1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 #include <linux/iommu.h> 102 103 #include <asm/pgalloc.h> 104 #include <linux/uaccess.h> 105 #include <asm/mmu_context.h> 106 #include <asm/cacheflush.h> 107 #include <asm/tlbflush.h> 108 109 #include <trace/events/sched.h> 110 111 #define CREATE_TRACE_POINTS 112 #include <trace/events/task.h> 113 114 /* 115 * Minimum number of threads to boot the kernel 116 */ 117 #define MIN_THREADS 20 118 119 /* 120 * Maximum number of threads 121 */ 122 #define MAX_THREADS FUTEX_TID_MASK 123 124 /* 125 * Protected counters by write_lock_irq(&tasklist_lock) 126 */ 127 unsigned long total_forks; /* Handle normal Linux uptimes. */ 128 int nr_threads; /* The idle threads do not count.. */ 129 130 static int max_threads; /* tunable limit on nr_threads */ 131 132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 133 134 static const char * const resident_page_types[] = { 135 NAMED_ARRAY_INDEX(MM_FILEPAGES), 136 NAMED_ARRAY_INDEX(MM_ANONPAGES), 137 NAMED_ARRAY_INDEX(MM_SWAPENTS), 138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 139 }; 140 141 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 142 143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 144 145 #ifdef CONFIG_PROVE_RCU 146 int lockdep_tasklist_lock_is_held(void) 147 { 148 return lockdep_is_held(&tasklist_lock); 149 } 150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 151 #endif /* #ifdef CONFIG_PROVE_RCU */ 152 153 int nr_processes(void) 154 { 155 int cpu; 156 int total = 0; 157 158 for_each_possible_cpu(cpu) 159 total += per_cpu(process_counts, cpu); 160 161 return total; 162 } 163 164 void __weak arch_release_task_struct(struct task_struct *tsk) 165 { 166 } 167 168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 169 static struct kmem_cache *task_struct_cachep; 170 171 static inline struct task_struct *alloc_task_struct_node(int node) 172 { 173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 174 } 175 176 static inline void free_task_struct(struct task_struct *tsk) 177 { 178 kmem_cache_free(task_struct_cachep, tsk); 179 } 180 #endif 181 182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 183 184 /* 185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 186 * kmemcache based allocator. 187 */ 188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 189 190 # ifdef CONFIG_VMAP_STACK 191 /* 192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 193 * flush. Try to minimize the number of calls by caching stacks. 194 */ 195 #define NR_CACHED_STACKS 2 196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 197 198 struct vm_stack { 199 struct rcu_head rcu; 200 struct vm_struct *stack_vm_area; 201 }; 202 203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 204 { 205 unsigned int i; 206 207 for (i = 0; i < NR_CACHED_STACKS; i++) { 208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 209 continue; 210 return true; 211 } 212 return false; 213 } 214 215 static void thread_stack_free_rcu(struct rcu_head *rh) 216 { 217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 218 219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 220 return; 221 222 vfree(vm_stack); 223 } 224 225 static void thread_stack_delayed_free(struct task_struct *tsk) 226 { 227 struct vm_stack *vm_stack = tsk->stack; 228 229 vm_stack->stack_vm_area = tsk->stack_vm_area; 230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 231 } 232 233 static int free_vm_stack_cache(unsigned int cpu) 234 { 235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 236 int i; 237 238 for (i = 0; i < NR_CACHED_STACKS; i++) { 239 struct vm_struct *vm_stack = cached_vm_stacks[i]; 240 241 if (!vm_stack) 242 continue; 243 244 vfree(vm_stack->addr); 245 cached_vm_stacks[i] = NULL; 246 } 247 248 return 0; 249 } 250 251 static int memcg_charge_kernel_stack(struct vm_struct *vm) 252 { 253 int i; 254 int ret; 255 256 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 258 259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 261 if (ret) 262 goto err; 263 } 264 return 0; 265 err: 266 /* 267 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 268 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 269 * ignore this page. 270 */ 271 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 272 memcg_kmem_uncharge_page(vm->pages[i], 0); 273 return ret; 274 } 275 276 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 277 { 278 struct vm_struct *vm; 279 void *stack; 280 int i; 281 282 for (i = 0; i < NR_CACHED_STACKS; i++) { 283 struct vm_struct *s; 284 285 s = this_cpu_xchg(cached_stacks[i], NULL); 286 287 if (!s) 288 continue; 289 290 /* Reset stack metadata. */ 291 kasan_unpoison_range(s->addr, THREAD_SIZE); 292 293 stack = kasan_reset_tag(s->addr); 294 295 /* Clear stale pointers from reused stack. */ 296 memset(stack, 0, THREAD_SIZE); 297 298 if (memcg_charge_kernel_stack(s)) { 299 vfree(s->addr); 300 return -ENOMEM; 301 } 302 303 tsk->stack_vm_area = s; 304 tsk->stack = stack; 305 return 0; 306 } 307 308 /* 309 * Allocated stacks are cached and later reused by new threads, 310 * so memcg accounting is performed manually on assigning/releasing 311 * stacks to tasks. Drop __GFP_ACCOUNT. 312 */ 313 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 314 VMALLOC_START, VMALLOC_END, 315 THREADINFO_GFP & ~__GFP_ACCOUNT, 316 PAGE_KERNEL, 317 0, node, __builtin_return_address(0)); 318 if (!stack) 319 return -ENOMEM; 320 321 vm = find_vm_area(stack); 322 if (memcg_charge_kernel_stack(vm)) { 323 vfree(stack); 324 return -ENOMEM; 325 } 326 /* 327 * We can't call find_vm_area() in interrupt context, and 328 * free_thread_stack() can be called in interrupt context, 329 * so cache the vm_struct. 330 */ 331 tsk->stack_vm_area = vm; 332 stack = kasan_reset_tag(stack); 333 tsk->stack = stack; 334 return 0; 335 } 336 337 static void free_thread_stack(struct task_struct *tsk) 338 { 339 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 340 thread_stack_delayed_free(tsk); 341 342 tsk->stack = NULL; 343 tsk->stack_vm_area = NULL; 344 } 345 346 # else /* !CONFIG_VMAP_STACK */ 347 348 static void thread_stack_free_rcu(struct rcu_head *rh) 349 { 350 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 351 } 352 353 static void thread_stack_delayed_free(struct task_struct *tsk) 354 { 355 struct rcu_head *rh = tsk->stack; 356 357 call_rcu(rh, thread_stack_free_rcu); 358 } 359 360 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 361 { 362 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 363 THREAD_SIZE_ORDER); 364 365 if (likely(page)) { 366 tsk->stack = kasan_reset_tag(page_address(page)); 367 return 0; 368 } 369 return -ENOMEM; 370 } 371 372 static void free_thread_stack(struct task_struct *tsk) 373 { 374 thread_stack_delayed_free(tsk); 375 tsk->stack = NULL; 376 } 377 378 # endif /* CONFIG_VMAP_STACK */ 379 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 380 381 static struct kmem_cache *thread_stack_cache; 382 383 static void thread_stack_free_rcu(struct rcu_head *rh) 384 { 385 kmem_cache_free(thread_stack_cache, rh); 386 } 387 388 static void thread_stack_delayed_free(struct task_struct *tsk) 389 { 390 struct rcu_head *rh = tsk->stack; 391 392 call_rcu(rh, thread_stack_free_rcu); 393 } 394 395 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 396 { 397 unsigned long *stack; 398 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 399 stack = kasan_reset_tag(stack); 400 tsk->stack = stack; 401 return stack ? 0 : -ENOMEM; 402 } 403 404 static void free_thread_stack(struct task_struct *tsk) 405 { 406 thread_stack_delayed_free(tsk); 407 tsk->stack = NULL; 408 } 409 410 void thread_stack_cache_init(void) 411 { 412 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 413 THREAD_SIZE, THREAD_SIZE, 0, 0, 414 THREAD_SIZE, NULL); 415 BUG_ON(thread_stack_cache == NULL); 416 } 417 418 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 419 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 420 421 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 422 { 423 unsigned long *stack; 424 425 stack = arch_alloc_thread_stack_node(tsk, node); 426 tsk->stack = stack; 427 return stack ? 0 : -ENOMEM; 428 } 429 430 static void free_thread_stack(struct task_struct *tsk) 431 { 432 arch_free_thread_stack(tsk); 433 tsk->stack = NULL; 434 } 435 436 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 437 438 /* SLAB cache for signal_struct structures (tsk->signal) */ 439 static struct kmem_cache *signal_cachep; 440 441 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 442 struct kmem_cache *sighand_cachep; 443 444 /* SLAB cache for files_struct structures (tsk->files) */ 445 struct kmem_cache *files_cachep; 446 447 /* SLAB cache for fs_struct structures (tsk->fs) */ 448 struct kmem_cache *fs_cachep; 449 450 /* SLAB cache for vm_area_struct structures */ 451 static struct kmem_cache *vm_area_cachep; 452 453 /* SLAB cache for mm_struct structures (tsk->mm) */ 454 static struct kmem_cache *mm_cachep; 455 456 #ifdef CONFIG_PER_VMA_LOCK 457 458 /* SLAB cache for vm_area_struct.lock */ 459 static struct kmem_cache *vma_lock_cachep; 460 461 static bool vma_lock_alloc(struct vm_area_struct *vma) 462 { 463 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 464 if (!vma->vm_lock) 465 return false; 466 467 init_rwsem(&vma->vm_lock->lock); 468 vma->vm_lock_seq = -1; 469 470 return true; 471 } 472 473 static inline void vma_lock_free(struct vm_area_struct *vma) 474 { 475 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 476 } 477 478 #else /* CONFIG_PER_VMA_LOCK */ 479 480 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 481 static inline void vma_lock_free(struct vm_area_struct *vma) {} 482 483 #endif /* CONFIG_PER_VMA_LOCK */ 484 485 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 486 { 487 struct vm_area_struct *vma; 488 489 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 490 if (!vma) 491 return NULL; 492 493 vma_init(vma, mm); 494 if (!vma_lock_alloc(vma)) { 495 kmem_cache_free(vm_area_cachep, vma); 496 return NULL; 497 } 498 499 return vma; 500 } 501 502 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 503 { 504 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 505 506 if (!new) 507 return NULL; 508 509 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 510 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 511 /* 512 * orig->shared.rb may be modified concurrently, but the clone 513 * will be reinitialized. 514 */ 515 data_race(memcpy(new, orig, sizeof(*new))); 516 if (!vma_lock_alloc(new)) { 517 kmem_cache_free(vm_area_cachep, new); 518 return NULL; 519 } 520 INIT_LIST_HEAD(&new->anon_vma_chain); 521 vma_numab_state_init(new); 522 dup_anon_vma_name(orig, new); 523 524 return new; 525 } 526 527 void __vm_area_free(struct vm_area_struct *vma) 528 { 529 vma_numab_state_free(vma); 530 free_anon_vma_name(vma); 531 vma_lock_free(vma); 532 kmem_cache_free(vm_area_cachep, vma); 533 } 534 535 #ifdef CONFIG_PER_VMA_LOCK 536 static void vm_area_free_rcu_cb(struct rcu_head *head) 537 { 538 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 539 vm_rcu); 540 541 /* The vma should not be locked while being destroyed. */ 542 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 543 __vm_area_free(vma); 544 } 545 #endif 546 547 void vm_area_free(struct vm_area_struct *vma) 548 { 549 #ifdef CONFIG_PER_VMA_LOCK 550 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 551 #else 552 __vm_area_free(vma); 553 #endif 554 } 555 556 static void account_kernel_stack(struct task_struct *tsk, int account) 557 { 558 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 559 struct vm_struct *vm = task_stack_vm_area(tsk); 560 int i; 561 562 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 563 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 564 account * (PAGE_SIZE / 1024)); 565 } else { 566 void *stack = task_stack_page(tsk); 567 568 /* All stack pages are in the same node. */ 569 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 570 account * (THREAD_SIZE / 1024)); 571 } 572 } 573 574 void exit_task_stack_account(struct task_struct *tsk) 575 { 576 account_kernel_stack(tsk, -1); 577 578 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 579 struct vm_struct *vm; 580 int i; 581 582 vm = task_stack_vm_area(tsk); 583 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 584 memcg_kmem_uncharge_page(vm->pages[i], 0); 585 } 586 } 587 588 static void release_task_stack(struct task_struct *tsk) 589 { 590 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 591 return; /* Better to leak the stack than to free prematurely */ 592 593 free_thread_stack(tsk); 594 } 595 596 #ifdef CONFIG_THREAD_INFO_IN_TASK 597 void put_task_stack(struct task_struct *tsk) 598 { 599 if (refcount_dec_and_test(&tsk->stack_refcount)) 600 release_task_stack(tsk); 601 } 602 #endif 603 604 void free_task(struct task_struct *tsk) 605 { 606 #ifdef CONFIG_SECCOMP 607 WARN_ON_ONCE(tsk->seccomp.filter); 608 #endif 609 release_user_cpus_ptr(tsk); 610 scs_release(tsk); 611 612 #ifndef CONFIG_THREAD_INFO_IN_TASK 613 /* 614 * The task is finally done with both the stack and thread_info, 615 * so free both. 616 */ 617 release_task_stack(tsk); 618 #else 619 /* 620 * If the task had a separate stack allocation, it should be gone 621 * by now. 622 */ 623 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 624 #endif 625 rt_mutex_debug_task_free(tsk); 626 ftrace_graph_exit_task(tsk); 627 arch_release_task_struct(tsk); 628 if (tsk->flags & PF_KTHREAD) 629 free_kthread_struct(tsk); 630 free_task_struct(tsk); 631 } 632 EXPORT_SYMBOL(free_task); 633 634 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 635 { 636 struct file *exe_file; 637 638 exe_file = get_mm_exe_file(oldmm); 639 RCU_INIT_POINTER(mm->exe_file, exe_file); 640 /* 641 * We depend on the oldmm having properly denied write access to the 642 * exe_file already. 643 */ 644 if (exe_file && deny_write_access(exe_file)) 645 pr_warn_once("deny_write_access() failed in %s\n", __func__); 646 } 647 648 #ifdef CONFIG_MMU 649 static __latent_entropy int dup_mmap(struct mm_struct *mm, 650 struct mm_struct *oldmm) 651 { 652 struct vm_area_struct *mpnt, *tmp; 653 int retval; 654 unsigned long charge = 0; 655 LIST_HEAD(uf); 656 VMA_ITERATOR(old_vmi, oldmm, 0); 657 VMA_ITERATOR(vmi, mm, 0); 658 659 uprobe_start_dup_mmap(); 660 if (mmap_write_lock_killable(oldmm)) { 661 retval = -EINTR; 662 goto fail_uprobe_end; 663 } 664 flush_cache_dup_mm(oldmm); 665 uprobe_dup_mmap(oldmm, mm); 666 /* 667 * Not linked in yet - no deadlock potential: 668 */ 669 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 670 671 /* No ordering required: file already has been exposed. */ 672 dup_mm_exe_file(mm, oldmm); 673 674 mm->total_vm = oldmm->total_vm; 675 mm->data_vm = oldmm->data_vm; 676 mm->exec_vm = oldmm->exec_vm; 677 mm->stack_vm = oldmm->stack_vm; 678 679 retval = ksm_fork(mm, oldmm); 680 if (retval) 681 goto out; 682 khugepaged_fork(mm, oldmm); 683 684 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 685 if (retval) 686 goto out; 687 688 mt_clear_in_rcu(vmi.mas.tree); 689 for_each_vma(old_vmi, mpnt) { 690 struct file *file; 691 692 if (mpnt->vm_flags & VM_DONTCOPY) { 693 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 694 continue; 695 } 696 charge = 0; 697 /* 698 * Don't duplicate many vmas if we've been oom-killed (for 699 * example) 700 */ 701 if (fatal_signal_pending(current)) { 702 retval = -EINTR; 703 goto loop_out; 704 } 705 if (mpnt->vm_flags & VM_ACCOUNT) { 706 unsigned long len = vma_pages(mpnt); 707 708 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 709 goto fail_nomem; 710 charge = len; 711 } 712 tmp = vm_area_dup(mpnt); 713 if (!tmp) 714 goto fail_nomem; 715 retval = vma_dup_policy(mpnt, tmp); 716 if (retval) 717 goto fail_nomem_policy; 718 tmp->vm_mm = mm; 719 retval = dup_userfaultfd(tmp, &uf); 720 if (retval) 721 goto fail_nomem_anon_vma_fork; 722 if (tmp->vm_flags & VM_WIPEONFORK) { 723 /* 724 * VM_WIPEONFORK gets a clean slate in the child. 725 * Don't prepare anon_vma until fault since we don't 726 * copy page for current vma. 727 */ 728 tmp->anon_vma = NULL; 729 } else if (anon_vma_fork(tmp, mpnt)) 730 goto fail_nomem_anon_vma_fork; 731 vm_flags_clear(tmp, VM_LOCKED_MASK); 732 file = tmp->vm_file; 733 if (file) { 734 struct address_space *mapping = file->f_mapping; 735 736 get_file(file); 737 i_mmap_lock_write(mapping); 738 if (tmp->vm_flags & VM_SHARED) 739 mapping_allow_writable(mapping); 740 flush_dcache_mmap_lock(mapping); 741 /* insert tmp into the share list, just after mpnt */ 742 vma_interval_tree_insert_after(tmp, mpnt, 743 &mapping->i_mmap); 744 flush_dcache_mmap_unlock(mapping); 745 i_mmap_unlock_write(mapping); 746 } 747 748 /* 749 * Copy/update hugetlb private vma information. 750 */ 751 if (is_vm_hugetlb_page(tmp)) 752 hugetlb_dup_vma_private(tmp); 753 754 /* Link the vma into the MT */ 755 if (vma_iter_bulk_store(&vmi, tmp)) 756 goto fail_nomem_vmi_store; 757 758 mm->map_count++; 759 if (!(tmp->vm_flags & VM_WIPEONFORK)) 760 retval = copy_page_range(tmp, mpnt); 761 762 if (tmp->vm_ops && tmp->vm_ops->open) 763 tmp->vm_ops->open(tmp); 764 765 if (retval) 766 goto loop_out; 767 } 768 /* a new mm has just been created */ 769 retval = arch_dup_mmap(oldmm, mm); 770 loop_out: 771 vma_iter_free(&vmi); 772 if (!retval) 773 mt_set_in_rcu(vmi.mas.tree); 774 out: 775 mmap_write_unlock(mm); 776 flush_tlb_mm(oldmm); 777 mmap_write_unlock(oldmm); 778 dup_userfaultfd_complete(&uf); 779 fail_uprobe_end: 780 uprobe_end_dup_mmap(); 781 return retval; 782 783 fail_nomem_vmi_store: 784 unlink_anon_vmas(tmp); 785 fail_nomem_anon_vma_fork: 786 mpol_put(vma_policy(tmp)); 787 fail_nomem_policy: 788 vm_area_free(tmp); 789 fail_nomem: 790 retval = -ENOMEM; 791 vm_unacct_memory(charge); 792 goto loop_out; 793 } 794 795 static inline int mm_alloc_pgd(struct mm_struct *mm) 796 { 797 mm->pgd = pgd_alloc(mm); 798 if (unlikely(!mm->pgd)) 799 return -ENOMEM; 800 return 0; 801 } 802 803 static inline void mm_free_pgd(struct mm_struct *mm) 804 { 805 pgd_free(mm, mm->pgd); 806 } 807 #else 808 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 809 { 810 mmap_write_lock(oldmm); 811 dup_mm_exe_file(mm, oldmm); 812 mmap_write_unlock(oldmm); 813 return 0; 814 } 815 #define mm_alloc_pgd(mm) (0) 816 #define mm_free_pgd(mm) 817 #endif /* CONFIG_MMU */ 818 819 static void check_mm(struct mm_struct *mm) 820 { 821 int i; 822 823 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 824 "Please make sure 'struct resident_page_types[]' is updated as well"); 825 826 for (i = 0; i < NR_MM_COUNTERS; i++) { 827 long x = percpu_counter_sum(&mm->rss_stat[i]); 828 829 if (unlikely(x)) 830 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 831 mm, resident_page_types[i], x); 832 } 833 834 if (mm_pgtables_bytes(mm)) 835 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 836 mm_pgtables_bytes(mm)); 837 838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 839 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 840 #endif 841 } 842 843 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 844 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 845 846 static void do_check_lazy_tlb(void *arg) 847 { 848 struct mm_struct *mm = arg; 849 850 WARN_ON_ONCE(current->active_mm == mm); 851 } 852 853 static void do_shoot_lazy_tlb(void *arg) 854 { 855 struct mm_struct *mm = arg; 856 857 if (current->active_mm == mm) { 858 WARN_ON_ONCE(current->mm); 859 current->active_mm = &init_mm; 860 switch_mm(mm, &init_mm, current); 861 } 862 } 863 864 static void cleanup_lazy_tlbs(struct mm_struct *mm) 865 { 866 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 867 /* 868 * In this case, lazy tlb mms are refounted and would not reach 869 * __mmdrop until all CPUs have switched away and mmdrop()ed. 870 */ 871 return; 872 } 873 874 /* 875 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 876 * requires lazy mm users to switch to another mm when the refcount 877 * drops to zero, before the mm is freed. This requires IPIs here to 878 * switch kernel threads to init_mm. 879 * 880 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 881 * switch with the final userspace teardown TLB flush which leaves the 882 * mm lazy on this CPU but no others, reducing the need for additional 883 * IPIs here. There are cases where a final IPI is still required here, 884 * such as the final mmdrop being performed on a different CPU than the 885 * one exiting, or kernel threads using the mm when userspace exits. 886 * 887 * IPI overheads have not found to be expensive, but they could be 888 * reduced in a number of possible ways, for example (roughly 889 * increasing order of complexity): 890 * - The last lazy reference created by exit_mm() could instead switch 891 * to init_mm, however it's probable this will run on the same CPU 892 * immediately afterwards, so this may not reduce IPIs much. 893 * - A batch of mms requiring IPIs could be gathered and freed at once. 894 * - CPUs store active_mm where it can be remotely checked without a 895 * lock, to filter out false-positives in the cpumask. 896 * - After mm_users or mm_count reaches zero, switching away from the 897 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 898 * with some batching or delaying of the final IPIs. 899 * - A delayed freeing and RCU-like quiescing sequence based on mm 900 * switching to avoid IPIs completely. 901 */ 902 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 903 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 904 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 905 } 906 907 /* 908 * Called when the last reference to the mm 909 * is dropped: either by a lazy thread or by 910 * mmput. Free the page directory and the mm. 911 */ 912 void __mmdrop(struct mm_struct *mm) 913 { 914 int i; 915 916 BUG_ON(mm == &init_mm); 917 WARN_ON_ONCE(mm == current->mm); 918 919 /* Ensure no CPUs are using this as their lazy tlb mm */ 920 cleanup_lazy_tlbs(mm); 921 922 WARN_ON_ONCE(mm == current->active_mm); 923 mm_free_pgd(mm); 924 destroy_context(mm); 925 mmu_notifier_subscriptions_destroy(mm); 926 check_mm(mm); 927 put_user_ns(mm->user_ns); 928 mm_pasid_drop(mm); 929 mm_destroy_cid(mm); 930 931 for (i = 0; i < NR_MM_COUNTERS; i++) 932 percpu_counter_destroy(&mm->rss_stat[i]); 933 free_mm(mm); 934 } 935 EXPORT_SYMBOL_GPL(__mmdrop); 936 937 static void mmdrop_async_fn(struct work_struct *work) 938 { 939 struct mm_struct *mm; 940 941 mm = container_of(work, struct mm_struct, async_put_work); 942 __mmdrop(mm); 943 } 944 945 static void mmdrop_async(struct mm_struct *mm) 946 { 947 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 948 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 949 schedule_work(&mm->async_put_work); 950 } 951 } 952 953 static inline void free_signal_struct(struct signal_struct *sig) 954 { 955 taskstats_tgid_free(sig); 956 sched_autogroup_exit(sig); 957 /* 958 * __mmdrop is not safe to call from softirq context on x86 due to 959 * pgd_dtor so postpone it to the async context 960 */ 961 if (sig->oom_mm) 962 mmdrop_async(sig->oom_mm); 963 kmem_cache_free(signal_cachep, sig); 964 } 965 966 static inline void put_signal_struct(struct signal_struct *sig) 967 { 968 if (refcount_dec_and_test(&sig->sigcnt)) 969 free_signal_struct(sig); 970 } 971 972 void __put_task_struct(struct task_struct *tsk) 973 { 974 WARN_ON(!tsk->exit_state); 975 WARN_ON(refcount_read(&tsk->usage)); 976 WARN_ON(tsk == current); 977 978 io_uring_free(tsk); 979 cgroup_free(tsk); 980 task_numa_free(tsk, true); 981 security_task_free(tsk); 982 bpf_task_storage_free(tsk); 983 exit_creds(tsk); 984 delayacct_tsk_free(tsk); 985 put_signal_struct(tsk->signal); 986 sched_core_free(tsk); 987 free_task(tsk); 988 } 989 EXPORT_SYMBOL_GPL(__put_task_struct); 990 991 void __init __weak arch_task_cache_init(void) { } 992 993 /* 994 * set_max_threads 995 */ 996 static void set_max_threads(unsigned int max_threads_suggested) 997 { 998 u64 threads; 999 unsigned long nr_pages = totalram_pages(); 1000 1001 /* 1002 * The number of threads shall be limited such that the thread 1003 * structures may only consume a small part of the available memory. 1004 */ 1005 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1006 threads = MAX_THREADS; 1007 else 1008 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1009 (u64) THREAD_SIZE * 8UL); 1010 1011 if (threads > max_threads_suggested) 1012 threads = max_threads_suggested; 1013 1014 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1015 } 1016 1017 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1018 /* Initialized by the architecture: */ 1019 int arch_task_struct_size __read_mostly; 1020 #endif 1021 1022 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1023 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1024 { 1025 /* Fetch thread_struct whitelist for the architecture. */ 1026 arch_thread_struct_whitelist(offset, size); 1027 1028 /* 1029 * Handle zero-sized whitelist or empty thread_struct, otherwise 1030 * adjust offset to position of thread_struct in task_struct. 1031 */ 1032 if (unlikely(*size == 0)) 1033 *offset = 0; 1034 else 1035 *offset += offsetof(struct task_struct, thread); 1036 } 1037 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 1038 1039 void __init fork_init(void) 1040 { 1041 int i; 1042 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1043 #ifndef ARCH_MIN_TASKALIGN 1044 #define ARCH_MIN_TASKALIGN 0 1045 #endif 1046 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1047 unsigned long useroffset, usersize; 1048 1049 /* create a slab on which task_structs can be allocated */ 1050 task_struct_whitelist(&useroffset, &usersize); 1051 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1052 arch_task_struct_size, align, 1053 SLAB_PANIC|SLAB_ACCOUNT, 1054 useroffset, usersize, NULL); 1055 #endif 1056 1057 /* do the arch specific task caches init */ 1058 arch_task_cache_init(); 1059 1060 set_max_threads(MAX_THREADS); 1061 1062 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1063 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1064 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1065 init_task.signal->rlim[RLIMIT_NPROC]; 1066 1067 for (i = 0; i < UCOUNT_COUNTS; i++) 1068 init_user_ns.ucount_max[i] = max_threads/2; 1069 1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1074 1075 #ifdef CONFIG_VMAP_STACK 1076 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1077 NULL, free_vm_stack_cache); 1078 #endif 1079 1080 scs_init(); 1081 1082 lockdep_init_task(&init_task); 1083 uprobes_init(); 1084 } 1085 1086 int __weak arch_dup_task_struct(struct task_struct *dst, 1087 struct task_struct *src) 1088 { 1089 *dst = *src; 1090 return 0; 1091 } 1092 1093 void set_task_stack_end_magic(struct task_struct *tsk) 1094 { 1095 unsigned long *stackend; 1096 1097 stackend = end_of_stack(tsk); 1098 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1099 } 1100 1101 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1102 { 1103 struct task_struct *tsk; 1104 int err; 1105 1106 if (node == NUMA_NO_NODE) 1107 node = tsk_fork_get_node(orig); 1108 tsk = alloc_task_struct_node(node); 1109 if (!tsk) 1110 return NULL; 1111 1112 err = arch_dup_task_struct(tsk, orig); 1113 if (err) 1114 goto free_tsk; 1115 1116 err = alloc_thread_stack_node(tsk, node); 1117 if (err) 1118 goto free_tsk; 1119 1120 #ifdef CONFIG_THREAD_INFO_IN_TASK 1121 refcount_set(&tsk->stack_refcount, 1); 1122 #endif 1123 account_kernel_stack(tsk, 1); 1124 1125 err = scs_prepare(tsk, node); 1126 if (err) 1127 goto free_stack; 1128 1129 #ifdef CONFIG_SECCOMP 1130 /* 1131 * We must handle setting up seccomp filters once we're under 1132 * the sighand lock in case orig has changed between now and 1133 * then. Until then, filter must be NULL to avoid messing up 1134 * the usage counts on the error path calling free_task. 1135 */ 1136 tsk->seccomp.filter = NULL; 1137 #endif 1138 1139 setup_thread_stack(tsk, orig); 1140 clear_user_return_notifier(tsk); 1141 clear_tsk_need_resched(tsk); 1142 set_task_stack_end_magic(tsk); 1143 clear_syscall_work_syscall_user_dispatch(tsk); 1144 1145 #ifdef CONFIG_STACKPROTECTOR 1146 tsk->stack_canary = get_random_canary(); 1147 #endif 1148 if (orig->cpus_ptr == &orig->cpus_mask) 1149 tsk->cpus_ptr = &tsk->cpus_mask; 1150 dup_user_cpus_ptr(tsk, orig, node); 1151 1152 /* 1153 * One for the user space visible state that goes away when reaped. 1154 * One for the scheduler. 1155 */ 1156 refcount_set(&tsk->rcu_users, 2); 1157 /* One for the rcu users */ 1158 refcount_set(&tsk->usage, 1); 1159 #ifdef CONFIG_BLK_DEV_IO_TRACE 1160 tsk->btrace_seq = 0; 1161 #endif 1162 tsk->splice_pipe = NULL; 1163 tsk->task_frag.page = NULL; 1164 tsk->wake_q.next = NULL; 1165 tsk->worker_private = NULL; 1166 1167 kcov_task_init(tsk); 1168 kmsan_task_create(tsk); 1169 kmap_local_fork(tsk); 1170 1171 #ifdef CONFIG_FAULT_INJECTION 1172 tsk->fail_nth = 0; 1173 #endif 1174 1175 #ifdef CONFIG_BLK_CGROUP 1176 tsk->throttle_disk = NULL; 1177 tsk->use_memdelay = 0; 1178 #endif 1179 1180 #ifdef CONFIG_IOMMU_SVA 1181 tsk->pasid_activated = 0; 1182 #endif 1183 1184 #ifdef CONFIG_MEMCG 1185 tsk->active_memcg = NULL; 1186 #endif 1187 1188 #ifdef CONFIG_CPU_SUP_INTEL 1189 tsk->reported_split_lock = 0; 1190 #endif 1191 1192 #ifdef CONFIG_SCHED_MM_CID 1193 tsk->mm_cid = -1; 1194 tsk->last_mm_cid = -1; 1195 tsk->mm_cid_active = 0; 1196 tsk->migrate_from_cpu = -1; 1197 #endif 1198 return tsk; 1199 1200 free_stack: 1201 exit_task_stack_account(tsk); 1202 free_thread_stack(tsk); 1203 free_tsk: 1204 free_task_struct(tsk); 1205 return NULL; 1206 } 1207 1208 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1209 1210 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1211 1212 static int __init coredump_filter_setup(char *s) 1213 { 1214 default_dump_filter = 1215 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1216 MMF_DUMP_FILTER_MASK; 1217 return 1; 1218 } 1219 1220 __setup("coredump_filter=", coredump_filter_setup); 1221 1222 #include <linux/init_task.h> 1223 1224 static void mm_init_aio(struct mm_struct *mm) 1225 { 1226 #ifdef CONFIG_AIO 1227 spin_lock_init(&mm->ioctx_lock); 1228 mm->ioctx_table = NULL; 1229 #endif 1230 } 1231 1232 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1233 struct task_struct *p) 1234 { 1235 #ifdef CONFIG_MEMCG 1236 if (mm->owner == p) 1237 WRITE_ONCE(mm->owner, NULL); 1238 #endif 1239 } 1240 1241 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1242 { 1243 #ifdef CONFIG_MEMCG 1244 mm->owner = p; 1245 #endif 1246 } 1247 1248 static void mm_init_uprobes_state(struct mm_struct *mm) 1249 { 1250 #ifdef CONFIG_UPROBES 1251 mm->uprobes_state.xol_area = NULL; 1252 #endif 1253 } 1254 1255 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1256 struct user_namespace *user_ns) 1257 { 1258 int i; 1259 1260 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1261 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1262 atomic_set(&mm->mm_users, 1); 1263 atomic_set(&mm->mm_count, 1); 1264 seqcount_init(&mm->write_protect_seq); 1265 mmap_init_lock(mm); 1266 INIT_LIST_HEAD(&mm->mmlist); 1267 #ifdef CONFIG_PER_VMA_LOCK 1268 mm->mm_lock_seq = 0; 1269 #endif 1270 mm_pgtables_bytes_init(mm); 1271 mm->map_count = 0; 1272 mm->locked_vm = 0; 1273 atomic64_set(&mm->pinned_vm, 0); 1274 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1275 spin_lock_init(&mm->page_table_lock); 1276 spin_lock_init(&mm->arg_lock); 1277 mm_init_cpumask(mm); 1278 mm_init_aio(mm); 1279 mm_init_owner(mm, p); 1280 mm_pasid_init(mm); 1281 RCU_INIT_POINTER(mm->exe_file, NULL); 1282 mmu_notifier_subscriptions_init(mm); 1283 init_tlb_flush_pending(mm); 1284 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1285 mm->pmd_huge_pte = NULL; 1286 #endif 1287 mm_init_uprobes_state(mm); 1288 hugetlb_count_init(mm); 1289 1290 if (current->mm) { 1291 mm->flags = current->mm->flags & MMF_INIT_MASK; 1292 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1293 } else { 1294 mm->flags = default_dump_filter; 1295 mm->def_flags = 0; 1296 } 1297 1298 if (mm_alloc_pgd(mm)) 1299 goto fail_nopgd; 1300 1301 if (init_new_context(p, mm)) 1302 goto fail_nocontext; 1303 1304 if (mm_alloc_cid(mm)) 1305 goto fail_cid; 1306 1307 for (i = 0; i < NR_MM_COUNTERS; i++) 1308 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1309 goto fail_pcpu; 1310 1311 mm->user_ns = get_user_ns(user_ns); 1312 lru_gen_init_mm(mm); 1313 return mm; 1314 1315 fail_pcpu: 1316 while (i > 0) 1317 percpu_counter_destroy(&mm->rss_stat[--i]); 1318 mm_destroy_cid(mm); 1319 fail_cid: 1320 destroy_context(mm); 1321 fail_nocontext: 1322 mm_free_pgd(mm); 1323 fail_nopgd: 1324 free_mm(mm); 1325 return NULL; 1326 } 1327 1328 /* 1329 * Allocate and initialize an mm_struct. 1330 */ 1331 struct mm_struct *mm_alloc(void) 1332 { 1333 struct mm_struct *mm; 1334 1335 mm = allocate_mm(); 1336 if (!mm) 1337 return NULL; 1338 1339 memset(mm, 0, sizeof(*mm)); 1340 return mm_init(mm, current, current_user_ns()); 1341 } 1342 1343 static inline void __mmput(struct mm_struct *mm) 1344 { 1345 VM_BUG_ON(atomic_read(&mm->mm_users)); 1346 1347 uprobe_clear_state(mm); 1348 exit_aio(mm); 1349 ksm_exit(mm); 1350 khugepaged_exit(mm); /* must run before exit_mmap */ 1351 exit_mmap(mm); 1352 mm_put_huge_zero_page(mm); 1353 set_mm_exe_file(mm, NULL); 1354 if (!list_empty(&mm->mmlist)) { 1355 spin_lock(&mmlist_lock); 1356 list_del(&mm->mmlist); 1357 spin_unlock(&mmlist_lock); 1358 } 1359 if (mm->binfmt) 1360 module_put(mm->binfmt->module); 1361 lru_gen_del_mm(mm); 1362 mmdrop(mm); 1363 } 1364 1365 /* 1366 * Decrement the use count and release all resources for an mm. 1367 */ 1368 void mmput(struct mm_struct *mm) 1369 { 1370 might_sleep(); 1371 1372 if (atomic_dec_and_test(&mm->mm_users)) 1373 __mmput(mm); 1374 } 1375 EXPORT_SYMBOL_GPL(mmput); 1376 1377 #ifdef CONFIG_MMU 1378 static void mmput_async_fn(struct work_struct *work) 1379 { 1380 struct mm_struct *mm = container_of(work, struct mm_struct, 1381 async_put_work); 1382 1383 __mmput(mm); 1384 } 1385 1386 void mmput_async(struct mm_struct *mm) 1387 { 1388 if (atomic_dec_and_test(&mm->mm_users)) { 1389 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1390 schedule_work(&mm->async_put_work); 1391 } 1392 } 1393 EXPORT_SYMBOL_GPL(mmput_async); 1394 #endif 1395 1396 /** 1397 * set_mm_exe_file - change a reference to the mm's executable file 1398 * 1399 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1400 * 1401 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1402 * invocations: in mmput() nobody alive left, in execve task is single 1403 * threaded. 1404 * 1405 * Can only fail if new_exe_file != NULL. 1406 */ 1407 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1408 { 1409 struct file *old_exe_file; 1410 1411 /* 1412 * It is safe to dereference the exe_file without RCU as 1413 * this function is only called if nobody else can access 1414 * this mm -- see comment above for justification. 1415 */ 1416 old_exe_file = rcu_dereference_raw(mm->exe_file); 1417 1418 if (new_exe_file) { 1419 /* 1420 * We expect the caller (i.e., sys_execve) to already denied 1421 * write access, so this is unlikely to fail. 1422 */ 1423 if (unlikely(deny_write_access(new_exe_file))) 1424 return -EACCES; 1425 get_file(new_exe_file); 1426 } 1427 rcu_assign_pointer(mm->exe_file, new_exe_file); 1428 if (old_exe_file) { 1429 allow_write_access(old_exe_file); 1430 fput(old_exe_file); 1431 } 1432 return 0; 1433 } 1434 1435 /** 1436 * replace_mm_exe_file - replace a reference to the mm's executable file 1437 * 1438 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1439 * dealing with concurrent invocation and without grabbing the mmap lock in 1440 * write mode. 1441 * 1442 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1443 */ 1444 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1445 { 1446 struct vm_area_struct *vma; 1447 struct file *old_exe_file; 1448 int ret = 0; 1449 1450 /* Forbid mm->exe_file change if old file still mapped. */ 1451 old_exe_file = get_mm_exe_file(mm); 1452 if (old_exe_file) { 1453 VMA_ITERATOR(vmi, mm, 0); 1454 mmap_read_lock(mm); 1455 for_each_vma(vmi, vma) { 1456 if (!vma->vm_file) 1457 continue; 1458 if (path_equal(&vma->vm_file->f_path, 1459 &old_exe_file->f_path)) { 1460 ret = -EBUSY; 1461 break; 1462 } 1463 } 1464 mmap_read_unlock(mm); 1465 fput(old_exe_file); 1466 if (ret) 1467 return ret; 1468 } 1469 1470 /* set the new file, lockless */ 1471 ret = deny_write_access(new_exe_file); 1472 if (ret) 1473 return -EACCES; 1474 get_file(new_exe_file); 1475 1476 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1477 if (old_exe_file) { 1478 /* 1479 * Don't race with dup_mmap() getting the file and disallowing 1480 * write access while someone might open the file writable. 1481 */ 1482 mmap_read_lock(mm); 1483 allow_write_access(old_exe_file); 1484 fput(old_exe_file); 1485 mmap_read_unlock(mm); 1486 } 1487 return 0; 1488 } 1489 1490 /** 1491 * get_mm_exe_file - acquire a reference to the mm's executable file 1492 * 1493 * Returns %NULL if mm has no associated executable file. 1494 * User must release file via fput(). 1495 */ 1496 struct file *get_mm_exe_file(struct mm_struct *mm) 1497 { 1498 struct file *exe_file; 1499 1500 rcu_read_lock(); 1501 exe_file = rcu_dereference(mm->exe_file); 1502 if (exe_file && !get_file_rcu(exe_file)) 1503 exe_file = NULL; 1504 rcu_read_unlock(); 1505 return exe_file; 1506 } 1507 1508 /** 1509 * get_task_exe_file - acquire a reference to the task's executable file 1510 * 1511 * Returns %NULL if task's mm (if any) has no associated executable file or 1512 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1513 * User must release file via fput(). 1514 */ 1515 struct file *get_task_exe_file(struct task_struct *task) 1516 { 1517 struct file *exe_file = NULL; 1518 struct mm_struct *mm; 1519 1520 task_lock(task); 1521 mm = task->mm; 1522 if (mm) { 1523 if (!(task->flags & PF_KTHREAD)) 1524 exe_file = get_mm_exe_file(mm); 1525 } 1526 task_unlock(task); 1527 return exe_file; 1528 } 1529 1530 /** 1531 * get_task_mm - acquire a reference to the task's mm 1532 * 1533 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1534 * this kernel workthread has transiently adopted a user mm with use_mm, 1535 * to do its AIO) is not set and if so returns a reference to it, after 1536 * bumping up the use count. User must release the mm via mmput() 1537 * after use. Typically used by /proc and ptrace. 1538 */ 1539 struct mm_struct *get_task_mm(struct task_struct *task) 1540 { 1541 struct mm_struct *mm; 1542 1543 task_lock(task); 1544 mm = task->mm; 1545 if (mm) { 1546 if (task->flags & PF_KTHREAD) 1547 mm = NULL; 1548 else 1549 mmget(mm); 1550 } 1551 task_unlock(task); 1552 return mm; 1553 } 1554 EXPORT_SYMBOL_GPL(get_task_mm); 1555 1556 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1557 { 1558 struct mm_struct *mm; 1559 int err; 1560 1561 err = down_read_killable(&task->signal->exec_update_lock); 1562 if (err) 1563 return ERR_PTR(err); 1564 1565 mm = get_task_mm(task); 1566 if (mm && mm != current->mm && 1567 !ptrace_may_access(task, mode)) { 1568 mmput(mm); 1569 mm = ERR_PTR(-EACCES); 1570 } 1571 up_read(&task->signal->exec_update_lock); 1572 1573 return mm; 1574 } 1575 1576 static void complete_vfork_done(struct task_struct *tsk) 1577 { 1578 struct completion *vfork; 1579 1580 task_lock(tsk); 1581 vfork = tsk->vfork_done; 1582 if (likely(vfork)) { 1583 tsk->vfork_done = NULL; 1584 complete(vfork); 1585 } 1586 task_unlock(tsk); 1587 } 1588 1589 static int wait_for_vfork_done(struct task_struct *child, 1590 struct completion *vfork) 1591 { 1592 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1593 int killed; 1594 1595 cgroup_enter_frozen(); 1596 killed = wait_for_completion_state(vfork, state); 1597 cgroup_leave_frozen(false); 1598 1599 if (killed) { 1600 task_lock(child); 1601 child->vfork_done = NULL; 1602 task_unlock(child); 1603 } 1604 1605 put_task_struct(child); 1606 return killed; 1607 } 1608 1609 /* Please note the differences between mmput and mm_release. 1610 * mmput is called whenever we stop holding onto a mm_struct, 1611 * error success whatever. 1612 * 1613 * mm_release is called after a mm_struct has been removed 1614 * from the current process. 1615 * 1616 * This difference is important for error handling, when we 1617 * only half set up a mm_struct for a new process and need to restore 1618 * the old one. Because we mmput the new mm_struct before 1619 * restoring the old one. . . 1620 * Eric Biederman 10 January 1998 1621 */ 1622 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1623 { 1624 uprobe_free_utask(tsk); 1625 1626 /* Get rid of any cached register state */ 1627 deactivate_mm(tsk, mm); 1628 1629 /* 1630 * Signal userspace if we're not exiting with a core dump 1631 * because we want to leave the value intact for debugging 1632 * purposes. 1633 */ 1634 if (tsk->clear_child_tid) { 1635 if (atomic_read(&mm->mm_users) > 1) { 1636 /* 1637 * We don't check the error code - if userspace has 1638 * not set up a proper pointer then tough luck. 1639 */ 1640 put_user(0, tsk->clear_child_tid); 1641 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1642 1, NULL, NULL, 0, 0); 1643 } 1644 tsk->clear_child_tid = NULL; 1645 } 1646 1647 /* 1648 * All done, finally we can wake up parent and return this mm to him. 1649 * Also kthread_stop() uses this completion for synchronization. 1650 */ 1651 if (tsk->vfork_done) 1652 complete_vfork_done(tsk); 1653 } 1654 1655 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1656 { 1657 futex_exit_release(tsk); 1658 mm_release(tsk, mm); 1659 } 1660 1661 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1662 { 1663 futex_exec_release(tsk); 1664 mm_release(tsk, mm); 1665 } 1666 1667 /** 1668 * dup_mm() - duplicates an existing mm structure 1669 * @tsk: the task_struct with which the new mm will be associated. 1670 * @oldmm: the mm to duplicate. 1671 * 1672 * Allocates a new mm structure and duplicates the provided @oldmm structure 1673 * content into it. 1674 * 1675 * Return: the duplicated mm or NULL on failure. 1676 */ 1677 static struct mm_struct *dup_mm(struct task_struct *tsk, 1678 struct mm_struct *oldmm) 1679 { 1680 struct mm_struct *mm; 1681 int err; 1682 1683 mm = allocate_mm(); 1684 if (!mm) 1685 goto fail_nomem; 1686 1687 memcpy(mm, oldmm, sizeof(*mm)); 1688 1689 if (!mm_init(mm, tsk, mm->user_ns)) 1690 goto fail_nomem; 1691 1692 err = dup_mmap(mm, oldmm); 1693 if (err) 1694 goto free_pt; 1695 1696 mm->hiwater_rss = get_mm_rss(mm); 1697 mm->hiwater_vm = mm->total_vm; 1698 1699 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1700 goto free_pt; 1701 1702 return mm; 1703 1704 free_pt: 1705 /* don't put binfmt in mmput, we haven't got module yet */ 1706 mm->binfmt = NULL; 1707 mm_init_owner(mm, NULL); 1708 mmput(mm); 1709 1710 fail_nomem: 1711 return NULL; 1712 } 1713 1714 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1715 { 1716 struct mm_struct *mm, *oldmm; 1717 1718 tsk->min_flt = tsk->maj_flt = 0; 1719 tsk->nvcsw = tsk->nivcsw = 0; 1720 #ifdef CONFIG_DETECT_HUNG_TASK 1721 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1722 tsk->last_switch_time = 0; 1723 #endif 1724 1725 tsk->mm = NULL; 1726 tsk->active_mm = NULL; 1727 1728 /* 1729 * Are we cloning a kernel thread? 1730 * 1731 * We need to steal a active VM for that.. 1732 */ 1733 oldmm = current->mm; 1734 if (!oldmm) 1735 return 0; 1736 1737 if (clone_flags & CLONE_VM) { 1738 mmget(oldmm); 1739 mm = oldmm; 1740 } else { 1741 mm = dup_mm(tsk, current->mm); 1742 if (!mm) 1743 return -ENOMEM; 1744 } 1745 1746 tsk->mm = mm; 1747 tsk->active_mm = mm; 1748 sched_mm_cid_fork(tsk); 1749 return 0; 1750 } 1751 1752 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1753 { 1754 struct fs_struct *fs = current->fs; 1755 if (clone_flags & CLONE_FS) { 1756 /* tsk->fs is already what we want */ 1757 spin_lock(&fs->lock); 1758 if (fs->in_exec) { 1759 spin_unlock(&fs->lock); 1760 return -EAGAIN; 1761 } 1762 fs->users++; 1763 spin_unlock(&fs->lock); 1764 return 0; 1765 } 1766 tsk->fs = copy_fs_struct(fs); 1767 if (!tsk->fs) 1768 return -ENOMEM; 1769 return 0; 1770 } 1771 1772 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1773 int no_files) 1774 { 1775 struct files_struct *oldf, *newf; 1776 int error = 0; 1777 1778 /* 1779 * A background process may not have any files ... 1780 */ 1781 oldf = current->files; 1782 if (!oldf) 1783 goto out; 1784 1785 if (no_files) { 1786 tsk->files = NULL; 1787 goto out; 1788 } 1789 1790 if (clone_flags & CLONE_FILES) { 1791 atomic_inc(&oldf->count); 1792 goto out; 1793 } 1794 1795 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1796 if (!newf) 1797 goto out; 1798 1799 tsk->files = newf; 1800 error = 0; 1801 out: 1802 return error; 1803 } 1804 1805 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1806 { 1807 struct sighand_struct *sig; 1808 1809 if (clone_flags & CLONE_SIGHAND) { 1810 refcount_inc(¤t->sighand->count); 1811 return 0; 1812 } 1813 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1814 RCU_INIT_POINTER(tsk->sighand, sig); 1815 if (!sig) 1816 return -ENOMEM; 1817 1818 refcount_set(&sig->count, 1); 1819 spin_lock_irq(¤t->sighand->siglock); 1820 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1821 spin_unlock_irq(¤t->sighand->siglock); 1822 1823 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1824 if (clone_flags & CLONE_CLEAR_SIGHAND) 1825 flush_signal_handlers(tsk, 0); 1826 1827 return 0; 1828 } 1829 1830 void __cleanup_sighand(struct sighand_struct *sighand) 1831 { 1832 if (refcount_dec_and_test(&sighand->count)) { 1833 signalfd_cleanup(sighand); 1834 /* 1835 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1836 * without an RCU grace period, see __lock_task_sighand(). 1837 */ 1838 kmem_cache_free(sighand_cachep, sighand); 1839 } 1840 } 1841 1842 /* 1843 * Initialize POSIX timer handling for a thread group. 1844 */ 1845 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1846 { 1847 struct posix_cputimers *pct = &sig->posix_cputimers; 1848 unsigned long cpu_limit; 1849 1850 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1851 posix_cputimers_group_init(pct, cpu_limit); 1852 } 1853 1854 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1855 { 1856 struct signal_struct *sig; 1857 1858 if (clone_flags & CLONE_THREAD) 1859 return 0; 1860 1861 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1862 tsk->signal = sig; 1863 if (!sig) 1864 return -ENOMEM; 1865 1866 sig->nr_threads = 1; 1867 sig->quick_threads = 1; 1868 atomic_set(&sig->live, 1); 1869 refcount_set(&sig->sigcnt, 1); 1870 1871 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1872 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1873 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1874 1875 init_waitqueue_head(&sig->wait_chldexit); 1876 sig->curr_target = tsk; 1877 init_sigpending(&sig->shared_pending); 1878 INIT_HLIST_HEAD(&sig->multiprocess); 1879 seqlock_init(&sig->stats_lock); 1880 prev_cputime_init(&sig->prev_cputime); 1881 1882 #ifdef CONFIG_POSIX_TIMERS 1883 INIT_LIST_HEAD(&sig->posix_timers); 1884 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1885 sig->real_timer.function = it_real_fn; 1886 #endif 1887 1888 task_lock(current->group_leader); 1889 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1890 task_unlock(current->group_leader); 1891 1892 posix_cpu_timers_init_group(sig); 1893 1894 tty_audit_fork(sig); 1895 sched_autogroup_fork(sig); 1896 1897 sig->oom_score_adj = current->signal->oom_score_adj; 1898 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1899 1900 mutex_init(&sig->cred_guard_mutex); 1901 init_rwsem(&sig->exec_update_lock); 1902 1903 return 0; 1904 } 1905 1906 static void copy_seccomp(struct task_struct *p) 1907 { 1908 #ifdef CONFIG_SECCOMP 1909 /* 1910 * Must be called with sighand->lock held, which is common to 1911 * all threads in the group. Holding cred_guard_mutex is not 1912 * needed because this new task is not yet running and cannot 1913 * be racing exec. 1914 */ 1915 assert_spin_locked(¤t->sighand->siglock); 1916 1917 /* Ref-count the new filter user, and assign it. */ 1918 get_seccomp_filter(current); 1919 p->seccomp = current->seccomp; 1920 1921 /* 1922 * Explicitly enable no_new_privs here in case it got set 1923 * between the task_struct being duplicated and holding the 1924 * sighand lock. The seccomp state and nnp must be in sync. 1925 */ 1926 if (task_no_new_privs(current)) 1927 task_set_no_new_privs(p); 1928 1929 /* 1930 * If the parent gained a seccomp mode after copying thread 1931 * flags and between before we held the sighand lock, we have 1932 * to manually enable the seccomp thread flag here. 1933 */ 1934 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1935 set_task_syscall_work(p, SECCOMP); 1936 #endif 1937 } 1938 1939 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1940 { 1941 current->clear_child_tid = tidptr; 1942 1943 return task_pid_vnr(current); 1944 } 1945 1946 static void rt_mutex_init_task(struct task_struct *p) 1947 { 1948 raw_spin_lock_init(&p->pi_lock); 1949 #ifdef CONFIG_RT_MUTEXES 1950 p->pi_waiters = RB_ROOT_CACHED; 1951 p->pi_top_task = NULL; 1952 p->pi_blocked_on = NULL; 1953 #endif 1954 } 1955 1956 static inline void init_task_pid_links(struct task_struct *task) 1957 { 1958 enum pid_type type; 1959 1960 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1961 INIT_HLIST_NODE(&task->pid_links[type]); 1962 } 1963 1964 static inline void 1965 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1966 { 1967 if (type == PIDTYPE_PID) 1968 task->thread_pid = pid; 1969 else 1970 task->signal->pids[type] = pid; 1971 } 1972 1973 static inline void rcu_copy_process(struct task_struct *p) 1974 { 1975 #ifdef CONFIG_PREEMPT_RCU 1976 p->rcu_read_lock_nesting = 0; 1977 p->rcu_read_unlock_special.s = 0; 1978 p->rcu_blocked_node = NULL; 1979 INIT_LIST_HEAD(&p->rcu_node_entry); 1980 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1981 #ifdef CONFIG_TASKS_RCU 1982 p->rcu_tasks_holdout = false; 1983 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1984 p->rcu_tasks_idle_cpu = -1; 1985 #endif /* #ifdef CONFIG_TASKS_RCU */ 1986 #ifdef CONFIG_TASKS_TRACE_RCU 1987 p->trc_reader_nesting = 0; 1988 p->trc_reader_special.s = 0; 1989 INIT_LIST_HEAD(&p->trc_holdout_list); 1990 INIT_LIST_HEAD(&p->trc_blkd_node); 1991 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1992 } 1993 1994 struct pid *pidfd_pid(const struct file *file) 1995 { 1996 if (file->f_op == &pidfd_fops) 1997 return file->private_data; 1998 1999 return ERR_PTR(-EBADF); 2000 } 2001 2002 static int pidfd_release(struct inode *inode, struct file *file) 2003 { 2004 struct pid *pid = file->private_data; 2005 2006 file->private_data = NULL; 2007 put_pid(pid); 2008 return 0; 2009 } 2010 2011 #ifdef CONFIG_PROC_FS 2012 /** 2013 * pidfd_show_fdinfo - print information about a pidfd 2014 * @m: proc fdinfo file 2015 * @f: file referencing a pidfd 2016 * 2017 * Pid: 2018 * This function will print the pid that a given pidfd refers to in the 2019 * pid namespace of the procfs instance. 2020 * If the pid namespace of the process is not a descendant of the pid 2021 * namespace of the procfs instance 0 will be shown as its pid. This is 2022 * similar to calling getppid() on a process whose parent is outside of 2023 * its pid namespace. 2024 * 2025 * NSpid: 2026 * If pid namespaces are supported then this function will also print 2027 * the pid of a given pidfd refers to for all descendant pid namespaces 2028 * starting from the current pid namespace of the instance, i.e. the 2029 * Pid field and the first entry in the NSpid field will be identical. 2030 * If the pid namespace of the process is not a descendant of the pid 2031 * namespace of the procfs instance 0 will be shown as its first NSpid 2032 * entry and no others will be shown. 2033 * Note that this differs from the Pid and NSpid fields in 2034 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2035 * the pid namespace of the procfs instance. The difference becomes 2036 * obvious when sending around a pidfd between pid namespaces from a 2037 * different branch of the tree, i.e. where no ancestral relation is 2038 * present between the pid namespaces: 2039 * - create two new pid namespaces ns1 and ns2 in the initial pid 2040 * namespace (also take care to create new mount namespaces in the 2041 * new pid namespace and mount procfs) 2042 * - create a process with a pidfd in ns1 2043 * - send pidfd from ns1 to ns2 2044 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2045 * have exactly one entry, which is 0 2046 */ 2047 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2048 { 2049 struct pid *pid = f->private_data; 2050 struct pid_namespace *ns; 2051 pid_t nr = -1; 2052 2053 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2054 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2055 nr = pid_nr_ns(pid, ns); 2056 } 2057 2058 seq_put_decimal_ll(m, "Pid:\t", nr); 2059 2060 #ifdef CONFIG_PID_NS 2061 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2062 if (nr > 0) { 2063 int i; 2064 2065 /* If nr is non-zero it means that 'pid' is valid and that 2066 * ns, i.e. the pid namespace associated with the procfs 2067 * instance, is in the pid namespace hierarchy of pid. 2068 * Start at one below the already printed level. 2069 */ 2070 for (i = ns->level + 1; i <= pid->level; i++) 2071 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2072 } 2073 #endif 2074 seq_putc(m, '\n'); 2075 } 2076 #endif 2077 2078 /* 2079 * Poll support for process exit notification. 2080 */ 2081 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2082 { 2083 struct pid *pid = file->private_data; 2084 __poll_t poll_flags = 0; 2085 2086 poll_wait(file, &pid->wait_pidfd, pts); 2087 2088 /* 2089 * Inform pollers only when the whole thread group exits. 2090 * If the thread group leader exits before all other threads in the 2091 * group, then poll(2) should block, similar to the wait(2) family. 2092 */ 2093 if (thread_group_exited(pid)) 2094 poll_flags = EPOLLIN | EPOLLRDNORM; 2095 2096 return poll_flags; 2097 } 2098 2099 const struct file_operations pidfd_fops = { 2100 .release = pidfd_release, 2101 .poll = pidfd_poll, 2102 #ifdef CONFIG_PROC_FS 2103 .show_fdinfo = pidfd_show_fdinfo, 2104 #endif 2105 }; 2106 2107 /** 2108 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2109 * @pid: the struct pid for which to create a pidfd 2110 * @flags: flags of the new @pidfd 2111 * @pidfd: the pidfd to return 2112 * 2113 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2114 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2115 2116 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2117 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2118 * pidfd file are prepared. 2119 * 2120 * If this function returns successfully the caller is responsible to either 2121 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2122 * order to install the pidfd into its file descriptor table or they must use 2123 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2124 * respectively. 2125 * 2126 * This function is useful when a pidfd must already be reserved but there 2127 * might still be points of failure afterwards and the caller wants to ensure 2128 * that no pidfd is leaked into its file descriptor table. 2129 * 2130 * Return: On success, a reserved pidfd is returned from the function and a new 2131 * pidfd file is returned in the last argument to the function. On 2132 * error, a negative error code is returned from the function and the 2133 * last argument remains unchanged. 2134 */ 2135 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2136 { 2137 int pidfd; 2138 struct file *pidfd_file; 2139 2140 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2141 return -EINVAL; 2142 2143 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2144 if (pidfd < 0) 2145 return pidfd; 2146 2147 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2148 flags | O_RDWR | O_CLOEXEC); 2149 if (IS_ERR(pidfd_file)) { 2150 put_unused_fd(pidfd); 2151 return PTR_ERR(pidfd_file); 2152 } 2153 get_pid(pid); /* held by pidfd_file now */ 2154 *ret = pidfd_file; 2155 return pidfd; 2156 } 2157 2158 /** 2159 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2160 * @pid: the struct pid for which to create a pidfd 2161 * @flags: flags of the new @pidfd 2162 * @pidfd: the pidfd to return 2163 * 2164 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2165 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2166 * 2167 * The helper verifies that @pid is used as a thread group leader. 2168 * 2169 * If this function returns successfully the caller is responsible to either 2170 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2171 * order to install the pidfd into its file descriptor table or they must use 2172 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2173 * respectively. 2174 * 2175 * This function is useful when a pidfd must already be reserved but there 2176 * might still be points of failure afterwards and the caller wants to ensure 2177 * that no pidfd is leaked into its file descriptor table. 2178 * 2179 * Return: On success, a reserved pidfd is returned from the function and a new 2180 * pidfd file is returned in the last argument to the function. On 2181 * error, a negative error code is returned from the function and the 2182 * last argument remains unchanged. 2183 */ 2184 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2185 { 2186 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2187 return -EINVAL; 2188 2189 return __pidfd_prepare(pid, flags, ret); 2190 } 2191 2192 static void __delayed_free_task(struct rcu_head *rhp) 2193 { 2194 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2195 2196 free_task(tsk); 2197 } 2198 2199 static __always_inline void delayed_free_task(struct task_struct *tsk) 2200 { 2201 if (IS_ENABLED(CONFIG_MEMCG)) 2202 call_rcu(&tsk->rcu, __delayed_free_task); 2203 else 2204 free_task(tsk); 2205 } 2206 2207 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2208 { 2209 /* Skip if kernel thread */ 2210 if (!tsk->mm) 2211 return; 2212 2213 /* Skip if spawning a thread or using vfork */ 2214 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2215 return; 2216 2217 /* We need to synchronize with __set_oom_adj */ 2218 mutex_lock(&oom_adj_mutex); 2219 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2220 /* Update the values in case they were changed after copy_signal */ 2221 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2222 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2223 mutex_unlock(&oom_adj_mutex); 2224 } 2225 2226 #ifdef CONFIG_RV 2227 static void rv_task_fork(struct task_struct *p) 2228 { 2229 int i; 2230 2231 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2232 p->rv[i].da_mon.monitoring = false; 2233 } 2234 #else 2235 #define rv_task_fork(p) do {} while (0) 2236 #endif 2237 2238 /* 2239 * This creates a new process as a copy of the old one, 2240 * but does not actually start it yet. 2241 * 2242 * It copies the registers, and all the appropriate 2243 * parts of the process environment (as per the clone 2244 * flags). The actual kick-off is left to the caller. 2245 */ 2246 __latent_entropy struct task_struct *copy_process( 2247 struct pid *pid, 2248 int trace, 2249 int node, 2250 struct kernel_clone_args *args) 2251 { 2252 int pidfd = -1, retval; 2253 struct task_struct *p; 2254 struct multiprocess_signals delayed; 2255 struct file *pidfile = NULL; 2256 const u64 clone_flags = args->flags; 2257 struct nsproxy *nsp = current->nsproxy; 2258 2259 /* 2260 * Don't allow sharing the root directory with processes in a different 2261 * namespace 2262 */ 2263 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2264 return ERR_PTR(-EINVAL); 2265 2266 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2267 return ERR_PTR(-EINVAL); 2268 2269 /* 2270 * Thread groups must share signals as well, and detached threads 2271 * can only be started up within the thread group. 2272 */ 2273 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2274 return ERR_PTR(-EINVAL); 2275 2276 /* 2277 * Shared signal handlers imply shared VM. By way of the above, 2278 * thread groups also imply shared VM. Blocking this case allows 2279 * for various simplifications in other code. 2280 */ 2281 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2282 return ERR_PTR(-EINVAL); 2283 2284 /* 2285 * Siblings of global init remain as zombies on exit since they are 2286 * not reaped by their parent (swapper). To solve this and to avoid 2287 * multi-rooted process trees, prevent global and container-inits 2288 * from creating siblings. 2289 */ 2290 if ((clone_flags & CLONE_PARENT) && 2291 current->signal->flags & SIGNAL_UNKILLABLE) 2292 return ERR_PTR(-EINVAL); 2293 2294 /* 2295 * If the new process will be in a different pid or user namespace 2296 * do not allow it to share a thread group with the forking task. 2297 */ 2298 if (clone_flags & CLONE_THREAD) { 2299 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2300 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2301 return ERR_PTR(-EINVAL); 2302 } 2303 2304 if (clone_flags & CLONE_PIDFD) { 2305 /* 2306 * - CLONE_DETACHED is blocked so that we can potentially 2307 * reuse it later for CLONE_PIDFD. 2308 * - CLONE_THREAD is blocked until someone really needs it. 2309 */ 2310 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2311 return ERR_PTR(-EINVAL); 2312 } 2313 2314 /* 2315 * Force any signals received before this point to be delivered 2316 * before the fork happens. Collect up signals sent to multiple 2317 * processes that happen during the fork and delay them so that 2318 * they appear to happen after the fork. 2319 */ 2320 sigemptyset(&delayed.signal); 2321 INIT_HLIST_NODE(&delayed.node); 2322 2323 spin_lock_irq(¤t->sighand->siglock); 2324 if (!(clone_flags & CLONE_THREAD)) 2325 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2326 recalc_sigpending(); 2327 spin_unlock_irq(¤t->sighand->siglock); 2328 retval = -ERESTARTNOINTR; 2329 if (task_sigpending(current)) 2330 goto fork_out; 2331 2332 retval = -ENOMEM; 2333 p = dup_task_struct(current, node); 2334 if (!p) 2335 goto fork_out; 2336 p->flags &= ~PF_KTHREAD; 2337 if (args->kthread) 2338 p->flags |= PF_KTHREAD; 2339 if (args->user_worker) 2340 p->flags |= PF_USER_WORKER; 2341 if (args->io_thread) { 2342 /* 2343 * Mark us an IO worker, and block any signal that isn't 2344 * fatal or STOP 2345 */ 2346 p->flags |= PF_IO_WORKER; 2347 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2348 } 2349 2350 if (args->name) 2351 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2352 2353 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2354 /* 2355 * Clear TID on mm_release()? 2356 */ 2357 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2358 2359 ftrace_graph_init_task(p); 2360 2361 rt_mutex_init_task(p); 2362 2363 lockdep_assert_irqs_enabled(); 2364 #ifdef CONFIG_PROVE_LOCKING 2365 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2366 #endif 2367 retval = copy_creds(p, clone_flags); 2368 if (retval < 0) 2369 goto bad_fork_free; 2370 2371 retval = -EAGAIN; 2372 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2373 if (p->real_cred->user != INIT_USER && 2374 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2375 goto bad_fork_cleanup_count; 2376 } 2377 current->flags &= ~PF_NPROC_EXCEEDED; 2378 2379 /* 2380 * If multiple threads are within copy_process(), then this check 2381 * triggers too late. This doesn't hurt, the check is only there 2382 * to stop root fork bombs. 2383 */ 2384 retval = -EAGAIN; 2385 if (data_race(nr_threads >= max_threads)) 2386 goto bad_fork_cleanup_count; 2387 2388 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2389 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2390 p->flags |= PF_FORKNOEXEC; 2391 INIT_LIST_HEAD(&p->children); 2392 INIT_LIST_HEAD(&p->sibling); 2393 rcu_copy_process(p); 2394 p->vfork_done = NULL; 2395 spin_lock_init(&p->alloc_lock); 2396 2397 init_sigpending(&p->pending); 2398 2399 p->utime = p->stime = p->gtime = 0; 2400 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2401 p->utimescaled = p->stimescaled = 0; 2402 #endif 2403 prev_cputime_init(&p->prev_cputime); 2404 2405 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2406 seqcount_init(&p->vtime.seqcount); 2407 p->vtime.starttime = 0; 2408 p->vtime.state = VTIME_INACTIVE; 2409 #endif 2410 2411 #ifdef CONFIG_IO_URING 2412 p->io_uring = NULL; 2413 #endif 2414 2415 #if defined(SPLIT_RSS_COUNTING) 2416 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2417 #endif 2418 2419 p->default_timer_slack_ns = current->timer_slack_ns; 2420 2421 #ifdef CONFIG_PSI 2422 p->psi_flags = 0; 2423 #endif 2424 2425 task_io_accounting_init(&p->ioac); 2426 acct_clear_integrals(p); 2427 2428 posix_cputimers_init(&p->posix_cputimers); 2429 2430 p->io_context = NULL; 2431 audit_set_context(p, NULL); 2432 cgroup_fork(p); 2433 if (args->kthread) { 2434 if (!set_kthread_struct(p)) 2435 goto bad_fork_cleanup_delayacct; 2436 } 2437 #ifdef CONFIG_NUMA 2438 p->mempolicy = mpol_dup(p->mempolicy); 2439 if (IS_ERR(p->mempolicy)) { 2440 retval = PTR_ERR(p->mempolicy); 2441 p->mempolicy = NULL; 2442 goto bad_fork_cleanup_delayacct; 2443 } 2444 #endif 2445 #ifdef CONFIG_CPUSETS 2446 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2447 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2448 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2449 #endif 2450 #ifdef CONFIG_TRACE_IRQFLAGS 2451 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2452 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2453 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2454 p->softirqs_enabled = 1; 2455 p->softirq_context = 0; 2456 #endif 2457 2458 p->pagefault_disabled = 0; 2459 2460 #ifdef CONFIG_LOCKDEP 2461 lockdep_init_task(p); 2462 #endif 2463 2464 #ifdef CONFIG_DEBUG_MUTEXES 2465 p->blocked_on = NULL; /* not blocked yet */ 2466 #endif 2467 #ifdef CONFIG_BCACHE 2468 p->sequential_io = 0; 2469 p->sequential_io_avg = 0; 2470 #endif 2471 #ifdef CONFIG_BPF_SYSCALL 2472 RCU_INIT_POINTER(p->bpf_storage, NULL); 2473 p->bpf_ctx = NULL; 2474 #endif 2475 2476 /* Perform scheduler related setup. Assign this task to a CPU. */ 2477 retval = sched_fork(clone_flags, p); 2478 if (retval) 2479 goto bad_fork_cleanup_policy; 2480 2481 retval = perf_event_init_task(p, clone_flags); 2482 if (retval) 2483 goto bad_fork_cleanup_policy; 2484 retval = audit_alloc(p); 2485 if (retval) 2486 goto bad_fork_cleanup_perf; 2487 /* copy all the process information */ 2488 shm_init_task(p); 2489 retval = security_task_alloc(p, clone_flags); 2490 if (retval) 2491 goto bad_fork_cleanup_audit; 2492 retval = copy_semundo(clone_flags, p); 2493 if (retval) 2494 goto bad_fork_cleanup_security; 2495 retval = copy_files(clone_flags, p, args->no_files); 2496 if (retval) 2497 goto bad_fork_cleanup_semundo; 2498 retval = copy_fs(clone_flags, p); 2499 if (retval) 2500 goto bad_fork_cleanup_files; 2501 retval = copy_sighand(clone_flags, p); 2502 if (retval) 2503 goto bad_fork_cleanup_fs; 2504 retval = copy_signal(clone_flags, p); 2505 if (retval) 2506 goto bad_fork_cleanup_sighand; 2507 retval = copy_mm(clone_flags, p); 2508 if (retval) 2509 goto bad_fork_cleanup_signal; 2510 retval = copy_namespaces(clone_flags, p); 2511 if (retval) 2512 goto bad_fork_cleanup_mm; 2513 retval = copy_io(clone_flags, p); 2514 if (retval) 2515 goto bad_fork_cleanup_namespaces; 2516 retval = copy_thread(p, args); 2517 if (retval) 2518 goto bad_fork_cleanup_io; 2519 2520 if (args->ignore_signals) 2521 ignore_signals(p); 2522 2523 stackleak_task_init(p); 2524 2525 if (pid != &init_struct_pid) { 2526 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2527 args->set_tid_size); 2528 if (IS_ERR(pid)) { 2529 retval = PTR_ERR(pid); 2530 goto bad_fork_cleanup_thread; 2531 } 2532 } 2533 2534 /* 2535 * This has to happen after we've potentially unshared the file 2536 * descriptor table (so that the pidfd doesn't leak into the child 2537 * if the fd table isn't shared). 2538 */ 2539 if (clone_flags & CLONE_PIDFD) { 2540 /* Note that no task has been attached to @pid yet. */ 2541 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2542 if (retval < 0) 2543 goto bad_fork_free_pid; 2544 pidfd = retval; 2545 2546 retval = put_user(pidfd, args->pidfd); 2547 if (retval) 2548 goto bad_fork_put_pidfd; 2549 } 2550 2551 #ifdef CONFIG_BLOCK 2552 p->plug = NULL; 2553 #endif 2554 futex_init_task(p); 2555 2556 /* 2557 * sigaltstack should be cleared when sharing the same VM 2558 */ 2559 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2560 sas_ss_reset(p); 2561 2562 /* 2563 * Syscall tracing and stepping should be turned off in the 2564 * child regardless of CLONE_PTRACE. 2565 */ 2566 user_disable_single_step(p); 2567 clear_task_syscall_work(p, SYSCALL_TRACE); 2568 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2569 clear_task_syscall_work(p, SYSCALL_EMU); 2570 #endif 2571 clear_tsk_latency_tracing(p); 2572 2573 /* ok, now we should be set up.. */ 2574 p->pid = pid_nr(pid); 2575 if (clone_flags & CLONE_THREAD) { 2576 p->group_leader = current->group_leader; 2577 p->tgid = current->tgid; 2578 } else { 2579 p->group_leader = p; 2580 p->tgid = p->pid; 2581 } 2582 2583 p->nr_dirtied = 0; 2584 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2585 p->dirty_paused_when = 0; 2586 2587 p->pdeath_signal = 0; 2588 INIT_LIST_HEAD(&p->thread_group); 2589 p->task_works = NULL; 2590 clear_posix_cputimers_work(p); 2591 2592 #ifdef CONFIG_KRETPROBES 2593 p->kretprobe_instances.first = NULL; 2594 #endif 2595 #ifdef CONFIG_RETHOOK 2596 p->rethooks.first = NULL; 2597 #endif 2598 2599 /* 2600 * Ensure that the cgroup subsystem policies allow the new process to be 2601 * forked. It should be noted that the new process's css_set can be changed 2602 * between here and cgroup_post_fork() if an organisation operation is in 2603 * progress. 2604 */ 2605 retval = cgroup_can_fork(p, args); 2606 if (retval) 2607 goto bad_fork_put_pidfd; 2608 2609 /* 2610 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2611 * the new task on the correct runqueue. All this *before* the task 2612 * becomes visible. 2613 * 2614 * This isn't part of ->can_fork() because while the re-cloning is 2615 * cgroup specific, it unconditionally needs to place the task on a 2616 * runqueue. 2617 */ 2618 sched_cgroup_fork(p, args); 2619 2620 /* 2621 * From this point on we must avoid any synchronous user-space 2622 * communication until we take the tasklist-lock. In particular, we do 2623 * not want user-space to be able to predict the process start-time by 2624 * stalling fork(2) after we recorded the start_time but before it is 2625 * visible to the system. 2626 */ 2627 2628 p->start_time = ktime_get_ns(); 2629 p->start_boottime = ktime_get_boottime_ns(); 2630 2631 /* 2632 * Make it visible to the rest of the system, but dont wake it up yet. 2633 * Need tasklist lock for parent etc handling! 2634 */ 2635 write_lock_irq(&tasklist_lock); 2636 2637 /* CLONE_PARENT re-uses the old parent */ 2638 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2639 p->real_parent = current->real_parent; 2640 p->parent_exec_id = current->parent_exec_id; 2641 if (clone_flags & CLONE_THREAD) 2642 p->exit_signal = -1; 2643 else 2644 p->exit_signal = current->group_leader->exit_signal; 2645 } else { 2646 p->real_parent = current; 2647 p->parent_exec_id = current->self_exec_id; 2648 p->exit_signal = args->exit_signal; 2649 } 2650 2651 klp_copy_process(p); 2652 2653 sched_core_fork(p); 2654 2655 spin_lock(¤t->sighand->siglock); 2656 2657 rv_task_fork(p); 2658 2659 rseq_fork(p, clone_flags); 2660 2661 /* Don't start children in a dying pid namespace */ 2662 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2663 retval = -ENOMEM; 2664 goto bad_fork_cancel_cgroup; 2665 } 2666 2667 /* Let kill terminate clone/fork in the middle */ 2668 if (fatal_signal_pending(current)) { 2669 retval = -EINTR; 2670 goto bad_fork_cancel_cgroup; 2671 } 2672 2673 /* No more failure paths after this point. */ 2674 2675 /* 2676 * Copy seccomp details explicitly here, in case they were changed 2677 * before holding sighand lock. 2678 */ 2679 copy_seccomp(p); 2680 2681 init_task_pid_links(p); 2682 if (likely(p->pid)) { 2683 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2684 2685 init_task_pid(p, PIDTYPE_PID, pid); 2686 if (thread_group_leader(p)) { 2687 init_task_pid(p, PIDTYPE_TGID, pid); 2688 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2689 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2690 2691 if (is_child_reaper(pid)) { 2692 ns_of_pid(pid)->child_reaper = p; 2693 p->signal->flags |= SIGNAL_UNKILLABLE; 2694 } 2695 p->signal->shared_pending.signal = delayed.signal; 2696 p->signal->tty = tty_kref_get(current->signal->tty); 2697 /* 2698 * Inherit has_child_subreaper flag under the same 2699 * tasklist_lock with adding child to the process tree 2700 * for propagate_has_child_subreaper optimization. 2701 */ 2702 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2703 p->real_parent->signal->is_child_subreaper; 2704 list_add_tail(&p->sibling, &p->real_parent->children); 2705 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2706 attach_pid(p, PIDTYPE_TGID); 2707 attach_pid(p, PIDTYPE_PGID); 2708 attach_pid(p, PIDTYPE_SID); 2709 __this_cpu_inc(process_counts); 2710 } else { 2711 current->signal->nr_threads++; 2712 current->signal->quick_threads++; 2713 atomic_inc(¤t->signal->live); 2714 refcount_inc(¤t->signal->sigcnt); 2715 task_join_group_stop(p); 2716 list_add_tail_rcu(&p->thread_group, 2717 &p->group_leader->thread_group); 2718 list_add_tail_rcu(&p->thread_node, 2719 &p->signal->thread_head); 2720 } 2721 attach_pid(p, PIDTYPE_PID); 2722 nr_threads++; 2723 } 2724 total_forks++; 2725 hlist_del_init(&delayed.node); 2726 spin_unlock(¤t->sighand->siglock); 2727 syscall_tracepoint_update(p); 2728 write_unlock_irq(&tasklist_lock); 2729 2730 if (pidfile) 2731 fd_install(pidfd, pidfile); 2732 2733 proc_fork_connector(p); 2734 sched_post_fork(p); 2735 cgroup_post_fork(p, args); 2736 perf_event_fork(p); 2737 2738 trace_task_newtask(p, clone_flags); 2739 uprobe_copy_process(p, clone_flags); 2740 user_events_fork(p, clone_flags); 2741 2742 copy_oom_score_adj(clone_flags, p); 2743 2744 return p; 2745 2746 bad_fork_cancel_cgroup: 2747 sched_core_free(p); 2748 spin_unlock(¤t->sighand->siglock); 2749 write_unlock_irq(&tasklist_lock); 2750 cgroup_cancel_fork(p, args); 2751 bad_fork_put_pidfd: 2752 if (clone_flags & CLONE_PIDFD) { 2753 fput(pidfile); 2754 put_unused_fd(pidfd); 2755 } 2756 bad_fork_free_pid: 2757 if (pid != &init_struct_pid) 2758 free_pid(pid); 2759 bad_fork_cleanup_thread: 2760 exit_thread(p); 2761 bad_fork_cleanup_io: 2762 if (p->io_context) 2763 exit_io_context(p); 2764 bad_fork_cleanup_namespaces: 2765 exit_task_namespaces(p); 2766 bad_fork_cleanup_mm: 2767 if (p->mm) { 2768 mm_clear_owner(p->mm, p); 2769 mmput(p->mm); 2770 } 2771 bad_fork_cleanup_signal: 2772 if (!(clone_flags & CLONE_THREAD)) 2773 free_signal_struct(p->signal); 2774 bad_fork_cleanup_sighand: 2775 __cleanup_sighand(p->sighand); 2776 bad_fork_cleanup_fs: 2777 exit_fs(p); /* blocking */ 2778 bad_fork_cleanup_files: 2779 exit_files(p); /* blocking */ 2780 bad_fork_cleanup_semundo: 2781 exit_sem(p); 2782 bad_fork_cleanup_security: 2783 security_task_free(p); 2784 bad_fork_cleanup_audit: 2785 audit_free(p); 2786 bad_fork_cleanup_perf: 2787 perf_event_free_task(p); 2788 bad_fork_cleanup_policy: 2789 lockdep_free_task(p); 2790 #ifdef CONFIG_NUMA 2791 mpol_put(p->mempolicy); 2792 #endif 2793 bad_fork_cleanup_delayacct: 2794 delayacct_tsk_free(p); 2795 bad_fork_cleanup_count: 2796 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2797 exit_creds(p); 2798 bad_fork_free: 2799 WRITE_ONCE(p->__state, TASK_DEAD); 2800 exit_task_stack_account(p); 2801 put_task_stack(p); 2802 delayed_free_task(p); 2803 fork_out: 2804 spin_lock_irq(¤t->sighand->siglock); 2805 hlist_del_init(&delayed.node); 2806 spin_unlock_irq(¤t->sighand->siglock); 2807 return ERR_PTR(retval); 2808 } 2809 2810 static inline void init_idle_pids(struct task_struct *idle) 2811 { 2812 enum pid_type type; 2813 2814 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2815 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2816 init_task_pid(idle, type, &init_struct_pid); 2817 } 2818 } 2819 2820 static int idle_dummy(void *dummy) 2821 { 2822 /* This function is never called */ 2823 return 0; 2824 } 2825 2826 struct task_struct * __init fork_idle(int cpu) 2827 { 2828 struct task_struct *task; 2829 struct kernel_clone_args args = { 2830 .flags = CLONE_VM, 2831 .fn = &idle_dummy, 2832 .fn_arg = NULL, 2833 .kthread = 1, 2834 .idle = 1, 2835 }; 2836 2837 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2838 if (!IS_ERR(task)) { 2839 init_idle_pids(task); 2840 init_idle(task, cpu); 2841 } 2842 2843 return task; 2844 } 2845 2846 /* 2847 * This is like kernel_clone(), but shaved down and tailored to just 2848 * creating io_uring workers. It returns a created task, or an error pointer. 2849 * The returned task is inactive, and the caller must fire it up through 2850 * wake_up_new_task(p). All signals are blocked in the created task. 2851 */ 2852 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2853 { 2854 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2855 CLONE_IO; 2856 struct kernel_clone_args args = { 2857 .flags = ((lower_32_bits(flags) | CLONE_VM | 2858 CLONE_UNTRACED) & ~CSIGNAL), 2859 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2860 .fn = fn, 2861 .fn_arg = arg, 2862 .io_thread = 1, 2863 .user_worker = 1, 2864 }; 2865 2866 return copy_process(NULL, 0, node, &args); 2867 } 2868 2869 /* 2870 * Ok, this is the main fork-routine. 2871 * 2872 * It copies the process, and if successful kick-starts 2873 * it and waits for it to finish using the VM if required. 2874 * 2875 * args->exit_signal is expected to be checked for sanity by the caller. 2876 */ 2877 pid_t kernel_clone(struct kernel_clone_args *args) 2878 { 2879 u64 clone_flags = args->flags; 2880 struct completion vfork; 2881 struct pid *pid; 2882 struct task_struct *p; 2883 int trace = 0; 2884 pid_t nr; 2885 2886 /* 2887 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2888 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2889 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2890 * field in struct clone_args and it still doesn't make sense to have 2891 * them both point at the same memory location. Performing this check 2892 * here has the advantage that we don't need to have a separate helper 2893 * to check for legacy clone(). 2894 */ 2895 if ((args->flags & CLONE_PIDFD) && 2896 (args->flags & CLONE_PARENT_SETTID) && 2897 (args->pidfd == args->parent_tid)) 2898 return -EINVAL; 2899 2900 /* 2901 * Determine whether and which event to report to ptracer. When 2902 * called from kernel_thread or CLONE_UNTRACED is explicitly 2903 * requested, no event is reported; otherwise, report if the event 2904 * for the type of forking is enabled. 2905 */ 2906 if (!(clone_flags & CLONE_UNTRACED)) { 2907 if (clone_flags & CLONE_VFORK) 2908 trace = PTRACE_EVENT_VFORK; 2909 else if (args->exit_signal != SIGCHLD) 2910 trace = PTRACE_EVENT_CLONE; 2911 else 2912 trace = PTRACE_EVENT_FORK; 2913 2914 if (likely(!ptrace_event_enabled(current, trace))) 2915 trace = 0; 2916 } 2917 2918 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2919 add_latent_entropy(); 2920 2921 if (IS_ERR(p)) 2922 return PTR_ERR(p); 2923 2924 /* 2925 * Do this prior waking up the new thread - the thread pointer 2926 * might get invalid after that point, if the thread exits quickly. 2927 */ 2928 trace_sched_process_fork(current, p); 2929 2930 pid = get_task_pid(p, PIDTYPE_PID); 2931 nr = pid_vnr(pid); 2932 2933 if (clone_flags & CLONE_PARENT_SETTID) 2934 put_user(nr, args->parent_tid); 2935 2936 if (clone_flags & CLONE_VFORK) { 2937 p->vfork_done = &vfork; 2938 init_completion(&vfork); 2939 get_task_struct(p); 2940 } 2941 2942 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2943 /* lock the task to synchronize with memcg migration */ 2944 task_lock(p); 2945 lru_gen_add_mm(p->mm); 2946 task_unlock(p); 2947 } 2948 2949 wake_up_new_task(p); 2950 2951 /* forking complete and child started to run, tell ptracer */ 2952 if (unlikely(trace)) 2953 ptrace_event_pid(trace, pid); 2954 2955 if (clone_flags & CLONE_VFORK) { 2956 if (!wait_for_vfork_done(p, &vfork)) 2957 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2958 } 2959 2960 put_pid(pid); 2961 return nr; 2962 } 2963 2964 /* 2965 * Create a kernel thread. 2966 */ 2967 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2968 unsigned long flags) 2969 { 2970 struct kernel_clone_args args = { 2971 .flags = ((lower_32_bits(flags) | CLONE_VM | 2972 CLONE_UNTRACED) & ~CSIGNAL), 2973 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2974 .fn = fn, 2975 .fn_arg = arg, 2976 .name = name, 2977 .kthread = 1, 2978 }; 2979 2980 return kernel_clone(&args); 2981 } 2982 2983 /* 2984 * Create a user mode thread. 2985 */ 2986 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2987 { 2988 struct kernel_clone_args args = { 2989 .flags = ((lower_32_bits(flags) | CLONE_VM | 2990 CLONE_UNTRACED) & ~CSIGNAL), 2991 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2992 .fn = fn, 2993 .fn_arg = arg, 2994 }; 2995 2996 return kernel_clone(&args); 2997 } 2998 2999 #ifdef __ARCH_WANT_SYS_FORK 3000 SYSCALL_DEFINE0(fork) 3001 { 3002 #ifdef CONFIG_MMU 3003 struct kernel_clone_args args = { 3004 .exit_signal = SIGCHLD, 3005 }; 3006 3007 return kernel_clone(&args); 3008 #else 3009 /* can not support in nommu mode */ 3010 return -EINVAL; 3011 #endif 3012 } 3013 #endif 3014 3015 #ifdef __ARCH_WANT_SYS_VFORK 3016 SYSCALL_DEFINE0(vfork) 3017 { 3018 struct kernel_clone_args args = { 3019 .flags = CLONE_VFORK | CLONE_VM, 3020 .exit_signal = SIGCHLD, 3021 }; 3022 3023 return kernel_clone(&args); 3024 } 3025 #endif 3026 3027 #ifdef __ARCH_WANT_SYS_CLONE 3028 #ifdef CONFIG_CLONE_BACKWARDS 3029 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3030 int __user *, parent_tidptr, 3031 unsigned long, tls, 3032 int __user *, child_tidptr) 3033 #elif defined(CONFIG_CLONE_BACKWARDS2) 3034 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3035 int __user *, parent_tidptr, 3036 int __user *, child_tidptr, 3037 unsigned long, tls) 3038 #elif defined(CONFIG_CLONE_BACKWARDS3) 3039 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3040 int, stack_size, 3041 int __user *, parent_tidptr, 3042 int __user *, child_tidptr, 3043 unsigned long, tls) 3044 #else 3045 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3046 int __user *, parent_tidptr, 3047 int __user *, child_tidptr, 3048 unsigned long, tls) 3049 #endif 3050 { 3051 struct kernel_clone_args args = { 3052 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3053 .pidfd = parent_tidptr, 3054 .child_tid = child_tidptr, 3055 .parent_tid = parent_tidptr, 3056 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3057 .stack = newsp, 3058 .tls = tls, 3059 }; 3060 3061 return kernel_clone(&args); 3062 } 3063 #endif 3064 3065 #ifdef __ARCH_WANT_SYS_CLONE3 3066 3067 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3068 struct clone_args __user *uargs, 3069 size_t usize) 3070 { 3071 int err; 3072 struct clone_args args; 3073 pid_t *kset_tid = kargs->set_tid; 3074 3075 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3076 CLONE_ARGS_SIZE_VER0); 3077 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3078 CLONE_ARGS_SIZE_VER1); 3079 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3080 CLONE_ARGS_SIZE_VER2); 3081 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3082 3083 if (unlikely(usize > PAGE_SIZE)) 3084 return -E2BIG; 3085 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3086 return -EINVAL; 3087 3088 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3089 if (err) 3090 return err; 3091 3092 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3093 return -EINVAL; 3094 3095 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3096 return -EINVAL; 3097 3098 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3099 return -EINVAL; 3100 3101 /* 3102 * Verify that higher 32bits of exit_signal are unset and that 3103 * it is a valid signal 3104 */ 3105 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3106 !valid_signal(args.exit_signal))) 3107 return -EINVAL; 3108 3109 if ((args.flags & CLONE_INTO_CGROUP) && 3110 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3111 return -EINVAL; 3112 3113 *kargs = (struct kernel_clone_args){ 3114 .flags = args.flags, 3115 .pidfd = u64_to_user_ptr(args.pidfd), 3116 .child_tid = u64_to_user_ptr(args.child_tid), 3117 .parent_tid = u64_to_user_ptr(args.parent_tid), 3118 .exit_signal = args.exit_signal, 3119 .stack = args.stack, 3120 .stack_size = args.stack_size, 3121 .tls = args.tls, 3122 .set_tid_size = args.set_tid_size, 3123 .cgroup = args.cgroup, 3124 }; 3125 3126 if (args.set_tid && 3127 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3128 (kargs->set_tid_size * sizeof(pid_t)))) 3129 return -EFAULT; 3130 3131 kargs->set_tid = kset_tid; 3132 3133 return 0; 3134 } 3135 3136 /** 3137 * clone3_stack_valid - check and prepare stack 3138 * @kargs: kernel clone args 3139 * 3140 * Verify that the stack arguments userspace gave us are sane. 3141 * In addition, set the stack direction for userspace since it's easy for us to 3142 * determine. 3143 */ 3144 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3145 { 3146 if (kargs->stack == 0) { 3147 if (kargs->stack_size > 0) 3148 return false; 3149 } else { 3150 if (kargs->stack_size == 0) 3151 return false; 3152 3153 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3154 return false; 3155 3156 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 3157 kargs->stack += kargs->stack_size; 3158 #endif 3159 } 3160 3161 return true; 3162 } 3163 3164 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3165 { 3166 /* Verify that no unknown flags are passed along. */ 3167 if (kargs->flags & 3168 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3169 return false; 3170 3171 /* 3172 * - make the CLONE_DETACHED bit reusable for clone3 3173 * - make the CSIGNAL bits reusable for clone3 3174 */ 3175 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3176 return false; 3177 3178 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3179 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3180 return false; 3181 3182 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3183 kargs->exit_signal) 3184 return false; 3185 3186 if (!clone3_stack_valid(kargs)) 3187 return false; 3188 3189 return true; 3190 } 3191 3192 /** 3193 * clone3 - create a new process with specific properties 3194 * @uargs: argument structure 3195 * @size: size of @uargs 3196 * 3197 * clone3() is the extensible successor to clone()/clone2(). 3198 * It takes a struct as argument that is versioned by its size. 3199 * 3200 * Return: On success, a positive PID for the child process. 3201 * On error, a negative errno number. 3202 */ 3203 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3204 { 3205 int err; 3206 3207 struct kernel_clone_args kargs; 3208 pid_t set_tid[MAX_PID_NS_LEVEL]; 3209 3210 kargs.set_tid = set_tid; 3211 3212 err = copy_clone_args_from_user(&kargs, uargs, size); 3213 if (err) 3214 return err; 3215 3216 if (!clone3_args_valid(&kargs)) 3217 return -EINVAL; 3218 3219 return kernel_clone(&kargs); 3220 } 3221 #endif 3222 3223 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3224 { 3225 struct task_struct *leader, *parent, *child; 3226 int res; 3227 3228 read_lock(&tasklist_lock); 3229 leader = top = top->group_leader; 3230 down: 3231 for_each_thread(leader, parent) { 3232 list_for_each_entry(child, &parent->children, sibling) { 3233 res = visitor(child, data); 3234 if (res) { 3235 if (res < 0) 3236 goto out; 3237 leader = child; 3238 goto down; 3239 } 3240 up: 3241 ; 3242 } 3243 } 3244 3245 if (leader != top) { 3246 child = leader; 3247 parent = child->real_parent; 3248 leader = parent->group_leader; 3249 goto up; 3250 } 3251 out: 3252 read_unlock(&tasklist_lock); 3253 } 3254 3255 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3256 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3257 #endif 3258 3259 static void sighand_ctor(void *data) 3260 { 3261 struct sighand_struct *sighand = data; 3262 3263 spin_lock_init(&sighand->siglock); 3264 init_waitqueue_head(&sighand->signalfd_wqh); 3265 } 3266 3267 void __init mm_cache_init(void) 3268 { 3269 unsigned int mm_size; 3270 3271 /* 3272 * The mm_cpumask is located at the end of mm_struct, and is 3273 * dynamically sized based on the maximum CPU number this system 3274 * can have, taking hotplug into account (nr_cpu_ids). 3275 */ 3276 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3277 3278 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3279 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3280 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3281 offsetof(struct mm_struct, saved_auxv), 3282 sizeof_field(struct mm_struct, saved_auxv), 3283 NULL); 3284 } 3285 3286 void __init proc_caches_init(void) 3287 { 3288 sighand_cachep = kmem_cache_create("sighand_cache", 3289 sizeof(struct sighand_struct), 0, 3290 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3291 SLAB_ACCOUNT, sighand_ctor); 3292 signal_cachep = kmem_cache_create("signal_cache", 3293 sizeof(struct signal_struct), 0, 3294 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3295 NULL); 3296 files_cachep = kmem_cache_create("files_cache", 3297 sizeof(struct files_struct), 0, 3298 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3299 NULL); 3300 fs_cachep = kmem_cache_create("fs_cache", 3301 sizeof(struct fs_struct), 0, 3302 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3303 NULL); 3304 3305 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3306 #ifdef CONFIG_PER_VMA_LOCK 3307 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3308 #endif 3309 mmap_init(); 3310 nsproxy_cache_init(); 3311 } 3312 3313 /* 3314 * Check constraints on flags passed to the unshare system call. 3315 */ 3316 static int check_unshare_flags(unsigned long unshare_flags) 3317 { 3318 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3319 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3320 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3321 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3322 CLONE_NEWTIME)) 3323 return -EINVAL; 3324 /* 3325 * Not implemented, but pretend it works if there is nothing 3326 * to unshare. Note that unsharing the address space or the 3327 * signal handlers also need to unshare the signal queues (aka 3328 * CLONE_THREAD). 3329 */ 3330 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3331 if (!thread_group_empty(current)) 3332 return -EINVAL; 3333 } 3334 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3335 if (refcount_read(¤t->sighand->count) > 1) 3336 return -EINVAL; 3337 } 3338 if (unshare_flags & CLONE_VM) { 3339 if (!current_is_single_threaded()) 3340 return -EINVAL; 3341 } 3342 3343 return 0; 3344 } 3345 3346 /* 3347 * Unshare the filesystem structure if it is being shared 3348 */ 3349 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3350 { 3351 struct fs_struct *fs = current->fs; 3352 3353 if (!(unshare_flags & CLONE_FS) || !fs) 3354 return 0; 3355 3356 /* don't need lock here; in the worst case we'll do useless copy */ 3357 if (fs->users == 1) 3358 return 0; 3359 3360 *new_fsp = copy_fs_struct(fs); 3361 if (!*new_fsp) 3362 return -ENOMEM; 3363 3364 return 0; 3365 } 3366 3367 /* 3368 * Unshare file descriptor table if it is being shared 3369 */ 3370 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3371 struct files_struct **new_fdp) 3372 { 3373 struct files_struct *fd = current->files; 3374 int error = 0; 3375 3376 if ((unshare_flags & CLONE_FILES) && 3377 (fd && atomic_read(&fd->count) > 1)) { 3378 *new_fdp = dup_fd(fd, max_fds, &error); 3379 if (!*new_fdp) 3380 return error; 3381 } 3382 3383 return 0; 3384 } 3385 3386 /* 3387 * unshare allows a process to 'unshare' part of the process 3388 * context which was originally shared using clone. copy_* 3389 * functions used by kernel_clone() cannot be used here directly 3390 * because they modify an inactive task_struct that is being 3391 * constructed. Here we are modifying the current, active, 3392 * task_struct. 3393 */ 3394 int ksys_unshare(unsigned long unshare_flags) 3395 { 3396 struct fs_struct *fs, *new_fs = NULL; 3397 struct files_struct *new_fd = NULL; 3398 struct cred *new_cred = NULL; 3399 struct nsproxy *new_nsproxy = NULL; 3400 int do_sysvsem = 0; 3401 int err; 3402 3403 /* 3404 * If unsharing a user namespace must also unshare the thread group 3405 * and unshare the filesystem root and working directories. 3406 */ 3407 if (unshare_flags & CLONE_NEWUSER) 3408 unshare_flags |= CLONE_THREAD | CLONE_FS; 3409 /* 3410 * If unsharing vm, must also unshare signal handlers. 3411 */ 3412 if (unshare_flags & CLONE_VM) 3413 unshare_flags |= CLONE_SIGHAND; 3414 /* 3415 * If unsharing a signal handlers, must also unshare the signal queues. 3416 */ 3417 if (unshare_flags & CLONE_SIGHAND) 3418 unshare_flags |= CLONE_THREAD; 3419 /* 3420 * If unsharing namespace, must also unshare filesystem information. 3421 */ 3422 if (unshare_flags & CLONE_NEWNS) 3423 unshare_flags |= CLONE_FS; 3424 3425 err = check_unshare_flags(unshare_flags); 3426 if (err) 3427 goto bad_unshare_out; 3428 /* 3429 * CLONE_NEWIPC must also detach from the undolist: after switching 3430 * to a new ipc namespace, the semaphore arrays from the old 3431 * namespace are unreachable. 3432 */ 3433 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3434 do_sysvsem = 1; 3435 err = unshare_fs(unshare_flags, &new_fs); 3436 if (err) 3437 goto bad_unshare_out; 3438 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3439 if (err) 3440 goto bad_unshare_cleanup_fs; 3441 err = unshare_userns(unshare_flags, &new_cred); 3442 if (err) 3443 goto bad_unshare_cleanup_fd; 3444 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3445 new_cred, new_fs); 3446 if (err) 3447 goto bad_unshare_cleanup_cred; 3448 3449 if (new_cred) { 3450 err = set_cred_ucounts(new_cred); 3451 if (err) 3452 goto bad_unshare_cleanup_cred; 3453 } 3454 3455 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3456 if (do_sysvsem) { 3457 /* 3458 * CLONE_SYSVSEM is equivalent to sys_exit(). 3459 */ 3460 exit_sem(current); 3461 } 3462 if (unshare_flags & CLONE_NEWIPC) { 3463 /* Orphan segments in old ns (see sem above). */ 3464 exit_shm(current); 3465 shm_init_task(current); 3466 } 3467 3468 if (new_nsproxy) 3469 switch_task_namespaces(current, new_nsproxy); 3470 3471 task_lock(current); 3472 3473 if (new_fs) { 3474 fs = current->fs; 3475 spin_lock(&fs->lock); 3476 current->fs = new_fs; 3477 if (--fs->users) 3478 new_fs = NULL; 3479 else 3480 new_fs = fs; 3481 spin_unlock(&fs->lock); 3482 } 3483 3484 if (new_fd) 3485 swap(current->files, new_fd); 3486 3487 task_unlock(current); 3488 3489 if (new_cred) { 3490 /* Install the new user namespace */ 3491 commit_creds(new_cred); 3492 new_cred = NULL; 3493 } 3494 } 3495 3496 perf_event_namespaces(current); 3497 3498 bad_unshare_cleanup_cred: 3499 if (new_cred) 3500 put_cred(new_cred); 3501 bad_unshare_cleanup_fd: 3502 if (new_fd) 3503 put_files_struct(new_fd); 3504 3505 bad_unshare_cleanup_fs: 3506 if (new_fs) 3507 free_fs_struct(new_fs); 3508 3509 bad_unshare_out: 3510 return err; 3511 } 3512 3513 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3514 { 3515 return ksys_unshare(unshare_flags); 3516 } 3517 3518 /* 3519 * Helper to unshare the files of the current task. 3520 * We don't want to expose copy_files internals to 3521 * the exec layer of the kernel. 3522 */ 3523 3524 int unshare_files(void) 3525 { 3526 struct task_struct *task = current; 3527 struct files_struct *old, *copy = NULL; 3528 int error; 3529 3530 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3531 if (error || !copy) 3532 return error; 3533 3534 old = task->files; 3535 task_lock(task); 3536 task->files = copy; 3537 task_unlock(task); 3538 put_files_struct(old); 3539 return 0; 3540 } 3541 3542 int sysctl_max_threads(struct ctl_table *table, int write, 3543 void *buffer, size_t *lenp, loff_t *ppos) 3544 { 3545 struct ctl_table t; 3546 int ret; 3547 int threads = max_threads; 3548 int min = 1; 3549 int max = MAX_THREADS; 3550 3551 t = *table; 3552 t.data = &threads; 3553 t.extra1 = &min; 3554 t.extra2 = &max; 3555 3556 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3557 if (ret || !write) 3558 return ret; 3559 3560 max_threads = threads; 3561 3562 return 0; 3563 } 3564