1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 } 370 return new; 371 } 372 373 void vm_area_free(struct vm_area_struct *vma) 374 { 375 kmem_cache_free(vm_area_cachep, vma); 376 } 377 378 static void account_kernel_stack(struct task_struct *tsk, int account) 379 { 380 void *stack = task_stack_page(tsk); 381 struct vm_struct *vm = task_stack_vm_area(tsk); 382 383 384 /* All stack pages are in the same node. */ 385 if (vm) 386 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 387 account * (THREAD_SIZE / 1024)); 388 else 389 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 390 account * (THREAD_SIZE / 1024)); 391 } 392 393 static int memcg_charge_kernel_stack(struct task_struct *tsk) 394 { 395 #ifdef CONFIG_VMAP_STACK 396 struct vm_struct *vm = task_stack_vm_area(tsk); 397 int ret; 398 399 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 400 401 if (vm) { 402 int i; 403 404 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 405 406 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 407 /* 408 * If memcg_kmem_charge_page() fails, page's 409 * memory cgroup pointer is NULL, and 410 * memcg_kmem_uncharge_page() in free_thread_stack() 411 * will ignore this page. 412 */ 413 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 414 0); 415 if (ret) 416 return ret; 417 } 418 } 419 #endif 420 return 0; 421 } 422 423 static void release_task_stack(struct task_struct *tsk) 424 { 425 if (WARN_ON(tsk->state != TASK_DEAD)) 426 return; /* Better to leak the stack than to free prematurely */ 427 428 account_kernel_stack(tsk, -1); 429 free_thread_stack(tsk); 430 tsk->stack = NULL; 431 #ifdef CONFIG_VMAP_STACK 432 tsk->stack_vm_area = NULL; 433 #endif 434 } 435 436 #ifdef CONFIG_THREAD_INFO_IN_TASK 437 void put_task_stack(struct task_struct *tsk) 438 { 439 if (refcount_dec_and_test(&tsk->stack_refcount)) 440 release_task_stack(tsk); 441 } 442 #endif 443 444 void free_task(struct task_struct *tsk) 445 { 446 scs_release(tsk); 447 448 #ifndef CONFIG_THREAD_INFO_IN_TASK 449 /* 450 * The task is finally done with both the stack and thread_info, 451 * so free both. 452 */ 453 release_task_stack(tsk); 454 #else 455 /* 456 * If the task had a separate stack allocation, it should be gone 457 * by now. 458 */ 459 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 460 #endif 461 rt_mutex_debug_task_free(tsk); 462 ftrace_graph_exit_task(tsk); 463 arch_release_task_struct(tsk); 464 if (tsk->flags & PF_KTHREAD) 465 free_kthread_struct(tsk); 466 free_task_struct(tsk); 467 } 468 EXPORT_SYMBOL(free_task); 469 470 #ifdef CONFIG_MMU 471 static __latent_entropy int dup_mmap(struct mm_struct *mm, 472 struct mm_struct *oldmm) 473 { 474 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 475 struct rb_node **rb_link, *rb_parent; 476 int retval; 477 unsigned long charge; 478 LIST_HEAD(uf); 479 480 uprobe_start_dup_mmap(); 481 if (mmap_write_lock_killable(oldmm)) { 482 retval = -EINTR; 483 goto fail_uprobe_end; 484 } 485 flush_cache_dup_mm(oldmm); 486 uprobe_dup_mmap(oldmm, mm); 487 /* 488 * Not linked in yet - no deadlock potential: 489 */ 490 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 491 492 /* No ordering required: file already has been exposed. */ 493 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 494 495 mm->total_vm = oldmm->total_vm; 496 mm->data_vm = oldmm->data_vm; 497 mm->exec_vm = oldmm->exec_vm; 498 mm->stack_vm = oldmm->stack_vm; 499 500 rb_link = &mm->mm_rb.rb_node; 501 rb_parent = NULL; 502 pprev = &mm->mmap; 503 retval = ksm_fork(mm, oldmm); 504 if (retval) 505 goto out; 506 retval = khugepaged_fork(mm, oldmm); 507 if (retval) 508 goto out; 509 510 prev = NULL; 511 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 512 struct file *file; 513 514 if (mpnt->vm_flags & VM_DONTCOPY) { 515 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 516 continue; 517 } 518 charge = 0; 519 /* 520 * Don't duplicate many vmas if we've been oom-killed (for 521 * example) 522 */ 523 if (fatal_signal_pending(current)) { 524 retval = -EINTR; 525 goto out; 526 } 527 if (mpnt->vm_flags & VM_ACCOUNT) { 528 unsigned long len = vma_pages(mpnt); 529 530 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 531 goto fail_nomem; 532 charge = len; 533 } 534 tmp = vm_area_dup(mpnt); 535 if (!tmp) 536 goto fail_nomem; 537 retval = vma_dup_policy(mpnt, tmp); 538 if (retval) 539 goto fail_nomem_policy; 540 tmp->vm_mm = mm; 541 retval = dup_userfaultfd(tmp, &uf); 542 if (retval) 543 goto fail_nomem_anon_vma_fork; 544 if (tmp->vm_flags & VM_WIPEONFORK) { 545 /* 546 * VM_WIPEONFORK gets a clean slate in the child. 547 * Don't prepare anon_vma until fault since we don't 548 * copy page for current vma. 549 */ 550 tmp->anon_vma = NULL; 551 } else if (anon_vma_fork(tmp, mpnt)) 552 goto fail_nomem_anon_vma_fork; 553 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 554 file = tmp->vm_file; 555 if (file) { 556 struct inode *inode = file_inode(file); 557 struct address_space *mapping = file->f_mapping; 558 559 get_file(file); 560 if (tmp->vm_flags & VM_DENYWRITE) 561 put_write_access(inode); 562 i_mmap_lock_write(mapping); 563 if (tmp->vm_flags & VM_SHARED) 564 mapping_allow_writable(mapping); 565 flush_dcache_mmap_lock(mapping); 566 /* insert tmp into the share list, just after mpnt */ 567 vma_interval_tree_insert_after(tmp, mpnt, 568 &mapping->i_mmap); 569 flush_dcache_mmap_unlock(mapping); 570 i_mmap_unlock_write(mapping); 571 } 572 573 /* 574 * Clear hugetlb-related page reserves for children. This only 575 * affects MAP_PRIVATE mappings. Faults generated by the child 576 * are not guaranteed to succeed, even if read-only 577 */ 578 if (is_vm_hugetlb_page(tmp)) 579 reset_vma_resv_huge_pages(tmp); 580 581 /* 582 * Link in the new vma and copy the page table entries. 583 */ 584 *pprev = tmp; 585 pprev = &tmp->vm_next; 586 tmp->vm_prev = prev; 587 prev = tmp; 588 589 __vma_link_rb(mm, tmp, rb_link, rb_parent); 590 rb_link = &tmp->vm_rb.rb_right; 591 rb_parent = &tmp->vm_rb; 592 593 mm->map_count++; 594 if (!(tmp->vm_flags & VM_WIPEONFORK)) 595 retval = copy_page_range(tmp, mpnt); 596 597 if (tmp->vm_ops && tmp->vm_ops->open) 598 tmp->vm_ops->open(tmp); 599 600 if (retval) 601 goto out; 602 } 603 /* a new mm has just been created */ 604 retval = arch_dup_mmap(oldmm, mm); 605 out: 606 mmap_write_unlock(mm); 607 flush_tlb_mm(oldmm); 608 mmap_write_unlock(oldmm); 609 dup_userfaultfd_complete(&uf); 610 fail_uprobe_end: 611 uprobe_end_dup_mmap(); 612 return retval; 613 fail_nomem_anon_vma_fork: 614 mpol_put(vma_policy(tmp)); 615 fail_nomem_policy: 616 vm_area_free(tmp); 617 fail_nomem: 618 retval = -ENOMEM; 619 vm_unacct_memory(charge); 620 goto out; 621 } 622 623 static inline int mm_alloc_pgd(struct mm_struct *mm) 624 { 625 mm->pgd = pgd_alloc(mm); 626 if (unlikely(!mm->pgd)) 627 return -ENOMEM; 628 return 0; 629 } 630 631 static inline void mm_free_pgd(struct mm_struct *mm) 632 { 633 pgd_free(mm, mm->pgd); 634 } 635 #else 636 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 637 { 638 mmap_write_lock(oldmm); 639 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 640 mmap_write_unlock(oldmm); 641 return 0; 642 } 643 #define mm_alloc_pgd(mm) (0) 644 #define mm_free_pgd(mm) 645 #endif /* CONFIG_MMU */ 646 647 static void check_mm(struct mm_struct *mm) 648 { 649 int i; 650 651 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 652 "Please make sure 'struct resident_page_types[]' is updated as well"); 653 654 for (i = 0; i < NR_MM_COUNTERS; i++) { 655 long x = atomic_long_read(&mm->rss_stat.count[i]); 656 657 if (unlikely(x)) 658 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 659 mm, resident_page_types[i], x); 660 } 661 662 if (mm_pgtables_bytes(mm)) 663 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 664 mm_pgtables_bytes(mm)); 665 666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 667 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 668 #endif 669 } 670 671 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 672 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 673 674 /* 675 * Called when the last reference to the mm 676 * is dropped: either by a lazy thread or by 677 * mmput. Free the page directory and the mm. 678 */ 679 void __mmdrop(struct mm_struct *mm) 680 { 681 BUG_ON(mm == &init_mm); 682 WARN_ON_ONCE(mm == current->mm); 683 WARN_ON_ONCE(mm == current->active_mm); 684 mm_free_pgd(mm); 685 destroy_context(mm); 686 mmu_notifier_subscriptions_destroy(mm); 687 check_mm(mm); 688 put_user_ns(mm->user_ns); 689 free_mm(mm); 690 } 691 EXPORT_SYMBOL_GPL(__mmdrop); 692 693 static void mmdrop_async_fn(struct work_struct *work) 694 { 695 struct mm_struct *mm; 696 697 mm = container_of(work, struct mm_struct, async_put_work); 698 __mmdrop(mm); 699 } 700 701 static void mmdrop_async(struct mm_struct *mm) 702 { 703 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 704 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 705 schedule_work(&mm->async_put_work); 706 } 707 } 708 709 static inline void free_signal_struct(struct signal_struct *sig) 710 { 711 taskstats_tgid_free(sig); 712 sched_autogroup_exit(sig); 713 /* 714 * __mmdrop is not safe to call from softirq context on x86 due to 715 * pgd_dtor so postpone it to the async context 716 */ 717 if (sig->oom_mm) 718 mmdrop_async(sig->oom_mm); 719 kmem_cache_free(signal_cachep, sig); 720 } 721 722 static inline void put_signal_struct(struct signal_struct *sig) 723 { 724 if (refcount_dec_and_test(&sig->sigcnt)) 725 free_signal_struct(sig); 726 } 727 728 void __put_task_struct(struct task_struct *tsk) 729 { 730 WARN_ON(!tsk->exit_state); 731 WARN_ON(refcount_read(&tsk->usage)); 732 WARN_ON(tsk == current); 733 734 io_uring_free(tsk); 735 cgroup_free(tsk); 736 task_numa_free(tsk, true); 737 security_task_free(tsk); 738 bpf_task_storage_free(tsk); 739 exit_creds(tsk); 740 delayacct_tsk_free(tsk); 741 put_signal_struct(tsk->signal); 742 743 if (!profile_handoff_task(tsk)) 744 free_task(tsk); 745 } 746 EXPORT_SYMBOL_GPL(__put_task_struct); 747 748 void __init __weak arch_task_cache_init(void) { } 749 750 /* 751 * set_max_threads 752 */ 753 static void set_max_threads(unsigned int max_threads_suggested) 754 { 755 u64 threads; 756 unsigned long nr_pages = totalram_pages(); 757 758 /* 759 * The number of threads shall be limited such that the thread 760 * structures may only consume a small part of the available memory. 761 */ 762 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 763 threads = MAX_THREADS; 764 else 765 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 766 (u64) THREAD_SIZE * 8UL); 767 768 if (threads > max_threads_suggested) 769 threads = max_threads_suggested; 770 771 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 772 } 773 774 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 775 /* Initialized by the architecture: */ 776 int arch_task_struct_size __read_mostly; 777 #endif 778 779 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 780 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 781 { 782 /* Fetch thread_struct whitelist for the architecture. */ 783 arch_thread_struct_whitelist(offset, size); 784 785 /* 786 * Handle zero-sized whitelist or empty thread_struct, otherwise 787 * adjust offset to position of thread_struct in task_struct. 788 */ 789 if (unlikely(*size == 0)) 790 *offset = 0; 791 else 792 *offset += offsetof(struct task_struct, thread); 793 } 794 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 795 796 void __init fork_init(void) 797 { 798 int i; 799 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 800 #ifndef ARCH_MIN_TASKALIGN 801 #define ARCH_MIN_TASKALIGN 0 802 #endif 803 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 804 unsigned long useroffset, usersize; 805 806 /* create a slab on which task_structs can be allocated */ 807 task_struct_whitelist(&useroffset, &usersize); 808 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 809 arch_task_struct_size, align, 810 SLAB_PANIC|SLAB_ACCOUNT, 811 useroffset, usersize, NULL); 812 #endif 813 814 /* do the arch specific task caches init */ 815 arch_task_cache_init(); 816 817 set_max_threads(MAX_THREADS); 818 819 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 820 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 821 init_task.signal->rlim[RLIMIT_SIGPENDING] = 822 init_task.signal->rlim[RLIMIT_NPROC]; 823 824 for (i = 0; i < UCOUNT_COUNTS; i++) 825 init_user_ns.ucount_max[i] = max_threads/2; 826 827 #ifdef CONFIG_VMAP_STACK 828 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 829 NULL, free_vm_stack_cache); 830 #endif 831 832 scs_init(); 833 834 lockdep_init_task(&init_task); 835 uprobes_init(); 836 } 837 838 int __weak arch_dup_task_struct(struct task_struct *dst, 839 struct task_struct *src) 840 { 841 *dst = *src; 842 return 0; 843 } 844 845 void set_task_stack_end_magic(struct task_struct *tsk) 846 { 847 unsigned long *stackend; 848 849 stackend = end_of_stack(tsk); 850 *stackend = STACK_END_MAGIC; /* for overflow detection */ 851 } 852 853 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 854 { 855 struct task_struct *tsk; 856 unsigned long *stack; 857 struct vm_struct *stack_vm_area __maybe_unused; 858 int err; 859 860 if (node == NUMA_NO_NODE) 861 node = tsk_fork_get_node(orig); 862 tsk = alloc_task_struct_node(node); 863 if (!tsk) 864 return NULL; 865 866 stack = alloc_thread_stack_node(tsk, node); 867 if (!stack) 868 goto free_tsk; 869 870 if (memcg_charge_kernel_stack(tsk)) 871 goto free_stack; 872 873 stack_vm_area = task_stack_vm_area(tsk); 874 875 err = arch_dup_task_struct(tsk, orig); 876 877 /* 878 * arch_dup_task_struct() clobbers the stack-related fields. Make 879 * sure they're properly initialized before using any stack-related 880 * functions again. 881 */ 882 tsk->stack = stack; 883 #ifdef CONFIG_VMAP_STACK 884 tsk->stack_vm_area = stack_vm_area; 885 #endif 886 #ifdef CONFIG_THREAD_INFO_IN_TASK 887 refcount_set(&tsk->stack_refcount, 1); 888 #endif 889 890 if (err) 891 goto free_stack; 892 893 err = scs_prepare(tsk, node); 894 if (err) 895 goto free_stack; 896 897 #ifdef CONFIG_SECCOMP 898 /* 899 * We must handle setting up seccomp filters once we're under 900 * the sighand lock in case orig has changed between now and 901 * then. Until then, filter must be NULL to avoid messing up 902 * the usage counts on the error path calling free_task. 903 */ 904 tsk->seccomp.filter = NULL; 905 #endif 906 907 setup_thread_stack(tsk, orig); 908 clear_user_return_notifier(tsk); 909 clear_tsk_need_resched(tsk); 910 set_task_stack_end_magic(tsk); 911 clear_syscall_work_syscall_user_dispatch(tsk); 912 913 #ifdef CONFIG_STACKPROTECTOR 914 tsk->stack_canary = get_random_canary(); 915 #endif 916 if (orig->cpus_ptr == &orig->cpus_mask) 917 tsk->cpus_ptr = &tsk->cpus_mask; 918 919 /* 920 * One for the user space visible state that goes away when reaped. 921 * One for the scheduler. 922 */ 923 refcount_set(&tsk->rcu_users, 2); 924 /* One for the rcu users */ 925 refcount_set(&tsk->usage, 1); 926 #ifdef CONFIG_BLK_DEV_IO_TRACE 927 tsk->btrace_seq = 0; 928 #endif 929 tsk->splice_pipe = NULL; 930 tsk->task_frag.page = NULL; 931 tsk->wake_q.next = NULL; 932 933 account_kernel_stack(tsk, 1); 934 935 kcov_task_init(tsk); 936 kmap_local_fork(tsk); 937 938 #ifdef CONFIG_FAULT_INJECTION 939 tsk->fail_nth = 0; 940 #endif 941 942 #ifdef CONFIG_BLK_CGROUP 943 tsk->throttle_queue = NULL; 944 tsk->use_memdelay = 0; 945 #endif 946 947 #ifdef CONFIG_MEMCG 948 tsk->active_memcg = NULL; 949 #endif 950 return tsk; 951 952 free_stack: 953 free_thread_stack(tsk); 954 free_tsk: 955 free_task_struct(tsk); 956 return NULL; 957 } 958 959 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 960 961 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 962 963 static int __init coredump_filter_setup(char *s) 964 { 965 default_dump_filter = 966 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 967 MMF_DUMP_FILTER_MASK; 968 return 1; 969 } 970 971 __setup("coredump_filter=", coredump_filter_setup); 972 973 #include <linux/init_task.h> 974 975 static void mm_init_aio(struct mm_struct *mm) 976 { 977 #ifdef CONFIG_AIO 978 spin_lock_init(&mm->ioctx_lock); 979 mm->ioctx_table = NULL; 980 #endif 981 } 982 983 static __always_inline void mm_clear_owner(struct mm_struct *mm, 984 struct task_struct *p) 985 { 986 #ifdef CONFIG_MEMCG 987 if (mm->owner == p) 988 WRITE_ONCE(mm->owner, NULL); 989 #endif 990 } 991 992 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 993 { 994 #ifdef CONFIG_MEMCG 995 mm->owner = p; 996 #endif 997 } 998 999 static void mm_init_uprobes_state(struct mm_struct *mm) 1000 { 1001 #ifdef CONFIG_UPROBES 1002 mm->uprobes_state.xol_area = NULL; 1003 #endif 1004 } 1005 1006 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1007 struct user_namespace *user_ns) 1008 { 1009 mm->mmap = NULL; 1010 mm->mm_rb = RB_ROOT; 1011 mm->vmacache_seqnum = 0; 1012 atomic_set(&mm->mm_users, 1); 1013 atomic_set(&mm->mm_count, 1); 1014 seqcount_init(&mm->write_protect_seq); 1015 mmap_init_lock(mm); 1016 INIT_LIST_HEAD(&mm->mmlist); 1017 mm->core_state = NULL; 1018 mm_pgtables_bytes_init(mm); 1019 mm->map_count = 0; 1020 mm->locked_vm = 0; 1021 atomic_set(&mm->has_pinned, 0); 1022 atomic64_set(&mm->pinned_vm, 0); 1023 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1024 spin_lock_init(&mm->page_table_lock); 1025 spin_lock_init(&mm->arg_lock); 1026 mm_init_cpumask(mm); 1027 mm_init_aio(mm); 1028 mm_init_owner(mm, p); 1029 RCU_INIT_POINTER(mm->exe_file, NULL); 1030 mmu_notifier_subscriptions_init(mm); 1031 init_tlb_flush_pending(mm); 1032 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1033 mm->pmd_huge_pte = NULL; 1034 #endif 1035 mm_init_uprobes_state(mm); 1036 1037 if (current->mm) { 1038 mm->flags = current->mm->flags & MMF_INIT_MASK; 1039 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1040 } else { 1041 mm->flags = default_dump_filter; 1042 mm->def_flags = 0; 1043 } 1044 1045 if (mm_alloc_pgd(mm)) 1046 goto fail_nopgd; 1047 1048 if (init_new_context(p, mm)) 1049 goto fail_nocontext; 1050 1051 mm->user_ns = get_user_ns(user_ns); 1052 return mm; 1053 1054 fail_nocontext: 1055 mm_free_pgd(mm); 1056 fail_nopgd: 1057 free_mm(mm); 1058 return NULL; 1059 } 1060 1061 /* 1062 * Allocate and initialize an mm_struct. 1063 */ 1064 struct mm_struct *mm_alloc(void) 1065 { 1066 struct mm_struct *mm; 1067 1068 mm = allocate_mm(); 1069 if (!mm) 1070 return NULL; 1071 1072 memset(mm, 0, sizeof(*mm)); 1073 return mm_init(mm, current, current_user_ns()); 1074 } 1075 1076 static inline void __mmput(struct mm_struct *mm) 1077 { 1078 VM_BUG_ON(atomic_read(&mm->mm_users)); 1079 1080 uprobe_clear_state(mm); 1081 exit_aio(mm); 1082 ksm_exit(mm); 1083 khugepaged_exit(mm); /* must run before exit_mmap */ 1084 exit_mmap(mm); 1085 mm_put_huge_zero_page(mm); 1086 set_mm_exe_file(mm, NULL); 1087 if (!list_empty(&mm->mmlist)) { 1088 spin_lock(&mmlist_lock); 1089 list_del(&mm->mmlist); 1090 spin_unlock(&mmlist_lock); 1091 } 1092 if (mm->binfmt) 1093 module_put(mm->binfmt->module); 1094 mmdrop(mm); 1095 } 1096 1097 /* 1098 * Decrement the use count and release all resources for an mm. 1099 */ 1100 void mmput(struct mm_struct *mm) 1101 { 1102 might_sleep(); 1103 1104 if (atomic_dec_and_test(&mm->mm_users)) 1105 __mmput(mm); 1106 } 1107 EXPORT_SYMBOL_GPL(mmput); 1108 1109 #ifdef CONFIG_MMU 1110 static void mmput_async_fn(struct work_struct *work) 1111 { 1112 struct mm_struct *mm = container_of(work, struct mm_struct, 1113 async_put_work); 1114 1115 __mmput(mm); 1116 } 1117 1118 void mmput_async(struct mm_struct *mm) 1119 { 1120 if (atomic_dec_and_test(&mm->mm_users)) { 1121 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1122 schedule_work(&mm->async_put_work); 1123 } 1124 } 1125 #endif 1126 1127 /** 1128 * set_mm_exe_file - change a reference to the mm's executable file 1129 * 1130 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1131 * 1132 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1133 * invocations: in mmput() nobody alive left, in execve task is single 1134 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1135 * mm->exe_file, but does so without using set_mm_exe_file() in order 1136 * to do avoid the need for any locks. 1137 */ 1138 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1139 { 1140 struct file *old_exe_file; 1141 1142 /* 1143 * It is safe to dereference the exe_file without RCU as 1144 * this function is only called if nobody else can access 1145 * this mm -- see comment above for justification. 1146 */ 1147 old_exe_file = rcu_dereference_raw(mm->exe_file); 1148 1149 if (new_exe_file) 1150 get_file(new_exe_file); 1151 rcu_assign_pointer(mm->exe_file, new_exe_file); 1152 if (old_exe_file) 1153 fput(old_exe_file); 1154 } 1155 1156 /** 1157 * get_mm_exe_file - acquire a reference to the mm's executable file 1158 * 1159 * Returns %NULL if mm has no associated executable file. 1160 * User must release file via fput(). 1161 */ 1162 struct file *get_mm_exe_file(struct mm_struct *mm) 1163 { 1164 struct file *exe_file; 1165 1166 rcu_read_lock(); 1167 exe_file = rcu_dereference(mm->exe_file); 1168 if (exe_file && !get_file_rcu(exe_file)) 1169 exe_file = NULL; 1170 rcu_read_unlock(); 1171 return exe_file; 1172 } 1173 EXPORT_SYMBOL(get_mm_exe_file); 1174 1175 /** 1176 * get_task_exe_file - acquire a reference to the task's executable file 1177 * 1178 * Returns %NULL if task's mm (if any) has no associated executable file or 1179 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1180 * User must release file via fput(). 1181 */ 1182 struct file *get_task_exe_file(struct task_struct *task) 1183 { 1184 struct file *exe_file = NULL; 1185 struct mm_struct *mm; 1186 1187 task_lock(task); 1188 mm = task->mm; 1189 if (mm) { 1190 if (!(task->flags & PF_KTHREAD)) 1191 exe_file = get_mm_exe_file(mm); 1192 } 1193 task_unlock(task); 1194 return exe_file; 1195 } 1196 EXPORT_SYMBOL(get_task_exe_file); 1197 1198 /** 1199 * get_task_mm - acquire a reference to the task's mm 1200 * 1201 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1202 * this kernel workthread has transiently adopted a user mm with use_mm, 1203 * to do its AIO) is not set and if so returns a reference to it, after 1204 * bumping up the use count. User must release the mm via mmput() 1205 * after use. Typically used by /proc and ptrace. 1206 */ 1207 struct mm_struct *get_task_mm(struct task_struct *task) 1208 { 1209 struct mm_struct *mm; 1210 1211 task_lock(task); 1212 mm = task->mm; 1213 if (mm) { 1214 if (task->flags & PF_KTHREAD) 1215 mm = NULL; 1216 else 1217 mmget(mm); 1218 } 1219 task_unlock(task); 1220 return mm; 1221 } 1222 EXPORT_SYMBOL_GPL(get_task_mm); 1223 1224 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1225 { 1226 struct mm_struct *mm; 1227 int err; 1228 1229 err = down_read_killable(&task->signal->exec_update_lock); 1230 if (err) 1231 return ERR_PTR(err); 1232 1233 mm = get_task_mm(task); 1234 if (mm && mm != current->mm && 1235 !ptrace_may_access(task, mode)) { 1236 mmput(mm); 1237 mm = ERR_PTR(-EACCES); 1238 } 1239 up_read(&task->signal->exec_update_lock); 1240 1241 return mm; 1242 } 1243 1244 static void complete_vfork_done(struct task_struct *tsk) 1245 { 1246 struct completion *vfork; 1247 1248 task_lock(tsk); 1249 vfork = tsk->vfork_done; 1250 if (likely(vfork)) { 1251 tsk->vfork_done = NULL; 1252 complete(vfork); 1253 } 1254 task_unlock(tsk); 1255 } 1256 1257 static int wait_for_vfork_done(struct task_struct *child, 1258 struct completion *vfork) 1259 { 1260 int killed; 1261 1262 freezer_do_not_count(); 1263 cgroup_enter_frozen(); 1264 killed = wait_for_completion_killable(vfork); 1265 cgroup_leave_frozen(false); 1266 freezer_count(); 1267 1268 if (killed) { 1269 task_lock(child); 1270 child->vfork_done = NULL; 1271 task_unlock(child); 1272 } 1273 1274 put_task_struct(child); 1275 return killed; 1276 } 1277 1278 /* Please note the differences between mmput and mm_release. 1279 * mmput is called whenever we stop holding onto a mm_struct, 1280 * error success whatever. 1281 * 1282 * mm_release is called after a mm_struct has been removed 1283 * from the current process. 1284 * 1285 * This difference is important for error handling, when we 1286 * only half set up a mm_struct for a new process and need to restore 1287 * the old one. Because we mmput the new mm_struct before 1288 * restoring the old one. . . 1289 * Eric Biederman 10 January 1998 1290 */ 1291 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1292 { 1293 uprobe_free_utask(tsk); 1294 1295 /* Get rid of any cached register state */ 1296 deactivate_mm(tsk, mm); 1297 1298 /* 1299 * Signal userspace if we're not exiting with a core dump 1300 * because we want to leave the value intact for debugging 1301 * purposes. 1302 */ 1303 if (tsk->clear_child_tid) { 1304 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1305 atomic_read(&mm->mm_users) > 1) { 1306 /* 1307 * We don't check the error code - if userspace has 1308 * not set up a proper pointer then tough luck. 1309 */ 1310 put_user(0, tsk->clear_child_tid); 1311 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1312 1, NULL, NULL, 0, 0); 1313 } 1314 tsk->clear_child_tid = NULL; 1315 } 1316 1317 /* 1318 * All done, finally we can wake up parent and return this mm to him. 1319 * Also kthread_stop() uses this completion for synchronization. 1320 */ 1321 if (tsk->vfork_done) 1322 complete_vfork_done(tsk); 1323 } 1324 1325 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1326 { 1327 futex_exit_release(tsk); 1328 mm_release(tsk, mm); 1329 } 1330 1331 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1332 { 1333 futex_exec_release(tsk); 1334 mm_release(tsk, mm); 1335 } 1336 1337 /** 1338 * dup_mm() - duplicates an existing mm structure 1339 * @tsk: the task_struct with which the new mm will be associated. 1340 * @oldmm: the mm to duplicate. 1341 * 1342 * Allocates a new mm structure and duplicates the provided @oldmm structure 1343 * content into it. 1344 * 1345 * Return: the duplicated mm or NULL on failure. 1346 */ 1347 static struct mm_struct *dup_mm(struct task_struct *tsk, 1348 struct mm_struct *oldmm) 1349 { 1350 struct mm_struct *mm; 1351 int err; 1352 1353 mm = allocate_mm(); 1354 if (!mm) 1355 goto fail_nomem; 1356 1357 memcpy(mm, oldmm, sizeof(*mm)); 1358 1359 if (!mm_init(mm, tsk, mm->user_ns)) 1360 goto fail_nomem; 1361 1362 err = dup_mmap(mm, oldmm); 1363 if (err) 1364 goto free_pt; 1365 1366 mm->hiwater_rss = get_mm_rss(mm); 1367 mm->hiwater_vm = mm->total_vm; 1368 1369 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1370 goto free_pt; 1371 1372 return mm; 1373 1374 free_pt: 1375 /* don't put binfmt in mmput, we haven't got module yet */ 1376 mm->binfmt = NULL; 1377 mm_init_owner(mm, NULL); 1378 mmput(mm); 1379 1380 fail_nomem: 1381 return NULL; 1382 } 1383 1384 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1385 { 1386 struct mm_struct *mm, *oldmm; 1387 int retval; 1388 1389 tsk->min_flt = tsk->maj_flt = 0; 1390 tsk->nvcsw = tsk->nivcsw = 0; 1391 #ifdef CONFIG_DETECT_HUNG_TASK 1392 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1393 tsk->last_switch_time = 0; 1394 #endif 1395 1396 tsk->mm = NULL; 1397 tsk->active_mm = NULL; 1398 1399 /* 1400 * Are we cloning a kernel thread? 1401 * 1402 * We need to steal a active VM for that.. 1403 */ 1404 oldmm = current->mm; 1405 if (!oldmm) 1406 return 0; 1407 1408 /* initialize the new vmacache entries */ 1409 vmacache_flush(tsk); 1410 1411 if (clone_flags & CLONE_VM) { 1412 mmget(oldmm); 1413 mm = oldmm; 1414 goto good_mm; 1415 } 1416 1417 retval = -ENOMEM; 1418 mm = dup_mm(tsk, current->mm); 1419 if (!mm) 1420 goto fail_nomem; 1421 1422 good_mm: 1423 tsk->mm = mm; 1424 tsk->active_mm = mm; 1425 return 0; 1426 1427 fail_nomem: 1428 return retval; 1429 } 1430 1431 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1432 { 1433 struct fs_struct *fs = current->fs; 1434 if (clone_flags & CLONE_FS) { 1435 /* tsk->fs is already what we want */ 1436 spin_lock(&fs->lock); 1437 if (fs->in_exec) { 1438 spin_unlock(&fs->lock); 1439 return -EAGAIN; 1440 } 1441 fs->users++; 1442 spin_unlock(&fs->lock); 1443 return 0; 1444 } 1445 tsk->fs = copy_fs_struct(fs); 1446 if (!tsk->fs) 1447 return -ENOMEM; 1448 return 0; 1449 } 1450 1451 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1452 { 1453 struct files_struct *oldf, *newf; 1454 int error = 0; 1455 1456 /* 1457 * A background process may not have any files ... 1458 */ 1459 oldf = current->files; 1460 if (!oldf) 1461 goto out; 1462 1463 if (clone_flags & CLONE_FILES) { 1464 atomic_inc(&oldf->count); 1465 goto out; 1466 } 1467 1468 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1469 if (!newf) 1470 goto out; 1471 1472 tsk->files = newf; 1473 error = 0; 1474 out: 1475 return error; 1476 } 1477 1478 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1479 { 1480 #ifdef CONFIG_BLOCK 1481 struct io_context *ioc = current->io_context; 1482 struct io_context *new_ioc; 1483 1484 if (!ioc) 1485 return 0; 1486 /* 1487 * Share io context with parent, if CLONE_IO is set 1488 */ 1489 if (clone_flags & CLONE_IO) { 1490 ioc_task_link(ioc); 1491 tsk->io_context = ioc; 1492 } else if (ioprio_valid(ioc->ioprio)) { 1493 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1494 if (unlikely(!new_ioc)) 1495 return -ENOMEM; 1496 1497 new_ioc->ioprio = ioc->ioprio; 1498 put_io_context(new_ioc); 1499 } 1500 #endif 1501 return 0; 1502 } 1503 1504 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1505 { 1506 struct sighand_struct *sig; 1507 1508 if (clone_flags & CLONE_SIGHAND) { 1509 refcount_inc(¤t->sighand->count); 1510 return 0; 1511 } 1512 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1513 RCU_INIT_POINTER(tsk->sighand, sig); 1514 if (!sig) 1515 return -ENOMEM; 1516 1517 refcount_set(&sig->count, 1); 1518 spin_lock_irq(¤t->sighand->siglock); 1519 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1520 spin_unlock_irq(¤t->sighand->siglock); 1521 1522 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1523 if (clone_flags & CLONE_CLEAR_SIGHAND) 1524 flush_signal_handlers(tsk, 0); 1525 1526 return 0; 1527 } 1528 1529 void __cleanup_sighand(struct sighand_struct *sighand) 1530 { 1531 if (refcount_dec_and_test(&sighand->count)) { 1532 signalfd_cleanup(sighand); 1533 /* 1534 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1535 * without an RCU grace period, see __lock_task_sighand(). 1536 */ 1537 kmem_cache_free(sighand_cachep, sighand); 1538 } 1539 } 1540 1541 /* 1542 * Initialize POSIX timer handling for a thread group. 1543 */ 1544 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1545 { 1546 struct posix_cputimers *pct = &sig->posix_cputimers; 1547 unsigned long cpu_limit; 1548 1549 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1550 posix_cputimers_group_init(pct, cpu_limit); 1551 } 1552 1553 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1554 { 1555 struct signal_struct *sig; 1556 1557 if (clone_flags & CLONE_THREAD) 1558 return 0; 1559 1560 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1561 tsk->signal = sig; 1562 if (!sig) 1563 return -ENOMEM; 1564 1565 sig->nr_threads = 1; 1566 atomic_set(&sig->live, 1); 1567 refcount_set(&sig->sigcnt, 1); 1568 1569 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1570 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1571 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1572 1573 init_waitqueue_head(&sig->wait_chldexit); 1574 sig->curr_target = tsk; 1575 init_sigpending(&sig->shared_pending); 1576 INIT_HLIST_HEAD(&sig->multiprocess); 1577 seqlock_init(&sig->stats_lock); 1578 prev_cputime_init(&sig->prev_cputime); 1579 1580 #ifdef CONFIG_POSIX_TIMERS 1581 INIT_LIST_HEAD(&sig->posix_timers); 1582 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1583 sig->real_timer.function = it_real_fn; 1584 #endif 1585 1586 task_lock(current->group_leader); 1587 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1588 task_unlock(current->group_leader); 1589 1590 posix_cpu_timers_init_group(sig); 1591 1592 tty_audit_fork(sig); 1593 sched_autogroup_fork(sig); 1594 1595 sig->oom_score_adj = current->signal->oom_score_adj; 1596 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1597 1598 mutex_init(&sig->cred_guard_mutex); 1599 init_rwsem(&sig->exec_update_lock); 1600 1601 return 0; 1602 } 1603 1604 static void copy_seccomp(struct task_struct *p) 1605 { 1606 #ifdef CONFIG_SECCOMP 1607 /* 1608 * Must be called with sighand->lock held, which is common to 1609 * all threads in the group. Holding cred_guard_mutex is not 1610 * needed because this new task is not yet running and cannot 1611 * be racing exec. 1612 */ 1613 assert_spin_locked(¤t->sighand->siglock); 1614 1615 /* Ref-count the new filter user, and assign it. */ 1616 get_seccomp_filter(current); 1617 p->seccomp = current->seccomp; 1618 1619 /* 1620 * Explicitly enable no_new_privs here in case it got set 1621 * between the task_struct being duplicated and holding the 1622 * sighand lock. The seccomp state and nnp must be in sync. 1623 */ 1624 if (task_no_new_privs(current)) 1625 task_set_no_new_privs(p); 1626 1627 /* 1628 * If the parent gained a seccomp mode after copying thread 1629 * flags and between before we held the sighand lock, we have 1630 * to manually enable the seccomp thread flag here. 1631 */ 1632 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1633 set_task_syscall_work(p, SECCOMP); 1634 #endif 1635 } 1636 1637 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1638 { 1639 current->clear_child_tid = tidptr; 1640 1641 return task_pid_vnr(current); 1642 } 1643 1644 static void rt_mutex_init_task(struct task_struct *p) 1645 { 1646 raw_spin_lock_init(&p->pi_lock); 1647 #ifdef CONFIG_RT_MUTEXES 1648 p->pi_waiters = RB_ROOT_CACHED; 1649 p->pi_top_task = NULL; 1650 p->pi_blocked_on = NULL; 1651 #endif 1652 } 1653 1654 static inline void init_task_pid_links(struct task_struct *task) 1655 { 1656 enum pid_type type; 1657 1658 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1659 INIT_HLIST_NODE(&task->pid_links[type]); 1660 } 1661 1662 static inline void 1663 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1664 { 1665 if (type == PIDTYPE_PID) 1666 task->thread_pid = pid; 1667 else 1668 task->signal->pids[type] = pid; 1669 } 1670 1671 static inline void rcu_copy_process(struct task_struct *p) 1672 { 1673 #ifdef CONFIG_PREEMPT_RCU 1674 p->rcu_read_lock_nesting = 0; 1675 p->rcu_read_unlock_special.s = 0; 1676 p->rcu_blocked_node = NULL; 1677 INIT_LIST_HEAD(&p->rcu_node_entry); 1678 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1679 #ifdef CONFIG_TASKS_RCU 1680 p->rcu_tasks_holdout = false; 1681 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1682 p->rcu_tasks_idle_cpu = -1; 1683 #endif /* #ifdef CONFIG_TASKS_RCU */ 1684 #ifdef CONFIG_TASKS_TRACE_RCU 1685 p->trc_reader_nesting = 0; 1686 p->trc_reader_special.s = 0; 1687 INIT_LIST_HEAD(&p->trc_holdout_list); 1688 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1689 } 1690 1691 struct pid *pidfd_pid(const struct file *file) 1692 { 1693 if (file->f_op == &pidfd_fops) 1694 return file->private_data; 1695 1696 return ERR_PTR(-EBADF); 1697 } 1698 1699 static int pidfd_release(struct inode *inode, struct file *file) 1700 { 1701 struct pid *pid = file->private_data; 1702 1703 file->private_data = NULL; 1704 put_pid(pid); 1705 return 0; 1706 } 1707 1708 #ifdef CONFIG_PROC_FS 1709 /** 1710 * pidfd_show_fdinfo - print information about a pidfd 1711 * @m: proc fdinfo file 1712 * @f: file referencing a pidfd 1713 * 1714 * Pid: 1715 * This function will print the pid that a given pidfd refers to in the 1716 * pid namespace of the procfs instance. 1717 * If the pid namespace of the process is not a descendant of the pid 1718 * namespace of the procfs instance 0 will be shown as its pid. This is 1719 * similar to calling getppid() on a process whose parent is outside of 1720 * its pid namespace. 1721 * 1722 * NSpid: 1723 * If pid namespaces are supported then this function will also print 1724 * the pid of a given pidfd refers to for all descendant pid namespaces 1725 * starting from the current pid namespace of the instance, i.e. the 1726 * Pid field and the first entry in the NSpid field will be identical. 1727 * If the pid namespace of the process is not a descendant of the pid 1728 * namespace of the procfs instance 0 will be shown as its first NSpid 1729 * entry and no others will be shown. 1730 * Note that this differs from the Pid and NSpid fields in 1731 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1732 * the pid namespace of the procfs instance. The difference becomes 1733 * obvious when sending around a pidfd between pid namespaces from a 1734 * different branch of the tree, i.e. where no ancestoral relation is 1735 * present between the pid namespaces: 1736 * - create two new pid namespaces ns1 and ns2 in the initial pid 1737 * namespace (also take care to create new mount namespaces in the 1738 * new pid namespace and mount procfs) 1739 * - create a process with a pidfd in ns1 1740 * - send pidfd from ns1 to ns2 1741 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1742 * have exactly one entry, which is 0 1743 */ 1744 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1745 { 1746 struct pid *pid = f->private_data; 1747 struct pid_namespace *ns; 1748 pid_t nr = -1; 1749 1750 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1751 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1752 nr = pid_nr_ns(pid, ns); 1753 } 1754 1755 seq_put_decimal_ll(m, "Pid:\t", nr); 1756 1757 #ifdef CONFIG_PID_NS 1758 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1759 if (nr > 0) { 1760 int i; 1761 1762 /* If nr is non-zero it means that 'pid' is valid and that 1763 * ns, i.e. the pid namespace associated with the procfs 1764 * instance, is in the pid namespace hierarchy of pid. 1765 * Start at one below the already printed level. 1766 */ 1767 for (i = ns->level + 1; i <= pid->level; i++) 1768 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1769 } 1770 #endif 1771 seq_putc(m, '\n'); 1772 } 1773 #endif 1774 1775 /* 1776 * Poll support for process exit notification. 1777 */ 1778 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1779 { 1780 struct pid *pid = file->private_data; 1781 __poll_t poll_flags = 0; 1782 1783 poll_wait(file, &pid->wait_pidfd, pts); 1784 1785 /* 1786 * Inform pollers only when the whole thread group exits. 1787 * If the thread group leader exits before all other threads in the 1788 * group, then poll(2) should block, similar to the wait(2) family. 1789 */ 1790 if (thread_group_exited(pid)) 1791 poll_flags = EPOLLIN | EPOLLRDNORM; 1792 1793 return poll_flags; 1794 } 1795 1796 const struct file_operations pidfd_fops = { 1797 .release = pidfd_release, 1798 .poll = pidfd_poll, 1799 #ifdef CONFIG_PROC_FS 1800 .show_fdinfo = pidfd_show_fdinfo, 1801 #endif 1802 }; 1803 1804 static void __delayed_free_task(struct rcu_head *rhp) 1805 { 1806 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1807 1808 free_task(tsk); 1809 } 1810 1811 static __always_inline void delayed_free_task(struct task_struct *tsk) 1812 { 1813 if (IS_ENABLED(CONFIG_MEMCG)) 1814 call_rcu(&tsk->rcu, __delayed_free_task); 1815 else 1816 free_task(tsk); 1817 } 1818 1819 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1820 { 1821 /* Skip if kernel thread */ 1822 if (!tsk->mm) 1823 return; 1824 1825 /* Skip if spawning a thread or using vfork */ 1826 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1827 return; 1828 1829 /* We need to synchronize with __set_oom_adj */ 1830 mutex_lock(&oom_adj_mutex); 1831 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1832 /* Update the values in case they were changed after copy_signal */ 1833 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1834 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1835 mutex_unlock(&oom_adj_mutex); 1836 } 1837 1838 /* 1839 * This creates a new process as a copy of the old one, 1840 * but does not actually start it yet. 1841 * 1842 * It copies the registers, and all the appropriate 1843 * parts of the process environment (as per the clone 1844 * flags). The actual kick-off is left to the caller. 1845 */ 1846 static __latent_entropy struct task_struct *copy_process( 1847 struct pid *pid, 1848 int trace, 1849 int node, 1850 struct kernel_clone_args *args) 1851 { 1852 int pidfd = -1, retval; 1853 struct task_struct *p; 1854 struct multiprocess_signals delayed; 1855 struct file *pidfile = NULL; 1856 u64 clone_flags = args->flags; 1857 struct nsproxy *nsp = current->nsproxy; 1858 1859 /* 1860 * Don't allow sharing the root directory with processes in a different 1861 * namespace 1862 */ 1863 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1864 return ERR_PTR(-EINVAL); 1865 1866 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1867 return ERR_PTR(-EINVAL); 1868 1869 /* 1870 * Thread groups must share signals as well, and detached threads 1871 * can only be started up within the thread group. 1872 */ 1873 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1874 return ERR_PTR(-EINVAL); 1875 1876 /* 1877 * Shared signal handlers imply shared VM. By way of the above, 1878 * thread groups also imply shared VM. Blocking this case allows 1879 * for various simplifications in other code. 1880 */ 1881 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1882 return ERR_PTR(-EINVAL); 1883 1884 /* 1885 * Siblings of global init remain as zombies on exit since they are 1886 * not reaped by their parent (swapper). To solve this and to avoid 1887 * multi-rooted process trees, prevent global and container-inits 1888 * from creating siblings. 1889 */ 1890 if ((clone_flags & CLONE_PARENT) && 1891 current->signal->flags & SIGNAL_UNKILLABLE) 1892 return ERR_PTR(-EINVAL); 1893 1894 /* 1895 * If the new process will be in a different pid or user namespace 1896 * do not allow it to share a thread group with the forking task. 1897 */ 1898 if (clone_flags & CLONE_THREAD) { 1899 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1900 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1901 return ERR_PTR(-EINVAL); 1902 } 1903 1904 /* 1905 * If the new process will be in a different time namespace 1906 * do not allow it to share VM or a thread group with the forking task. 1907 */ 1908 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1909 if (nsp->time_ns != nsp->time_ns_for_children) 1910 return ERR_PTR(-EINVAL); 1911 } 1912 1913 if (clone_flags & CLONE_PIDFD) { 1914 /* 1915 * - CLONE_DETACHED is blocked so that we can potentially 1916 * reuse it later for CLONE_PIDFD. 1917 * - CLONE_THREAD is blocked until someone really needs it. 1918 */ 1919 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1920 return ERR_PTR(-EINVAL); 1921 } 1922 1923 /* 1924 * Force any signals received before this point to be delivered 1925 * before the fork happens. Collect up signals sent to multiple 1926 * processes that happen during the fork and delay them so that 1927 * they appear to happen after the fork. 1928 */ 1929 sigemptyset(&delayed.signal); 1930 INIT_HLIST_NODE(&delayed.node); 1931 1932 spin_lock_irq(¤t->sighand->siglock); 1933 if (!(clone_flags & CLONE_THREAD)) 1934 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1935 recalc_sigpending(); 1936 spin_unlock_irq(¤t->sighand->siglock); 1937 retval = -ERESTARTNOINTR; 1938 if (signal_pending(current)) 1939 goto fork_out; 1940 1941 retval = -ENOMEM; 1942 p = dup_task_struct(current, node); 1943 if (!p) 1944 goto fork_out; 1945 if (args->io_thread) 1946 p->flags |= PF_IO_WORKER; 1947 1948 /* 1949 * This _must_ happen before we call free_task(), i.e. before we jump 1950 * to any of the bad_fork_* labels. This is to avoid freeing 1951 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1952 * kernel threads (PF_KTHREAD). 1953 */ 1954 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1955 /* 1956 * Clear TID on mm_release()? 1957 */ 1958 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1959 1960 ftrace_graph_init_task(p); 1961 1962 rt_mutex_init_task(p); 1963 1964 lockdep_assert_irqs_enabled(); 1965 #ifdef CONFIG_PROVE_LOCKING 1966 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1967 #endif 1968 retval = -EAGAIN; 1969 if (atomic_read(&p->real_cred->user->processes) >= 1970 task_rlimit(p, RLIMIT_NPROC)) { 1971 if (p->real_cred->user != INIT_USER && 1972 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1973 goto bad_fork_free; 1974 } 1975 current->flags &= ~PF_NPROC_EXCEEDED; 1976 1977 retval = copy_creds(p, clone_flags); 1978 if (retval < 0) 1979 goto bad_fork_free; 1980 1981 /* 1982 * If multiple threads are within copy_process(), then this check 1983 * triggers too late. This doesn't hurt, the check is only there 1984 * to stop root fork bombs. 1985 */ 1986 retval = -EAGAIN; 1987 if (data_race(nr_threads >= max_threads)) 1988 goto bad_fork_cleanup_count; 1989 1990 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1991 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1992 p->flags |= PF_FORKNOEXEC; 1993 INIT_LIST_HEAD(&p->children); 1994 INIT_LIST_HEAD(&p->sibling); 1995 rcu_copy_process(p); 1996 p->vfork_done = NULL; 1997 spin_lock_init(&p->alloc_lock); 1998 1999 init_sigpending(&p->pending); 2000 2001 p->utime = p->stime = p->gtime = 0; 2002 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2003 p->utimescaled = p->stimescaled = 0; 2004 #endif 2005 prev_cputime_init(&p->prev_cputime); 2006 2007 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2008 seqcount_init(&p->vtime.seqcount); 2009 p->vtime.starttime = 0; 2010 p->vtime.state = VTIME_INACTIVE; 2011 #endif 2012 2013 #ifdef CONFIG_IO_URING 2014 p->io_uring = NULL; 2015 #endif 2016 2017 #if defined(SPLIT_RSS_COUNTING) 2018 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2019 #endif 2020 2021 p->default_timer_slack_ns = current->timer_slack_ns; 2022 2023 #ifdef CONFIG_PSI 2024 p->psi_flags = 0; 2025 #endif 2026 2027 task_io_accounting_init(&p->ioac); 2028 acct_clear_integrals(p); 2029 2030 posix_cputimers_init(&p->posix_cputimers); 2031 2032 p->io_context = NULL; 2033 audit_set_context(p, NULL); 2034 cgroup_fork(p); 2035 #ifdef CONFIG_NUMA 2036 p->mempolicy = mpol_dup(p->mempolicy); 2037 if (IS_ERR(p->mempolicy)) { 2038 retval = PTR_ERR(p->mempolicy); 2039 p->mempolicy = NULL; 2040 goto bad_fork_cleanup_threadgroup_lock; 2041 } 2042 #endif 2043 #ifdef CONFIG_CPUSETS 2044 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2045 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2046 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2047 #endif 2048 #ifdef CONFIG_TRACE_IRQFLAGS 2049 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2050 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2051 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2052 p->softirqs_enabled = 1; 2053 p->softirq_context = 0; 2054 #endif 2055 2056 p->pagefault_disabled = 0; 2057 2058 #ifdef CONFIG_LOCKDEP 2059 lockdep_init_task(p); 2060 #endif 2061 2062 #ifdef CONFIG_DEBUG_MUTEXES 2063 p->blocked_on = NULL; /* not blocked yet */ 2064 #endif 2065 #ifdef CONFIG_BCACHE 2066 p->sequential_io = 0; 2067 p->sequential_io_avg = 0; 2068 #endif 2069 #ifdef CONFIG_BPF_SYSCALL 2070 RCU_INIT_POINTER(p->bpf_storage, NULL); 2071 #endif 2072 2073 /* Perform scheduler related setup. Assign this task to a CPU. */ 2074 retval = sched_fork(clone_flags, p); 2075 if (retval) 2076 goto bad_fork_cleanup_policy; 2077 2078 retval = perf_event_init_task(p); 2079 if (retval) 2080 goto bad_fork_cleanup_policy; 2081 retval = audit_alloc(p); 2082 if (retval) 2083 goto bad_fork_cleanup_perf; 2084 /* copy all the process information */ 2085 shm_init_task(p); 2086 retval = security_task_alloc(p, clone_flags); 2087 if (retval) 2088 goto bad_fork_cleanup_audit; 2089 retval = copy_semundo(clone_flags, p); 2090 if (retval) 2091 goto bad_fork_cleanup_security; 2092 retval = copy_files(clone_flags, p); 2093 if (retval) 2094 goto bad_fork_cleanup_semundo; 2095 retval = copy_fs(clone_flags, p); 2096 if (retval) 2097 goto bad_fork_cleanup_files; 2098 retval = copy_sighand(clone_flags, p); 2099 if (retval) 2100 goto bad_fork_cleanup_fs; 2101 retval = copy_signal(clone_flags, p); 2102 if (retval) 2103 goto bad_fork_cleanup_sighand; 2104 retval = copy_mm(clone_flags, p); 2105 if (retval) 2106 goto bad_fork_cleanup_signal; 2107 retval = copy_namespaces(clone_flags, p); 2108 if (retval) 2109 goto bad_fork_cleanup_mm; 2110 retval = copy_io(clone_flags, p); 2111 if (retval) 2112 goto bad_fork_cleanup_namespaces; 2113 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2114 if (retval) 2115 goto bad_fork_cleanup_io; 2116 2117 stackleak_task_init(p); 2118 2119 if (pid != &init_struct_pid) { 2120 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2121 args->set_tid_size); 2122 if (IS_ERR(pid)) { 2123 retval = PTR_ERR(pid); 2124 goto bad_fork_cleanup_thread; 2125 } 2126 } 2127 2128 /* 2129 * This has to happen after we've potentially unshared the file 2130 * descriptor table (so that the pidfd doesn't leak into the child 2131 * if the fd table isn't shared). 2132 */ 2133 if (clone_flags & CLONE_PIDFD) { 2134 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2135 if (retval < 0) 2136 goto bad_fork_free_pid; 2137 2138 pidfd = retval; 2139 2140 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2141 O_RDWR | O_CLOEXEC); 2142 if (IS_ERR(pidfile)) { 2143 put_unused_fd(pidfd); 2144 retval = PTR_ERR(pidfile); 2145 goto bad_fork_free_pid; 2146 } 2147 get_pid(pid); /* held by pidfile now */ 2148 2149 retval = put_user(pidfd, args->pidfd); 2150 if (retval) 2151 goto bad_fork_put_pidfd; 2152 } 2153 2154 #ifdef CONFIG_BLOCK 2155 p->plug = NULL; 2156 #endif 2157 futex_init_task(p); 2158 2159 /* 2160 * sigaltstack should be cleared when sharing the same VM 2161 */ 2162 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2163 sas_ss_reset(p); 2164 2165 /* 2166 * Syscall tracing and stepping should be turned off in the 2167 * child regardless of CLONE_PTRACE. 2168 */ 2169 user_disable_single_step(p); 2170 clear_task_syscall_work(p, SYSCALL_TRACE); 2171 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2172 clear_task_syscall_work(p, SYSCALL_EMU); 2173 #endif 2174 clear_tsk_latency_tracing(p); 2175 2176 /* ok, now we should be set up.. */ 2177 p->pid = pid_nr(pid); 2178 if (clone_flags & CLONE_THREAD) { 2179 p->group_leader = current->group_leader; 2180 p->tgid = current->tgid; 2181 } else { 2182 p->group_leader = p; 2183 p->tgid = p->pid; 2184 } 2185 2186 p->nr_dirtied = 0; 2187 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2188 p->dirty_paused_when = 0; 2189 2190 p->pdeath_signal = 0; 2191 INIT_LIST_HEAD(&p->thread_group); 2192 p->task_works = NULL; 2193 2194 #ifdef CONFIG_KRETPROBES 2195 p->kretprobe_instances.first = NULL; 2196 #endif 2197 2198 /* 2199 * Ensure that the cgroup subsystem policies allow the new process to be 2200 * forked. It should be noted that the new process's css_set can be changed 2201 * between here and cgroup_post_fork() if an organisation operation is in 2202 * progress. 2203 */ 2204 retval = cgroup_can_fork(p, args); 2205 if (retval) 2206 goto bad_fork_put_pidfd; 2207 2208 /* 2209 * From this point on we must avoid any synchronous user-space 2210 * communication until we take the tasklist-lock. In particular, we do 2211 * not want user-space to be able to predict the process start-time by 2212 * stalling fork(2) after we recorded the start_time but before it is 2213 * visible to the system. 2214 */ 2215 2216 p->start_time = ktime_get_ns(); 2217 p->start_boottime = ktime_get_boottime_ns(); 2218 2219 /* 2220 * Make it visible to the rest of the system, but dont wake it up yet. 2221 * Need tasklist lock for parent etc handling! 2222 */ 2223 write_lock_irq(&tasklist_lock); 2224 2225 /* CLONE_PARENT re-uses the old parent */ 2226 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2227 p->real_parent = current->real_parent; 2228 p->parent_exec_id = current->parent_exec_id; 2229 if (clone_flags & CLONE_THREAD) 2230 p->exit_signal = -1; 2231 else 2232 p->exit_signal = current->group_leader->exit_signal; 2233 } else { 2234 p->real_parent = current; 2235 p->parent_exec_id = current->self_exec_id; 2236 p->exit_signal = args->exit_signal; 2237 } 2238 2239 klp_copy_process(p); 2240 2241 spin_lock(¤t->sighand->siglock); 2242 2243 /* 2244 * Copy seccomp details explicitly here, in case they were changed 2245 * before holding sighand lock. 2246 */ 2247 copy_seccomp(p); 2248 2249 rseq_fork(p, clone_flags); 2250 2251 /* Don't start children in a dying pid namespace */ 2252 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2253 retval = -ENOMEM; 2254 goto bad_fork_cancel_cgroup; 2255 } 2256 2257 /* Let kill terminate clone/fork in the middle */ 2258 if (fatal_signal_pending(current)) { 2259 retval = -EINTR; 2260 goto bad_fork_cancel_cgroup; 2261 } 2262 2263 /* past the last point of failure */ 2264 if (pidfile) 2265 fd_install(pidfd, pidfile); 2266 2267 init_task_pid_links(p); 2268 if (likely(p->pid)) { 2269 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2270 2271 init_task_pid(p, PIDTYPE_PID, pid); 2272 if (thread_group_leader(p)) { 2273 init_task_pid(p, PIDTYPE_TGID, pid); 2274 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2275 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2276 2277 if (is_child_reaper(pid)) { 2278 ns_of_pid(pid)->child_reaper = p; 2279 p->signal->flags |= SIGNAL_UNKILLABLE; 2280 } 2281 p->signal->shared_pending.signal = delayed.signal; 2282 p->signal->tty = tty_kref_get(current->signal->tty); 2283 /* 2284 * Inherit has_child_subreaper flag under the same 2285 * tasklist_lock with adding child to the process tree 2286 * for propagate_has_child_subreaper optimization. 2287 */ 2288 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2289 p->real_parent->signal->is_child_subreaper; 2290 list_add_tail(&p->sibling, &p->real_parent->children); 2291 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2292 attach_pid(p, PIDTYPE_TGID); 2293 attach_pid(p, PIDTYPE_PGID); 2294 attach_pid(p, PIDTYPE_SID); 2295 __this_cpu_inc(process_counts); 2296 } else { 2297 current->signal->nr_threads++; 2298 atomic_inc(¤t->signal->live); 2299 refcount_inc(¤t->signal->sigcnt); 2300 task_join_group_stop(p); 2301 list_add_tail_rcu(&p->thread_group, 2302 &p->group_leader->thread_group); 2303 list_add_tail_rcu(&p->thread_node, 2304 &p->signal->thread_head); 2305 } 2306 attach_pid(p, PIDTYPE_PID); 2307 nr_threads++; 2308 } 2309 total_forks++; 2310 hlist_del_init(&delayed.node); 2311 spin_unlock(¤t->sighand->siglock); 2312 syscall_tracepoint_update(p); 2313 write_unlock_irq(&tasklist_lock); 2314 2315 proc_fork_connector(p); 2316 sched_post_fork(p); 2317 cgroup_post_fork(p, args); 2318 perf_event_fork(p); 2319 2320 trace_task_newtask(p, clone_flags); 2321 uprobe_copy_process(p, clone_flags); 2322 2323 copy_oom_score_adj(clone_flags, p); 2324 2325 return p; 2326 2327 bad_fork_cancel_cgroup: 2328 spin_unlock(¤t->sighand->siglock); 2329 write_unlock_irq(&tasklist_lock); 2330 cgroup_cancel_fork(p, args); 2331 bad_fork_put_pidfd: 2332 if (clone_flags & CLONE_PIDFD) { 2333 fput(pidfile); 2334 put_unused_fd(pidfd); 2335 } 2336 bad_fork_free_pid: 2337 if (pid != &init_struct_pid) 2338 free_pid(pid); 2339 bad_fork_cleanup_thread: 2340 exit_thread(p); 2341 bad_fork_cleanup_io: 2342 if (p->io_context) 2343 exit_io_context(p); 2344 bad_fork_cleanup_namespaces: 2345 exit_task_namespaces(p); 2346 bad_fork_cleanup_mm: 2347 if (p->mm) { 2348 mm_clear_owner(p->mm, p); 2349 mmput(p->mm); 2350 } 2351 bad_fork_cleanup_signal: 2352 if (!(clone_flags & CLONE_THREAD)) 2353 free_signal_struct(p->signal); 2354 bad_fork_cleanup_sighand: 2355 __cleanup_sighand(p->sighand); 2356 bad_fork_cleanup_fs: 2357 exit_fs(p); /* blocking */ 2358 bad_fork_cleanup_files: 2359 exit_files(p); /* blocking */ 2360 bad_fork_cleanup_semundo: 2361 exit_sem(p); 2362 bad_fork_cleanup_security: 2363 security_task_free(p); 2364 bad_fork_cleanup_audit: 2365 audit_free(p); 2366 bad_fork_cleanup_perf: 2367 perf_event_free_task(p); 2368 bad_fork_cleanup_policy: 2369 lockdep_free_task(p); 2370 #ifdef CONFIG_NUMA 2371 mpol_put(p->mempolicy); 2372 bad_fork_cleanup_threadgroup_lock: 2373 #endif 2374 delayacct_tsk_free(p); 2375 bad_fork_cleanup_count: 2376 atomic_dec(&p->cred->user->processes); 2377 exit_creds(p); 2378 bad_fork_free: 2379 p->state = TASK_DEAD; 2380 put_task_stack(p); 2381 delayed_free_task(p); 2382 fork_out: 2383 spin_lock_irq(¤t->sighand->siglock); 2384 hlist_del_init(&delayed.node); 2385 spin_unlock_irq(¤t->sighand->siglock); 2386 return ERR_PTR(retval); 2387 } 2388 2389 static inline void init_idle_pids(struct task_struct *idle) 2390 { 2391 enum pid_type type; 2392 2393 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2394 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2395 init_task_pid(idle, type, &init_struct_pid); 2396 } 2397 } 2398 2399 struct task_struct *fork_idle(int cpu) 2400 { 2401 struct task_struct *task; 2402 struct kernel_clone_args args = { 2403 .flags = CLONE_VM, 2404 }; 2405 2406 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2407 if (!IS_ERR(task)) { 2408 init_idle_pids(task); 2409 init_idle(task, cpu); 2410 } 2411 2412 return task; 2413 } 2414 2415 struct mm_struct *copy_init_mm(void) 2416 { 2417 return dup_mm(NULL, &init_mm); 2418 } 2419 2420 /* 2421 * This is like kernel_clone(), but shaved down and tailored to just 2422 * creating io_uring workers. It returns a created task, or an error pointer. 2423 * The returned task is inactive, and the caller must fire it up through 2424 * wake_up_new_task(p). All signals are blocked in the created task. 2425 */ 2426 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2427 { 2428 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2429 CLONE_IO; 2430 struct kernel_clone_args args = { 2431 .flags = ((lower_32_bits(flags) | CLONE_VM | 2432 CLONE_UNTRACED) & ~CSIGNAL), 2433 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2434 .stack = (unsigned long)fn, 2435 .stack_size = (unsigned long)arg, 2436 .io_thread = 1, 2437 }; 2438 struct task_struct *tsk; 2439 2440 tsk = copy_process(NULL, 0, node, &args); 2441 if (!IS_ERR(tsk)) { 2442 sigfillset(&tsk->blocked); 2443 sigdelsetmask(&tsk->blocked, sigmask(SIGKILL)); 2444 } 2445 return tsk; 2446 } 2447 2448 /* 2449 * Ok, this is the main fork-routine. 2450 * 2451 * It copies the process, and if successful kick-starts 2452 * it and waits for it to finish using the VM if required. 2453 * 2454 * args->exit_signal is expected to be checked for sanity by the caller. 2455 */ 2456 pid_t kernel_clone(struct kernel_clone_args *args) 2457 { 2458 u64 clone_flags = args->flags; 2459 struct completion vfork; 2460 struct pid *pid; 2461 struct task_struct *p; 2462 int trace = 0; 2463 pid_t nr; 2464 2465 /* 2466 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2467 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2468 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2469 * field in struct clone_args and it still doesn't make sense to have 2470 * them both point at the same memory location. Performing this check 2471 * here has the advantage that we don't need to have a separate helper 2472 * to check for legacy clone(). 2473 */ 2474 if ((args->flags & CLONE_PIDFD) && 2475 (args->flags & CLONE_PARENT_SETTID) && 2476 (args->pidfd == args->parent_tid)) 2477 return -EINVAL; 2478 2479 /* 2480 * Determine whether and which event to report to ptracer. When 2481 * called from kernel_thread or CLONE_UNTRACED is explicitly 2482 * requested, no event is reported; otherwise, report if the event 2483 * for the type of forking is enabled. 2484 */ 2485 if (!(clone_flags & CLONE_UNTRACED)) { 2486 if (clone_flags & CLONE_VFORK) 2487 trace = PTRACE_EVENT_VFORK; 2488 else if (args->exit_signal != SIGCHLD) 2489 trace = PTRACE_EVENT_CLONE; 2490 else 2491 trace = PTRACE_EVENT_FORK; 2492 2493 if (likely(!ptrace_event_enabled(current, trace))) 2494 trace = 0; 2495 } 2496 2497 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2498 add_latent_entropy(); 2499 2500 if (IS_ERR(p)) 2501 return PTR_ERR(p); 2502 2503 /* 2504 * Do this prior waking up the new thread - the thread pointer 2505 * might get invalid after that point, if the thread exits quickly. 2506 */ 2507 trace_sched_process_fork(current, p); 2508 2509 pid = get_task_pid(p, PIDTYPE_PID); 2510 nr = pid_vnr(pid); 2511 2512 if (clone_flags & CLONE_PARENT_SETTID) 2513 put_user(nr, args->parent_tid); 2514 2515 if (clone_flags & CLONE_VFORK) { 2516 p->vfork_done = &vfork; 2517 init_completion(&vfork); 2518 get_task_struct(p); 2519 } 2520 2521 wake_up_new_task(p); 2522 2523 /* forking complete and child started to run, tell ptracer */ 2524 if (unlikely(trace)) 2525 ptrace_event_pid(trace, pid); 2526 2527 if (clone_flags & CLONE_VFORK) { 2528 if (!wait_for_vfork_done(p, &vfork)) 2529 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2530 } 2531 2532 put_pid(pid); 2533 return nr; 2534 } 2535 2536 /* 2537 * Create a kernel thread. 2538 */ 2539 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2540 { 2541 struct kernel_clone_args args = { 2542 .flags = ((lower_32_bits(flags) | CLONE_VM | 2543 CLONE_UNTRACED) & ~CSIGNAL), 2544 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2545 .stack = (unsigned long)fn, 2546 .stack_size = (unsigned long)arg, 2547 }; 2548 2549 return kernel_clone(&args); 2550 } 2551 2552 #ifdef __ARCH_WANT_SYS_FORK 2553 SYSCALL_DEFINE0(fork) 2554 { 2555 #ifdef CONFIG_MMU 2556 struct kernel_clone_args args = { 2557 .exit_signal = SIGCHLD, 2558 }; 2559 2560 return kernel_clone(&args); 2561 #else 2562 /* can not support in nommu mode */ 2563 return -EINVAL; 2564 #endif 2565 } 2566 #endif 2567 2568 #ifdef __ARCH_WANT_SYS_VFORK 2569 SYSCALL_DEFINE0(vfork) 2570 { 2571 struct kernel_clone_args args = { 2572 .flags = CLONE_VFORK | CLONE_VM, 2573 .exit_signal = SIGCHLD, 2574 }; 2575 2576 return kernel_clone(&args); 2577 } 2578 #endif 2579 2580 #ifdef __ARCH_WANT_SYS_CLONE 2581 #ifdef CONFIG_CLONE_BACKWARDS 2582 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2583 int __user *, parent_tidptr, 2584 unsigned long, tls, 2585 int __user *, child_tidptr) 2586 #elif defined(CONFIG_CLONE_BACKWARDS2) 2587 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2588 int __user *, parent_tidptr, 2589 int __user *, child_tidptr, 2590 unsigned long, tls) 2591 #elif defined(CONFIG_CLONE_BACKWARDS3) 2592 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2593 int, stack_size, 2594 int __user *, parent_tidptr, 2595 int __user *, child_tidptr, 2596 unsigned long, tls) 2597 #else 2598 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2599 int __user *, parent_tidptr, 2600 int __user *, child_tidptr, 2601 unsigned long, tls) 2602 #endif 2603 { 2604 struct kernel_clone_args args = { 2605 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2606 .pidfd = parent_tidptr, 2607 .child_tid = child_tidptr, 2608 .parent_tid = parent_tidptr, 2609 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2610 .stack = newsp, 2611 .tls = tls, 2612 }; 2613 2614 return kernel_clone(&args); 2615 } 2616 #endif 2617 2618 #ifdef __ARCH_WANT_SYS_CLONE3 2619 2620 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2621 struct clone_args __user *uargs, 2622 size_t usize) 2623 { 2624 int err; 2625 struct clone_args args; 2626 pid_t *kset_tid = kargs->set_tid; 2627 2628 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2629 CLONE_ARGS_SIZE_VER0); 2630 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2631 CLONE_ARGS_SIZE_VER1); 2632 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2633 CLONE_ARGS_SIZE_VER2); 2634 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2635 2636 if (unlikely(usize > PAGE_SIZE)) 2637 return -E2BIG; 2638 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2639 return -EINVAL; 2640 2641 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2642 if (err) 2643 return err; 2644 2645 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2646 return -EINVAL; 2647 2648 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2649 return -EINVAL; 2650 2651 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2652 return -EINVAL; 2653 2654 /* 2655 * Verify that higher 32bits of exit_signal are unset and that 2656 * it is a valid signal 2657 */ 2658 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2659 !valid_signal(args.exit_signal))) 2660 return -EINVAL; 2661 2662 if ((args.flags & CLONE_INTO_CGROUP) && 2663 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2664 return -EINVAL; 2665 2666 *kargs = (struct kernel_clone_args){ 2667 .flags = args.flags, 2668 .pidfd = u64_to_user_ptr(args.pidfd), 2669 .child_tid = u64_to_user_ptr(args.child_tid), 2670 .parent_tid = u64_to_user_ptr(args.parent_tid), 2671 .exit_signal = args.exit_signal, 2672 .stack = args.stack, 2673 .stack_size = args.stack_size, 2674 .tls = args.tls, 2675 .set_tid_size = args.set_tid_size, 2676 .cgroup = args.cgroup, 2677 }; 2678 2679 if (args.set_tid && 2680 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2681 (kargs->set_tid_size * sizeof(pid_t)))) 2682 return -EFAULT; 2683 2684 kargs->set_tid = kset_tid; 2685 2686 return 0; 2687 } 2688 2689 /** 2690 * clone3_stack_valid - check and prepare stack 2691 * @kargs: kernel clone args 2692 * 2693 * Verify that the stack arguments userspace gave us are sane. 2694 * In addition, set the stack direction for userspace since it's easy for us to 2695 * determine. 2696 */ 2697 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2698 { 2699 if (kargs->stack == 0) { 2700 if (kargs->stack_size > 0) 2701 return false; 2702 } else { 2703 if (kargs->stack_size == 0) 2704 return false; 2705 2706 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2707 return false; 2708 2709 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2710 kargs->stack += kargs->stack_size; 2711 #endif 2712 } 2713 2714 return true; 2715 } 2716 2717 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2718 { 2719 /* Verify that no unknown flags are passed along. */ 2720 if (kargs->flags & 2721 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2722 return false; 2723 2724 /* 2725 * - make the CLONE_DETACHED bit reuseable for clone3 2726 * - make the CSIGNAL bits reuseable for clone3 2727 */ 2728 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2729 return false; 2730 2731 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2732 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2733 return false; 2734 2735 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2736 kargs->exit_signal) 2737 return false; 2738 2739 if (!clone3_stack_valid(kargs)) 2740 return false; 2741 2742 return true; 2743 } 2744 2745 /** 2746 * clone3 - create a new process with specific properties 2747 * @uargs: argument structure 2748 * @size: size of @uargs 2749 * 2750 * clone3() is the extensible successor to clone()/clone2(). 2751 * It takes a struct as argument that is versioned by its size. 2752 * 2753 * Return: On success, a positive PID for the child process. 2754 * On error, a negative errno number. 2755 */ 2756 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2757 { 2758 int err; 2759 2760 struct kernel_clone_args kargs; 2761 pid_t set_tid[MAX_PID_NS_LEVEL]; 2762 2763 kargs.set_tid = set_tid; 2764 2765 err = copy_clone_args_from_user(&kargs, uargs, size); 2766 if (err) 2767 return err; 2768 2769 if (!clone3_args_valid(&kargs)) 2770 return -EINVAL; 2771 2772 return kernel_clone(&kargs); 2773 } 2774 #endif 2775 2776 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2777 { 2778 struct task_struct *leader, *parent, *child; 2779 int res; 2780 2781 read_lock(&tasklist_lock); 2782 leader = top = top->group_leader; 2783 down: 2784 for_each_thread(leader, parent) { 2785 list_for_each_entry(child, &parent->children, sibling) { 2786 res = visitor(child, data); 2787 if (res) { 2788 if (res < 0) 2789 goto out; 2790 leader = child; 2791 goto down; 2792 } 2793 up: 2794 ; 2795 } 2796 } 2797 2798 if (leader != top) { 2799 child = leader; 2800 parent = child->real_parent; 2801 leader = parent->group_leader; 2802 goto up; 2803 } 2804 out: 2805 read_unlock(&tasklist_lock); 2806 } 2807 2808 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2809 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2810 #endif 2811 2812 static void sighand_ctor(void *data) 2813 { 2814 struct sighand_struct *sighand = data; 2815 2816 spin_lock_init(&sighand->siglock); 2817 init_waitqueue_head(&sighand->signalfd_wqh); 2818 } 2819 2820 void __init proc_caches_init(void) 2821 { 2822 unsigned int mm_size; 2823 2824 sighand_cachep = kmem_cache_create("sighand_cache", 2825 sizeof(struct sighand_struct), 0, 2826 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2827 SLAB_ACCOUNT, sighand_ctor); 2828 signal_cachep = kmem_cache_create("signal_cache", 2829 sizeof(struct signal_struct), 0, 2830 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2831 NULL); 2832 files_cachep = kmem_cache_create("files_cache", 2833 sizeof(struct files_struct), 0, 2834 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2835 NULL); 2836 fs_cachep = kmem_cache_create("fs_cache", 2837 sizeof(struct fs_struct), 0, 2838 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2839 NULL); 2840 2841 /* 2842 * The mm_cpumask is located at the end of mm_struct, and is 2843 * dynamically sized based on the maximum CPU number this system 2844 * can have, taking hotplug into account (nr_cpu_ids). 2845 */ 2846 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2847 2848 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2849 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2850 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2851 offsetof(struct mm_struct, saved_auxv), 2852 sizeof_field(struct mm_struct, saved_auxv), 2853 NULL); 2854 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2855 mmap_init(); 2856 nsproxy_cache_init(); 2857 } 2858 2859 /* 2860 * Check constraints on flags passed to the unshare system call. 2861 */ 2862 static int check_unshare_flags(unsigned long unshare_flags) 2863 { 2864 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2865 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2866 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2867 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2868 CLONE_NEWTIME)) 2869 return -EINVAL; 2870 /* 2871 * Not implemented, but pretend it works if there is nothing 2872 * to unshare. Note that unsharing the address space or the 2873 * signal handlers also need to unshare the signal queues (aka 2874 * CLONE_THREAD). 2875 */ 2876 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2877 if (!thread_group_empty(current)) 2878 return -EINVAL; 2879 } 2880 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2881 if (refcount_read(¤t->sighand->count) > 1) 2882 return -EINVAL; 2883 } 2884 if (unshare_flags & CLONE_VM) { 2885 if (!current_is_single_threaded()) 2886 return -EINVAL; 2887 } 2888 2889 return 0; 2890 } 2891 2892 /* 2893 * Unshare the filesystem structure if it is being shared 2894 */ 2895 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2896 { 2897 struct fs_struct *fs = current->fs; 2898 2899 if (!(unshare_flags & CLONE_FS) || !fs) 2900 return 0; 2901 2902 /* don't need lock here; in the worst case we'll do useless copy */ 2903 if (fs->users == 1) 2904 return 0; 2905 2906 *new_fsp = copy_fs_struct(fs); 2907 if (!*new_fsp) 2908 return -ENOMEM; 2909 2910 return 0; 2911 } 2912 2913 /* 2914 * Unshare file descriptor table if it is being shared 2915 */ 2916 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2917 struct files_struct **new_fdp) 2918 { 2919 struct files_struct *fd = current->files; 2920 int error = 0; 2921 2922 if ((unshare_flags & CLONE_FILES) && 2923 (fd && atomic_read(&fd->count) > 1)) { 2924 *new_fdp = dup_fd(fd, max_fds, &error); 2925 if (!*new_fdp) 2926 return error; 2927 } 2928 2929 return 0; 2930 } 2931 2932 /* 2933 * unshare allows a process to 'unshare' part of the process 2934 * context which was originally shared using clone. copy_* 2935 * functions used by kernel_clone() cannot be used here directly 2936 * because they modify an inactive task_struct that is being 2937 * constructed. Here we are modifying the current, active, 2938 * task_struct. 2939 */ 2940 int ksys_unshare(unsigned long unshare_flags) 2941 { 2942 struct fs_struct *fs, *new_fs = NULL; 2943 struct files_struct *fd, *new_fd = NULL; 2944 struct cred *new_cred = NULL; 2945 struct nsproxy *new_nsproxy = NULL; 2946 int do_sysvsem = 0; 2947 int err; 2948 2949 /* 2950 * If unsharing a user namespace must also unshare the thread group 2951 * and unshare the filesystem root and working directories. 2952 */ 2953 if (unshare_flags & CLONE_NEWUSER) 2954 unshare_flags |= CLONE_THREAD | CLONE_FS; 2955 /* 2956 * If unsharing vm, must also unshare signal handlers. 2957 */ 2958 if (unshare_flags & CLONE_VM) 2959 unshare_flags |= CLONE_SIGHAND; 2960 /* 2961 * If unsharing a signal handlers, must also unshare the signal queues. 2962 */ 2963 if (unshare_flags & CLONE_SIGHAND) 2964 unshare_flags |= CLONE_THREAD; 2965 /* 2966 * If unsharing namespace, must also unshare filesystem information. 2967 */ 2968 if (unshare_flags & CLONE_NEWNS) 2969 unshare_flags |= CLONE_FS; 2970 2971 err = check_unshare_flags(unshare_flags); 2972 if (err) 2973 goto bad_unshare_out; 2974 /* 2975 * CLONE_NEWIPC must also detach from the undolist: after switching 2976 * to a new ipc namespace, the semaphore arrays from the old 2977 * namespace are unreachable. 2978 */ 2979 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2980 do_sysvsem = 1; 2981 err = unshare_fs(unshare_flags, &new_fs); 2982 if (err) 2983 goto bad_unshare_out; 2984 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2985 if (err) 2986 goto bad_unshare_cleanup_fs; 2987 err = unshare_userns(unshare_flags, &new_cred); 2988 if (err) 2989 goto bad_unshare_cleanup_fd; 2990 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2991 new_cred, new_fs); 2992 if (err) 2993 goto bad_unshare_cleanup_cred; 2994 2995 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2996 if (do_sysvsem) { 2997 /* 2998 * CLONE_SYSVSEM is equivalent to sys_exit(). 2999 */ 3000 exit_sem(current); 3001 } 3002 if (unshare_flags & CLONE_NEWIPC) { 3003 /* Orphan segments in old ns (see sem above). */ 3004 exit_shm(current); 3005 shm_init_task(current); 3006 } 3007 3008 if (new_nsproxy) 3009 switch_task_namespaces(current, new_nsproxy); 3010 3011 task_lock(current); 3012 3013 if (new_fs) { 3014 fs = current->fs; 3015 spin_lock(&fs->lock); 3016 current->fs = new_fs; 3017 if (--fs->users) 3018 new_fs = NULL; 3019 else 3020 new_fs = fs; 3021 spin_unlock(&fs->lock); 3022 } 3023 3024 if (new_fd) { 3025 fd = current->files; 3026 current->files = new_fd; 3027 new_fd = fd; 3028 } 3029 3030 task_unlock(current); 3031 3032 if (new_cred) { 3033 /* Install the new user namespace */ 3034 commit_creds(new_cred); 3035 new_cred = NULL; 3036 } 3037 } 3038 3039 perf_event_namespaces(current); 3040 3041 bad_unshare_cleanup_cred: 3042 if (new_cred) 3043 put_cred(new_cred); 3044 bad_unshare_cleanup_fd: 3045 if (new_fd) 3046 put_files_struct(new_fd); 3047 3048 bad_unshare_cleanup_fs: 3049 if (new_fs) 3050 free_fs_struct(new_fs); 3051 3052 bad_unshare_out: 3053 return err; 3054 } 3055 3056 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3057 { 3058 return ksys_unshare(unshare_flags); 3059 } 3060 3061 /* 3062 * Helper to unshare the files of the current task. 3063 * We don't want to expose copy_files internals to 3064 * the exec layer of the kernel. 3065 */ 3066 3067 int unshare_files(void) 3068 { 3069 struct task_struct *task = current; 3070 struct files_struct *old, *copy = NULL; 3071 int error; 3072 3073 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3074 if (error || !copy) 3075 return error; 3076 3077 old = task->files; 3078 task_lock(task); 3079 task->files = copy; 3080 task_unlock(task); 3081 put_files_struct(old); 3082 return 0; 3083 } 3084 3085 int sysctl_max_threads(struct ctl_table *table, int write, 3086 void *buffer, size_t *lenp, loff_t *ppos) 3087 { 3088 struct ctl_table t; 3089 int ret; 3090 int threads = max_threads; 3091 int min = 1; 3092 int max = MAX_THREADS; 3093 3094 t = *table; 3095 t.data = &threads; 3096 t.extra1 = &min; 3097 t.extra2 = &max; 3098 3099 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3100 if (ret || !write) 3101 return ret; 3102 3103 max_threads = threads; 3104 3105 return 0; 3106 } 3107