xref: /openbmc/linux/kernel/fork.c (revision 64c70b1c)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 
53 #include <asm/pgtable.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/cacheflush.h>
58 #include <asm/tlbflush.h>
59 
60 /*
61  * Protected counters by write_lock_irq(&tasklist_lock)
62  */
63 unsigned long total_forks;	/* Handle normal Linux uptimes. */
64 int nr_threads; 		/* The idle threads do not count.. */
65 
66 int max_threads;		/* tunable limit on nr_threads */
67 
68 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
69 
70 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
71 
72 int nr_processes(void)
73 {
74 	int cpu;
75 	int total = 0;
76 
77 	for_each_online_cpu(cpu)
78 		total += per_cpu(process_counts, cpu);
79 
80 	return total;
81 }
82 
83 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
84 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
85 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
86 static struct kmem_cache *task_struct_cachep;
87 #endif
88 
89 /* SLAB cache for signal_struct structures (tsk->signal) */
90 static struct kmem_cache *signal_cachep;
91 
92 /* SLAB cache for sighand_struct structures (tsk->sighand) */
93 struct kmem_cache *sighand_cachep;
94 
95 /* SLAB cache for files_struct structures (tsk->files) */
96 struct kmem_cache *files_cachep;
97 
98 /* SLAB cache for fs_struct structures (tsk->fs) */
99 struct kmem_cache *fs_cachep;
100 
101 /* SLAB cache for vm_area_struct structures */
102 struct kmem_cache *vm_area_cachep;
103 
104 /* SLAB cache for mm_struct structures (tsk->mm) */
105 static struct kmem_cache *mm_cachep;
106 
107 void free_task(struct task_struct *tsk)
108 {
109 	free_thread_info(tsk->stack);
110 	rt_mutex_debug_task_free(tsk);
111 	free_task_struct(tsk);
112 }
113 EXPORT_SYMBOL(free_task);
114 
115 void __put_task_struct(struct task_struct *tsk)
116 {
117 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
118 	WARN_ON(atomic_read(&tsk->usage));
119 	WARN_ON(tsk == current);
120 
121 	security_task_free(tsk);
122 	free_uid(tsk->user);
123 	put_group_info(tsk->group_info);
124 	delayacct_tsk_free(tsk);
125 
126 	if (!profile_handoff_task(tsk))
127 		free_task(tsk);
128 }
129 
130 void __init fork_init(unsigned long mempages)
131 {
132 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
133 #ifndef ARCH_MIN_TASKALIGN
134 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
135 #endif
136 	/* create a slab on which task_structs can be allocated */
137 	task_struct_cachep =
138 		kmem_cache_create("task_struct", sizeof(struct task_struct),
139 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
140 #endif
141 
142 	/*
143 	 * The default maximum number of threads is set to a safe
144 	 * value: the thread structures can take up at most half
145 	 * of memory.
146 	 */
147 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
148 
149 	/*
150 	 * we need to allow at least 20 threads to boot a system
151 	 */
152 	if(max_threads < 20)
153 		max_threads = 20;
154 
155 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
156 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
157 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
158 		init_task.signal->rlim[RLIMIT_NPROC];
159 }
160 
161 static struct task_struct *dup_task_struct(struct task_struct *orig)
162 {
163 	struct task_struct *tsk;
164 	struct thread_info *ti;
165 
166 	prepare_to_copy(orig);
167 
168 	tsk = alloc_task_struct();
169 	if (!tsk)
170 		return NULL;
171 
172 	ti = alloc_thread_info(tsk);
173 	if (!ti) {
174 		free_task_struct(tsk);
175 		return NULL;
176 	}
177 
178 	*tsk = *orig;
179 	tsk->stack = ti;
180 	setup_thread_stack(tsk, orig);
181 
182 #ifdef CONFIG_CC_STACKPROTECTOR
183 	tsk->stack_canary = get_random_int();
184 #endif
185 
186 	/* One for us, one for whoever does the "release_task()" (usually parent) */
187 	atomic_set(&tsk->usage,2);
188 	atomic_set(&tsk->fs_excl, 0);
189 #ifdef CONFIG_BLK_DEV_IO_TRACE
190 	tsk->btrace_seq = 0;
191 #endif
192 	tsk->splice_pipe = NULL;
193 	return tsk;
194 }
195 
196 #ifdef CONFIG_MMU
197 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
198 {
199 	struct vm_area_struct *mpnt, *tmp, **pprev;
200 	struct rb_node **rb_link, *rb_parent;
201 	int retval;
202 	unsigned long charge;
203 	struct mempolicy *pol;
204 
205 	down_write(&oldmm->mmap_sem);
206 	flush_cache_dup_mm(oldmm);
207 	/*
208 	 * Not linked in yet - no deadlock potential:
209 	 */
210 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
211 
212 	mm->locked_vm = 0;
213 	mm->mmap = NULL;
214 	mm->mmap_cache = NULL;
215 	mm->free_area_cache = oldmm->mmap_base;
216 	mm->cached_hole_size = ~0UL;
217 	mm->map_count = 0;
218 	cpus_clear(mm->cpu_vm_mask);
219 	mm->mm_rb = RB_ROOT;
220 	rb_link = &mm->mm_rb.rb_node;
221 	rb_parent = NULL;
222 	pprev = &mm->mmap;
223 
224 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
225 		struct file *file;
226 
227 		if (mpnt->vm_flags & VM_DONTCOPY) {
228 			long pages = vma_pages(mpnt);
229 			mm->total_vm -= pages;
230 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
231 								-pages);
232 			continue;
233 		}
234 		charge = 0;
235 		if (mpnt->vm_flags & VM_ACCOUNT) {
236 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
237 			if (security_vm_enough_memory(len))
238 				goto fail_nomem;
239 			charge = len;
240 		}
241 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
242 		if (!tmp)
243 			goto fail_nomem;
244 		*tmp = *mpnt;
245 		pol = mpol_copy(vma_policy(mpnt));
246 		retval = PTR_ERR(pol);
247 		if (IS_ERR(pol))
248 			goto fail_nomem_policy;
249 		vma_set_policy(tmp, pol);
250 		tmp->vm_flags &= ~VM_LOCKED;
251 		tmp->vm_mm = mm;
252 		tmp->vm_next = NULL;
253 		anon_vma_link(tmp);
254 		file = tmp->vm_file;
255 		if (file) {
256 			struct inode *inode = file->f_path.dentry->d_inode;
257 			get_file(file);
258 			if (tmp->vm_flags & VM_DENYWRITE)
259 				atomic_dec(&inode->i_writecount);
260 
261 			/* insert tmp into the share list, just after mpnt */
262 			spin_lock(&file->f_mapping->i_mmap_lock);
263 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
264 			flush_dcache_mmap_lock(file->f_mapping);
265 			vma_prio_tree_add(tmp, mpnt);
266 			flush_dcache_mmap_unlock(file->f_mapping);
267 			spin_unlock(&file->f_mapping->i_mmap_lock);
268 		}
269 
270 		/*
271 		 * Link in the new vma and copy the page table entries.
272 		 */
273 		*pprev = tmp;
274 		pprev = &tmp->vm_next;
275 
276 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
277 		rb_link = &tmp->vm_rb.rb_right;
278 		rb_parent = &tmp->vm_rb;
279 
280 		mm->map_count++;
281 		retval = copy_page_range(mm, oldmm, mpnt);
282 
283 		if (tmp->vm_ops && tmp->vm_ops->open)
284 			tmp->vm_ops->open(tmp);
285 
286 		if (retval)
287 			goto out;
288 	}
289 	/* a new mm has just been created */
290 	arch_dup_mmap(oldmm, mm);
291 	retval = 0;
292 out:
293 	up_write(&mm->mmap_sem);
294 	flush_tlb_mm(oldmm);
295 	up_write(&oldmm->mmap_sem);
296 	return retval;
297 fail_nomem_policy:
298 	kmem_cache_free(vm_area_cachep, tmp);
299 fail_nomem:
300 	retval = -ENOMEM;
301 	vm_unacct_memory(charge);
302 	goto out;
303 }
304 
305 static inline int mm_alloc_pgd(struct mm_struct * mm)
306 {
307 	mm->pgd = pgd_alloc(mm);
308 	if (unlikely(!mm->pgd))
309 		return -ENOMEM;
310 	return 0;
311 }
312 
313 static inline void mm_free_pgd(struct mm_struct * mm)
314 {
315 	pgd_free(mm->pgd);
316 }
317 #else
318 #define dup_mmap(mm, oldmm)	(0)
319 #define mm_alloc_pgd(mm)	(0)
320 #define mm_free_pgd(mm)
321 #endif /* CONFIG_MMU */
322 
323  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
324 
325 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
326 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
327 
328 #include <linux/init_task.h>
329 
330 static struct mm_struct * mm_init(struct mm_struct * mm)
331 {
332 	atomic_set(&mm->mm_users, 1);
333 	atomic_set(&mm->mm_count, 1);
334 	init_rwsem(&mm->mmap_sem);
335 	INIT_LIST_HEAD(&mm->mmlist);
336 	mm->core_waiters = 0;
337 	mm->nr_ptes = 0;
338 	set_mm_counter(mm, file_rss, 0);
339 	set_mm_counter(mm, anon_rss, 0);
340 	spin_lock_init(&mm->page_table_lock);
341 	rwlock_init(&mm->ioctx_list_lock);
342 	mm->ioctx_list = NULL;
343 	mm->free_area_cache = TASK_UNMAPPED_BASE;
344 	mm->cached_hole_size = ~0UL;
345 
346 	if (likely(!mm_alloc_pgd(mm))) {
347 		mm->def_flags = 0;
348 		return mm;
349 	}
350 	free_mm(mm);
351 	return NULL;
352 }
353 
354 /*
355  * Allocate and initialize an mm_struct.
356  */
357 struct mm_struct * mm_alloc(void)
358 {
359 	struct mm_struct * mm;
360 
361 	mm = allocate_mm();
362 	if (mm) {
363 		memset(mm, 0, sizeof(*mm));
364 		mm = mm_init(mm);
365 	}
366 	return mm;
367 }
368 
369 /*
370  * Called when the last reference to the mm
371  * is dropped: either by a lazy thread or by
372  * mmput. Free the page directory and the mm.
373  */
374 void fastcall __mmdrop(struct mm_struct *mm)
375 {
376 	BUG_ON(mm == &init_mm);
377 	mm_free_pgd(mm);
378 	destroy_context(mm);
379 	free_mm(mm);
380 }
381 
382 /*
383  * Decrement the use count and release all resources for an mm.
384  */
385 void mmput(struct mm_struct *mm)
386 {
387 	might_sleep();
388 
389 	if (atomic_dec_and_test(&mm->mm_users)) {
390 		exit_aio(mm);
391 		exit_mmap(mm);
392 		if (!list_empty(&mm->mmlist)) {
393 			spin_lock(&mmlist_lock);
394 			list_del(&mm->mmlist);
395 			spin_unlock(&mmlist_lock);
396 		}
397 		put_swap_token(mm);
398 		mmdrop(mm);
399 	}
400 }
401 EXPORT_SYMBOL_GPL(mmput);
402 
403 /**
404  * get_task_mm - acquire a reference to the task's mm
405  *
406  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
407  * this kernel workthread has transiently adopted a user mm with use_mm,
408  * to do its AIO) is not set and if so returns a reference to it, after
409  * bumping up the use count.  User must release the mm via mmput()
410  * after use.  Typically used by /proc and ptrace.
411  */
412 struct mm_struct *get_task_mm(struct task_struct *task)
413 {
414 	struct mm_struct *mm;
415 
416 	task_lock(task);
417 	mm = task->mm;
418 	if (mm) {
419 		if (task->flags & PF_BORROWED_MM)
420 			mm = NULL;
421 		else
422 			atomic_inc(&mm->mm_users);
423 	}
424 	task_unlock(task);
425 	return mm;
426 }
427 EXPORT_SYMBOL_GPL(get_task_mm);
428 
429 /* Please note the differences between mmput and mm_release.
430  * mmput is called whenever we stop holding onto a mm_struct,
431  * error success whatever.
432  *
433  * mm_release is called after a mm_struct has been removed
434  * from the current process.
435  *
436  * This difference is important for error handling, when we
437  * only half set up a mm_struct for a new process and need to restore
438  * the old one.  Because we mmput the new mm_struct before
439  * restoring the old one. . .
440  * Eric Biederman 10 January 1998
441  */
442 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
443 {
444 	struct completion *vfork_done = tsk->vfork_done;
445 
446 	/* Get rid of any cached register state */
447 	deactivate_mm(tsk, mm);
448 
449 	/* notify parent sleeping on vfork() */
450 	if (vfork_done) {
451 		tsk->vfork_done = NULL;
452 		complete(vfork_done);
453 	}
454 
455 	/*
456 	 * If we're exiting normally, clear a user-space tid field if
457 	 * requested.  We leave this alone when dying by signal, to leave
458 	 * the value intact in a core dump, and to save the unnecessary
459 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
460 	 */
461 	if (tsk->clear_child_tid
462 	    && !(tsk->flags & PF_SIGNALED)
463 	    && atomic_read(&mm->mm_users) > 1) {
464 		u32 __user * tidptr = tsk->clear_child_tid;
465 		tsk->clear_child_tid = NULL;
466 
467 		/*
468 		 * We don't check the error code - if userspace has
469 		 * not set up a proper pointer then tough luck.
470 		 */
471 		put_user(0, tidptr);
472 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
473 	}
474 }
475 
476 /*
477  * Allocate a new mm structure and copy contents from the
478  * mm structure of the passed in task structure.
479  */
480 static struct mm_struct *dup_mm(struct task_struct *tsk)
481 {
482 	struct mm_struct *mm, *oldmm = current->mm;
483 	int err;
484 
485 	if (!oldmm)
486 		return NULL;
487 
488 	mm = allocate_mm();
489 	if (!mm)
490 		goto fail_nomem;
491 
492 	memcpy(mm, oldmm, sizeof(*mm));
493 
494 	/* Initializing for Swap token stuff */
495 	mm->token_priority = 0;
496 	mm->last_interval = 0;
497 
498 	if (!mm_init(mm))
499 		goto fail_nomem;
500 
501 	if (init_new_context(tsk, mm))
502 		goto fail_nocontext;
503 
504 	err = dup_mmap(mm, oldmm);
505 	if (err)
506 		goto free_pt;
507 
508 	mm->hiwater_rss = get_mm_rss(mm);
509 	mm->hiwater_vm = mm->total_vm;
510 
511 	return mm;
512 
513 free_pt:
514 	mmput(mm);
515 
516 fail_nomem:
517 	return NULL;
518 
519 fail_nocontext:
520 	/*
521 	 * If init_new_context() failed, we cannot use mmput() to free the mm
522 	 * because it calls destroy_context()
523 	 */
524 	mm_free_pgd(mm);
525 	free_mm(mm);
526 	return NULL;
527 }
528 
529 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
530 {
531 	struct mm_struct * mm, *oldmm;
532 	int retval;
533 
534 	tsk->min_flt = tsk->maj_flt = 0;
535 	tsk->nvcsw = tsk->nivcsw = 0;
536 
537 	tsk->mm = NULL;
538 	tsk->active_mm = NULL;
539 
540 	/*
541 	 * Are we cloning a kernel thread?
542 	 *
543 	 * We need to steal a active VM for that..
544 	 */
545 	oldmm = current->mm;
546 	if (!oldmm)
547 		return 0;
548 
549 	if (clone_flags & CLONE_VM) {
550 		atomic_inc(&oldmm->mm_users);
551 		mm = oldmm;
552 		goto good_mm;
553 	}
554 
555 	retval = -ENOMEM;
556 	mm = dup_mm(tsk);
557 	if (!mm)
558 		goto fail_nomem;
559 
560 good_mm:
561 	/* Initializing for Swap token stuff */
562 	mm->token_priority = 0;
563 	mm->last_interval = 0;
564 
565 	tsk->mm = mm;
566 	tsk->active_mm = mm;
567 	return 0;
568 
569 fail_nomem:
570 	return retval;
571 }
572 
573 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
574 {
575 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
576 	/* We don't need to lock fs - think why ;-) */
577 	if (fs) {
578 		atomic_set(&fs->count, 1);
579 		rwlock_init(&fs->lock);
580 		fs->umask = old->umask;
581 		read_lock(&old->lock);
582 		fs->rootmnt = mntget(old->rootmnt);
583 		fs->root = dget(old->root);
584 		fs->pwdmnt = mntget(old->pwdmnt);
585 		fs->pwd = dget(old->pwd);
586 		if (old->altroot) {
587 			fs->altrootmnt = mntget(old->altrootmnt);
588 			fs->altroot = dget(old->altroot);
589 		} else {
590 			fs->altrootmnt = NULL;
591 			fs->altroot = NULL;
592 		}
593 		read_unlock(&old->lock);
594 	}
595 	return fs;
596 }
597 
598 struct fs_struct *copy_fs_struct(struct fs_struct *old)
599 {
600 	return __copy_fs_struct(old);
601 }
602 
603 EXPORT_SYMBOL_GPL(copy_fs_struct);
604 
605 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
606 {
607 	if (clone_flags & CLONE_FS) {
608 		atomic_inc(&current->fs->count);
609 		return 0;
610 	}
611 	tsk->fs = __copy_fs_struct(current->fs);
612 	if (!tsk->fs)
613 		return -ENOMEM;
614 	return 0;
615 }
616 
617 static int count_open_files(struct fdtable *fdt)
618 {
619 	int size = fdt->max_fds;
620 	int i;
621 
622 	/* Find the last open fd */
623 	for (i = size/(8*sizeof(long)); i > 0; ) {
624 		if (fdt->open_fds->fds_bits[--i])
625 			break;
626 	}
627 	i = (i+1) * 8 * sizeof(long);
628 	return i;
629 }
630 
631 static struct files_struct *alloc_files(void)
632 {
633 	struct files_struct *newf;
634 	struct fdtable *fdt;
635 
636 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
637 	if (!newf)
638 		goto out;
639 
640 	atomic_set(&newf->count, 1);
641 
642 	spin_lock_init(&newf->file_lock);
643 	newf->next_fd = 0;
644 	fdt = &newf->fdtab;
645 	fdt->max_fds = NR_OPEN_DEFAULT;
646 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
647 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
648 	fdt->fd = &newf->fd_array[0];
649 	INIT_RCU_HEAD(&fdt->rcu);
650 	fdt->next = NULL;
651 	rcu_assign_pointer(newf->fdt, fdt);
652 out:
653 	return newf;
654 }
655 
656 /*
657  * Allocate a new files structure and copy contents from the
658  * passed in files structure.
659  * errorp will be valid only when the returned files_struct is NULL.
660  */
661 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
662 {
663 	struct files_struct *newf;
664 	struct file **old_fds, **new_fds;
665 	int open_files, size, i;
666 	struct fdtable *old_fdt, *new_fdt;
667 
668 	*errorp = -ENOMEM;
669 	newf = alloc_files();
670 	if (!newf)
671 		goto out;
672 
673 	spin_lock(&oldf->file_lock);
674 	old_fdt = files_fdtable(oldf);
675 	new_fdt = files_fdtable(newf);
676 	open_files = count_open_files(old_fdt);
677 
678 	/*
679 	 * Check whether we need to allocate a larger fd array and fd set.
680 	 * Note: we're not a clone task, so the open count won't change.
681 	 */
682 	if (open_files > new_fdt->max_fds) {
683 		new_fdt->max_fds = 0;
684 		spin_unlock(&oldf->file_lock);
685 		spin_lock(&newf->file_lock);
686 		*errorp = expand_files(newf, open_files-1);
687 		spin_unlock(&newf->file_lock);
688 		if (*errorp < 0)
689 			goto out_release;
690 		new_fdt = files_fdtable(newf);
691 		/*
692 		 * Reacquire the oldf lock and a pointer to its fd table
693 		 * who knows it may have a new bigger fd table. We need
694 		 * the latest pointer.
695 		 */
696 		spin_lock(&oldf->file_lock);
697 		old_fdt = files_fdtable(oldf);
698 	}
699 
700 	old_fds = old_fdt->fd;
701 	new_fds = new_fdt->fd;
702 
703 	memcpy(new_fdt->open_fds->fds_bits,
704 		old_fdt->open_fds->fds_bits, open_files/8);
705 	memcpy(new_fdt->close_on_exec->fds_bits,
706 		old_fdt->close_on_exec->fds_bits, open_files/8);
707 
708 	for (i = open_files; i != 0; i--) {
709 		struct file *f = *old_fds++;
710 		if (f) {
711 			get_file(f);
712 		} else {
713 			/*
714 			 * The fd may be claimed in the fd bitmap but not yet
715 			 * instantiated in the files array if a sibling thread
716 			 * is partway through open().  So make sure that this
717 			 * fd is available to the new process.
718 			 */
719 			FD_CLR(open_files - i, new_fdt->open_fds);
720 		}
721 		rcu_assign_pointer(*new_fds++, f);
722 	}
723 	spin_unlock(&oldf->file_lock);
724 
725 	/* compute the remainder to be cleared */
726 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
727 
728 	/* This is long word aligned thus could use a optimized version */
729 	memset(new_fds, 0, size);
730 
731 	if (new_fdt->max_fds > open_files) {
732 		int left = (new_fdt->max_fds-open_files)/8;
733 		int start = open_files / (8 * sizeof(unsigned long));
734 
735 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
736 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
737 	}
738 
739 	return newf;
740 
741 out_release:
742 	kmem_cache_free(files_cachep, newf);
743 out:
744 	return NULL;
745 }
746 
747 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
748 {
749 	struct files_struct *oldf, *newf;
750 	int error = 0;
751 
752 	/*
753 	 * A background process may not have any files ...
754 	 */
755 	oldf = current->files;
756 	if (!oldf)
757 		goto out;
758 
759 	if (clone_flags & CLONE_FILES) {
760 		atomic_inc(&oldf->count);
761 		goto out;
762 	}
763 
764 	/*
765 	 * Note: we may be using current for both targets (See exec.c)
766 	 * This works because we cache current->files (old) as oldf. Don't
767 	 * break this.
768 	 */
769 	tsk->files = NULL;
770 	newf = dup_fd(oldf, &error);
771 	if (!newf)
772 		goto out;
773 
774 	tsk->files = newf;
775 	error = 0;
776 out:
777 	return error;
778 }
779 
780 /*
781  *	Helper to unshare the files of the current task.
782  *	We don't want to expose copy_files internals to
783  *	the exec layer of the kernel.
784  */
785 
786 int unshare_files(void)
787 {
788 	struct files_struct *files  = current->files;
789 	int rc;
790 
791 	BUG_ON(!files);
792 
793 	/* This can race but the race causes us to copy when we don't
794 	   need to and drop the copy */
795 	if(atomic_read(&files->count) == 1)
796 	{
797 		atomic_inc(&files->count);
798 		return 0;
799 	}
800 	rc = copy_files(0, current);
801 	if(rc)
802 		current->files = files;
803 	return rc;
804 }
805 
806 EXPORT_SYMBOL(unshare_files);
807 
808 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
809 {
810 	struct sighand_struct *sig;
811 
812 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
813 		atomic_inc(&current->sighand->count);
814 		return 0;
815 	}
816 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
817 	rcu_assign_pointer(tsk->sighand, sig);
818 	if (!sig)
819 		return -ENOMEM;
820 	atomic_set(&sig->count, 1);
821 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
822 	return 0;
823 }
824 
825 void __cleanup_sighand(struct sighand_struct *sighand)
826 {
827 	if (atomic_dec_and_test(&sighand->count))
828 		kmem_cache_free(sighand_cachep, sighand);
829 }
830 
831 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
832 {
833 	struct signal_struct *sig;
834 	int ret;
835 
836 	if (clone_flags & CLONE_THREAD) {
837 		atomic_inc(&current->signal->count);
838 		atomic_inc(&current->signal->live);
839 		return 0;
840 	}
841 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
842 	tsk->signal = sig;
843 	if (!sig)
844 		return -ENOMEM;
845 
846 	ret = copy_thread_group_keys(tsk);
847 	if (ret < 0) {
848 		kmem_cache_free(signal_cachep, sig);
849 		return ret;
850 	}
851 
852 	atomic_set(&sig->count, 1);
853 	atomic_set(&sig->live, 1);
854 	init_waitqueue_head(&sig->wait_chldexit);
855 	sig->flags = 0;
856 	sig->group_exit_code = 0;
857 	sig->group_exit_task = NULL;
858 	sig->group_stop_count = 0;
859 	sig->curr_target = NULL;
860 	init_sigpending(&sig->shared_pending);
861 	INIT_LIST_HEAD(&sig->posix_timers);
862 
863 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
864 	sig->it_real_incr.tv64 = 0;
865 	sig->real_timer.function = it_real_fn;
866 	sig->tsk = tsk;
867 
868 	sig->it_virt_expires = cputime_zero;
869 	sig->it_virt_incr = cputime_zero;
870 	sig->it_prof_expires = cputime_zero;
871 	sig->it_prof_incr = cputime_zero;
872 
873 	sig->leader = 0;	/* session leadership doesn't inherit */
874 	sig->tty_old_pgrp = NULL;
875 
876 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
877 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
878 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
879 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
880 	sig->sum_sched_runtime = 0;
881 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
882 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
883 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
884 	taskstats_tgid_init(sig);
885 
886 	task_lock(current->group_leader);
887 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
888 	task_unlock(current->group_leader);
889 
890 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
891 		/*
892 		 * New sole thread in the process gets an expiry time
893 		 * of the whole CPU time limit.
894 		 */
895 		tsk->it_prof_expires =
896 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
897 	}
898 	acct_init_pacct(&sig->pacct);
899 
900 	return 0;
901 }
902 
903 void __cleanup_signal(struct signal_struct *sig)
904 {
905 	exit_thread_group_keys(sig);
906 	kmem_cache_free(signal_cachep, sig);
907 }
908 
909 static inline void cleanup_signal(struct task_struct *tsk)
910 {
911 	struct signal_struct *sig = tsk->signal;
912 
913 	atomic_dec(&sig->live);
914 
915 	if (atomic_dec_and_test(&sig->count))
916 		__cleanup_signal(sig);
917 }
918 
919 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
920 {
921 	unsigned long new_flags = p->flags;
922 
923 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
924 	new_flags |= PF_FORKNOEXEC;
925 	if (!(clone_flags & CLONE_PTRACE))
926 		p->ptrace = 0;
927 	p->flags = new_flags;
928 }
929 
930 asmlinkage long sys_set_tid_address(int __user *tidptr)
931 {
932 	current->clear_child_tid = tidptr;
933 
934 	return current->pid;
935 }
936 
937 static inline void rt_mutex_init_task(struct task_struct *p)
938 {
939 	spin_lock_init(&p->pi_lock);
940 #ifdef CONFIG_RT_MUTEXES
941 	plist_head_init(&p->pi_waiters, &p->pi_lock);
942 	p->pi_blocked_on = NULL;
943 #endif
944 }
945 
946 /*
947  * This creates a new process as a copy of the old one,
948  * but does not actually start it yet.
949  *
950  * It copies the registers, and all the appropriate
951  * parts of the process environment (as per the clone
952  * flags). The actual kick-off is left to the caller.
953  */
954 static struct task_struct *copy_process(unsigned long clone_flags,
955 					unsigned long stack_start,
956 					struct pt_regs *regs,
957 					unsigned long stack_size,
958 					int __user *parent_tidptr,
959 					int __user *child_tidptr,
960 					struct pid *pid)
961 {
962 	int retval;
963 	struct task_struct *p = NULL;
964 
965 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
966 		return ERR_PTR(-EINVAL);
967 
968 	/*
969 	 * Thread groups must share signals as well, and detached threads
970 	 * can only be started up within the thread group.
971 	 */
972 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
973 		return ERR_PTR(-EINVAL);
974 
975 	/*
976 	 * Shared signal handlers imply shared VM. By way of the above,
977 	 * thread groups also imply shared VM. Blocking this case allows
978 	 * for various simplifications in other code.
979 	 */
980 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
981 		return ERR_PTR(-EINVAL);
982 
983 	retval = security_task_create(clone_flags);
984 	if (retval)
985 		goto fork_out;
986 
987 	retval = -ENOMEM;
988 	p = dup_task_struct(current);
989 	if (!p)
990 		goto fork_out;
991 
992 	rt_mutex_init_task(p);
993 
994 #ifdef CONFIG_TRACE_IRQFLAGS
995 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
996 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
997 #endif
998 	retval = -EAGAIN;
999 	if (atomic_read(&p->user->processes) >=
1000 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1001 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1002 				p->user != &root_user)
1003 			goto bad_fork_free;
1004 	}
1005 
1006 	atomic_inc(&p->user->__count);
1007 	atomic_inc(&p->user->processes);
1008 	get_group_info(p->group_info);
1009 
1010 	/*
1011 	 * If multiple threads are within copy_process(), then this check
1012 	 * triggers too late. This doesn't hurt, the check is only there
1013 	 * to stop root fork bombs.
1014 	 */
1015 	if (nr_threads >= max_threads)
1016 		goto bad_fork_cleanup_count;
1017 
1018 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1019 		goto bad_fork_cleanup_count;
1020 
1021 	if (p->binfmt && !try_module_get(p->binfmt->module))
1022 		goto bad_fork_cleanup_put_domain;
1023 
1024 	p->did_exec = 0;
1025 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1026 	copy_flags(clone_flags, p);
1027 	p->pid = pid_nr(pid);
1028 	retval = -EFAULT;
1029 	if (clone_flags & CLONE_PARENT_SETTID)
1030 		if (put_user(p->pid, parent_tidptr))
1031 			goto bad_fork_cleanup_delays_binfmt;
1032 
1033 	INIT_LIST_HEAD(&p->children);
1034 	INIT_LIST_HEAD(&p->sibling);
1035 	p->vfork_done = NULL;
1036 	spin_lock_init(&p->alloc_lock);
1037 
1038 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1039 	init_sigpending(&p->pending);
1040 
1041 	p->utime = cputime_zero;
1042 	p->stime = cputime_zero;
1043 
1044 #ifdef CONFIG_TASK_XACCT
1045 	p->rchar = 0;		/* I/O counter: bytes read */
1046 	p->wchar = 0;		/* I/O counter: bytes written */
1047 	p->syscr = 0;		/* I/O counter: read syscalls */
1048 	p->syscw = 0;		/* I/O counter: write syscalls */
1049 #endif
1050 	task_io_accounting_init(p);
1051 	acct_clear_integrals(p);
1052 
1053  	p->it_virt_expires = cputime_zero;
1054 	p->it_prof_expires = cputime_zero;
1055  	p->it_sched_expires = 0;
1056  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1057  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1058  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1059 
1060 	p->lock_depth = -1;		/* -1 = no lock */
1061 	do_posix_clock_monotonic_gettime(&p->start_time);
1062 	p->security = NULL;
1063 	p->io_context = NULL;
1064 	p->io_wait = NULL;
1065 	p->audit_context = NULL;
1066 	cpuset_fork(p);
1067 #ifdef CONFIG_NUMA
1068  	p->mempolicy = mpol_copy(p->mempolicy);
1069  	if (IS_ERR(p->mempolicy)) {
1070  		retval = PTR_ERR(p->mempolicy);
1071  		p->mempolicy = NULL;
1072  		goto bad_fork_cleanup_cpuset;
1073  	}
1074 	mpol_fix_fork_child_flag(p);
1075 #endif
1076 #ifdef CONFIG_TRACE_IRQFLAGS
1077 	p->irq_events = 0;
1078 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1079 	p->hardirqs_enabled = 1;
1080 #else
1081 	p->hardirqs_enabled = 0;
1082 #endif
1083 	p->hardirq_enable_ip = 0;
1084 	p->hardirq_enable_event = 0;
1085 	p->hardirq_disable_ip = _THIS_IP_;
1086 	p->hardirq_disable_event = 0;
1087 	p->softirqs_enabled = 1;
1088 	p->softirq_enable_ip = _THIS_IP_;
1089 	p->softirq_enable_event = 0;
1090 	p->softirq_disable_ip = 0;
1091 	p->softirq_disable_event = 0;
1092 	p->hardirq_context = 0;
1093 	p->softirq_context = 0;
1094 #endif
1095 #ifdef CONFIG_LOCKDEP
1096 	p->lockdep_depth = 0; /* no locks held yet */
1097 	p->curr_chain_key = 0;
1098 	p->lockdep_recursion = 0;
1099 #endif
1100 
1101 #ifdef CONFIG_DEBUG_MUTEXES
1102 	p->blocked_on = NULL; /* not blocked yet */
1103 #endif
1104 
1105 	p->tgid = p->pid;
1106 	if (clone_flags & CLONE_THREAD)
1107 		p->tgid = current->tgid;
1108 
1109 	if ((retval = security_task_alloc(p)))
1110 		goto bad_fork_cleanup_policy;
1111 	if ((retval = audit_alloc(p)))
1112 		goto bad_fork_cleanup_security;
1113 	/* copy all the process information */
1114 	if ((retval = copy_semundo(clone_flags, p)))
1115 		goto bad_fork_cleanup_audit;
1116 	if ((retval = copy_files(clone_flags, p)))
1117 		goto bad_fork_cleanup_semundo;
1118 	if ((retval = copy_fs(clone_flags, p)))
1119 		goto bad_fork_cleanup_files;
1120 	if ((retval = copy_sighand(clone_flags, p)))
1121 		goto bad_fork_cleanup_fs;
1122 	if ((retval = copy_signal(clone_flags, p)))
1123 		goto bad_fork_cleanup_sighand;
1124 	if ((retval = copy_mm(clone_flags, p)))
1125 		goto bad_fork_cleanup_signal;
1126 	if ((retval = copy_keys(clone_flags, p)))
1127 		goto bad_fork_cleanup_mm;
1128 	if ((retval = copy_namespaces(clone_flags, p)))
1129 		goto bad_fork_cleanup_keys;
1130 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1131 	if (retval)
1132 		goto bad_fork_cleanup_namespaces;
1133 
1134 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1135 	/*
1136 	 * Clear TID on mm_release()?
1137 	 */
1138 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1139 	p->robust_list = NULL;
1140 #ifdef CONFIG_COMPAT
1141 	p->compat_robust_list = NULL;
1142 #endif
1143 	INIT_LIST_HEAD(&p->pi_state_list);
1144 	p->pi_state_cache = NULL;
1145 
1146 	/*
1147 	 * sigaltstack should be cleared when sharing the same VM
1148 	 */
1149 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1150 		p->sas_ss_sp = p->sas_ss_size = 0;
1151 
1152 	/*
1153 	 * Syscall tracing should be turned off in the child regardless
1154 	 * of CLONE_PTRACE.
1155 	 */
1156 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1157 #ifdef TIF_SYSCALL_EMU
1158 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1159 #endif
1160 
1161 	/* Our parent execution domain becomes current domain
1162 	   These must match for thread signalling to apply */
1163 	p->parent_exec_id = p->self_exec_id;
1164 
1165 	/* ok, now we should be set up.. */
1166 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1167 	p->pdeath_signal = 0;
1168 	p->exit_state = 0;
1169 
1170 	/*
1171 	 * Ok, make it visible to the rest of the system.
1172 	 * We dont wake it up yet.
1173 	 */
1174 	p->group_leader = p;
1175 	INIT_LIST_HEAD(&p->thread_group);
1176 	INIT_LIST_HEAD(&p->ptrace_children);
1177 	INIT_LIST_HEAD(&p->ptrace_list);
1178 
1179 	/* Perform scheduler related setup. Assign this task to a CPU. */
1180 	sched_fork(p, clone_flags);
1181 
1182 	/* Need tasklist lock for parent etc handling! */
1183 	write_lock_irq(&tasklist_lock);
1184 
1185 	/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1186 	p->ioprio = current->ioprio;
1187 
1188 	/*
1189 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1190 	 * not be changed, nor will its assigned CPU.
1191 	 *
1192 	 * The cpus_allowed mask of the parent may have changed after it was
1193 	 * copied first time - so re-copy it here, then check the child's CPU
1194 	 * to ensure it is on a valid CPU (and if not, just force it back to
1195 	 * parent's CPU). This avoids alot of nasty races.
1196 	 */
1197 	p->cpus_allowed = current->cpus_allowed;
1198 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1199 			!cpu_online(task_cpu(p))))
1200 		set_task_cpu(p, smp_processor_id());
1201 
1202 	/* CLONE_PARENT re-uses the old parent */
1203 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1204 		p->real_parent = current->real_parent;
1205 	else
1206 		p->real_parent = current;
1207 	p->parent = p->real_parent;
1208 
1209 	spin_lock(&current->sighand->siglock);
1210 
1211 	/*
1212 	 * Process group and session signals need to be delivered to just the
1213 	 * parent before the fork or both the parent and the child after the
1214 	 * fork. Restart if a signal comes in before we add the new process to
1215 	 * it's process group.
1216 	 * A fatal signal pending means that current will exit, so the new
1217 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1218  	 */
1219  	recalc_sigpending();
1220 	if (signal_pending(current)) {
1221 		spin_unlock(&current->sighand->siglock);
1222 		write_unlock_irq(&tasklist_lock);
1223 		retval = -ERESTARTNOINTR;
1224 		goto bad_fork_cleanup_namespaces;
1225 	}
1226 
1227 	if (clone_flags & CLONE_THREAD) {
1228 		p->group_leader = current->group_leader;
1229 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1230 
1231 		if (!cputime_eq(current->signal->it_virt_expires,
1232 				cputime_zero) ||
1233 		    !cputime_eq(current->signal->it_prof_expires,
1234 				cputime_zero) ||
1235 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1236 		    !list_empty(&current->signal->cpu_timers[0]) ||
1237 		    !list_empty(&current->signal->cpu_timers[1]) ||
1238 		    !list_empty(&current->signal->cpu_timers[2])) {
1239 			/*
1240 			 * Have child wake up on its first tick to check
1241 			 * for process CPU timers.
1242 			 */
1243 			p->it_prof_expires = jiffies_to_cputime(1);
1244 		}
1245 	}
1246 
1247 	if (likely(p->pid)) {
1248 		add_parent(p);
1249 		if (unlikely(p->ptrace & PT_PTRACED))
1250 			__ptrace_link(p, current->parent);
1251 
1252 		if (thread_group_leader(p)) {
1253 			p->signal->tty = current->signal->tty;
1254 			p->signal->pgrp = process_group(current);
1255 			set_signal_session(p->signal, process_session(current));
1256 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1257 			attach_pid(p, PIDTYPE_SID, task_session(current));
1258 
1259 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1260 			__get_cpu_var(process_counts)++;
1261 		}
1262 		attach_pid(p, PIDTYPE_PID, pid);
1263 		nr_threads++;
1264 	}
1265 
1266 	total_forks++;
1267 	spin_unlock(&current->sighand->siglock);
1268 	write_unlock_irq(&tasklist_lock);
1269 	proc_fork_connector(p);
1270 	return p;
1271 
1272 bad_fork_cleanup_namespaces:
1273 	exit_task_namespaces(p);
1274 bad_fork_cleanup_keys:
1275 	exit_keys(p);
1276 bad_fork_cleanup_mm:
1277 	if (p->mm)
1278 		mmput(p->mm);
1279 bad_fork_cleanup_signal:
1280 	cleanup_signal(p);
1281 bad_fork_cleanup_sighand:
1282 	__cleanup_sighand(p->sighand);
1283 bad_fork_cleanup_fs:
1284 	exit_fs(p); /* blocking */
1285 bad_fork_cleanup_files:
1286 	exit_files(p); /* blocking */
1287 bad_fork_cleanup_semundo:
1288 	exit_sem(p);
1289 bad_fork_cleanup_audit:
1290 	audit_free(p);
1291 bad_fork_cleanup_security:
1292 	security_task_free(p);
1293 bad_fork_cleanup_policy:
1294 #ifdef CONFIG_NUMA
1295 	mpol_free(p->mempolicy);
1296 bad_fork_cleanup_cpuset:
1297 #endif
1298 	cpuset_exit(p);
1299 bad_fork_cleanup_delays_binfmt:
1300 	delayacct_tsk_free(p);
1301 	if (p->binfmt)
1302 		module_put(p->binfmt->module);
1303 bad_fork_cleanup_put_domain:
1304 	module_put(task_thread_info(p)->exec_domain->module);
1305 bad_fork_cleanup_count:
1306 	put_group_info(p->group_info);
1307 	atomic_dec(&p->user->processes);
1308 	free_uid(p->user);
1309 bad_fork_free:
1310 	free_task(p);
1311 fork_out:
1312 	return ERR_PTR(retval);
1313 }
1314 
1315 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1316 {
1317 	memset(regs, 0, sizeof(struct pt_regs));
1318 	return regs;
1319 }
1320 
1321 struct task_struct * __cpuinit fork_idle(int cpu)
1322 {
1323 	struct task_struct *task;
1324 	struct pt_regs regs;
1325 
1326 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
1327 				&init_struct_pid);
1328 	if (!IS_ERR(task))
1329 		init_idle(task, cpu);
1330 
1331 	return task;
1332 }
1333 
1334 static inline int fork_traceflag (unsigned clone_flags)
1335 {
1336 	if (clone_flags & CLONE_UNTRACED)
1337 		return 0;
1338 	else if (clone_flags & CLONE_VFORK) {
1339 		if (current->ptrace & PT_TRACE_VFORK)
1340 			return PTRACE_EVENT_VFORK;
1341 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1342 		if (current->ptrace & PT_TRACE_CLONE)
1343 			return PTRACE_EVENT_CLONE;
1344 	} else if (current->ptrace & PT_TRACE_FORK)
1345 		return PTRACE_EVENT_FORK;
1346 
1347 	return 0;
1348 }
1349 
1350 /*
1351  *  Ok, this is the main fork-routine.
1352  *
1353  * It copies the process, and if successful kick-starts
1354  * it and waits for it to finish using the VM if required.
1355  */
1356 long do_fork(unsigned long clone_flags,
1357 	      unsigned long stack_start,
1358 	      struct pt_regs *regs,
1359 	      unsigned long stack_size,
1360 	      int __user *parent_tidptr,
1361 	      int __user *child_tidptr)
1362 {
1363 	struct task_struct *p;
1364 	int trace = 0;
1365 	struct pid *pid = alloc_pid();
1366 	long nr;
1367 
1368 	if (!pid)
1369 		return -EAGAIN;
1370 	nr = pid->nr;
1371 	if (unlikely(current->ptrace)) {
1372 		trace = fork_traceflag (clone_flags);
1373 		if (trace)
1374 			clone_flags |= CLONE_PTRACE;
1375 	}
1376 
1377 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1378 	/*
1379 	 * Do this prior waking up the new thread - the thread pointer
1380 	 * might get invalid after that point, if the thread exits quickly.
1381 	 */
1382 	if (!IS_ERR(p)) {
1383 		struct completion vfork;
1384 
1385 		if (clone_flags & CLONE_VFORK) {
1386 			p->vfork_done = &vfork;
1387 			init_completion(&vfork);
1388 		}
1389 
1390 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1391 			/*
1392 			 * We'll start up with an immediate SIGSTOP.
1393 			 */
1394 			sigaddset(&p->pending.signal, SIGSTOP);
1395 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1396 		}
1397 
1398 		if (!(clone_flags & CLONE_STOPPED))
1399 			wake_up_new_task(p, clone_flags);
1400 		else
1401 			p->state = TASK_STOPPED;
1402 
1403 		if (unlikely (trace)) {
1404 			current->ptrace_message = nr;
1405 			ptrace_notify ((trace << 8) | SIGTRAP);
1406 		}
1407 
1408 		if (clone_flags & CLONE_VFORK) {
1409 			freezer_do_not_count();
1410 			wait_for_completion(&vfork);
1411 			freezer_count();
1412 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1413 				current->ptrace_message = nr;
1414 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1415 			}
1416 		}
1417 	} else {
1418 		free_pid(pid);
1419 		nr = PTR_ERR(p);
1420 	}
1421 	return nr;
1422 }
1423 
1424 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1425 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1426 #endif
1427 
1428 static void sighand_ctor(void *data, struct kmem_cache *cachep,
1429 			unsigned long flags)
1430 {
1431 	struct sighand_struct *sighand = data;
1432 
1433 	spin_lock_init(&sighand->siglock);
1434 	INIT_LIST_HEAD(&sighand->signalfd_list);
1435 }
1436 
1437 void __init proc_caches_init(void)
1438 {
1439 	sighand_cachep = kmem_cache_create("sighand_cache",
1440 			sizeof(struct sighand_struct), 0,
1441 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1442 			sighand_ctor, NULL);
1443 	signal_cachep = kmem_cache_create("signal_cache",
1444 			sizeof(struct signal_struct), 0,
1445 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1446 	files_cachep = kmem_cache_create("files_cache",
1447 			sizeof(struct files_struct), 0,
1448 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1449 	fs_cachep = kmem_cache_create("fs_cache",
1450 			sizeof(struct fs_struct), 0,
1451 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1452 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1453 			sizeof(struct vm_area_struct), 0,
1454 			SLAB_PANIC, NULL, NULL);
1455 	mm_cachep = kmem_cache_create("mm_struct",
1456 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1457 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1458 }
1459 
1460 /*
1461  * Check constraints on flags passed to the unshare system call and
1462  * force unsharing of additional process context as appropriate.
1463  */
1464 static inline void check_unshare_flags(unsigned long *flags_ptr)
1465 {
1466 	/*
1467 	 * If unsharing a thread from a thread group, must also
1468 	 * unshare vm.
1469 	 */
1470 	if (*flags_ptr & CLONE_THREAD)
1471 		*flags_ptr |= CLONE_VM;
1472 
1473 	/*
1474 	 * If unsharing vm, must also unshare signal handlers.
1475 	 */
1476 	if (*flags_ptr & CLONE_VM)
1477 		*flags_ptr |= CLONE_SIGHAND;
1478 
1479 	/*
1480 	 * If unsharing signal handlers and the task was created
1481 	 * using CLONE_THREAD, then must unshare the thread
1482 	 */
1483 	if ((*flags_ptr & CLONE_SIGHAND) &&
1484 	    (atomic_read(&current->signal->count) > 1))
1485 		*flags_ptr |= CLONE_THREAD;
1486 
1487 	/*
1488 	 * If unsharing namespace, must also unshare filesystem information.
1489 	 */
1490 	if (*flags_ptr & CLONE_NEWNS)
1491 		*flags_ptr |= CLONE_FS;
1492 }
1493 
1494 /*
1495  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1496  */
1497 static int unshare_thread(unsigned long unshare_flags)
1498 {
1499 	if (unshare_flags & CLONE_THREAD)
1500 		return -EINVAL;
1501 
1502 	return 0;
1503 }
1504 
1505 /*
1506  * Unshare the filesystem structure if it is being shared
1507  */
1508 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1509 {
1510 	struct fs_struct *fs = current->fs;
1511 
1512 	if ((unshare_flags & CLONE_FS) &&
1513 	    (fs && atomic_read(&fs->count) > 1)) {
1514 		*new_fsp = __copy_fs_struct(current->fs);
1515 		if (!*new_fsp)
1516 			return -ENOMEM;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 /*
1523  * Unsharing of sighand is not supported yet
1524  */
1525 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1526 {
1527 	struct sighand_struct *sigh = current->sighand;
1528 
1529 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1530 		return -EINVAL;
1531 	else
1532 		return 0;
1533 }
1534 
1535 /*
1536  * Unshare vm if it is being shared
1537  */
1538 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1539 {
1540 	struct mm_struct *mm = current->mm;
1541 
1542 	if ((unshare_flags & CLONE_VM) &&
1543 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1544 		return -EINVAL;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * Unshare file descriptor table if it is being shared
1552  */
1553 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1554 {
1555 	struct files_struct *fd = current->files;
1556 	int error = 0;
1557 
1558 	if ((unshare_flags & CLONE_FILES) &&
1559 	    (fd && atomic_read(&fd->count) > 1)) {
1560 		*new_fdp = dup_fd(fd, &error);
1561 		if (!*new_fdp)
1562 			return error;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 /*
1569  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1570  * supported yet
1571  */
1572 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1573 {
1574 	if (unshare_flags & CLONE_SYSVSEM)
1575 		return -EINVAL;
1576 
1577 	return 0;
1578 }
1579 
1580 /*
1581  * unshare allows a process to 'unshare' part of the process
1582  * context which was originally shared using clone.  copy_*
1583  * functions used by do_fork() cannot be used here directly
1584  * because they modify an inactive task_struct that is being
1585  * constructed. Here we are modifying the current, active,
1586  * task_struct.
1587  */
1588 asmlinkage long sys_unshare(unsigned long unshare_flags)
1589 {
1590 	int err = 0;
1591 	struct fs_struct *fs, *new_fs = NULL;
1592 	struct sighand_struct *new_sigh = NULL;
1593 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1594 	struct files_struct *fd, *new_fd = NULL;
1595 	struct sem_undo_list *new_ulist = NULL;
1596 	struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1597 
1598 	check_unshare_flags(&unshare_flags);
1599 
1600 	/* Return -EINVAL for all unsupported flags */
1601 	err = -EINVAL;
1602 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1603 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1604 				CLONE_NEWUTS|CLONE_NEWIPC))
1605 		goto bad_unshare_out;
1606 
1607 	if ((err = unshare_thread(unshare_flags)))
1608 		goto bad_unshare_out;
1609 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1610 		goto bad_unshare_cleanup_thread;
1611 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1612 		goto bad_unshare_cleanup_fs;
1613 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1614 		goto bad_unshare_cleanup_sigh;
1615 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1616 		goto bad_unshare_cleanup_vm;
1617 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1618 		goto bad_unshare_cleanup_fd;
1619 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1620 			new_fs)))
1621 		goto bad_unshare_cleanup_semundo;
1622 
1623 	if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1624 
1625 		task_lock(current);
1626 
1627 		if (new_nsproxy) {
1628 			old_nsproxy = current->nsproxy;
1629 			current->nsproxy = new_nsproxy;
1630 			new_nsproxy = old_nsproxy;
1631 		}
1632 
1633 		if (new_fs) {
1634 			fs = current->fs;
1635 			current->fs = new_fs;
1636 			new_fs = fs;
1637 		}
1638 
1639 		if (new_mm) {
1640 			mm = current->mm;
1641 			active_mm = current->active_mm;
1642 			current->mm = new_mm;
1643 			current->active_mm = new_mm;
1644 			activate_mm(active_mm, new_mm);
1645 			new_mm = mm;
1646 		}
1647 
1648 		if (new_fd) {
1649 			fd = current->files;
1650 			current->files = new_fd;
1651 			new_fd = fd;
1652 		}
1653 
1654 		task_unlock(current);
1655 	}
1656 
1657 	if (new_nsproxy)
1658 		put_nsproxy(new_nsproxy);
1659 
1660 bad_unshare_cleanup_semundo:
1661 bad_unshare_cleanup_fd:
1662 	if (new_fd)
1663 		put_files_struct(new_fd);
1664 
1665 bad_unshare_cleanup_vm:
1666 	if (new_mm)
1667 		mmput(new_mm);
1668 
1669 bad_unshare_cleanup_sigh:
1670 	if (new_sigh)
1671 		if (atomic_dec_and_test(&new_sigh->count))
1672 			kmem_cache_free(sighand_cachep, new_sigh);
1673 
1674 bad_unshare_cleanup_fs:
1675 	if (new_fs)
1676 		put_fs_struct(new_fs);
1677 
1678 bad_unshare_cleanup_thread:
1679 bad_unshare_out:
1680 	return err;
1681 }
1682