xref: /openbmc/linux/kernel/fork.c (revision 643d1f7f)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53 #include <linux/proc_fs.h>
54 #include <linux/blkdev.h>
55 
56 #include <asm/pgtable.h>
57 #include <asm/pgalloc.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/cacheflush.h>
61 #include <asm/tlbflush.h>
62 
63 /*
64  * Protected counters by write_lock_irq(&tasklist_lock)
65  */
66 unsigned long total_forks;	/* Handle normal Linux uptimes. */
67 int nr_threads; 		/* The idle threads do not count.. */
68 
69 int max_threads;		/* tunable limit on nr_threads */
70 
71 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
72 
73 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
74 
75 int nr_processes(void)
76 {
77 	int cpu;
78 	int total = 0;
79 
80 	for_each_online_cpu(cpu)
81 		total += per_cpu(process_counts, cpu);
82 
83 	return total;
84 }
85 
86 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
87 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
88 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
89 static struct kmem_cache *task_struct_cachep;
90 #endif
91 
92 /* SLAB cache for signal_struct structures (tsk->signal) */
93 static struct kmem_cache *signal_cachep;
94 
95 /* SLAB cache for sighand_struct structures (tsk->sighand) */
96 struct kmem_cache *sighand_cachep;
97 
98 /* SLAB cache for files_struct structures (tsk->files) */
99 struct kmem_cache *files_cachep;
100 
101 /* SLAB cache for fs_struct structures (tsk->fs) */
102 struct kmem_cache *fs_cachep;
103 
104 /* SLAB cache for vm_area_struct structures */
105 struct kmem_cache *vm_area_cachep;
106 
107 /* SLAB cache for mm_struct structures (tsk->mm) */
108 static struct kmem_cache *mm_cachep;
109 
110 void free_task(struct task_struct *tsk)
111 {
112 	prop_local_destroy_single(&tsk->dirties);
113 	free_thread_info(tsk->stack);
114 	rt_mutex_debug_task_free(tsk);
115 	free_task_struct(tsk);
116 }
117 EXPORT_SYMBOL(free_task);
118 
119 void __put_task_struct(struct task_struct *tsk)
120 {
121 	WARN_ON(!tsk->exit_state);
122 	WARN_ON(atomic_read(&tsk->usage));
123 	WARN_ON(tsk == current);
124 
125 	security_task_free(tsk);
126 	free_uid(tsk->user);
127 	put_group_info(tsk->group_info);
128 	delayacct_tsk_free(tsk);
129 
130 	if (!profile_handoff_task(tsk))
131 		free_task(tsk);
132 }
133 
134 void __init fork_init(unsigned long mempages)
135 {
136 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
137 #ifndef ARCH_MIN_TASKALIGN
138 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
139 #endif
140 	/* create a slab on which task_structs can be allocated */
141 	task_struct_cachep =
142 		kmem_cache_create("task_struct", sizeof(struct task_struct),
143 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
144 #endif
145 
146 	/*
147 	 * The default maximum number of threads is set to a safe
148 	 * value: the thread structures can take up at most half
149 	 * of memory.
150 	 */
151 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
152 
153 	/*
154 	 * we need to allow at least 20 threads to boot a system
155 	 */
156 	if(max_threads < 20)
157 		max_threads = 20;
158 
159 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
160 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
161 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
162 		init_task.signal->rlim[RLIMIT_NPROC];
163 }
164 
165 static struct task_struct *dup_task_struct(struct task_struct *orig)
166 {
167 	struct task_struct *tsk;
168 	struct thread_info *ti;
169 	int err;
170 
171 	prepare_to_copy(orig);
172 
173 	tsk = alloc_task_struct();
174 	if (!tsk)
175 		return NULL;
176 
177 	ti = alloc_thread_info(tsk);
178 	if (!ti) {
179 		free_task_struct(tsk);
180 		return NULL;
181 	}
182 
183 	*tsk = *orig;
184 	tsk->stack = ti;
185 
186 	err = prop_local_init_single(&tsk->dirties);
187 	if (err) {
188 		free_thread_info(ti);
189 		free_task_struct(tsk);
190 		return NULL;
191 	}
192 
193 	setup_thread_stack(tsk, orig);
194 
195 #ifdef CONFIG_CC_STACKPROTECTOR
196 	tsk->stack_canary = get_random_int();
197 #endif
198 
199 	/* One for us, one for whoever does the "release_task()" (usually parent) */
200 	atomic_set(&tsk->usage,2);
201 	atomic_set(&tsk->fs_excl, 0);
202 #ifdef CONFIG_BLK_DEV_IO_TRACE
203 	tsk->btrace_seq = 0;
204 #endif
205 	tsk->splice_pipe = NULL;
206 	return tsk;
207 }
208 
209 #ifdef CONFIG_MMU
210 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
211 {
212 	struct vm_area_struct *mpnt, *tmp, **pprev;
213 	struct rb_node **rb_link, *rb_parent;
214 	int retval;
215 	unsigned long charge;
216 	struct mempolicy *pol;
217 
218 	down_write(&oldmm->mmap_sem);
219 	flush_cache_dup_mm(oldmm);
220 	/*
221 	 * Not linked in yet - no deadlock potential:
222 	 */
223 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
224 
225 	mm->locked_vm = 0;
226 	mm->mmap = NULL;
227 	mm->mmap_cache = NULL;
228 	mm->free_area_cache = oldmm->mmap_base;
229 	mm->cached_hole_size = ~0UL;
230 	mm->map_count = 0;
231 	cpus_clear(mm->cpu_vm_mask);
232 	mm->mm_rb = RB_ROOT;
233 	rb_link = &mm->mm_rb.rb_node;
234 	rb_parent = NULL;
235 	pprev = &mm->mmap;
236 
237 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
238 		struct file *file;
239 
240 		if (mpnt->vm_flags & VM_DONTCOPY) {
241 			long pages = vma_pages(mpnt);
242 			mm->total_vm -= pages;
243 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
244 								-pages);
245 			continue;
246 		}
247 		charge = 0;
248 		if (mpnt->vm_flags & VM_ACCOUNT) {
249 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
250 			if (security_vm_enough_memory(len))
251 				goto fail_nomem;
252 			charge = len;
253 		}
254 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
255 		if (!tmp)
256 			goto fail_nomem;
257 		*tmp = *mpnt;
258 		pol = mpol_copy(vma_policy(mpnt));
259 		retval = PTR_ERR(pol);
260 		if (IS_ERR(pol))
261 			goto fail_nomem_policy;
262 		vma_set_policy(tmp, pol);
263 		tmp->vm_flags &= ~VM_LOCKED;
264 		tmp->vm_mm = mm;
265 		tmp->vm_next = NULL;
266 		anon_vma_link(tmp);
267 		file = tmp->vm_file;
268 		if (file) {
269 			struct inode *inode = file->f_path.dentry->d_inode;
270 			get_file(file);
271 			if (tmp->vm_flags & VM_DENYWRITE)
272 				atomic_dec(&inode->i_writecount);
273 
274 			/* insert tmp into the share list, just after mpnt */
275 			spin_lock(&file->f_mapping->i_mmap_lock);
276 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
277 			flush_dcache_mmap_lock(file->f_mapping);
278 			vma_prio_tree_add(tmp, mpnt);
279 			flush_dcache_mmap_unlock(file->f_mapping);
280 			spin_unlock(&file->f_mapping->i_mmap_lock);
281 		}
282 
283 		/*
284 		 * Link in the new vma and copy the page table entries.
285 		 */
286 		*pprev = tmp;
287 		pprev = &tmp->vm_next;
288 
289 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
290 		rb_link = &tmp->vm_rb.rb_right;
291 		rb_parent = &tmp->vm_rb;
292 
293 		mm->map_count++;
294 		retval = copy_page_range(mm, oldmm, mpnt);
295 
296 		if (tmp->vm_ops && tmp->vm_ops->open)
297 			tmp->vm_ops->open(tmp);
298 
299 		if (retval)
300 			goto out;
301 	}
302 	/* a new mm has just been created */
303 	arch_dup_mmap(oldmm, mm);
304 	retval = 0;
305 out:
306 	up_write(&mm->mmap_sem);
307 	flush_tlb_mm(oldmm);
308 	up_write(&oldmm->mmap_sem);
309 	return retval;
310 fail_nomem_policy:
311 	kmem_cache_free(vm_area_cachep, tmp);
312 fail_nomem:
313 	retval = -ENOMEM;
314 	vm_unacct_memory(charge);
315 	goto out;
316 }
317 
318 static inline int mm_alloc_pgd(struct mm_struct * mm)
319 {
320 	mm->pgd = pgd_alloc(mm);
321 	if (unlikely(!mm->pgd))
322 		return -ENOMEM;
323 	return 0;
324 }
325 
326 static inline void mm_free_pgd(struct mm_struct * mm)
327 {
328 	pgd_free(mm->pgd);
329 }
330 #else
331 #define dup_mmap(mm, oldmm)	(0)
332 #define mm_alloc_pgd(mm)	(0)
333 #define mm_free_pgd(mm)
334 #endif /* CONFIG_MMU */
335 
336 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
337 
338 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
339 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
340 
341 #include <linux/init_task.h>
342 
343 static struct mm_struct * mm_init(struct mm_struct * mm)
344 {
345 	atomic_set(&mm->mm_users, 1);
346 	atomic_set(&mm->mm_count, 1);
347 	init_rwsem(&mm->mmap_sem);
348 	INIT_LIST_HEAD(&mm->mmlist);
349 	mm->flags = (current->mm) ? current->mm->flags
350 				  : MMF_DUMP_FILTER_DEFAULT;
351 	mm->core_waiters = 0;
352 	mm->nr_ptes = 0;
353 	set_mm_counter(mm, file_rss, 0);
354 	set_mm_counter(mm, anon_rss, 0);
355 	spin_lock_init(&mm->page_table_lock);
356 	rwlock_init(&mm->ioctx_list_lock);
357 	mm->ioctx_list = NULL;
358 	mm->free_area_cache = TASK_UNMAPPED_BASE;
359 	mm->cached_hole_size = ~0UL;
360 
361 	if (likely(!mm_alloc_pgd(mm))) {
362 		mm->def_flags = 0;
363 		return mm;
364 	}
365 	free_mm(mm);
366 	return NULL;
367 }
368 
369 /*
370  * Allocate and initialize an mm_struct.
371  */
372 struct mm_struct * mm_alloc(void)
373 {
374 	struct mm_struct * mm;
375 
376 	mm = allocate_mm();
377 	if (mm) {
378 		memset(mm, 0, sizeof(*mm));
379 		mm = mm_init(mm);
380 	}
381 	return mm;
382 }
383 
384 /*
385  * Called when the last reference to the mm
386  * is dropped: either by a lazy thread or by
387  * mmput. Free the page directory and the mm.
388  */
389 void fastcall __mmdrop(struct mm_struct *mm)
390 {
391 	BUG_ON(mm == &init_mm);
392 	mm_free_pgd(mm);
393 	destroy_context(mm);
394 	free_mm(mm);
395 }
396 EXPORT_SYMBOL_GPL(__mmdrop);
397 
398 /*
399  * Decrement the use count and release all resources for an mm.
400  */
401 void mmput(struct mm_struct *mm)
402 {
403 	might_sleep();
404 
405 	if (atomic_dec_and_test(&mm->mm_users)) {
406 		exit_aio(mm);
407 		exit_mmap(mm);
408 		if (!list_empty(&mm->mmlist)) {
409 			spin_lock(&mmlist_lock);
410 			list_del(&mm->mmlist);
411 			spin_unlock(&mmlist_lock);
412 		}
413 		put_swap_token(mm);
414 		mmdrop(mm);
415 	}
416 }
417 EXPORT_SYMBOL_GPL(mmput);
418 
419 /**
420  * get_task_mm - acquire a reference to the task's mm
421  *
422  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
423  * this kernel workthread has transiently adopted a user mm with use_mm,
424  * to do its AIO) is not set and if so returns a reference to it, after
425  * bumping up the use count.  User must release the mm via mmput()
426  * after use.  Typically used by /proc and ptrace.
427  */
428 struct mm_struct *get_task_mm(struct task_struct *task)
429 {
430 	struct mm_struct *mm;
431 
432 	task_lock(task);
433 	mm = task->mm;
434 	if (mm) {
435 		if (task->flags & PF_BORROWED_MM)
436 			mm = NULL;
437 		else
438 			atomic_inc(&mm->mm_users);
439 	}
440 	task_unlock(task);
441 	return mm;
442 }
443 EXPORT_SYMBOL_GPL(get_task_mm);
444 
445 /* Please note the differences between mmput and mm_release.
446  * mmput is called whenever we stop holding onto a mm_struct,
447  * error success whatever.
448  *
449  * mm_release is called after a mm_struct has been removed
450  * from the current process.
451  *
452  * This difference is important for error handling, when we
453  * only half set up a mm_struct for a new process and need to restore
454  * the old one.  Because we mmput the new mm_struct before
455  * restoring the old one. . .
456  * Eric Biederman 10 January 1998
457  */
458 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
459 {
460 	struct completion *vfork_done = tsk->vfork_done;
461 
462 	/* Get rid of any cached register state */
463 	deactivate_mm(tsk, mm);
464 
465 	/* notify parent sleeping on vfork() */
466 	if (vfork_done) {
467 		tsk->vfork_done = NULL;
468 		complete(vfork_done);
469 	}
470 
471 	/*
472 	 * If we're exiting normally, clear a user-space tid field if
473 	 * requested.  We leave this alone when dying by signal, to leave
474 	 * the value intact in a core dump, and to save the unnecessary
475 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
476 	 */
477 	if (tsk->clear_child_tid
478 	    && !(tsk->flags & PF_SIGNALED)
479 	    && atomic_read(&mm->mm_users) > 1) {
480 		u32 __user * tidptr = tsk->clear_child_tid;
481 		tsk->clear_child_tid = NULL;
482 
483 		/*
484 		 * We don't check the error code - if userspace has
485 		 * not set up a proper pointer then tough luck.
486 		 */
487 		put_user(0, tidptr);
488 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
489 	}
490 }
491 
492 /*
493  * Allocate a new mm structure and copy contents from the
494  * mm structure of the passed in task structure.
495  */
496 static struct mm_struct *dup_mm(struct task_struct *tsk)
497 {
498 	struct mm_struct *mm, *oldmm = current->mm;
499 	int err;
500 
501 	if (!oldmm)
502 		return NULL;
503 
504 	mm = allocate_mm();
505 	if (!mm)
506 		goto fail_nomem;
507 
508 	memcpy(mm, oldmm, sizeof(*mm));
509 
510 	/* Initializing for Swap token stuff */
511 	mm->token_priority = 0;
512 	mm->last_interval = 0;
513 
514 	if (!mm_init(mm))
515 		goto fail_nomem;
516 
517 	if (init_new_context(tsk, mm))
518 		goto fail_nocontext;
519 
520 	err = dup_mmap(mm, oldmm);
521 	if (err)
522 		goto free_pt;
523 
524 	mm->hiwater_rss = get_mm_rss(mm);
525 	mm->hiwater_vm = mm->total_vm;
526 
527 	return mm;
528 
529 free_pt:
530 	mmput(mm);
531 
532 fail_nomem:
533 	return NULL;
534 
535 fail_nocontext:
536 	/*
537 	 * If init_new_context() failed, we cannot use mmput() to free the mm
538 	 * because it calls destroy_context()
539 	 */
540 	mm_free_pgd(mm);
541 	free_mm(mm);
542 	return NULL;
543 }
544 
545 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
546 {
547 	struct mm_struct * mm, *oldmm;
548 	int retval;
549 
550 	tsk->min_flt = tsk->maj_flt = 0;
551 	tsk->nvcsw = tsk->nivcsw = 0;
552 
553 	tsk->mm = NULL;
554 	tsk->active_mm = NULL;
555 
556 	/*
557 	 * Are we cloning a kernel thread?
558 	 *
559 	 * We need to steal a active VM for that..
560 	 */
561 	oldmm = current->mm;
562 	if (!oldmm)
563 		return 0;
564 
565 	if (clone_flags & CLONE_VM) {
566 		atomic_inc(&oldmm->mm_users);
567 		mm = oldmm;
568 		goto good_mm;
569 	}
570 
571 	retval = -ENOMEM;
572 	mm = dup_mm(tsk);
573 	if (!mm)
574 		goto fail_nomem;
575 
576 good_mm:
577 	/* Initializing for Swap token stuff */
578 	mm->token_priority = 0;
579 	mm->last_interval = 0;
580 
581 	tsk->mm = mm;
582 	tsk->active_mm = mm;
583 	return 0;
584 
585 fail_nomem:
586 	return retval;
587 }
588 
589 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
590 {
591 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
592 	/* We don't need to lock fs - think why ;-) */
593 	if (fs) {
594 		atomic_set(&fs->count, 1);
595 		rwlock_init(&fs->lock);
596 		fs->umask = old->umask;
597 		read_lock(&old->lock);
598 		fs->rootmnt = mntget(old->rootmnt);
599 		fs->root = dget(old->root);
600 		fs->pwdmnt = mntget(old->pwdmnt);
601 		fs->pwd = dget(old->pwd);
602 		if (old->altroot) {
603 			fs->altrootmnt = mntget(old->altrootmnt);
604 			fs->altroot = dget(old->altroot);
605 		} else {
606 			fs->altrootmnt = NULL;
607 			fs->altroot = NULL;
608 		}
609 		read_unlock(&old->lock);
610 	}
611 	return fs;
612 }
613 
614 struct fs_struct *copy_fs_struct(struct fs_struct *old)
615 {
616 	return __copy_fs_struct(old);
617 }
618 
619 EXPORT_SYMBOL_GPL(copy_fs_struct);
620 
621 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
622 {
623 	if (clone_flags & CLONE_FS) {
624 		atomic_inc(&current->fs->count);
625 		return 0;
626 	}
627 	tsk->fs = __copy_fs_struct(current->fs);
628 	if (!tsk->fs)
629 		return -ENOMEM;
630 	return 0;
631 }
632 
633 static int count_open_files(struct fdtable *fdt)
634 {
635 	int size = fdt->max_fds;
636 	int i;
637 
638 	/* Find the last open fd */
639 	for (i = size/(8*sizeof(long)); i > 0; ) {
640 		if (fdt->open_fds->fds_bits[--i])
641 			break;
642 	}
643 	i = (i+1) * 8 * sizeof(long);
644 	return i;
645 }
646 
647 static struct files_struct *alloc_files(void)
648 {
649 	struct files_struct *newf;
650 	struct fdtable *fdt;
651 
652 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
653 	if (!newf)
654 		goto out;
655 
656 	atomic_set(&newf->count, 1);
657 
658 	spin_lock_init(&newf->file_lock);
659 	newf->next_fd = 0;
660 	fdt = &newf->fdtab;
661 	fdt->max_fds = NR_OPEN_DEFAULT;
662 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
663 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
664 	fdt->fd = &newf->fd_array[0];
665 	INIT_RCU_HEAD(&fdt->rcu);
666 	fdt->next = NULL;
667 	rcu_assign_pointer(newf->fdt, fdt);
668 out:
669 	return newf;
670 }
671 
672 /*
673  * Allocate a new files structure and copy contents from the
674  * passed in files structure.
675  * errorp will be valid only when the returned files_struct is NULL.
676  */
677 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
678 {
679 	struct files_struct *newf;
680 	struct file **old_fds, **new_fds;
681 	int open_files, size, i;
682 	struct fdtable *old_fdt, *new_fdt;
683 
684 	*errorp = -ENOMEM;
685 	newf = alloc_files();
686 	if (!newf)
687 		goto out;
688 
689 	spin_lock(&oldf->file_lock);
690 	old_fdt = files_fdtable(oldf);
691 	new_fdt = files_fdtable(newf);
692 	open_files = count_open_files(old_fdt);
693 
694 	/*
695 	 * Check whether we need to allocate a larger fd array and fd set.
696 	 * Note: we're not a clone task, so the open count won't change.
697 	 */
698 	if (open_files > new_fdt->max_fds) {
699 		new_fdt->max_fds = 0;
700 		spin_unlock(&oldf->file_lock);
701 		spin_lock(&newf->file_lock);
702 		*errorp = expand_files(newf, open_files-1);
703 		spin_unlock(&newf->file_lock);
704 		if (*errorp < 0)
705 			goto out_release;
706 		new_fdt = files_fdtable(newf);
707 		/*
708 		 * Reacquire the oldf lock and a pointer to its fd table
709 		 * who knows it may have a new bigger fd table. We need
710 		 * the latest pointer.
711 		 */
712 		spin_lock(&oldf->file_lock);
713 		old_fdt = files_fdtable(oldf);
714 	}
715 
716 	old_fds = old_fdt->fd;
717 	new_fds = new_fdt->fd;
718 
719 	memcpy(new_fdt->open_fds->fds_bits,
720 		old_fdt->open_fds->fds_bits, open_files/8);
721 	memcpy(new_fdt->close_on_exec->fds_bits,
722 		old_fdt->close_on_exec->fds_bits, open_files/8);
723 
724 	for (i = open_files; i != 0; i--) {
725 		struct file *f = *old_fds++;
726 		if (f) {
727 			get_file(f);
728 		} else {
729 			/*
730 			 * The fd may be claimed in the fd bitmap but not yet
731 			 * instantiated in the files array if a sibling thread
732 			 * is partway through open().  So make sure that this
733 			 * fd is available to the new process.
734 			 */
735 			FD_CLR(open_files - i, new_fdt->open_fds);
736 		}
737 		rcu_assign_pointer(*new_fds++, f);
738 	}
739 	spin_unlock(&oldf->file_lock);
740 
741 	/* compute the remainder to be cleared */
742 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
743 
744 	/* This is long word aligned thus could use a optimized version */
745 	memset(new_fds, 0, size);
746 
747 	if (new_fdt->max_fds > open_files) {
748 		int left = (new_fdt->max_fds-open_files)/8;
749 		int start = open_files / (8 * sizeof(unsigned long));
750 
751 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
752 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
753 	}
754 
755 	return newf;
756 
757 out_release:
758 	kmem_cache_free(files_cachep, newf);
759 out:
760 	return NULL;
761 }
762 
763 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
764 {
765 	struct files_struct *oldf, *newf;
766 	int error = 0;
767 
768 	/*
769 	 * A background process may not have any files ...
770 	 */
771 	oldf = current->files;
772 	if (!oldf)
773 		goto out;
774 
775 	if (clone_flags & CLONE_FILES) {
776 		atomic_inc(&oldf->count);
777 		goto out;
778 	}
779 
780 	/*
781 	 * Note: we may be using current for both targets (See exec.c)
782 	 * This works because we cache current->files (old) as oldf. Don't
783 	 * break this.
784 	 */
785 	tsk->files = NULL;
786 	newf = dup_fd(oldf, &error);
787 	if (!newf)
788 		goto out;
789 
790 	tsk->files = newf;
791 	error = 0;
792 out:
793 	return error;
794 }
795 
796 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
797 {
798 #ifdef CONFIG_BLOCK
799 	struct io_context *ioc = current->io_context;
800 
801 	if (!ioc)
802 		return 0;
803 	/*
804 	 * Share io context with parent, if CLONE_IO is set
805 	 */
806 	if (clone_flags & CLONE_IO) {
807 		tsk->io_context = ioc_task_link(ioc);
808 		if (unlikely(!tsk->io_context))
809 			return -ENOMEM;
810 	} else if (ioprio_valid(ioc->ioprio)) {
811 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
812 		if (unlikely(!tsk->io_context))
813 			return -ENOMEM;
814 
815 		tsk->io_context->ioprio = ioc->ioprio;
816 	}
817 #endif
818 	return 0;
819 }
820 
821 /*
822  *	Helper to unshare the files of the current task.
823  *	We don't want to expose copy_files internals to
824  *	the exec layer of the kernel.
825  */
826 
827 int unshare_files(void)
828 {
829 	struct files_struct *files  = current->files;
830 	int rc;
831 
832 	BUG_ON(!files);
833 
834 	/* This can race but the race causes us to copy when we don't
835 	   need to and drop the copy */
836 	if(atomic_read(&files->count) == 1)
837 	{
838 		atomic_inc(&files->count);
839 		return 0;
840 	}
841 	rc = copy_files(0, current);
842 	if(rc)
843 		current->files = files;
844 	return rc;
845 }
846 
847 EXPORT_SYMBOL(unshare_files);
848 
849 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
850 {
851 	struct sighand_struct *sig;
852 
853 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
854 		atomic_inc(&current->sighand->count);
855 		return 0;
856 	}
857 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
858 	rcu_assign_pointer(tsk->sighand, sig);
859 	if (!sig)
860 		return -ENOMEM;
861 	atomic_set(&sig->count, 1);
862 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
863 	return 0;
864 }
865 
866 void __cleanup_sighand(struct sighand_struct *sighand)
867 {
868 	if (atomic_dec_and_test(&sighand->count))
869 		kmem_cache_free(sighand_cachep, sighand);
870 }
871 
872 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
873 {
874 	struct signal_struct *sig;
875 	int ret;
876 
877 	if (clone_flags & CLONE_THREAD) {
878 		atomic_inc(&current->signal->count);
879 		atomic_inc(&current->signal->live);
880 		return 0;
881 	}
882 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
883 	tsk->signal = sig;
884 	if (!sig)
885 		return -ENOMEM;
886 
887 	ret = copy_thread_group_keys(tsk);
888 	if (ret < 0) {
889 		kmem_cache_free(signal_cachep, sig);
890 		return ret;
891 	}
892 
893 	atomic_set(&sig->count, 1);
894 	atomic_set(&sig->live, 1);
895 	init_waitqueue_head(&sig->wait_chldexit);
896 	sig->flags = 0;
897 	sig->group_exit_code = 0;
898 	sig->group_exit_task = NULL;
899 	sig->group_stop_count = 0;
900 	sig->curr_target = NULL;
901 	init_sigpending(&sig->shared_pending);
902 	INIT_LIST_HEAD(&sig->posix_timers);
903 
904 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
905 	sig->it_real_incr.tv64 = 0;
906 	sig->real_timer.function = it_real_fn;
907 	sig->tsk = tsk;
908 
909 	sig->it_virt_expires = cputime_zero;
910 	sig->it_virt_incr = cputime_zero;
911 	sig->it_prof_expires = cputime_zero;
912 	sig->it_prof_incr = cputime_zero;
913 
914 	sig->leader = 0;	/* session leadership doesn't inherit */
915 	sig->tty_old_pgrp = NULL;
916 
917 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
918 	sig->gtime = cputime_zero;
919 	sig->cgtime = cputime_zero;
920 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
921 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
922 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
923 	sig->sum_sched_runtime = 0;
924 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
925 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
926 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
927 	taskstats_tgid_init(sig);
928 
929 	task_lock(current->group_leader);
930 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
931 	task_unlock(current->group_leader);
932 
933 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
934 		/*
935 		 * New sole thread in the process gets an expiry time
936 		 * of the whole CPU time limit.
937 		 */
938 		tsk->it_prof_expires =
939 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
940 	}
941 	acct_init_pacct(&sig->pacct);
942 
943 	tty_audit_fork(sig);
944 
945 	return 0;
946 }
947 
948 void __cleanup_signal(struct signal_struct *sig)
949 {
950 	exit_thread_group_keys(sig);
951 	kmem_cache_free(signal_cachep, sig);
952 }
953 
954 static void cleanup_signal(struct task_struct *tsk)
955 {
956 	struct signal_struct *sig = tsk->signal;
957 
958 	atomic_dec(&sig->live);
959 
960 	if (atomic_dec_and_test(&sig->count))
961 		__cleanup_signal(sig);
962 }
963 
964 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
965 {
966 	unsigned long new_flags = p->flags;
967 
968 	new_flags &= ~PF_SUPERPRIV;
969 	new_flags |= PF_FORKNOEXEC;
970 	if (!(clone_flags & CLONE_PTRACE))
971 		p->ptrace = 0;
972 	p->flags = new_flags;
973 	clear_freeze_flag(p);
974 }
975 
976 asmlinkage long sys_set_tid_address(int __user *tidptr)
977 {
978 	current->clear_child_tid = tidptr;
979 
980 	return task_pid_vnr(current);
981 }
982 
983 static void rt_mutex_init_task(struct task_struct *p)
984 {
985 	spin_lock_init(&p->pi_lock);
986 #ifdef CONFIG_RT_MUTEXES
987 	plist_head_init(&p->pi_waiters, &p->pi_lock);
988 	p->pi_blocked_on = NULL;
989 #endif
990 }
991 
992 /*
993  * This creates a new process as a copy of the old one,
994  * but does not actually start it yet.
995  *
996  * It copies the registers, and all the appropriate
997  * parts of the process environment (as per the clone
998  * flags). The actual kick-off is left to the caller.
999  */
1000 static struct task_struct *copy_process(unsigned long clone_flags,
1001 					unsigned long stack_start,
1002 					struct pt_regs *regs,
1003 					unsigned long stack_size,
1004 					int __user *child_tidptr,
1005 					struct pid *pid)
1006 {
1007 	int retval;
1008 	struct task_struct *p;
1009 	int cgroup_callbacks_done = 0;
1010 
1011 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1012 		return ERR_PTR(-EINVAL);
1013 
1014 	/*
1015 	 * Thread groups must share signals as well, and detached threads
1016 	 * can only be started up within the thread group.
1017 	 */
1018 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1019 		return ERR_PTR(-EINVAL);
1020 
1021 	/*
1022 	 * Shared signal handlers imply shared VM. By way of the above,
1023 	 * thread groups also imply shared VM. Blocking this case allows
1024 	 * for various simplifications in other code.
1025 	 */
1026 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1027 		return ERR_PTR(-EINVAL);
1028 
1029 	retval = security_task_create(clone_flags);
1030 	if (retval)
1031 		goto fork_out;
1032 
1033 	retval = -ENOMEM;
1034 	p = dup_task_struct(current);
1035 	if (!p)
1036 		goto fork_out;
1037 
1038 	rt_mutex_init_task(p);
1039 
1040 #ifdef CONFIG_TRACE_IRQFLAGS
1041 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1042 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1043 #endif
1044 	retval = -EAGAIN;
1045 	if (atomic_read(&p->user->processes) >=
1046 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1047 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1048 		    p->user != current->nsproxy->user_ns->root_user)
1049 			goto bad_fork_free;
1050 	}
1051 
1052 	atomic_inc(&p->user->__count);
1053 	atomic_inc(&p->user->processes);
1054 	get_group_info(p->group_info);
1055 
1056 	/*
1057 	 * If multiple threads are within copy_process(), then this check
1058 	 * triggers too late. This doesn't hurt, the check is only there
1059 	 * to stop root fork bombs.
1060 	 */
1061 	if (nr_threads >= max_threads)
1062 		goto bad_fork_cleanup_count;
1063 
1064 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1065 		goto bad_fork_cleanup_count;
1066 
1067 	if (p->binfmt && !try_module_get(p->binfmt->module))
1068 		goto bad_fork_cleanup_put_domain;
1069 
1070 	p->did_exec = 0;
1071 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1072 	copy_flags(clone_flags, p);
1073 	INIT_LIST_HEAD(&p->children);
1074 	INIT_LIST_HEAD(&p->sibling);
1075 #ifdef CONFIG_PREEMPT_RCU
1076 	p->rcu_read_lock_nesting = 0;
1077 	p->rcu_flipctr_idx = 0;
1078 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1079 	p->vfork_done = NULL;
1080 	spin_lock_init(&p->alloc_lock);
1081 
1082 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1083 	init_sigpending(&p->pending);
1084 
1085 	p->utime = cputime_zero;
1086 	p->stime = cputime_zero;
1087 	p->gtime = cputime_zero;
1088 	p->utimescaled = cputime_zero;
1089 	p->stimescaled = cputime_zero;
1090 	p->prev_utime = cputime_zero;
1091 	p->prev_stime = cputime_zero;
1092 
1093 #ifdef CONFIG_DETECT_SOFTLOCKUP
1094 	p->last_switch_count = 0;
1095 	p->last_switch_timestamp = 0;
1096 #endif
1097 
1098 #ifdef CONFIG_TASK_XACCT
1099 	p->rchar = 0;		/* I/O counter: bytes read */
1100 	p->wchar = 0;		/* I/O counter: bytes written */
1101 	p->syscr = 0;		/* I/O counter: read syscalls */
1102 	p->syscw = 0;		/* I/O counter: write syscalls */
1103 #endif
1104 	task_io_accounting_init(p);
1105 	acct_clear_integrals(p);
1106 
1107 	p->it_virt_expires = cputime_zero;
1108 	p->it_prof_expires = cputime_zero;
1109 	p->it_sched_expires = 0;
1110 	INIT_LIST_HEAD(&p->cpu_timers[0]);
1111 	INIT_LIST_HEAD(&p->cpu_timers[1]);
1112 	INIT_LIST_HEAD(&p->cpu_timers[2]);
1113 
1114 	p->lock_depth = -1;		/* -1 = no lock */
1115 	do_posix_clock_monotonic_gettime(&p->start_time);
1116 	p->real_start_time = p->start_time;
1117 	monotonic_to_bootbased(&p->real_start_time);
1118 #ifdef CONFIG_SECURITY
1119 	p->security = NULL;
1120 #endif
1121 	p->io_context = NULL;
1122 	p->audit_context = NULL;
1123 	cgroup_fork(p);
1124 #ifdef CONFIG_NUMA
1125  	p->mempolicy = mpol_copy(p->mempolicy);
1126  	if (IS_ERR(p->mempolicy)) {
1127  		retval = PTR_ERR(p->mempolicy);
1128  		p->mempolicy = NULL;
1129  		goto bad_fork_cleanup_cgroup;
1130  	}
1131 	mpol_fix_fork_child_flag(p);
1132 #endif
1133 #ifdef CONFIG_TRACE_IRQFLAGS
1134 	p->irq_events = 0;
1135 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1136 	p->hardirqs_enabled = 1;
1137 #else
1138 	p->hardirqs_enabled = 0;
1139 #endif
1140 	p->hardirq_enable_ip = 0;
1141 	p->hardirq_enable_event = 0;
1142 	p->hardirq_disable_ip = _THIS_IP_;
1143 	p->hardirq_disable_event = 0;
1144 	p->softirqs_enabled = 1;
1145 	p->softirq_enable_ip = _THIS_IP_;
1146 	p->softirq_enable_event = 0;
1147 	p->softirq_disable_ip = 0;
1148 	p->softirq_disable_event = 0;
1149 	p->hardirq_context = 0;
1150 	p->softirq_context = 0;
1151 #endif
1152 #ifdef CONFIG_LOCKDEP
1153 	p->lockdep_depth = 0; /* no locks held yet */
1154 	p->curr_chain_key = 0;
1155 	p->lockdep_recursion = 0;
1156 #endif
1157 
1158 #ifdef CONFIG_DEBUG_MUTEXES
1159 	p->blocked_on = NULL; /* not blocked yet */
1160 #endif
1161 
1162 	/* Perform scheduler related setup. Assign this task to a CPU. */
1163 	sched_fork(p, clone_flags);
1164 
1165 	if ((retval = security_task_alloc(p)))
1166 		goto bad_fork_cleanup_policy;
1167 	if ((retval = audit_alloc(p)))
1168 		goto bad_fork_cleanup_security;
1169 	/* copy all the process information */
1170 	if ((retval = copy_semundo(clone_flags, p)))
1171 		goto bad_fork_cleanup_audit;
1172 	if ((retval = copy_files(clone_flags, p)))
1173 		goto bad_fork_cleanup_semundo;
1174 	if ((retval = copy_fs(clone_flags, p)))
1175 		goto bad_fork_cleanup_files;
1176 	if ((retval = copy_sighand(clone_flags, p)))
1177 		goto bad_fork_cleanup_fs;
1178 	if ((retval = copy_signal(clone_flags, p)))
1179 		goto bad_fork_cleanup_sighand;
1180 	if ((retval = copy_mm(clone_flags, p)))
1181 		goto bad_fork_cleanup_signal;
1182 	if ((retval = copy_keys(clone_flags, p)))
1183 		goto bad_fork_cleanup_mm;
1184 	if ((retval = copy_namespaces(clone_flags, p)))
1185 		goto bad_fork_cleanup_keys;
1186 	if ((retval = copy_io(clone_flags, p)))
1187 		goto bad_fork_cleanup_namespaces;
1188 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1189 	if (retval)
1190 		goto bad_fork_cleanup_io;
1191 
1192 	if (pid != &init_struct_pid) {
1193 		retval = -ENOMEM;
1194 		pid = alloc_pid(task_active_pid_ns(p));
1195 		if (!pid)
1196 			goto bad_fork_cleanup_io;
1197 
1198 		if (clone_flags & CLONE_NEWPID) {
1199 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1200 			if (retval < 0)
1201 				goto bad_fork_free_pid;
1202 		}
1203 	}
1204 
1205 	p->pid = pid_nr(pid);
1206 	p->tgid = p->pid;
1207 	if (clone_flags & CLONE_THREAD)
1208 		p->tgid = current->tgid;
1209 
1210 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1211 	/*
1212 	 * Clear TID on mm_release()?
1213 	 */
1214 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1215 #ifdef CONFIG_FUTEX
1216 	p->robust_list = NULL;
1217 #ifdef CONFIG_COMPAT
1218 	p->compat_robust_list = NULL;
1219 #endif
1220 	INIT_LIST_HEAD(&p->pi_state_list);
1221 	p->pi_state_cache = NULL;
1222 #endif
1223 	/*
1224 	 * sigaltstack should be cleared when sharing the same VM
1225 	 */
1226 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1227 		p->sas_ss_sp = p->sas_ss_size = 0;
1228 
1229 	/*
1230 	 * Syscall tracing should be turned off in the child regardless
1231 	 * of CLONE_PTRACE.
1232 	 */
1233 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1234 #ifdef TIF_SYSCALL_EMU
1235 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1236 #endif
1237 	clear_all_latency_tracing(p);
1238 
1239 	/* Our parent execution domain becomes current domain
1240 	   These must match for thread signalling to apply */
1241 	p->parent_exec_id = p->self_exec_id;
1242 
1243 	/* ok, now we should be set up.. */
1244 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1245 	p->pdeath_signal = 0;
1246 	p->exit_state = 0;
1247 
1248 	/*
1249 	 * Ok, make it visible to the rest of the system.
1250 	 * We dont wake it up yet.
1251 	 */
1252 	p->group_leader = p;
1253 	INIT_LIST_HEAD(&p->thread_group);
1254 	INIT_LIST_HEAD(&p->ptrace_children);
1255 	INIT_LIST_HEAD(&p->ptrace_list);
1256 
1257 	/* Now that the task is set up, run cgroup callbacks if
1258 	 * necessary. We need to run them before the task is visible
1259 	 * on the tasklist. */
1260 	cgroup_fork_callbacks(p);
1261 	cgroup_callbacks_done = 1;
1262 
1263 	/* Need tasklist lock for parent etc handling! */
1264 	write_lock_irq(&tasklist_lock);
1265 
1266 	/*
1267 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1268 	 * not be changed, nor will its assigned CPU.
1269 	 *
1270 	 * The cpus_allowed mask of the parent may have changed after it was
1271 	 * copied first time - so re-copy it here, then check the child's CPU
1272 	 * to ensure it is on a valid CPU (and if not, just force it back to
1273 	 * parent's CPU). This avoids alot of nasty races.
1274 	 */
1275 	p->cpus_allowed = current->cpus_allowed;
1276 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1277 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1278 			!cpu_online(task_cpu(p))))
1279 		set_task_cpu(p, smp_processor_id());
1280 
1281 	/* CLONE_PARENT re-uses the old parent */
1282 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1283 		p->real_parent = current->real_parent;
1284 	else
1285 		p->real_parent = current;
1286 	p->parent = p->real_parent;
1287 
1288 	spin_lock(&current->sighand->siglock);
1289 
1290 	/*
1291 	 * Process group and session signals need to be delivered to just the
1292 	 * parent before the fork or both the parent and the child after the
1293 	 * fork. Restart if a signal comes in before we add the new process to
1294 	 * it's process group.
1295 	 * A fatal signal pending means that current will exit, so the new
1296 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1297  	 */
1298 	recalc_sigpending();
1299 	if (signal_pending(current)) {
1300 		spin_unlock(&current->sighand->siglock);
1301 		write_unlock_irq(&tasklist_lock);
1302 		retval = -ERESTARTNOINTR;
1303 		goto bad_fork_free_pid;
1304 	}
1305 
1306 	if (clone_flags & CLONE_THREAD) {
1307 		p->group_leader = current->group_leader;
1308 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1309 
1310 		if (!cputime_eq(current->signal->it_virt_expires,
1311 				cputime_zero) ||
1312 		    !cputime_eq(current->signal->it_prof_expires,
1313 				cputime_zero) ||
1314 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1315 		    !list_empty(&current->signal->cpu_timers[0]) ||
1316 		    !list_empty(&current->signal->cpu_timers[1]) ||
1317 		    !list_empty(&current->signal->cpu_timers[2])) {
1318 			/*
1319 			 * Have child wake up on its first tick to check
1320 			 * for process CPU timers.
1321 			 */
1322 			p->it_prof_expires = jiffies_to_cputime(1);
1323 		}
1324 	}
1325 
1326 	if (likely(p->pid)) {
1327 		add_parent(p);
1328 		if (unlikely(p->ptrace & PT_PTRACED))
1329 			__ptrace_link(p, current->parent);
1330 
1331 		if (thread_group_leader(p)) {
1332 			if (clone_flags & CLONE_NEWPID)
1333 				p->nsproxy->pid_ns->child_reaper = p;
1334 
1335 			p->signal->tty = current->signal->tty;
1336 			set_task_pgrp(p, task_pgrp_nr(current));
1337 			set_task_session(p, task_session_nr(current));
1338 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1339 			attach_pid(p, PIDTYPE_SID, task_session(current));
1340 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1341 			__get_cpu_var(process_counts)++;
1342 		}
1343 		attach_pid(p, PIDTYPE_PID, pid);
1344 		nr_threads++;
1345 	}
1346 
1347 	total_forks++;
1348 	spin_unlock(&current->sighand->siglock);
1349 	write_unlock_irq(&tasklist_lock);
1350 	proc_fork_connector(p);
1351 	cgroup_post_fork(p);
1352 	return p;
1353 
1354 bad_fork_free_pid:
1355 	if (pid != &init_struct_pid)
1356 		free_pid(pid);
1357 bad_fork_cleanup_io:
1358 	put_io_context(p->io_context);
1359 bad_fork_cleanup_namespaces:
1360 	exit_task_namespaces(p);
1361 bad_fork_cleanup_keys:
1362 	exit_keys(p);
1363 bad_fork_cleanup_mm:
1364 	if (p->mm)
1365 		mmput(p->mm);
1366 bad_fork_cleanup_signal:
1367 	cleanup_signal(p);
1368 bad_fork_cleanup_sighand:
1369 	__cleanup_sighand(p->sighand);
1370 bad_fork_cleanup_fs:
1371 	exit_fs(p); /* blocking */
1372 bad_fork_cleanup_files:
1373 	exit_files(p); /* blocking */
1374 bad_fork_cleanup_semundo:
1375 	exit_sem(p);
1376 bad_fork_cleanup_audit:
1377 	audit_free(p);
1378 bad_fork_cleanup_security:
1379 	security_task_free(p);
1380 bad_fork_cleanup_policy:
1381 #ifdef CONFIG_NUMA
1382 	mpol_free(p->mempolicy);
1383 bad_fork_cleanup_cgroup:
1384 #endif
1385 	cgroup_exit(p, cgroup_callbacks_done);
1386 	delayacct_tsk_free(p);
1387 	if (p->binfmt)
1388 		module_put(p->binfmt->module);
1389 bad_fork_cleanup_put_domain:
1390 	module_put(task_thread_info(p)->exec_domain->module);
1391 bad_fork_cleanup_count:
1392 	put_group_info(p->group_info);
1393 	atomic_dec(&p->user->processes);
1394 	free_uid(p->user);
1395 bad_fork_free:
1396 	free_task(p);
1397 fork_out:
1398 	return ERR_PTR(retval);
1399 }
1400 
1401 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1402 {
1403 	memset(regs, 0, sizeof(struct pt_regs));
1404 	return regs;
1405 }
1406 
1407 struct task_struct * __cpuinit fork_idle(int cpu)
1408 {
1409 	struct task_struct *task;
1410 	struct pt_regs regs;
1411 
1412 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1413 				&init_struct_pid);
1414 	if (!IS_ERR(task))
1415 		init_idle(task, cpu);
1416 
1417 	return task;
1418 }
1419 
1420 static int fork_traceflag(unsigned clone_flags)
1421 {
1422 	if (clone_flags & CLONE_UNTRACED)
1423 		return 0;
1424 	else if (clone_flags & CLONE_VFORK) {
1425 		if (current->ptrace & PT_TRACE_VFORK)
1426 			return PTRACE_EVENT_VFORK;
1427 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1428 		if (current->ptrace & PT_TRACE_CLONE)
1429 			return PTRACE_EVENT_CLONE;
1430 	} else if (current->ptrace & PT_TRACE_FORK)
1431 		return PTRACE_EVENT_FORK;
1432 
1433 	return 0;
1434 }
1435 
1436 /*
1437  *  Ok, this is the main fork-routine.
1438  *
1439  * It copies the process, and if successful kick-starts
1440  * it and waits for it to finish using the VM if required.
1441  */
1442 long do_fork(unsigned long clone_flags,
1443 	      unsigned long stack_start,
1444 	      struct pt_regs *regs,
1445 	      unsigned long stack_size,
1446 	      int __user *parent_tidptr,
1447 	      int __user *child_tidptr)
1448 {
1449 	struct task_struct *p;
1450 	int trace = 0;
1451 	long nr;
1452 
1453 	if (unlikely(current->ptrace)) {
1454 		trace = fork_traceflag (clone_flags);
1455 		if (trace)
1456 			clone_flags |= CLONE_PTRACE;
1457 	}
1458 
1459 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1460 			child_tidptr, NULL);
1461 	/*
1462 	 * Do this prior waking up the new thread - the thread pointer
1463 	 * might get invalid after that point, if the thread exits quickly.
1464 	 */
1465 	if (!IS_ERR(p)) {
1466 		struct completion vfork;
1467 
1468 		/*
1469 		 * this is enough to call pid_nr_ns here, but this if
1470 		 * improves optimisation of regular fork()
1471 		 */
1472 		nr = (clone_flags & CLONE_NEWPID) ?
1473 			task_pid_nr_ns(p, current->nsproxy->pid_ns) :
1474 				task_pid_vnr(p);
1475 
1476 		if (clone_flags & CLONE_PARENT_SETTID)
1477 			put_user(nr, parent_tidptr);
1478 
1479 		if (clone_flags & CLONE_VFORK) {
1480 			p->vfork_done = &vfork;
1481 			init_completion(&vfork);
1482 		}
1483 
1484 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1485 			/*
1486 			 * We'll start up with an immediate SIGSTOP.
1487 			 */
1488 			sigaddset(&p->pending.signal, SIGSTOP);
1489 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1490 		}
1491 
1492 		if (!(clone_flags & CLONE_STOPPED))
1493 			wake_up_new_task(p, clone_flags);
1494 		else
1495 			p->state = TASK_STOPPED;
1496 
1497 		if (unlikely (trace)) {
1498 			current->ptrace_message = nr;
1499 			ptrace_notify ((trace << 8) | SIGTRAP);
1500 		}
1501 
1502 		if (clone_flags & CLONE_VFORK) {
1503 			freezer_do_not_count();
1504 			wait_for_completion(&vfork);
1505 			freezer_count();
1506 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1507 				current->ptrace_message = nr;
1508 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1509 			}
1510 		}
1511 	} else {
1512 		nr = PTR_ERR(p);
1513 	}
1514 	return nr;
1515 }
1516 
1517 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1518 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1519 #endif
1520 
1521 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1522 {
1523 	struct sighand_struct *sighand = data;
1524 
1525 	spin_lock_init(&sighand->siglock);
1526 	init_waitqueue_head(&sighand->signalfd_wqh);
1527 }
1528 
1529 void __init proc_caches_init(void)
1530 {
1531 	sighand_cachep = kmem_cache_create("sighand_cache",
1532 			sizeof(struct sighand_struct), 0,
1533 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1534 			sighand_ctor);
1535 	signal_cachep = kmem_cache_create("signal_cache",
1536 			sizeof(struct signal_struct), 0,
1537 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1538 	files_cachep = kmem_cache_create("files_cache",
1539 			sizeof(struct files_struct), 0,
1540 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1541 	fs_cachep = kmem_cache_create("fs_cache",
1542 			sizeof(struct fs_struct), 0,
1543 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1544 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1545 			sizeof(struct vm_area_struct), 0,
1546 			SLAB_PANIC, NULL);
1547 	mm_cachep = kmem_cache_create("mm_struct",
1548 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1549 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1550 }
1551 
1552 /*
1553  * Check constraints on flags passed to the unshare system call and
1554  * force unsharing of additional process context as appropriate.
1555  */
1556 static void check_unshare_flags(unsigned long *flags_ptr)
1557 {
1558 	/*
1559 	 * If unsharing a thread from a thread group, must also
1560 	 * unshare vm.
1561 	 */
1562 	if (*flags_ptr & CLONE_THREAD)
1563 		*flags_ptr |= CLONE_VM;
1564 
1565 	/*
1566 	 * If unsharing vm, must also unshare signal handlers.
1567 	 */
1568 	if (*flags_ptr & CLONE_VM)
1569 		*flags_ptr |= CLONE_SIGHAND;
1570 
1571 	/*
1572 	 * If unsharing signal handlers and the task was created
1573 	 * using CLONE_THREAD, then must unshare the thread
1574 	 */
1575 	if ((*flags_ptr & CLONE_SIGHAND) &&
1576 	    (atomic_read(&current->signal->count) > 1))
1577 		*flags_ptr |= CLONE_THREAD;
1578 
1579 	/*
1580 	 * If unsharing namespace, must also unshare filesystem information.
1581 	 */
1582 	if (*flags_ptr & CLONE_NEWNS)
1583 		*flags_ptr |= CLONE_FS;
1584 }
1585 
1586 /*
1587  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1588  */
1589 static int unshare_thread(unsigned long unshare_flags)
1590 {
1591 	if (unshare_flags & CLONE_THREAD)
1592 		return -EINVAL;
1593 
1594 	return 0;
1595 }
1596 
1597 /*
1598  * Unshare the filesystem structure if it is being shared
1599  */
1600 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1601 {
1602 	struct fs_struct *fs = current->fs;
1603 
1604 	if ((unshare_flags & CLONE_FS) &&
1605 	    (fs && atomic_read(&fs->count) > 1)) {
1606 		*new_fsp = __copy_fs_struct(current->fs);
1607 		if (!*new_fsp)
1608 			return -ENOMEM;
1609 	}
1610 
1611 	return 0;
1612 }
1613 
1614 /*
1615  * Unsharing of sighand is not supported yet
1616  */
1617 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1618 {
1619 	struct sighand_struct *sigh = current->sighand;
1620 
1621 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1622 		return -EINVAL;
1623 	else
1624 		return 0;
1625 }
1626 
1627 /*
1628  * Unshare vm if it is being shared
1629  */
1630 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1631 {
1632 	struct mm_struct *mm = current->mm;
1633 
1634 	if ((unshare_flags & CLONE_VM) &&
1635 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1636 		return -EINVAL;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 /*
1643  * Unshare file descriptor table if it is being shared
1644  */
1645 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1646 {
1647 	struct files_struct *fd = current->files;
1648 	int error = 0;
1649 
1650 	if ((unshare_flags & CLONE_FILES) &&
1651 	    (fd && atomic_read(&fd->count) > 1)) {
1652 		*new_fdp = dup_fd(fd, &error);
1653 		if (!*new_fdp)
1654 			return error;
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 /*
1661  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1662  * supported yet
1663  */
1664 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1665 {
1666 	if (unshare_flags & CLONE_SYSVSEM)
1667 		return -EINVAL;
1668 
1669 	return 0;
1670 }
1671 
1672 /*
1673  * unshare allows a process to 'unshare' part of the process
1674  * context which was originally shared using clone.  copy_*
1675  * functions used by do_fork() cannot be used here directly
1676  * because they modify an inactive task_struct that is being
1677  * constructed. Here we are modifying the current, active,
1678  * task_struct.
1679  */
1680 asmlinkage long sys_unshare(unsigned long unshare_flags)
1681 {
1682 	int err = 0;
1683 	struct fs_struct *fs, *new_fs = NULL;
1684 	struct sighand_struct *new_sigh = NULL;
1685 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1686 	struct files_struct *fd, *new_fd = NULL;
1687 	struct sem_undo_list *new_ulist = NULL;
1688 	struct nsproxy *new_nsproxy = NULL;
1689 
1690 	check_unshare_flags(&unshare_flags);
1691 
1692 	/* Return -EINVAL for all unsupported flags */
1693 	err = -EINVAL;
1694 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1695 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1696 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1697 				CLONE_NEWNET))
1698 		goto bad_unshare_out;
1699 
1700 	if ((err = unshare_thread(unshare_flags)))
1701 		goto bad_unshare_out;
1702 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1703 		goto bad_unshare_cleanup_thread;
1704 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1705 		goto bad_unshare_cleanup_fs;
1706 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1707 		goto bad_unshare_cleanup_sigh;
1708 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1709 		goto bad_unshare_cleanup_vm;
1710 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1711 		goto bad_unshare_cleanup_fd;
1712 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1713 			new_fs)))
1714 		goto bad_unshare_cleanup_semundo;
1715 
1716 	if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1717 
1718 		if (new_nsproxy) {
1719 			switch_task_namespaces(current, new_nsproxy);
1720 			new_nsproxy = NULL;
1721 		}
1722 
1723 		task_lock(current);
1724 
1725 		if (new_fs) {
1726 			fs = current->fs;
1727 			current->fs = new_fs;
1728 			new_fs = fs;
1729 		}
1730 
1731 		if (new_mm) {
1732 			mm = current->mm;
1733 			active_mm = current->active_mm;
1734 			current->mm = new_mm;
1735 			current->active_mm = new_mm;
1736 			activate_mm(active_mm, new_mm);
1737 			new_mm = mm;
1738 		}
1739 
1740 		if (new_fd) {
1741 			fd = current->files;
1742 			current->files = new_fd;
1743 			new_fd = fd;
1744 		}
1745 
1746 		task_unlock(current);
1747 	}
1748 
1749 	if (new_nsproxy)
1750 		put_nsproxy(new_nsproxy);
1751 
1752 bad_unshare_cleanup_semundo:
1753 bad_unshare_cleanup_fd:
1754 	if (new_fd)
1755 		put_files_struct(new_fd);
1756 
1757 bad_unshare_cleanup_vm:
1758 	if (new_mm)
1759 		mmput(new_mm);
1760 
1761 bad_unshare_cleanup_sigh:
1762 	if (new_sigh)
1763 		if (atomic_dec_and_test(&new_sigh->count))
1764 			kmem_cache_free(sighand_cachep, new_sigh);
1765 
1766 bad_unshare_cleanup_fs:
1767 	if (new_fs)
1768 		put_fs_struct(new_fs);
1769 
1770 bad_unshare_cleanup_thread:
1771 bad_unshare_out:
1772 	return err;
1773 }
1774