xref: /openbmc/linux/kernel/fork.c (revision 6a143a7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 static int free_vm_stack_cache(unsigned int cpu)
197 {
198 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199 	int i;
200 
201 	for (i = 0; i < NR_CACHED_STACKS; i++) {
202 		struct vm_struct *vm_stack = cached_vm_stacks[i];
203 
204 		if (!vm_stack)
205 			continue;
206 
207 		vfree(vm_stack->addr);
208 		cached_vm_stacks[i] = NULL;
209 	}
210 
211 	return 0;
212 }
213 #endif
214 
215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 {
217 #ifdef CONFIG_VMAP_STACK
218 	void *stack;
219 	int i;
220 
221 	for (i = 0; i < NR_CACHED_STACKS; i++) {
222 		struct vm_struct *s;
223 
224 		s = this_cpu_xchg(cached_stacks[i], NULL);
225 
226 		if (!s)
227 			continue;
228 
229 		/* Mark stack accessible for KASAN. */
230 		kasan_unpoison_range(s->addr, THREAD_SIZE);
231 
232 		/* Clear stale pointers from reused stack. */
233 		memset(s->addr, 0, THREAD_SIZE);
234 
235 		tsk->stack_vm_area = s;
236 		tsk->stack = s->addr;
237 		return s->addr;
238 	}
239 
240 	/*
241 	 * Allocated stacks are cached and later reused by new threads,
242 	 * so memcg accounting is performed manually on assigning/releasing
243 	 * stacks to tasks. Drop __GFP_ACCOUNT.
244 	 */
245 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246 				     VMALLOC_START, VMALLOC_END,
247 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
248 				     PAGE_KERNEL,
249 				     0, node, __builtin_return_address(0));
250 
251 	/*
252 	 * We can't call find_vm_area() in interrupt context, and
253 	 * free_thread_stack() can be called in interrupt context,
254 	 * so cache the vm_struct.
255 	 */
256 	if (stack) {
257 		tsk->stack_vm_area = find_vm_area(stack);
258 		tsk->stack = stack;
259 	}
260 	return stack;
261 #else
262 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263 					     THREAD_SIZE_ORDER);
264 
265 	if (likely(page)) {
266 		tsk->stack = kasan_reset_tag(page_address(page));
267 		return tsk->stack;
268 	}
269 	return NULL;
270 #endif
271 }
272 
273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276 	struct vm_struct *vm = task_stack_vm_area(tsk);
277 
278 	if (vm) {
279 		int i;
280 
281 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
282 			memcg_kmem_uncharge_page(vm->pages[i], 0);
283 
284 		for (i = 0; i < NR_CACHED_STACKS; i++) {
285 			if (this_cpu_cmpxchg(cached_stacks[i],
286 					NULL, tsk->stack_vm_area) != NULL)
287 				continue;
288 
289 			return;
290 		}
291 
292 		vfree_atomic(tsk->stack);
293 		return;
294 	}
295 #endif
296 
297 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301 
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 						  int node)
304 {
305 	unsigned long *stack;
306 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 	stack = kasan_reset_tag(stack);
308 	tsk->stack = stack;
309 	return stack;
310 }
311 
312 static void free_thread_stack(struct task_struct *tsk)
313 {
314 	kmem_cache_free(thread_stack_cache, tsk->stack);
315 }
316 
317 void thread_stack_cache_init(void)
318 {
319 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
320 					THREAD_SIZE, THREAD_SIZE, 0, 0,
321 					THREAD_SIZE, NULL);
322 	BUG_ON(thread_stack_cache == NULL);
323 }
324 # endif
325 #endif
326 
327 /* SLAB cache for signal_struct structures (tsk->signal) */
328 static struct kmem_cache *signal_cachep;
329 
330 /* SLAB cache for sighand_struct structures (tsk->sighand) */
331 struct kmem_cache *sighand_cachep;
332 
333 /* SLAB cache for files_struct structures (tsk->files) */
334 struct kmem_cache *files_cachep;
335 
336 /* SLAB cache for fs_struct structures (tsk->fs) */
337 struct kmem_cache *fs_cachep;
338 
339 /* SLAB cache for vm_area_struct structures */
340 static struct kmem_cache *vm_area_cachep;
341 
342 /* SLAB cache for mm_struct structures (tsk->mm) */
343 static struct kmem_cache *mm_cachep;
344 
345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 {
347 	struct vm_area_struct *vma;
348 
349 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
350 	if (vma)
351 		vma_init(vma, mm);
352 	return vma;
353 }
354 
355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 {
357 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358 
359 	if (new) {
360 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
361 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362 		/*
363 		 * orig->shared.rb may be modified concurrently, but the clone
364 		 * will be reinitialized.
365 		 */
366 		*new = data_race(*orig);
367 		INIT_LIST_HEAD(&new->anon_vma_chain);
368 		new->vm_next = new->vm_prev = NULL;
369 	}
370 	return new;
371 }
372 
373 void vm_area_free(struct vm_area_struct *vma)
374 {
375 	kmem_cache_free(vm_area_cachep, vma);
376 }
377 
378 static void account_kernel_stack(struct task_struct *tsk, int account)
379 {
380 	void *stack = task_stack_page(tsk);
381 	struct vm_struct *vm = task_stack_vm_area(tsk);
382 
383 
384 	/* All stack pages are in the same node. */
385 	if (vm)
386 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
387 				      account * (THREAD_SIZE / 1024));
388 	else
389 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
390 				      account * (THREAD_SIZE / 1024));
391 }
392 
393 static int memcg_charge_kernel_stack(struct task_struct *tsk)
394 {
395 #ifdef CONFIG_VMAP_STACK
396 	struct vm_struct *vm = task_stack_vm_area(tsk);
397 	int ret;
398 
399 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
400 
401 	if (vm) {
402 		int i;
403 
404 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
405 
406 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
407 			/*
408 			 * If memcg_kmem_charge_page() fails, page's
409 			 * memory cgroup pointer is NULL, and
410 			 * memcg_kmem_uncharge_page() in free_thread_stack()
411 			 * will ignore this page.
412 			 */
413 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
414 						     0);
415 			if (ret)
416 				return ret;
417 		}
418 	}
419 #endif
420 	return 0;
421 }
422 
423 static void release_task_stack(struct task_struct *tsk)
424 {
425 	if (WARN_ON(tsk->state != TASK_DEAD))
426 		return;  /* Better to leak the stack than to free prematurely */
427 
428 	account_kernel_stack(tsk, -1);
429 	free_thread_stack(tsk);
430 	tsk->stack = NULL;
431 #ifdef CONFIG_VMAP_STACK
432 	tsk->stack_vm_area = NULL;
433 #endif
434 }
435 
436 #ifdef CONFIG_THREAD_INFO_IN_TASK
437 void put_task_stack(struct task_struct *tsk)
438 {
439 	if (refcount_dec_and_test(&tsk->stack_refcount))
440 		release_task_stack(tsk);
441 }
442 #endif
443 
444 void free_task(struct task_struct *tsk)
445 {
446 	scs_release(tsk);
447 
448 #ifndef CONFIG_THREAD_INFO_IN_TASK
449 	/*
450 	 * The task is finally done with both the stack and thread_info,
451 	 * so free both.
452 	 */
453 	release_task_stack(tsk);
454 #else
455 	/*
456 	 * If the task had a separate stack allocation, it should be gone
457 	 * by now.
458 	 */
459 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
460 #endif
461 	rt_mutex_debug_task_free(tsk);
462 	ftrace_graph_exit_task(tsk);
463 	arch_release_task_struct(tsk);
464 	if (tsk->flags & PF_KTHREAD)
465 		free_kthread_struct(tsk);
466 	free_task_struct(tsk);
467 }
468 EXPORT_SYMBOL(free_task);
469 
470 #ifdef CONFIG_MMU
471 static __latent_entropy int dup_mmap(struct mm_struct *mm,
472 					struct mm_struct *oldmm)
473 {
474 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
475 	struct rb_node **rb_link, *rb_parent;
476 	int retval;
477 	unsigned long charge;
478 	LIST_HEAD(uf);
479 
480 	uprobe_start_dup_mmap();
481 	if (mmap_write_lock_killable(oldmm)) {
482 		retval = -EINTR;
483 		goto fail_uprobe_end;
484 	}
485 	flush_cache_dup_mm(oldmm);
486 	uprobe_dup_mmap(oldmm, mm);
487 	/*
488 	 * Not linked in yet - no deadlock potential:
489 	 */
490 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
491 
492 	/* No ordering required: file already has been exposed. */
493 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
494 
495 	mm->total_vm = oldmm->total_vm;
496 	mm->data_vm = oldmm->data_vm;
497 	mm->exec_vm = oldmm->exec_vm;
498 	mm->stack_vm = oldmm->stack_vm;
499 
500 	rb_link = &mm->mm_rb.rb_node;
501 	rb_parent = NULL;
502 	pprev = &mm->mmap;
503 	retval = ksm_fork(mm, oldmm);
504 	if (retval)
505 		goto out;
506 	retval = khugepaged_fork(mm, oldmm);
507 	if (retval)
508 		goto out;
509 
510 	prev = NULL;
511 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
512 		struct file *file;
513 
514 		if (mpnt->vm_flags & VM_DONTCOPY) {
515 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
516 			continue;
517 		}
518 		charge = 0;
519 		/*
520 		 * Don't duplicate many vmas if we've been oom-killed (for
521 		 * example)
522 		 */
523 		if (fatal_signal_pending(current)) {
524 			retval = -EINTR;
525 			goto out;
526 		}
527 		if (mpnt->vm_flags & VM_ACCOUNT) {
528 			unsigned long len = vma_pages(mpnt);
529 
530 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
531 				goto fail_nomem;
532 			charge = len;
533 		}
534 		tmp = vm_area_dup(mpnt);
535 		if (!tmp)
536 			goto fail_nomem;
537 		retval = vma_dup_policy(mpnt, tmp);
538 		if (retval)
539 			goto fail_nomem_policy;
540 		tmp->vm_mm = mm;
541 		retval = dup_userfaultfd(tmp, &uf);
542 		if (retval)
543 			goto fail_nomem_anon_vma_fork;
544 		if (tmp->vm_flags & VM_WIPEONFORK) {
545 			/*
546 			 * VM_WIPEONFORK gets a clean slate in the child.
547 			 * Don't prepare anon_vma until fault since we don't
548 			 * copy page for current vma.
549 			 */
550 			tmp->anon_vma = NULL;
551 		} else if (anon_vma_fork(tmp, mpnt))
552 			goto fail_nomem_anon_vma_fork;
553 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
554 		file = tmp->vm_file;
555 		if (file) {
556 			struct inode *inode = file_inode(file);
557 			struct address_space *mapping = file->f_mapping;
558 
559 			get_file(file);
560 			if (tmp->vm_flags & VM_DENYWRITE)
561 				put_write_access(inode);
562 			i_mmap_lock_write(mapping);
563 			if (tmp->vm_flags & VM_SHARED)
564 				mapping_allow_writable(mapping);
565 			flush_dcache_mmap_lock(mapping);
566 			/* insert tmp into the share list, just after mpnt */
567 			vma_interval_tree_insert_after(tmp, mpnt,
568 					&mapping->i_mmap);
569 			flush_dcache_mmap_unlock(mapping);
570 			i_mmap_unlock_write(mapping);
571 		}
572 
573 		/*
574 		 * Clear hugetlb-related page reserves for children. This only
575 		 * affects MAP_PRIVATE mappings. Faults generated by the child
576 		 * are not guaranteed to succeed, even if read-only
577 		 */
578 		if (is_vm_hugetlb_page(tmp))
579 			reset_vma_resv_huge_pages(tmp);
580 
581 		/*
582 		 * Link in the new vma and copy the page table entries.
583 		 */
584 		*pprev = tmp;
585 		pprev = &tmp->vm_next;
586 		tmp->vm_prev = prev;
587 		prev = tmp;
588 
589 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
590 		rb_link = &tmp->vm_rb.rb_right;
591 		rb_parent = &tmp->vm_rb;
592 
593 		mm->map_count++;
594 		if (!(tmp->vm_flags & VM_WIPEONFORK))
595 			retval = copy_page_range(tmp, mpnt);
596 
597 		if (tmp->vm_ops && tmp->vm_ops->open)
598 			tmp->vm_ops->open(tmp);
599 
600 		if (retval)
601 			goto out;
602 	}
603 	/* a new mm has just been created */
604 	retval = arch_dup_mmap(oldmm, mm);
605 out:
606 	mmap_write_unlock(mm);
607 	flush_tlb_mm(oldmm);
608 	mmap_write_unlock(oldmm);
609 	dup_userfaultfd_complete(&uf);
610 fail_uprobe_end:
611 	uprobe_end_dup_mmap();
612 	return retval;
613 fail_nomem_anon_vma_fork:
614 	mpol_put(vma_policy(tmp));
615 fail_nomem_policy:
616 	vm_area_free(tmp);
617 fail_nomem:
618 	retval = -ENOMEM;
619 	vm_unacct_memory(charge);
620 	goto out;
621 }
622 
623 static inline int mm_alloc_pgd(struct mm_struct *mm)
624 {
625 	mm->pgd = pgd_alloc(mm);
626 	if (unlikely(!mm->pgd))
627 		return -ENOMEM;
628 	return 0;
629 }
630 
631 static inline void mm_free_pgd(struct mm_struct *mm)
632 {
633 	pgd_free(mm, mm->pgd);
634 }
635 #else
636 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
637 {
638 	mmap_write_lock(oldmm);
639 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
640 	mmap_write_unlock(oldmm);
641 	return 0;
642 }
643 #define mm_alloc_pgd(mm)	(0)
644 #define mm_free_pgd(mm)
645 #endif /* CONFIG_MMU */
646 
647 static void check_mm(struct mm_struct *mm)
648 {
649 	int i;
650 
651 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
652 			 "Please make sure 'struct resident_page_types[]' is updated as well");
653 
654 	for (i = 0; i < NR_MM_COUNTERS; i++) {
655 		long x = atomic_long_read(&mm->rss_stat.count[i]);
656 
657 		if (unlikely(x))
658 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
659 				 mm, resident_page_types[i], x);
660 	}
661 
662 	if (mm_pgtables_bytes(mm))
663 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
664 				mm_pgtables_bytes(mm));
665 
666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
667 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
668 #endif
669 }
670 
671 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
672 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
673 
674 /*
675  * Called when the last reference to the mm
676  * is dropped: either by a lazy thread or by
677  * mmput. Free the page directory and the mm.
678  */
679 void __mmdrop(struct mm_struct *mm)
680 {
681 	BUG_ON(mm == &init_mm);
682 	WARN_ON_ONCE(mm == current->mm);
683 	WARN_ON_ONCE(mm == current->active_mm);
684 	mm_free_pgd(mm);
685 	destroy_context(mm);
686 	mmu_notifier_subscriptions_destroy(mm);
687 	check_mm(mm);
688 	put_user_ns(mm->user_ns);
689 	free_mm(mm);
690 }
691 EXPORT_SYMBOL_GPL(__mmdrop);
692 
693 static void mmdrop_async_fn(struct work_struct *work)
694 {
695 	struct mm_struct *mm;
696 
697 	mm = container_of(work, struct mm_struct, async_put_work);
698 	__mmdrop(mm);
699 }
700 
701 static void mmdrop_async(struct mm_struct *mm)
702 {
703 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
704 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
705 		schedule_work(&mm->async_put_work);
706 	}
707 }
708 
709 static inline void free_signal_struct(struct signal_struct *sig)
710 {
711 	taskstats_tgid_free(sig);
712 	sched_autogroup_exit(sig);
713 	/*
714 	 * __mmdrop is not safe to call from softirq context on x86 due to
715 	 * pgd_dtor so postpone it to the async context
716 	 */
717 	if (sig->oom_mm)
718 		mmdrop_async(sig->oom_mm);
719 	kmem_cache_free(signal_cachep, sig);
720 }
721 
722 static inline void put_signal_struct(struct signal_struct *sig)
723 {
724 	if (refcount_dec_and_test(&sig->sigcnt))
725 		free_signal_struct(sig);
726 }
727 
728 void __put_task_struct(struct task_struct *tsk)
729 {
730 	WARN_ON(!tsk->exit_state);
731 	WARN_ON(refcount_read(&tsk->usage));
732 	WARN_ON(tsk == current);
733 
734 	io_uring_free(tsk);
735 	cgroup_free(tsk);
736 	task_numa_free(tsk, true);
737 	security_task_free(tsk);
738 	bpf_task_storage_free(tsk);
739 	exit_creds(tsk);
740 	delayacct_tsk_free(tsk);
741 	put_signal_struct(tsk->signal);
742 
743 	if (!profile_handoff_task(tsk))
744 		free_task(tsk);
745 }
746 EXPORT_SYMBOL_GPL(__put_task_struct);
747 
748 void __init __weak arch_task_cache_init(void) { }
749 
750 /*
751  * set_max_threads
752  */
753 static void set_max_threads(unsigned int max_threads_suggested)
754 {
755 	u64 threads;
756 	unsigned long nr_pages = totalram_pages();
757 
758 	/*
759 	 * The number of threads shall be limited such that the thread
760 	 * structures may only consume a small part of the available memory.
761 	 */
762 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
763 		threads = MAX_THREADS;
764 	else
765 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
766 				    (u64) THREAD_SIZE * 8UL);
767 
768 	if (threads > max_threads_suggested)
769 		threads = max_threads_suggested;
770 
771 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
772 }
773 
774 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
775 /* Initialized by the architecture: */
776 int arch_task_struct_size __read_mostly;
777 #endif
778 
779 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
780 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
781 {
782 	/* Fetch thread_struct whitelist for the architecture. */
783 	arch_thread_struct_whitelist(offset, size);
784 
785 	/*
786 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
787 	 * adjust offset to position of thread_struct in task_struct.
788 	 */
789 	if (unlikely(*size == 0))
790 		*offset = 0;
791 	else
792 		*offset += offsetof(struct task_struct, thread);
793 }
794 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
795 
796 void __init fork_init(void)
797 {
798 	int i;
799 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
800 #ifndef ARCH_MIN_TASKALIGN
801 #define ARCH_MIN_TASKALIGN	0
802 #endif
803 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
804 	unsigned long useroffset, usersize;
805 
806 	/* create a slab on which task_structs can be allocated */
807 	task_struct_whitelist(&useroffset, &usersize);
808 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
809 			arch_task_struct_size, align,
810 			SLAB_PANIC|SLAB_ACCOUNT,
811 			useroffset, usersize, NULL);
812 #endif
813 
814 	/* do the arch specific task caches init */
815 	arch_task_cache_init();
816 
817 	set_max_threads(MAX_THREADS);
818 
819 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
820 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
821 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
822 		init_task.signal->rlim[RLIMIT_NPROC];
823 
824 	for (i = 0; i < UCOUNT_COUNTS; i++)
825 		init_user_ns.ucount_max[i] = max_threads/2;
826 
827 #ifdef CONFIG_VMAP_STACK
828 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
829 			  NULL, free_vm_stack_cache);
830 #endif
831 
832 	scs_init();
833 
834 	lockdep_init_task(&init_task);
835 	uprobes_init();
836 }
837 
838 int __weak arch_dup_task_struct(struct task_struct *dst,
839 					       struct task_struct *src)
840 {
841 	*dst = *src;
842 	return 0;
843 }
844 
845 void set_task_stack_end_magic(struct task_struct *tsk)
846 {
847 	unsigned long *stackend;
848 
849 	stackend = end_of_stack(tsk);
850 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
851 }
852 
853 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
854 {
855 	struct task_struct *tsk;
856 	unsigned long *stack;
857 	struct vm_struct *stack_vm_area __maybe_unused;
858 	int err;
859 
860 	if (node == NUMA_NO_NODE)
861 		node = tsk_fork_get_node(orig);
862 	tsk = alloc_task_struct_node(node);
863 	if (!tsk)
864 		return NULL;
865 
866 	stack = alloc_thread_stack_node(tsk, node);
867 	if (!stack)
868 		goto free_tsk;
869 
870 	if (memcg_charge_kernel_stack(tsk))
871 		goto free_stack;
872 
873 	stack_vm_area = task_stack_vm_area(tsk);
874 
875 	err = arch_dup_task_struct(tsk, orig);
876 
877 	/*
878 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
879 	 * sure they're properly initialized before using any stack-related
880 	 * functions again.
881 	 */
882 	tsk->stack = stack;
883 #ifdef CONFIG_VMAP_STACK
884 	tsk->stack_vm_area = stack_vm_area;
885 #endif
886 #ifdef CONFIG_THREAD_INFO_IN_TASK
887 	refcount_set(&tsk->stack_refcount, 1);
888 #endif
889 
890 	if (err)
891 		goto free_stack;
892 
893 	err = scs_prepare(tsk, node);
894 	if (err)
895 		goto free_stack;
896 
897 #ifdef CONFIG_SECCOMP
898 	/*
899 	 * We must handle setting up seccomp filters once we're under
900 	 * the sighand lock in case orig has changed between now and
901 	 * then. Until then, filter must be NULL to avoid messing up
902 	 * the usage counts on the error path calling free_task.
903 	 */
904 	tsk->seccomp.filter = NULL;
905 #endif
906 
907 	setup_thread_stack(tsk, orig);
908 	clear_user_return_notifier(tsk);
909 	clear_tsk_need_resched(tsk);
910 	set_task_stack_end_magic(tsk);
911 	clear_syscall_work_syscall_user_dispatch(tsk);
912 
913 #ifdef CONFIG_STACKPROTECTOR
914 	tsk->stack_canary = get_random_canary();
915 #endif
916 	if (orig->cpus_ptr == &orig->cpus_mask)
917 		tsk->cpus_ptr = &tsk->cpus_mask;
918 
919 	/*
920 	 * One for the user space visible state that goes away when reaped.
921 	 * One for the scheduler.
922 	 */
923 	refcount_set(&tsk->rcu_users, 2);
924 	/* One for the rcu users */
925 	refcount_set(&tsk->usage, 1);
926 #ifdef CONFIG_BLK_DEV_IO_TRACE
927 	tsk->btrace_seq = 0;
928 #endif
929 	tsk->splice_pipe = NULL;
930 	tsk->task_frag.page = NULL;
931 	tsk->wake_q.next = NULL;
932 
933 	account_kernel_stack(tsk, 1);
934 
935 	kcov_task_init(tsk);
936 	kmap_local_fork(tsk);
937 
938 #ifdef CONFIG_FAULT_INJECTION
939 	tsk->fail_nth = 0;
940 #endif
941 
942 #ifdef CONFIG_BLK_CGROUP
943 	tsk->throttle_queue = NULL;
944 	tsk->use_memdelay = 0;
945 #endif
946 
947 #ifdef CONFIG_MEMCG
948 	tsk->active_memcg = NULL;
949 #endif
950 	return tsk;
951 
952 free_stack:
953 	free_thread_stack(tsk);
954 free_tsk:
955 	free_task_struct(tsk);
956 	return NULL;
957 }
958 
959 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
960 
961 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
962 
963 static int __init coredump_filter_setup(char *s)
964 {
965 	default_dump_filter =
966 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
967 		MMF_DUMP_FILTER_MASK;
968 	return 1;
969 }
970 
971 __setup("coredump_filter=", coredump_filter_setup);
972 
973 #include <linux/init_task.h>
974 
975 static void mm_init_aio(struct mm_struct *mm)
976 {
977 #ifdef CONFIG_AIO
978 	spin_lock_init(&mm->ioctx_lock);
979 	mm->ioctx_table = NULL;
980 #endif
981 }
982 
983 static __always_inline void mm_clear_owner(struct mm_struct *mm,
984 					   struct task_struct *p)
985 {
986 #ifdef CONFIG_MEMCG
987 	if (mm->owner == p)
988 		WRITE_ONCE(mm->owner, NULL);
989 #endif
990 }
991 
992 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
993 {
994 #ifdef CONFIG_MEMCG
995 	mm->owner = p;
996 #endif
997 }
998 
999 static void mm_init_uprobes_state(struct mm_struct *mm)
1000 {
1001 #ifdef CONFIG_UPROBES
1002 	mm->uprobes_state.xol_area = NULL;
1003 #endif
1004 }
1005 
1006 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1007 	struct user_namespace *user_ns)
1008 {
1009 	mm->mmap = NULL;
1010 	mm->mm_rb = RB_ROOT;
1011 	mm->vmacache_seqnum = 0;
1012 	atomic_set(&mm->mm_users, 1);
1013 	atomic_set(&mm->mm_count, 1);
1014 	seqcount_init(&mm->write_protect_seq);
1015 	mmap_init_lock(mm);
1016 	INIT_LIST_HEAD(&mm->mmlist);
1017 	mm->core_state = NULL;
1018 	mm_pgtables_bytes_init(mm);
1019 	mm->map_count = 0;
1020 	mm->locked_vm = 0;
1021 	atomic_set(&mm->has_pinned, 0);
1022 	atomic64_set(&mm->pinned_vm, 0);
1023 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1024 	spin_lock_init(&mm->page_table_lock);
1025 	spin_lock_init(&mm->arg_lock);
1026 	mm_init_cpumask(mm);
1027 	mm_init_aio(mm);
1028 	mm_init_owner(mm, p);
1029 	RCU_INIT_POINTER(mm->exe_file, NULL);
1030 	mmu_notifier_subscriptions_init(mm);
1031 	init_tlb_flush_pending(mm);
1032 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1033 	mm->pmd_huge_pte = NULL;
1034 #endif
1035 	mm_init_uprobes_state(mm);
1036 
1037 	if (current->mm) {
1038 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1039 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1040 	} else {
1041 		mm->flags = default_dump_filter;
1042 		mm->def_flags = 0;
1043 	}
1044 
1045 	if (mm_alloc_pgd(mm))
1046 		goto fail_nopgd;
1047 
1048 	if (init_new_context(p, mm))
1049 		goto fail_nocontext;
1050 
1051 	mm->user_ns = get_user_ns(user_ns);
1052 	return mm;
1053 
1054 fail_nocontext:
1055 	mm_free_pgd(mm);
1056 fail_nopgd:
1057 	free_mm(mm);
1058 	return NULL;
1059 }
1060 
1061 /*
1062  * Allocate and initialize an mm_struct.
1063  */
1064 struct mm_struct *mm_alloc(void)
1065 {
1066 	struct mm_struct *mm;
1067 
1068 	mm = allocate_mm();
1069 	if (!mm)
1070 		return NULL;
1071 
1072 	memset(mm, 0, sizeof(*mm));
1073 	return mm_init(mm, current, current_user_ns());
1074 }
1075 
1076 static inline void __mmput(struct mm_struct *mm)
1077 {
1078 	VM_BUG_ON(atomic_read(&mm->mm_users));
1079 
1080 	uprobe_clear_state(mm);
1081 	exit_aio(mm);
1082 	ksm_exit(mm);
1083 	khugepaged_exit(mm); /* must run before exit_mmap */
1084 	exit_mmap(mm);
1085 	mm_put_huge_zero_page(mm);
1086 	set_mm_exe_file(mm, NULL);
1087 	if (!list_empty(&mm->mmlist)) {
1088 		spin_lock(&mmlist_lock);
1089 		list_del(&mm->mmlist);
1090 		spin_unlock(&mmlist_lock);
1091 	}
1092 	if (mm->binfmt)
1093 		module_put(mm->binfmt->module);
1094 	mmdrop(mm);
1095 }
1096 
1097 /*
1098  * Decrement the use count and release all resources for an mm.
1099  */
1100 void mmput(struct mm_struct *mm)
1101 {
1102 	might_sleep();
1103 
1104 	if (atomic_dec_and_test(&mm->mm_users))
1105 		__mmput(mm);
1106 }
1107 EXPORT_SYMBOL_GPL(mmput);
1108 
1109 #ifdef CONFIG_MMU
1110 static void mmput_async_fn(struct work_struct *work)
1111 {
1112 	struct mm_struct *mm = container_of(work, struct mm_struct,
1113 					    async_put_work);
1114 
1115 	__mmput(mm);
1116 }
1117 
1118 void mmput_async(struct mm_struct *mm)
1119 {
1120 	if (atomic_dec_and_test(&mm->mm_users)) {
1121 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1122 		schedule_work(&mm->async_put_work);
1123 	}
1124 }
1125 #endif
1126 
1127 /**
1128  * set_mm_exe_file - change a reference to the mm's executable file
1129  *
1130  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1131  *
1132  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1133  * invocations: in mmput() nobody alive left, in execve task is single
1134  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1135  * mm->exe_file, but does so without using set_mm_exe_file() in order
1136  * to do avoid the need for any locks.
1137  */
1138 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1139 {
1140 	struct file *old_exe_file;
1141 
1142 	/*
1143 	 * It is safe to dereference the exe_file without RCU as
1144 	 * this function is only called if nobody else can access
1145 	 * this mm -- see comment above for justification.
1146 	 */
1147 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1148 
1149 	if (new_exe_file)
1150 		get_file(new_exe_file);
1151 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1152 	if (old_exe_file)
1153 		fput(old_exe_file);
1154 }
1155 
1156 /**
1157  * get_mm_exe_file - acquire a reference to the mm's executable file
1158  *
1159  * Returns %NULL if mm has no associated executable file.
1160  * User must release file via fput().
1161  */
1162 struct file *get_mm_exe_file(struct mm_struct *mm)
1163 {
1164 	struct file *exe_file;
1165 
1166 	rcu_read_lock();
1167 	exe_file = rcu_dereference(mm->exe_file);
1168 	if (exe_file && !get_file_rcu(exe_file))
1169 		exe_file = NULL;
1170 	rcu_read_unlock();
1171 	return exe_file;
1172 }
1173 EXPORT_SYMBOL(get_mm_exe_file);
1174 
1175 /**
1176  * get_task_exe_file - acquire a reference to the task's executable file
1177  *
1178  * Returns %NULL if task's mm (if any) has no associated executable file or
1179  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1180  * User must release file via fput().
1181  */
1182 struct file *get_task_exe_file(struct task_struct *task)
1183 {
1184 	struct file *exe_file = NULL;
1185 	struct mm_struct *mm;
1186 
1187 	task_lock(task);
1188 	mm = task->mm;
1189 	if (mm) {
1190 		if (!(task->flags & PF_KTHREAD))
1191 			exe_file = get_mm_exe_file(mm);
1192 	}
1193 	task_unlock(task);
1194 	return exe_file;
1195 }
1196 EXPORT_SYMBOL(get_task_exe_file);
1197 
1198 /**
1199  * get_task_mm - acquire a reference to the task's mm
1200  *
1201  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1202  * this kernel workthread has transiently adopted a user mm with use_mm,
1203  * to do its AIO) is not set and if so returns a reference to it, after
1204  * bumping up the use count.  User must release the mm via mmput()
1205  * after use.  Typically used by /proc and ptrace.
1206  */
1207 struct mm_struct *get_task_mm(struct task_struct *task)
1208 {
1209 	struct mm_struct *mm;
1210 
1211 	task_lock(task);
1212 	mm = task->mm;
1213 	if (mm) {
1214 		if (task->flags & PF_KTHREAD)
1215 			mm = NULL;
1216 		else
1217 			mmget(mm);
1218 	}
1219 	task_unlock(task);
1220 	return mm;
1221 }
1222 EXPORT_SYMBOL_GPL(get_task_mm);
1223 
1224 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1225 {
1226 	struct mm_struct *mm;
1227 	int err;
1228 
1229 	err =  down_read_killable(&task->signal->exec_update_lock);
1230 	if (err)
1231 		return ERR_PTR(err);
1232 
1233 	mm = get_task_mm(task);
1234 	if (mm && mm != current->mm &&
1235 			!ptrace_may_access(task, mode)) {
1236 		mmput(mm);
1237 		mm = ERR_PTR(-EACCES);
1238 	}
1239 	up_read(&task->signal->exec_update_lock);
1240 
1241 	return mm;
1242 }
1243 
1244 static void complete_vfork_done(struct task_struct *tsk)
1245 {
1246 	struct completion *vfork;
1247 
1248 	task_lock(tsk);
1249 	vfork = tsk->vfork_done;
1250 	if (likely(vfork)) {
1251 		tsk->vfork_done = NULL;
1252 		complete(vfork);
1253 	}
1254 	task_unlock(tsk);
1255 }
1256 
1257 static int wait_for_vfork_done(struct task_struct *child,
1258 				struct completion *vfork)
1259 {
1260 	int killed;
1261 
1262 	freezer_do_not_count();
1263 	cgroup_enter_frozen();
1264 	killed = wait_for_completion_killable(vfork);
1265 	cgroup_leave_frozen(false);
1266 	freezer_count();
1267 
1268 	if (killed) {
1269 		task_lock(child);
1270 		child->vfork_done = NULL;
1271 		task_unlock(child);
1272 	}
1273 
1274 	put_task_struct(child);
1275 	return killed;
1276 }
1277 
1278 /* Please note the differences between mmput and mm_release.
1279  * mmput is called whenever we stop holding onto a mm_struct,
1280  * error success whatever.
1281  *
1282  * mm_release is called after a mm_struct has been removed
1283  * from the current process.
1284  *
1285  * This difference is important for error handling, when we
1286  * only half set up a mm_struct for a new process and need to restore
1287  * the old one.  Because we mmput the new mm_struct before
1288  * restoring the old one. . .
1289  * Eric Biederman 10 January 1998
1290  */
1291 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1292 {
1293 	uprobe_free_utask(tsk);
1294 
1295 	/* Get rid of any cached register state */
1296 	deactivate_mm(tsk, mm);
1297 
1298 	/*
1299 	 * Signal userspace if we're not exiting with a core dump
1300 	 * because we want to leave the value intact for debugging
1301 	 * purposes.
1302 	 */
1303 	if (tsk->clear_child_tid) {
1304 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1305 		    atomic_read(&mm->mm_users) > 1) {
1306 			/*
1307 			 * We don't check the error code - if userspace has
1308 			 * not set up a proper pointer then tough luck.
1309 			 */
1310 			put_user(0, tsk->clear_child_tid);
1311 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1312 					1, NULL, NULL, 0, 0);
1313 		}
1314 		tsk->clear_child_tid = NULL;
1315 	}
1316 
1317 	/*
1318 	 * All done, finally we can wake up parent and return this mm to him.
1319 	 * Also kthread_stop() uses this completion for synchronization.
1320 	 */
1321 	if (tsk->vfork_done)
1322 		complete_vfork_done(tsk);
1323 }
1324 
1325 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1326 {
1327 	futex_exit_release(tsk);
1328 	mm_release(tsk, mm);
1329 }
1330 
1331 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1332 {
1333 	futex_exec_release(tsk);
1334 	mm_release(tsk, mm);
1335 }
1336 
1337 /**
1338  * dup_mm() - duplicates an existing mm structure
1339  * @tsk: the task_struct with which the new mm will be associated.
1340  * @oldmm: the mm to duplicate.
1341  *
1342  * Allocates a new mm structure and duplicates the provided @oldmm structure
1343  * content into it.
1344  *
1345  * Return: the duplicated mm or NULL on failure.
1346  */
1347 static struct mm_struct *dup_mm(struct task_struct *tsk,
1348 				struct mm_struct *oldmm)
1349 {
1350 	struct mm_struct *mm;
1351 	int err;
1352 
1353 	mm = allocate_mm();
1354 	if (!mm)
1355 		goto fail_nomem;
1356 
1357 	memcpy(mm, oldmm, sizeof(*mm));
1358 
1359 	if (!mm_init(mm, tsk, mm->user_ns))
1360 		goto fail_nomem;
1361 
1362 	err = dup_mmap(mm, oldmm);
1363 	if (err)
1364 		goto free_pt;
1365 
1366 	mm->hiwater_rss = get_mm_rss(mm);
1367 	mm->hiwater_vm = mm->total_vm;
1368 
1369 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1370 		goto free_pt;
1371 
1372 	return mm;
1373 
1374 free_pt:
1375 	/* don't put binfmt in mmput, we haven't got module yet */
1376 	mm->binfmt = NULL;
1377 	mm_init_owner(mm, NULL);
1378 	mmput(mm);
1379 
1380 fail_nomem:
1381 	return NULL;
1382 }
1383 
1384 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1385 {
1386 	struct mm_struct *mm, *oldmm;
1387 	int retval;
1388 
1389 	tsk->min_flt = tsk->maj_flt = 0;
1390 	tsk->nvcsw = tsk->nivcsw = 0;
1391 #ifdef CONFIG_DETECT_HUNG_TASK
1392 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1393 	tsk->last_switch_time = 0;
1394 #endif
1395 
1396 	tsk->mm = NULL;
1397 	tsk->active_mm = NULL;
1398 
1399 	/*
1400 	 * Are we cloning a kernel thread?
1401 	 *
1402 	 * We need to steal a active VM for that..
1403 	 */
1404 	oldmm = current->mm;
1405 	if (!oldmm)
1406 		return 0;
1407 
1408 	/* initialize the new vmacache entries */
1409 	vmacache_flush(tsk);
1410 
1411 	if (clone_flags & CLONE_VM) {
1412 		mmget(oldmm);
1413 		mm = oldmm;
1414 		goto good_mm;
1415 	}
1416 
1417 	retval = -ENOMEM;
1418 	mm = dup_mm(tsk, current->mm);
1419 	if (!mm)
1420 		goto fail_nomem;
1421 
1422 good_mm:
1423 	tsk->mm = mm;
1424 	tsk->active_mm = mm;
1425 	return 0;
1426 
1427 fail_nomem:
1428 	return retval;
1429 }
1430 
1431 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1432 {
1433 	struct fs_struct *fs = current->fs;
1434 	if (clone_flags & CLONE_FS) {
1435 		/* tsk->fs is already what we want */
1436 		spin_lock(&fs->lock);
1437 		if (fs->in_exec) {
1438 			spin_unlock(&fs->lock);
1439 			return -EAGAIN;
1440 		}
1441 		fs->users++;
1442 		spin_unlock(&fs->lock);
1443 		return 0;
1444 	}
1445 	tsk->fs = copy_fs_struct(fs);
1446 	if (!tsk->fs)
1447 		return -ENOMEM;
1448 	return 0;
1449 }
1450 
1451 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1452 {
1453 	struct files_struct *oldf, *newf;
1454 	int error = 0;
1455 
1456 	/*
1457 	 * A background process may not have any files ...
1458 	 */
1459 	oldf = current->files;
1460 	if (!oldf)
1461 		goto out;
1462 
1463 	if (clone_flags & CLONE_FILES) {
1464 		atomic_inc(&oldf->count);
1465 		goto out;
1466 	}
1467 
1468 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1469 	if (!newf)
1470 		goto out;
1471 
1472 	tsk->files = newf;
1473 	error = 0;
1474 out:
1475 	return error;
1476 }
1477 
1478 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1479 {
1480 #ifdef CONFIG_BLOCK
1481 	struct io_context *ioc = current->io_context;
1482 	struct io_context *new_ioc;
1483 
1484 	if (!ioc)
1485 		return 0;
1486 	/*
1487 	 * Share io context with parent, if CLONE_IO is set
1488 	 */
1489 	if (clone_flags & CLONE_IO) {
1490 		ioc_task_link(ioc);
1491 		tsk->io_context = ioc;
1492 	} else if (ioprio_valid(ioc->ioprio)) {
1493 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1494 		if (unlikely(!new_ioc))
1495 			return -ENOMEM;
1496 
1497 		new_ioc->ioprio = ioc->ioprio;
1498 		put_io_context(new_ioc);
1499 	}
1500 #endif
1501 	return 0;
1502 }
1503 
1504 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1505 {
1506 	struct sighand_struct *sig;
1507 
1508 	if (clone_flags & CLONE_SIGHAND) {
1509 		refcount_inc(&current->sighand->count);
1510 		return 0;
1511 	}
1512 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1513 	RCU_INIT_POINTER(tsk->sighand, sig);
1514 	if (!sig)
1515 		return -ENOMEM;
1516 
1517 	refcount_set(&sig->count, 1);
1518 	spin_lock_irq(&current->sighand->siglock);
1519 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1520 	spin_unlock_irq(&current->sighand->siglock);
1521 
1522 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1523 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1524 		flush_signal_handlers(tsk, 0);
1525 
1526 	return 0;
1527 }
1528 
1529 void __cleanup_sighand(struct sighand_struct *sighand)
1530 {
1531 	if (refcount_dec_and_test(&sighand->count)) {
1532 		signalfd_cleanup(sighand);
1533 		/*
1534 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1535 		 * without an RCU grace period, see __lock_task_sighand().
1536 		 */
1537 		kmem_cache_free(sighand_cachep, sighand);
1538 	}
1539 }
1540 
1541 /*
1542  * Initialize POSIX timer handling for a thread group.
1543  */
1544 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1545 {
1546 	struct posix_cputimers *pct = &sig->posix_cputimers;
1547 	unsigned long cpu_limit;
1548 
1549 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1550 	posix_cputimers_group_init(pct, cpu_limit);
1551 }
1552 
1553 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1554 {
1555 	struct signal_struct *sig;
1556 
1557 	if (clone_flags & CLONE_THREAD)
1558 		return 0;
1559 
1560 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1561 	tsk->signal = sig;
1562 	if (!sig)
1563 		return -ENOMEM;
1564 
1565 	sig->nr_threads = 1;
1566 	atomic_set(&sig->live, 1);
1567 	refcount_set(&sig->sigcnt, 1);
1568 
1569 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1570 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1571 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1572 
1573 	init_waitqueue_head(&sig->wait_chldexit);
1574 	sig->curr_target = tsk;
1575 	init_sigpending(&sig->shared_pending);
1576 	INIT_HLIST_HEAD(&sig->multiprocess);
1577 	seqlock_init(&sig->stats_lock);
1578 	prev_cputime_init(&sig->prev_cputime);
1579 
1580 #ifdef CONFIG_POSIX_TIMERS
1581 	INIT_LIST_HEAD(&sig->posix_timers);
1582 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1583 	sig->real_timer.function = it_real_fn;
1584 #endif
1585 
1586 	task_lock(current->group_leader);
1587 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1588 	task_unlock(current->group_leader);
1589 
1590 	posix_cpu_timers_init_group(sig);
1591 
1592 	tty_audit_fork(sig);
1593 	sched_autogroup_fork(sig);
1594 
1595 	sig->oom_score_adj = current->signal->oom_score_adj;
1596 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1597 
1598 	mutex_init(&sig->cred_guard_mutex);
1599 	init_rwsem(&sig->exec_update_lock);
1600 
1601 	return 0;
1602 }
1603 
1604 static void copy_seccomp(struct task_struct *p)
1605 {
1606 #ifdef CONFIG_SECCOMP
1607 	/*
1608 	 * Must be called with sighand->lock held, which is common to
1609 	 * all threads in the group. Holding cred_guard_mutex is not
1610 	 * needed because this new task is not yet running and cannot
1611 	 * be racing exec.
1612 	 */
1613 	assert_spin_locked(&current->sighand->siglock);
1614 
1615 	/* Ref-count the new filter user, and assign it. */
1616 	get_seccomp_filter(current);
1617 	p->seccomp = current->seccomp;
1618 
1619 	/*
1620 	 * Explicitly enable no_new_privs here in case it got set
1621 	 * between the task_struct being duplicated and holding the
1622 	 * sighand lock. The seccomp state and nnp must be in sync.
1623 	 */
1624 	if (task_no_new_privs(current))
1625 		task_set_no_new_privs(p);
1626 
1627 	/*
1628 	 * If the parent gained a seccomp mode after copying thread
1629 	 * flags and between before we held the sighand lock, we have
1630 	 * to manually enable the seccomp thread flag here.
1631 	 */
1632 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1633 		set_task_syscall_work(p, SECCOMP);
1634 #endif
1635 }
1636 
1637 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1638 {
1639 	current->clear_child_tid = tidptr;
1640 
1641 	return task_pid_vnr(current);
1642 }
1643 
1644 static void rt_mutex_init_task(struct task_struct *p)
1645 {
1646 	raw_spin_lock_init(&p->pi_lock);
1647 #ifdef CONFIG_RT_MUTEXES
1648 	p->pi_waiters = RB_ROOT_CACHED;
1649 	p->pi_top_task = NULL;
1650 	p->pi_blocked_on = NULL;
1651 #endif
1652 }
1653 
1654 static inline void init_task_pid_links(struct task_struct *task)
1655 {
1656 	enum pid_type type;
1657 
1658 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1659 		INIT_HLIST_NODE(&task->pid_links[type]);
1660 }
1661 
1662 static inline void
1663 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1664 {
1665 	if (type == PIDTYPE_PID)
1666 		task->thread_pid = pid;
1667 	else
1668 		task->signal->pids[type] = pid;
1669 }
1670 
1671 static inline void rcu_copy_process(struct task_struct *p)
1672 {
1673 #ifdef CONFIG_PREEMPT_RCU
1674 	p->rcu_read_lock_nesting = 0;
1675 	p->rcu_read_unlock_special.s = 0;
1676 	p->rcu_blocked_node = NULL;
1677 	INIT_LIST_HEAD(&p->rcu_node_entry);
1678 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1679 #ifdef CONFIG_TASKS_RCU
1680 	p->rcu_tasks_holdout = false;
1681 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1682 	p->rcu_tasks_idle_cpu = -1;
1683 #endif /* #ifdef CONFIG_TASKS_RCU */
1684 #ifdef CONFIG_TASKS_TRACE_RCU
1685 	p->trc_reader_nesting = 0;
1686 	p->trc_reader_special.s = 0;
1687 	INIT_LIST_HEAD(&p->trc_holdout_list);
1688 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1689 }
1690 
1691 struct pid *pidfd_pid(const struct file *file)
1692 {
1693 	if (file->f_op == &pidfd_fops)
1694 		return file->private_data;
1695 
1696 	return ERR_PTR(-EBADF);
1697 }
1698 
1699 static int pidfd_release(struct inode *inode, struct file *file)
1700 {
1701 	struct pid *pid = file->private_data;
1702 
1703 	file->private_data = NULL;
1704 	put_pid(pid);
1705 	return 0;
1706 }
1707 
1708 #ifdef CONFIG_PROC_FS
1709 /**
1710  * pidfd_show_fdinfo - print information about a pidfd
1711  * @m: proc fdinfo file
1712  * @f: file referencing a pidfd
1713  *
1714  * Pid:
1715  * This function will print the pid that a given pidfd refers to in the
1716  * pid namespace of the procfs instance.
1717  * If the pid namespace of the process is not a descendant of the pid
1718  * namespace of the procfs instance 0 will be shown as its pid. This is
1719  * similar to calling getppid() on a process whose parent is outside of
1720  * its pid namespace.
1721  *
1722  * NSpid:
1723  * If pid namespaces are supported then this function will also print
1724  * the pid of a given pidfd refers to for all descendant pid namespaces
1725  * starting from the current pid namespace of the instance, i.e. the
1726  * Pid field and the first entry in the NSpid field will be identical.
1727  * If the pid namespace of the process is not a descendant of the pid
1728  * namespace of the procfs instance 0 will be shown as its first NSpid
1729  * entry and no others will be shown.
1730  * Note that this differs from the Pid and NSpid fields in
1731  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1732  * the  pid namespace of the procfs instance. The difference becomes
1733  * obvious when sending around a pidfd between pid namespaces from a
1734  * different branch of the tree, i.e. where no ancestoral relation is
1735  * present between the pid namespaces:
1736  * - create two new pid namespaces ns1 and ns2 in the initial pid
1737  *   namespace (also take care to create new mount namespaces in the
1738  *   new pid namespace and mount procfs)
1739  * - create a process with a pidfd in ns1
1740  * - send pidfd from ns1 to ns2
1741  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1742  *   have exactly one entry, which is 0
1743  */
1744 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1745 {
1746 	struct pid *pid = f->private_data;
1747 	struct pid_namespace *ns;
1748 	pid_t nr = -1;
1749 
1750 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1751 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1752 		nr = pid_nr_ns(pid, ns);
1753 	}
1754 
1755 	seq_put_decimal_ll(m, "Pid:\t", nr);
1756 
1757 #ifdef CONFIG_PID_NS
1758 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1759 	if (nr > 0) {
1760 		int i;
1761 
1762 		/* If nr is non-zero it means that 'pid' is valid and that
1763 		 * ns, i.e. the pid namespace associated with the procfs
1764 		 * instance, is in the pid namespace hierarchy of pid.
1765 		 * Start at one below the already printed level.
1766 		 */
1767 		for (i = ns->level + 1; i <= pid->level; i++)
1768 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1769 	}
1770 #endif
1771 	seq_putc(m, '\n');
1772 }
1773 #endif
1774 
1775 /*
1776  * Poll support for process exit notification.
1777  */
1778 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1779 {
1780 	struct pid *pid = file->private_data;
1781 	__poll_t poll_flags = 0;
1782 
1783 	poll_wait(file, &pid->wait_pidfd, pts);
1784 
1785 	/*
1786 	 * Inform pollers only when the whole thread group exits.
1787 	 * If the thread group leader exits before all other threads in the
1788 	 * group, then poll(2) should block, similar to the wait(2) family.
1789 	 */
1790 	if (thread_group_exited(pid))
1791 		poll_flags = EPOLLIN | EPOLLRDNORM;
1792 
1793 	return poll_flags;
1794 }
1795 
1796 const struct file_operations pidfd_fops = {
1797 	.release = pidfd_release,
1798 	.poll = pidfd_poll,
1799 #ifdef CONFIG_PROC_FS
1800 	.show_fdinfo = pidfd_show_fdinfo,
1801 #endif
1802 };
1803 
1804 static void __delayed_free_task(struct rcu_head *rhp)
1805 {
1806 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1807 
1808 	free_task(tsk);
1809 }
1810 
1811 static __always_inline void delayed_free_task(struct task_struct *tsk)
1812 {
1813 	if (IS_ENABLED(CONFIG_MEMCG))
1814 		call_rcu(&tsk->rcu, __delayed_free_task);
1815 	else
1816 		free_task(tsk);
1817 }
1818 
1819 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1820 {
1821 	/* Skip if kernel thread */
1822 	if (!tsk->mm)
1823 		return;
1824 
1825 	/* Skip if spawning a thread or using vfork */
1826 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1827 		return;
1828 
1829 	/* We need to synchronize with __set_oom_adj */
1830 	mutex_lock(&oom_adj_mutex);
1831 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1832 	/* Update the values in case they were changed after copy_signal */
1833 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1834 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1835 	mutex_unlock(&oom_adj_mutex);
1836 }
1837 
1838 /*
1839  * This creates a new process as a copy of the old one,
1840  * but does not actually start it yet.
1841  *
1842  * It copies the registers, and all the appropriate
1843  * parts of the process environment (as per the clone
1844  * flags). The actual kick-off is left to the caller.
1845  */
1846 static __latent_entropy struct task_struct *copy_process(
1847 					struct pid *pid,
1848 					int trace,
1849 					int node,
1850 					struct kernel_clone_args *args)
1851 {
1852 	int pidfd = -1, retval;
1853 	struct task_struct *p;
1854 	struct multiprocess_signals delayed;
1855 	struct file *pidfile = NULL;
1856 	u64 clone_flags = args->flags;
1857 	struct nsproxy *nsp = current->nsproxy;
1858 
1859 	/*
1860 	 * Don't allow sharing the root directory with processes in a different
1861 	 * namespace
1862 	 */
1863 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1864 		return ERR_PTR(-EINVAL);
1865 
1866 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1867 		return ERR_PTR(-EINVAL);
1868 
1869 	/*
1870 	 * Thread groups must share signals as well, and detached threads
1871 	 * can only be started up within the thread group.
1872 	 */
1873 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1874 		return ERR_PTR(-EINVAL);
1875 
1876 	/*
1877 	 * Shared signal handlers imply shared VM. By way of the above,
1878 	 * thread groups also imply shared VM. Blocking this case allows
1879 	 * for various simplifications in other code.
1880 	 */
1881 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1882 		return ERR_PTR(-EINVAL);
1883 
1884 	/*
1885 	 * Siblings of global init remain as zombies on exit since they are
1886 	 * not reaped by their parent (swapper). To solve this and to avoid
1887 	 * multi-rooted process trees, prevent global and container-inits
1888 	 * from creating siblings.
1889 	 */
1890 	if ((clone_flags & CLONE_PARENT) &&
1891 				current->signal->flags & SIGNAL_UNKILLABLE)
1892 		return ERR_PTR(-EINVAL);
1893 
1894 	/*
1895 	 * If the new process will be in a different pid or user namespace
1896 	 * do not allow it to share a thread group with the forking task.
1897 	 */
1898 	if (clone_flags & CLONE_THREAD) {
1899 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1900 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1901 			return ERR_PTR(-EINVAL);
1902 	}
1903 
1904 	/*
1905 	 * If the new process will be in a different time namespace
1906 	 * do not allow it to share VM or a thread group with the forking task.
1907 	 */
1908 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1909 		if (nsp->time_ns != nsp->time_ns_for_children)
1910 			return ERR_PTR(-EINVAL);
1911 	}
1912 
1913 	if (clone_flags & CLONE_PIDFD) {
1914 		/*
1915 		 * - CLONE_DETACHED is blocked so that we can potentially
1916 		 *   reuse it later for CLONE_PIDFD.
1917 		 * - CLONE_THREAD is blocked until someone really needs it.
1918 		 */
1919 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1920 			return ERR_PTR(-EINVAL);
1921 	}
1922 
1923 	/*
1924 	 * Force any signals received before this point to be delivered
1925 	 * before the fork happens.  Collect up signals sent to multiple
1926 	 * processes that happen during the fork and delay them so that
1927 	 * they appear to happen after the fork.
1928 	 */
1929 	sigemptyset(&delayed.signal);
1930 	INIT_HLIST_NODE(&delayed.node);
1931 
1932 	spin_lock_irq(&current->sighand->siglock);
1933 	if (!(clone_flags & CLONE_THREAD))
1934 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1935 	recalc_sigpending();
1936 	spin_unlock_irq(&current->sighand->siglock);
1937 	retval = -ERESTARTNOINTR;
1938 	if (signal_pending(current))
1939 		goto fork_out;
1940 
1941 	retval = -ENOMEM;
1942 	p = dup_task_struct(current, node);
1943 	if (!p)
1944 		goto fork_out;
1945 	if (args->io_thread)
1946 		p->flags |= PF_IO_WORKER;
1947 
1948 	/*
1949 	 * This _must_ happen before we call free_task(), i.e. before we jump
1950 	 * to any of the bad_fork_* labels. This is to avoid freeing
1951 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1952 	 * kernel threads (PF_KTHREAD).
1953 	 */
1954 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1955 	/*
1956 	 * Clear TID on mm_release()?
1957 	 */
1958 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1959 
1960 	ftrace_graph_init_task(p);
1961 
1962 	rt_mutex_init_task(p);
1963 
1964 	lockdep_assert_irqs_enabled();
1965 #ifdef CONFIG_PROVE_LOCKING
1966 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1967 #endif
1968 	retval = -EAGAIN;
1969 	if (atomic_read(&p->real_cred->user->processes) >=
1970 			task_rlimit(p, RLIMIT_NPROC)) {
1971 		if (p->real_cred->user != INIT_USER &&
1972 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1973 			goto bad_fork_free;
1974 	}
1975 	current->flags &= ~PF_NPROC_EXCEEDED;
1976 
1977 	retval = copy_creds(p, clone_flags);
1978 	if (retval < 0)
1979 		goto bad_fork_free;
1980 
1981 	/*
1982 	 * If multiple threads are within copy_process(), then this check
1983 	 * triggers too late. This doesn't hurt, the check is only there
1984 	 * to stop root fork bombs.
1985 	 */
1986 	retval = -EAGAIN;
1987 	if (data_race(nr_threads >= max_threads))
1988 		goto bad_fork_cleanup_count;
1989 
1990 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1991 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1992 	p->flags |= PF_FORKNOEXEC;
1993 	INIT_LIST_HEAD(&p->children);
1994 	INIT_LIST_HEAD(&p->sibling);
1995 	rcu_copy_process(p);
1996 	p->vfork_done = NULL;
1997 	spin_lock_init(&p->alloc_lock);
1998 
1999 	init_sigpending(&p->pending);
2000 
2001 	p->utime = p->stime = p->gtime = 0;
2002 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2003 	p->utimescaled = p->stimescaled = 0;
2004 #endif
2005 	prev_cputime_init(&p->prev_cputime);
2006 
2007 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2008 	seqcount_init(&p->vtime.seqcount);
2009 	p->vtime.starttime = 0;
2010 	p->vtime.state = VTIME_INACTIVE;
2011 #endif
2012 
2013 #ifdef CONFIG_IO_URING
2014 	p->io_uring = NULL;
2015 #endif
2016 
2017 #if defined(SPLIT_RSS_COUNTING)
2018 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2019 #endif
2020 
2021 	p->default_timer_slack_ns = current->timer_slack_ns;
2022 
2023 #ifdef CONFIG_PSI
2024 	p->psi_flags = 0;
2025 #endif
2026 
2027 	task_io_accounting_init(&p->ioac);
2028 	acct_clear_integrals(p);
2029 
2030 	posix_cputimers_init(&p->posix_cputimers);
2031 
2032 	p->io_context = NULL;
2033 	audit_set_context(p, NULL);
2034 	cgroup_fork(p);
2035 #ifdef CONFIG_NUMA
2036 	p->mempolicy = mpol_dup(p->mempolicy);
2037 	if (IS_ERR(p->mempolicy)) {
2038 		retval = PTR_ERR(p->mempolicy);
2039 		p->mempolicy = NULL;
2040 		goto bad_fork_cleanup_threadgroup_lock;
2041 	}
2042 #endif
2043 #ifdef CONFIG_CPUSETS
2044 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2045 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2046 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2047 #endif
2048 #ifdef CONFIG_TRACE_IRQFLAGS
2049 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2050 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2051 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2052 	p->softirqs_enabled		= 1;
2053 	p->softirq_context		= 0;
2054 #endif
2055 
2056 	p->pagefault_disabled = 0;
2057 
2058 #ifdef CONFIG_LOCKDEP
2059 	lockdep_init_task(p);
2060 #endif
2061 
2062 #ifdef CONFIG_DEBUG_MUTEXES
2063 	p->blocked_on = NULL; /* not blocked yet */
2064 #endif
2065 #ifdef CONFIG_BCACHE
2066 	p->sequential_io	= 0;
2067 	p->sequential_io_avg	= 0;
2068 #endif
2069 #ifdef CONFIG_BPF_SYSCALL
2070 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2071 #endif
2072 
2073 	/* Perform scheduler related setup. Assign this task to a CPU. */
2074 	retval = sched_fork(clone_flags, p);
2075 	if (retval)
2076 		goto bad_fork_cleanup_policy;
2077 
2078 	retval = perf_event_init_task(p);
2079 	if (retval)
2080 		goto bad_fork_cleanup_policy;
2081 	retval = audit_alloc(p);
2082 	if (retval)
2083 		goto bad_fork_cleanup_perf;
2084 	/* copy all the process information */
2085 	shm_init_task(p);
2086 	retval = security_task_alloc(p, clone_flags);
2087 	if (retval)
2088 		goto bad_fork_cleanup_audit;
2089 	retval = copy_semundo(clone_flags, p);
2090 	if (retval)
2091 		goto bad_fork_cleanup_security;
2092 	retval = copy_files(clone_flags, p);
2093 	if (retval)
2094 		goto bad_fork_cleanup_semundo;
2095 	retval = copy_fs(clone_flags, p);
2096 	if (retval)
2097 		goto bad_fork_cleanup_files;
2098 	retval = copy_sighand(clone_flags, p);
2099 	if (retval)
2100 		goto bad_fork_cleanup_fs;
2101 	retval = copy_signal(clone_flags, p);
2102 	if (retval)
2103 		goto bad_fork_cleanup_sighand;
2104 	retval = copy_mm(clone_flags, p);
2105 	if (retval)
2106 		goto bad_fork_cleanup_signal;
2107 	retval = copy_namespaces(clone_flags, p);
2108 	if (retval)
2109 		goto bad_fork_cleanup_mm;
2110 	retval = copy_io(clone_flags, p);
2111 	if (retval)
2112 		goto bad_fork_cleanup_namespaces;
2113 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2114 	if (retval)
2115 		goto bad_fork_cleanup_io;
2116 
2117 	stackleak_task_init(p);
2118 
2119 	if (pid != &init_struct_pid) {
2120 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2121 				args->set_tid_size);
2122 		if (IS_ERR(pid)) {
2123 			retval = PTR_ERR(pid);
2124 			goto bad_fork_cleanup_thread;
2125 		}
2126 	}
2127 
2128 	/*
2129 	 * This has to happen after we've potentially unshared the file
2130 	 * descriptor table (so that the pidfd doesn't leak into the child
2131 	 * if the fd table isn't shared).
2132 	 */
2133 	if (clone_flags & CLONE_PIDFD) {
2134 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2135 		if (retval < 0)
2136 			goto bad_fork_free_pid;
2137 
2138 		pidfd = retval;
2139 
2140 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2141 					      O_RDWR | O_CLOEXEC);
2142 		if (IS_ERR(pidfile)) {
2143 			put_unused_fd(pidfd);
2144 			retval = PTR_ERR(pidfile);
2145 			goto bad_fork_free_pid;
2146 		}
2147 		get_pid(pid);	/* held by pidfile now */
2148 
2149 		retval = put_user(pidfd, args->pidfd);
2150 		if (retval)
2151 			goto bad_fork_put_pidfd;
2152 	}
2153 
2154 #ifdef CONFIG_BLOCK
2155 	p->plug = NULL;
2156 #endif
2157 	futex_init_task(p);
2158 
2159 	/*
2160 	 * sigaltstack should be cleared when sharing the same VM
2161 	 */
2162 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2163 		sas_ss_reset(p);
2164 
2165 	/*
2166 	 * Syscall tracing and stepping should be turned off in the
2167 	 * child regardless of CLONE_PTRACE.
2168 	 */
2169 	user_disable_single_step(p);
2170 	clear_task_syscall_work(p, SYSCALL_TRACE);
2171 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2172 	clear_task_syscall_work(p, SYSCALL_EMU);
2173 #endif
2174 	clear_tsk_latency_tracing(p);
2175 
2176 	/* ok, now we should be set up.. */
2177 	p->pid = pid_nr(pid);
2178 	if (clone_flags & CLONE_THREAD) {
2179 		p->group_leader = current->group_leader;
2180 		p->tgid = current->tgid;
2181 	} else {
2182 		p->group_leader = p;
2183 		p->tgid = p->pid;
2184 	}
2185 
2186 	p->nr_dirtied = 0;
2187 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2188 	p->dirty_paused_when = 0;
2189 
2190 	p->pdeath_signal = 0;
2191 	INIT_LIST_HEAD(&p->thread_group);
2192 	p->task_works = NULL;
2193 
2194 #ifdef CONFIG_KRETPROBES
2195 	p->kretprobe_instances.first = NULL;
2196 #endif
2197 
2198 	/*
2199 	 * Ensure that the cgroup subsystem policies allow the new process to be
2200 	 * forked. It should be noted that the new process's css_set can be changed
2201 	 * between here and cgroup_post_fork() if an organisation operation is in
2202 	 * progress.
2203 	 */
2204 	retval = cgroup_can_fork(p, args);
2205 	if (retval)
2206 		goto bad_fork_put_pidfd;
2207 
2208 	/*
2209 	 * From this point on we must avoid any synchronous user-space
2210 	 * communication until we take the tasklist-lock. In particular, we do
2211 	 * not want user-space to be able to predict the process start-time by
2212 	 * stalling fork(2) after we recorded the start_time but before it is
2213 	 * visible to the system.
2214 	 */
2215 
2216 	p->start_time = ktime_get_ns();
2217 	p->start_boottime = ktime_get_boottime_ns();
2218 
2219 	/*
2220 	 * Make it visible to the rest of the system, but dont wake it up yet.
2221 	 * Need tasklist lock for parent etc handling!
2222 	 */
2223 	write_lock_irq(&tasklist_lock);
2224 
2225 	/* CLONE_PARENT re-uses the old parent */
2226 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2227 		p->real_parent = current->real_parent;
2228 		p->parent_exec_id = current->parent_exec_id;
2229 		if (clone_flags & CLONE_THREAD)
2230 			p->exit_signal = -1;
2231 		else
2232 			p->exit_signal = current->group_leader->exit_signal;
2233 	} else {
2234 		p->real_parent = current;
2235 		p->parent_exec_id = current->self_exec_id;
2236 		p->exit_signal = args->exit_signal;
2237 	}
2238 
2239 	klp_copy_process(p);
2240 
2241 	spin_lock(&current->sighand->siglock);
2242 
2243 	/*
2244 	 * Copy seccomp details explicitly here, in case they were changed
2245 	 * before holding sighand lock.
2246 	 */
2247 	copy_seccomp(p);
2248 
2249 	rseq_fork(p, clone_flags);
2250 
2251 	/* Don't start children in a dying pid namespace */
2252 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2253 		retval = -ENOMEM;
2254 		goto bad_fork_cancel_cgroup;
2255 	}
2256 
2257 	/* Let kill terminate clone/fork in the middle */
2258 	if (fatal_signal_pending(current)) {
2259 		retval = -EINTR;
2260 		goto bad_fork_cancel_cgroup;
2261 	}
2262 
2263 	/* past the last point of failure */
2264 	if (pidfile)
2265 		fd_install(pidfd, pidfile);
2266 
2267 	init_task_pid_links(p);
2268 	if (likely(p->pid)) {
2269 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2270 
2271 		init_task_pid(p, PIDTYPE_PID, pid);
2272 		if (thread_group_leader(p)) {
2273 			init_task_pid(p, PIDTYPE_TGID, pid);
2274 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2275 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2276 
2277 			if (is_child_reaper(pid)) {
2278 				ns_of_pid(pid)->child_reaper = p;
2279 				p->signal->flags |= SIGNAL_UNKILLABLE;
2280 			}
2281 			p->signal->shared_pending.signal = delayed.signal;
2282 			p->signal->tty = tty_kref_get(current->signal->tty);
2283 			/*
2284 			 * Inherit has_child_subreaper flag under the same
2285 			 * tasklist_lock with adding child to the process tree
2286 			 * for propagate_has_child_subreaper optimization.
2287 			 */
2288 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2289 							 p->real_parent->signal->is_child_subreaper;
2290 			list_add_tail(&p->sibling, &p->real_parent->children);
2291 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2292 			attach_pid(p, PIDTYPE_TGID);
2293 			attach_pid(p, PIDTYPE_PGID);
2294 			attach_pid(p, PIDTYPE_SID);
2295 			__this_cpu_inc(process_counts);
2296 		} else {
2297 			current->signal->nr_threads++;
2298 			atomic_inc(&current->signal->live);
2299 			refcount_inc(&current->signal->sigcnt);
2300 			task_join_group_stop(p);
2301 			list_add_tail_rcu(&p->thread_group,
2302 					  &p->group_leader->thread_group);
2303 			list_add_tail_rcu(&p->thread_node,
2304 					  &p->signal->thread_head);
2305 		}
2306 		attach_pid(p, PIDTYPE_PID);
2307 		nr_threads++;
2308 	}
2309 	total_forks++;
2310 	hlist_del_init(&delayed.node);
2311 	spin_unlock(&current->sighand->siglock);
2312 	syscall_tracepoint_update(p);
2313 	write_unlock_irq(&tasklist_lock);
2314 
2315 	proc_fork_connector(p);
2316 	sched_post_fork(p);
2317 	cgroup_post_fork(p, args);
2318 	perf_event_fork(p);
2319 
2320 	trace_task_newtask(p, clone_flags);
2321 	uprobe_copy_process(p, clone_flags);
2322 
2323 	copy_oom_score_adj(clone_flags, p);
2324 
2325 	return p;
2326 
2327 bad_fork_cancel_cgroup:
2328 	spin_unlock(&current->sighand->siglock);
2329 	write_unlock_irq(&tasklist_lock);
2330 	cgroup_cancel_fork(p, args);
2331 bad_fork_put_pidfd:
2332 	if (clone_flags & CLONE_PIDFD) {
2333 		fput(pidfile);
2334 		put_unused_fd(pidfd);
2335 	}
2336 bad_fork_free_pid:
2337 	if (pid != &init_struct_pid)
2338 		free_pid(pid);
2339 bad_fork_cleanup_thread:
2340 	exit_thread(p);
2341 bad_fork_cleanup_io:
2342 	if (p->io_context)
2343 		exit_io_context(p);
2344 bad_fork_cleanup_namespaces:
2345 	exit_task_namespaces(p);
2346 bad_fork_cleanup_mm:
2347 	if (p->mm) {
2348 		mm_clear_owner(p->mm, p);
2349 		mmput(p->mm);
2350 	}
2351 bad_fork_cleanup_signal:
2352 	if (!(clone_flags & CLONE_THREAD))
2353 		free_signal_struct(p->signal);
2354 bad_fork_cleanup_sighand:
2355 	__cleanup_sighand(p->sighand);
2356 bad_fork_cleanup_fs:
2357 	exit_fs(p); /* blocking */
2358 bad_fork_cleanup_files:
2359 	exit_files(p); /* blocking */
2360 bad_fork_cleanup_semundo:
2361 	exit_sem(p);
2362 bad_fork_cleanup_security:
2363 	security_task_free(p);
2364 bad_fork_cleanup_audit:
2365 	audit_free(p);
2366 bad_fork_cleanup_perf:
2367 	perf_event_free_task(p);
2368 bad_fork_cleanup_policy:
2369 	lockdep_free_task(p);
2370 #ifdef CONFIG_NUMA
2371 	mpol_put(p->mempolicy);
2372 bad_fork_cleanup_threadgroup_lock:
2373 #endif
2374 	delayacct_tsk_free(p);
2375 bad_fork_cleanup_count:
2376 	atomic_dec(&p->cred->user->processes);
2377 	exit_creds(p);
2378 bad_fork_free:
2379 	p->state = TASK_DEAD;
2380 	put_task_stack(p);
2381 	delayed_free_task(p);
2382 fork_out:
2383 	spin_lock_irq(&current->sighand->siglock);
2384 	hlist_del_init(&delayed.node);
2385 	spin_unlock_irq(&current->sighand->siglock);
2386 	return ERR_PTR(retval);
2387 }
2388 
2389 static inline void init_idle_pids(struct task_struct *idle)
2390 {
2391 	enum pid_type type;
2392 
2393 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2394 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2395 		init_task_pid(idle, type, &init_struct_pid);
2396 	}
2397 }
2398 
2399 struct task_struct *fork_idle(int cpu)
2400 {
2401 	struct task_struct *task;
2402 	struct kernel_clone_args args = {
2403 		.flags = CLONE_VM,
2404 	};
2405 
2406 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2407 	if (!IS_ERR(task)) {
2408 		init_idle_pids(task);
2409 		init_idle(task, cpu);
2410 	}
2411 
2412 	return task;
2413 }
2414 
2415 struct mm_struct *copy_init_mm(void)
2416 {
2417 	return dup_mm(NULL, &init_mm);
2418 }
2419 
2420 /*
2421  * This is like kernel_clone(), but shaved down and tailored to just
2422  * creating io_uring workers. It returns a created task, or an error pointer.
2423  * The returned task is inactive, and the caller must fire it up through
2424  * wake_up_new_task(p). All signals are blocked in the created task.
2425  */
2426 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2427 {
2428 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2429 				CLONE_IO;
2430 	struct kernel_clone_args args = {
2431 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2432 				    CLONE_UNTRACED) & ~CSIGNAL),
2433 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2434 		.stack		= (unsigned long)fn,
2435 		.stack_size	= (unsigned long)arg,
2436 		.io_thread	= 1,
2437 	};
2438 	struct task_struct *tsk;
2439 
2440 	tsk = copy_process(NULL, 0, node, &args);
2441 	if (!IS_ERR(tsk)) {
2442 		sigfillset(&tsk->blocked);
2443 		sigdelsetmask(&tsk->blocked, sigmask(SIGKILL));
2444 	}
2445 	return tsk;
2446 }
2447 
2448 /*
2449  *  Ok, this is the main fork-routine.
2450  *
2451  * It copies the process, and if successful kick-starts
2452  * it and waits for it to finish using the VM if required.
2453  *
2454  * args->exit_signal is expected to be checked for sanity by the caller.
2455  */
2456 pid_t kernel_clone(struct kernel_clone_args *args)
2457 {
2458 	u64 clone_flags = args->flags;
2459 	struct completion vfork;
2460 	struct pid *pid;
2461 	struct task_struct *p;
2462 	int trace = 0;
2463 	pid_t nr;
2464 
2465 	/*
2466 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2467 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2468 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2469 	 * field in struct clone_args and it still doesn't make sense to have
2470 	 * them both point at the same memory location. Performing this check
2471 	 * here has the advantage that we don't need to have a separate helper
2472 	 * to check for legacy clone().
2473 	 */
2474 	if ((args->flags & CLONE_PIDFD) &&
2475 	    (args->flags & CLONE_PARENT_SETTID) &&
2476 	    (args->pidfd == args->parent_tid))
2477 		return -EINVAL;
2478 
2479 	/*
2480 	 * Determine whether and which event to report to ptracer.  When
2481 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2482 	 * requested, no event is reported; otherwise, report if the event
2483 	 * for the type of forking is enabled.
2484 	 */
2485 	if (!(clone_flags & CLONE_UNTRACED)) {
2486 		if (clone_flags & CLONE_VFORK)
2487 			trace = PTRACE_EVENT_VFORK;
2488 		else if (args->exit_signal != SIGCHLD)
2489 			trace = PTRACE_EVENT_CLONE;
2490 		else
2491 			trace = PTRACE_EVENT_FORK;
2492 
2493 		if (likely(!ptrace_event_enabled(current, trace)))
2494 			trace = 0;
2495 	}
2496 
2497 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2498 	add_latent_entropy();
2499 
2500 	if (IS_ERR(p))
2501 		return PTR_ERR(p);
2502 
2503 	/*
2504 	 * Do this prior waking up the new thread - the thread pointer
2505 	 * might get invalid after that point, if the thread exits quickly.
2506 	 */
2507 	trace_sched_process_fork(current, p);
2508 
2509 	pid = get_task_pid(p, PIDTYPE_PID);
2510 	nr = pid_vnr(pid);
2511 
2512 	if (clone_flags & CLONE_PARENT_SETTID)
2513 		put_user(nr, args->parent_tid);
2514 
2515 	if (clone_flags & CLONE_VFORK) {
2516 		p->vfork_done = &vfork;
2517 		init_completion(&vfork);
2518 		get_task_struct(p);
2519 	}
2520 
2521 	wake_up_new_task(p);
2522 
2523 	/* forking complete and child started to run, tell ptracer */
2524 	if (unlikely(trace))
2525 		ptrace_event_pid(trace, pid);
2526 
2527 	if (clone_flags & CLONE_VFORK) {
2528 		if (!wait_for_vfork_done(p, &vfork))
2529 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2530 	}
2531 
2532 	put_pid(pid);
2533 	return nr;
2534 }
2535 
2536 /*
2537  * Create a kernel thread.
2538  */
2539 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2540 {
2541 	struct kernel_clone_args args = {
2542 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2543 				    CLONE_UNTRACED) & ~CSIGNAL),
2544 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2545 		.stack		= (unsigned long)fn,
2546 		.stack_size	= (unsigned long)arg,
2547 	};
2548 
2549 	return kernel_clone(&args);
2550 }
2551 
2552 #ifdef __ARCH_WANT_SYS_FORK
2553 SYSCALL_DEFINE0(fork)
2554 {
2555 #ifdef CONFIG_MMU
2556 	struct kernel_clone_args args = {
2557 		.exit_signal = SIGCHLD,
2558 	};
2559 
2560 	return kernel_clone(&args);
2561 #else
2562 	/* can not support in nommu mode */
2563 	return -EINVAL;
2564 #endif
2565 }
2566 #endif
2567 
2568 #ifdef __ARCH_WANT_SYS_VFORK
2569 SYSCALL_DEFINE0(vfork)
2570 {
2571 	struct kernel_clone_args args = {
2572 		.flags		= CLONE_VFORK | CLONE_VM,
2573 		.exit_signal	= SIGCHLD,
2574 	};
2575 
2576 	return kernel_clone(&args);
2577 }
2578 #endif
2579 
2580 #ifdef __ARCH_WANT_SYS_CLONE
2581 #ifdef CONFIG_CLONE_BACKWARDS
2582 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2583 		 int __user *, parent_tidptr,
2584 		 unsigned long, tls,
2585 		 int __user *, child_tidptr)
2586 #elif defined(CONFIG_CLONE_BACKWARDS2)
2587 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2588 		 int __user *, parent_tidptr,
2589 		 int __user *, child_tidptr,
2590 		 unsigned long, tls)
2591 #elif defined(CONFIG_CLONE_BACKWARDS3)
2592 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2593 		int, stack_size,
2594 		int __user *, parent_tidptr,
2595 		int __user *, child_tidptr,
2596 		unsigned long, tls)
2597 #else
2598 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2599 		 int __user *, parent_tidptr,
2600 		 int __user *, child_tidptr,
2601 		 unsigned long, tls)
2602 #endif
2603 {
2604 	struct kernel_clone_args args = {
2605 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2606 		.pidfd		= parent_tidptr,
2607 		.child_tid	= child_tidptr,
2608 		.parent_tid	= parent_tidptr,
2609 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2610 		.stack		= newsp,
2611 		.tls		= tls,
2612 	};
2613 
2614 	return kernel_clone(&args);
2615 }
2616 #endif
2617 
2618 #ifdef __ARCH_WANT_SYS_CLONE3
2619 
2620 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2621 					      struct clone_args __user *uargs,
2622 					      size_t usize)
2623 {
2624 	int err;
2625 	struct clone_args args;
2626 	pid_t *kset_tid = kargs->set_tid;
2627 
2628 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2629 		     CLONE_ARGS_SIZE_VER0);
2630 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2631 		     CLONE_ARGS_SIZE_VER1);
2632 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2633 		     CLONE_ARGS_SIZE_VER2);
2634 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2635 
2636 	if (unlikely(usize > PAGE_SIZE))
2637 		return -E2BIG;
2638 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2639 		return -EINVAL;
2640 
2641 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2642 	if (err)
2643 		return err;
2644 
2645 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2646 		return -EINVAL;
2647 
2648 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2649 		return -EINVAL;
2650 
2651 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2652 		return -EINVAL;
2653 
2654 	/*
2655 	 * Verify that higher 32bits of exit_signal are unset and that
2656 	 * it is a valid signal
2657 	 */
2658 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2659 		     !valid_signal(args.exit_signal)))
2660 		return -EINVAL;
2661 
2662 	if ((args.flags & CLONE_INTO_CGROUP) &&
2663 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2664 		return -EINVAL;
2665 
2666 	*kargs = (struct kernel_clone_args){
2667 		.flags		= args.flags,
2668 		.pidfd		= u64_to_user_ptr(args.pidfd),
2669 		.child_tid	= u64_to_user_ptr(args.child_tid),
2670 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2671 		.exit_signal	= args.exit_signal,
2672 		.stack		= args.stack,
2673 		.stack_size	= args.stack_size,
2674 		.tls		= args.tls,
2675 		.set_tid_size	= args.set_tid_size,
2676 		.cgroup		= args.cgroup,
2677 	};
2678 
2679 	if (args.set_tid &&
2680 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2681 			(kargs->set_tid_size * sizeof(pid_t))))
2682 		return -EFAULT;
2683 
2684 	kargs->set_tid = kset_tid;
2685 
2686 	return 0;
2687 }
2688 
2689 /**
2690  * clone3_stack_valid - check and prepare stack
2691  * @kargs: kernel clone args
2692  *
2693  * Verify that the stack arguments userspace gave us are sane.
2694  * In addition, set the stack direction for userspace since it's easy for us to
2695  * determine.
2696  */
2697 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2698 {
2699 	if (kargs->stack == 0) {
2700 		if (kargs->stack_size > 0)
2701 			return false;
2702 	} else {
2703 		if (kargs->stack_size == 0)
2704 			return false;
2705 
2706 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2707 			return false;
2708 
2709 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2710 		kargs->stack += kargs->stack_size;
2711 #endif
2712 	}
2713 
2714 	return true;
2715 }
2716 
2717 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2718 {
2719 	/* Verify that no unknown flags are passed along. */
2720 	if (kargs->flags &
2721 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2722 		return false;
2723 
2724 	/*
2725 	 * - make the CLONE_DETACHED bit reuseable for clone3
2726 	 * - make the CSIGNAL bits reuseable for clone3
2727 	 */
2728 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2729 		return false;
2730 
2731 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2732 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2733 		return false;
2734 
2735 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2736 	    kargs->exit_signal)
2737 		return false;
2738 
2739 	if (!clone3_stack_valid(kargs))
2740 		return false;
2741 
2742 	return true;
2743 }
2744 
2745 /**
2746  * clone3 - create a new process with specific properties
2747  * @uargs: argument structure
2748  * @size:  size of @uargs
2749  *
2750  * clone3() is the extensible successor to clone()/clone2().
2751  * It takes a struct as argument that is versioned by its size.
2752  *
2753  * Return: On success, a positive PID for the child process.
2754  *         On error, a negative errno number.
2755  */
2756 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2757 {
2758 	int err;
2759 
2760 	struct kernel_clone_args kargs;
2761 	pid_t set_tid[MAX_PID_NS_LEVEL];
2762 
2763 	kargs.set_tid = set_tid;
2764 
2765 	err = copy_clone_args_from_user(&kargs, uargs, size);
2766 	if (err)
2767 		return err;
2768 
2769 	if (!clone3_args_valid(&kargs))
2770 		return -EINVAL;
2771 
2772 	return kernel_clone(&kargs);
2773 }
2774 #endif
2775 
2776 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2777 {
2778 	struct task_struct *leader, *parent, *child;
2779 	int res;
2780 
2781 	read_lock(&tasklist_lock);
2782 	leader = top = top->group_leader;
2783 down:
2784 	for_each_thread(leader, parent) {
2785 		list_for_each_entry(child, &parent->children, sibling) {
2786 			res = visitor(child, data);
2787 			if (res) {
2788 				if (res < 0)
2789 					goto out;
2790 				leader = child;
2791 				goto down;
2792 			}
2793 up:
2794 			;
2795 		}
2796 	}
2797 
2798 	if (leader != top) {
2799 		child = leader;
2800 		parent = child->real_parent;
2801 		leader = parent->group_leader;
2802 		goto up;
2803 	}
2804 out:
2805 	read_unlock(&tasklist_lock);
2806 }
2807 
2808 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2809 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2810 #endif
2811 
2812 static void sighand_ctor(void *data)
2813 {
2814 	struct sighand_struct *sighand = data;
2815 
2816 	spin_lock_init(&sighand->siglock);
2817 	init_waitqueue_head(&sighand->signalfd_wqh);
2818 }
2819 
2820 void __init proc_caches_init(void)
2821 {
2822 	unsigned int mm_size;
2823 
2824 	sighand_cachep = kmem_cache_create("sighand_cache",
2825 			sizeof(struct sighand_struct), 0,
2826 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2827 			SLAB_ACCOUNT, sighand_ctor);
2828 	signal_cachep = kmem_cache_create("signal_cache",
2829 			sizeof(struct signal_struct), 0,
2830 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2831 			NULL);
2832 	files_cachep = kmem_cache_create("files_cache",
2833 			sizeof(struct files_struct), 0,
2834 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2835 			NULL);
2836 	fs_cachep = kmem_cache_create("fs_cache",
2837 			sizeof(struct fs_struct), 0,
2838 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2839 			NULL);
2840 
2841 	/*
2842 	 * The mm_cpumask is located at the end of mm_struct, and is
2843 	 * dynamically sized based on the maximum CPU number this system
2844 	 * can have, taking hotplug into account (nr_cpu_ids).
2845 	 */
2846 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2847 
2848 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2849 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2850 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2851 			offsetof(struct mm_struct, saved_auxv),
2852 			sizeof_field(struct mm_struct, saved_auxv),
2853 			NULL);
2854 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2855 	mmap_init();
2856 	nsproxy_cache_init();
2857 }
2858 
2859 /*
2860  * Check constraints on flags passed to the unshare system call.
2861  */
2862 static int check_unshare_flags(unsigned long unshare_flags)
2863 {
2864 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2865 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2866 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2867 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2868 				CLONE_NEWTIME))
2869 		return -EINVAL;
2870 	/*
2871 	 * Not implemented, but pretend it works if there is nothing
2872 	 * to unshare.  Note that unsharing the address space or the
2873 	 * signal handlers also need to unshare the signal queues (aka
2874 	 * CLONE_THREAD).
2875 	 */
2876 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2877 		if (!thread_group_empty(current))
2878 			return -EINVAL;
2879 	}
2880 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2881 		if (refcount_read(&current->sighand->count) > 1)
2882 			return -EINVAL;
2883 	}
2884 	if (unshare_flags & CLONE_VM) {
2885 		if (!current_is_single_threaded())
2886 			return -EINVAL;
2887 	}
2888 
2889 	return 0;
2890 }
2891 
2892 /*
2893  * Unshare the filesystem structure if it is being shared
2894  */
2895 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2896 {
2897 	struct fs_struct *fs = current->fs;
2898 
2899 	if (!(unshare_flags & CLONE_FS) || !fs)
2900 		return 0;
2901 
2902 	/* don't need lock here; in the worst case we'll do useless copy */
2903 	if (fs->users == 1)
2904 		return 0;
2905 
2906 	*new_fsp = copy_fs_struct(fs);
2907 	if (!*new_fsp)
2908 		return -ENOMEM;
2909 
2910 	return 0;
2911 }
2912 
2913 /*
2914  * Unshare file descriptor table if it is being shared
2915  */
2916 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2917 	       struct files_struct **new_fdp)
2918 {
2919 	struct files_struct *fd = current->files;
2920 	int error = 0;
2921 
2922 	if ((unshare_flags & CLONE_FILES) &&
2923 	    (fd && atomic_read(&fd->count) > 1)) {
2924 		*new_fdp = dup_fd(fd, max_fds, &error);
2925 		if (!*new_fdp)
2926 			return error;
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 /*
2933  * unshare allows a process to 'unshare' part of the process
2934  * context which was originally shared using clone.  copy_*
2935  * functions used by kernel_clone() cannot be used here directly
2936  * because they modify an inactive task_struct that is being
2937  * constructed. Here we are modifying the current, active,
2938  * task_struct.
2939  */
2940 int ksys_unshare(unsigned long unshare_flags)
2941 {
2942 	struct fs_struct *fs, *new_fs = NULL;
2943 	struct files_struct *fd, *new_fd = NULL;
2944 	struct cred *new_cred = NULL;
2945 	struct nsproxy *new_nsproxy = NULL;
2946 	int do_sysvsem = 0;
2947 	int err;
2948 
2949 	/*
2950 	 * If unsharing a user namespace must also unshare the thread group
2951 	 * and unshare the filesystem root and working directories.
2952 	 */
2953 	if (unshare_flags & CLONE_NEWUSER)
2954 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2955 	/*
2956 	 * If unsharing vm, must also unshare signal handlers.
2957 	 */
2958 	if (unshare_flags & CLONE_VM)
2959 		unshare_flags |= CLONE_SIGHAND;
2960 	/*
2961 	 * If unsharing a signal handlers, must also unshare the signal queues.
2962 	 */
2963 	if (unshare_flags & CLONE_SIGHAND)
2964 		unshare_flags |= CLONE_THREAD;
2965 	/*
2966 	 * If unsharing namespace, must also unshare filesystem information.
2967 	 */
2968 	if (unshare_flags & CLONE_NEWNS)
2969 		unshare_flags |= CLONE_FS;
2970 
2971 	err = check_unshare_flags(unshare_flags);
2972 	if (err)
2973 		goto bad_unshare_out;
2974 	/*
2975 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2976 	 * to a new ipc namespace, the semaphore arrays from the old
2977 	 * namespace are unreachable.
2978 	 */
2979 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2980 		do_sysvsem = 1;
2981 	err = unshare_fs(unshare_flags, &new_fs);
2982 	if (err)
2983 		goto bad_unshare_out;
2984 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2985 	if (err)
2986 		goto bad_unshare_cleanup_fs;
2987 	err = unshare_userns(unshare_flags, &new_cred);
2988 	if (err)
2989 		goto bad_unshare_cleanup_fd;
2990 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2991 					 new_cred, new_fs);
2992 	if (err)
2993 		goto bad_unshare_cleanup_cred;
2994 
2995 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2996 		if (do_sysvsem) {
2997 			/*
2998 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2999 			 */
3000 			exit_sem(current);
3001 		}
3002 		if (unshare_flags & CLONE_NEWIPC) {
3003 			/* Orphan segments in old ns (see sem above). */
3004 			exit_shm(current);
3005 			shm_init_task(current);
3006 		}
3007 
3008 		if (new_nsproxy)
3009 			switch_task_namespaces(current, new_nsproxy);
3010 
3011 		task_lock(current);
3012 
3013 		if (new_fs) {
3014 			fs = current->fs;
3015 			spin_lock(&fs->lock);
3016 			current->fs = new_fs;
3017 			if (--fs->users)
3018 				new_fs = NULL;
3019 			else
3020 				new_fs = fs;
3021 			spin_unlock(&fs->lock);
3022 		}
3023 
3024 		if (new_fd) {
3025 			fd = current->files;
3026 			current->files = new_fd;
3027 			new_fd = fd;
3028 		}
3029 
3030 		task_unlock(current);
3031 
3032 		if (new_cred) {
3033 			/* Install the new user namespace */
3034 			commit_creds(new_cred);
3035 			new_cred = NULL;
3036 		}
3037 	}
3038 
3039 	perf_event_namespaces(current);
3040 
3041 bad_unshare_cleanup_cred:
3042 	if (new_cred)
3043 		put_cred(new_cred);
3044 bad_unshare_cleanup_fd:
3045 	if (new_fd)
3046 		put_files_struct(new_fd);
3047 
3048 bad_unshare_cleanup_fs:
3049 	if (new_fs)
3050 		free_fs_struct(new_fs);
3051 
3052 bad_unshare_out:
3053 	return err;
3054 }
3055 
3056 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3057 {
3058 	return ksys_unshare(unshare_flags);
3059 }
3060 
3061 /*
3062  *	Helper to unshare the files of the current task.
3063  *	We don't want to expose copy_files internals to
3064  *	the exec layer of the kernel.
3065  */
3066 
3067 int unshare_files(void)
3068 {
3069 	struct task_struct *task = current;
3070 	struct files_struct *old, *copy = NULL;
3071 	int error;
3072 
3073 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3074 	if (error || !copy)
3075 		return error;
3076 
3077 	old = task->files;
3078 	task_lock(task);
3079 	task->files = copy;
3080 	task_unlock(task);
3081 	put_files_struct(old);
3082 	return 0;
3083 }
3084 
3085 int sysctl_max_threads(struct ctl_table *table, int write,
3086 		       void *buffer, size_t *lenp, loff_t *ppos)
3087 {
3088 	struct ctl_table t;
3089 	int ret;
3090 	int threads = max_threads;
3091 	int min = 1;
3092 	int max = MAX_THREADS;
3093 
3094 	t = *table;
3095 	t.data = &threads;
3096 	t.extra1 = &min;
3097 	t.extra2 = &max;
3098 
3099 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3100 	if (ret || !write)
3101 		return ret;
3102 
3103 	max_threads = threads;
3104 
3105 	return 0;
3106 }
3107