1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/anon_inodes.h> 15 #include <linux/slab.h> 16 #include <linux/sched/autogroup.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/seq_file.h> 26 #include <linux/rtmutex.h> 27 #include <linux/init.h> 28 #include <linux/unistd.h> 29 #include <linux/module.h> 30 #include <linux/vmalloc.h> 31 #include <linux/completion.h> 32 #include <linux/personality.h> 33 #include <linux/mempolicy.h> 34 #include <linux/sem.h> 35 #include <linux/file.h> 36 #include <linux/fdtable.h> 37 #include <linux/iocontext.h> 38 #include <linux/key.h> 39 #include <linux/binfmts.h> 40 #include <linux/mman.h> 41 #include <linux/mmu_notifier.h> 42 #include <linux/hmm.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 97 #include <asm/pgtable.h> 98 #include <asm/pgalloc.h> 99 #include <linux/uaccess.h> 100 #include <asm/mmu_context.h> 101 #include <asm/cacheflush.h> 102 #include <asm/tlbflush.h> 103 104 #include <trace/events/sched.h> 105 106 #define CREATE_TRACE_POINTS 107 #include <trace/events/task.h> 108 109 /* 110 * Minimum number of threads to boot the kernel 111 */ 112 #define MIN_THREADS 20 113 114 /* 115 * Maximum number of threads 116 */ 117 #define MAX_THREADS FUTEX_TID_MASK 118 119 /* 120 * Protected counters by write_lock_irq(&tasklist_lock) 121 */ 122 unsigned long total_forks; /* Handle normal Linux uptimes. */ 123 int nr_threads; /* The idle threads do not count.. */ 124 125 int max_threads; /* tunable limit on nr_threads */ 126 127 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 128 129 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 130 131 #ifdef CONFIG_PROVE_RCU 132 int lockdep_tasklist_lock_is_held(void) 133 { 134 return lockdep_is_held(&tasklist_lock); 135 } 136 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 137 #endif /* #ifdef CONFIG_PROVE_RCU */ 138 139 int nr_processes(void) 140 { 141 int cpu; 142 int total = 0; 143 144 for_each_possible_cpu(cpu) 145 total += per_cpu(process_counts, cpu); 146 147 return total; 148 } 149 150 void __weak arch_release_task_struct(struct task_struct *tsk) 151 { 152 } 153 154 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 155 static struct kmem_cache *task_struct_cachep; 156 157 static inline struct task_struct *alloc_task_struct_node(int node) 158 { 159 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 160 } 161 162 static inline void free_task_struct(struct task_struct *tsk) 163 { 164 kmem_cache_free(task_struct_cachep, tsk); 165 } 166 #endif 167 168 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 169 170 /* 171 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 172 * kmemcache based allocator. 173 */ 174 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 175 176 #ifdef CONFIG_VMAP_STACK 177 /* 178 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 179 * flush. Try to minimize the number of calls by caching stacks. 180 */ 181 #define NR_CACHED_STACKS 2 182 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 183 184 static int free_vm_stack_cache(unsigned int cpu) 185 { 186 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 187 int i; 188 189 for (i = 0; i < NR_CACHED_STACKS; i++) { 190 struct vm_struct *vm_stack = cached_vm_stacks[i]; 191 192 if (!vm_stack) 193 continue; 194 195 vfree(vm_stack->addr); 196 cached_vm_stacks[i] = NULL; 197 } 198 199 return 0; 200 } 201 #endif 202 203 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 204 { 205 #ifdef CONFIG_VMAP_STACK 206 void *stack; 207 int i; 208 209 for (i = 0; i < NR_CACHED_STACKS; i++) { 210 struct vm_struct *s; 211 212 s = this_cpu_xchg(cached_stacks[i], NULL); 213 214 if (!s) 215 continue; 216 217 /* Clear stale pointers from reused stack. */ 218 memset(s->addr, 0, THREAD_SIZE); 219 220 tsk->stack_vm_area = s; 221 tsk->stack = s->addr; 222 return s->addr; 223 } 224 225 /* 226 * Allocated stacks are cached and later reused by new threads, 227 * so memcg accounting is performed manually on assigning/releasing 228 * stacks to tasks. Drop __GFP_ACCOUNT. 229 */ 230 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 231 VMALLOC_START, VMALLOC_END, 232 THREADINFO_GFP & ~__GFP_ACCOUNT, 233 PAGE_KERNEL, 234 0, node, __builtin_return_address(0)); 235 236 /* 237 * We can't call find_vm_area() in interrupt context, and 238 * free_thread_stack() can be called in interrupt context, 239 * so cache the vm_struct. 240 */ 241 if (stack) { 242 tsk->stack_vm_area = find_vm_area(stack); 243 tsk->stack = stack; 244 } 245 return stack; 246 #else 247 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 248 THREAD_SIZE_ORDER); 249 250 return page ? page_address(page) : NULL; 251 #endif 252 } 253 254 static inline void free_thread_stack(struct task_struct *tsk) 255 { 256 #ifdef CONFIG_VMAP_STACK 257 struct vm_struct *vm = task_stack_vm_area(tsk); 258 259 if (vm) { 260 int i; 261 262 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 263 mod_memcg_page_state(vm->pages[i], 264 MEMCG_KERNEL_STACK_KB, 265 -(int)(PAGE_SIZE / 1024)); 266 267 memcg_kmem_uncharge(vm->pages[i], 0); 268 } 269 270 for (i = 0; i < NR_CACHED_STACKS; i++) { 271 if (this_cpu_cmpxchg(cached_stacks[i], 272 NULL, tsk->stack_vm_area) != NULL) 273 continue; 274 275 return; 276 } 277 278 vfree_atomic(tsk->stack); 279 return; 280 } 281 #endif 282 283 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 284 } 285 # else 286 static struct kmem_cache *thread_stack_cache; 287 288 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 289 int node) 290 { 291 unsigned long *stack; 292 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 293 tsk->stack = stack; 294 return stack; 295 } 296 297 static void free_thread_stack(struct task_struct *tsk) 298 { 299 kmem_cache_free(thread_stack_cache, tsk->stack); 300 } 301 302 void thread_stack_cache_init(void) 303 { 304 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 305 THREAD_SIZE, THREAD_SIZE, 0, 0, 306 THREAD_SIZE, NULL); 307 BUG_ON(thread_stack_cache == NULL); 308 } 309 # endif 310 #endif 311 312 /* SLAB cache for signal_struct structures (tsk->signal) */ 313 static struct kmem_cache *signal_cachep; 314 315 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 316 struct kmem_cache *sighand_cachep; 317 318 /* SLAB cache for files_struct structures (tsk->files) */ 319 struct kmem_cache *files_cachep; 320 321 /* SLAB cache for fs_struct structures (tsk->fs) */ 322 struct kmem_cache *fs_cachep; 323 324 /* SLAB cache for vm_area_struct structures */ 325 static struct kmem_cache *vm_area_cachep; 326 327 /* SLAB cache for mm_struct structures (tsk->mm) */ 328 static struct kmem_cache *mm_cachep; 329 330 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 331 { 332 struct vm_area_struct *vma; 333 334 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 335 if (vma) 336 vma_init(vma, mm); 337 return vma; 338 } 339 340 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 341 { 342 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 343 344 if (new) { 345 *new = *orig; 346 INIT_LIST_HEAD(&new->anon_vma_chain); 347 } 348 return new; 349 } 350 351 void vm_area_free(struct vm_area_struct *vma) 352 { 353 kmem_cache_free(vm_area_cachep, vma); 354 } 355 356 static void account_kernel_stack(struct task_struct *tsk, int account) 357 { 358 void *stack = task_stack_page(tsk); 359 struct vm_struct *vm = task_stack_vm_area(tsk); 360 361 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 362 363 if (vm) { 364 int i; 365 366 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 367 368 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 369 mod_zone_page_state(page_zone(vm->pages[i]), 370 NR_KERNEL_STACK_KB, 371 PAGE_SIZE / 1024 * account); 372 } 373 } else { 374 /* 375 * All stack pages are in the same zone and belong to the 376 * same memcg. 377 */ 378 struct page *first_page = virt_to_page(stack); 379 380 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 381 THREAD_SIZE / 1024 * account); 382 383 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 384 account * (THREAD_SIZE / 1024)); 385 } 386 } 387 388 static int memcg_charge_kernel_stack(struct task_struct *tsk) 389 { 390 #ifdef CONFIG_VMAP_STACK 391 struct vm_struct *vm = task_stack_vm_area(tsk); 392 int ret; 393 394 if (vm) { 395 int i; 396 397 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 398 /* 399 * If memcg_kmem_charge() fails, page->mem_cgroup 400 * pointer is NULL, and both memcg_kmem_uncharge() 401 * and mod_memcg_page_state() in free_thread_stack() 402 * will ignore this page. So it's safe. 403 */ 404 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); 405 if (ret) 406 return ret; 407 408 mod_memcg_page_state(vm->pages[i], 409 MEMCG_KERNEL_STACK_KB, 410 PAGE_SIZE / 1024); 411 } 412 } 413 #endif 414 return 0; 415 } 416 417 static void release_task_stack(struct task_struct *tsk) 418 { 419 if (WARN_ON(tsk->state != TASK_DEAD)) 420 return; /* Better to leak the stack than to free prematurely */ 421 422 account_kernel_stack(tsk, -1); 423 free_thread_stack(tsk); 424 tsk->stack = NULL; 425 #ifdef CONFIG_VMAP_STACK 426 tsk->stack_vm_area = NULL; 427 #endif 428 } 429 430 #ifdef CONFIG_THREAD_INFO_IN_TASK 431 void put_task_stack(struct task_struct *tsk) 432 { 433 if (refcount_dec_and_test(&tsk->stack_refcount)) 434 release_task_stack(tsk); 435 } 436 #endif 437 438 void free_task(struct task_struct *tsk) 439 { 440 #ifndef CONFIG_THREAD_INFO_IN_TASK 441 /* 442 * The task is finally done with both the stack and thread_info, 443 * so free both. 444 */ 445 release_task_stack(tsk); 446 #else 447 /* 448 * If the task had a separate stack allocation, it should be gone 449 * by now. 450 */ 451 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 452 #endif 453 rt_mutex_debug_task_free(tsk); 454 ftrace_graph_exit_task(tsk); 455 put_seccomp_filter(tsk); 456 arch_release_task_struct(tsk); 457 if (tsk->flags & PF_KTHREAD) 458 free_kthread_struct(tsk); 459 free_task_struct(tsk); 460 } 461 EXPORT_SYMBOL(free_task); 462 463 #ifdef CONFIG_MMU 464 static __latent_entropy int dup_mmap(struct mm_struct *mm, 465 struct mm_struct *oldmm) 466 { 467 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 468 struct rb_node **rb_link, *rb_parent; 469 int retval; 470 unsigned long charge; 471 LIST_HEAD(uf); 472 473 uprobe_start_dup_mmap(); 474 if (down_write_killable(&oldmm->mmap_sem)) { 475 retval = -EINTR; 476 goto fail_uprobe_end; 477 } 478 flush_cache_dup_mm(oldmm); 479 uprobe_dup_mmap(oldmm, mm); 480 /* 481 * Not linked in yet - no deadlock potential: 482 */ 483 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 484 485 /* No ordering required: file already has been exposed. */ 486 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 487 488 mm->total_vm = oldmm->total_vm; 489 mm->data_vm = oldmm->data_vm; 490 mm->exec_vm = oldmm->exec_vm; 491 mm->stack_vm = oldmm->stack_vm; 492 493 rb_link = &mm->mm_rb.rb_node; 494 rb_parent = NULL; 495 pprev = &mm->mmap; 496 retval = ksm_fork(mm, oldmm); 497 if (retval) 498 goto out; 499 retval = khugepaged_fork(mm, oldmm); 500 if (retval) 501 goto out; 502 503 prev = NULL; 504 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 505 struct file *file; 506 507 if (mpnt->vm_flags & VM_DONTCOPY) { 508 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 509 continue; 510 } 511 charge = 0; 512 /* 513 * Don't duplicate many vmas if we've been oom-killed (for 514 * example) 515 */ 516 if (fatal_signal_pending(current)) { 517 retval = -EINTR; 518 goto out; 519 } 520 if (mpnt->vm_flags & VM_ACCOUNT) { 521 unsigned long len = vma_pages(mpnt); 522 523 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 524 goto fail_nomem; 525 charge = len; 526 } 527 tmp = vm_area_dup(mpnt); 528 if (!tmp) 529 goto fail_nomem; 530 retval = vma_dup_policy(mpnt, tmp); 531 if (retval) 532 goto fail_nomem_policy; 533 tmp->vm_mm = mm; 534 retval = dup_userfaultfd(tmp, &uf); 535 if (retval) 536 goto fail_nomem_anon_vma_fork; 537 if (tmp->vm_flags & VM_WIPEONFORK) { 538 /* VM_WIPEONFORK gets a clean slate in the child. */ 539 tmp->anon_vma = NULL; 540 if (anon_vma_prepare(tmp)) 541 goto fail_nomem_anon_vma_fork; 542 } else if (anon_vma_fork(tmp, mpnt)) 543 goto fail_nomem_anon_vma_fork; 544 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 545 tmp->vm_next = tmp->vm_prev = NULL; 546 file = tmp->vm_file; 547 if (file) { 548 struct inode *inode = file_inode(file); 549 struct address_space *mapping = file->f_mapping; 550 551 get_file(file); 552 if (tmp->vm_flags & VM_DENYWRITE) 553 atomic_dec(&inode->i_writecount); 554 i_mmap_lock_write(mapping); 555 if (tmp->vm_flags & VM_SHARED) 556 atomic_inc(&mapping->i_mmap_writable); 557 flush_dcache_mmap_lock(mapping); 558 /* insert tmp into the share list, just after mpnt */ 559 vma_interval_tree_insert_after(tmp, mpnt, 560 &mapping->i_mmap); 561 flush_dcache_mmap_unlock(mapping); 562 i_mmap_unlock_write(mapping); 563 } 564 565 /* 566 * Clear hugetlb-related page reserves for children. This only 567 * affects MAP_PRIVATE mappings. Faults generated by the child 568 * are not guaranteed to succeed, even if read-only 569 */ 570 if (is_vm_hugetlb_page(tmp)) 571 reset_vma_resv_huge_pages(tmp); 572 573 /* 574 * Link in the new vma and copy the page table entries. 575 */ 576 *pprev = tmp; 577 pprev = &tmp->vm_next; 578 tmp->vm_prev = prev; 579 prev = tmp; 580 581 __vma_link_rb(mm, tmp, rb_link, rb_parent); 582 rb_link = &tmp->vm_rb.rb_right; 583 rb_parent = &tmp->vm_rb; 584 585 mm->map_count++; 586 if (!(tmp->vm_flags & VM_WIPEONFORK)) 587 retval = copy_page_range(mm, oldmm, mpnt); 588 589 if (tmp->vm_ops && tmp->vm_ops->open) 590 tmp->vm_ops->open(tmp); 591 592 if (retval) 593 goto out; 594 } 595 /* a new mm has just been created */ 596 retval = arch_dup_mmap(oldmm, mm); 597 out: 598 up_write(&mm->mmap_sem); 599 flush_tlb_mm(oldmm); 600 up_write(&oldmm->mmap_sem); 601 dup_userfaultfd_complete(&uf); 602 fail_uprobe_end: 603 uprobe_end_dup_mmap(); 604 return retval; 605 fail_nomem_anon_vma_fork: 606 mpol_put(vma_policy(tmp)); 607 fail_nomem_policy: 608 vm_area_free(tmp); 609 fail_nomem: 610 retval = -ENOMEM; 611 vm_unacct_memory(charge); 612 goto out; 613 } 614 615 static inline int mm_alloc_pgd(struct mm_struct *mm) 616 { 617 mm->pgd = pgd_alloc(mm); 618 if (unlikely(!mm->pgd)) 619 return -ENOMEM; 620 return 0; 621 } 622 623 static inline void mm_free_pgd(struct mm_struct *mm) 624 { 625 pgd_free(mm, mm->pgd); 626 } 627 #else 628 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 629 { 630 down_write(&oldmm->mmap_sem); 631 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 632 up_write(&oldmm->mmap_sem); 633 return 0; 634 } 635 #define mm_alloc_pgd(mm) (0) 636 #define mm_free_pgd(mm) 637 #endif /* CONFIG_MMU */ 638 639 static void check_mm(struct mm_struct *mm) 640 { 641 int i; 642 643 for (i = 0; i < NR_MM_COUNTERS; i++) { 644 long x = atomic_long_read(&mm->rss_stat.count[i]); 645 646 if (unlikely(x)) 647 printk(KERN_ALERT "BUG: Bad rss-counter state " 648 "mm:%p idx:%d val:%ld\n", mm, i, x); 649 } 650 651 if (mm_pgtables_bytes(mm)) 652 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 653 mm_pgtables_bytes(mm)); 654 655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 656 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 657 #endif 658 } 659 660 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 661 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 662 663 /* 664 * Called when the last reference to the mm 665 * is dropped: either by a lazy thread or by 666 * mmput. Free the page directory and the mm. 667 */ 668 void __mmdrop(struct mm_struct *mm) 669 { 670 BUG_ON(mm == &init_mm); 671 WARN_ON_ONCE(mm == current->mm); 672 WARN_ON_ONCE(mm == current->active_mm); 673 mm_free_pgd(mm); 674 destroy_context(mm); 675 hmm_mm_destroy(mm); 676 mmu_notifier_mm_destroy(mm); 677 check_mm(mm); 678 put_user_ns(mm->user_ns); 679 free_mm(mm); 680 } 681 EXPORT_SYMBOL_GPL(__mmdrop); 682 683 static void mmdrop_async_fn(struct work_struct *work) 684 { 685 struct mm_struct *mm; 686 687 mm = container_of(work, struct mm_struct, async_put_work); 688 __mmdrop(mm); 689 } 690 691 static void mmdrop_async(struct mm_struct *mm) 692 { 693 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 694 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 695 schedule_work(&mm->async_put_work); 696 } 697 } 698 699 static inline void free_signal_struct(struct signal_struct *sig) 700 { 701 taskstats_tgid_free(sig); 702 sched_autogroup_exit(sig); 703 /* 704 * __mmdrop is not safe to call from softirq context on x86 due to 705 * pgd_dtor so postpone it to the async context 706 */ 707 if (sig->oom_mm) 708 mmdrop_async(sig->oom_mm); 709 kmem_cache_free(signal_cachep, sig); 710 } 711 712 static inline void put_signal_struct(struct signal_struct *sig) 713 { 714 if (refcount_dec_and_test(&sig->sigcnt)) 715 free_signal_struct(sig); 716 } 717 718 void __put_task_struct(struct task_struct *tsk) 719 { 720 WARN_ON(!tsk->exit_state); 721 WARN_ON(refcount_read(&tsk->usage)); 722 WARN_ON(tsk == current); 723 724 cgroup_free(tsk); 725 task_numa_free(tsk); 726 security_task_free(tsk); 727 exit_creds(tsk); 728 delayacct_tsk_free(tsk); 729 put_signal_struct(tsk->signal); 730 731 if (!profile_handoff_task(tsk)) 732 free_task(tsk); 733 } 734 EXPORT_SYMBOL_GPL(__put_task_struct); 735 736 void __init __weak arch_task_cache_init(void) { } 737 738 /* 739 * set_max_threads 740 */ 741 static void set_max_threads(unsigned int max_threads_suggested) 742 { 743 u64 threads; 744 unsigned long nr_pages = totalram_pages(); 745 746 /* 747 * The number of threads shall be limited such that the thread 748 * structures may only consume a small part of the available memory. 749 */ 750 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 751 threads = MAX_THREADS; 752 else 753 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 754 (u64) THREAD_SIZE * 8UL); 755 756 if (threads > max_threads_suggested) 757 threads = max_threads_suggested; 758 759 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 760 } 761 762 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 763 /* Initialized by the architecture: */ 764 int arch_task_struct_size __read_mostly; 765 #endif 766 767 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 768 { 769 /* Fetch thread_struct whitelist for the architecture. */ 770 arch_thread_struct_whitelist(offset, size); 771 772 /* 773 * Handle zero-sized whitelist or empty thread_struct, otherwise 774 * adjust offset to position of thread_struct in task_struct. 775 */ 776 if (unlikely(*size == 0)) 777 *offset = 0; 778 else 779 *offset += offsetof(struct task_struct, thread); 780 } 781 782 void __init fork_init(void) 783 { 784 int i; 785 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 786 #ifndef ARCH_MIN_TASKALIGN 787 #define ARCH_MIN_TASKALIGN 0 788 #endif 789 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 790 unsigned long useroffset, usersize; 791 792 /* create a slab on which task_structs can be allocated */ 793 task_struct_whitelist(&useroffset, &usersize); 794 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 795 arch_task_struct_size, align, 796 SLAB_PANIC|SLAB_ACCOUNT, 797 useroffset, usersize, NULL); 798 #endif 799 800 /* do the arch specific task caches init */ 801 arch_task_cache_init(); 802 803 set_max_threads(MAX_THREADS); 804 805 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 806 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 807 init_task.signal->rlim[RLIMIT_SIGPENDING] = 808 init_task.signal->rlim[RLIMIT_NPROC]; 809 810 for (i = 0; i < UCOUNT_COUNTS; i++) { 811 init_user_ns.ucount_max[i] = max_threads/2; 812 } 813 814 #ifdef CONFIG_VMAP_STACK 815 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 816 NULL, free_vm_stack_cache); 817 #endif 818 819 lockdep_init_task(&init_task); 820 uprobes_init(); 821 } 822 823 int __weak arch_dup_task_struct(struct task_struct *dst, 824 struct task_struct *src) 825 { 826 *dst = *src; 827 return 0; 828 } 829 830 void set_task_stack_end_magic(struct task_struct *tsk) 831 { 832 unsigned long *stackend; 833 834 stackend = end_of_stack(tsk); 835 *stackend = STACK_END_MAGIC; /* for overflow detection */ 836 } 837 838 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 839 { 840 struct task_struct *tsk; 841 unsigned long *stack; 842 struct vm_struct *stack_vm_area __maybe_unused; 843 int err; 844 845 if (node == NUMA_NO_NODE) 846 node = tsk_fork_get_node(orig); 847 tsk = alloc_task_struct_node(node); 848 if (!tsk) 849 return NULL; 850 851 stack = alloc_thread_stack_node(tsk, node); 852 if (!stack) 853 goto free_tsk; 854 855 if (memcg_charge_kernel_stack(tsk)) 856 goto free_stack; 857 858 stack_vm_area = task_stack_vm_area(tsk); 859 860 err = arch_dup_task_struct(tsk, orig); 861 862 /* 863 * arch_dup_task_struct() clobbers the stack-related fields. Make 864 * sure they're properly initialized before using any stack-related 865 * functions again. 866 */ 867 tsk->stack = stack; 868 #ifdef CONFIG_VMAP_STACK 869 tsk->stack_vm_area = stack_vm_area; 870 #endif 871 #ifdef CONFIG_THREAD_INFO_IN_TASK 872 refcount_set(&tsk->stack_refcount, 1); 873 #endif 874 875 if (err) 876 goto free_stack; 877 878 #ifdef CONFIG_SECCOMP 879 /* 880 * We must handle setting up seccomp filters once we're under 881 * the sighand lock in case orig has changed between now and 882 * then. Until then, filter must be NULL to avoid messing up 883 * the usage counts on the error path calling free_task. 884 */ 885 tsk->seccomp.filter = NULL; 886 #endif 887 888 setup_thread_stack(tsk, orig); 889 clear_user_return_notifier(tsk); 890 clear_tsk_need_resched(tsk); 891 set_task_stack_end_magic(tsk); 892 893 #ifdef CONFIG_STACKPROTECTOR 894 tsk->stack_canary = get_random_canary(); 895 #endif 896 897 /* 898 * One for us, one for whoever does the "release_task()" (usually 899 * parent) 900 */ 901 refcount_set(&tsk->usage, 2); 902 #ifdef CONFIG_BLK_DEV_IO_TRACE 903 tsk->btrace_seq = 0; 904 #endif 905 tsk->splice_pipe = NULL; 906 tsk->task_frag.page = NULL; 907 tsk->wake_q.next = NULL; 908 909 account_kernel_stack(tsk, 1); 910 911 kcov_task_init(tsk); 912 913 #ifdef CONFIG_FAULT_INJECTION 914 tsk->fail_nth = 0; 915 #endif 916 917 #ifdef CONFIG_BLK_CGROUP 918 tsk->throttle_queue = NULL; 919 tsk->use_memdelay = 0; 920 #endif 921 922 #ifdef CONFIG_MEMCG 923 tsk->active_memcg = NULL; 924 #endif 925 return tsk; 926 927 free_stack: 928 free_thread_stack(tsk); 929 free_tsk: 930 free_task_struct(tsk); 931 return NULL; 932 } 933 934 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 935 936 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 937 938 static int __init coredump_filter_setup(char *s) 939 { 940 default_dump_filter = 941 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 942 MMF_DUMP_FILTER_MASK; 943 return 1; 944 } 945 946 __setup("coredump_filter=", coredump_filter_setup); 947 948 #include <linux/init_task.h> 949 950 static void mm_init_aio(struct mm_struct *mm) 951 { 952 #ifdef CONFIG_AIO 953 spin_lock_init(&mm->ioctx_lock); 954 mm->ioctx_table = NULL; 955 #endif 956 } 957 958 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 959 { 960 #ifdef CONFIG_MEMCG 961 mm->owner = p; 962 #endif 963 } 964 965 static void mm_init_uprobes_state(struct mm_struct *mm) 966 { 967 #ifdef CONFIG_UPROBES 968 mm->uprobes_state.xol_area = NULL; 969 #endif 970 } 971 972 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 973 struct user_namespace *user_ns) 974 { 975 mm->mmap = NULL; 976 mm->mm_rb = RB_ROOT; 977 mm->vmacache_seqnum = 0; 978 atomic_set(&mm->mm_users, 1); 979 atomic_set(&mm->mm_count, 1); 980 init_rwsem(&mm->mmap_sem); 981 INIT_LIST_HEAD(&mm->mmlist); 982 mm->core_state = NULL; 983 mm_pgtables_bytes_init(mm); 984 mm->map_count = 0; 985 mm->locked_vm = 0; 986 atomic64_set(&mm->pinned_vm, 0); 987 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 988 spin_lock_init(&mm->page_table_lock); 989 spin_lock_init(&mm->arg_lock); 990 mm_init_cpumask(mm); 991 mm_init_aio(mm); 992 mm_init_owner(mm, p); 993 RCU_INIT_POINTER(mm->exe_file, NULL); 994 mmu_notifier_mm_init(mm); 995 hmm_mm_init(mm); 996 init_tlb_flush_pending(mm); 997 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 998 mm->pmd_huge_pte = NULL; 999 #endif 1000 mm_init_uprobes_state(mm); 1001 1002 if (current->mm) { 1003 mm->flags = current->mm->flags & MMF_INIT_MASK; 1004 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1005 } else { 1006 mm->flags = default_dump_filter; 1007 mm->def_flags = 0; 1008 } 1009 1010 if (mm_alloc_pgd(mm)) 1011 goto fail_nopgd; 1012 1013 if (init_new_context(p, mm)) 1014 goto fail_nocontext; 1015 1016 mm->user_ns = get_user_ns(user_ns); 1017 return mm; 1018 1019 fail_nocontext: 1020 mm_free_pgd(mm); 1021 fail_nopgd: 1022 free_mm(mm); 1023 return NULL; 1024 } 1025 1026 /* 1027 * Allocate and initialize an mm_struct. 1028 */ 1029 struct mm_struct *mm_alloc(void) 1030 { 1031 struct mm_struct *mm; 1032 1033 mm = allocate_mm(); 1034 if (!mm) 1035 return NULL; 1036 1037 memset(mm, 0, sizeof(*mm)); 1038 return mm_init(mm, current, current_user_ns()); 1039 } 1040 1041 static inline void __mmput(struct mm_struct *mm) 1042 { 1043 VM_BUG_ON(atomic_read(&mm->mm_users)); 1044 1045 uprobe_clear_state(mm); 1046 exit_aio(mm); 1047 ksm_exit(mm); 1048 khugepaged_exit(mm); /* must run before exit_mmap */ 1049 exit_mmap(mm); 1050 mm_put_huge_zero_page(mm); 1051 set_mm_exe_file(mm, NULL); 1052 if (!list_empty(&mm->mmlist)) { 1053 spin_lock(&mmlist_lock); 1054 list_del(&mm->mmlist); 1055 spin_unlock(&mmlist_lock); 1056 } 1057 if (mm->binfmt) 1058 module_put(mm->binfmt->module); 1059 mmdrop(mm); 1060 } 1061 1062 /* 1063 * Decrement the use count and release all resources for an mm. 1064 */ 1065 void mmput(struct mm_struct *mm) 1066 { 1067 might_sleep(); 1068 1069 if (atomic_dec_and_test(&mm->mm_users)) 1070 __mmput(mm); 1071 } 1072 EXPORT_SYMBOL_GPL(mmput); 1073 1074 #ifdef CONFIG_MMU 1075 static void mmput_async_fn(struct work_struct *work) 1076 { 1077 struct mm_struct *mm = container_of(work, struct mm_struct, 1078 async_put_work); 1079 1080 __mmput(mm); 1081 } 1082 1083 void mmput_async(struct mm_struct *mm) 1084 { 1085 if (atomic_dec_and_test(&mm->mm_users)) { 1086 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1087 schedule_work(&mm->async_put_work); 1088 } 1089 } 1090 #endif 1091 1092 /** 1093 * set_mm_exe_file - change a reference to the mm's executable file 1094 * 1095 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1096 * 1097 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1098 * invocations: in mmput() nobody alive left, in execve task is single 1099 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1100 * mm->exe_file, but does so without using set_mm_exe_file() in order 1101 * to do avoid the need for any locks. 1102 */ 1103 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1104 { 1105 struct file *old_exe_file; 1106 1107 /* 1108 * It is safe to dereference the exe_file without RCU as 1109 * this function is only called if nobody else can access 1110 * this mm -- see comment above for justification. 1111 */ 1112 old_exe_file = rcu_dereference_raw(mm->exe_file); 1113 1114 if (new_exe_file) 1115 get_file(new_exe_file); 1116 rcu_assign_pointer(mm->exe_file, new_exe_file); 1117 if (old_exe_file) 1118 fput(old_exe_file); 1119 } 1120 1121 /** 1122 * get_mm_exe_file - acquire a reference to the mm's executable file 1123 * 1124 * Returns %NULL if mm has no associated executable file. 1125 * User must release file via fput(). 1126 */ 1127 struct file *get_mm_exe_file(struct mm_struct *mm) 1128 { 1129 struct file *exe_file; 1130 1131 rcu_read_lock(); 1132 exe_file = rcu_dereference(mm->exe_file); 1133 if (exe_file && !get_file_rcu(exe_file)) 1134 exe_file = NULL; 1135 rcu_read_unlock(); 1136 return exe_file; 1137 } 1138 EXPORT_SYMBOL(get_mm_exe_file); 1139 1140 /** 1141 * get_task_exe_file - acquire a reference to the task's executable file 1142 * 1143 * Returns %NULL if task's mm (if any) has no associated executable file or 1144 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1145 * User must release file via fput(). 1146 */ 1147 struct file *get_task_exe_file(struct task_struct *task) 1148 { 1149 struct file *exe_file = NULL; 1150 struct mm_struct *mm; 1151 1152 task_lock(task); 1153 mm = task->mm; 1154 if (mm) { 1155 if (!(task->flags & PF_KTHREAD)) 1156 exe_file = get_mm_exe_file(mm); 1157 } 1158 task_unlock(task); 1159 return exe_file; 1160 } 1161 EXPORT_SYMBOL(get_task_exe_file); 1162 1163 /** 1164 * get_task_mm - acquire a reference to the task's mm 1165 * 1166 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1167 * this kernel workthread has transiently adopted a user mm with use_mm, 1168 * to do its AIO) is not set and if so returns a reference to it, after 1169 * bumping up the use count. User must release the mm via mmput() 1170 * after use. Typically used by /proc and ptrace. 1171 */ 1172 struct mm_struct *get_task_mm(struct task_struct *task) 1173 { 1174 struct mm_struct *mm; 1175 1176 task_lock(task); 1177 mm = task->mm; 1178 if (mm) { 1179 if (task->flags & PF_KTHREAD) 1180 mm = NULL; 1181 else 1182 mmget(mm); 1183 } 1184 task_unlock(task); 1185 return mm; 1186 } 1187 EXPORT_SYMBOL_GPL(get_task_mm); 1188 1189 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1190 { 1191 struct mm_struct *mm; 1192 int err; 1193 1194 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1195 if (err) 1196 return ERR_PTR(err); 1197 1198 mm = get_task_mm(task); 1199 if (mm && mm != current->mm && 1200 !ptrace_may_access(task, mode)) { 1201 mmput(mm); 1202 mm = ERR_PTR(-EACCES); 1203 } 1204 mutex_unlock(&task->signal->cred_guard_mutex); 1205 1206 return mm; 1207 } 1208 1209 static void complete_vfork_done(struct task_struct *tsk) 1210 { 1211 struct completion *vfork; 1212 1213 task_lock(tsk); 1214 vfork = tsk->vfork_done; 1215 if (likely(vfork)) { 1216 tsk->vfork_done = NULL; 1217 complete(vfork); 1218 } 1219 task_unlock(tsk); 1220 } 1221 1222 static int wait_for_vfork_done(struct task_struct *child, 1223 struct completion *vfork) 1224 { 1225 int killed; 1226 1227 freezer_do_not_count(); 1228 cgroup_enter_frozen(); 1229 killed = wait_for_completion_killable(vfork); 1230 cgroup_leave_frozen(false); 1231 freezer_count(); 1232 1233 if (killed) { 1234 task_lock(child); 1235 child->vfork_done = NULL; 1236 task_unlock(child); 1237 } 1238 1239 put_task_struct(child); 1240 return killed; 1241 } 1242 1243 /* Please note the differences between mmput and mm_release. 1244 * mmput is called whenever we stop holding onto a mm_struct, 1245 * error success whatever. 1246 * 1247 * mm_release is called after a mm_struct has been removed 1248 * from the current process. 1249 * 1250 * This difference is important for error handling, when we 1251 * only half set up a mm_struct for a new process and need to restore 1252 * the old one. Because we mmput the new mm_struct before 1253 * restoring the old one. . . 1254 * Eric Biederman 10 January 1998 1255 */ 1256 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1257 { 1258 /* Get rid of any futexes when releasing the mm */ 1259 #ifdef CONFIG_FUTEX 1260 if (unlikely(tsk->robust_list)) { 1261 exit_robust_list(tsk); 1262 tsk->robust_list = NULL; 1263 } 1264 #ifdef CONFIG_COMPAT 1265 if (unlikely(tsk->compat_robust_list)) { 1266 compat_exit_robust_list(tsk); 1267 tsk->compat_robust_list = NULL; 1268 } 1269 #endif 1270 if (unlikely(!list_empty(&tsk->pi_state_list))) 1271 exit_pi_state_list(tsk); 1272 #endif 1273 1274 uprobe_free_utask(tsk); 1275 1276 /* Get rid of any cached register state */ 1277 deactivate_mm(tsk, mm); 1278 1279 /* 1280 * Signal userspace if we're not exiting with a core dump 1281 * because we want to leave the value intact for debugging 1282 * purposes. 1283 */ 1284 if (tsk->clear_child_tid) { 1285 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1286 atomic_read(&mm->mm_users) > 1) { 1287 /* 1288 * We don't check the error code - if userspace has 1289 * not set up a proper pointer then tough luck. 1290 */ 1291 put_user(0, tsk->clear_child_tid); 1292 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1293 1, NULL, NULL, 0, 0); 1294 } 1295 tsk->clear_child_tid = NULL; 1296 } 1297 1298 /* 1299 * All done, finally we can wake up parent and return this mm to him. 1300 * Also kthread_stop() uses this completion for synchronization. 1301 */ 1302 if (tsk->vfork_done) 1303 complete_vfork_done(tsk); 1304 } 1305 1306 /** 1307 * dup_mm() - duplicates an existing mm structure 1308 * @tsk: the task_struct with which the new mm will be associated. 1309 * @oldmm: the mm to duplicate. 1310 * 1311 * Allocates a new mm structure and duplicates the provided @oldmm structure 1312 * content into it. 1313 * 1314 * Return: the duplicated mm or NULL on failure. 1315 */ 1316 static struct mm_struct *dup_mm(struct task_struct *tsk, 1317 struct mm_struct *oldmm) 1318 { 1319 struct mm_struct *mm; 1320 int err; 1321 1322 mm = allocate_mm(); 1323 if (!mm) 1324 goto fail_nomem; 1325 1326 memcpy(mm, oldmm, sizeof(*mm)); 1327 1328 if (!mm_init(mm, tsk, mm->user_ns)) 1329 goto fail_nomem; 1330 1331 err = dup_mmap(mm, oldmm); 1332 if (err) 1333 goto free_pt; 1334 1335 mm->hiwater_rss = get_mm_rss(mm); 1336 mm->hiwater_vm = mm->total_vm; 1337 1338 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1339 goto free_pt; 1340 1341 return mm; 1342 1343 free_pt: 1344 /* don't put binfmt in mmput, we haven't got module yet */ 1345 mm->binfmt = NULL; 1346 mmput(mm); 1347 1348 fail_nomem: 1349 return NULL; 1350 } 1351 1352 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1353 { 1354 struct mm_struct *mm, *oldmm; 1355 int retval; 1356 1357 tsk->min_flt = tsk->maj_flt = 0; 1358 tsk->nvcsw = tsk->nivcsw = 0; 1359 #ifdef CONFIG_DETECT_HUNG_TASK 1360 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1361 tsk->last_switch_time = 0; 1362 #endif 1363 1364 tsk->mm = NULL; 1365 tsk->active_mm = NULL; 1366 1367 /* 1368 * Are we cloning a kernel thread? 1369 * 1370 * We need to steal a active VM for that.. 1371 */ 1372 oldmm = current->mm; 1373 if (!oldmm) 1374 return 0; 1375 1376 /* initialize the new vmacache entries */ 1377 vmacache_flush(tsk); 1378 1379 if (clone_flags & CLONE_VM) { 1380 mmget(oldmm); 1381 mm = oldmm; 1382 goto good_mm; 1383 } 1384 1385 retval = -ENOMEM; 1386 mm = dup_mm(tsk, current->mm); 1387 if (!mm) 1388 goto fail_nomem; 1389 1390 good_mm: 1391 tsk->mm = mm; 1392 tsk->active_mm = mm; 1393 return 0; 1394 1395 fail_nomem: 1396 return retval; 1397 } 1398 1399 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1400 { 1401 struct fs_struct *fs = current->fs; 1402 if (clone_flags & CLONE_FS) { 1403 /* tsk->fs is already what we want */ 1404 spin_lock(&fs->lock); 1405 if (fs->in_exec) { 1406 spin_unlock(&fs->lock); 1407 return -EAGAIN; 1408 } 1409 fs->users++; 1410 spin_unlock(&fs->lock); 1411 return 0; 1412 } 1413 tsk->fs = copy_fs_struct(fs); 1414 if (!tsk->fs) 1415 return -ENOMEM; 1416 return 0; 1417 } 1418 1419 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1420 { 1421 struct files_struct *oldf, *newf; 1422 int error = 0; 1423 1424 /* 1425 * A background process may not have any files ... 1426 */ 1427 oldf = current->files; 1428 if (!oldf) 1429 goto out; 1430 1431 if (clone_flags & CLONE_FILES) { 1432 atomic_inc(&oldf->count); 1433 goto out; 1434 } 1435 1436 newf = dup_fd(oldf, &error); 1437 if (!newf) 1438 goto out; 1439 1440 tsk->files = newf; 1441 error = 0; 1442 out: 1443 return error; 1444 } 1445 1446 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1447 { 1448 #ifdef CONFIG_BLOCK 1449 struct io_context *ioc = current->io_context; 1450 struct io_context *new_ioc; 1451 1452 if (!ioc) 1453 return 0; 1454 /* 1455 * Share io context with parent, if CLONE_IO is set 1456 */ 1457 if (clone_flags & CLONE_IO) { 1458 ioc_task_link(ioc); 1459 tsk->io_context = ioc; 1460 } else if (ioprio_valid(ioc->ioprio)) { 1461 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1462 if (unlikely(!new_ioc)) 1463 return -ENOMEM; 1464 1465 new_ioc->ioprio = ioc->ioprio; 1466 put_io_context(new_ioc); 1467 } 1468 #endif 1469 return 0; 1470 } 1471 1472 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1473 { 1474 struct sighand_struct *sig; 1475 1476 if (clone_flags & CLONE_SIGHAND) { 1477 refcount_inc(¤t->sighand->count); 1478 return 0; 1479 } 1480 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1481 rcu_assign_pointer(tsk->sighand, sig); 1482 if (!sig) 1483 return -ENOMEM; 1484 1485 refcount_set(&sig->count, 1); 1486 spin_lock_irq(¤t->sighand->siglock); 1487 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1488 spin_unlock_irq(¤t->sighand->siglock); 1489 return 0; 1490 } 1491 1492 void __cleanup_sighand(struct sighand_struct *sighand) 1493 { 1494 if (refcount_dec_and_test(&sighand->count)) { 1495 signalfd_cleanup(sighand); 1496 /* 1497 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1498 * without an RCU grace period, see __lock_task_sighand(). 1499 */ 1500 kmem_cache_free(sighand_cachep, sighand); 1501 } 1502 } 1503 1504 #ifdef CONFIG_POSIX_TIMERS 1505 /* 1506 * Initialize POSIX timer handling for a thread group. 1507 */ 1508 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1509 { 1510 unsigned long cpu_limit; 1511 1512 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1513 if (cpu_limit != RLIM_INFINITY) { 1514 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC; 1515 sig->cputimer.running = true; 1516 } 1517 1518 /* The timer lists. */ 1519 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1520 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1521 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1522 } 1523 #else 1524 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { } 1525 #endif 1526 1527 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1528 { 1529 struct signal_struct *sig; 1530 1531 if (clone_flags & CLONE_THREAD) 1532 return 0; 1533 1534 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1535 tsk->signal = sig; 1536 if (!sig) 1537 return -ENOMEM; 1538 1539 sig->nr_threads = 1; 1540 atomic_set(&sig->live, 1); 1541 refcount_set(&sig->sigcnt, 1); 1542 1543 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1544 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1545 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1546 1547 init_waitqueue_head(&sig->wait_chldexit); 1548 sig->curr_target = tsk; 1549 init_sigpending(&sig->shared_pending); 1550 INIT_HLIST_HEAD(&sig->multiprocess); 1551 seqlock_init(&sig->stats_lock); 1552 prev_cputime_init(&sig->prev_cputime); 1553 1554 #ifdef CONFIG_POSIX_TIMERS 1555 INIT_LIST_HEAD(&sig->posix_timers); 1556 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1557 sig->real_timer.function = it_real_fn; 1558 #endif 1559 1560 task_lock(current->group_leader); 1561 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1562 task_unlock(current->group_leader); 1563 1564 posix_cpu_timers_init_group(sig); 1565 1566 tty_audit_fork(sig); 1567 sched_autogroup_fork(sig); 1568 1569 sig->oom_score_adj = current->signal->oom_score_adj; 1570 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1571 1572 mutex_init(&sig->cred_guard_mutex); 1573 1574 return 0; 1575 } 1576 1577 static void copy_seccomp(struct task_struct *p) 1578 { 1579 #ifdef CONFIG_SECCOMP 1580 /* 1581 * Must be called with sighand->lock held, which is common to 1582 * all threads in the group. Holding cred_guard_mutex is not 1583 * needed because this new task is not yet running and cannot 1584 * be racing exec. 1585 */ 1586 assert_spin_locked(¤t->sighand->siglock); 1587 1588 /* Ref-count the new filter user, and assign it. */ 1589 get_seccomp_filter(current); 1590 p->seccomp = current->seccomp; 1591 1592 /* 1593 * Explicitly enable no_new_privs here in case it got set 1594 * between the task_struct being duplicated and holding the 1595 * sighand lock. The seccomp state and nnp must be in sync. 1596 */ 1597 if (task_no_new_privs(current)) 1598 task_set_no_new_privs(p); 1599 1600 /* 1601 * If the parent gained a seccomp mode after copying thread 1602 * flags and between before we held the sighand lock, we have 1603 * to manually enable the seccomp thread flag here. 1604 */ 1605 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1606 set_tsk_thread_flag(p, TIF_SECCOMP); 1607 #endif 1608 } 1609 1610 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1611 { 1612 current->clear_child_tid = tidptr; 1613 1614 return task_pid_vnr(current); 1615 } 1616 1617 static void rt_mutex_init_task(struct task_struct *p) 1618 { 1619 raw_spin_lock_init(&p->pi_lock); 1620 #ifdef CONFIG_RT_MUTEXES 1621 p->pi_waiters = RB_ROOT_CACHED; 1622 p->pi_top_task = NULL; 1623 p->pi_blocked_on = NULL; 1624 #endif 1625 } 1626 1627 #ifdef CONFIG_POSIX_TIMERS 1628 /* 1629 * Initialize POSIX timer handling for a single task. 1630 */ 1631 static void posix_cpu_timers_init(struct task_struct *tsk) 1632 { 1633 tsk->cputime_expires.prof_exp = 0; 1634 tsk->cputime_expires.virt_exp = 0; 1635 tsk->cputime_expires.sched_exp = 0; 1636 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1637 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1638 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1639 } 1640 #else 1641 static inline void posix_cpu_timers_init(struct task_struct *tsk) { } 1642 #endif 1643 1644 static inline void init_task_pid_links(struct task_struct *task) 1645 { 1646 enum pid_type type; 1647 1648 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1649 INIT_HLIST_NODE(&task->pid_links[type]); 1650 } 1651 } 1652 1653 static inline void 1654 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1655 { 1656 if (type == PIDTYPE_PID) 1657 task->thread_pid = pid; 1658 else 1659 task->signal->pids[type] = pid; 1660 } 1661 1662 static inline void rcu_copy_process(struct task_struct *p) 1663 { 1664 #ifdef CONFIG_PREEMPT_RCU 1665 p->rcu_read_lock_nesting = 0; 1666 p->rcu_read_unlock_special.s = 0; 1667 p->rcu_blocked_node = NULL; 1668 INIT_LIST_HEAD(&p->rcu_node_entry); 1669 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1670 #ifdef CONFIG_TASKS_RCU 1671 p->rcu_tasks_holdout = false; 1672 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1673 p->rcu_tasks_idle_cpu = -1; 1674 #endif /* #ifdef CONFIG_TASKS_RCU */ 1675 } 1676 1677 static int pidfd_release(struct inode *inode, struct file *file) 1678 { 1679 struct pid *pid = file->private_data; 1680 1681 file->private_data = NULL; 1682 put_pid(pid); 1683 return 0; 1684 } 1685 1686 #ifdef CONFIG_PROC_FS 1687 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1688 { 1689 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file)); 1690 struct pid *pid = f->private_data; 1691 1692 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns)); 1693 seq_putc(m, '\n'); 1694 } 1695 #endif 1696 1697 const struct file_operations pidfd_fops = { 1698 .release = pidfd_release, 1699 #ifdef CONFIG_PROC_FS 1700 .show_fdinfo = pidfd_show_fdinfo, 1701 #endif 1702 }; 1703 1704 /** 1705 * pidfd_create() - Create a new pid file descriptor. 1706 * 1707 * @pid: struct pid that the pidfd will reference 1708 * 1709 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 1710 * 1711 * Note, that this function can only be called after the fd table has 1712 * been unshared to avoid leaking the pidfd to the new process. 1713 * 1714 * Return: On success, a cloexec pidfd is returned. 1715 * On error, a negative errno number will be returned. 1716 */ 1717 static int pidfd_create(struct pid *pid) 1718 { 1719 int fd; 1720 1721 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 1722 O_RDWR | O_CLOEXEC); 1723 if (fd < 0) 1724 put_pid(pid); 1725 1726 return fd; 1727 } 1728 1729 /* 1730 * This creates a new process as a copy of the old one, 1731 * but does not actually start it yet. 1732 * 1733 * It copies the registers, and all the appropriate 1734 * parts of the process environment (as per the clone 1735 * flags). The actual kick-off is left to the caller. 1736 */ 1737 static __latent_entropy struct task_struct *copy_process( 1738 unsigned long clone_flags, 1739 unsigned long stack_start, 1740 unsigned long stack_size, 1741 int __user *parent_tidptr, 1742 int __user *child_tidptr, 1743 struct pid *pid, 1744 int trace, 1745 unsigned long tls, 1746 int node) 1747 { 1748 int pidfd = -1, retval; 1749 struct task_struct *p; 1750 struct multiprocess_signals delayed; 1751 1752 /* 1753 * Don't allow sharing the root directory with processes in a different 1754 * namespace 1755 */ 1756 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1757 return ERR_PTR(-EINVAL); 1758 1759 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1760 return ERR_PTR(-EINVAL); 1761 1762 /* 1763 * Thread groups must share signals as well, and detached threads 1764 * can only be started up within the thread group. 1765 */ 1766 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1767 return ERR_PTR(-EINVAL); 1768 1769 /* 1770 * Shared signal handlers imply shared VM. By way of the above, 1771 * thread groups also imply shared VM. Blocking this case allows 1772 * for various simplifications in other code. 1773 */ 1774 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1775 return ERR_PTR(-EINVAL); 1776 1777 /* 1778 * Siblings of global init remain as zombies on exit since they are 1779 * not reaped by their parent (swapper). To solve this and to avoid 1780 * multi-rooted process trees, prevent global and container-inits 1781 * from creating siblings. 1782 */ 1783 if ((clone_flags & CLONE_PARENT) && 1784 current->signal->flags & SIGNAL_UNKILLABLE) 1785 return ERR_PTR(-EINVAL); 1786 1787 /* 1788 * If the new process will be in a different pid or user namespace 1789 * do not allow it to share a thread group with the forking task. 1790 */ 1791 if (clone_flags & CLONE_THREAD) { 1792 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1793 (task_active_pid_ns(current) != 1794 current->nsproxy->pid_ns_for_children)) 1795 return ERR_PTR(-EINVAL); 1796 } 1797 1798 if (clone_flags & CLONE_PIDFD) { 1799 int reserved; 1800 1801 /* 1802 * - CLONE_PARENT_SETTID is useless for pidfds and also 1803 * parent_tidptr is used to return pidfds. 1804 * - CLONE_DETACHED is blocked so that we can potentially 1805 * reuse it later for CLONE_PIDFD. 1806 * - CLONE_THREAD is blocked until someone really needs it. 1807 */ 1808 if (clone_flags & 1809 (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD)) 1810 return ERR_PTR(-EINVAL); 1811 1812 /* 1813 * Verify that parent_tidptr is sane so we can potentially 1814 * reuse it later. 1815 */ 1816 if (get_user(reserved, parent_tidptr)) 1817 return ERR_PTR(-EFAULT); 1818 1819 if (reserved != 0) 1820 return ERR_PTR(-EINVAL); 1821 } 1822 1823 /* 1824 * Force any signals received before this point to be delivered 1825 * before the fork happens. Collect up signals sent to multiple 1826 * processes that happen during the fork and delay them so that 1827 * they appear to happen after the fork. 1828 */ 1829 sigemptyset(&delayed.signal); 1830 INIT_HLIST_NODE(&delayed.node); 1831 1832 spin_lock_irq(¤t->sighand->siglock); 1833 if (!(clone_flags & CLONE_THREAD)) 1834 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1835 recalc_sigpending(); 1836 spin_unlock_irq(¤t->sighand->siglock); 1837 retval = -ERESTARTNOINTR; 1838 if (signal_pending(current)) 1839 goto fork_out; 1840 1841 retval = -ENOMEM; 1842 p = dup_task_struct(current, node); 1843 if (!p) 1844 goto fork_out; 1845 1846 /* 1847 * This _must_ happen before we call free_task(), i.e. before we jump 1848 * to any of the bad_fork_* labels. This is to avoid freeing 1849 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1850 * kernel threads (PF_KTHREAD). 1851 */ 1852 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1853 /* 1854 * Clear TID on mm_release()? 1855 */ 1856 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1857 1858 ftrace_graph_init_task(p); 1859 1860 rt_mutex_init_task(p); 1861 1862 #ifdef CONFIG_PROVE_LOCKING 1863 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1864 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1865 #endif 1866 retval = -EAGAIN; 1867 if (atomic_read(&p->real_cred->user->processes) >= 1868 task_rlimit(p, RLIMIT_NPROC)) { 1869 if (p->real_cred->user != INIT_USER && 1870 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1871 goto bad_fork_free; 1872 } 1873 current->flags &= ~PF_NPROC_EXCEEDED; 1874 1875 retval = copy_creds(p, clone_flags); 1876 if (retval < 0) 1877 goto bad_fork_free; 1878 1879 /* 1880 * If multiple threads are within copy_process(), then this check 1881 * triggers too late. This doesn't hurt, the check is only there 1882 * to stop root fork bombs. 1883 */ 1884 retval = -EAGAIN; 1885 if (nr_threads >= max_threads) 1886 goto bad_fork_cleanup_count; 1887 1888 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1889 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1890 p->flags |= PF_FORKNOEXEC; 1891 INIT_LIST_HEAD(&p->children); 1892 INIT_LIST_HEAD(&p->sibling); 1893 rcu_copy_process(p); 1894 p->vfork_done = NULL; 1895 spin_lock_init(&p->alloc_lock); 1896 1897 init_sigpending(&p->pending); 1898 1899 p->utime = p->stime = p->gtime = 0; 1900 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1901 p->utimescaled = p->stimescaled = 0; 1902 #endif 1903 prev_cputime_init(&p->prev_cputime); 1904 1905 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1906 seqcount_init(&p->vtime.seqcount); 1907 p->vtime.starttime = 0; 1908 p->vtime.state = VTIME_INACTIVE; 1909 #endif 1910 1911 #if defined(SPLIT_RSS_COUNTING) 1912 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1913 #endif 1914 1915 p->default_timer_slack_ns = current->timer_slack_ns; 1916 1917 #ifdef CONFIG_PSI 1918 p->psi_flags = 0; 1919 #endif 1920 1921 task_io_accounting_init(&p->ioac); 1922 acct_clear_integrals(p); 1923 1924 posix_cpu_timers_init(p); 1925 1926 p->io_context = NULL; 1927 audit_set_context(p, NULL); 1928 cgroup_fork(p); 1929 #ifdef CONFIG_NUMA 1930 p->mempolicy = mpol_dup(p->mempolicy); 1931 if (IS_ERR(p->mempolicy)) { 1932 retval = PTR_ERR(p->mempolicy); 1933 p->mempolicy = NULL; 1934 goto bad_fork_cleanup_threadgroup_lock; 1935 } 1936 #endif 1937 #ifdef CONFIG_CPUSETS 1938 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1939 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1940 seqcount_init(&p->mems_allowed_seq); 1941 #endif 1942 #ifdef CONFIG_TRACE_IRQFLAGS 1943 p->irq_events = 0; 1944 p->hardirqs_enabled = 0; 1945 p->hardirq_enable_ip = 0; 1946 p->hardirq_enable_event = 0; 1947 p->hardirq_disable_ip = _THIS_IP_; 1948 p->hardirq_disable_event = 0; 1949 p->softirqs_enabled = 1; 1950 p->softirq_enable_ip = _THIS_IP_; 1951 p->softirq_enable_event = 0; 1952 p->softirq_disable_ip = 0; 1953 p->softirq_disable_event = 0; 1954 p->hardirq_context = 0; 1955 p->softirq_context = 0; 1956 #endif 1957 1958 p->pagefault_disabled = 0; 1959 1960 #ifdef CONFIG_LOCKDEP 1961 p->lockdep_depth = 0; /* no locks held yet */ 1962 p->curr_chain_key = 0; 1963 p->lockdep_recursion = 0; 1964 lockdep_init_task(p); 1965 #endif 1966 1967 #ifdef CONFIG_DEBUG_MUTEXES 1968 p->blocked_on = NULL; /* not blocked yet */ 1969 #endif 1970 #ifdef CONFIG_BCACHE 1971 p->sequential_io = 0; 1972 p->sequential_io_avg = 0; 1973 #endif 1974 1975 /* Perform scheduler related setup. Assign this task to a CPU. */ 1976 retval = sched_fork(clone_flags, p); 1977 if (retval) 1978 goto bad_fork_cleanup_policy; 1979 1980 retval = perf_event_init_task(p); 1981 if (retval) 1982 goto bad_fork_cleanup_policy; 1983 retval = audit_alloc(p); 1984 if (retval) 1985 goto bad_fork_cleanup_perf; 1986 /* copy all the process information */ 1987 shm_init_task(p); 1988 retval = security_task_alloc(p, clone_flags); 1989 if (retval) 1990 goto bad_fork_cleanup_audit; 1991 retval = copy_semundo(clone_flags, p); 1992 if (retval) 1993 goto bad_fork_cleanup_security; 1994 retval = copy_files(clone_flags, p); 1995 if (retval) 1996 goto bad_fork_cleanup_semundo; 1997 retval = copy_fs(clone_flags, p); 1998 if (retval) 1999 goto bad_fork_cleanup_files; 2000 retval = copy_sighand(clone_flags, p); 2001 if (retval) 2002 goto bad_fork_cleanup_fs; 2003 retval = copy_signal(clone_flags, p); 2004 if (retval) 2005 goto bad_fork_cleanup_sighand; 2006 retval = copy_mm(clone_flags, p); 2007 if (retval) 2008 goto bad_fork_cleanup_signal; 2009 retval = copy_namespaces(clone_flags, p); 2010 if (retval) 2011 goto bad_fork_cleanup_mm; 2012 retval = copy_io(clone_flags, p); 2013 if (retval) 2014 goto bad_fork_cleanup_namespaces; 2015 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls); 2016 if (retval) 2017 goto bad_fork_cleanup_io; 2018 2019 stackleak_task_init(p); 2020 2021 if (pid != &init_struct_pid) { 2022 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 2023 if (IS_ERR(pid)) { 2024 retval = PTR_ERR(pid); 2025 goto bad_fork_cleanup_thread; 2026 } 2027 } 2028 2029 /* 2030 * This has to happen after we've potentially unshared the file 2031 * descriptor table (so that the pidfd doesn't leak into the child 2032 * if the fd table isn't shared). 2033 */ 2034 if (clone_flags & CLONE_PIDFD) { 2035 retval = pidfd_create(pid); 2036 if (retval < 0) 2037 goto bad_fork_free_pid; 2038 2039 pidfd = retval; 2040 retval = put_user(pidfd, parent_tidptr); 2041 if (retval) 2042 goto bad_fork_put_pidfd; 2043 } 2044 2045 #ifdef CONFIG_BLOCK 2046 p->plug = NULL; 2047 #endif 2048 #ifdef CONFIG_FUTEX 2049 p->robust_list = NULL; 2050 #ifdef CONFIG_COMPAT 2051 p->compat_robust_list = NULL; 2052 #endif 2053 INIT_LIST_HEAD(&p->pi_state_list); 2054 p->pi_state_cache = NULL; 2055 #endif 2056 /* 2057 * sigaltstack should be cleared when sharing the same VM 2058 */ 2059 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2060 sas_ss_reset(p); 2061 2062 /* 2063 * Syscall tracing and stepping should be turned off in the 2064 * child regardless of CLONE_PTRACE. 2065 */ 2066 user_disable_single_step(p); 2067 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2068 #ifdef TIF_SYSCALL_EMU 2069 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2070 #endif 2071 clear_all_latency_tracing(p); 2072 2073 /* ok, now we should be set up.. */ 2074 p->pid = pid_nr(pid); 2075 if (clone_flags & CLONE_THREAD) { 2076 p->exit_signal = -1; 2077 p->group_leader = current->group_leader; 2078 p->tgid = current->tgid; 2079 } else { 2080 if (clone_flags & CLONE_PARENT) 2081 p->exit_signal = current->group_leader->exit_signal; 2082 else 2083 p->exit_signal = (clone_flags & CSIGNAL); 2084 p->group_leader = p; 2085 p->tgid = p->pid; 2086 } 2087 2088 p->nr_dirtied = 0; 2089 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2090 p->dirty_paused_when = 0; 2091 2092 p->pdeath_signal = 0; 2093 INIT_LIST_HEAD(&p->thread_group); 2094 p->task_works = NULL; 2095 2096 cgroup_threadgroup_change_begin(current); 2097 /* 2098 * Ensure that the cgroup subsystem policies allow the new process to be 2099 * forked. It should be noted the the new process's css_set can be changed 2100 * between here and cgroup_post_fork() if an organisation operation is in 2101 * progress. 2102 */ 2103 retval = cgroup_can_fork(p); 2104 if (retval) 2105 goto bad_fork_cgroup_threadgroup_change_end; 2106 2107 /* 2108 * From this point on we must avoid any synchronous user-space 2109 * communication until we take the tasklist-lock. In particular, we do 2110 * not want user-space to be able to predict the process start-time by 2111 * stalling fork(2) after we recorded the start_time but before it is 2112 * visible to the system. 2113 */ 2114 2115 p->start_time = ktime_get_ns(); 2116 p->real_start_time = ktime_get_boot_ns(); 2117 2118 /* 2119 * Make it visible to the rest of the system, but dont wake it up yet. 2120 * Need tasklist lock for parent etc handling! 2121 */ 2122 write_lock_irq(&tasklist_lock); 2123 2124 /* CLONE_PARENT re-uses the old parent */ 2125 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2126 p->real_parent = current->real_parent; 2127 p->parent_exec_id = current->parent_exec_id; 2128 } else { 2129 p->real_parent = current; 2130 p->parent_exec_id = current->self_exec_id; 2131 } 2132 2133 klp_copy_process(p); 2134 2135 spin_lock(¤t->sighand->siglock); 2136 2137 /* 2138 * Copy seccomp details explicitly here, in case they were changed 2139 * before holding sighand lock. 2140 */ 2141 copy_seccomp(p); 2142 2143 rseq_fork(p, clone_flags); 2144 2145 /* Don't start children in a dying pid namespace */ 2146 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2147 retval = -ENOMEM; 2148 goto bad_fork_cancel_cgroup; 2149 } 2150 2151 /* Let kill terminate clone/fork in the middle */ 2152 if (fatal_signal_pending(current)) { 2153 retval = -EINTR; 2154 goto bad_fork_cancel_cgroup; 2155 } 2156 2157 2158 init_task_pid_links(p); 2159 if (likely(p->pid)) { 2160 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2161 2162 init_task_pid(p, PIDTYPE_PID, pid); 2163 if (thread_group_leader(p)) { 2164 init_task_pid(p, PIDTYPE_TGID, pid); 2165 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2166 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2167 2168 if (is_child_reaper(pid)) { 2169 ns_of_pid(pid)->child_reaper = p; 2170 p->signal->flags |= SIGNAL_UNKILLABLE; 2171 } 2172 p->signal->shared_pending.signal = delayed.signal; 2173 p->signal->tty = tty_kref_get(current->signal->tty); 2174 /* 2175 * Inherit has_child_subreaper flag under the same 2176 * tasklist_lock with adding child to the process tree 2177 * for propagate_has_child_subreaper optimization. 2178 */ 2179 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2180 p->real_parent->signal->is_child_subreaper; 2181 list_add_tail(&p->sibling, &p->real_parent->children); 2182 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2183 attach_pid(p, PIDTYPE_TGID); 2184 attach_pid(p, PIDTYPE_PGID); 2185 attach_pid(p, PIDTYPE_SID); 2186 __this_cpu_inc(process_counts); 2187 } else { 2188 current->signal->nr_threads++; 2189 atomic_inc(¤t->signal->live); 2190 refcount_inc(¤t->signal->sigcnt); 2191 task_join_group_stop(p); 2192 list_add_tail_rcu(&p->thread_group, 2193 &p->group_leader->thread_group); 2194 list_add_tail_rcu(&p->thread_node, 2195 &p->signal->thread_head); 2196 } 2197 attach_pid(p, PIDTYPE_PID); 2198 nr_threads++; 2199 } 2200 total_forks++; 2201 hlist_del_init(&delayed.node); 2202 spin_unlock(¤t->sighand->siglock); 2203 syscall_tracepoint_update(p); 2204 write_unlock_irq(&tasklist_lock); 2205 2206 proc_fork_connector(p); 2207 cgroup_post_fork(p); 2208 cgroup_threadgroup_change_end(current); 2209 perf_event_fork(p); 2210 2211 trace_task_newtask(p, clone_flags); 2212 uprobe_copy_process(p, clone_flags); 2213 2214 return p; 2215 2216 bad_fork_cancel_cgroup: 2217 spin_unlock(¤t->sighand->siglock); 2218 write_unlock_irq(&tasklist_lock); 2219 cgroup_cancel_fork(p); 2220 bad_fork_cgroup_threadgroup_change_end: 2221 cgroup_threadgroup_change_end(current); 2222 bad_fork_put_pidfd: 2223 if (clone_flags & CLONE_PIDFD) 2224 ksys_close(pidfd); 2225 bad_fork_free_pid: 2226 if (pid != &init_struct_pid) 2227 free_pid(pid); 2228 bad_fork_cleanup_thread: 2229 exit_thread(p); 2230 bad_fork_cleanup_io: 2231 if (p->io_context) 2232 exit_io_context(p); 2233 bad_fork_cleanup_namespaces: 2234 exit_task_namespaces(p); 2235 bad_fork_cleanup_mm: 2236 if (p->mm) 2237 mmput(p->mm); 2238 bad_fork_cleanup_signal: 2239 if (!(clone_flags & CLONE_THREAD)) 2240 free_signal_struct(p->signal); 2241 bad_fork_cleanup_sighand: 2242 __cleanup_sighand(p->sighand); 2243 bad_fork_cleanup_fs: 2244 exit_fs(p); /* blocking */ 2245 bad_fork_cleanup_files: 2246 exit_files(p); /* blocking */ 2247 bad_fork_cleanup_semundo: 2248 exit_sem(p); 2249 bad_fork_cleanup_security: 2250 security_task_free(p); 2251 bad_fork_cleanup_audit: 2252 audit_free(p); 2253 bad_fork_cleanup_perf: 2254 perf_event_free_task(p); 2255 bad_fork_cleanup_policy: 2256 lockdep_free_task(p); 2257 #ifdef CONFIG_NUMA 2258 mpol_put(p->mempolicy); 2259 bad_fork_cleanup_threadgroup_lock: 2260 #endif 2261 delayacct_tsk_free(p); 2262 bad_fork_cleanup_count: 2263 atomic_dec(&p->cred->user->processes); 2264 exit_creds(p); 2265 bad_fork_free: 2266 p->state = TASK_DEAD; 2267 put_task_stack(p); 2268 free_task(p); 2269 fork_out: 2270 spin_lock_irq(¤t->sighand->siglock); 2271 hlist_del_init(&delayed.node); 2272 spin_unlock_irq(¤t->sighand->siglock); 2273 return ERR_PTR(retval); 2274 } 2275 2276 static inline void init_idle_pids(struct task_struct *idle) 2277 { 2278 enum pid_type type; 2279 2280 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2281 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2282 init_task_pid(idle, type, &init_struct_pid); 2283 } 2284 } 2285 2286 struct task_struct *fork_idle(int cpu) 2287 { 2288 struct task_struct *task; 2289 task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0, 2290 cpu_to_node(cpu)); 2291 if (!IS_ERR(task)) { 2292 init_idle_pids(task); 2293 init_idle(task, cpu); 2294 } 2295 2296 return task; 2297 } 2298 2299 struct mm_struct *copy_init_mm(void) 2300 { 2301 return dup_mm(NULL, &init_mm); 2302 } 2303 2304 /* 2305 * Ok, this is the main fork-routine. 2306 * 2307 * It copies the process, and if successful kick-starts 2308 * it and waits for it to finish using the VM if required. 2309 */ 2310 long _do_fork(unsigned long clone_flags, 2311 unsigned long stack_start, 2312 unsigned long stack_size, 2313 int __user *parent_tidptr, 2314 int __user *child_tidptr, 2315 unsigned long tls) 2316 { 2317 struct completion vfork; 2318 struct pid *pid; 2319 struct task_struct *p; 2320 int trace = 0; 2321 long nr; 2322 2323 /* 2324 * Determine whether and which event to report to ptracer. When 2325 * called from kernel_thread or CLONE_UNTRACED is explicitly 2326 * requested, no event is reported; otherwise, report if the event 2327 * for the type of forking is enabled. 2328 */ 2329 if (!(clone_flags & CLONE_UNTRACED)) { 2330 if (clone_flags & CLONE_VFORK) 2331 trace = PTRACE_EVENT_VFORK; 2332 else if ((clone_flags & CSIGNAL) != SIGCHLD) 2333 trace = PTRACE_EVENT_CLONE; 2334 else 2335 trace = PTRACE_EVENT_FORK; 2336 2337 if (likely(!ptrace_event_enabled(current, trace))) 2338 trace = 0; 2339 } 2340 2341 p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr, 2342 child_tidptr, NULL, trace, tls, NUMA_NO_NODE); 2343 add_latent_entropy(); 2344 2345 if (IS_ERR(p)) 2346 return PTR_ERR(p); 2347 2348 /* 2349 * Do this prior waking up the new thread - the thread pointer 2350 * might get invalid after that point, if the thread exits quickly. 2351 */ 2352 trace_sched_process_fork(current, p); 2353 2354 pid = get_task_pid(p, PIDTYPE_PID); 2355 nr = pid_vnr(pid); 2356 2357 if (clone_flags & CLONE_PARENT_SETTID) 2358 put_user(nr, parent_tidptr); 2359 2360 if (clone_flags & CLONE_VFORK) { 2361 p->vfork_done = &vfork; 2362 init_completion(&vfork); 2363 get_task_struct(p); 2364 } 2365 2366 wake_up_new_task(p); 2367 2368 /* forking complete and child started to run, tell ptracer */ 2369 if (unlikely(trace)) 2370 ptrace_event_pid(trace, pid); 2371 2372 if (clone_flags & CLONE_VFORK) { 2373 if (!wait_for_vfork_done(p, &vfork)) 2374 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2375 } 2376 2377 put_pid(pid); 2378 return nr; 2379 } 2380 2381 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2382 /* For compatibility with architectures that call do_fork directly rather than 2383 * using the syscall entry points below. */ 2384 long do_fork(unsigned long clone_flags, 2385 unsigned long stack_start, 2386 unsigned long stack_size, 2387 int __user *parent_tidptr, 2388 int __user *child_tidptr) 2389 { 2390 return _do_fork(clone_flags, stack_start, stack_size, 2391 parent_tidptr, child_tidptr, 0); 2392 } 2393 #endif 2394 2395 /* 2396 * Create a kernel thread. 2397 */ 2398 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2399 { 2400 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 2401 (unsigned long)arg, NULL, NULL, 0); 2402 } 2403 2404 #ifdef __ARCH_WANT_SYS_FORK 2405 SYSCALL_DEFINE0(fork) 2406 { 2407 #ifdef CONFIG_MMU 2408 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0); 2409 #else 2410 /* can not support in nommu mode */ 2411 return -EINVAL; 2412 #endif 2413 } 2414 #endif 2415 2416 #ifdef __ARCH_WANT_SYS_VFORK 2417 SYSCALL_DEFINE0(vfork) 2418 { 2419 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 2420 0, NULL, NULL, 0); 2421 } 2422 #endif 2423 2424 #ifdef __ARCH_WANT_SYS_CLONE 2425 #ifdef CONFIG_CLONE_BACKWARDS 2426 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2427 int __user *, parent_tidptr, 2428 unsigned long, tls, 2429 int __user *, child_tidptr) 2430 #elif defined(CONFIG_CLONE_BACKWARDS2) 2431 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2432 int __user *, parent_tidptr, 2433 int __user *, child_tidptr, 2434 unsigned long, tls) 2435 #elif defined(CONFIG_CLONE_BACKWARDS3) 2436 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2437 int, stack_size, 2438 int __user *, parent_tidptr, 2439 int __user *, child_tidptr, 2440 unsigned long, tls) 2441 #else 2442 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2443 int __user *, parent_tidptr, 2444 int __user *, child_tidptr, 2445 unsigned long, tls) 2446 #endif 2447 { 2448 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls); 2449 } 2450 #endif 2451 2452 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2453 { 2454 struct task_struct *leader, *parent, *child; 2455 int res; 2456 2457 read_lock(&tasklist_lock); 2458 leader = top = top->group_leader; 2459 down: 2460 for_each_thread(leader, parent) { 2461 list_for_each_entry(child, &parent->children, sibling) { 2462 res = visitor(child, data); 2463 if (res) { 2464 if (res < 0) 2465 goto out; 2466 leader = child; 2467 goto down; 2468 } 2469 up: 2470 ; 2471 } 2472 } 2473 2474 if (leader != top) { 2475 child = leader; 2476 parent = child->real_parent; 2477 leader = parent->group_leader; 2478 goto up; 2479 } 2480 out: 2481 read_unlock(&tasklist_lock); 2482 } 2483 2484 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2485 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2486 #endif 2487 2488 static void sighand_ctor(void *data) 2489 { 2490 struct sighand_struct *sighand = data; 2491 2492 spin_lock_init(&sighand->siglock); 2493 init_waitqueue_head(&sighand->signalfd_wqh); 2494 } 2495 2496 void __init proc_caches_init(void) 2497 { 2498 unsigned int mm_size; 2499 2500 sighand_cachep = kmem_cache_create("sighand_cache", 2501 sizeof(struct sighand_struct), 0, 2502 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2503 SLAB_ACCOUNT, sighand_ctor); 2504 signal_cachep = kmem_cache_create("signal_cache", 2505 sizeof(struct signal_struct), 0, 2506 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2507 NULL); 2508 files_cachep = kmem_cache_create("files_cache", 2509 sizeof(struct files_struct), 0, 2510 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2511 NULL); 2512 fs_cachep = kmem_cache_create("fs_cache", 2513 sizeof(struct fs_struct), 0, 2514 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2515 NULL); 2516 2517 /* 2518 * The mm_cpumask is located at the end of mm_struct, and is 2519 * dynamically sized based on the maximum CPU number this system 2520 * can have, taking hotplug into account (nr_cpu_ids). 2521 */ 2522 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2523 2524 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2525 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2526 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2527 offsetof(struct mm_struct, saved_auxv), 2528 sizeof_field(struct mm_struct, saved_auxv), 2529 NULL); 2530 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2531 mmap_init(); 2532 nsproxy_cache_init(); 2533 } 2534 2535 /* 2536 * Check constraints on flags passed to the unshare system call. 2537 */ 2538 static int check_unshare_flags(unsigned long unshare_flags) 2539 { 2540 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2541 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2542 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2543 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2544 return -EINVAL; 2545 /* 2546 * Not implemented, but pretend it works if there is nothing 2547 * to unshare. Note that unsharing the address space or the 2548 * signal handlers also need to unshare the signal queues (aka 2549 * CLONE_THREAD). 2550 */ 2551 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2552 if (!thread_group_empty(current)) 2553 return -EINVAL; 2554 } 2555 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2556 if (refcount_read(¤t->sighand->count) > 1) 2557 return -EINVAL; 2558 } 2559 if (unshare_flags & CLONE_VM) { 2560 if (!current_is_single_threaded()) 2561 return -EINVAL; 2562 } 2563 2564 return 0; 2565 } 2566 2567 /* 2568 * Unshare the filesystem structure if it is being shared 2569 */ 2570 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2571 { 2572 struct fs_struct *fs = current->fs; 2573 2574 if (!(unshare_flags & CLONE_FS) || !fs) 2575 return 0; 2576 2577 /* don't need lock here; in the worst case we'll do useless copy */ 2578 if (fs->users == 1) 2579 return 0; 2580 2581 *new_fsp = copy_fs_struct(fs); 2582 if (!*new_fsp) 2583 return -ENOMEM; 2584 2585 return 0; 2586 } 2587 2588 /* 2589 * Unshare file descriptor table if it is being shared 2590 */ 2591 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2592 { 2593 struct files_struct *fd = current->files; 2594 int error = 0; 2595 2596 if ((unshare_flags & CLONE_FILES) && 2597 (fd && atomic_read(&fd->count) > 1)) { 2598 *new_fdp = dup_fd(fd, &error); 2599 if (!*new_fdp) 2600 return error; 2601 } 2602 2603 return 0; 2604 } 2605 2606 /* 2607 * unshare allows a process to 'unshare' part of the process 2608 * context which was originally shared using clone. copy_* 2609 * functions used by do_fork() cannot be used here directly 2610 * because they modify an inactive task_struct that is being 2611 * constructed. Here we are modifying the current, active, 2612 * task_struct. 2613 */ 2614 int ksys_unshare(unsigned long unshare_flags) 2615 { 2616 struct fs_struct *fs, *new_fs = NULL; 2617 struct files_struct *fd, *new_fd = NULL; 2618 struct cred *new_cred = NULL; 2619 struct nsproxy *new_nsproxy = NULL; 2620 int do_sysvsem = 0; 2621 int err; 2622 2623 /* 2624 * If unsharing a user namespace must also unshare the thread group 2625 * and unshare the filesystem root and working directories. 2626 */ 2627 if (unshare_flags & CLONE_NEWUSER) 2628 unshare_flags |= CLONE_THREAD | CLONE_FS; 2629 /* 2630 * If unsharing vm, must also unshare signal handlers. 2631 */ 2632 if (unshare_flags & CLONE_VM) 2633 unshare_flags |= CLONE_SIGHAND; 2634 /* 2635 * If unsharing a signal handlers, must also unshare the signal queues. 2636 */ 2637 if (unshare_flags & CLONE_SIGHAND) 2638 unshare_flags |= CLONE_THREAD; 2639 /* 2640 * If unsharing namespace, must also unshare filesystem information. 2641 */ 2642 if (unshare_flags & CLONE_NEWNS) 2643 unshare_flags |= CLONE_FS; 2644 2645 err = check_unshare_flags(unshare_flags); 2646 if (err) 2647 goto bad_unshare_out; 2648 /* 2649 * CLONE_NEWIPC must also detach from the undolist: after switching 2650 * to a new ipc namespace, the semaphore arrays from the old 2651 * namespace are unreachable. 2652 */ 2653 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2654 do_sysvsem = 1; 2655 err = unshare_fs(unshare_flags, &new_fs); 2656 if (err) 2657 goto bad_unshare_out; 2658 err = unshare_fd(unshare_flags, &new_fd); 2659 if (err) 2660 goto bad_unshare_cleanup_fs; 2661 err = unshare_userns(unshare_flags, &new_cred); 2662 if (err) 2663 goto bad_unshare_cleanup_fd; 2664 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2665 new_cred, new_fs); 2666 if (err) 2667 goto bad_unshare_cleanup_cred; 2668 2669 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2670 if (do_sysvsem) { 2671 /* 2672 * CLONE_SYSVSEM is equivalent to sys_exit(). 2673 */ 2674 exit_sem(current); 2675 } 2676 if (unshare_flags & CLONE_NEWIPC) { 2677 /* Orphan segments in old ns (see sem above). */ 2678 exit_shm(current); 2679 shm_init_task(current); 2680 } 2681 2682 if (new_nsproxy) 2683 switch_task_namespaces(current, new_nsproxy); 2684 2685 task_lock(current); 2686 2687 if (new_fs) { 2688 fs = current->fs; 2689 spin_lock(&fs->lock); 2690 current->fs = new_fs; 2691 if (--fs->users) 2692 new_fs = NULL; 2693 else 2694 new_fs = fs; 2695 spin_unlock(&fs->lock); 2696 } 2697 2698 if (new_fd) { 2699 fd = current->files; 2700 current->files = new_fd; 2701 new_fd = fd; 2702 } 2703 2704 task_unlock(current); 2705 2706 if (new_cred) { 2707 /* Install the new user namespace */ 2708 commit_creds(new_cred); 2709 new_cred = NULL; 2710 } 2711 } 2712 2713 perf_event_namespaces(current); 2714 2715 bad_unshare_cleanup_cred: 2716 if (new_cred) 2717 put_cred(new_cred); 2718 bad_unshare_cleanup_fd: 2719 if (new_fd) 2720 put_files_struct(new_fd); 2721 2722 bad_unshare_cleanup_fs: 2723 if (new_fs) 2724 free_fs_struct(new_fs); 2725 2726 bad_unshare_out: 2727 return err; 2728 } 2729 2730 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2731 { 2732 return ksys_unshare(unshare_flags); 2733 } 2734 2735 /* 2736 * Helper to unshare the files of the current task. 2737 * We don't want to expose copy_files internals to 2738 * the exec layer of the kernel. 2739 */ 2740 2741 int unshare_files(struct files_struct **displaced) 2742 { 2743 struct task_struct *task = current; 2744 struct files_struct *copy = NULL; 2745 int error; 2746 2747 error = unshare_fd(CLONE_FILES, ©); 2748 if (error || !copy) { 2749 *displaced = NULL; 2750 return error; 2751 } 2752 *displaced = task->files; 2753 task_lock(task); 2754 task->files = copy; 2755 task_unlock(task); 2756 return 0; 2757 } 2758 2759 int sysctl_max_threads(struct ctl_table *table, int write, 2760 void __user *buffer, size_t *lenp, loff_t *ppos) 2761 { 2762 struct ctl_table t; 2763 int ret; 2764 int threads = max_threads; 2765 int min = MIN_THREADS; 2766 int max = MAX_THREADS; 2767 2768 t = *table; 2769 t.data = &threads; 2770 t.extra1 = &min; 2771 t.extra2 = &max; 2772 2773 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2774 if (ret || !write) 2775 return ret; 2776 2777 set_max_threads(threads); 2778 2779 return 0; 2780 } 2781