xref: /openbmc/linux/kernel/fork.c (revision 6355592e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129 
130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
131 
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
134 {
135 	return lockdep_is_held(&tasklist_lock);
136 }
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
139 
140 int nr_processes(void)
141 {
142 	int cpu;
143 	int total = 0;
144 
145 	for_each_possible_cpu(cpu)
146 		total += per_cpu(process_counts, cpu);
147 
148 	return total;
149 }
150 
151 void __weak arch_release_task_struct(struct task_struct *tsk)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache *task_struct_cachep;
157 
158 static inline struct task_struct *alloc_task_struct_node(int node)
159 {
160 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 }
162 
163 static inline void free_task_struct(struct task_struct *tsk)
164 {
165 	kmem_cache_free(task_struct_cachep, tsk);
166 }
167 #endif
168 
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170 
171 /*
172  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173  * kmemcache based allocator.
174  */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176 
177 #ifdef CONFIG_VMAP_STACK
178 /*
179  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180  * flush.  Try to minimize the number of calls by caching stacks.
181  */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184 
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 	int i;
189 
190 	for (i = 0; i < NR_CACHED_STACKS; i++) {
191 		struct vm_struct *vm_stack = cached_vm_stacks[i];
192 
193 		if (!vm_stack)
194 			continue;
195 
196 		vfree(vm_stack->addr);
197 		cached_vm_stacks[i] = NULL;
198 	}
199 
200 	return 0;
201 }
202 #endif
203 
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 	void *stack;
208 	int i;
209 
210 	for (i = 0; i < NR_CACHED_STACKS; i++) {
211 		struct vm_struct *s;
212 
213 		s = this_cpu_xchg(cached_stacks[i], NULL);
214 
215 		if (!s)
216 			continue;
217 
218 		/* Clear stale pointers from reused stack. */
219 		memset(s->addr, 0, THREAD_SIZE);
220 
221 		tsk->stack_vm_area = s;
222 		tsk->stack = s->addr;
223 		return s->addr;
224 	}
225 
226 	/*
227 	 * Allocated stacks are cached and later reused by new threads,
228 	 * so memcg accounting is performed manually on assigning/releasing
229 	 * stacks to tasks. Drop __GFP_ACCOUNT.
230 	 */
231 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 				     VMALLOC_START, VMALLOC_END,
233 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
234 				     PAGE_KERNEL,
235 				     0, node, __builtin_return_address(0));
236 
237 	/*
238 	 * We can't call find_vm_area() in interrupt context, and
239 	 * free_thread_stack() can be called in interrupt context,
240 	 * so cache the vm_struct.
241 	 */
242 	if (stack) {
243 		tsk->stack_vm_area = find_vm_area(stack);
244 		tsk->stack = stack;
245 	}
246 	return stack;
247 #else
248 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 					     THREAD_SIZE_ORDER);
250 
251 	if (likely(page)) {
252 		tsk->stack = page_address(page);
253 		return tsk->stack;
254 	}
255 	return NULL;
256 #endif
257 }
258 
259 static inline void free_thread_stack(struct task_struct *tsk)
260 {
261 #ifdef CONFIG_VMAP_STACK
262 	struct vm_struct *vm = task_stack_vm_area(tsk);
263 
264 	if (vm) {
265 		int i;
266 
267 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
268 			mod_memcg_page_state(vm->pages[i],
269 					     MEMCG_KERNEL_STACK_KB,
270 					     -(int)(PAGE_SIZE / 1024));
271 
272 			memcg_kmem_uncharge(vm->pages[i], 0);
273 		}
274 
275 		for (i = 0; i < NR_CACHED_STACKS; i++) {
276 			if (this_cpu_cmpxchg(cached_stacks[i],
277 					NULL, tsk->stack_vm_area) != NULL)
278 				continue;
279 
280 			return;
281 		}
282 
283 		vfree_atomic(tsk->stack);
284 		return;
285 	}
286 #endif
287 
288 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
289 }
290 # else
291 static struct kmem_cache *thread_stack_cache;
292 
293 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
294 						  int node)
295 {
296 	unsigned long *stack;
297 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
298 	tsk->stack = stack;
299 	return stack;
300 }
301 
302 static void free_thread_stack(struct task_struct *tsk)
303 {
304 	kmem_cache_free(thread_stack_cache, tsk->stack);
305 }
306 
307 void thread_stack_cache_init(void)
308 {
309 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
310 					THREAD_SIZE, THREAD_SIZE, 0, 0,
311 					THREAD_SIZE, NULL);
312 	BUG_ON(thread_stack_cache == NULL);
313 }
314 # endif
315 #endif
316 
317 /* SLAB cache for signal_struct structures (tsk->signal) */
318 static struct kmem_cache *signal_cachep;
319 
320 /* SLAB cache for sighand_struct structures (tsk->sighand) */
321 struct kmem_cache *sighand_cachep;
322 
323 /* SLAB cache for files_struct structures (tsk->files) */
324 struct kmem_cache *files_cachep;
325 
326 /* SLAB cache for fs_struct structures (tsk->fs) */
327 struct kmem_cache *fs_cachep;
328 
329 /* SLAB cache for vm_area_struct structures */
330 static struct kmem_cache *vm_area_cachep;
331 
332 /* SLAB cache for mm_struct structures (tsk->mm) */
333 static struct kmem_cache *mm_cachep;
334 
335 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
336 {
337 	struct vm_area_struct *vma;
338 
339 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
340 	if (vma)
341 		vma_init(vma, mm);
342 	return vma;
343 }
344 
345 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
346 {
347 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
348 
349 	if (new) {
350 		*new = *orig;
351 		INIT_LIST_HEAD(&new->anon_vma_chain);
352 	}
353 	return new;
354 }
355 
356 void vm_area_free(struct vm_area_struct *vma)
357 {
358 	kmem_cache_free(vm_area_cachep, vma);
359 }
360 
361 static void account_kernel_stack(struct task_struct *tsk, int account)
362 {
363 	void *stack = task_stack_page(tsk);
364 	struct vm_struct *vm = task_stack_vm_area(tsk);
365 
366 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
367 
368 	if (vm) {
369 		int i;
370 
371 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
372 
373 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
374 			mod_zone_page_state(page_zone(vm->pages[i]),
375 					    NR_KERNEL_STACK_KB,
376 					    PAGE_SIZE / 1024 * account);
377 		}
378 	} else {
379 		/*
380 		 * All stack pages are in the same zone and belong to the
381 		 * same memcg.
382 		 */
383 		struct page *first_page = virt_to_page(stack);
384 
385 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
386 				    THREAD_SIZE / 1024 * account);
387 
388 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
389 				     account * (THREAD_SIZE / 1024));
390 	}
391 }
392 
393 static int memcg_charge_kernel_stack(struct task_struct *tsk)
394 {
395 #ifdef CONFIG_VMAP_STACK
396 	struct vm_struct *vm = task_stack_vm_area(tsk);
397 	int ret;
398 
399 	if (vm) {
400 		int i;
401 
402 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
403 			/*
404 			 * If memcg_kmem_charge() fails, page->mem_cgroup
405 			 * pointer is NULL, and both memcg_kmem_uncharge()
406 			 * and mod_memcg_page_state() in free_thread_stack()
407 			 * will ignore this page. So it's safe.
408 			 */
409 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
410 			if (ret)
411 				return ret;
412 
413 			mod_memcg_page_state(vm->pages[i],
414 					     MEMCG_KERNEL_STACK_KB,
415 					     PAGE_SIZE / 1024);
416 		}
417 	}
418 #endif
419 	return 0;
420 }
421 
422 static void release_task_stack(struct task_struct *tsk)
423 {
424 	if (WARN_ON(tsk->state != TASK_DEAD))
425 		return;  /* Better to leak the stack than to free prematurely */
426 
427 	account_kernel_stack(tsk, -1);
428 	free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431 	tsk->stack_vm_area = NULL;
432 #endif
433 }
434 
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438 	if (refcount_dec_and_test(&tsk->stack_refcount))
439 		release_task_stack(tsk);
440 }
441 #endif
442 
443 void free_task(struct task_struct *tsk)
444 {
445 #ifndef CONFIG_THREAD_INFO_IN_TASK
446 	/*
447 	 * The task is finally done with both the stack and thread_info,
448 	 * so free both.
449 	 */
450 	release_task_stack(tsk);
451 #else
452 	/*
453 	 * If the task had a separate stack allocation, it should be gone
454 	 * by now.
455 	 */
456 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
457 #endif
458 	rt_mutex_debug_task_free(tsk);
459 	ftrace_graph_exit_task(tsk);
460 	put_seccomp_filter(tsk);
461 	arch_release_task_struct(tsk);
462 	if (tsk->flags & PF_KTHREAD)
463 		free_kthread_struct(tsk);
464 	free_task_struct(tsk);
465 }
466 EXPORT_SYMBOL(free_task);
467 
468 #ifdef CONFIG_MMU
469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 					struct mm_struct *oldmm)
471 {
472 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 	struct rb_node **rb_link, *rb_parent;
474 	int retval;
475 	unsigned long charge;
476 	LIST_HEAD(uf);
477 
478 	uprobe_start_dup_mmap();
479 	if (down_write_killable(&oldmm->mmap_sem)) {
480 		retval = -EINTR;
481 		goto fail_uprobe_end;
482 	}
483 	flush_cache_dup_mm(oldmm);
484 	uprobe_dup_mmap(oldmm, mm);
485 	/*
486 	 * Not linked in yet - no deadlock potential:
487 	 */
488 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
489 
490 	/* No ordering required: file already has been exposed. */
491 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
492 
493 	mm->total_vm = oldmm->total_vm;
494 	mm->data_vm = oldmm->data_vm;
495 	mm->exec_vm = oldmm->exec_vm;
496 	mm->stack_vm = oldmm->stack_vm;
497 
498 	rb_link = &mm->mm_rb.rb_node;
499 	rb_parent = NULL;
500 	pprev = &mm->mmap;
501 	retval = ksm_fork(mm, oldmm);
502 	if (retval)
503 		goto out;
504 	retval = khugepaged_fork(mm, oldmm);
505 	if (retval)
506 		goto out;
507 
508 	prev = NULL;
509 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 		struct file *file;
511 
512 		if (mpnt->vm_flags & VM_DONTCOPY) {
513 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
514 			continue;
515 		}
516 		charge = 0;
517 		/*
518 		 * Don't duplicate many vmas if we've been oom-killed (for
519 		 * example)
520 		 */
521 		if (fatal_signal_pending(current)) {
522 			retval = -EINTR;
523 			goto out;
524 		}
525 		if (mpnt->vm_flags & VM_ACCOUNT) {
526 			unsigned long len = vma_pages(mpnt);
527 
528 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
529 				goto fail_nomem;
530 			charge = len;
531 		}
532 		tmp = vm_area_dup(mpnt);
533 		if (!tmp)
534 			goto fail_nomem;
535 		retval = vma_dup_policy(mpnt, tmp);
536 		if (retval)
537 			goto fail_nomem_policy;
538 		tmp->vm_mm = mm;
539 		retval = dup_userfaultfd(tmp, &uf);
540 		if (retval)
541 			goto fail_nomem_anon_vma_fork;
542 		if (tmp->vm_flags & VM_WIPEONFORK) {
543 			/* VM_WIPEONFORK gets a clean slate in the child. */
544 			tmp->anon_vma = NULL;
545 			if (anon_vma_prepare(tmp))
546 				goto fail_nomem_anon_vma_fork;
547 		} else if (anon_vma_fork(tmp, mpnt))
548 			goto fail_nomem_anon_vma_fork;
549 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
550 		tmp->vm_next = tmp->vm_prev = NULL;
551 		file = tmp->vm_file;
552 		if (file) {
553 			struct inode *inode = file_inode(file);
554 			struct address_space *mapping = file->f_mapping;
555 
556 			get_file(file);
557 			if (tmp->vm_flags & VM_DENYWRITE)
558 				atomic_dec(&inode->i_writecount);
559 			i_mmap_lock_write(mapping);
560 			if (tmp->vm_flags & VM_SHARED)
561 				atomic_inc(&mapping->i_mmap_writable);
562 			flush_dcache_mmap_lock(mapping);
563 			/* insert tmp into the share list, just after mpnt */
564 			vma_interval_tree_insert_after(tmp, mpnt,
565 					&mapping->i_mmap);
566 			flush_dcache_mmap_unlock(mapping);
567 			i_mmap_unlock_write(mapping);
568 		}
569 
570 		/*
571 		 * Clear hugetlb-related page reserves for children. This only
572 		 * affects MAP_PRIVATE mappings. Faults generated by the child
573 		 * are not guaranteed to succeed, even if read-only
574 		 */
575 		if (is_vm_hugetlb_page(tmp))
576 			reset_vma_resv_huge_pages(tmp);
577 
578 		/*
579 		 * Link in the new vma and copy the page table entries.
580 		 */
581 		*pprev = tmp;
582 		pprev = &tmp->vm_next;
583 		tmp->vm_prev = prev;
584 		prev = tmp;
585 
586 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
587 		rb_link = &tmp->vm_rb.rb_right;
588 		rb_parent = &tmp->vm_rb;
589 
590 		mm->map_count++;
591 		if (!(tmp->vm_flags & VM_WIPEONFORK))
592 			retval = copy_page_range(mm, oldmm, mpnt);
593 
594 		if (tmp->vm_ops && tmp->vm_ops->open)
595 			tmp->vm_ops->open(tmp);
596 
597 		if (retval)
598 			goto out;
599 	}
600 	/* a new mm has just been created */
601 	retval = arch_dup_mmap(oldmm, mm);
602 out:
603 	up_write(&mm->mmap_sem);
604 	flush_tlb_mm(oldmm);
605 	up_write(&oldmm->mmap_sem);
606 	dup_userfaultfd_complete(&uf);
607 fail_uprobe_end:
608 	uprobe_end_dup_mmap();
609 	return retval;
610 fail_nomem_anon_vma_fork:
611 	mpol_put(vma_policy(tmp));
612 fail_nomem_policy:
613 	vm_area_free(tmp);
614 fail_nomem:
615 	retval = -ENOMEM;
616 	vm_unacct_memory(charge);
617 	goto out;
618 }
619 
620 static inline int mm_alloc_pgd(struct mm_struct *mm)
621 {
622 	mm->pgd = pgd_alloc(mm);
623 	if (unlikely(!mm->pgd))
624 		return -ENOMEM;
625 	return 0;
626 }
627 
628 static inline void mm_free_pgd(struct mm_struct *mm)
629 {
630 	pgd_free(mm, mm->pgd);
631 }
632 #else
633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
634 {
635 	down_write(&oldmm->mmap_sem);
636 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
637 	up_write(&oldmm->mmap_sem);
638 	return 0;
639 }
640 #define mm_alloc_pgd(mm)	(0)
641 #define mm_free_pgd(mm)
642 #endif /* CONFIG_MMU */
643 
644 static void check_mm(struct mm_struct *mm)
645 {
646 	int i;
647 
648 	for (i = 0; i < NR_MM_COUNTERS; i++) {
649 		long x = atomic_long_read(&mm->rss_stat.count[i]);
650 
651 		if (unlikely(x))
652 			printk(KERN_ALERT "BUG: Bad rss-counter state "
653 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
654 	}
655 
656 	if (mm_pgtables_bytes(mm))
657 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
658 				mm_pgtables_bytes(mm));
659 
660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
661 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
662 #endif
663 }
664 
665 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
666 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
667 
668 /*
669  * Called when the last reference to the mm
670  * is dropped: either by a lazy thread or by
671  * mmput. Free the page directory and the mm.
672  */
673 void __mmdrop(struct mm_struct *mm)
674 {
675 	BUG_ON(mm == &init_mm);
676 	WARN_ON_ONCE(mm == current->mm);
677 	WARN_ON_ONCE(mm == current->active_mm);
678 	mm_free_pgd(mm);
679 	destroy_context(mm);
680 	mmu_notifier_mm_destroy(mm);
681 	check_mm(mm);
682 	put_user_ns(mm->user_ns);
683 	free_mm(mm);
684 }
685 EXPORT_SYMBOL_GPL(__mmdrop);
686 
687 static void mmdrop_async_fn(struct work_struct *work)
688 {
689 	struct mm_struct *mm;
690 
691 	mm = container_of(work, struct mm_struct, async_put_work);
692 	__mmdrop(mm);
693 }
694 
695 static void mmdrop_async(struct mm_struct *mm)
696 {
697 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
698 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
699 		schedule_work(&mm->async_put_work);
700 	}
701 }
702 
703 static inline void free_signal_struct(struct signal_struct *sig)
704 {
705 	taskstats_tgid_free(sig);
706 	sched_autogroup_exit(sig);
707 	/*
708 	 * __mmdrop is not safe to call from softirq context on x86 due to
709 	 * pgd_dtor so postpone it to the async context
710 	 */
711 	if (sig->oom_mm)
712 		mmdrop_async(sig->oom_mm);
713 	kmem_cache_free(signal_cachep, sig);
714 }
715 
716 static inline void put_signal_struct(struct signal_struct *sig)
717 {
718 	if (refcount_dec_and_test(&sig->sigcnt))
719 		free_signal_struct(sig);
720 }
721 
722 void __put_task_struct(struct task_struct *tsk)
723 {
724 	WARN_ON(!tsk->exit_state);
725 	WARN_ON(refcount_read(&tsk->usage));
726 	WARN_ON(tsk == current);
727 
728 	cgroup_free(tsk);
729 	task_numa_free(tsk, true);
730 	security_task_free(tsk);
731 	exit_creds(tsk);
732 	delayacct_tsk_free(tsk);
733 	put_signal_struct(tsk->signal);
734 
735 	if (!profile_handoff_task(tsk))
736 		free_task(tsk);
737 }
738 EXPORT_SYMBOL_GPL(__put_task_struct);
739 
740 void __init __weak arch_task_cache_init(void) { }
741 
742 /*
743  * set_max_threads
744  */
745 static void set_max_threads(unsigned int max_threads_suggested)
746 {
747 	u64 threads;
748 	unsigned long nr_pages = totalram_pages();
749 
750 	/*
751 	 * The number of threads shall be limited such that the thread
752 	 * structures may only consume a small part of the available memory.
753 	 */
754 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
755 		threads = MAX_THREADS;
756 	else
757 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
758 				    (u64) THREAD_SIZE * 8UL);
759 
760 	if (threads > max_threads_suggested)
761 		threads = max_threads_suggested;
762 
763 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
764 }
765 
766 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
767 /* Initialized by the architecture: */
768 int arch_task_struct_size __read_mostly;
769 #endif
770 
771 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
772 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
773 {
774 	/* Fetch thread_struct whitelist for the architecture. */
775 	arch_thread_struct_whitelist(offset, size);
776 
777 	/*
778 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
779 	 * adjust offset to position of thread_struct in task_struct.
780 	 */
781 	if (unlikely(*size == 0))
782 		*offset = 0;
783 	else
784 		*offset += offsetof(struct task_struct, thread);
785 }
786 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
787 
788 void __init fork_init(void)
789 {
790 	int i;
791 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
792 #ifndef ARCH_MIN_TASKALIGN
793 #define ARCH_MIN_TASKALIGN	0
794 #endif
795 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
796 	unsigned long useroffset, usersize;
797 
798 	/* create a slab on which task_structs can be allocated */
799 	task_struct_whitelist(&useroffset, &usersize);
800 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
801 			arch_task_struct_size, align,
802 			SLAB_PANIC|SLAB_ACCOUNT,
803 			useroffset, usersize, NULL);
804 #endif
805 
806 	/* do the arch specific task caches init */
807 	arch_task_cache_init();
808 
809 	set_max_threads(MAX_THREADS);
810 
811 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
812 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
813 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
814 		init_task.signal->rlim[RLIMIT_NPROC];
815 
816 	for (i = 0; i < UCOUNT_COUNTS; i++) {
817 		init_user_ns.ucount_max[i] = max_threads/2;
818 	}
819 
820 #ifdef CONFIG_VMAP_STACK
821 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
822 			  NULL, free_vm_stack_cache);
823 #endif
824 
825 	lockdep_init_task(&init_task);
826 	uprobes_init();
827 }
828 
829 int __weak arch_dup_task_struct(struct task_struct *dst,
830 					       struct task_struct *src)
831 {
832 	*dst = *src;
833 	return 0;
834 }
835 
836 void set_task_stack_end_magic(struct task_struct *tsk)
837 {
838 	unsigned long *stackend;
839 
840 	stackend = end_of_stack(tsk);
841 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
842 }
843 
844 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
845 {
846 	struct task_struct *tsk;
847 	unsigned long *stack;
848 	struct vm_struct *stack_vm_area __maybe_unused;
849 	int err;
850 
851 	if (node == NUMA_NO_NODE)
852 		node = tsk_fork_get_node(orig);
853 	tsk = alloc_task_struct_node(node);
854 	if (!tsk)
855 		return NULL;
856 
857 	stack = alloc_thread_stack_node(tsk, node);
858 	if (!stack)
859 		goto free_tsk;
860 
861 	if (memcg_charge_kernel_stack(tsk))
862 		goto free_stack;
863 
864 	stack_vm_area = task_stack_vm_area(tsk);
865 
866 	err = arch_dup_task_struct(tsk, orig);
867 
868 	/*
869 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
870 	 * sure they're properly initialized before using any stack-related
871 	 * functions again.
872 	 */
873 	tsk->stack = stack;
874 #ifdef CONFIG_VMAP_STACK
875 	tsk->stack_vm_area = stack_vm_area;
876 #endif
877 #ifdef CONFIG_THREAD_INFO_IN_TASK
878 	refcount_set(&tsk->stack_refcount, 1);
879 #endif
880 
881 	if (err)
882 		goto free_stack;
883 
884 #ifdef CONFIG_SECCOMP
885 	/*
886 	 * We must handle setting up seccomp filters once we're under
887 	 * the sighand lock in case orig has changed between now and
888 	 * then. Until then, filter must be NULL to avoid messing up
889 	 * the usage counts on the error path calling free_task.
890 	 */
891 	tsk->seccomp.filter = NULL;
892 #endif
893 
894 	setup_thread_stack(tsk, orig);
895 	clear_user_return_notifier(tsk);
896 	clear_tsk_need_resched(tsk);
897 	set_task_stack_end_magic(tsk);
898 
899 #ifdef CONFIG_STACKPROTECTOR
900 	tsk->stack_canary = get_random_canary();
901 #endif
902 	if (orig->cpus_ptr == &orig->cpus_mask)
903 		tsk->cpus_ptr = &tsk->cpus_mask;
904 
905 	/*
906 	 * One for us, one for whoever does the "release_task()" (usually
907 	 * parent)
908 	 */
909 	refcount_set(&tsk->usage, 2);
910 #ifdef CONFIG_BLK_DEV_IO_TRACE
911 	tsk->btrace_seq = 0;
912 #endif
913 	tsk->splice_pipe = NULL;
914 	tsk->task_frag.page = NULL;
915 	tsk->wake_q.next = NULL;
916 
917 	account_kernel_stack(tsk, 1);
918 
919 	kcov_task_init(tsk);
920 
921 #ifdef CONFIG_FAULT_INJECTION
922 	tsk->fail_nth = 0;
923 #endif
924 
925 #ifdef CONFIG_BLK_CGROUP
926 	tsk->throttle_queue = NULL;
927 	tsk->use_memdelay = 0;
928 #endif
929 
930 #ifdef CONFIG_MEMCG
931 	tsk->active_memcg = NULL;
932 #endif
933 	return tsk;
934 
935 free_stack:
936 	free_thread_stack(tsk);
937 free_tsk:
938 	free_task_struct(tsk);
939 	return NULL;
940 }
941 
942 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
943 
944 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
945 
946 static int __init coredump_filter_setup(char *s)
947 {
948 	default_dump_filter =
949 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
950 		MMF_DUMP_FILTER_MASK;
951 	return 1;
952 }
953 
954 __setup("coredump_filter=", coredump_filter_setup);
955 
956 #include <linux/init_task.h>
957 
958 static void mm_init_aio(struct mm_struct *mm)
959 {
960 #ifdef CONFIG_AIO
961 	spin_lock_init(&mm->ioctx_lock);
962 	mm->ioctx_table = NULL;
963 #endif
964 }
965 
966 static __always_inline void mm_clear_owner(struct mm_struct *mm,
967 					   struct task_struct *p)
968 {
969 #ifdef CONFIG_MEMCG
970 	if (mm->owner == p)
971 		WRITE_ONCE(mm->owner, NULL);
972 #endif
973 }
974 
975 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
976 {
977 #ifdef CONFIG_MEMCG
978 	mm->owner = p;
979 #endif
980 }
981 
982 static void mm_init_uprobes_state(struct mm_struct *mm)
983 {
984 #ifdef CONFIG_UPROBES
985 	mm->uprobes_state.xol_area = NULL;
986 #endif
987 }
988 
989 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
990 	struct user_namespace *user_ns)
991 {
992 	mm->mmap = NULL;
993 	mm->mm_rb = RB_ROOT;
994 	mm->vmacache_seqnum = 0;
995 	atomic_set(&mm->mm_users, 1);
996 	atomic_set(&mm->mm_count, 1);
997 	init_rwsem(&mm->mmap_sem);
998 	INIT_LIST_HEAD(&mm->mmlist);
999 	mm->core_state = NULL;
1000 	mm_pgtables_bytes_init(mm);
1001 	mm->map_count = 0;
1002 	mm->locked_vm = 0;
1003 	atomic64_set(&mm->pinned_vm, 0);
1004 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1005 	spin_lock_init(&mm->page_table_lock);
1006 	spin_lock_init(&mm->arg_lock);
1007 	mm_init_cpumask(mm);
1008 	mm_init_aio(mm);
1009 	mm_init_owner(mm, p);
1010 	RCU_INIT_POINTER(mm->exe_file, NULL);
1011 	mmu_notifier_mm_init(mm);
1012 	hmm_mm_init(mm);
1013 	init_tlb_flush_pending(mm);
1014 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1015 	mm->pmd_huge_pte = NULL;
1016 #endif
1017 	mm_init_uprobes_state(mm);
1018 
1019 	if (current->mm) {
1020 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1021 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1022 	} else {
1023 		mm->flags = default_dump_filter;
1024 		mm->def_flags = 0;
1025 	}
1026 
1027 	if (mm_alloc_pgd(mm))
1028 		goto fail_nopgd;
1029 
1030 	if (init_new_context(p, mm))
1031 		goto fail_nocontext;
1032 
1033 	mm->user_ns = get_user_ns(user_ns);
1034 	return mm;
1035 
1036 fail_nocontext:
1037 	mm_free_pgd(mm);
1038 fail_nopgd:
1039 	free_mm(mm);
1040 	return NULL;
1041 }
1042 
1043 /*
1044  * Allocate and initialize an mm_struct.
1045  */
1046 struct mm_struct *mm_alloc(void)
1047 {
1048 	struct mm_struct *mm;
1049 
1050 	mm = allocate_mm();
1051 	if (!mm)
1052 		return NULL;
1053 
1054 	memset(mm, 0, sizeof(*mm));
1055 	return mm_init(mm, current, current_user_ns());
1056 }
1057 
1058 static inline void __mmput(struct mm_struct *mm)
1059 {
1060 	VM_BUG_ON(atomic_read(&mm->mm_users));
1061 
1062 	uprobe_clear_state(mm);
1063 	exit_aio(mm);
1064 	ksm_exit(mm);
1065 	khugepaged_exit(mm); /* must run before exit_mmap */
1066 	exit_mmap(mm);
1067 	mm_put_huge_zero_page(mm);
1068 	set_mm_exe_file(mm, NULL);
1069 	if (!list_empty(&mm->mmlist)) {
1070 		spin_lock(&mmlist_lock);
1071 		list_del(&mm->mmlist);
1072 		spin_unlock(&mmlist_lock);
1073 	}
1074 	if (mm->binfmt)
1075 		module_put(mm->binfmt->module);
1076 	mmdrop(mm);
1077 }
1078 
1079 /*
1080  * Decrement the use count and release all resources for an mm.
1081  */
1082 void mmput(struct mm_struct *mm)
1083 {
1084 	might_sleep();
1085 
1086 	if (atomic_dec_and_test(&mm->mm_users))
1087 		__mmput(mm);
1088 }
1089 EXPORT_SYMBOL_GPL(mmput);
1090 
1091 #ifdef CONFIG_MMU
1092 static void mmput_async_fn(struct work_struct *work)
1093 {
1094 	struct mm_struct *mm = container_of(work, struct mm_struct,
1095 					    async_put_work);
1096 
1097 	__mmput(mm);
1098 }
1099 
1100 void mmput_async(struct mm_struct *mm)
1101 {
1102 	if (atomic_dec_and_test(&mm->mm_users)) {
1103 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1104 		schedule_work(&mm->async_put_work);
1105 	}
1106 }
1107 #endif
1108 
1109 /**
1110  * set_mm_exe_file - change a reference to the mm's executable file
1111  *
1112  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1113  *
1114  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1115  * invocations: in mmput() nobody alive left, in execve task is single
1116  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1117  * mm->exe_file, but does so without using set_mm_exe_file() in order
1118  * to do avoid the need for any locks.
1119  */
1120 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1121 {
1122 	struct file *old_exe_file;
1123 
1124 	/*
1125 	 * It is safe to dereference the exe_file without RCU as
1126 	 * this function is only called if nobody else can access
1127 	 * this mm -- see comment above for justification.
1128 	 */
1129 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1130 
1131 	if (new_exe_file)
1132 		get_file(new_exe_file);
1133 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1134 	if (old_exe_file)
1135 		fput(old_exe_file);
1136 }
1137 
1138 /**
1139  * get_mm_exe_file - acquire a reference to the mm's executable file
1140  *
1141  * Returns %NULL if mm has no associated executable file.
1142  * User must release file via fput().
1143  */
1144 struct file *get_mm_exe_file(struct mm_struct *mm)
1145 {
1146 	struct file *exe_file;
1147 
1148 	rcu_read_lock();
1149 	exe_file = rcu_dereference(mm->exe_file);
1150 	if (exe_file && !get_file_rcu(exe_file))
1151 		exe_file = NULL;
1152 	rcu_read_unlock();
1153 	return exe_file;
1154 }
1155 EXPORT_SYMBOL(get_mm_exe_file);
1156 
1157 /**
1158  * get_task_exe_file - acquire a reference to the task's executable file
1159  *
1160  * Returns %NULL if task's mm (if any) has no associated executable file or
1161  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1162  * User must release file via fput().
1163  */
1164 struct file *get_task_exe_file(struct task_struct *task)
1165 {
1166 	struct file *exe_file = NULL;
1167 	struct mm_struct *mm;
1168 
1169 	task_lock(task);
1170 	mm = task->mm;
1171 	if (mm) {
1172 		if (!(task->flags & PF_KTHREAD))
1173 			exe_file = get_mm_exe_file(mm);
1174 	}
1175 	task_unlock(task);
1176 	return exe_file;
1177 }
1178 EXPORT_SYMBOL(get_task_exe_file);
1179 
1180 /**
1181  * get_task_mm - acquire a reference to the task's mm
1182  *
1183  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1184  * this kernel workthread has transiently adopted a user mm with use_mm,
1185  * to do its AIO) is not set and if so returns a reference to it, after
1186  * bumping up the use count.  User must release the mm via mmput()
1187  * after use.  Typically used by /proc and ptrace.
1188  */
1189 struct mm_struct *get_task_mm(struct task_struct *task)
1190 {
1191 	struct mm_struct *mm;
1192 
1193 	task_lock(task);
1194 	mm = task->mm;
1195 	if (mm) {
1196 		if (task->flags & PF_KTHREAD)
1197 			mm = NULL;
1198 		else
1199 			mmget(mm);
1200 	}
1201 	task_unlock(task);
1202 	return mm;
1203 }
1204 EXPORT_SYMBOL_GPL(get_task_mm);
1205 
1206 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1207 {
1208 	struct mm_struct *mm;
1209 	int err;
1210 
1211 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1212 	if (err)
1213 		return ERR_PTR(err);
1214 
1215 	mm = get_task_mm(task);
1216 	if (mm && mm != current->mm &&
1217 			!ptrace_may_access(task, mode)) {
1218 		mmput(mm);
1219 		mm = ERR_PTR(-EACCES);
1220 	}
1221 	mutex_unlock(&task->signal->cred_guard_mutex);
1222 
1223 	return mm;
1224 }
1225 
1226 static void complete_vfork_done(struct task_struct *tsk)
1227 {
1228 	struct completion *vfork;
1229 
1230 	task_lock(tsk);
1231 	vfork = tsk->vfork_done;
1232 	if (likely(vfork)) {
1233 		tsk->vfork_done = NULL;
1234 		complete(vfork);
1235 	}
1236 	task_unlock(tsk);
1237 }
1238 
1239 static int wait_for_vfork_done(struct task_struct *child,
1240 				struct completion *vfork)
1241 {
1242 	int killed;
1243 
1244 	freezer_do_not_count();
1245 	cgroup_enter_frozen();
1246 	killed = wait_for_completion_killable(vfork);
1247 	cgroup_leave_frozen(false);
1248 	freezer_count();
1249 
1250 	if (killed) {
1251 		task_lock(child);
1252 		child->vfork_done = NULL;
1253 		task_unlock(child);
1254 	}
1255 
1256 	put_task_struct(child);
1257 	return killed;
1258 }
1259 
1260 /* Please note the differences between mmput and mm_release.
1261  * mmput is called whenever we stop holding onto a mm_struct,
1262  * error success whatever.
1263  *
1264  * mm_release is called after a mm_struct has been removed
1265  * from the current process.
1266  *
1267  * This difference is important for error handling, when we
1268  * only half set up a mm_struct for a new process and need to restore
1269  * the old one.  Because we mmput the new mm_struct before
1270  * restoring the old one. . .
1271  * Eric Biederman 10 January 1998
1272  */
1273 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1274 {
1275 	/* Get rid of any futexes when releasing the mm */
1276 #ifdef CONFIG_FUTEX
1277 	if (unlikely(tsk->robust_list)) {
1278 		exit_robust_list(tsk);
1279 		tsk->robust_list = NULL;
1280 	}
1281 #ifdef CONFIG_COMPAT
1282 	if (unlikely(tsk->compat_robust_list)) {
1283 		compat_exit_robust_list(tsk);
1284 		tsk->compat_robust_list = NULL;
1285 	}
1286 #endif
1287 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1288 		exit_pi_state_list(tsk);
1289 #endif
1290 
1291 	uprobe_free_utask(tsk);
1292 
1293 	/* Get rid of any cached register state */
1294 	deactivate_mm(tsk, mm);
1295 
1296 	/*
1297 	 * Signal userspace if we're not exiting with a core dump
1298 	 * because we want to leave the value intact for debugging
1299 	 * purposes.
1300 	 */
1301 	if (tsk->clear_child_tid) {
1302 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1303 		    atomic_read(&mm->mm_users) > 1) {
1304 			/*
1305 			 * We don't check the error code - if userspace has
1306 			 * not set up a proper pointer then tough luck.
1307 			 */
1308 			put_user(0, tsk->clear_child_tid);
1309 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1310 					1, NULL, NULL, 0, 0);
1311 		}
1312 		tsk->clear_child_tid = NULL;
1313 	}
1314 
1315 	/*
1316 	 * All done, finally we can wake up parent and return this mm to him.
1317 	 * Also kthread_stop() uses this completion for synchronization.
1318 	 */
1319 	if (tsk->vfork_done)
1320 		complete_vfork_done(tsk);
1321 }
1322 
1323 /**
1324  * dup_mm() - duplicates an existing mm structure
1325  * @tsk: the task_struct with which the new mm will be associated.
1326  * @oldmm: the mm to duplicate.
1327  *
1328  * Allocates a new mm structure and duplicates the provided @oldmm structure
1329  * content into it.
1330  *
1331  * Return: the duplicated mm or NULL on failure.
1332  */
1333 static struct mm_struct *dup_mm(struct task_struct *tsk,
1334 				struct mm_struct *oldmm)
1335 {
1336 	struct mm_struct *mm;
1337 	int err;
1338 
1339 	mm = allocate_mm();
1340 	if (!mm)
1341 		goto fail_nomem;
1342 
1343 	memcpy(mm, oldmm, sizeof(*mm));
1344 
1345 	if (!mm_init(mm, tsk, mm->user_ns))
1346 		goto fail_nomem;
1347 
1348 	err = dup_mmap(mm, oldmm);
1349 	if (err)
1350 		goto free_pt;
1351 
1352 	mm->hiwater_rss = get_mm_rss(mm);
1353 	mm->hiwater_vm = mm->total_vm;
1354 
1355 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1356 		goto free_pt;
1357 
1358 	return mm;
1359 
1360 free_pt:
1361 	/* don't put binfmt in mmput, we haven't got module yet */
1362 	mm->binfmt = NULL;
1363 	mm_init_owner(mm, NULL);
1364 	mmput(mm);
1365 
1366 fail_nomem:
1367 	return NULL;
1368 }
1369 
1370 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1371 {
1372 	struct mm_struct *mm, *oldmm;
1373 	int retval;
1374 
1375 	tsk->min_flt = tsk->maj_flt = 0;
1376 	tsk->nvcsw = tsk->nivcsw = 0;
1377 #ifdef CONFIG_DETECT_HUNG_TASK
1378 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1379 	tsk->last_switch_time = 0;
1380 #endif
1381 
1382 	tsk->mm = NULL;
1383 	tsk->active_mm = NULL;
1384 
1385 	/*
1386 	 * Are we cloning a kernel thread?
1387 	 *
1388 	 * We need to steal a active VM for that..
1389 	 */
1390 	oldmm = current->mm;
1391 	if (!oldmm)
1392 		return 0;
1393 
1394 	/* initialize the new vmacache entries */
1395 	vmacache_flush(tsk);
1396 
1397 	if (clone_flags & CLONE_VM) {
1398 		mmget(oldmm);
1399 		mm = oldmm;
1400 		goto good_mm;
1401 	}
1402 
1403 	retval = -ENOMEM;
1404 	mm = dup_mm(tsk, current->mm);
1405 	if (!mm)
1406 		goto fail_nomem;
1407 
1408 good_mm:
1409 	tsk->mm = mm;
1410 	tsk->active_mm = mm;
1411 	return 0;
1412 
1413 fail_nomem:
1414 	return retval;
1415 }
1416 
1417 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1418 {
1419 	struct fs_struct *fs = current->fs;
1420 	if (clone_flags & CLONE_FS) {
1421 		/* tsk->fs is already what we want */
1422 		spin_lock(&fs->lock);
1423 		if (fs->in_exec) {
1424 			spin_unlock(&fs->lock);
1425 			return -EAGAIN;
1426 		}
1427 		fs->users++;
1428 		spin_unlock(&fs->lock);
1429 		return 0;
1430 	}
1431 	tsk->fs = copy_fs_struct(fs);
1432 	if (!tsk->fs)
1433 		return -ENOMEM;
1434 	return 0;
1435 }
1436 
1437 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1438 {
1439 	struct files_struct *oldf, *newf;
1440 	int error = 0;
1441 
1442 	/*
1443 	 * A background process may not have any files ...
1444 	 */
1445 	oldf = current->files;
1446 	if (!oldf)
1447 		goto out;
1448 
1449 	if (clone_flags & CLONE_FILES) {
1450 		atomic_inc(&oldf->count);
1451 		goto out;
1452 	}
1453 
1454 	newf = dup_fd(oldf, &error);
1455 	if (!newf)
1456 		goto out;
1457 
1458 	tsk->files = newf;
1459 	error = 0;
1460 out:
1461 	return error;
1462 }
1463 
1464 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1465 {
1466 #ifdef CONFIG_BLOCK
1467 	struct io_context *ioc = current->io_context;
1468 	struct io_context *new_ioc;
1469 
1470 	if (!ioc)
1471 		return 0;
1472 	/*
1473 	 * Share io context with parent, if CLONE_IO is set
1474 	 */
1475 	if (clone_flags & CLONE_IO) {
1476 		ioc_task_link(ioc);
1477 		tsk->io_context = ioc;
1478 	} else if (ioprio_valid(ioc->ioprio)) {
1479 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1480 		if (unlikely(!new_ioc))
1481 			return -ENOMEM;
1482 
1483 		new_ioc->ioprio = ioc->ioprio;
1484 		put_io_context(new_ioc);
1485 	}
1486 #endif
1487 	return 0;
1488 }
1489 
1490 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1491 {
1492 	struct sighand_struct *sig;
1493 
1494 	if (clone_flags & CLONE_SIGHAND) {
1495 		refcount_inc(&current->sighand->count);
1496 		return 0;
1497 	}
1498 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1499 	rcu_assign_pointer(tsk->sighand, sig);
1500 	if (!sig)
1501 		return -ENOMEM;
1502 
1503 	refcount_set(&sig->count, 1);
1504 	spin_lock_irq(&current->sighand->siglock);
1505 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1506 	spin_unlock_irq(&current->sighand->siglock);
1507 	return 0;
1508 }
1509 
1510 void __cleanup_sighand(struct sighand_struct *sighand)
1511 {
1512 	if (refcount_dec_and_test(&sighand->count)) {
1513 		signalfd_cleanup(sighand);
1514 		/*
1515 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1516 		 * without an RCU grace period, see __lock_task_sighand().
1517 		 */
1518 		kmem_cache_free(sighand_cachep, sighand);
1519 	}
1520 }
1521 
1522 /*
1523  * Initialize POSIX timer handling for a thread group.
1524  */
1525 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1526 {
1527 	struct posix_cputimers *pct = &sig->posix_cputimers;
1528 	unsigned long cpu_limit;
1529 
1530 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1531 	posix_cputimers_group_init(pct, cpu_limit);
1532 }
1533 
1534 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1535 {
1536 	struct signal_struct *sig;
1537 
1538 	if (clone_flags & CLONE_THREAD)
1539 		return 0;
1540 
1541 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1542 	tsk->signal = sig;
1543 	if (!sig)
1544 		return -ENOMEM;
1545 
1546 	sig->nr_threads = 1;
1547 	atomic_set(&sig->live, 1);
1548 	refcount_set(&sig->sigcnt, 1);
1549 
1550 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1551 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1552 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1553 
1554 	init_waitqueue_head(&sig->wait_chldexit);
1555 	sig->curr_target = tsk;
1556 	init_sigpending(&sig->shared_pending);
1557 	INIT_HLIST_HEAD(&sig->multiprocess);
1558 	seqlock_init(&sig->stats_lock);
1559 	prev_cputime_init(&sig->prev_cputime);
1560 
1561 #ifdef CONFIG_POSIX_TIMERS
1562 	INIT_LIST_HEAD(&sig->posix_timers);
1563 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1564 	sig->real_timer.function = it_real_fn;
1565 #endif
1566 
1567 	task_lock(current->group_leader);
1568 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1569 	task_unlock(current->group_leader);
1570 
1571 	posix_cpu_timers_init_group(sig);
1572 
1573 	tty_audit_fork(sig);
1574 	sched_autogroup_fork(sig);
1575 
1576 	sig->oom_score_adj = current->signal->oom_score_adj;
1577 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1578 
1579 	mutex_init(&sig->cred_guard_mutex);
1580 
1581 	return 0;
1582 }
1583 
1584 static void copy_seccomp(struct task_struct *p)
1585 {
1586 #ifdef CONFIG_SECCOMP
1587 	/*
1588 	 * Must be called with sighand->lock held, which is common to
1589 	 * all threads in the group. Holding cred_guard_mutex is not
1590 	 * needed because this new task is not yet running and cannot
1591 	 * be racing exec.
1592 	 */
1593 	assert_spin_locked(&current->sighand->siglock);
1594 
1595 	/* Ref-count the new filter user, and assign it. */
1596 	get_seccomp_filter(current);
1597 	p->seccomp = current->seccomp;
1598 
1599 	/*
1600 	 * Explicitly enable no_new_privs here in case it got set
1601 	 * between the task_struct being duplicated and holding the
1602 	 * sighand lock. The seccomp state and nnp must be in sync.
1603 	 */
1604 	if (task_no_new_privs(current))
1605 		task_set_no_new_privs(p);
1606 
1607 	/*
1608 	 * If the parent gained a seccomp mode after copying thread
1609 	 * flags and between before we held the sighand lock, we have
1610 	 * to manually enable the seccomp thread flag here.
1611 	 */
1612 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1613 		set_tsk_thread_flag(p, TIF_SECCOMP);
1614 #endif
1615 }
1616 
1617 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1618 {
1619 	current->clear_child_tid = tidptr;
1620 
1621 	return task_pid_vnr(current);
1622 }
1623 
1624 static void rt_mutex_init_task(struct task_struct *p)
1625 {
1626 	raw_spin_lock_init(&p->pi_lock);
1627 #ifdef CONFIG_RT_MUTEXES
1628 	p->pi_waiters = RB_ROOT_CACHED;
1629 	p->pi_top_task = NULL;
1630 	p->pi_blocked_on = NULL;
1631 #endif
1632 }
1633 
1634 static inline void init_task_pid_links(struct task_struct *task)
1635 {
1636 	enum pid_type type;
1637 
1638 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1639 		INIT_HLIST_NODE(&task->pid_links[type]);
1640 	}
1641 }
1642 
1643 static inline void
1644 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1645 {
1646 	if (type == PIDTYPE_PID)
1647 		task->thread_pid = pid;
1648 	else
1649 		task->signal->pids[type] = pid;
1650 }
1651 
1652 static inline void rcu_copy_process(struct task_struct *p)
1653 {
1654 #ifdef CONFIG_PREEMPT_RCU
1655 	p->rcu_read_lock_nesting = 0;
1656 	p->rcu_read_unlock_special.s = 0;
1657 	p->rcu_blocked_node = NULL;
1658 	INIT_LIST_HEAD(&p->rcu_node_entry);
1659 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1660 #ifdef CONFIG_TASKS_RCU
1661 	p->rcu_tasks_holdout = false;
1662 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1663 	p->rcu_tasks_idle_cpu = -1;
1664 #endif /* #ifdef CONFIG_TASKS_RCU */
1665 }
1666 
1667 struct pid *pidfd_pid(const struct file *file)
1668 {
1669 	if (file->f_op == &pidfd_fops)
1670 		return file->private_data;
1671 
1672 	return ERR_PTR(-EBADF);
1673 }
1674 
1675 static int pidfd_release(struct inode *inode, struct file *file)
1676 {
1677 	struct pid *pid = file->private_data;
1678 
1679 	file->private_data = NULL;
1680 	put_pid(pid);
1681 	return 0;
1682 }
1683 
1684 #ifdef CONFIG_PROC_FS
1685 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1686 {
1687 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1688 	struct pid *pid = f->private_data;
1689 
1690 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1691 	seq_putc(m, '\n');
1692 }
1693 #endif
1694 
1695 /*
1696  * Poll support for process exit notification.
1697  */
1698 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1699 {
1700 	struct task_struct *task;
1701 	struct pid *pid = file->private_data;
1702 	int poll_flags = 0;
1703 
1704 	poll_wait(file, &pid->wait_pidfd, pts);
1705 
1706 	rcu_read_lock();
1707 	task = pid_task(pid, PIDTYPE_PID);
1708 	/*
1709 	 * Inform pollers only when the whole thread group exits.
1710 	 * If the thread group leader exits before all other threads in the
1711 	 * group, then poll(2) should block, similar to the wait(2) family.
1712 	 */
1713 	if (!task || (task->exit_state && thread_group_empty(task)))
1714 		poll_flags = POLLIN | POLLRDNORM;
1715 	rcu_read_unlock();
1716 
1717 	return poll_flags;
1718 }
1719 
1720 const struct file_operations pidfd_fops = {
1721 	.release = pidfd_release,
1722 	.poll = pidfd_poll,
1723 #ifdef CONFIG_PROC_FS
1724 	.show_fdinfo = pidfd_show_fdinfo,
1725 #endif
1726 };
1727 
1728 static void __delayed_free_task(struct rcu_head *rhp)
1729 {
1730 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1731 
1732 	free_task(tsk);
1733 }
1734 
1735 static __always_inline void delayed_free_task(struct task_struct *tsk)
1736 {
1737 	if (IS_ENABLED(CONFIG_MEMCG))
1738 		call_rcu(&tsk->rcu, __delayed_free_task);
1739 	else
1740 		free_task(tsk);
1741 }
1742 
1743 /*
1744  * This creates a new process as a copy of the old one,
1745  * but does not actually start it yet.
1746  *
1747  * It copies the registers, and all the appropriate
1748  * parts of the process environment (as per the clone
1749  * flags). The actual kick-off is left to the caller.
1750  */
1751 static __latent_entropy struct task_struct *copy_process(
1752 					struct pid *pid,
1753 					int trace,
1754 					int node,
1755 					struct kernel_clone_args *args)
1756 {
1757 	int pidfd = -1, retval;
1758 	struct task_struct *p;
1759 	struct multiprocess_signals delayed;
1760 	struct file *pidfile = NULL;
1761 	u64 clone_flags = args->flags;
1762 
1763 	/*
1764 	 * Don't allow sharing the root directory with processes in a different
1765 	 * namespace
1766 	 */
1767 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1768 		return ERR_PTR(-EINVAL);
1769 
1770 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1771 		return ERR_PTR(-EINVAL);
1772 
1773 	/*
1774 	 * Thread groups must share signals as well, and detached threads
1775 	 * can only be started up within the thread group.
1776 	 */
1777 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1778 		return ERR_PTR(-EINVAL);
1779 
1780 	/*
1781 	 * Shared signal handlers imply shared VM. By way of the above,
1782 	 * thread groups also imply shared VM. Blocking this case allows
1783 	 * for various simplifications in other code.
1784 	 */
1785 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1786 		return ERR_PTR(-EINVAL);
1787 
1788 	/*
1789 	 * Siblings of global init remain as zombies on exit since they are
1790 	 * not reaped by their parent (swapper). To solve this and to avoid
1791 	 * multi-rooted process trees, prevent global and container-inits
1792 	 * from creating siblings.
1793 	 */
1794 	if ((clone_flags & CLONE_PARENT) &&
1795 				current->signal->flags & SIGNAL_UNKILLABLE)
1796 		return ERR_PTR(-EINVAL);
1797 
1798 	/*
1799 	 * If the new process will be in a different pid or user namespace
1800 	 * do not allow it to share a thread group with the forking task.
1801 	 */
1802 	if (clone_flags & CLONE_THREAD) {
1803 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1804 		    (task_active_pid_ns(current) !=
1805 				current->nsproxy->pid_ns_for_children))
1806 			return ERR_PTR(-EINVAL);
1807 	}
1808 
1809 	if (clone_flags & CLONE_PIDFD) {
1810 		/*
1811 		 * - CLONE_DETACHED is blocked so that we can potentially
1812 		 *   reuse it later for CLONE_PIDFD.
1813 		 * - CLONE_THREAD is blocked until someone really needs it.
1814 		 */
1815 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1816 			return ERR_PTR(-EINVAL);
1817 	}
1818 
1819 	/*
1820 	 * Force any signals received before this point to be delivered
1821 	 * before the fork happens.  Collect up signals sent to multiple
1822 	 * processes that happen during the fork and delay them so that
1823 	 * they appear to happen after the fork.
1824 	 */
1825 	sigemptyset(&delayed.signal);
1826 	INIT_HLIST_NODE(&delayed.node);
1827 
1828 	spin_lock_irq(&current->sighand->siglock);
1829 	if (!(clone_flags & CLONE_THREAD))
1830 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1831 	recalc_sigpending();
1832 	spin_unlock_irq(&current->sighand->siglock);
1833 	retval = -ERESTARTNOINTR;
1834 	if (signal_pending(current))
1835 		goto fork_out;
1836 
1837 	retval = -ENOMEM;
1838 	p = dup_task_struct(current, node);
1839 	if (!p)
1840 		goto fork_out;
1841 
1842 	/*
1843 	 * This _must_ happen before we call free_task(), i.e. before we jump
1844 	 * to any of the bad_fork_* labels. This is to avoid freeing
1845 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1846 	 * kernel threads (PF_KTHREAD).
1847 	 */
1848 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1849 	/*
1850 	 * Clear TID on mm_release()?
1851 	 */
1852 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1853 
1854 	ftrace_graph_init_task(p);
1855 
1856 	rt_mutex_init_task(p);
1857 
1858 #ifdef CONFIG_PROVE_LOCKING
1859 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1860 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1861 #endif
1862 	retval = -EAGAIN;
1863 	if (atomic_read(&p->real_cred->user->processes) >=
1864 			task_rlimit(p, RLIMIT_NPROC)) {
1865 		if (p->real_cred->user != INIT_USER &&
1866 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1867 			goto bad_fork_free;
1868 	}
1869 	current->flags &= ~PF_NPROC_EXCEEDED;
1870 
1871 	retval = copy_creds(p, clone_flags);
1872 	if (retval < 0)
1873 		goto bad_fork_free;
1874 
1875 	/*
1876 	 * If multiple threads are within copy_process(), then this check
1877 	 * triggers too late. This doesn't hurt, the check is only there
1878 	 * to stop root fork bombs.
1879 	 */
1880 	retval = -EAGAIN;
1881 	if (nr_threads >= max_threads)
1882 		goto bad_fork_cleanup_count;
1883 
1884 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1885 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1886 	p->flags |= PF_FORKNOEXEC;
1887 	INIT_LIST_HEAD(&p->children);
1888 	INIT_LIST_HEAD(&p->sibling);
1889 	rcu_copy_process(p);
1890 	p->vfork_done = NULL;
1891 	spin_lock_init(&p->alloc_lock);
1892 
1893 	init_sigpending(&p->pending);
1894 
1895 	p->utime = p->stime = p->gtime = 0;
1896 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1897 	p->utimescaled = p->stimescaled = 0;
1898 #endif
1899 	prev_cputime_init(&p->prev_cputime);
1900 
1901 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1902 	seqcount_init(&p->vtime.seqcount);
1903 	p->vtime.starttime = 0;
1904 	p->vtime.state = VTIME_INACTIVE;
1905 #endif
1906 
1907 #if defined(SPLIT_RSS_COUNTING)
1908 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1909 #endif
1910 
1911 	p->default_timer_slack_ns = current->timer_slack_ns;
1912 
1913 #ifdef CONFIG_PSI
1914 	p->psi_flags = 0;
1915 #endif
1916 
1917 	task_io_accounting_init(&p->ioac);
1918 	acct_clear_integrals(p);
1919 
1920 	posix_cputimers_init(&p->posix_cputimers);
1921 
1922 	p->io_context = NULL;
1923 	audit_set_context(p, NULL);
1924 	cgroup_fork(p);
1925 #ifdef CONFIG_NUMA
1926 	p->mempolicy = mpol_dup(p->mempolicy);
1927 	if (IS_ERR(p->mempolicy)) {
1928 		retval = PTR_ERR(p->mempolicy);
1929 		p->mempolicy = NULL;
1930 		goto bad_fork_cleanup_threadgroup_lock;
1931 	}
1932 #endif
1933 #ifdef CONFIG_CPUSETS
1934 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1935 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1936 	seqcount_init(&p->mems_allowed_seq);
1937 #endif
1938 #ifdef CONFIG_TRACE_IRQFLAGS
1939 	p->irq_events = 0;
1940 	p->hardirqs_enabled = 0;
1941 	p->hardirq_enable_ip = 0;
1942 	p->hardirq_enable_event = 0;
1943 	p->hardirq_disable_ip = _THIS_IP_;
1944 	p->hardirq_disable_event = 0;
1945 	p->softirqs_enabled = 1;
1946 	p->softirq_enable_ip = _THIS_IP_;
1947 	p->softirq_enable_event = 0;
1948 	p->softirq_disable_ip = 0;
1949 	p->softirq_disable_event = 0;
1950 	p->hardirq_context = 0;
1951 	p->softirq_context = 0;
1952 #endif
1953 
1954 	p->pagefault_disabled = 0;
1955 
1956 #ifdef CONFIG_LOCKDEP
1957 	lockdep_init_task(p);
1958 #endif
1959 
1960 #ifdef CONFIG_DEBUG_MUTEXES
1961 	p->blocked_on = NULL; /* not blocked yet */
1962 #endif
1963 #ifdef CONFIG_BCACHE
1964 	p->sequential_io	= 0;
1965 	p->sequential_io_avg	= 0;
1966 #endif
1967 
1968 	/* Perform scheduler related setup. Assign this task to a CPU. */
1969 	retval = sched_fork(clone_flags, p);
1970 	if (retval)
1971 		goto bad_fork_cleanup_policy;
1972 
1973 	retval = perf_event_init_task(p);
1974 	if (retval)
1975 		goto bad_fork_cleanup_policy;
1976 	retval = audit_alloc(p);
1977 	if (retval)
1978 		goto bad_fork_cleanup_perf;
1979 	/* copy all the process information */
1980 	shm_init_task(p);
1981 	retval = security_task_alloc(p, clone_flags);
1982 	if (retval)
1983 		goto bad_fork_cleanup_audit;
1984 	retval = copy_semundo(clone_flags, p);
1985 	if (retval)
1986 		goto bad_fork_cleanup_security;
1987 	retval = copy_files(clone_flags, p);
1988 	if (retval)
1989 		goto bad_fork_cleanup_semundo;
1990 	retval = copy_fs(clone_flags, p);
1991 	if (retval)
1992 		goto bad_fork_cleanup_files;
1993 	retval = copy_sighand(clone_flags, p);
1994 	if (retval)
1995 		goto bad_fork_cleanup_fs;
1996 	retval = copy_signal(clone_flags, p);
1997 	if (retval)
1998 		goto bad_fork_cleanup_sighand;
1999 	retval = copy_mm(clone_flags, p);
2000 	if (retval)
2001 		goto bad_fork_cleanup_signal;
2002 	retval = copy_namespaces(clone_flags, p);
2003 	if (retval)
2004 		goto bad_fork_cleanup_mm;
2005 	retval = copy_io(clone_flags, p);
2006 	if (retval)
2007 		goto bad_fork_cleanup_namespaces;
2008 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2009 				 args->tls);
2010 	if (retval)
2011 		goto bad_fork_cleanup_io;
2012 
2013 	stackleak_task_init(p);
2014 
2015 	if (pid != &init_struct_pid) {
2016 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2017 		if (IS_ERR(pid)) {
2018 			retval = PTR_ERR(pid);
2019 			goto bad_fork_cleanup_thread;
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * This has to happen after we've potentially unshared the file
2025 	 * descriptor table (so that the pidfd doesn't leak into the child
2026 	 * if the fd table isn't shared).
2027 	 */
2028 	if (clone_flags & CLONE_PIDFD) {
2029 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2030 		if (retval < 0)
2031 			goto bad_fork_free_pid;
2032 
2033 		pidfd = retval;
2034 
2035 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2036 					      O_RDWR | O_CLOEXEC);
2037 		if (IS_ERR(pidfile)) {
2038 			put_unused_fd(pidfd);
2039 			retval = PTR_ERR(pidfile);
2040 			goto bad_fork_free_pid;
2041 		}
2042 		get_pid(pid);	/* held by pidfile now */
2043 
2044 		retval = put_user(pidfd, args->pidfd);
2045 		if (retval)
2046 			goto bad_fork_put_pidfd;
2047 	}
2048 
2049 #ifdef CONFIG_BLOCK
2050 	p->plug = NULL;
2051 #endif
2052 #ifdef CONFIG_FUTEX
2053 	p->robust_list = NULL;
2054 #ifdef CONFIG_COMPAT
2055 	p->compat_robust_list = NULL;
2056 #endif
2057 	INIT_LIST_HEAD(&p->pi_state_list);
2058 	p->pi_state_cache = NULL;
2059 #endif
2060 	/*
2061 	 * sigaltstack should be cleared when sharing the same VM
2062 	 */
2063 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2064 		sas_ss_reset(p);
2065 
2066 	/*
2067 	 * Syscall tracing and stepping should be turned off in the
2068 	 * child regardless of CLONE_PTRACE.
2069 	 */
2070 	user_disable_single_step(p);
2071 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2072 #ifdef TIF_SYSCALL_EMU
2073 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2074 #endif
2075 	clear_tsk_latency_tracing(p);
2076 
2077 	/* ok, now we should be set up.. */
2078 	p->pid = pid_nr(pid);
2079 	if (clone_flags & CLONE_THREAD) {
2080 		p->exit_signal = -1;
2081 		p->group_leader = current->group_leader;
2082 		p->tgid = current->tgid;
2083 	} else {
2084 		if (clone_flags & CLONE_PARENT)
2085 			p->exit_signal = current->group_leader->exit_signal;
2086 		else
2087 			p->exit_signal = args->exit_signal;
2088 		p->group_leader = p;
2089 		p->tgid = p->pid;
2090 	}
2091 
2092 	p->nr_dirtied = 0;
2093 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2094 	p->dirty_paused_when = 0;
2095 
2096 	p->pdeath_signal = 0;
2097 	INIT_LIST_HEAD(&p->thread_group);
2098 	p->task_works = NULL;
2099 
2100 	cgroup_threadgroup_change_begin(current);
2101 	/*
2102 	 * Ensure that the cgroup subsystem policies allow the new process to be
2103 	 * forked. It should be noted the the new process's css_set can be changed
2104 	 * between here and cgroup_post_fork() if an organisation operation is in
2105 	 * progress.
2106 	 */
2107 	retval = cgroup_can_fork(p);
2108 	if (retval)
2109 		goto bad_fork_cgroup_threadgroup_change_end;
2110 
2111 	/*
2112 	 * From this point on we must avoid any synchronous user-space
2113 	 * communication until we take the tasklist-lock. In particular, we do
2114 	 * not want user-space to be able to predict the process start-time by
2115 	 * stalling fork(2) after we recorded the start_time but before it is
2116 	 * visible to the system.
2117 	 */
2118 
2119 	p->start_time = ktime_get_ns();
2120 	p->real_start_time = ktime_get_boottime_ns();
2121 
2122 	/*
2123 	 * Make it visible to the rest of the system, but dont wake it up yet.
2124 	 * Need tasklist lock for parent etc handling!
2125 	 */
2126 	write_lock_irq(&tasklist_lock);
2127 
2128 	/* CLONE_PARENT re-uses the old parent */
2129 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2130 		p->real_parent = current->real_parent;
2131 		p->parent_exec_id = current->parent_exec_id;
2132 	} else {
2133 		p->real_parent = current;
2134 		p->parent_exec_id = current->self_exec_id;
2135 	}
2136 
2137 	klp_copy_process(p);
2138 
2139 	spin_lock(&current->sighand->siglock);
2140 
2141 	/*
2142 	 * Copy seccomp details explicitly here, in case they were changed
2143 	 * before holding sighand lock.
2144 	 */
2145 	copy_seccomp(p);
2146 
2147 	rseq_fork(p, clone_flags);
2148 
2149 	/* Don't start children in a dying pid namespace */
2150 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2151 		retval = -ENOMEM;
2152 		goto bad_fork_cancel_cgroup;
2153 	}
2154 
2155 	/* Let kill terminate clone/fork in the middle */
2156 	if (fatal_signal_pending(current)) {
2157 		retval = -EINTR;
2158 		goto bad_fork_cancel_cgroup;
2159 	}
2160 
2161 	/* past the last point of failure */
2162 	if (pidfile)
2163 		fd_install(pidfd, pidfile);
2164 
2165 	init_task_pid_links(p);
2166 	if (likely(p->pid)) {
2167 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2168 
2169 		init_task_pid(p, PIDTYPE_PID, pid);
2170 		if (thread_group_leader(p)) {
2171 			init_task_pid(p, PIDTYPE_TGID, pid);
2172 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2173 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2174 
2175 			if (is_child_reaper(pid)) {
2176 				ns_of_pid(pid)->child_reaper = p;
2177 				p->signal->flags |= SIGNAL_UNKILLABLE;
2178 			}
2179 			p->signal->shared_pending.signal = delayed.signal;
2180 			p->signal->tty = tty_kref_get(current->signal->tty);
2181 			/*
2182 			 * Inherit has_child_subreaper flag under the same
2183 			 * tasklist_lock with adding child to the process tree
2184 			 * for propagate_has_child_subreaper optimization.
2185 			 */
2186 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2187 							 p->real_parent->signal->is_child_subreaper;
2188 			list_add_tail(&p->sibling, &p->real_parent->children);
2189 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2190 			attach_pid(p, PIDTYPE_TGID);
2191 			attach_pid(p, PIDTYPE_PGID);
2192 			attach_pid(p, PIDTYPE_SID);
2193 			__this_cpu_inc(process_counts);
2194 		} else {
2195 			current->signal->nr_threads++;
2196 			atomic_inc(&current->signal->live);
2197 			refcount_inc(&current->signal->sigcnt);
2198 			task_join_group_stop(p);
2199 			list_add_tail_rcu(&p->thread_group,
2200 					  &p->group_leader->thread_group);
2201 			list_add_tail_rcu(&p->thread_node,
2202 					  &p->signal->thread_head);
2203 		}
2204 		attach_pid(p, PIDTYPE_PID);
2205 		nr_threads++;
2206 	}
2207 	total_forks++;
2208 	hlist_del_init(&delayed.node);
2209 	spin_unlock(&current->sighand->siglock);
2210 	syscall_tracepoint_update(p);
2211 	write_unlock_irq(&tasklist_lock);
2212 
2213 	proc_fork_connector(p);
2214 	cgroup_post_fork(p);
2215 	cgroup_threadgroup_change_end(current);
2216 	perf_event_fork(p);
2217 
2218 	trace_task_newtask(p, clone_flags);
2219 	uprobe_copy_process(p, clone_flags);
2220 
2221 	return p;
2222 
2223 bad_fork_cancel_cgroup:
2224 	spin_unlock(&current->sighand->siglock);
2225 	write_unlock_irq(&tasklist_lock);
2226 	cgroup_cancel_fork(p);
2227 bad_fork_cgroup_threadgroup_change_end:
2228 	cgroup_threadgroup_change_end(current);
2229 bad_fork_put_pidfd:
2230 	if (clone_flags & CLONE_PIDFD) {
2231 		fput(pidfile);
2232 		put_unused_fd(pidfd);
2233 	}
2234 bad_fork_free_pid:
2235 	if (pid != &init_struct_pid)
2236 		free_pid(pid);
2237 bad_fork_cleanup_thread:
2238 	exit_thread(p);
2239 bad_fork_cleanup_io:
2240 	if (p->io_context)
2241 		exit_io_context(p);
2242 bad_fork_cleanup_namespaces:
2243 	exit_task_namespaces(p);
2244 bad_fork_cleanup_mm:
2245 	if (p->mm) {
2246 		mm_clear_owner(p->mm, p);
2247 		mmput(p->mm);
2248 	}
2249 bad_fork_cleanup_signal:
2250 	if (!(clone_flags & CLONE_THREAD))
2251 		free_signal_struct(p->signal);
2252 bad_fork_cleanup_sighand:
2253 	__cleanup_sighand(p->sighand);
2254 bad_fork_cleanup_fs:
2255 	exit_fs(p); /* blocking */
2256 bad_fork_cleanup_files:
2257 	exit_files(p); /* blocking */
2258 bad_fork_cleanup_semundo:
2259 	exit_sem(p);
2260 bad_fork_cleanup_security:
2261 	security_task_free(p);
2262 bad_fork_cleanup_audit:
2263 	audit_free(p);
2264 bad_fork_cleanup_perf:
2265 	perf_event_free_task(p);
2266 bad_fork_cleanup_policy:
2267 	lockdep_free_task(p);
2268 #ifdef CONFIG_NUMA
2269 	mpol_put(p->mempolicy);
2270 bad_fork_cleanup_threadgroup_lock:
2271 #endif
2272 	delayacct_tsk_free(p);
2273 bad_fork_cleanup_count:
2274 	atomic_dec(&p->cred->user->processes);
2275 	exit_creds(p);
2276 bad_fork_free:
2277 	p->state = TASK_DEAD;
2278 	put_task_stack(p);
2279 	delayed_free_task(p);
2280 fork_out:
2281 	spin_lock_irq(&current->sighand->siglock);
2282 	hlist_del_init(&delayed.node);
2283 	spin_unlock_irq(&current->sighand->siglock);
2284 	return ERR_PTR(retval);
2285 }
2286 
2287 static inline void init_idle_pids(struct task_struct *idle)
2288 {
2289 	enum pid_type type;
2290 
2291 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2292 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2293 		init_task_pid(idle, type, &init_struct_pid);
2294 	}
2295 }
2296 
2297 struct task_struct *fork_idle(int cpu)
2298 {
2299 	struct task_struct *task;
2300 	struct kernel_clone_args args = {
2301 		.flags = CLONE_VM,
2302 	};
2303 
2304 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2305 	if (!IS_ERR(task)) {
2306 		init_idle_pids(task);
2307 		init_idle(task, cpu);
2308 	}
2309 
2310 	return task;
2311 }
2312 
2313 struct mm_struct *copy_init_mm(void)
2314 {
2315 	return dup_mm(NULL, &init_mm);
2316 }
2317 
2318 /*
2319  *  Ok, this is the main fork-routine.
2320  *
2321  * It copies the process, and if successful kick-starts
2322  * it and waits for it to finish using the VM if required.
2323  *
2324  * args->exit_signal is expected to be checked for sanity by the caller.
2325  */
2326 long _do_fork(struct kernel_clone_args *args)
2327 {
2328 	u64 clone_flags = args->flags;
2329 	struct completion vfork;
2330 	struct pid *pid;
2331 	struct task_struct *p;
2332 	int trace = 0;
2333 	long nr;
2334 
2335 	/*
2336 	 * Determine whether and which event to report to ptracer.  When
2337 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2338 	 * requested, no event is reported; otherwise, report if the event
2339 	 * for the type of forking is enabled.
2340 	 */
2341 	if (!(clone_flags & CLONE_UNTRACED)) {
2342 		if (clone_flags & CLONE_VFORK)
2343 			trace = PTRACE_EVENT_VFORK;
2344 		else if (args->exit_signal != SIGCHLD)
2345 			trace = PTRACE_EVENT_CLONE;
2346 		else
2347 			trace = PTRACE_EVENT_FORK;
2348 
2349 		if (likely(!ptrace_event_enabled(current, trace)))
2350 			trace = 0;
2351 	}
2352 
2353 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2354 	add_latent_entropy();
2355 
2356 	if (IS_ERR(p))
2357 		return PTR_ERR(p);
2358 
2359 	/*
2360 	 * Do this prior waking up the new thread - the thread pointer
2361 	 * might get invalid after that point, if the thread exits quickly.
2362 	 */
2363 	trace_sched_process_fork(current, p);
2364 
2365 	pid = get_task_pid(p, PIDTYPE_PID);
2366 	nr = pid_vnr(pid);
2367 
2368 	if (clone_flags & CLONE_PARENT_SETTID)
2369 		put_user(nr, args->parent_tid);
2370 
2371 	if (clone_flags & CLONE_VFORK) {
2372 		p->vfork_done = &vfork;
2373 		init_completion(&vfork);
2374 		get_task_struct(p);
2375 	}
2376 
2377 	wake_up_new_task(p);
2378 
2379 	/* forking complete and child started to run, tell ptracer */
2380 	if (unlikely(trace))
2381 		ptrace_event_pid(trace, pid);
2382 
2383 	if (clone_flags & CLONE_VFORK) {
2384 		if (!wait_for_vfork_done(p, &vfork))
2385 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2386 	}
2387 
2388 	put_pid(pid);
2389 	return nr;
2390 }
2391 
2392 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2393 {
2394 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2395 	if ((kargs->flags & CLONE_PIDFD) &&
2396 	    (kargs->flags & CLONE_PARENT_SETTID))
2397 		return false;
2398 
2399 	return true;
2400 }
2401 
2402 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2403 /* For compatibility with architectures that call do_fork directly rather than
2404  * using the syscall entry points below. */
2405 long do_fork(unsigned long clone_flags,
2406 	      unsigned long stack_start,
2407 	      unsigned long stack_size,
2408 	      int __user *parent_tidptr,
2409 	      int __user *child_tidptr)
2410 {
2411 	struct kernel_clone_args args = {
2412 		.flags		= (clone_flags & ~CSIGNAL),
2413 		.pidfd		= parent_tidptr,
2414 		.child_tid	= child_tidptr,
2415 		.parent_tid	= parent_tidptr,
2416 		.exit_signal	= (clone_flags & CSIGNAL),
2417 		.stack		= stack_start,
2418 		.stack_size	= stack_size,
2419 	};
2420 
2421 	if (!legacy_clone_args_valid(&args))
2422 		return -EINVAL;
2423 
2424 	return _do_fork(&args);
2425 }
2426 #endif
2427 
2428 /*
2429  * Create a kernel thread.
2430  */
2431 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2432 {
2433 	struct kernel_clone_args args = {
2434 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2435 		.exit_signal	= (flags & CSIGNAL),
2436 		.stack		= (unsigned long)fn,
2437 		.stack_size	= (unsigned long)arg,
2438 	};
2439 
2440 	return _do_fork(&args);
2441 }
2442 
2443 #ifdef __ARCH_WANT_SYS_FORK
2444 SYSCALL_DEFINE0(fork)
2445 {
2446 #ifdef CONFIG_MMU
2447 	struct kernel_clone_args args = {
2448 		.exit_signal = SIGCHLD,
2449 	};
2450 
2451 	return _do_fork(&args);
2452 #else
2453 	/* can not support in nommu mode */
2454 	return -EINVAL;
2455 #endif
2456 }
2457 #endif
2458 
2459 #ifdef __ARCH_WANT_SYS_VFORK
2460 SYSCALL_DEFINE0(vfork)
2461 {
2462 	struct kernel_clone_args args = {
2463 		.flags		= CLONE_VFORK | CLONE_VM,
2464 		.exit_signal	= SIGCHLD,
2465 	};
2466 
2467 	return _do_fork(&args);
2468 }
2469 #endif
2470 
2471 #ifdef __ARCH_WANT_SYS_CLONE
2472 #ifdef CONFIG_CLONE_BACKWARDS
2473 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2474 		 int __user *, parent_tidptr,
2475 		 unsigned long, tls,
2476 		 int __user *, child_tidptr)
2477 #elif defined(CONFIG_CLONE_BACKWARDS2)
2478 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2479 		 int __user *, parent_tidptr,
2480 		 int __user *, child_tidptr,
2481 		 unsigned long, tls)
2482 #elif defined(CONFIG_CLONE_BACKWARDS3)
2483 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2484 		int, stack_size,
2485 		int __user *, parent_tidptr,
2486 		int __user *, child_tidptr,
2487 		unsigned long, tls)
2488 #else
2489 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2490 		 int __user *, parent_tidptr,
2491 		 int __user *, child_tidptr,
2492 		 unsigned long, tls)
2493 #endif
2494 {
2495 	struct kernel_clone_args args = {
2496 		.flags		= (clone_flags & ~CSIGNAL),
2497 		.pidfd		= parent_tidptr,
2498 		.child_tid	= child_tidptr,
2499 		.parent_tid	= parent_tidptr,
2500 		.exit_signal	= (clone_flags & CSIGNAL),
2501 		.stack		= newsp,
2502 		.tls		= tls,
2503 	};
2504 
2505 	if (!legacy_clone_args_valid(&args))
2506 		return -EINVAL;
2507 
2508 	return _do_fork(&args);
2509 }
2510 #endif
2511 
2512 #ifdef __ARCH_WANT_SYS_CLONE3
2513 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2514 					      struct clone_args __user *uargs,
2515 					      size_t size)
2516 {
2517 	struct clone_args args;
2518 
2519 	if (unlikely(size > PAGE_SIZE))
2520 		return -E2BIG;
2521 
2522 	if (unlikely(size < sizeof(struct clone_args)))
2523 		return -EINVAL;
2524 
2525 	if (unlikely(!access_ok(uargs, size)))
2526 		return -EFAULT;
2527 
2528 	if (size > sizeof(struct clone_args)) {
2529 		unsigned char __user *addr;
2530 		unsigned char __user *end;
2531 		unsigned char val;
2532 
2533 		addr = (void __user *)uargs + sizeof(struct clone_args);
2534 		end = (void __user *)uargs + size;
2535 
2536 		for (; addr < end; addr++) {
2537 			if (get_user(val, addr))
2538 				return -EFAULT;
2539 			if (val)
2540 				return -E2BIG;
2541 		}
2542 
2543 		size = sizeof(struct clone_args);
2544 	}
2545 
2546 	if (copy_from_user(&args, uargs, size))
2547 		return -EFAULT;
2548 
2549 	/*
2550 	 * Verify that higher 32bits of exit_signal are unset and that
2551 	 * it is a valid signal
2552 	 */
2553 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2554 		     !valid_signal(args.exit_signal)))
2555 		return -EINVAL;
2556 
2557 	*kargs = (struct kernel_clone_args){
2558 		.flags		= args.flags,
2559 		.pidfd		= u64_to_user_ptr(args.pidfd),
2560 		.child_tid	= u64_to_user_ptr(args.child_tid),
2561 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2562 		.exit_signal	= args.exit_signal,
2563 		.stack		= args.stack,
2564 		.stack_size	= args.stack_size,
2565 		.tls		= args.tls,
2566 	};
2567 
2568 	return 0;
2569 }
2570 
2571 static bool clone3_args_valid(const struct kernel_clone_args *kargs)
2572 {
2573 	/*
2574 	 * All lower bits of the flag word are taken.
2575 	 * Verify that no other unknown flags are passed along.
2576 	 */
2577 	if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2578 		return false;
2579 
2580 	/*
2581 	 * - make the CLONE_DETACHED bit reuseable for clone3
2582 	 * - make the CSIGNAL bits reuseable for clone3
2583 	 */
2584 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2585 		return false;
2586 
2587 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2588 	    kargs->exit_signal)
2589 		return false;
2590 
2591 	return true;
2592 }
2593 
2594 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2595 {
2596 	int err;
2597 
2598 	struct kernel_clone_args kargs;
2599 
2600 	err = copy_clone_args_from_user(&kargs, uargs, size);
2601 	if (err)
2602 		return err;
2603 
2604 	if (!clone3_args_valid(&kargs))
2605 		return -EINVAL;
2606 
2607 	return _do_fork(&kargs);
2608 }
2609 #endif
2610 
2611 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2612 {
2613 	struct task_struct *leader, *parent, *child;
2614 	int res;
2615 
2616 	read_lock(&tasklist_lock);
2617 	leader = top = top->group_leader;
2618 down:
2619 	for_each_thread(leader, parent) {
2620 		list_for_each_entry(child, &parent->children, sibling) {
2621 			res = visitor(child, data);
2622 			if (res) {
2623 				if (res < 0)
2624 					goto out;
2625 				leader = child;
2626 				goto down;
2627 			}
2628 up:
2629 			;
2630 		}
2631 	}
2632 
2633 	if (leader != top) {
2634 		child = leader;
2635 		parent = child->real_parent;
2636 		leader = parent->group_leader;
2637 		goto up;
2638 	}
2639 out:
2640 	read_unlock(&tasklist_lock);
2641 }
2642 
2643 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2644 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2645 #endif
2646 
2647 static void sighand_ctor(void *data)
2648 {
2649 	struct sighand_struct *sighand = data;
2650 
2651 	spin_lock_init(&sighand->siglock);
2652 	init_waitqueue_head(&sighand->signalfd_wqh);
2653 }
2654 
2655 void __init proc_caches_init(void)
2656 {
2657 	unsigned int mm_size;
2658 
2659 	sighand_cachep = kmem_cache_create("sighand_cache",
2660 			sizeof(struct sighand_struct), 0,
2661 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2662 			SLAB_ACCOUNT, sighand_ctor);
2663 	signal_cachep = kmem_cache_create("signal_cache",
2664 			sizeof(struct signal_struct), 0,
2665 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2666 			NULL);
2667 	files_cachep = kmem_cache_create("files_cache",
2668 			sizeof(struct files_struct), 0,
2669 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2670 			NULL);
2671 	fs_cachep = kmem_cache_create("fs_cache",
2672 			sizeof(struct fs_struct), 0,
2673 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2674 			NULL);
2675 
2676 	/*
2677 	 * The mm_cpumask is located at the end of mm_struct, and is
2678 	 * dynamically sized based on the maximum CPU number this system
2679 	 * can have, taking hotplug into account (nr_cpu_ids).
2680 	 */
2681 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2682 
2683 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2684 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2685 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2686 			offsetof(struct mm_struct, saved_auxv),
2687 			sizeof_field(struct mm_struct, saved_auxv),
2688 			NULL);
2689 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2690 	mmap_init();
2691 	nsproxy_cache_init();
2692 }
2693 
2694 /*
2695  * Check constraints on flags passed to the unshare system call.
2696  */
2697 static int check_unshare_flags(unsigned long unshare_flags)
2698 {
2699 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2700 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2701 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2702 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2703 		return -EINVAL;
2704 	/*
2705 	 * Not implemented, but pretend it works if there is nothing
2706 	 * to unshare.  Note that unsharing the address space or the
2707 	 * signal handlers also need to unshare the signal queues (aka
2708 	 * CLONE_THREAD).
2709 	 */
2710 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2711 		if (!thread_group_empty(current))
2712 			return -EINVAL;
2713 	}
2714 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2715 		if (refcount_read(&current->sighand->count) > 1)
2716 			return -EINVAL;
2717 	}
2718 	if (unshare_flags & CLONE_VM) {
2719 		if (!current_is_single_threaded())
2720 			return -EINVAL;
2721 	}
2722 
2723 	return 0;
2724 }
2725 
2726 /*
2727  * Unshare the filesystem structure if it is being shared
2728  */
2729 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2730 {
2731 	struct fs_struct *fs = current->fs;
2732 
2733 	if (!(unshare_flags & CLONE_FS) || !fs)
2734 		return 0;
2735 
2736 	/* don't need lock here; in the worst case we'll do useless copy */
2737 	if (fs->users == 1)
2738 		return 0;
2739 
2740 	*new_fsp = copy_fs_struct(fs);
2741 	if (!*new_fsp)
2742 		return -ENOMEM;
2743 
2744 	return 0;
2745 }
2746 
2747 /*
2748  * Unshare file descriptor table if it is being shared
2749  */
2750 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2751 {
2752 	struct files_struct *fd = current->files;
2753 	int error = 0;
2754 
2755 	if ((unshare_flags & CLONE_FILES) &&
2756 	    (fd && atomic_read(&fd->count) > 1)) {
2757 		*new_fdp = dup_fd(fd, &error);
2758 		if (!*new_fdp)
2759 			return error;
2760 	}
2761 
2762 	return 0;
2763 }
2764 
2765 /*
2766  * unshare allows a process to 'unshare' part of the process
2767  * context which was originally shared using clone.  copy_*
2768  * functions used by do_fork() cannot be used here directly
2769  * because they modify an inactive task_struct that is being
2770  * constructed. Here we are modifying the current, active,
2771  * task_struct.
2772  */
2773 int ksys_unshare(unsigned long unshare_flags)
2774 {
2775 	struct fs_struct *fs, *new_fs = NULL;
2776 	struct files_struct *fd, *new_fd = NULL;
2777 	struct cred *new_cred = NULL;
2778 	struct nsproxy *new_nsproxy = NULL;
2779 	int do_sysvsem = 0;
2780 	int err;
2781 
2782 	/*
2783 	 * If unsharing a user namespace must also unshare the thread group
2784 	 * and unshare the filesystem root and working directories.
2785 	 */
2786 	if (unshare_flags & CLONE_NEWUSER)
2787 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2788 	/*
2789 	 * If unsharing vm, must also unshare signal handlers.
2790 	 */
2791 	if (unshare_flags & CLONE_VM)
2792 		unshare_flags |= CLONE_SIGHAND;
2793 	/*
2794 	 * If unsharing a signal handlers, must also unshare the signal queues.
2795 	 */
2796 	if (unshare_flags & CLONE_SIGHAND)
2797 		unshare_flags |= CLONE_THREAD;
2798 	/*
2799 	 * If unsharing namespace, must also unshare filesystem information.
2800 	 */
2801 	if (unshare_flags & CLONE_NEWNS)
2802 		unshare_flags |= CLONE_FS;
2803 
2804 	err = check_unshare_flags(unshare_flags);
2805 	if (err)
2806 		goto bad_unshare_out;
2807 	/*
2808 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2809 	 * to a new ipc namespace, the semaphore arrays from the old
2810 	 * namespace are unreachable.
2811 	 */
2812 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2813 		do_sysvsem = 1;
2814 	err = unshare_fs(unshare_flags, &new_fs);
2815 	if (err)
2816 		goto bad_unshare_out;
2817 	err = unshare_fd(unshare_flags, &new_fd);
2818 	if (err)
2819 		goto bad_unshare_cleanup_fs;
2820 	err = unshare_userns(unshare_flags, &new_cred);
2821 	if (err)
2822 		goto bad_unshare_cleanup_fd;
2823 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2824 					 new_cred, new_fs);
2825 	if (err)
2826 		goto bad_unshare_cleanup_cred;
2827 
2828 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2829 		if (do_sysvsem) {
2830 			/*
2831 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2832 			 */
2833 			exit_sem(current);
2834 		}
2835 		if (unshare_flags & CLONE_NEWIPC) {
2836 			/* Orphan segments in old ns (see sem above). */
2837 			exit_shm(current);
2838 			shm_init_task(current);
2839 		}
2840 
2841 		if (new_nsproxy)
2842 			switch_task_namespaces(current, new_nsproxy);
2843 
2844 		task_lock(current);
2845 
2846 		if (new_fs) {
2847 			fs = current->fs;
2848 			spin_lock(&fs->lock);
2849 			current->fs = new_fs;
2850 			if (--fs->users)
2851 				new_fs = NULL;
2852 			else
2853 				new_fs = fs;
2854 			spin_unlock(&fs->lock);
2855 		}
2856 
2857 		if (new_fd) {
2858 			fd = current->files;
2859 			current->files = new_fd;
2860 			new_fd = fd;
2861 		}
2862 
2863 		task_unlock(current);
2864 
2865 		if (new_cred) {
2866 			/* Install the new user namespace */
2867 			commit_creds(new_cred);
2868 			new_cred = NULL;
2869 		}
2870 	}
2871 
2872 	perf_event_namespaces(current);
2873 
2874 bad_unshare_cleanup_cred:
2875 	if (new_cred)
2876 		put_cred(new_cred);
2877 bad_unshare_cleanup_fd:
2878 	if (new_fd)
2879 		put_files_struct(new_fd);
2880 
2881 bad_unshare_cleanup_fs:
2882 	if (new_fs)
2883 		free_fs_struct(new_fs);
2884 
2885 bad_unshare_out:
2886 	return err;
2887 }
2888 
2889 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2890 {
2891 	return ksys_unshare(unshare_flags);
2892 }
2893 
2894 /*
2895  *	Helper to unshare the files of the current task.
2896  *	We don't want to expose copy_files internals to
2897  *	the exec layer of the kernel.
2898  */
2899 
2900 int unshare_files(struct files_struct **displaced)
2901 {
2902 	struct task_struct *task = current;
2903 	struct files_struct *copy = NULL;
2904 	int error;
2905 
2906 	error = unshare_fd(CLONE_FILES, &copy);
2907 	if (error || !copy) {
2908 		*displaced = NULL;
2909 		return error;
2910 	}
2911 	*displaced = task->files;
2912 	task_lock(task);
2913 	task->files = copy;
2914 	task_unlock(task);
2915 	return 0;
2916 }
2917 
2918 int sysctl_max_threads(struct ctl_table *table, int write,
2919 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2920 {
2921 	struct ctl_table t;
2922 	int ret;
2923 	int threads = max_threads;
2924 	int min = MIN_THREADS;
2925 	int max = MAX_THREADS;
2926 
2927 	t = *table;
2928 	t.data = &threads;
2929 	t.extra1 = &min;
2930 	t.extra2 = &max;
2931 
2932 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2933 	if (ret || !write)
2934 		return ret;
2935 
2936 	set_max_threads(threads);
2937 
2938 	return 0;
2939 }
2940