xref: /openbmc/linux/kernel/fork.c (revision 6dfcd296)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79 
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86 
87 #include <trace/events/sched.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91 
92 /*
93  * Minimum number of threads to boot the kernel
94  */
95 #define MIN_THREADS 20
96 
97 /*
98  * Maximum number of threads
99  */
100 #define MAX_THREADS FUTEX_TID_MASK
101 
102 /*
103  * Protected counters by write_lock_irq(&tasklist_lock)
104  */
105 unsigned long total_forks;	/* Handle normal Linux uptimes. */
106 int nr_threads;			/* The idle threads do not count.. */
107 
108 int max_threads;		/* tunable limit on nr_threads */
109 
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
113 
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 	return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121 
122 int nr_processes(void)
123 {
124 	int cpu;
125 	int total = 0;
126 
127 	for_each_possible_cpu(cpu)
128 		total += per_cpu(process_counts, cpu);
129 
130 	return total;
131 }
132 
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136 
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139 
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144 
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 	kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150 
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156 
157 /*
158  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159  * kmemcache based allocator.
160  */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162 
163 #ifdef CONFIG_VMAP_STACK
164 /*
165  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166  * flush.  Try to minimize the number of calls by caching stacks.
167  */
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
170 #endif
171 
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
173 {
174 #ifdef CONFIG_VMAP_STACK
175 	void *stack;
176 	int i;
177 
178 	local_irq_disable();
179 	for (i = 0; i < NR_CACHED_STACKS; i++) {
180 		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
181 
182 		if (!s)
183 			continue;
184 		this_cpu_write(cached_stacks[i], NULL);
185 
186 		tsk->stack_vm_area = s;
187 		local_irq_enable();
188 		return s->addr;
189 	}
190 	local_irq_enable();
191 
192 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 				     VMALLOC_START, VMALLOC_END,
194 				     THREADINFO_GFP | __GFP_HIGHMEM,
195 				     PAGE_KERNEL,
196 				     0, node, __builtin_return_address(0));
197 
198 	/*
199 	 * We can't call find_vm_area() in interrupt context, and
200 	 * free_thread_stack() can be called in interrupt context,
201 	 * so cache the vm_struct.
202 	 */
203 	if (stack)
204 		tsk->stack_vm_area = find_vm_area(stack);
205 	return stack;
206 #else
207 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
208 					     THREAD_SIZE_ORDER);
209 
210 	return page ? page_address(page) : NULL;
211 #endif
212 }
213 
214 static inline void free_thread_stack(struct task_struct *tsk)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	if (task_stack_vm_area(tsk)) {
218 		unsigned long flags;
219 		int i;
220 
221 		local_irq_save(flags);
222 		for (i = 0; i < NR_CACHED_STACKS; i++) {
223 			if (this_cpu_read(cached_stacks[i]))
224 				continue;
225 
226 			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 			local_irq_restore(flags);
228 			return;
229 		}
230 		local_irq_restore(flags);
231 
232 		vfree(tsk->stack);
233 		return;
234 	}
235 #endif
236 
237 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
238 }
239 # else
240 static struct kmem_cache *thread_stack_cache;
241 
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
243 						  int node)
244 {
245 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
246 }
247 
248 static void free_thread_stack(struct task_struct *tsk)
249 {
250 	kmem_cache_free(thread_stack_cache, tsk->stack);
251 }
252 
253 void thread_stack_cache_init(void)
254 {
255 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 					      THREAD_SIZE, 0, NULL);
257 	BUG_ON(thread_stack_cache == NULL);
258 }
259 # endif
260 #endif
261 
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
264 
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
267 
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
270 
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
273 
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
276 
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
279 
280 static void account_kernel_stack(struct task_struct *tsk, int account)
281 {
282 	void *stack = task_stack_page(tsk);
283 	struct vm_struct *vm = task_stack_vm_area(tsk);
284 
285 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
286 
287 	if (vm) {
288 		int i;
289 
290 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
291 
292 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 			mod_zone_page_state(page_zone(vm->pages[i]),
294 					    NR_KERNEL_STACK_KB,
295 					    PAGE_SIZE / 1024 * account);
296 		}
297 
298 		/* All stack pages belong to the same memcg. */
299 		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 					    account * (THREAD_SIZE / 1024));
301 	} else {
302 		/*
303 		 * All stack pages are in the same zone and belong to the
304 		 * same memcg.
305 		 */
306 		struct page *first_page = virt_to_page(stack);
307 
308 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 				    THREAD_SIZE / 1024 * account);
310 
311 		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 					    account * (THREAD_SIZE / 1024));
313 	}
314 }
315 
316 static void release_task_stack(struct task_struct *tsk)
317 {
318 	account_kernel_stack(tsk, -1);
319 	arch_release_thread_stack(tsk->stack);
320 	free_thread_stack(tsk);
321 	tsk->stack = NULL;
322 #ifdef CONFIG_VMAP_STACK
323 	tsk->stack_vm_area = NULL;
324 #endif
325 }
326 
327 #ifdef CONFIG_THREAD_INFO_IN_TASK
328 void put_task_stack(struct task_struct *tsk)
329 {
330 	if (atomic_dec_and_test(&tsk->stack_refcount))
331 		release_task_stack(tsk);
332 }
333 #endif
334 
335 void free_task(struct task_struct *tsk)
336 {
337 #ifndef CONFIG_THREAD_INFO_IN_TASK
338 	/*
339 	 * The task is finally done with both the stack and thread_info,
340 	 * so free both.
341 	 */
342 	release_task_stack(tsk);
343 #else
344 	/*
345 	 * If the task had a separate stack allocation, it should be gone
346 	 * by now.
347 	 */
348 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
349 #endif
350 	rt_mutex_debug_task_free(tsk);
351 	ftrace_graph_exit_task(tsk);
352 	put_seccomp_filter(tsk);
353 	arch_release_task_struct(tsk);
354 	free_task_struct(tsk);
355 }
356 EXPORT_SYMBOL(free_task);
357 
358 static inline void free_signal_struct(struct signal_struct *sig)
359 {
360 	taskstats_tgid_free(sig);
361 	sched_autogroup_exit(sig);
362 	/*
363 	 * __mmdrop is not safe to call from softirq context on x86 due to
364 	 * pgd_dtor so postpone it to the async context
365 	 */
366 	if (sig->oom_mm)
367 		mmdrop_async(sig->oom_mm);
368 	kmem_cache_free(signal_cachep, sig);
369 }
370 
371 static inline void put_signal_struct(struct signal_struct *sig)
372 {
373 	if (atomic_dec_and_test(&sig->sigcnt))
374 		free_signal_struct(sig);
375 }
376 
377 void __put_task_struct(struct task_struct *tsk)
378 {
379 	WARN_ON(!tsk->exit_state);
380 	WARN_ON(atomic_read(&tsk->usage));
381 	WARN_ON(tsk == current);
382 
383 	cgroup_free(tsk);
384 	task_numa_free(tsk);
385 	security_task_free(tsk);
386 	exit_creds(tsk);
387 	delayacct_tsk_free(tsk);
388 	put_signal_struct(tsk->signal);
389 
390 	if (!profile_handoff_task(tsk))
391 		free_task(tsk);
392 }
393 EXPORT_SYMBOL_GPL(__put_task_struct);
394 
395 void __init __weak arch_task_cache_init(void) { }
396 
397 /*
398  * set_max_threads
399  */
400 static void set_max_threads(unsigned int max_threads_suggested)
401 {
402 	u64 threads;
403 
404 	/*
405 	 * The number of threads shall be limited such that the thread
406 	 * structures may only consume a small part of the available memory.
407 	 */
408 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
409 		threads = MAX_THREADS;
410 	else
411 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
412 				    (u64) THREAD_SIZE * 8UL);
413 
414 	if (threads > max_threads_suggested)
415 		threads = max_threads_suggested;
416 
417 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
418 }
419 
420 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
421 /* Initialized by the architecture: */
422 int arch_task_struct_size __read_mostly;
423 #endif
424 
425 void __init fork_init(void)
426 {
427 	int i;
428 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
429 #ifndef ARCH_MIN_TASKALIGN
430 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
431 #endif
432 	/* create a slab on which task_structs can be allocated */
433 	task_struct_cachep = kmem_cache_create("task_struct",
434 			arch_task_struct_size, ARCH_MIN_TASKALIGN,
435 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
436 #endif
437 
438 	/* do the arch specific task caches init */
439 	arch_task_cache_init();
440 
441 	set_max_threads(MAX_THREADS);
442 
443 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
444 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
445 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
446 		init_task.signal->rlim[RLIMIT_NPROC];
447 
448 	for (i = 0; i < UCOUNT_COUNTS; i++) {
449 		init_user_ns.ucount_max[i] = max_threads/2;
450 	}
451 }
452 
453 int __weak arch_dup_task_struct(struct task_struct *dst,
454 					       struct task_struct *src)
455 {
456 	*dst = *src;
457 	return 0;
458 }
459 
460 void set_task_stack_end_magic(struct task_struct *tsk)
461 {
462 	unsigned long *stackend;
463 
464 	stackend = end_of_stack(tsk);
465 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
466 }
467 
468 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
469 {
470 	struct task_struct *tsk;
471 	unsigned long *stack;
472 	struct vm_struct *stack_vm_area;
473 	int err;
474 
475 	if (node == NUMA_NO_NODE)
476 		node = tsk_fork_get_node(orig);
477 	tsk = alloc_task_struct_node(node);
478 	if (!tsk)
479 		return NULL;
480 
481 	stack = alloc_thread_stack_node(tsk, node);
482 	if (!stack)
483 		goto free_tsk;
484 
485 	stack_vm_area = task_stack_vm_area(tsk);
486 
487 	err = arch_dup_task_struct(tsk, orig);
488 
489 	/*
490 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
491 	 * sure they're properly initialized before using any stack-related
492 	 * functions again.
493 	 */
494 	tsk->stack = stack;
495 #ifdef CONFIG_VMAP_STACK
496 	tsk->stack_vm_area = stack_vm_area;
497 #endif
498 #ifdef CONFIG_THREAD_INFO_IN_TASK
499 	atomic_set(&tsk->stack_refcount, 1);
500 #endif
501 
502 	if (err)
503 		goto free_stack;
504 
505 #ifdef CONFIG_SECCOMP
506 	/*
507 	 * We must handle setting up seccomp filters once we're under
508 	 * the sighand lock in case orig has changed between now and
509 	 * then. Until then, filter must be NULL to avoid messing up
510 	 * the usage counts on the error path calling free_task.
511 	 */
512 	tsk->seccomp.filter = NULL;
513 #endif
514 
515 	setup_thread_stack(tsk, orig);
516 	clear_user_return_notifier(tsk);
517 	clear_tsk_need_resched(tsk);
518 	set_task_stack_end_magic(tsk);
519 
520 #ifdef CONFIG_CC_STACKPROTECTOR
521 	tsk->stack_canary = get_random_int();
522 #endif
523 
524 	/*
525 	 * One for us, one for whoever does the "release_task()" (usually
526 	 * parent)
527 	 */
528 	atomic_set(&tsk->usage, 2);
529 #ifdef CONFIG_BLK_DEV_IO_TRACE
530 	tsk->btrace_seq = 0;
531 #endif
532 	tsk->splice_pipe = NULL;
533 	tsk->task_frag.page = NULL;
534 	tsk->wake_q.next = NULL;
535 
536 	account_kernel_stack(tsk, 1);
537 
538 	kcov_task_init(tsk);
539 
540 	return tsk;
541 
542 free_stack:
543 	free_thread_stack(tsk);
544 free_tsk:
545 	free_task_struct(tsk);
546 	return NULL;
547 }
548 
549 #ifdef CONFIG_MMU
550 static __latent_entropy int dup_mmap(struct mm_struct *mm,
551 					struct mm_struct *oldmm)
552 {
553 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
554 	struct rb_node **rb_link, *rb_parent;
555 	int retval;
556 	unsigned long charge;
557 
558 	uprobe_start_dup_mmap();
559 	if (down_write_killable(&oldmm->mmap_sem)) {
560 		retval = -EINTR;
561 		goto fail_uprobe_end;
562 	}
563 	flush_cache_dup_mm(oldmm);
564 	uprobe_dup_mmap(oldmm, mm);
565 	/*
566 	 * Not linked in yet - no deadlock potential:
567 	 */
568 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
569 
570 	/* No ordering required: file already has been exposed. */
571 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
572 
573 	mm->total_vm = oldmm->total_vm;
574 	mm->data_vm = oldmm->data_vm;
575 	mm->exec_vm = oldmm->exec_vm;
576 	mm->stack_vm = oldmm->stack_vm;
577 
578 	rb_link = &mm->mm_rb.rb_node;
579 	rb_parent = NULL;
580 	pprev = &mm->mmap;
581 	retval = ksm_fork(mm, oldmm);
582 	if (retval)
583 		goto out;
584 	retval = khugepaged_fork(mm, oldmm);
585 	if (retval)
586 		goto out;
587 
588 	prev = NULL;
589 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
590 		struct file *file;
591 
592 		if (mpnt->vm_flags & VM_DONTCOPY) {
593 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
594 			continue;
595 		}
596 		charge = 0;
597 		if (mpnt->vm_flags & VM_ACCOUNT) {
598 			unsigned long len = vma_pages(mpnt);
599 
600 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
601 				goto fail_nomem;
602 			charge = len;
603 		}
604 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
605 		if (!tmp)
606 			goto fail_nomem;
607 		*tmp = *mpnt;
608 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
609 		retval = vma_dup_policy(mpnt, tmp);
610 		if (retval)
611 			goto fail_nomem_policy;
612 		tmp->vm_mm = mm;
613 		if (anon_vma_fork(tmp, mpnt))
614 			goto fail_nomem_anon_vma_fork;
615 		tmp->vm_flags &=
616 			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
617 		tmp->vm_next = tmp->vm_prev = NULL;
618 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
619 		file = tmp->vm_file;
620 		if (file) {
621 			struct inode *inode = file_inode(file);
622 			struct address_space *mapping = file->f_mapping;
623 
624 			get_file(file);
625 			if (tmp->vm_flags & VM_DENYWRITE)
626 				atomic_dec(&inode->i_writecount);
627 			i_mmap_lock_write(mapping);
628 			if (tmp->vm_flags & VM_SHARED)
629 				atomic_inc(&mapping->i_mmap_writable);
630 			flush_dcache_mmap_lock(mapping);
631 			/* insert tmp into the share list, just after mpnt */
632 			vma_interval_tree_insert_after(tmp, mpnt,
633 					&mapping->i_mmap);
634 			flush_dcache_mmap_unlock(mapping);
635 			i_mmap_unlock_write(mapping);
636 		}
637 
638 		/*
639 		 * Clear hugetlb-related page reserves for children. This only
640 		 * affects MAP_PRIVATE mappings. Faults generated by the child
641 		 * are not guaranteed to succeed, even if read-only
642 		 */
643 		if (is_vm_hugetlb_page(tmp))
644 			reset_vma_resv_huge_pages(tmp);
645 
646 		/*
647 		 * Link in the new vma and copy the page table entries.
648 		 */
649 		*pprev = tmp;
650 		pprev = &tmp->vm_next;
651 		tmp->vm_prev = prev;
652 		prev = tmp;
653 
654 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
655 		rb_link = &tmp->vm_rb.rb_right;
656 		rb_parent = &tmp->vm_rb;
657 
658 		mm->map_count++;
659 		retval = copy_page_range(mm, oldmm, mpnt);
660 
661 		if (tmp->vm_ops && tmp->vm_ops->open)
662 			tmp->vm_ops->open(tmp);
663 
664 		if (retval)
665 			goto out;
666 	}
667 	/* a new mm has just been created */
668 	arch_dup_mmap(oldmm, mm);
669 	retval = 0;
670 out:
671 	up_write(&mm->mmap_sem);
672 	flush_tlb_mm(oldmm);
673 	up_write(&oldmm->mmap_sem);
674 fail_uprobe_end:
675 	uprobe_end_dup_mmap();
676 	return retval;
677 fail_nomem_anon_vma_fork:
678 	mpol_put(vma_policy(tmp));
679 fail_nomem_policy:
680 	kmem_cache_free(vm_area_cachep, tmp);
681 fail_nomem:
682 	retval = -ENOMEM;
683 	vm_unacct_memory(charge);
684 	goto out;
685 }
686 
687 static inline int mm_alloc_pgd(struct mm_struct *mm)
688 {
689 	mm->pgd = pgd_alloc(mm);
690 	if (unlikely(!mm->pgd))
691 		return -ENOMEM;
692 	return 0;
693 }
694 
695 static inline void mm_free_pgd(struct mm_struct *mm)
696 {
697 	pgd_free(mm, mm->pgd);
698 }
699 #else
700 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
701 {
702 	down_write(&oldmm->mmap_sem);
703 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
704 	up_write(&oldmm->mmap_sem);
705 	return 0;
706 }
707 #define mm_alloc_pgd(mm)	(0)
708 #define mm_free_pgd(mm)
709 #endif /* CONFIG_MMU */
710 
711 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
712 
713 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
714 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
715 
716 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
717 
718 static int __init coredump_filter_setup(char *s)
719 {
720 	default_dump_filter =
721 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
722 		MMF_DUMP_FILTER_MASK;
723 	return 1;
724 }
725 
726 __setup("coredump_filter=", coredump_filter_setup);
727 
728 #include <linux/init_task.h>
729 
730 static void mm_init_aio(struct mm_struct *mm)
731 {
732 #ifdef CONFIG_AIO
733 	spin_lock_init(&mm->ioctx_lock);
734 	mm->ioctx_table = NULL;
735 #endif
736 }
737 
738 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
739 {
740 #ifdef CONFIG_MEMCG
741 	mm->owner = p;
742 #endif
743 }
744 
745 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
746 {
747 	mm->mmap = NULL;
748 	mm->mm_rb = RB_ROOT;
749 	mm->vmacache_seqnum = 0;
750 	atomic_set(&mm->mm_users, 1);
751 	atomic_set(&mm->mm_count, 1);
752 	init_rwsem(&mm->mmap_sem);
753 	INIT_LIST_HEAD(&mm->mmlist);
754 	mm->core_state = NULL;
755 	atomic_long_set(&mm->nr_ptes, 0);
756 	mm_nr_pmds_init(mm);
757 	mm->map_count = 0;
758 	mm->locked_vm = 0;
759 	mm->pinned_vm = 0;
760 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
761 	spin_lock_init(&mm->page_table_lock);
762 	mm_init_cpumask(mm);
763 	mm_init_aio(mm);
764 	mm_init_owner(mm, p);
765 	mmu_notifier_mm_init(mm);
766 	clear_tlb_flush_pending(mm);
767 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
768 	mm->pmd_huge_pte = NULL;
769 #endif
770 
771 	if (current->mm) {
772 		mm->flags = current->mm->flags & MMF_INIT_MASK;
773 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
774 	} else {
775 		mm->flags = default_dump_filter;
776 		mm->def_flags = 0;
777 	}
778 
779 	if (mm_alloc_pgd(mm))
780 		goto fail_nopgd;
781 
782 	if (init_new_context(p, mm))
783 		goto fail_nocontext;
784 
785 	return mm;
786 
787 fail_nocontext:
788 	mm_free_pgd(mm);
789 fail_nopgd:
790 	free_mm(mm);
791 	return NULL;
792 }
793 
794 static void check_mm(struct mm_struct *mm)
795 {
796 	int i;
797 
798 	for (i = 0; i < NR_MM_COUNTERS; i++) {
799 		long x = atomic_long_read(&mm->rss_stat.count[i]);
800 
801 		if (unlikely(x))
802 			printk(KERN_ALERT "BUG: Bad rss-counter state "
803 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
804 	}
805 
806 	if (atomic_long_read(&mm->nr_ptes))
807 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
808 				atomic_long_read(&mm->nr_ptes));
809 	if (mm_nr_pmds(mm))
810 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
811 				mm_nr_pmds(mm));
812 
813 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
814 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
815 #endif
816 }
817 
818 /*
819  * Allocate and initialize an mm_struct.
820  */
821 struct mm_struct *mm_alloc(void)
822 {
823 	struct mm_struct *mm;
824 
825 	mm = allocate_mm();
826 	if (!mm)
827 		return NULL;
828 
829 	memset(mm, 0, sizeof(*mm));
830 	return mm_init(mm, current);
831 }
832 
833 /*
834  * Called when the last reference to the mm
835  * is dropped: either by a lazy thread or by
836  * mmput. Free the page directory and the mm.
837  */
838 void __mmdrop(struct mm_struct *mm)
839 {
840 	BUG_ON(mm == &init_mm);
841 	mm_free_pgd(mm);
842 	destroy_context(mm);
843 	mmu_notifier_mm_destroy(mm);
844 	check_mm(mm);
845 	free_mm(mm);
846 }
847 EXPORT_SYMBOL_GPL(__mmdrop);
848 
849 static inline void __mmput(struct mm_struct *mm)
850 {
851 	VM_BUG_ON(atomic_read(&mm->mm_users));
852 
853 	uprobe_clear_state(mm);
854 	exit_aio(mm);
855 	ksm_exit(mm);
856 	khugepaged_exit(mm); /* must run before exit_mmap */
857 	exit_mmap(mm);
858 	mm_put_huge_zero_page(mm);
859 	set_mm_exe_file(mm, NULL);
860 	if (!list_empty(&mm->mmlist)) {
861 		spin_lock(&mmlist_lock);
862 		list_del(&mm->mmlist);
863 		spin_unlock(&mmlist_lock);
864 	}
865 	if (mm->binfmt)
866 		module_put(mm->binfmt->module);
867 	set_bit(MMF_OOM_SKIP, &mm->flags);
868 	mmdrop(mm);
869 }
870 
871 /*
872  * Decrement the use count and release all resources for an mm.
873  */
874 void mmput(struct mm_struct *mm)
875 {
876 	might_sleep();
877 
878 	if (atomic_dec_and_test(&mm->mm_users))
879 		__mmput(mm);
880 }
881 EXPORT_SYMBOL_GPL(mmput);
882 
883 #ifdef CONFIG_MMU
884 static void mmput_async_fn(struct work_struct *work)
885 {
886 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
887 	__mmput(mm);
888 }
889 
890 void mmput_async(struct mm_struct *mm)
891 {
892 	if (atomic_dec_and_test(&mm->mm_users)) {
893 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
894 		schedule_work(&mm->async_put_work);
895 	}
896 }
897 #endif
898 
899 /**
900  * set_mm_exe_file - change a reference to the mm's executable file
901  *
902  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
903  *
904  * Main users are mmput() and sys_execve(). Callers prevent concurrent
905  * invocations: in mmput() nobody alive left, in execve task is single
906  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
907  * mm->exe_file, but does so without using set_mm_exe_file() in order
908  * to do avoid the need for any locks.
909  */
910 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
911 {
912 	struct file *old_exe_file;
913 
914 	/*
915 	 * It is safe to dereference the exe_file without RCU as
916 	 * this function is only called if nobody else can access
917 	 * this mm -- see comment above for justification.
918 	 */
919 	old_exe_file = rcu_dereference_raw(mm->exe_file);
920 
921 	if (new_exe_file)
922 		get_file(new_exe_file);
923 	rcu_assign_pointer(mm->exe_file, new_exe_file);
924 	if (old_exe_file)
925 		fput(old_exe_file);
926 }
927 
928 /**
929  * get_mm_exe_file - acquire a reference to the mm's executable file
930  *
931  * Returns %NULL if mm has no associated executable file.
932  * User must release file via fput().
933  */
934 struct file *get_mm_exe_file(struct mm_struct *mm)
935 {
936 	struct file *exe_file;
937 
938 	rcu_read_lock();
939 	exe_file = rcu_dereference(mm->exe_file);
940 	if (exe_file && !get_file_rcu(exe_file))
941 		exe_file = NULL;
942 	rcu_read_unlock();
943 	return exe_file;
944 }
945 EXPORT_SYMBOL(get_mm_exe_file);
946 
947 /**
948  * get_task_exe_file - acquire a reference to the task's executable file
949  *
950  * Returns %NULL if task's mm (if any) has no associated executable file or
951  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
952  * User must release file via fput().
953  */
954 struct file *get_task_exe_file(struct task_struct *task)
955 {
956 	struct file *exe_file = NULL;
957 	struct mm_struct *mm;
958 
959 	task_lock(task);
960 	mm = task->mm;
961 	if (mm) {
962 		if (!(task->flags & PF_KTHREAD))
963 			exe_file = get_mm_exe_file(mm);
964 	}
965 	task_unlock(task);
966 	return exe_file;
967 }
968 EXPORT_SYMBOL(get_task_exe_file);
969 
970 /**
971  * get_task_mm - acquire a reference to the task's mm
972  *
973  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
974  * this kernel workthread has transiently adopted a user mm with use_mm,
975  * to do its AIO) is not set and if so returns a reference to it, after
976  * bumping up the use count.  User must release the mm via mmput()
977  * after use.  Typically used by /proc and ptrace.
978  */
979 struct mm_struct *get_task_mm(struct task_struct *task)
980 {
981 	struct mm_struct *mm;
982 
983 	task_lock(task);
984 	mm = task->mm;
985 	if (mm) {
986 		if (task->flags & PF_KTHREAD)
987 			mm = NULL;
988 		else
989 			atomic_inc(&mm->mm_users);
990 	}
991 	task_unlock(task);
992 	return mm;
993 }
994 EXPORT_SYMBOL_GPL(get_task_mm);
995 
996 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
997 {
998 	struct mm_struct *mm;
999 	int err;
1000 
1001 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1002 	if (err)
1003 		return ERR_PTR(err);
1004 
1005 	mm = get_task_mm(task);
1006 	if (mm && mm != current->mm &&
1007 			!ptrace_may_access(task, mode)) {
1008 		mmput(mm);
1009 		mm = ERR_PTR(-EACCES);
1010 	}
1011 	mutex_unlock(&task->signal->cred_guard_mutex);
1012 
1013 	return mm;
1014 }
1015 
1016 static void complete_vfork_done(struct task_struct *tsk)
1017 {
1018 	struct completion *vfork;
1019 
1020 	task_lock(tsk);
1021 	vfork = tsk->vfork_done;
1022 	if (likely(vfork)) {
1023 		tsk->vfork_done = NULL;
1024 		complete(vfork);
1025 	}
1026 	task_unlock(tsk);
1027 }
1028 
1029 static int wait_for_vfork_done(struct task_struct *child,
1030 				struct completion *vfork)
1031 {
1032 	int killed;
1033 
1034 	freezer_do_not_count();
1035 	killed = wait_for_completion_killable(vfork);
1036 	freezer_count();
1037 
1038 	if (killed) {
1039 		task_lock(child);
1040 		child->vfork_done = NULL;
1041 		task_unlock(child);
1042 	}
1043 
1044 	put_task_struct(child);
1045 	return killed;
1046 }
1047 
1048 /* Please note the differences between mmput and mm_release.
1049  * mmput is called whenever we stop holding onto a mm_struct,
1050  * error success whatever.
1051  *
1052  * mm_release is called after a mm_struct has been removed
1053  * from the current process.
1054  *
1055  * This difference is important for error handling, when we
1056  * only half set up a mm_struct for a new process and need to restore
1057  * the old one.  Because we mmput the new mm_struct before
1058  * restoring the old one. . .
1059  * Eric Biederman 10 January 1998
1060  */
1061 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1062 {
1063 	/* Get rid of any futexes when releasing the mm */
1064 #ifdef CONFIG_FUTEX
1065 	if (unlikely(tsk->robust_list)) {
1066 		exit_robust_list(tsk);
1067 		tsk->robust_list = NULL;
1068 	}
1069 #ifdef CONFIG_COMPAT
1070 	if (unlikely(tsk->compat_robust_list)) {
1071 		compat_exit_robust_list(tsk);
1072 		tsk->compat_robust_list = NULL;
1073 	}
1074 #endif
1075 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1076 		exit_pi_state_list(tsk);
1077 #endif
1078 
1079 	uprobe_free_utask(tsk);
1080 
1081 	/* Get rid of any cached register state */
1082 	deactivate_mm(tsk, mm);
1083 
1084 	/*
1085 	 * Signal userspace if we're not exiting with a core dump
1086 	 * because we want to leave the value intact for debugging
1087 	 * purposes.
1088 	 */
1089 	if (tsk->clear_child_tid) {
1090 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1091 		    atomic_read(&mm->mm_users) > 1) {
1092 			/*
1093 			 * We don't check the error code - if userspace has
1094 			 * not set up a proper pointer then tough luck.
1095 			 */
1096 			put_user(0, tsk->clear_child_tid);
1097 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1098 					1, NULL, NULL, 0);
1099 		}
1100 		tsk->clear_child_tid = NULL;
1101 	}
1102 
1103 	/*
1104 	 * All done, finally we can wake up parent and return this mm to him.
1105 	 * Also kthread_stop() uses this completion for synchronization.
1106 	 */
1107 	if (tsk->vfork_done)
1108 		complete_vfork_done(tsk);
1109 }
1110 
1111 /*
1112  * Allocate a new mm structure and copy contents from the
1113  * mm structure of the passed in task structure.
1114  */
1115 static struct mm_struct *dup_mm(struct task_struct *tsk)
1116 {
1117 	struct mm_struct *mm, *oldmm = current->mm;
1118 	int err;
1119 
1120 	mm = allocate_mm();
1121 	if (!mm)
1122 		goto fail_nomem;
1123 
1124 	memcpy(mm, oldmm, sizeof(*mm));
1125 
1126 	if (!mm_init(mm, tsk))
1127 		goto fail_nomem;
1128 
1129 	err = dup_mmap(mm, oldmm);
1130 	if (err)
1131 		goto free_pt;
1132 
1133 	mm->hiwater_rss = get_mm_rss(mm);
1134 	mm->hiwater_vm = mm->total_vm;
1135 
1136 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1137 		goto free_pt;
1138 
1139 	return mm;
1140 
1141 free_pt:
1142 	/* don't put binfmt in mmput, we haven't got module yet */
1143 	mm->binfmt = NULL;
1144 	mmput(mm);
1145 
1146 fail_nomem:
1147 	return NULL;
1148 }
1149 
1150 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1151 {
1152 	struct mm_struct *mm, *oldmm;
1153 	int retval;
1154 
1155 	tsk->min_flt = tsk->maj_flt = 0;
1156 	tsk->nvcsw = tsk->nivcsw = 0;
1157 #ifdef CONFIG_DETECT_HUNG_TASK
1158 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1159 #endif
1160 
1161 	tsk->mm = NULL;
1162 	tsk->active_mm = NULL;
1163 
1164 	/*
1165 	 * Are we cloning a kernel thread?
1166 	 *
1167 	 * We need to steal a active VM for that..
1168 	 */
1169 	oldmm = current->mm;
1170 	if (!oldmm)
1171 		return 0;
1172 
1173 	/* initialize the new vmacache entries */
1174 	vmacache_flush(tsk);
1175 
1176 	if (clone_flags & CLONE_VM) {
1177 		atomic_inc(&oldmm->mm_users);
1178 		mm = oldmm;
1179 		goto good_mm;
1180 	}
1181 
1182 	retval = -ENOMEM;
1183 	mm = dup_mm(tsk);
1184 	if (!mm)
1185 		goto fail_nomem;
1186 
1187 good_mm:
1188 	tsk->mm = mm;
1189 	tsk->active_mm = mm;
1190 	return 0;
1191 
1192 fail_nomem:
1193 	return retval;
1194 }
1195 
1196 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1197 {
1198 	struct fs_struct *fs = current->fs;
1199 	if (clone_flags & CLONE_FS) {
1200 		/* tsk->fs is already what we want */
1201 		spin_lock(&fs->lock);
1202 		if (fs->in_exec) {
1203 			spin_unlock(&fs->lock);
1204 			return -EAGAIN;
1205 		}
1206 		fs->users++;
1207 		spin_unlock(&fs->lock);
1208 		return 0;
1209 	}
1210 	tsk->fs = copy_fs_struct(fs);
1211 	if (!tsk->fs)
1212 		return -ENOMEM;
1213 	return 0;
1214 }
1215 
1216 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1217 {
1218 	struct files_struct *oldf, *newf;
1219 	int error = 0;
1220 
1221 	/*
1222 	 * A background process may not have any files ...
1223 	 */
1224 	oldf = current->files;
1225 	if (!oldf)
1226 		goto out;
1227 
1228 	if (clone_flags & CLONE_FILES) {
1229 		atomic_inc(&oldf->count);
1230 		goto out;
1231 	}
1232 
1233 	newf = dup_fd(oldf, &error);
1234 	if (!newf)
1235 		goto out;
1236 
1237 	tsk->files = newf;
1238 	error = 0;
1239 out:
1240 	return error;
1241 }
1242 
1243 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1244 {
1245 #ifdef CONFIG_BLOCK
1246 	struct io_context *ioc = current->io_context;
1247 	struct io_context *new_ioc;
1248 
1249 	if (!ioc)
1250 		return 0;
1251 	/*
1252 	 * Share io context with parent, if CLONE_IO is set
1253 	 */
1254 	if (clone_flags & CLONE_IO) {
1255 		ioc_task_link(ioc);
1256 		tsk->io_context = ioc;
1257 	} else if (ioprio_valid(ioc->ioprio)) {
1258 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1259 		if (unlikely(!new_ioc))
1260 			return -ENOMEM;
1261 
1262 		new_ioc->ioprio = ioc->ioprio;
1263 		put_io_context(new_ioc);
1264 	}
1265 #endif
1266 	return 0;
1267 }
1268 
1269 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1270 {
1271 	struct sighand_struct *sig;
1272 
1273 	if (clone_flags & CLONE_SIGHAND) {
1274 		atomic_inc(&current->sighand->count);
1275 		return 0;
1276 	}
1277 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1278 	rcu_assign_pointer(tsk->sighand, sig);
1279 	if (!sig)
1280 		return -ENOMEM;
1281 
1282 	atomic_set(&sig->count, 1);
1283 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1284 	return 0;
1285 }
1286 
1287 void __cleanup_sighand(struct sighand_struct *sighand)
1288 {
1289 	if (atomic_dec_and_test(&sighand->count)) {
1290 		signalfd_cleanup(sighand);
1291 		/*
1292 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1293 		 * without an RCU grace period, see __lock_task_sighand().
1294 		 */
1295 		kmem_cache_free(sighand_cachep, sighand);
1296 	}
1297 }
1298 
1299 /*
1300  * Initialize POSIX timer handling for a thread group.
1301  */
1302 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1303 {
1304 	unsigned long cpu_limit;
1305 
1306 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1307 	if (cpu_limit != RLIM_INFINITY) {
1308 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1309 		sig->cputimer.running = true;
1310 	}
1311 
1312 	/* The timer lists. */
1313 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1314 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1315 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1316 }
1317 
1318 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1319 {
1320 	struct signal_struct *sig;
1321 
1322 	if (clone_flags & CLONE_THREAD)
1323 		return 0;
1324 
1325 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1326 	tsk->signal = sig;
1327 	if (!sig)
1328 		return -ENOMEM;
1329 
1330 	sig->nr_threads = 1;
1331 	atomic_set(&sig->live, 1);
1332 	atomic_set(&sig->sigcnt, 1);
1333 
1334 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1335 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1336 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1337 
1338 	init_waitqueue_head(&sig->wait_chldexit);
1339 	sig->curr_target = tsk;
1340 	init_sigpending(&sig->shared_pending);
1341 	INIT_LIST_HEAD(&sig->posix_timers);
1342 	seqlock_init(&sig->stats_lock);
1343 	prev_cputime_init(&sig->prev_cputime);
1344 
1345 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1346 	sig->real_timer.function = it_real_fn;
1347 
1348 	task_lock(current->group_leader);
1349 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1350 	task_unlock(current->group_leader);
1351 
1352 	posix_cpu_timers_init_group(sig);
1353 
1354 	tty_audit_fork(sig);
1355 	sched_autogroup_fork(sig);
1356 
1357 	sig->oom_score_adj = current->signal->oom_score_adj;
1358 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1359 
1360 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1361 				   current->signal->is_child_subreaper;
1362 
1363 	mutex_init(&sig->cred_guard_mutex);
1364 
1365 	return 0;
1366 }
1367 
1368 static void copy_seccomp(struct task_struct *p)
1369 {
1370 #ifdef CONFIG_SECCOMP
1371 	/*
1372 	 * Must be called with sighand->lock held, which is common to
1373 	 * all threads in the group. Holding cred_guard_mutex is not
1374 	 * needed because this new task is not yet running and cannot
1375 	 * be racing exec.
1376 	 */
1377 	assert_spin_locked(&current->sighand->siglock);
1378 
1379 	/* Ref-count the new filter user, and assign it. */
1380 	get_seccomp_filter(current);
1381 	p->seccomp = current->seccomp;
1382 
1383 	/*
1384 	 * Explicitly enable no_new_privs here in case it got set
1385 	 * between the task_struct being duplicated and holding the
1386 	 * sighand lock. The seccomp state and nnp must be in sync.
1387 	 */
1388 	if (task_no_new_privs(current))
1389 		task_set_no_new_privs(p);
1390 
1391 	/*
1392 	 * If the parent gained a seccomp mode after copying thread
1393 	 * flags and between before we held the sighand lock, we have
1394 	 * to manually enable the seccomp thread flag here.
1395 	 */
1396 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1397 		set_tsk_thread_flag(p, TIF_SECCOMP);
1398 #endif
1399 }
1400 
1401 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1402 {
1403 	current->clear_child_tid = tidptr;
1404 
1405 	return task_pid_vnr(current);
1406 }
1407 
1408 static void rt_mutex_init_task(struct task_struct *p)
1409 {
1410 	raw_spin_lock_init(&p->pi_lock);
1411 #ifdef CONFIG_RT_MUTEXES
1412 	p->pi_waiters = RB_ROOT;
1413 	p->pi_waiters_leftmost = NULL;
1414 	p->pi_blocked_on = NULL;
1415 #endif
1416 }
1417 
1418 /*
1419  * Initialize POSIX timer handling for a single task.
1420  */
1421 static void posix_cpu_timers_init(struct task_struct *tsk)
1422 {
1423 	tsk->cputime_expires.prof_exp = 0;
1424 	tsk->cputime_expires.virt_exp = 0;
1425 	tsk->cputime_expires.sched_exp = 0;
1426 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1427 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1428 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1429 }
1430 
1431 static inline void
1432 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1433 {
1434 	 task->pids[type].pid = pid;
1435 }
1436 
1437 /*
1438  * This creates a new process as a copy of the old one,
1439  * but does not actually start it yet.
1440  *
1441  * It copies the registers, and all the appropriate
1442  * parts of the process environment (as per the clone
1443  * flags). The actual kick-off is left to the caller.
1444  */
1445 static __latent_entropy struct task_struct *copy_process(
1446 					unsigned long clone_flags,
1447 					unsigned long stack_start,
1448 					unsigned long stack_size,
1449 					int __user *child_tidptr,
1450 					struct pid *pid,
1451 					int trace,
1452 					unsigned long tls,
1453 					int node)
1454 {
1455 	int retval;
1456 	struct task_struct *p;
1457 
1458 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1459 		return ERR_PTR(-EINVAL);
1460 
1461 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1462 		return ERR_PTR(-EINVAL);
1463 
1464 	/*
1465 	 * Thread groups must share signals as well, and detached threads
1466 	 * can only be started up within the thread group.
1467 	 */
1468 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1469 		return ERR_PTR(-EINVAL);
1470 
1471 	/*
1472 	 * Shared signal handlers imply shared VM. By way of the above,
1473 	 * thread groups also imply shared VM. Blocking this case allows
1474 	 * for various simplifications in other code.
1475 	 */
1476 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1477 		return ERR_PTR(-EINVAL);
1478 
1479 	/*
1480 	 * Siblings of global init remain as zombies on exit since they are
1481 	 * not reaped by their parent (swapper). To solve this and to avoid
1482 	 * multi-rooted process trees, prevent global and container-inits
1483 	 * from creating siblings.
1484 	 */
1485 	if ((clone_flags & CLONE_PARENT) &&
1486 				current->signal->flags & SIGNAL_UNKILLABLE)
1487 		return ERR_PTR(-EINVAL);
1488 
1489 	/*
1490 	 * If the new process will be in a different pid or user namespace
1491 	 * do not allow it to share a thread group with the forking task.
1492 	 */
1493 	if (clone_flags & CLONE_THREAD) {
1494 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1495 		    (task_active_pid_ns(current) !=
1496 				current->nsproxy->pid_ns_for_children))
1497 			return ERR_PTR(-EINVAL);
1498 	}
1499 
1500 	retval = security_task_create(clone_flags);
1501 	if (retval)
1502 		goto fork_out;
1503 
1504 	retval = -ENOMEM;
1505 	p = dup_task_struct(current, node);
1506 	if (!p)
1507 		goto fork_out;
1508 
1509 	ftrace_graph_init_task(p);
1510 
1511 	rt_mutex_init_task(p);
1512 
1513 #ifdef CONFIG_PROVE_LOCKING
1514 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1515 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1516 #endif
1517 	retval = -EAGAIN;
1518 	if (atomic_read(&p->real_cred->user->processes) >=
1519 			task_rlimit(p, RLIMIT_NPROC)) {
1520 		if (p->real_cred->user != INIT_USER &&
1521 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1522 			goto bad_fork_free;
1523 	}
1524 	current->flags &= ~PF_NPROC_EXCEEDED;
1525 
1526 	retval = copy_creds(p, clone_flags);
1527 	if (retval < 0)
1528 		goto bad_fork_free;
1529 
1530 	/*
1531 	 * If multiple threads are within copy_process(), then this check
1532 	 * triggers too late. This doesn't hurt, the check is only there
1533 	 * to stop root fork bombs.
1534 	 */
1535 	retval = -EAGAIN;
1536 	if (nr_threads >= max_threads)
1537 		goto bad_fork_cleanup_count;
1538 
1539 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1540 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1541 	p->flags |= PF_FORKNOEXEC;
1542 	INIT_LIST_HEAD(&p->children);
1543 	INIT_LIST_HEAD(&p->sibling);
1544 	rcu_copy_process(p);
1545 	p->vfork_done = NULL;
1546 	spin_lock_init(&p->alloc_lock);
1547 
1548 	init_sigpending(&p->pending);
1549 
1550 	p->utime = p->stime = p->gtime = 0;
1551 	p->utimescaled = p->stimescaled = 0;
1552 	prev_cputime_init(&p->prev_cputime);
1553 
1554 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1555 	seqcount_init(&p->vtime_seqcount);
1556 	p->vtime_snap = 0;
1557 	p->vtime_snap_whence = VTIME_INACTIVE;
1558 #endif
1559 
1560 #if defined(SPLIT_RSS_COUNTING)
1561 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1562 #endif
1563 
1564 	p->default_timer_slack_ns = current->timer_slack_ns;
1565 
1566 	task_io_accounting_init(&p->ioac);
1567 	acct_clear_integrals(p);
1568 
1569 	posix_cpu_timers_init(p);
1570 
1571 	p->start_time = ktime_get_ns();
1572 	p->real_start_time = ktime_get_boot_ns();
1573 	p->io_context = NULL;
1574 	p->audit_context = NULL;
1575 	cgroup_fork(p);
1576 #ifdef CONFIG_NUMA
1577 	p->mempolicy = mpol_dup(p->mempolicy);
1578 	if (IS_ERR(p->mempolicy)) {
1579 		retval = PTR_ERR(p->mempolicy);
1580 		p->mempolicy = NULL;
1581 		goto bad_fork_cleanup_threadgroup_lock;
1582 	}
1583 #endif
1584 #ifdef CONFIG_CPUSETS
1585 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1586 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1587 	seqcount_init(&p->mems_allowed_seq);
1588 #endif
1589 #ifdef CONFIG_TRACE_IRQFLAGS
1590 	p->irq_events = 0;
1591 	p->hardirqs_enabled = 0;
1592 	p->hardirq_enable_ip = 0;
1593 	p->hardirq_enable_event = 0;
1594 	p->hardirq_disable_ip = _THIS_IP_;
1595 	p->hardirq_disable_event = 0;
1596 	p->softirqs_enabled = 1;
1597 	p->softirq_enable_ip = _THIS_IP_;
1598 	p->softirq_enable_event = 0;
1599 	p->softirq_disable_ip = 0;
1600 	p->softirq_disable_event = 0;
1601 	p->hardirq_context = 0;
1602 	p->softirq_context = 0;
1603 #endif
1604 
1605 	p->pagefault_disabled = 0;
1606 
1607 #ifdef CONFIG_LOCKDEP
1608 	p->lockdep_depth = 0; /* no locks held yet */
1609 	p->curr_chain_key = 0;
1610 	p->lockdep_recursion = 0;
1611 #endif
1612 
1613 #ifdef CONFIG_DEBUG_MUTEXES
1614 	p->blocked_on = NULL; /* not blocked yet */
1615 #endif
1616 #ifdef CONFIG_BCACHE
1617 	p->sequential_io	= 0;
1618 	p->sequential_io_avg	= 0;
1619 #endif
1620 
1621 	/* Perform scheduler related setup. Assign this task to a CPU. */
1622 	retval = sched_fork(clone_flags, p);
1623 	if (retval)
1624 		goto bad_fork_cleanup_policy;
1625 
1626 	retval = perf_event_init_task(p);
1627 	if (retval)
1628 		goto bad_fork_cleanup_policy;
1629 	retval = audit_alloc(p);
1630 	if (retval)
1631 		goto bad_fork_cleanup_perf;
1632 	/* copy all the process information */
1633 	shm_init_task(p);
1634 	retval = copy_semundo(clone_flags, p);
1635 	if (retval)
1636 		goto bad_fork_cleanup_audit;
1637 	retval = copy_files(clone_flags, p);
1638 	if (retval)
1639 		goto bad_fork_cleanup_semundo;
1640 	retval = copy_fs(clone_flags, p);
1641 	if (retval)
1642 		goto bad_fork_cleanup_files;
1643 	retval = copy_sighand(clone_flags, p);
1644 	if (retval)
1645 		goto bad_fork_cleanup_fs;
1646 	retval = copy_signal(clone_flags, p);
1647 	if (retval)
1648 		goto bad_fork_cleanup_sighand;
1649 	retval = copy_mm(clone_flags, p);
1650 	if (retval)
1651 		goto bad_fork_cleanup_signal;
1652 	retval = copy_namespaces(clone_flags, p);
1653 	if (retval)
1654 		goto bad_fork_cleanup_mm;
1655 	retval = copy_io(clone_flags, p);
1656 	if (retval)
1657 		goto bad_fork_cleanup_namespaces;
1658 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1659 	if (retval)
1660 		goto bad_fork_cleanup_io;
1661 
1662 	if (pid != &init_struct_pid) {
1663 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1664 		if (IS_ERR(pid)) {
1665 			retval = PTR_ERR(pid);
1666 			goto bad_fork_cleanup_thread;
1667 		}
1668 	}
1669 
1670 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1671 	/*
1672 	 * Clear TID on mm_release()?
1673 	 */
1674 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1675 #ifdef CONFIG_BLOCK
1676 	p->plug = NULL;
1677 #endif
1678 #ifdef CONFIG_FUTEX
1679 	p->robust_list = NULL;
1680 #ifdef CONFIG_COMPAT
1681 	p->compat_robust_list = NULL;
1682 #endif
1683 	INIT_LIST_HEAD(&p->pi_state_list);
1684 	p->pi_state_cache = NULL;
1685 #endif
1686 	/*
1687 	 * sigaltstack should be cleared when sharing the same VM
1688 	 */
1689 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1690 		sas_ss_reset(p);
1691 
1692 	/*
1693 	 * Syscall tracing and stepping should be turned off in the
1694 	 * child regardless of CLONE_PTRACE.
1695 	 */
1696 	user_disable_single_step(p);
1697 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1698 #ifdef TIF_SYSCALL_EMU
1699 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1700 #endif
1701 	clear_all_latency_tracing(p);
1702 
1703 	/* ok, now we should be set up.. */
1704 	p->pid = pid_nr(pid);
1705 	if (clone_flags & CLONE_THREAD) {
1706 		p->exit_signal = -1;
1707 		p->group_leader = current->group_leader;
1708 		p->tgid = current->tgid;
1709 	} else {
1710 		if (clone_flags & CLONE_PARENT)
1711 			p->exit_signal = current->group_leader->exit_signal;
1712 		else
1713 			p->exit_signal = (clone_flags & CSIGNAL);
1714 		p->group_leader = p;
1715 		p->tgid = p->pid;
1716 	}
1717 
1718 	p->nr_dirtied = 0;
1719 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1720 	p->dirty_paused_when = 0;
1721 
1722 	p->pdeath_signal = 0;
1723 	INIT_LIST_HEAD(&p->thread_group);
1724 	p->task_works = NULL;
1725 
1726 	threadgroup_change_begin(current);
1727 	/*
1728 	 * Ensure that the cgroup subsystem policies allow the new process to be
1729 	 * forked. It should be noted the the new process's css_set can be changed
1730 	 * between here and cgroup_post_fork() if an organisation operation is in
1731 	 * progress.
1732 	 */
1733 	retval = cgroup_can_fork(p);
1734 	if (retval)
1735 		goto bad_fork_free_pid;
1736 
1737 	/*
1738 	 * Make it visible to the rest of the system, but dont wake it up yet.
1739 	 * Need tasklist lock for parent etc handling!
1740 	 */
1741 	write_lock_irq(&tasklist_lock);
1742 
1743 	/* CLONE_PARENT re-uses the old parent */
1744 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1745 		p->real_parent = current->real_parent;
1746 		p->parent_exec_id = current->parent_exec_id;
1747 	} else {
1748 		p->real_parent = current;
1749 		p->parent_exec_id = current->self_exec_id;
1750 	}
1751 
1752 	spin_lock(&current->sighand->siglock);
1753 
1754 	/*
1755 	 * Copy seccomp details explicitly here, in case they were changed
1756 	 * before holding sighand lock.
1757 	 */
1758 	copy_seccomp(p);
1759 
1760 	/*
1761 	 * Process group and session signals need to be delivered to just the
1762 	 * parent before the fork or both the parent and the child after the
1763 	 * fork. Restart if a signal comes in before we add the new process to
1764 	 * it's process group.
1765 	 * A fatal signal pending means that current will exit, so the new
1766 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1767 	*/
1768 	recalc_sigpending();
1769 	if (signal_pending(current)) {
1770 		spin_unlock(&current->sighand->siglock);
1771 		write_unlock_irq(&tasklist_lock);
1772 		retval = -ERESTARTNOINTR;
1773 		goto bad_fork_cancel_cgroup;
1774 	}
1775 
1776 	if (likely(p->pid)) {
1777 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1778 
1779 		init_task_pid(p, PIDTYPE_PID, pid);
1780 		if (thread_group_leader(p)) {
1781 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1782 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1783 
1784 			if (is_child_reaper(pid)) {
1785 				ns_of_pid(pid)->child_reaper = p;
1786 				p->signal->flags |= SIGNAL_UNKILLABLE;
1787 			}
1788 
1789 			p->signal->leader_pid = pid;
1790 			p->signal->tty = tty_kref_get(current->signal->tty);
1791 			list_add_tail(&p->sibling, &p->real_parent->children);
1792 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1793 			attach_pid(p, PIDTYPE_PGID);
1794 			attach_pid(p, PIDTYPE_SID);
1795 			__this_cpu_inc(process_counts);
1796 		} else {
1797 			current->signal->nr_threads++;
1798 			atomic_inc(&current->signal->live);
1799 			atomic_inc(&current->signal->sigcnt);
1800 			list_add_tail_rcu(&p->thread_group,
1801 					  &p->group_leader->thread_group);
1802 			list_add_tail_rcu(&p->thread_node,
1803 					  &p->signal->thread_head);
1804 		}
1805 		attach_pid(p, PIDTYPE_PID);
1806 		nr_threads++;
1807 	}
1808 
1809 	total_forks++;
1810 	spin_unlock(&current->sighand->siglock);
1811 	syscall_tracepoint_update(p);
1812 	write_unlock_irq(&tasklist_lock);
1813 
1814 	proc_fork_connector(p);
1815 	cgroup_post_fork(p);
1816 	threadgroup_change_end(current);
1817 	perf_event_fork(p);
1818 
1819 	trace_task_newtask(p, clone_flags);
1820 	uprobe_copy_process(p, clone_flags);
1821 
1822 	return p;
1823 
1824 bad_fork_cancel_cgroup:
1825 	cgroup_cancel_fork(p);
1826 bad_fork_free_pid:
1827 	threadgroup_change_end(current);
1828 	if (pid != &init_struct_pid)
1829 		free_pid(pid);
1830 bad_fork_cleanup_thread:
1831 	exit_thread(p);
1832 bad_fork_cleanup_io:
1833 	if (p->io_context)
1834 		exit_io_context(p);
1835 bad_fork_cleanup_namespaces:
1836 	exit_task_namespaces(p);
1837 bad_fork_cleanup_mm:
1838 	if (p->mm)
1839 		mmput(p->mm);
1840 bad_fork_cleanup_signal:
1841 	if (!(clone_flags & CLONE_THREAD))
1842 		free_signal_struct(p->signal);
1843 bad_fork_cleanup_sighand:
1844 	__cleanup_sighand(p->sighand);
1845 bad_fork_cleanup_fs:
1846 	exit_fs(p); /* blocking */
1847 bad_fork_cleanup_files:
1848 	exit_files(p); /* blocking */
1849 bad_fork_cleanup_semundo:
1850 	exit_sem(p);
1851 bad_fork_cleanup_audit:
1852 	audit_free(p);
1853 bad_fork_cleanup_perf:
1854 	perf_event_free_task(p);
1855 bad_fork_cleanup_policy:
1856 #ifdef CONFIG_NUMA
1857 	mpol_put(p->mempolicy);
1858 bad_fork_cleanup_threadgroup_lock:
1859 #endif
1860 	delayacct_tsk_free(p);
1861 bad_fork_cleanup_count:
1862 	atomic_dec(&p->cred->user->processes);
1863 	exit_creds(p);
1864 bad_fork_free:
1865 	put_task_stack(p);
1866 	free_task(p);
1867 fork_out:
1868 	return ERR_PTR(retval);
1869 }
1870 
1871 static inline void init_idle_pids(struct pid_link *links)
1872 {
1873 	enum pid_type type;
1874 
1875 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1876 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1877 		links[type].pid = &init_struct_pid;
1878 	}
1879 }
1880 
1881 struct task_struct *fork_idle(int cpu)
1882 {
1883 	struct task_struct *task;
1884 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1885 			    cpu_to_node(cpu));
1886 	if (!IS_ERR(task)) {
1887 		init_idle_pids(task->pids);
1888 		init_idle(task, cpu);
1889 	}
1890 
1891 	return task;
1892 }
1893 
1894 /*
1895  *  Ok, this is the main fork-routine.
1896  *
1897  * It copies the process, and if successful kick-starts
1898  * it and waits for it to finish using the VM if required.
1899  */
1900 long _do_fork(unsigned long clone_flags,
1901 	      unsigned long stack_start,
1902 	      unsigned long stack_size,
1903 	      int __user *parent_tidptr,
1904 	      int __user *child_tidptr,
1905 	      unsigned long tls)
1906 {
1907 	struct task_struct *p;
1908 	int trace = 0;
1909 	long nr;
1910 
1911 	/*
1912 	 * Determine whether and which event to report to ptracer.  When
1913 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1914 	 * requested, no event is reported; otherwise, report if the event
1915 	 * for the type of forking is enabled.
1916 	 */
1917 	if (!(clone_flags & CLONE_UNTRACED)) {
1918 		if (clone_flags & CLONE_VFORK)
1919 			trace = PTRACE_EVENT_VFORK;
1920 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1921 			trace = PTRACE_EVENT_CLONE;
1922 		else
1923 			trace = PTRACE_EVENT_FORK;
1924 
1925 		if (likely(!ptrace_event_enabled(current, trace)))
1926 			trace = 0;
1927 	}
1928 
1929 	p = copy_process(clone_flags, stack_start, stack_size,
1930 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1931 	add_latent_entropy();
1932 	/*
1933 	 * Do this prior waking up the new thread - the thread pointer
1934 	 * might get invalid after that point, if the thread exits quickly.
1935 	 */
1936 	if (!IS_ERR(p)) {
1937 		struct completion vfork;
1938 		struct pid *pid;
1939 
1940 		trace_sched_process_fork(current, p);
1941 
1942 		pid = get_task_pid(p, PIDTYPE_PID);
1943 		nr = pid_vnr(pid);
1944 
1945 		if (clone_flags & CLONE_PARENT_SETTID)
1946 			put_user(nr, parent_tidptr);
1947 
1948 		if (clone_flags & CLONE_VFORK) {
1949 			p->vfork_done = &vfork;
1950 			init_completion(&vfork);
1951 			get_task_struct(p);
1952 		}
1953 
1954 		wake_up_new_task(p);
1955 
1956 		/* forking complete and child started to run, tell ptracer */
1957 		if (unlikely(trace))
1958 			ptrace_event_pid(trace, pid);
1959 
1960 		if (clone_flags & CLONE_VFORK) {
1961 			if (!wait_for_vfork_done(p, &vfork))
1962 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1963 		}
1964 
1965 		put_pid(pid);
1966 	} else {
1967 		nr = PTR_ERR(p);
1968 	}
1969 	return nr;
1970 }
1971 
1972 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1973 /* For compatibility with architectures that call do_fork directly rather than
1974  * using the syscall entry points below. */
1975 long do_fork(unsigned long clone_flags,
1976 	      unsigned long stack_start,
1977 	      unsigned long stack_size,
1978 	      int __user *parent_tidptr,
1979 	      int __user *child_tidptr)
1980 {
1981 	return _do_fork(clone_flags, stack_start, stack_size,
1982 			parent_tidptr, child_tidptr, 0);
1983 }
1984 #endif
1985 
1986 /*
1987  * Create a kernel thread.
1988  */
1989 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1990 {
1991 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1992 		(unsigned long)arg, NULL, NULL, 0);
1993 }
1994 
1995 #ifdef __ARCH_WANT_SYS_FORK
1996 SYSCALL_DEFINE0(fork)
1997 {
1998 #ifdef CONFIG_MMU
1999 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2000 #else
2001 	/* can not support in nommu mode */
2002 	return -EINVAL;
2003 #endif
2004 }
2005 #endif
2006 
2007 #ifdef __ARCH_WANT_SYS_VFORK
2008 SYSCALL_DEFINE0(vfork)
2009 {
2010 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2011 			0, NULL, NULL, 0);
2012 }
2013 #endif
2014 
2015 #ifdef __ARCH_WANT_SYS_CLONE
2016 #ifdef CONFIG_CLONE_BACKWARDS
2017 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2018 		 int __user *, parent_tidptr,
2019 		 unsigned long, tls,
2020 		 int __user *, child_tidptr)
2021 #elif defined(CONFIG_CLONE_BACKWARDS2)
2022 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2023 		 int __user *, parent_tidptr,
2024 		 int __user *, child_tidptr,
2025 		 unsigned long, tls)
2026 #elif defined(CONFIG_CLONE_BACKWARDS3)
2027 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2028 		int, stack_size,
2029 		int __user *, parent_tidptr,
2030 		int __user *, child_tidptr,
2031 		unsigned long, tls)
2032 #else
2033 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2034 		 int __user *, parent_tidptr,
2035 		 int __user *, child_tidptr,
2036 		 unsigned long, tls)
2037 #endif
2038 {
2039 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2040 }
2041 #endif
2042 
2043 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2044 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2045 #endif
2046 
2047 static void sighand_ctor(void *data)
2048 {
2049 	struct sighand_struct *sighand = data;
2050 
2051 	spin_lock_init(&sighand->siglock);
2052 	init_waitqueue_head(&sighand->signalfd_wqh);
2053 }
2054 
2055 void __init proc_caches_init(void)
2056 {
2057 	sighand_cachep = kmem_cache_create("sighand_cache",
2058 			sizeof(struct sighand_struct), 0,
2059 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2060 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2061 	signal_cachep = kmem_cache_create("signal_cache",
2062 			sizeof(struct signal_struct), 0,
2063 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2064 			NULL);
2065 	files_cachep = kmem_cache_create("files_cache",
2066 			sizeof(struct files_struct), 0,
2067 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2068 			NULL);
2069 	fs_cachep = kmem_cache_create("fs_cache",
2070 			sizeof(struct fs_struct), 0,
2071 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2072 			NULL);
2073 	/*
2074 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2075 	 * whole struct cpumask for the OFFSTACK case. We could change
2076 	 * this to *only* allocate as much of it as required by the
2077 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2078 	 * is at the end of the structure, exactly for that reason.
2079 	 */
2080 	mm_cachep = kmem_cache_create("mm_struct",
2081 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2082 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2083 			NULL);
2084 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2085 	mmap_init();
2086 	nsproxy_cache_init();
2087 }
2088 
2089 /*
2090  * Check constraints on flags passed to the unshare system call.
2091  */
2092 static int check_unshare_flags(unsigned long unshare_flags)
2093 {
2094 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2095 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2096 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2097 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2098 		return -EINVAL;
2099 	/*
2100 	 * Not implemented, but pretend it works if there is nothing
2101 	 * to unshare.  Note that unsharing the address space or the
2102 	 * signal handlers also need to unshare the signal queues (aka
2103 	 * CLONE_THREAD).
2104 	 */
2105 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2106 		if (!thread_group_empty(current))
2107 			return -EINVAL;
2108 	}
2109 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2110 		if (atomic_read(&current->sighand->count) > 1)
2111 			return -EINVAL;
2112 	}
2113 	if (unshare_flags & CLONE_VM) {
2114 		if (!current_is_single_threaded())
2115 			return -EINVAL;
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 /*
2122  * Unshare the filesystem structure if it is being shared
2123  */
2124 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2125 {
2126 	struct fs_struct *fs = current->fs;
2127 
2128 	if (!(unshare_flags & CLONE_FS) || !fs)
2129 		return 0;
2130 
2131 	/* don't need lock here; in the worst case we'll do useless copy */
2132 	if (fs->users == 1)
2133 		return 0;
2134 
2135 	*new_fsp = copy_fs_struct(fs);
2136 	if (!*new_fsp)
2137 		return -ENOMEM;
2138 
2139 	return 0;
2140 }
2141 
2142 /*
2143  * Unshare file descriptor table if it is being shared
2144  */
2145 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2146 {
2147 	struct files_struct *fd = current->files;
2148 	int error = 0;
2149 
2150 	if ((unshare_flags & CLONE_FILES) &&
2151 	    (fd && atomic_read(&fd->count) > 1)) {
2152 		*new_fdp = dup_fd(fd, &error);
2153 		if (!*new_fdp)
2154 			return error;
2155 	}
2156 
2157 	return 0;
2158 }
2159 
2160 /*
2161  * unshare allows a process to 'unshare' part of the process
2162  * context which was originally shared using clone.  copy_*
2163  * functions used by do_fork() cannot be used here directly
2164  * because they modify an inactive task_struct that is being
2165  * constructed. Here we are modifying the current, active,
2166  * task_struct.
2167  */
2168 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2169 {
2170 	struct fs_struct *fs, *new_fs = NULL;
2171 	struct files_struct *fd, *new_fd = NULL;
2172 	struct cred *new_cred = NULL;
2173 	struct nsproxy *new_nsproxy = NULL;
2174 	int do_sysvsem = 0;
2175 	int err;
2176 
2177 	/*
2178 	 * If unsharing a user namespace must also unshare the thread group
2179 	 * and unshare the filesystem root and working directories.
2180 	 */
2181 	if (unshare_flags & CLONE_NEWUSER)
2182 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2183 	/*
2184 	 * If unsharing vm, must also unshare signal handlers.
2185 	 */
2186 	if (unshare_flags & CLONE_VM)
2187 		unshare_flags |= CLONE_SIGHAND;
2188 	/*
2189 	 * If unsharing a signal handlers, must also unshare the signal queues.
2190 	 */
2191 	if (unshare_flags & CLONE_SIGHAND)
2192 		unshare_flags |= CLONE_THREAD;
2193 	/*
2194 	 * If unsharing namespace, must also unshare filesystem information.
2195 	 */
2196 	if (unshare_flags & CLONE_NEWNS)
2197 		unshare_flags |= CLONE_FS;
2198 
2199 	err = check_unshare_flags(unshare_flags);
2200 	if (err)
2201 		goto bad_unshare_out;
2202 	/*
2203 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2204 	 * to a new ipc namespace, the semaphore arrays from the old
2205 	 * namespace are unreachable.
2206 	 */
2207 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2208 		do_sysvsem = 1;
2209 	err = unshare_fs(unshare_flags, &new_fs);
2210 	if (err)
2211 		goto bad_unshare_out;
2212 	err = unshare_fd(unshare_flags, &new_fd);
2213 	if (err)
2214 		goto bad_unshare_cleanup_fs;
2215 	err = unshare_userns(unshare_flags, &new_cred);
2216 	if (err)
2217 		goto bad_unshare_cleanup_fd;
2218 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2219 					 new_cred, new_fs);
2220 	if (err)
2221 		goto bad_unshare_cleanup_cred;
2222 
2223 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2224 		if (do_sysvsem) {
2225 			/*
2226 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2227 			 */
2228 			exit_sem(current);
2229 		}
2230 		if (unshare_flags & CLONE_NEWIPC) {
2231 			/* Orphan segments in old ns (see sem above). */
2232 			exit_shm(current);
2233 			shm_init_task(current);
2234 		}
2235 
2236 		if (new_nsproxy)
2237 			switch_task_namespaces(current, new_nsproxy);
2238 
2239 		task_lock(current);
2240 
2241 		if (new_fs) {
2242 			fs = current->fs;
2243 			spin_lock(&fs->lock);
2244 			current->fs = new_fs;
2245 			if (--fs->users)
2246 				new_fs = NULL;
2247 			else
2248 				new_fs = fs;
2249 			spin_unlock(&fs->lock);
2250 		}
2251 
2252 		if (new_fd) {
2253 			fd = current->files;
2254 			current->files = new_fd;
2255 			new_fd = fd;
2256 		}
2257 
2258 		task_unlock(current);
2259 
2260 		if (new_cred) {
2261 			/* Install the new user namespace */
2262 			commit_creds(new_cred);
2263 			new_cred = NULL;
2264 		}
2265 	}
2266 
2267 bad_unshare_cleanup_cred:
2268 	if (new_cred)
2269 		put_cred(new_cred);
2270 bad_unshare_cleanup_fd:
2271 	if (new_fd)
2272 		put_files_struct(new_fd);
2273 
2274 bad_unshare_cleanup_fs:
2275 	if (new_fs)
2276 		free_fs_struct(new_fs);
2277 
2278 bad_unshare_out:
2279 	return err;
2280 }
2281 
2282 /*
2283  *	Helper to unshare the files of the current task.
2284  *	We don't want to expose copy_files internals to
2285  *	the exec layer of the kernel.
2286  */
2287 
2288 int unshare_files(struct files_struct **displaced)
2289 {
2290 	struct task_struct *task = current;
2291 	struct files_struct *copy = NULL;
2292 	int error;
2293 
2294 	error = unshare_fd(CLONE_FILES, &copy);
2295 	if (error || !copy) {
2296 		*displaced = NULL;
2297 		return error;
2298 	}
2299 	*displaced = task->files;
2300 	task_lock(task);
2301 	task->files = copy;
2302 	task_unlock(task);
2303 	return 0;
2304 }
2305 
2306 int sysctl_max_threads(struct ctl_table *table, int write,
2307 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2308 {
2309 	struct ctl_table t;
2310 	int ret;
2311 	int threads = max_threads;
2312 	int min = MIN_THREADS;
2313 	int max = MAX_THREADS;
2314 
2315 	t = *table;
2316 	t.data = &threads;
2317 	t.extra1 = &min;
2318 	t.extra2 = &max;
2319 
2320 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2321 	if (ret || !write)
2322 		return ret;
2323 
2324 	set_max_threads(threads);
2325 
2326 	return 0;
2327 }
2328