571 	 * Not linked in yet - no deadlock potential:
572 	 */
573 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
574 
575 	/* No ordering required: file already has been exposed. */
576 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
577 
578 	mm->total_vm = oldmm->total_vm;
579 	mm->data_vm = oldmm->data_vm;
580 	mm->exec_vm = oldmm->exec_vm;
581 	mm->stack_vm = oldmm->stack_vm;
582 
583 	rb_link = &mm->mm_rb.rb_node;
584 	rb_parent = NULL;
585 	pprev = &mm->mmap;
586 	retval = ksm_fork(mm, oldmm);
587 	if (retval)
588 		goto out;
589 	retval = khugepaged_fork(mm, oldmm);
590 	if (retval)
591 		goto out;
592 
593 	prev = NULL;
594 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
595 		struct file *file;
596 
597 		if (mpnt->vm_flags & VM_DONTCOPY) {
598 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
599 			continue;
600 		}
601 		charge = 0;
602 		if (mpnt->vm_flags & VM_ACCOUNT) {
603 			unsigned long len = vma_pages(mpnt);
604 
605 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
606 				goto fail_nomem;
607 			charge = len;
608 		}
609 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
610 		if (!tmp)
611 			goto fail_nomem;
612 		*tmp = *mpnt;
613 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
614 		retval = vma_dup_policy(mpnt, tmp);
615 		if (retval)
616 			goto fail_nomem_policy;
617 		tmp->vm_mm = mm;
618 		if (anon_vma_fork(tmp, mpnt))
619 			goto fail_nomem_anon_vma_fork;
620 		tmp->vm_flags &=
621 			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
622 		tmp->vm_next = tmp->vm_prev = NULL;
623 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
624 		file = tmp->vm_file;
625 		if (file) {
626 			struct inode *inode = file_inode(file);
627 			struct address_space *mapping = file->f_mapping;
628 
629 			get_file(file);
630 			if (tmp->vm_flags & VM_DENYWRITE)
631 				atomic_dec(&inode->i_writecount);
632 			i_mmap_lock_write(mapping);
633 			if (tmp->vm_flags & VM_SHARED)
634 				atomic_inc(&mapping->i_mmap_writable);
635 			flush_dcache_mmap_lock(mapping);
636 			/* insert tmp into the share list, just after mpnt */
637 			vma_interval_tree_insert_after(tmp, mpnt,
638 					&mapping->i_mmap);
639 			flush_dcache_mmap_unlock(mapping);
640 			i_mmap_unlock_write(mapping);
641 		}
642 
643 		/*
644 		 * Clear hugetlb-related page reserves for children. This only
645 		 * affects MAP_PRIVATE mappings. Faults generated by the child
646 		 * are not guaranteed to succeed, even if read-only
647 		 */
648 		if (is_vm_hugetlb_page(tmp))
649 			reset_vma_resv_huge_pages(tmp);
650 
651 		/*
652 		 * Link in the new vma and copy the page table entries.
653 		 */
654 		*pprev = tmp;
655 		pprev = &tmp->vm_next;
656 		tmp->vm_prev = prev;
657 		prev = tmp;
658 
659 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
660 		rb_link = &tmp->vm_rb.rb_right;
661 		rb_parent = &tmp->vm_rb;
662 
663 		mm->map_count++;
664 		retval = copy_page_range(mm, oldmm, mpnt);
665 
666 		if (tmp->vm_ops && tmp->vm_ops->open)
667 			tmp->vm_ops->open(tmp);
668 
669 		if (retval)
670 			goto out;
671 	}
672 	/* a new mm has just been created */
673 	arch_dup_mmap(oldmm, mm);
674 	retval = 0;
675 out:
676 	up_write(&mm->mmap_sem);
677 	flush_tlb_mm(oldmm);
678 	up_write(&oldmm->mmap_sem);
679 fail_uprobe_end:
680 	uprobe_end_dup_mmap();
681 	return retval;
682 fail_nomem_anon_vma_fork:
683 	mpol_put(vma_policy(tmp));
684 fail_nomem_policy:
685 	kmem_cache_free(vm_area_cachep, tmp);
686 fail_nomem:
687 	retval = -ENOMEM;
688 	vm_unacct_memory(charge);
689 	goto out;
690 }
691 
692 static inline int mm_alloc_pgd(struct mm_struct *mm)
693 {
694 	mm->pgd = pgd_alloc(mm);
695 	if (unlikely(!mm->pgd))
696 		return -ENOMEM;
697 	return 0;
698 }
699 
700 static inline void mm_free_pgd(struct mm_struct *mm)
701 {
702 	pgd_free(mm, mm->pgd);
703 }
704 #else
705 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
706 {
707 	down_write(&oldmm->mmap_sem);
708 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
709 	up_write(&oldmm->mmap_sem);
710 	return 0;
711 }
712 #define mm_alloc_pgd(mm)	(0)
713 #define mm_free_pgd(mm)
714 #endif /* CONFIG_MMU */
715 
716 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
717 
718 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
719 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
720 
721 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
722 
723 static int __init coredump_filter_setup(char *s)
724 {
725 	default_dump_filter =
726 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
727 		MMF_DUMP_FILTER_MASK;
728 	return 1;
729 }
730 
731 __setup("coredump_filter=", coredump_filter_setup);
732 
733 #include <linux/init_task.h>
734 
735 static void mm_init_aio(struct mm_struct *mm)
736 {
737 #ifdef CONFIG_AIO
738 	spin_lock_init(&mm->ioctx_lock);
739 	mm->ioctx_table = NULL;
740 #endif
741 }
742 
743 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
744 {
745 #ifdef CONFIG_MEMCG
746 	mm->owner = p;
747 #endif
748 }
749 
750 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
751 	struct user_namespace *user_ns)
752 {
753 	mm->mmap = NULL;
754 	mm->mm_rb = RB_ROOT;
755 	mm->vmacache_seqnum = 0;
756 	atomic_set(&mm->mm_users, 1);
757 	atomic_set(&mm->mm_count, 1);
758 	init_rwsem(&mm->mmap_sem);
759 	INIT_LIST_HEAD(&mm->mmlist);
760 	mm->core_state = NULL;
761 	atomic_long_set(&mm->nr_ptes, 0);
762 	mm_nr_pmds_init(mm);
763 	mm->map_count = 0;
764 	mm->locked_vm = 0;
765 	mm->pinned_vm = 0;
766 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
767 	spin_lock_init(&mm->page_table_lock);
768 	mm_init_cpumask(mm);
769 	mm_init_aio(mm);
770 	mm_init_owner(mm, p);
771 	mmu_notifier_mm_init(mm);
772 	clear_tlb_flush_pending(mm);
773 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
774 	mm->pmd_huge_pte = NULL;
775 #endif
776 
777 	if (current->mm) {
778 		mm->flags = current->mm->flags & MMF_INIT_MASK;
779 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
780 	} else {
781 		mm->flags = default_dump_filter;
782 		mm->def_flags = 0;
783 	}
784 
785 	if (mm_alloc_pgd(mm))
786 		goto fail_nopgd;
787 
788 	if (init_new_context(p, mm))
789 		goto fail_nocontext;
790 
791 	mm->user_ns = get_user_ns(user_ns);
792 	return mm;
793 
794 fail_nocontext:
795 	mm_free_pgd(mm);
796 fail_nopgd:
797 	free_mm(mm);
798 	return NULL;
799 }
800 
801 static void check_mm(struct mm_struct *mm)
802 {
803 	int i;
804 
805 	for (i = 0; i < NR_MM_COUNTERS; i++) {
806 		long x = atomic_long_read(&mm->rss_stat.count[i]);
807 
808 		if (unlikely(x))
809 			printk(KERN_ALERT "BUG: Bad rss-counter state "
810 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
811 	}
812 
813 	if (atomic_long_read(&mm->nr_ptes))
814 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
815 				atomic_long_read(&mm->nr_ptes));
816 	if (mm_nr_pmds(mm))
817 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
818 				mm_nr_pmds(mm));
819 
820 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
821 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
822 #endif
823 }
824 
825 /*
826  * Allocate and initialize an mm_struct.
827  */
828 struct mm_struct *mm_alloc(void)
829 {
830 	struct mm_struct *mm;
831 
832 	mm = allocate_mm();
833 	if (!mm)
834 		return NULL;
835 
836 	memset(mm, 0, sizeof(*mm));
837 	return mm_init(mm, current, current_user_ns());
838 }
839 
840 /*
841  * Called when the last reference to the mm
842  * is dropped: either by a lazy thread or by
843  * mmput. Free the page directory and the mm.
844  */
845 void __mmdrop(struct mm_struct *mm)
846 {
847 	BUG_ON(mm == &init_mm);
848 	mm_free_pgd(mm);
849 	destroy_context(mm);
850 	mmu_notifier_mm_destroy(mm);
851 	check_mm(mm);
852 	put_user_ns(mm->user_ns);
853 	free_mm(mm);
854 }
855 EXPORT_SYMBOL_GPL(__mmdrop);
856 
857 static inline void __mmput(struct mm_struct *mm)
858 {
859 	VM_BUG_ON(atomic_read(&mm->mm_users));
860 
861 	uprobe_clear_state(mm);
862 	exit_aio(mm);
863 	ksm_exit(mm);
864 	khugepaged_exit(mm); /* must run before exit_mmap */
865 	exit_mmap(mm);
866 	mm_put_huge_zero_page(mm);
867 	set_mm_exe_file(mm, NULL);
868 	if (!list_empty(&mm->mmlist)) {
869 		spin_lock(&mmlist_lock);
870 		list_del(&mm->mmlist);
871 		spin_unlock(&mmlist_lock);
872 	}
873 	if (mm->binfmt)
874 		module_put(mm->binfmt->module);
875 	set_bit(MMF_OOM_SKIP, &mm->flags);
876 	mmdrop(mm);
877 }
878 
879 /*
880  * Decrement the use count and release all resources for an mm.
881  */
882 void mmput(struct mm_struct *mm)
883 {
884 	might_sleep();
885 
886 	if (atomic_dec_and_test(&mm->mm_users))
887 		__mmput(mm);
888 }
889 EXPORT_SYMBOL_GPL(mmput);
890 
891 #ifdef CONFIG_MMU
892 static void mmput_async_fn(struct work_struct *work)
893 {
894 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
895 	__mmput(mm);
896 }
897 
898 void mmput_async(struct mm_struct *mm)
899 {
900 	if (atomic_dec_and_test(&mm->mm_users)) {
901 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
902 		schedule_work(&mm->async_put_work);
903 	}
904 }
905 #endif
906 
907 /**
908  * set_mm_exe_file - change a reference to the mm's executable file
909  *
910  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
911  *
912  * Main users are mmput() and sys_execve(). Callers prevent concurrent
913  * invocations: in mmput() nobody alive left, in execve task is single
914  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
915  * mm->exe_file, but does so without using set_mm_exe_file() in order
916  * to do avoid the need for any locks.
917  */
918 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
919 {
920 	struct file *old_exe_file;
921 
922 	/*
923 	 * It is safe to dereference the exe_file without RCU as
924 	 * this function is only called if nobody else can access
925 	 * this mm -- see comment above for justification.
926 	 */
927 	old_exe_file = rcu_dereference_raw(mm->exe_file);
928 
929 	if (new_exe_file)
930 		get_file(new_exe_file);
931 	rcu_assign_pointer(mm->exe_file, new_exe_file);
932 	if (old_exe_file)
933 		fput(old_exe_file);
934 }
935 
936 /**
937  * get_mm_exe_file - acquire a reference to the mm's executable file
938  *
939  * Returns %NULL if mm has no associated executable file.
940  * User must release file via fput().
941  */
942 struct file *get_mm_exe_file(struct mm_struct *mm)
943 {
944 	struct file *exe_file;
945 
946 	rcu_read_lock();
947 	exe_file = rcu_dereference(mm->exe_file);
948 	if (exe_file && !get_file_rcu(exe_file))
949 		exe_file = NULL;
950 	rcu_read_unlock();
951 	return exe_file;
952 }
953 EXPORT_SYMBOL(get_mm_exe_file);
954 
955 /**
956  * get_task_exe_file - acquire a reference to the task's executable file
957  *
958  * Returns %NULL if task's mm (if any) has no associated executable file or
959  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
960  * User must release file via fput().
961  */
962 struct file *get_task_exe_file(struct task_struct *task)
963 {
964 	struct file *exe_file = NULL;
965 	struct mm_struct *mm;
966 
967 	task_lock(task);
968 	mm = task->mm;
969 	if (mm) {
970 		if (!(task->flags & PF_KTHREAD))
971 			exe_file = get_mm_exe_file(mm);
972 	}
973 	task_unlock(task);
974 	return exe_file;
975 }
976 EXPORT_SYMBOL(get_task_exe_file);
977 
978 /**
979  * get_task_mm - acquire a reference to the task's mm
980  *
981  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
982  * this kernel workthread has transiently adopted a user mm with use_mm,
983  * to do its AIO) is not set and if so returns a reference to it, after
984  * bumping up the use count.  User must release the mm via mmput()
985  * after use.  Typically used by /proc and ptrace.
986  */
987 struct mm_struct *get_task_mm(struct task_struct *task)
988 {
989 	struct mm_struct *mm;
990 
991 	task_lock(task);
992 	mm = task->mm;
993 	if (mm) {
994 		if (task->flags & PF_KTHREAD)
995 			mm = NULL;
996 		else
997 			atomic_inc(&mm->mm_users);
998 	}
999 	task_unlock(task);
1000 	return mm;
1001 }
1002 EXPORT_SYMBOL_GPL(get_task_mm);
1003 
1004 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1005 {
1006 	struct mm_struct *mm;
1007 	int err;
1008 
1009 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1010 	if (err)
1011 		return ERR_PTR(err);
1012 
1013 	mm = get_task_mm(task);
1014 	if (mm && mm != current->mm &&
1015 			!ptrace_may_access(task, mode)) {
1016 		mmput(mm);
1017 		mm = ERR_PTR(-EACCES);
1018 	}
1019 	mutex_unlock(&task->signal->cred_guard_mutex);
1020 
1021 	return mm;
1022 }
1023 
1024 static void complete_vfork_done(struct task_struct *tsk)
1025 {
1026 	struct completion *vfork;
1027 
1028 	task_lock(tsk);
1029 	vfork = tsk->vfork_done;
1030 	if (likely(vfork)) {
1031 		tsk->vfork_done = NULL;
1032 		complete(vfork);
1033 	}
1034 	task_unlock(tsk);
1035 }
1036 
1037 static int wait_for_vfork_done(struct task_struct *child,
1038 				struct completion *vfork)
1039 {
1040 	int killed;
1041 
1042 	freezer_do_not_count();
1043 	killed = wait_for_completion_killable(vfork);
1044 	freezer_count();
1045 
1046 	if (killed) {
1047 		task_lock(child);
1048 		child->vfork_done = NULL;
1049 		task_unlock(child);
1050 	}
1051 
1052 	put_task_struct(child);
1053 	return killed;
1054 }
1055 
1056 /* Please note the differences between mmput and mm_release.
1057  * mmput is called whenever we stop holding onto a mm_struct,
1058  * error success whatever.
1059  *
1060  * mm_release is called after a mm_struct has been removed
1061  * from the current process.
1062  *
1063  * This difference is important for error handling, when we
1064  * only half set up a mm_struct for a new process and need to restore
1065  * the old one.  Because we mmput the new mm_struct before
1066  * restoring the old one. . .
1067  * Eric Biederman 10 January 1998
1068  */
1069 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1070 {
1071 	/* Get rid of any futexes when releasing the mm */
1072 #ifdef CONFIG_FUTEX
1073 	if (unlikely(tsk->robust_list)) {
1074 		exit_robust_list(tsk);
1075 		tsk->robust_list = NULL;
1076 	}
1077 #ifdef CONFIG_COMPAT
1078 	if (unlikely(tsk->compat_robust_list)) {
1079 		compat_exit_robust_list(tsk);
1080 		tsk->compat_robust_list = NULL;
1081 	}
1082 #endif
1083 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1084 		exit_pi_state_list(tsk);
1085 #endif
1086 
1087 	uprobe_free_utask(tsk);
1088 
1089 	/* Get rid of any cached register state */
1090 	deactivate_mm(tsk, mm);
1091 
1092 	/*
1093 	 * Signal userspace if we're not exiting with a core dump
1094 	 * because we want to leave the value intact for debugging
1095 	 * purposes.
1096 	 */
1097 	if (tsk->clear_child_tid) {
1098 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1099 		    atomic_read(&mm->mm_users) > 1) {
1100 			/*
1101 			 * We don't check the error code - if userspace has
1102 			 * not set up a proper pointer then tough luck.
1103 			 */
1104 			put_user(0, tsk->clear_child_tid);
1105 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1106 					1, NULL, NULL, 0);
1107 		}
1108 		tsk->clear_child_tid = NULL;
1109 	}
1110 
1111 	/*
1112 	 * All done, finally we can wake up parent and return this mm to him.
1113 	 * Also kthread_stop() uses this completion for synchronization.
1114 	 */
1115 	if (tsk->vfork_done)
1116 		complete_vfork_done(tsk);
1117 }
1118 
1119 /*
1120  * Allocate a new mm structure and copy contents from the
1121  * mm structure of the passed in task structure.
1122  */
1123 static struct mm_struct *dup_mm(struct task_struct *tsk)
1124 {
1125 	struct mm_struct *mm, *oldmm = current->mm;
1126 	int err;
1127 
1128 	mm = allocate_mm();
1129 	if (!mm)
1130 		goto fail_nomem;
1131 
1132 	memcpy(mm, oldmm, sizeof(*mm));
1133 
1134 	if (!mm_init(mm, tsk, mm->user_ns))
1135 		goto fail_nomem;
1136 
1137 	err = dup_mmap(mm, oldmm);
1138 	if (err)
1139 		goto free_pt;
1140 
1141 	mm->hiwater_rss = get_mm_rss(mm);
1142 	mm->hiwater_vm = mm->total_vm;
1143 
1144 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1145 		goto free_pt;
1146 
1147 	return mm;
1148 
1149 free_pt:
1150 	/* don't put binfmt in mmput, we haven't got module yet */
1151 	mm->binfmt = NULL;
1152 	mmput(mm);
1153 
1154 fail_nomem:
1155 	return NULL;
1156 }
1157 
1158 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1159 {
1160 	struct mm_struct *mm, *oldmm;
1161 	int retval;
1162 
1163 	tsk->min_flt = tsk->maj_flt = 0;
1164 	tsk->nvcsw = tsk->nivcsw = 0;
1165 #ifdef CONFIG_DETECT_HUNG_TASK
1166 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1167 #endif
1168 
1169 	tsk->mm = NULL;
1170 	tsk->active_mm = NULL;
1171 
1172 	/*
1173 	 * Are we cloning a kernel thread?
1174 	 *
1175 	 * We need to steal a active VM for that..
1176 	 */
1177 	oldmm = current->mm;
1178 	if (!oldmm)
1179 		return 0;
1180 
1181 	/* initialize the new vmacache entries */
1182 	vmacache_flush(tsk);
1183 
1184 	if (clone_flags & CLONE_VM) {
1185 		atomic_inc(&oldmm->mm_users);
1186 		mm = oldmm;
1187 		goto good_mm;
1188 	}
1189 
1190 	retval = -ENOMEM;
1191 	mm = dup_mm(tsk);
1192 	if (!mm)
1193 		goto fail_nomem;
1194 
1195 good_mm:
1196 	tsk->mm = mm;
1197 	tsk->active_mm = mm;
1198 	return 0;
1199 
1200 fail_nomem:
1201 	return retval;
1202 }
1203 
1204 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1205 {
1206 	struct fs_struct *fs = current->fs;
1207 	if (clone_flags & CLONE_FS) {
1208 		/* tsk->fs is already what we want */
1209 		spin_lock(&fs->lock);
1210 		if (fs->in_exec) {
1211 			spin_unlock(&fs->lock);
1212 			return -EAGAIN;
1213 		}
1214 		fs->users++;
1215 		spin_unlock(&fs->lock);
1216 		return 0;
1217 	}
1218 	tsk->fs = copy_fs_struct(fs);
1219 	if (!tsk->fs)
1220 		return -ENOMEM;
1221 	return 0;
1222 }
1223 
1224 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1225 {
1226 	struct files_struct *oldf, *newf;
1227 	int error = 0;
1228 
1229 	/*
1230 	 * A background process may not have any files ...
1231 	 */
1232 	oldf = current->files;
1233 	if (!oldf)
1234 		goto out;
1235 
1236 	if (clone_flags & CLONE_FILES) {
1237 		atomic_inc(&oldf->count);
1238 		goto out;
1239 	}
1240 
1241 	newf = dup_fd(oldf, &error);
1242 	if (!newf)
1243 		goto out;
1244 
1245 	tsk->files = newf;
1246 	error = 0;
1247 out:
1248 	return error;
1249 }
1250 
1251 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1252 {
1253 #ifdef CONFIG_BLOCK
1254 	struct io_context *ioc = current->io_context;
1255 	struct io_context *new_ioc;
1256 
1257 	if (!ioc)
1258 		return 0;
1259 	/*
1260 	 * Share io context with parent, if CLONE_IO is set
1261 	 */
1262 	if (clone_flags & CLONE_IO) {
1263 		ioc_task_link(ioc);
1264 		tsk->io_context = ioc;
1265 	} else if (ioprio_valid(ioc->ioprio)) {
1266 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1267 		if (unlikely(!new_ioc))
1268 			return -ENOMEM;
1269 
1270 		new_ioc->ioprio = ioc->ioprio;
1271 		put_io_context(new_ioc);
1272 	}
1273 #endif
1274 	return 0;
1275 }
1276 
1277 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1278 {
1279 	struct sighand_struct *sig;
1280 
1281 	if (clone_flags & CLONE_SIGHAND) {
1282 		atomic_inc(&current->sighand->count);
1283 		return 0;
1284 	}
1285 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1286 	rcu_assign_pointer(tsk->sighand, sig);
1287 	if (!sig)
1288 		return -ENOMEM;
1289 
1290 	atomic_set(&sig->count, 1);
1291 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1292 	return 0;
1293 }
1294 
1295 void __cleanup_sighand(struct sighand_struct *sighand)
1296 {
1297 	if (atomic_dec_and_test(&sighand->count)) {
1298 		signalfd_cleanup(sighand);
1299 		/*
1300 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1301 		 * without an RCU grace period, see __lock_task_sighand().
1302 		 */
1303 		kmem_cache_free(sighand_cachep, sighand);
1304 	}
1305 }
1306 
1307 /*
1308  * Initialize POSIX timer handling for a thread group.
1309  */
1310 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1311 {
1312 	unsigned long cpu_limit;
1313 
1314 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1315 	if (cpu_limit != RLIM_INFINITY) {
1316 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1317 		sig->cputimer.running = true;
1318 	}
1319 
1320 	/* The timer lists. */
1321 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1322 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1323 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1324 }
1325 
1326 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1327 {
1328 	struct signal_struct *sig;
1329 
1330 	if (clone_flags & CLONE_THREAD)
1331 		return 0;
1332 
1333 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1334 	tsk->signal = sig;
1335 	if (!sig)
1336 		return -ENOMEM;
1337 
1338 	sig->nr_threads = 1;
1339 	atomic_set(&sig->live, 1);
1340 	atomic_set(&sig->sigcnt, 1);
1341 
1342 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1343 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1344 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1345 
1346 	init_waitqueue_head(&sig->wait_chldexit);
1347 	sig->curr_target = tsk;
1348 	init_sigpending(&sig->shared_pending);
1349 	INIT_LIST_HEAD(&sig->posix_timers);
1350 	seqlock_init(&sig->stats_lock);
1351 	prev_cputime_init(&sig->prev_cputime);
1352 
1353 #ifdef CONFIG_POSIX_TIMERS
1354 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1355 	sig->real_timer.function = it_real_fn;
1356 #endif
1357 
1358 	task_lock(current->group_leader);
1359 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1360 	task_unlock(current->group_leader);
1361 
1362 	posix_cpu_timers_init_group(sig);
1363 
1364 	tty_audit_fork(sig);
1365 	sched_autogroup_fork(sig);
1366 
1367 	sig->oom_score_adj = current->signal->oom_score_adj;
1368 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1369 
1370 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1371 				   current->signal->is_child_subreaper;
1372 
1373 	mutex_init(&sig->cred_guard_mutex);
1374 
1375 	return 0;
1376 }
1377 
1378 static void copy_seccomp(struct task_struct *p)
1379 {
1380 #ifdef CONFIG_SECCOMP
1381 	/*
1382 	 * Must be called with sighand->lock held, which is common to
1383 	 * all threads in the group. Holding cred_guard_mutex is not
1384 	 * needed because this new task is not yet running and cannot
1385 	 * be racing exec.
1386 	 */
1387 	assert_spin_locked(&current->sighand->siglock);
1388 
1389 	/* Ref-count the new filter user, and assign it. */
1390 	get_seccomp_filter(current);
1391 	p->seccomp = current->seccomp;
1392 
1393 	/*
1394 	 * Explicitly enable no_new_privs here in case it got set
1395 	 * between the task_struct being duplicated and holding the
1396 	 * sighand lock. The seccomp state and nnp must be in sync.
1397 	 */
1398 	if (task_no_new_privs(current))
1399 		task_set_no_new_privs(p);
1400 
1401 	/*
1402 	 * If the parent gained a seccomp mode after copying thread
1403 	 * flags and between before we held the sighand lock, we have
1404 	 * to manually enable the seccomp thread flag here.
1405 	 */
1406 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1407 		set_tsk_thread_flag(p, TIF_SECCOMP);
1408 #endif
1409 }
1410 
1411 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1412 {
1413 	current->clear_child_tid = tidptr;
1414 
1415 	return task_pid_vnr(current);
1416 }
1417 
1418 static void rt_mutex_init_task(struct task_struct *p)
1419 {
1420 	raw_spin_lock_init(&p->pi_lock);
1421 #ifdef CONFIG_RT_MUTEXES
1422 	p->pi_waiters = RB_ROOT;
1423 	p->pi_waiters_leftmost = NULL;
1424 	p->pi_blocked_on = NULL;
1425 #endif
1426 }
1427 
1428 /*
1429  * Initialize POSIX timer handling for a single task.
1430  */
1431 static void posix_cpu_timers_init(struct task_struct *tsk)
1432 {
1433 	tsk->cputime_expires.prof_exp = 0;
1434 	tsk->cputime_expires.virt_exp = 0;
1435 	tsk->cputime_expires.sched_exp = 0;
1436 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1437 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1438 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1439 }
1440 
1441 static inline void
1442 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1443 {
1444 	 task->pids[type].pid = pid;
1445 }
1446 
1447 /*
1448  * This creates a new process as a copy of the old one,
1449  * but does not actually start it yet.
1450  *
1451  * It copies the registers, and all the appropriate
1452  * parts of the process environment (as per the clone
1453  * flags). The actual kick-off is left to the caller.
1454  */
1455 static __latent_entropy struct task_struct *copy_process(
1456 					unsigned long clone_flags,
1457 					unsigned long stack_start,
1458 					unsigned long stack_size,
1459 					int __user *child_tidptr,
1460 					struct pid *pid,
1461 					int trace,
1462 					unsigned long tls,
1463 					int node)
1464 {
1465 	int retval;
1466 	struct task_struct *p;
1467 
1468 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1469 		return ERR_PTR(-EINVAL);
1470 
1471 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1472 		return ERR_PTR(-EINVAL);
1473 
1474 	/*
1475 	 * Thread groups must share signals as well, and detached threads
1476 	 * can only be started up within the thread group.
1477 	 */
1478 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1479 		return ERR_PTR(-EINVAL);
1480 
1481 	/*
1482 	 * Shared signal handlers imply shared VM. By way of the above,
1483 	 * thread groups also imply shared VM. Blocking this case allows
1484 	 * for various simplifications in other code.
1485 	 */
1486 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1487 		return ERR_PTR(-EINVAL);
1488 
1489 	/*
1490 	 * Siblings of global init remain as zombies on exit since they are
1491 	 * not reaped by their parent (swapper). To solve this and to avoid
1492 	 * multi-rooted process trees, prevent global and container-inits
1493 	 * from creating siblings.
1494 	 */
1495 	if ((clone_flags & CLONE_PARENT) &&
1496 				current->signal->flags & SIGNAL_UNKILLABLE)
1497 		return ERR_PTR(-EINVAL);
1498 
1499 	/*
1500 	 * If the new process will be in a different pid or user namespace
1501 	 * do not allow it to share a thread group with the forking task.
1502 	 */
1503 	if (clone_flags & CLONE_THREAD) {
1504 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1505 		    (task_active_pid_ns(current) !=
1506 				current->nsproxy->pid_ns_for_children))
1507 			return ERR_PTR(-EINVAL);
1508 	}
1509 
1510 	retval = security_task_create(clone_flags);
1511 	if (retval)
1512 		goto fork_out;
1513 
1514 	retval = -ENOMEM;
1515 	p = dup_task_struct(current, node);
1516 	if (!p)
1517 		goto fork_out;
1518 
1519 	ftrace_graph_init_task(p);
1520 
1521 	rt_mutex_init_task(p);
1522 
1523 #ifdef CONFIG_PROVE_LOCKING
1524 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1525 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1526 #endif
1527 	retval = -EAGAIN;
1528 	if (atomic_read(&p->real_cred->user->processes) >=
1529 			task_rlimit(p, RLIMIT_NPROC)) {
1530 		if (p->real_cred->user != INIT_USER &&
1531 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1532 			goto bad_fork_free;
1533 	}
1534 	current->flags &= ~PF_NPROC_EXCEEDED;
1535 
1536 	retval = copy_creds(p, clone_flags);
1537 	if (retval < 0)
1538 		goto bad_fork_free;
1539 
1540 	/*
1541 	 * If multiple threads are within copy_process(), then this check
1542 	 * triggers too late. This doesn't hurt, the check is only there
1543 	 * to stop root fork bombs.
1544 	 */
1545 	retval = -EAGAIN;
1546 	if (nr_threads >= max_threads)
1547 		goto bad_fork_cleanup_count;
1548 
1549 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1550 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1551 	p->flags |= PF_FORKNOEXEC;
1552 	INIT_LIST_HEAD(&p->children);
1553 	INIT_LIST_HEAD(&p->sibling);
1554 	rcu_copy_process(p);
1555 	p->vfork_done = NULL;
1556 	spin_lock_init(&p->alloc_lock);
1557 
1558 	init_sigpending(&p->pending);
1559 
1560 	p->utime = p->stime = p->gtime = 0;
1561 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1562 	p->utimescaled = p->stimescaled = 0;
1563 #endif
1564 	prev_cputime_init(&p->prev_cputime);
1565 
1566 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1567 	seqcount_init(&p->vtime_seqcount);
1568 	p->vtime_snap = 0;
1569 	p->vtime_snap_whence = VTIME_INACTIVE;
1570 #endif
1571 
1572 #if defined(SPLIT_RSS_COUNTING)
1573 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1574 #endif
1575 
1576 	p->default_timer_slack_ns = current->timer_slack_ns;
1577 
1578 	task_io_accounting_init(&p->ioac);
1579 	acct_clear_integrals(p);
1580 
1581 	posix_cpu_timers_init(p);
1582 
1583 	p->start_time = ktime_get_ns();
1584 	p->real_start_time = ktime_get_boot_ns();
1585 	p->io_context = NULL;
1586 	p->audit_context = NULL;
1587 	cgroup_fork(p);
1588 #ifdef CONFIG_NUMA
1589 	p->mempolicy = mpol_dup(p->mempolicy);
1590 	if (IS_ERR(p->mempolicy)) {
1591 		retval = PTR_ERR(p->mempolicy);
1592 		p->mempolicy = NULL;
1593 		goto bad_fork_cleanup_threadgroup_lock;
1594 	}
1595 #endif
1596 #ifdef CONFIG_CPUSETS
1597 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1598 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1599 	seqcount_init(&p->mems_allowed_seq);
1600 #endif
1601 #ifdef CONFIG_TRACE_IRQFLAGS
1602 	p->irq_events = 0;
1603 	p->hardirqs_enabled = 0;
1604 	p->hardirq_enable_ip = 0;
1605 	p->hardirq_enable_event = 0;
1606 	p->hardirq_disable_ip = _THIS_IP_;
1607 	p->hardirq_disable_event = 0;
1608 	p->softirqs_enabled = 1;
1609 	p->softirq_enable_ip = _THIS_IP_;
1610 	p->softirq_enable_event = 0;
1611 	p->softirq_disable_ip = 0;
1612 	p->softirq_disable_event = 0;
1613 	p->hardirq_context = 0;
1614 	p->softirq_context = 0;
1615 #endif
1616 
1617 	p->pagefault_disabled = 0;
1618 
1619 #ifdef CONFIG_LOCKDEP
1620 	p->lockdep_depth = 0; /* no locks held yet */
1621 	p->curr_chain_key = 0;
1622 	p->lockdep_recursion = 0;
1623 #endif
1624 
1625 #ifdef CONFIG_DEBUG_MUTEXES
1626 	p->blocked_on = NULL; /* not blocked yet */
1627 #endif
1628 #ifdef CONFIG_BCACHE
1629 	p->sequential_io	= 0;
1630 	p->sequential_io_avg	= 0;
1631 #endif
1632 
1633 	/* Perform scheduler related setup. Assign this task to a CPU. */
1634 	retval = sched_fork(clone_flags, p);
1635 	if (retval)
1636 		goto bad_fork_cleanup_policy;
1637 
1638 	retval = perf_event_init_task(p);
1639 	if (retval)
1640 		goto bad_fork_cleanup_policy;
1641 	retval = audit_alloc(p);
1642 	if (retval)
1643 		goto bad_fork_cleanup_perf;
1644 	/* copy all the process information */
1645 	shm_init_task(p);
1646 	retval = copy_semundo(clone_flags, p);
1647 	if (retval)
1648 		goto bad_fork_cleanup_audit;
1649 	retval = copy_files(clone_flags, p);
1650 	if (retval)
1651 		goto bad_fork_cleanup_semundo;
1652 	retval = copy_fs(clone_flags, p);
1653 	if (retval)
1654 		goto bad_fork_cleanup_files;
1655 	retval = copy_sighand(clone_flags, p);
1656 	if (retval)
1657 		goto bad_fork_cleanup_fs;
1658 	retval = copy_signal(clone_flags, p);
1659 	if (retval)
1660 		goto bad_fork_cleanup_sighand;
1661 	retval = copy_mm(clone_flags, p);
1662 	if (retval)
1663 		goto bad_fork_cleanup_signal;
1664 	retval = copy_namespaces(clone_flags, p);
1665 	if (retval)
1666 		goto bad_fork_cleanup_mm;
1667 	retval = copy_io(clone_flags, p);
1668 	if (retval)
1669 		goto bad_fork_cleanup_namespaces;
1670 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1671 	if (retval)
1672 		goto bad_fork_cleanup_io;
1673 
1674 	if (pid != &init_struct_pid) {
1675 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1676 		if (IS_ERR(pid)) {
1677 			retval = PTR_ERR(pid);
1678 			goto bad_fork_cleanup_thread;
1679 		}
1680 	}
1681 
1682 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1683 	/*
1684 	 * Clear TID on mm_release()?
1685 	 */
1686 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1687 #ifdef CONFIG_BLOCK
1688 	p->plug = NULL;
1689 #endif
1690 #ifdef CONFIG_FUTEX
1691 	p->robust_list = NULL;
1692 #ifdef CONFIG_COMPAT
1693 	p->compat_robust_list = NULL;
1694 #endif
1695 	INIT_LIST_HEAD(&p->pi_state_list);
1696 	p->pi_state_cache = NULL;
1697 #endif
1698 	/*
1699 	 * sigaltstack should be cleared when sharing the same VM
1700 	 */
1701 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1702 		sas_ss_reset(p);
1703 
1704 	/*
1705 	 * Syscall tracing and stepping should be turned off in the
1706 	 * child regardless of CLONE_PTRACE.
1707 	 */
1708 	user_disable_single_step(p);
1709 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1710 #ifdef TIF_SYSCALL_EMU
1711 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1712 #endif
1713 	clear_all_latency_tracing(p);
1714 
1715 	/* ok, now we should be set up.. */
1716 	p->pid = pid_nr(pid);
1717 	if (clone_flags & CLONE_THREAD) {
1718 		p->exit_signal = -1;
1719 		p->group_leader = current->group_leader;
1720 		p->tgid = current->tgid;
1721 	} else {
1722 		if (clone_flags & CLONE_PARENT)
1723 			p->exit_signal = current->group_leader->exit_signal;
1724 		else
1725 			p->exit_signal = (clone_flags & CSIGNAL);
1726 		p->group_leader = p;
1727 		p->tgid = p->pid;
1728 	}
1729 
1730 	p->nr_dirtied = 0;
1731 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1732 	p->dirty_paused_when = 0;
1733 
1734 	p->pdeath_signal = 0;
1735 	INIT_LIST_HEAD(&p->thread_group);
1736 	p->task_works = NULL;
1737 
1738 	threadgroup_change_begin(current);
1739 	/*
1740 	 * Ensure that the cgroup subsystem policies allow the new process to be
1741 	 * forked. It should be noted the the new process's css_set can be changed
1742 	 * between here and cgroup_post_fork() if an organisation operation is in
1743 	 * progress.
1744 	 */
1745 	retval = cgroup_can_fork(p);
1746 	if (retval)
1747 		goto bad_fork_free_pid;
1748 
1749 	/*
1750 	 * Make it visible to the rest of the system, but dont wake it up yet.
1751 	 * Need tasklist lock for parent etc handling!
1752 	 */
1753 	write_lock_irq(&tasklist_lock);
1754 
1755 	/* CLONE_PARENT re-uses the old parent */
1756 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1757 		p->real_parent = current->real_parent;
1758 		p->parent_exec_id = current->parent_exec_id;
1759 	} else {
1760 		p->real_parent = current;
1761 		p->parent_exec_id = current->self_exec_id;
1762 	}
1763 
1764 	spin_lock(&current->sighand->siglock);
1765 
1766 	/*
1767 	 * Copy seccomp details explicitly here, in case they were changed
1768 	 * before holding sighand lock.
1769 	 */
1770 	copy_seccomp(p);
1771 
1772 	/*
1773 	 * Process group and session signals need to be delivered to just the
1774 	 * parent before the fork or both the parent and the child after the
1775 	 * fork. Restart if a signal comes in before we add the new process to
1776 	 * it's process group.
1777 	 * A fatal signal pending means that current will exit, so the new
1778 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1779 	*/
1780 	recalc_sigpending();
1781 	if (signal_pending(current)) {
1782 		spin_unlock(&current->sighand->siglock);
1783 		write_unlock_irq(&tasklist_lock);
1784 		retval = -ERESTARTNOINTR;
1785 		goto bad_fork_cancel_cgroup;
1786 	}
1787 
1788 	if (likely(p->pid)) {
1789 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1790 
1791 		init_task_pid(p, PIDTYPE_PID, pid);
1792 		if (thread_group_leader(p)) {
1793 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1794 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1795 
1796 			if (is_child_reaper(pid)) {
1797 				ns_of_pid(pid)->child_reaper = p;
1798 				p->signal->flags |= SIGNAL_UNKILLABLE;
1799 			}
1800 
1801 			p->signal->leader_pid = pid;
1802 			p->signal->tty = tty_kref_get(current->signal->tty);
1803 			list_add_tail(&p->sibling, &p->real_parent->children);
1804 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1805 			attach_pid(p, PIDTYPE_PGID);
1806 			attach_pid(p, PIDTYPE_SID);
1807 			__this_cpu_inc(process_counts);
1808 		} else {
1809 			current->signal->nr_threads++;
1810 			atomic_inc(&current->signal->live);
1811 			atomic_inc(&current->signal->sigcnt);
1812 			list_add_tail_rcu(&p->thread_group,
1813 					  &p->group_leader->thread_group);
1814 			list_add_tail_rcu(&p->thread_node,
1815 					  &p->signal->thread_head);
1816 		}
1817 		attach_pid(p, PIDTYPE_PID);
1818 		nr_threads++;
1819 	}
1820 
1821 	total_forks++;
1822 	spin_unlock(&current->sighand->siglock);
1823 	syscall_tracepoint_update(p);
1824 	write_unlock_irq(&tasklist_lock);
1825 
1826 	proc_fork_connector(p);
1827 	cgroup_post_fork(p);
1828 	threadgroup_change_end(current);
1829 	perf_event_fork(p);
1830 
1831 	trace_task_newtask(p, clone_flags);
1832 	uprobe_copy_process(p, clone_flags);
1833 
1834 	return p;
1835 
1836 bad_fork_cancel_cgroup:
1837 	cgroup_cancel_fork(p);
1838 bad_fork_free_pid:
1839 	threadgroup_change_end(current);
1840 	if (pid != &init_struct_pid)
1841 		free_pid(pid);
1842 bad_fork_cleanup_thread:
1843 	exit_thread(p);
1844 bad_fork_cleanup_io:
1845 	if (p->io_context)
1846 		exit_io_context(p);
1847 bad_fork_cleanup_namespaces:
1848 	exit_task_namespaces(p);
1849 bad_fork_cleanup_mm:
1850 	if (p->mm)
1851 		mmput(p->mm);
1852 bad_fork_cleanup_signal:
1853 	if (!(clone_flags & CLONE_THREAD))
1854 		free_signal_struct(p->signal);
1855 bad_fork_cleanup_sighand:
1856 	__cleanup_sighand(p->sighand);
1857 bad_fork_cleanup_fs:
1858 	exit_fs(p); /* blocking */
1859 bad_fork_cleanup_files:
1860 	exit_files(p); /* blocking */
1861 bad_fork_cleanup_semundo:
1862 	exit_sem(p);
1863 bad_fork_cleanup_audit:
1864 	audit_free(p);
1865 bad_fork_cleanup_perf:
1866 	perf_event_free_task(p);
1867 bad_fork_cleanup_policy:
1868 #ifdef CONFIG_NUMA
1869 	mpol_put(p->mempolicy);
1870 bad_fork_cleanup_threadgroup_lock:
1871 #endif
1872 	delayacct_tsk_free(p);
1873 bad_fork_cleanup_count:
1874 	atomic_dec(&p->cred->user->processes);
1875 	exit_creds(p);
1876 bad_fork_free:
1877 	p->state = TASK_DEAD;
1878 	put_task_stack(p);
1879 	free_task(p);
1880 fork_out:
1881 	return ERR_PTR(retval);
1882 }
1883 
1884 static inline void init_idle_pids(struct pid_link *links)
1885 {
1886 	enum pid_type type;
1887 
1888 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1889 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1890 		links[type].pid = &init_struct_pid;
1891 	}
1892 }
1893 
1894 struct task_struct *fork_idle(int cpu)
1895 {
1896 	struct task_struct *task;
1897 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1898 			    cpu_to_node(cpu));
1899 	if (!IS_ERR(task)) {
1900 		init_idle_pids(task->pids);
1901 		init_idle(task, cpu);
1902 	}
1903 
1904 	return task;
1905 }
1906 
1907 /*
1908  *  Ok, this is the main fork-routine.
1909  *
1910  * It copies the process, and if successful kick-starts
1911  * it and waits for it to finish using the VM if required.
1912  */
1913 long _do_fork(unsigned long clone_flags,
1914 	      unsigned long stack_start,
1915 	      unsigned long stack_size,
1916 	      int __user *parent_tidptr,
1917 	      int __user *child_tidptr,
1918 	      unsigned long tls)
1919 {
1920 	struct task_struct *p;
1921 	int trace = 0;
1922 	long nr;
1923 
1924 	/*
1925 	 * Determine whether and which event to report to ptracer.  When
1926 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1927 	 * requested, no event is reported; otherwise, report if the event
1928 	 * for the type of forking is enabled.
1929 	 */
1930 	if (!(clone_flags & CLONE_UNTRACED)) {
1931 		if (clone_flags & CLONE_VFORK)
1932 			trace = PTRACE_EVENT_VFORK;
1933 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1934 			trace = PTRACE_EVENT_CLONE;
1935 		else
1936 			trace = PTRACE_EVENT_FORK;
1937 
1938 		if (likely(!ptrace_event_enabled(current, trace)))
1939 			trace = 0;
1940 	}
1941 
1942 	p = copy_process(clone_flags, stack_start, stack_size,
1943 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1944 	add_latent_entropy();
1945 	/*
1946 	 * Do this prior waking up the new thread - the thread pointer
1947 	 * might get invalid after that point, if the thread exits quickly.
1948 	 */
1949 	if (!IS_ERR(p)) {
1950 		struct completion vfork;
1951 		struct pid *pid;
1952 
1953 		trace_sched_process_fork(current, p);
1954 
1955 		pid = get_task_pid(p, PIDTYPE_PID);
1956 		nr = pid_vnr(pid);
1957 
1958 		if (clone_flags & CLONE_PARENT_SETTID)
1959 			put_user(nr, parent_tidptr);
1960 
1961 		if (clone_flags & CLONE_VFORK) {
1962 			p->vfork_done = &vfork;
1963 			init_completion(&vfork);
1964 			get_task_struct(p);
1965 		}
1966 
1967 		wake_up_new_task(p);
1968 
1969 		/* forking complete and child started to run, tell ptracer */
1970 		if (unlikely(trace))
1971 			ptrace_event_pid(trace, pid);
1972 
1973 		if (clone_flags & CLONE_VFORK) {
1974 			if (!wait_for_vfork_done(p, &vfork))
1975 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1976 		}
1977 
1978 		put_pid(pid);
1979 	} else {
1980 		nr = PTR_ERR(p);
1981 	}
1982 	return nr;
1983 }
1984 
1985 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1986 /* For compatibility with architectures that call do_fork directly rather than
1987  * using the syscall entry points below. */
1988 long do_fork(unsigned long clone_flags,
1989 	      unsigned long stack_start,
1990 	      unsigned long stack_size,
1991 	      int __user *parent_tidptr,
1992 	      int __user *child_tidptr)
1993 {
1994 	return _do_fork(clone_flags, stack_start, stack_size,
1995 			parent_tidptr, child_tidptr, 0);
1996 }
1997 #endif
1998 
1999 /*
2000  * Create a kernel thread.
2001  */
2002 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2003 {
2004 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2005 		(unsigned long)arg, NULL, NULL, 0);
2006 }
2007 
2008 #ifdef __ARCH_WANT_SYS_FORK
2009 SYSCALL_DEFINE0(fork)
2010 {
2011 #ifdef CONFIG_MMU
2012 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2013 #else
2014 	/* can not support in nommu mode */
2015 	return -EINVAL;
2016 #endif
2017 }
2018 #endif
2019 
2020 #ifdef __ARCH_WANT_SYS_VFORK
2021 SYSCALL_DEFINE0(vfork)
2022 {
2023 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2024 			0, NULL, NULL, 0);
2025 }
2026 #endif
2027 
2028 #ifdef __ARCH_WANT_SYS_CLONE
2029 #ifdef CONFIG_CLONE_BACKWARDS
2030 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2031 		 int __user *, parent_tidptr,
2032 		 unsigned long, tls,
2033 		 int __user *, child_tidptr)
2034 #elif defined(CONFIG_CLONE_BACKWARDS2)
2035 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2036 		 int __user *, parent_tidptr,
2037 		 int __user *, child_tidptr,
2038 		 unsigned long, tls)
2039 #elif defined(CONFIG_CLONE_BACKWARDS3)
2040 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2041 		int, stack_size,
2042 		int __user *, parent_tidptr,
2043 		int __user *, child_tidptr,
2044 		unsigned long, tls)
2045 #else
2046 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2047 		 int __user *, parent_tidptr,
2048 		 int __user *, child_tidptr,
2049 		 unsigned long, tls)
2050 #endif
2051 {
2052 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2053 }
2054 #endif
2055 
2056 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2057 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2058 #endif
2059 
2060 static void sighand_ctor(void *data)
2061 {
2062 	struct sighand_struct *sighand = data;
2063 
2064 	spin_lock_init(&sighand->siglock);
2065 	init_waitqueue_head(&sighand->signalfd_wqh);
2066 }
2067 
2068 void __init proc_caches_init(void)
2069 {
2070 	sighand_cachep = kmem_cache_create("sighand_cache",
2071 			sizeof(struct sighand_struct), 0,
2072 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2073 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2074 	signal_cachep = kmem_cache_create("signal_cache",
2075 			sizeof(struct signal_struct), 0,
2076 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2077 			NULL);
2078 	files_cachep = kmem_cache_create("files_cache",
2079 			sizeof(struct files_struct), 0,
2080 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2081 			NULL);
2082 	fs_cachep = kmem_cache_create("fs_cache",
2083 			sizeof(struct fs_struct), 0,
2084 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2085 			NULL);
2086 	/*
2087 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2088 	 * whole struct cpumask for the OFFSTACK case. We could change
2089 	 * this to *only* allocate as much of it as required by the
2090 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2091 	 * is at the end of the structure, exactly for that reason.
2092 	 */
2093 	mm_cachep = kmem_cache_create("mm_struct",
2094 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2095 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2096 			NULL);
2097 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2098 	mmap_init();
2099 	nsproxy_cache_init();
2100 }
2101 
2102 /*
2103  * Check constraints on flags passed to the unshare system call.
2104  */
2105 static int check_unshare_flags(unsigned long unshare_flags)
2106 {
2107 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2108 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2109 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2110 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2111 		return -EINVAL;
2112 	/*
2113 	 * Not implemented, but pretend it works if there is nothing
2114 	 * to unshare.  Note that unsharing the address space or the
2115 	 * signal handlers also need to unshare the signal queues (aka
2116 	 * CLONE_THREAD).
2117 	 */
2118 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2119 		if (!thread_group_empty(current))
2120 			return -EINVAL;
2121 	}
2122 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2123 		if (atomic_read(&current->sighand->count) > 1)
2124 			return -EINVAL;
2125 	}
2126 	if (unshare_flags & CLONE_VM) {
2127 		if (!current_is_single_threaded())
2128 			return -EINVAL;
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 /*
2135  * Unshare the filesystem structure if it is being shared
2136  */
2137 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2138 {
2139 	struct fs_struct *fs = current->fs;
2140 
2141 	if (!(unshare_flags & CLONE_FS) || !fs)
2142 		return 0;
2143 
2144 	/* don't need lock here; in the worst case we'll do useless copy */
2145 	if (fs->users == 1)
2146 		return 0;
2147 
2148 	*new_fsp = copy_fs_struct(fs);
2149 	if (!*new_fsp)
2150 		return -ENOMEM;
2151 
2152 	return 0;
2153 }
2154 
2155 /*
2156  * Unshare file descriptor table if it is being shared
2157  */
2158 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2159 {
2160 	struct files_struct *fd = current->files;
2161 	int error = 0;
2162 
2163 	if ((unshare_flags & CLONE_FILES) &&
2164 	    (fd && atomic_read(&fd->count) > 1)) {
2165 		*new_fdp = dup_fd(fd, &error);
2166 		if (!*new_fdp)
2167 			return error;
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 /*
2174  * unshare allows a process to 'unshare' part of the process
2175  * context which was originally shared using clone.  copy_*
2176  * functions used by do_fork() cannot be used here directly
2177  * because they modify an inactive task_struct that is being
2178  * constructed. Here we are modifying the current, active,
2179  * task_struct.
2180  */
2181 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2182 {
2183 	struct fs_struct *fs, *new_fs = NULL;
2184 	struct files_struct *fd, *new_fd = NULL;
2185 	struct cred *new_cred = NULL;
2186 	struct nsproxy *new_nsproxy = NULL;
2187 	int do_sysvsem = 0;
2188 	int err;
2189 
2190 	/*
2191 	 * If unsharing a user namespace must also unshare the thread group
2192 	 * and unshare the filesystem root and working directories.
2193 	 */
2194 	if (unshare_flags & CLONE_NEWUSER)
2195 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2196 	/*
2197 	 * If unsharing vm, must also unshare signal handlers.
2198 	 */
2199 	if (unshare_flags & CLONE_VM)
2200 		unshare_flags |= CLONE_SIGHAND;
2201 	/*
2202 	 * If unsharing a signal handlers, must also unshare the signal queues.
2203 	 */
2204 	if (unshare_flags & CLONE_SIGHAND)
2205 		unshare_flags |= CLONE_THREAD;
2206 	/*
2207 	 * If unsharing namespace, must also unshare filesystem information.
2208 	 */
2209 	if (unshare_flags & CLONE_NEWNS)
2210 		unshare_flags |= CLONE_FS;
2211 
2212 	err = check_unshare_flags(unshare_flags);
2213 	if (err)
2214 		goto bad_unshare_out;
2215 	/*
2216 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2217 	 * to a new ipc namespace, the semaphore arrays from the old
2218 	 * namespace are unreachable.
2219 	 */
2220 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2221 		do_sysvsem = 1;
2222 	err = unshare_fs(unshare_flags, &new_fs);
2223 	if (err)
2224 		goto bad_unshare_out;
2225 	err = unshare_fd(unshare_flags, &new_fd);
2226 	if (err)
2227 		goto bad_unshare_cleanup_fs;
2228 	err = unshare_userns(unshare_flags, &new_cred);
2229 	if (err)
2230 		goto bad_unshare_cleanup_fd;
2231 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2232 					 new_cred, new_fs);
2233 	if (err)
2234 		goto bad_unshare_cleanup_cred;
2235 
2236 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2237 		if (do_sysvsem) {
2238 			/*
2239 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2240 			 */
2241 			exit_sem(current);
2242 		}
2243 		if (unshare_flags & CLONE_NEWIPC) {
2244 			/* Orphan segments in old ns (see sem above). */
2245 			exit_shm(current);
2246 			shm_init_task(current);
2247 		}
2248 
2249 		if (new_nsproxy)
2250 			switch_task_namespaces(current, new_nsproxy);
2251 
2252 		task_lock(current);
2253 
2254 		if (new_fs) {
2255 			fs = current->fs;
2256 			spin_lock(&fs->lock);
2257 			current->fs = new_fs;
2258 			if (--fs->users)
2259 				new_fs = NULL;
2260 			else
2261 				new_fs = fs;
2262 			spin_unlock(&fs->lock);
2263 		}
2264 
2265 		if (new_fd) {
2266 			fd = current->files;
2267 			current->files = new_fd;
2268 			new_fd = fd;
2269 		}
2270 
2271 		task_unlock(current);
2272 
2273 		if (new_cred) {
2274 			/* Install the new user namespace */
2275 			commit_creds(new_cred);
2276 			new_cred = NULL;
2277 		}
2278 	}
2279 
2280 bad_unshare_cleanup_cred:
2281 	if (new_cred)
2282 		put_cred(new_cred);
2283 bad_unshare_cleanup_fd:
2284 	if (new_fd)
2285 		put_files_struct(new_fd);
2286 
2287 bad_unshare_cleanup_fs:
2288 	if (new_fs)
2289 		free_fs_struct(new_fs);
2290 
2291 bad_unshare_out:
2292 	return err;
2293 }
2294 
2295 /*
2296  *	Helper to unshare the files of the current task.
2297  *	We don't want to expose copy_files internals to
2298  *	the exec layer of the kernel.
2299  */
2300 
2301 int unshare_files(struct files_struct **displaced)
2302 {
2303 	struct task_struct *task = current;
2304 	struct files_struct *copy = NULL;
2305 	int error;
2306 
2307 	error = unshare_fd(CLONE_FILES, &copy);
2308 	if (error || !copy) {
2309 		*displaced = NULL;
2310 		return error;
2311 	}
2312 	*displaced = task->files;
2313 	task_lock(task);
2314 	task->files = copy;
2315 	task_unlock(task);
2316 	return 0;
2317 }
2318 
2319 int sysctl_max_threads(struct ctl_table *table, int write,
2320 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2321 {
2322 	struct ctl_table t;
2323 	int ret;
2324 	int threads = max_threads;
2325 	int min = MIN_THREADS;
2326 	int max = MAX_THREADS;
2327 
2328 	t = *table;
2329 	t.data = &threads;
2330 	t.extra1 = &min;
2331 	t.extra2 = &max;
2332 
2333 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2334 	if (ret || !write)
2335 		return ret;
2336 
2337 	set_max_threads(threads);
2338 
2339 	return 0;
2340 }
2341