1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 } 370 return new; 371 } 372 373 void vm_area_free(struct vm_area_struct *vma) 374 { 375 kmem_cache_free(vm_area_cachep, vma); 376 } 377 378 static void account_kernel_stack(struct task_struct *tsk, int account) 379 { 380 void *stack = task_stack_page(tsk); 381 struct vm_struct *vm = task_stack_vm_area(tsk); 382 383 if (vm) { 384 int i; 385 386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 387 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 388 account * (PAGE_SIZE / 1024)); 389 } else { 390 /* All stack pages are in the same node. */ 391 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 392 account * (THREAD_SIZE / 1024)); 393 } 394 } 395 396 static int memcg_charge_kernel_stack(struct task_struct *tsk) 397 { 398 #ifdef CONFIG_VMAP_STACK 399 struct vm_struct *vm = task_stack_vm_area(tsk); 400 int ret; 401 402 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 403 404 if (vm) { 405 int i; 406 407 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 408 409 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 410 /* 411 * If memcg_kmem_charge_page() fails, page's 412 * memory cgroup pointer is NULL, and 413 * memcg_kmem_uncharge_page() in free_thread_stack() 414 * will ignore this page. 415 */ 416 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 417 0); 418 if (ret) 419 return ret; 420 } 421 } 422 #endif 423 return 0; 424 } 425 426 static void release_task_stack(struct task_struct *tsk) 427 { 428 if (WARN_ON(tsk->state != TASK_DEAD)) 429 return; /* Better to leak the stack than to free prematurely */ 430 431 account_kernel_stack(tsk, -1); 432 free_thread_stack(tsk); 433 tsk->stack = NULL; 434 #ifdef CONFIG_VMAP_STACK 435 tsk->stack_vm_area = NULL; 436 #endif 437 } 438 439 #ifdef CONFIG_THREAD_INFO_IN_TASK 440 void put_task_stack(struct task_struct *tsk) 441 { 442 if (refcount_dec_and_test(&tsk->stack_refcount)) 443 release_task_stack(tsk); 444 } 445 #endif 446 447 void free_task(struct task_struct *tsk) 448 { 449 scs_release(tsk); 450 451 #ifndef CONFIG_THREAD_INFO_IN_TASK 452 /* 453 * The task is finally done with both the stack and thread_info, 454 * so free both. 455 */ 456 release_task_stack(tsk); 457 #else 458 /* 459 * If the task had a separate stack allocation, it should be gone 460 * by now. 461 */ 462 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 463 #endif 464 rt_mutex_debug_task_free(tsk); 465 ftrace_graph_exit_task(tsk); 466 arch_release_task_struct(tsk); 467 if (tsk->flags & PF_KTHREAD) 468 free_kthread_struct(tsk); 469 free_task_struct(tsk); 470 } 471 EXPORT_SYMBOL(free_task); 472 473 #ifdef CONFIG_MMU 474 static __latent_entropy int dup_mmap(struct mm_struct *mm, 475 struct mm_struct *oldmm) 476 { 477 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 478 struct rb_node **rb_link, *rb_parent; 479 int retval; 480 unsigned long charge; 481 LIST_HEAD(uf); 482 483 uprobe_start_dup_mmap(); 484 if (mmap_write_lock_killable(oldmm)) { 485 retval = -EINTR; 486 goto fail_uprobe_end; 487 } 488 flush_cache_dup_mm(oldmm); 489 uprobe_dup_mmap(oldmm, mm); 490 /* 491 * Not linked in yet - no deadlock potential: 492 */ 493 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 494 495 /* No ordering required: file already has been exposed. */ 496 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 497 498 mm->total_vm = oldmm->total_vm; 499 mm->data_vm = oldmm->data_vm; 500 mm->exec_vm = oldmm->exec_vm; 501 mm->stack_vm = oldmm->stack_vm; 502 503 rb_link = &mm->mm_rb.rb_node; 504 rb_parent = NULL; 505 pprev = &mm->mmap; 506 retval = ksm_fork(mm, oldmm); 507 if (retval) 508 goto out; 509 retval = khugepaged_fork(mm, oldmm); 510 if (retval) 511 goto out; 512 513 prev = NULL; 514 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 515 struct file *file; 516 517 if (mpnt->vm_flags & VM_DONTCOPY) { 518 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 519 continue; 520 } 521 charge = 0; 522 /* 523 * Don't duplicate many vmas if we've been oom-killed (for 524 * example) 525 */ 526 if (fatal_signal_pending(current)) { 527 retval = -EINTR; 528 goto out; 529 } 530 if (mpnt->vm_flags & VM_ACCOUNT) { 531 unsigned long len = vma_pages(mpnt); 532 533 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 534 goto fail_nomem; 535 charge = len; 536 } 537 tmp = vm_area_dup(mpnt); 538 if (!tmp) 539 goto fail_nomem; 540 retval = vma_dup_policy(mpnt, tmp); 541 if (retval) 542 goto fail_nomem_policy; 543 tmp->vm_mm = mm; 544 retval = dup_userfaultfd(tmp, &uf); 545 if (retval) 546 goto fail_nomem_anon_vma_fork; 547 if (tmp->vm_flags & VM_WIPEONFORK) { 548 /* 549 * VM_WIPEONFORK gets a clean slate in the child. 550 * Don't prepare anon_vma until fault since we don't 551 * copy page for current vma. 552 */ 553 tmp->anon_vma = NULL; 554 } else if (anon_vma_fork(tmp, mpnt)) 555 goto fail_nomem_anon_vma_fork; 556 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 557 file = tmp->vm_file; 558 if (file) { 559 struct inode *inode = file_inode(file); 560 struct address_space *mapping = file->f_mapping; 561 562 get_file(file); 563 if (tmp->vm_flags & VM_DENYWRITE) 564 put_write_access(inode); 565 i_mmap_lock_write(mapping); 566 if (tmp->vm_flags & VM_SHARED) 567 mapping_allow_writable(mapping); 568 flush_dcache_mmap_lock(mapping); 569 /* insert tmp into the share list, just after mpnt */ 570 vma_interval_tree_insert_after(tmp, mpnt, 571 &mapping->i_mmap); 572 flush_dcache_mmap_unlock(mapping); 573 i_mmap_unlock_write(mapping); 574 } 575 576 /* 577 * Clear hugetlb-related page reserves for children. This only 578 * affects MAP_PRIVATE mappings. Faults generated by the child 579 * are not guaranteed to succeed, even if read-only 580 */ 581 if (is_vm_hugetlb_page(tmp)) 582 reset_vma_resv_huge_pages(tmp); 583 584 /* 585 * Link in the new vma and copy the page table entries. 586 */ 587 *pprev = tmp; 588 pprev = &tmp->vm_next; 589 tmp->vm_prev = prev; 590 prev = tmp; 591 592 __vma_link_rb(mm, tmp, rb_link, rb_parent); 593 rb_link = &tmp->vm_rb.rb_right; 594 rb_parent = &tmp->vm_rb; 595 596 mm->map_count++; 597 if (!(tmp->vm_flags & VM_WIPEONFORK)) 598 retval = copy_page_range(tmp, mpnt); 599 600 if (tmp->vm_ops && tmp->vm_ops->open) 601 tmp->vm_ops->open(tmp); 602 603 if (retval) 604 goto out; 605 } 606 /* a new mm has just been created */ 607 retval = arch_dup_mmap(oldmm, mm); 608 out: 609 mmap_write_unlock(mm); 610 flush_tlb_mm(oldmm); 611 mmap_write_unlock(oldmm); 612 dup_userfaultfd_complete(&uf); 613 fail_uprobe_end: 614 uprobe_end_dup_mmap(); 615 return retval; 616 fail_nomem_anon_vma_fork: 617 mpol_put(vma_policy(tmp)); 618 fail_nomem_policy: 619 vm_area_free(tmp); 620 fail_nomem: 621 retval = -ENOMEM; 622 vm_unacct_memory(charge); 623 goto out; 624 } 625 626 static inline int mm_alloc_pgd(struct mm_struct *mm) 627 { 628 mm->pgd = pgd_alloc(mm); 629 if (unlikely(!mm->pgd)) 630 return -ENOMEM; 631 return 0; 632 } 633 634 static inline void mm_free_pgd(struct mm_struct *mm) 635 { 636 pgd_free(mm, mm->pgd); 637 } 638 #else 639 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 640 { 641 mmap_write_lock(oldmm); 642 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 643 mmap_write_unlock(oldmm); 644 return 0; 645 } 646 #define mm_alloc_pgd(mm) (0) 647 #define mm_free_pgd(mm) 648 #endif /* CONFIG_MMU */ 649 650 static void check_mm(struct mm_struct *mm) 651 { 652 int i; 653 654 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 655 "Please make sure 'struct resident_page_types[]' is updated as well"); 656 657 for (i = 0; i < NR_MM_COUNTERS; i++) { 658 long x = atomic_long_read(&mm->rss_stat.count[i]); 659 660 if (unlikely(x)) 661 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 662 mm, resident_page_types[i], x); 663 } 664 665 if (mm_pgtables_bytes(mm)) 666 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 667 mm_pgtables_bytes(mm)); 668 669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 670 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 671 #endif 672 } 673 674 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 675 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 676 677 /* 678 * Called when the last reference to the mm 679 * is dropped: either by a lazy thread or by 680 * mmput. Free the page directory and the mm. 681 */ 682 void __mmdrop(struct mm_struct *mm) 683 { 684 BUG_ON(mm == &init_mm); 685 WARN_ON_ONCE(mm == current->mm); 686 WARN_ON_ONCE(mm == current->active_mm); 687 mm_free_pgd(mm); 688 destroy_context(mm); 689 mmu_notifier_subscriptions_destroy(mm); 690 check_mm(mm); 691 put_user_ns(mm->user_ns); 692 free_mm(mm); 693 } 694 EXPORT_SYMBOL_GPL(__mmdrop); 695 696 static void mmdrop_async_fn(struct work_struct *work) 697 { 698 struct mm_struct *mm; 699 700 mm = container_of(work, struct mm_struct, async_put_work); 701 __mmdrop(mm); 702 } 703 704 static void mmdrop_async(struct mm_struct *mm) 705 { 706 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 707 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 708 schedule_work(&mm->async_put_work); 709 } 710 } 711 712 static inline void free_signal_struct(struct signal_struct *sig) 713 { 714 taskstats_tgid_free(sig); 715 sched_autogroup_exit(sig); 716 /* 717 * __mmdrop is not safe to call from softirq context on x86 due to 718 * pgd_dtor so postpone it to the async context 719 */ 720 if (sig->oom_mm) 721 mmdrop_async(sig->oom_mm); 722 kmem_cache_free(signal_cachep, sig); 723 } 724 725 static inline void put_signal_struct(struct signal_struct *sig) 726 { 727 if (refcount_dec_and_test(&sig->sigcnt)) 728 free_signal_struct(sig); 729 } 730 731 void __put_task_struct(struct task_struct *tsk) 732 { 733 WARN_ON(!tsk->exit_state); 734 WARN_ON(refcount_read(&tsk->usage)); 735 WARN_ON(tsk == current); 736 737 io_uring_free(tsk); 738 cgroup_free(tsk); 739 task_numa_free(tsk, true); 740 security_task_free(tsk); 741 bpf_task_storage_free(tsk); 742 exit_creds(tsk); 743 delayacct_tsk_free(tsk); 744 put_signal_struct(tsk->signal); 745 746 if (!profile_handoff_task(tsk)) 747 free_task(tsk); 748 } 749 EXPORT_SYMBOL_GPL(__put_task_struct); 750 751 void __init __weak arch_task_cache_init(void) { } 752 753 /* 754 * set_max_threads 755 */ 756 static void set_max_threads(unsigned int max_threads_suggested) 757 { 758 u64 threads; 759 unsigned long nr_pages = totalram_pages(); 760 761 /* 762 * The number of threads shall be limited such that the thread 763 * structures may only consume a small part of the available memory. 764 */ 765 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 766 threads = MAX_THREADS; 767 else 768 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 769 (u64) THREAD_SIZE * 8UL); 770 771 if (threads > max_threads_suggested) 772 threads = max_threads_suggested; 773 774 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 775 } 776 777 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 778 /* Initialized by the architecture: */ 779 int arch_task_struct_size __read_mostly; 780 #endif 781 782 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 783 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 784 { 785 /* Fetch thread_struct whitelist for the architecture. */ 786 arch_thread_struct_whitelist(offset, size); 787 788 /* 789 * Handle zero-sized whitelist or empty thread_struct, otherwise 790 * adjust offset to position of thread_struct in task_struct. 791 */ 792 if (unlikely(*size == 0)) 793 *offset = 0; 794 else 795 *offset += offsetof(struct task_struct, thread); 796 } 797 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 798 799 void __init fork_init(void) 800 { 801 int i; 802 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 803 #ifndef ARCH_MIN_TASKALIGN 804 #define ARCH_MIN_TASKALIGN 0 805 #endif 806 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 807 unsigned long useroffset, usersize; 808 809 /* create a slab on which task_structs can be allocated */ 810 task_struct_whitelist(&useroffset, &usersize); 811 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 812 arch_task_struct_size, align, 813 SLAB_PANIC|SLAB_ACCOUNT, 814 useroffset, usersize, NULL); 815 #endif 816 817 /* do the arch specific task caches init */ 818 arch_task_cache_init(); 819 820 set_max_threads(MAX_THREADS); 821 822 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 823 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 824 init_task.signal->rlim[RLIMIT_SIGPENDING] = 825 init_task.signal->rlim[RLIMIT_NPROC]; 826 827 for (i = 0; i < UCOUNT_COUNTS; i++) 828 init_user_ns.ucount_max[i] = max_threads/2; 829 830 #ifdef CONFIG_VMAP_STACK 831 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 832 NULL, free_vm_stack_cache); 833 #endif 834 835 scs_init(); 836 837 lockdep_init_task(&init_task); 838 uprobes_init(); 839 } 840 841 int __weak arch_dup_task_struct(struct task_struct *dst, 842 struct task_struct *src) 843 { 844 *dst = *src; 845 return 0; 846 } 847 848 void set_task_stack_end_magic(struct task_struct *tsk) 849 { 850 unsigned long *stackend; 851 852 stackend = end_of_stack(tsk); 853 *stackend = STACK_END_MAGIC; /* for overflow detection */ 854 } 855 856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 857 { 858 struct task_struct *tsk; 859 unsigned long *stack; 860 struct vm_struct *stack_vm_area __maybe_unused; 861 int err; 862 863 if (node == NUMA_NO_NODE) 864 node = tsk_fork_get_node(orig); 865 tsk = alloc_task_struct_node(node); 866 if (!tsk) 867 return NULL; 868 869 stack = alloc_thread_stack_node(tsk, node); 870 if (!stack) 871 goto free_tsk; 872 873 if (memcg_charge_kernel_stack(tsk)) 874 goto free_stack; 875 876 stack_vm_area = task_stack_vm_area(tsk); 877 878 err = arch_dup_task_struct(tsk, orig); 879 880 /* 881 * arch_dup_task_struct() clobbers the stack-related fields. Make 882 * sure they're properly initialized before using any stack-related 883 * functions again. 884 */ 885 tsk->stack = stack; 886 #ifdef CONFIG_VMAP_STACK 887 tsk->stack_vm_area = stack_vm_area; 888 #endif 889 #ifdef CONFIG_THREAD_INFO_IN_TASK 890 refcount_set(&tsk->stack_refcount, 1); 891 #endif 892 893 if (err) 894 goto free_stack; 895 896 err = scs_prepare(tsk, node); 897 if (err) 898 goto free_stack; 899 900 #ifdef CONFIG_SECCOMP 901 /* 902 * We must handle setting up seccomp filters once we're under 903 * the sighand lock in case orig has changed between now and 904 * then. Until then, filter must be NULL to avoid messing up 905 * the usage counts on the error path calling free_task. 906 */ 907 tsk->seccomp.filter = NULL; 908 #endif 909 910 setup_thread_stack(tsk, orig); 911 clear_user_return_notifier(tsk); 912 clear_tsk_need_resched(tsk); 913 set_task_stack_end_magic(tsk); 914 clear_syscall_work_syscall_user_dispatch(tsk); 915 916 #ifdef CONFIG_STACKPROTECTOR 917 tsk->stack_canary = get_random_canary(); 918 #endif 919 if (orig->cpus_ptr == &orig->cpus_mask) 920 tsk->cpus_ptr = &tsk->cpus_mask; 921 922 /* 923 * One for the user space visible state that goes away when reaped. 924 * One for the scheduler. 925 */ 926 refcount_set(&tsk->rcu_users, 2); 927 /* One for the rcu users */ 928 refcount_set(&tsk->usage, 1); 929 #ifdef CONFIG_BLK_DEV_IO_TRACE 930 tsk->btrace_seq = 0; 931 #endif 932 tsk->splice_pipe = NULL; 933 tsk->task_frag.page = NULL; 934 tsk->wake_q.next = NULL; 935 tsk->pf_io_worker = NULL; 936 937 account_kernel_stack(tsk, 1); 938 939 kcov_task_init(tsk); 940 kmap_local_fork(tsk); 941 942 #ifdef CONFIG_FAULT_INJECTION 943 tsk->fail_nth = 0; 944 #endif 945 946 #ifdef CONFIG_BLK_CGROUP 947 tsk->throttle_queue = NULL; 948 tsk->use_memdelay = 0; 949 #endif 950 951 #ifdef CONFIG_MEMCG 952 tsk->active_memcg = NULL; 953 #endif 954 return tsk; 955 956 free_stack: 957 free_thread_stack(tsk); 958 free_tsk: 959 free_task_struct(tsk); 960 return NULL; 961 } 962 963 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 964 965 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 966 967 static int __init coredump_filter_setup(char *s) 968 { 969 default_dump_filter = 970 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 971 MMF_DUMP_FILTER_MASK; 972 return 1; 973 } 974 975 __setup("coredump_filter=", coredump_filter_setup); 976 977 #include <linux/init_task.h> 978 979 static void mm_init_aio(struct mm_struct *mm) 980 { 981 #ifdef CONFIG_AIO 982 spin_lock_init(&mm->ioctx_lock); 983 mm->ioctx_table = NULL; 984 #endif 985 } 986 987 static __always_inline void mm_clear_owner(struct mm_struct *mm, 988 struct task_struct *p) 989 { 990 #ifdef CONFIG_MEMCG 991 if (mm->owner == p) 992 WRITE_ONCE(mm->owner, NULL); 993 #endif 994 } 995 996 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 997 { 998 #ifdef CONFIG_MEMCG 999 mm->owner = p; 1000 #endif 1001 } 1002 1003 static void mm_init_pasid(struct mm_struct *mm) 1004 { 1005 #ifdef CONFIG_IOMMU_SUPPORT 1006 mm->pasid = INIT_PASID; 1007 #endif 1008 } 1009 1010 static void mm_init_uprobes_state(struct mm_struct *mm) 1011 { 1012 #ifdef CONFIG_UPROBES 1013 mm->uprobes_state.xol_area = NULL; 1014 #endif 1015 } 1016 1017 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1018 struct user_namespace *user_ns) 1019 { 1020 mm->mmap = NULL; 1021 mm->mm_rb = RB_ROOT; 1022 mm->vmacache_seqnum = 0; 1023 atomic_set(&mm->mm_users, 1); 1024 atomic_set(&mm->mm_count, 1); 1025 seqcount_init(&mm->write_protect_seq); 1026 mmap_init_lock(mm); 1027 INIT_LIST_HEAD(&mm->mmlist); 1028 mm->core_state = NULL; 1029 mm_pgtables_bytes_init(mm); 1030 mm->map_count = 0; 1031 mm->locked_vm = 0; 1032 atomic_set(&mm->has_pinned, 0); 1033 atomic64_set(&mm->pinned_vm, 0); 1034 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1035 spin_lock_init(&mm->page_table_lock); 1036 spin_lock_init(&mm->arg_lock); 1037 mm_init_cpumask(mm); 1038 mm_init_aio(mm); 1039 mm_init_owner(mm, p); 1040 mm_init_pasid(mm); 1041 RCU_INIT_POINTER(mm->exe_file, NULL); 1042 mmu_notifier_subscriptions_init(mm); 1043 init_tlb_flush_pending(mm); 1044 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1045 mm->pmd_huge_pte = NULL; 1046 #endif 1047 mm_init_uprobes_state(mm); 1048 1049 if (current->mm) { 1050 mm->flags = current->mm->flags & MMF_INIT_MASK; 1051 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1052 } else { 1053 mm->flags = default_dump_filter; 1054 mm->def_flags = 0; 1055 } 1056 1057 if (mm_alloc_pgd(mm)) 1058 goto fail_nopgd; 1059 1060 if (init_new_context(p, mm)) 1061 goto fail_nocontext; 1062 1063 mm->user_ns = get_user_ns(user_ns); 1064 return mm; 1065 1066 fail_nocontext: 1067 mm_free_pgd(mm); 1068 fail_nopgd: 1069 free_mm(mm); 1070 return NULL; 1071 } 1072 1073 /* 1074 * Allocate and initialize an mm_struct. 1075 */ 1076 struct mm_struct *mm_alloc(void) 1077 { 1078 struct mm_struct *mm; 1079 1080 mm = allocate_mm(); 1081 if (!mm) 1082 return NULL; 1083 1084 memset(mm, 0, sizeof(*mm)); 1085 return mm_init(mm, current, current_user_ns()); 1086 } 1087 1088 static inline void __mmput(struct mm_struct *mm) 1089 { 1090 VM_BUG_ON(atomic_read(&mm->mm_users)); 1091 1092 uprobe_clear_state(mm); 1093 exit_aio(mm); 1094 ksm_exit(mm); 1095 khugepaged_exit(mm); /* must run before exit_mmap */ 1096 exit_mmap(mm); 1097 mm_put_huge_zero_page(mm); 1098 set_mm_exe_file(mm, NULL); 1099 if (!list_empty(&mm->mmlist)) { 1100 spin_lock(&mmlist_lock); 1101 list_del(&mm->mmlist); 1102 spin_unlock(&mmlist_lock); 1103 } 1104 if (mm->binfmt) 1105 module_put(mm->binfmt->module); 1106 mmdrop(mm); 1107 } 1108 1109 /* 1110 * Decrement the use count and release all resources for an mm. 1111 */ 1112 void mmput(struct mm_struct *mm) 1113 { 1114 might_sleep(); 1115 1116 if (atomic_dec_and_test(&mm->mm_users)) 1117 __mmput(mm); 1118 } 1119 EXPORT_SYMBOL_GPL(mmput); 1120 1121 #ifdef CONFIG_MMU 1122 static void mmput_async_fn(struct work_struct *work) 1123 { 1124 struct mm_struct *mm = container_of(work, struct mm_struct, 1125 async_put_work); 1126 1127 __mmput(mm); 1128 } 1129 1130 void mmput_async(struct mm_struct *mm) 1131 { 1132 if (atomic_dec_and_test(&mm->mm_users)) { 1133 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1134 schedule_work(&mm->async_put_work); 1135 } 1136 } 1137 #endif 1138 1139 /** 1140 * set_mm_exe_file - change a reference to the mm's executable file 1141 * 1142 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1143 * 1144 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1145 * invocations: in mmput() nobody alive left, in execve task is single 1146 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1147 * mm->exe_file, but does so without using set_mm_exe_file() in order 1148 * to do avoid the need for any locks. 1149 */ 1150 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1151 { 1152 struct file *old_exe_file; 1153 1154 /* 1155 * It is safe to dereference the exe_file without RCU as 1156 * this function is only called if nobody else can access 1157 * this mm -- see comment above for justification. 1158 */ 1159 old_exe_file = rcu_dereference_raw(mm->exe_file); 1160 1161 if (new_exe_file) 1162 get_file(new_exe_file); 1163 rcu_assign_pointer(mm->exe_file, new_exe_file); 1164 if (old_exe_file) 1165 fput(old_exe_file); 1166 } 1167 1168 /** 1169 * get_mm_exe_file - acquire a reference to the mm's executable file 1170 * 1171 * Returns %NULL if mm has no associated executable file. 1172 * User must release file via fput(). 1173 */ 1174 struct file *get_mm_exe_file(struct mm_struct *mm) 1175 { 1176 struct file *exe_file; 1177 1178 rcu_read_lock(); 1179 exe_file = rcu_dereference(mm->exe_file); 1180 if (exe_file && !get_file_rcu(exe_file)) 1181 exe_file = NULL; 1182 rcu_read_unlock(); 1183 return exe_file; 1184 } 1185 EXPORT_SYMBOL(get_mm_exe_file); 1186 1187 /** 1188 * get_task_exe_file - acquire a reference to the task's executable file 1189 * 1190 * Returns %NULL if task's mm (if any) has no associated executable file or 1191 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1192 * User must release file via fput(). 1193 */ 1194 struct file *get_task_exe_file(struct task_struct *task) 1195 { 1196 struct file *exe_file = NULL; 1197 struct mm_struct *mm; 1198 1199 task_lock(task); 1200 mm = task->mm; 1201 if (mm) { 1202 if (!(task->flags & PF_KTHREAD)) 1203 exe_file = get_mm_exe_file(mm); 1204 } 1205 task_unlock(task); 1206 return exe_file; 1207 } 1208 EXPORT_SYMBOL(get_task_exe_file); 1209 1210 /** 1211 * get_task_mm - acquire a reference to the task's mm 1212 * 1213 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1214 * this kernel workthread has transiently adopted a user mm with use_mm, 1215 * to do its AIO) is not set and if so returns a reference to it, after 1216 * bumping up the use count. User must release the mm via mmput() 1217 * after use. Typically used by /proc and ptrace. 1218 */ 1219 struct mm_struct *get_task_mm(struct task_struct *task) 1220 { 1221 struct mm_struct *mm; 1222 1223 task_lock(task); 1224 mm = task->mm; 1225 if (mm) { 1226 if (task->flags & PF_KTHREAD) 1227 mm = NULL; 1228 else 1229 mmget(mm); 1230 } 1231 task_unlock(task); 1232 return mm; 1233 } 1234 EXPORT_SYMBOL_GPL(get_task_mm); 1235 1236 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1237 { 1238 struct mm_struct *mm; 1239 int err; 1240 1241 err = down_read_killable(&task->signal->exec_update_lock); 1242 if (err) 1243 return ERR_PTR(err); 1244 1245 mm = get_task_mm(task); 1246 if (mm && mm != current->mm && 1247 !ptrace_may_access(task, mode)) { 1248 mmput(mm); 1249 mm = ERR_PTR(-EACCES); 1250 } 1251 up_read(&task->signal->exec_update_lock); 1252 1253 return mm; 1254 } 1255 1256 static void complete_vfork_done(struct task_struct *tsk) 1257 { 1258 struct completion *vfork; 1259 1260 task_lock(tsk); 1261 vfork = tsk->vfork_done; 1262 if (likely(vfork)) { 1263 tsk->vfork_done = NULL; 1264 complete(vfork); 1265 } 1266 task_unlock(tsk); 1267 } 1268 1269 static int wait_for_vfork_done(struct task_struct *child, 1270 struct completion *vfork) 1271 { 1272 int killed; 1273 1274 freezer_do_not_count(); 1275 cgroup_enter_frozen(); 1276 killed = wait_for_completion_killable(vfork); 1277 cgroup_leave_frozen(false); 1278 freezer_count(); 1279 1280 if (killed) { 1281 task_lock(child); 1282 child->vfork_done = NULL; 1283 task_unlock(child); 1284 } 1285 1286 put_task_struct(child); 1287 return killed; 1288 } 1289 1290 /* Please note the differences between mmput and mm_release. 1291 * mmput is called whenever we stop holding onto a mm_struct, 1292 * error success whatever. 1293 * 1294 * mm_release is called after a mm_struct has been removed 1295 * from the current process. 1296 * 1297 * This difference is important for error handling, when we 1298 * only half set up a mm_struct for a new process and need to restore 1299 * the old one. Because we mmput the new mm_struct before 1300 * restoring the old one. . . 1301 * Eric Biederman 10 January 1998 1302 */ 1303 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1304 { 1305 uprobe_free_utask(tsk); 1306 1307 /* Get rid of any cached register state */ 1308 deactivate_mm(tsk, mm); 1309 1310 /* 1311 * Signal userspace if we're not exiting with a core dump 1312 * because we want to leave the value intact for debugging 1313 * purposes. 1314 */ 1315 if (tsk->clear_child_tid) { 1316 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1317 atomic_read(&mm->mm_users) > 1) { 1318 /* 1319 * We don't check the error code - if userspace has 1320 * not set up a proper pointer then tough luck. 1321 */ 1322 put_user(0, tsk->clear_child_tid); 1323 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1324 1, NULL, NULL, 0, 0); 1325 } 1326 tsk->clear_child_tid = NULL; 1327 } 1328 1329 /* 1330 * All done, finally we can wake up parent and return this mm to him. 1331 * Also kthread_stop() uses this completion for synchronization. 1332 */ 1333 if (tsk->vfork_done) 1334 complete_vfork_done(tsk); 1335 } 1336 1337 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1338 { 1339 futex_exit_release(tsk); 1340 mm_release(tsk, mm); 1341 } 1342 1343 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1344 { 1345 futex_exec_release(tsk); 1346 mm_release(tsk, mm); 1347 } 1348 1349 /** 1350 * dup_mm() - duplicates an existing mm structure 1351 * @tsk: the task_struct with which the new mm will be associated. 1352 * @oldmm: the mm to duplicate. 1353 * 1354 * Allocates a new mm structure and duplicates the provided @oldmm structure 1355 * content into it. 1356 * 1357 * Return: the duplicated mm or NULL on failure. 1358 */ 1359 static struct mm_struct *dup_mm(struct task_struct *tsk, 1360 struct mm_struct *oldmm) 1361 { 1362 struct mm_struct *mm; 1363 int err; 1364 1365 mm = allocate_mm(); 1366 if (!mm) 1367 goto fail_nomem; 1368 1369 memcpy(mm, oldmm, sizeof(*mm)); 1370 1371 if (!mm_init(mm, tsk, mm->user_ns)) 1372 goto fail_nomem; 1373 1374 err = dup_mmap(mm, oldmm); 1375 if (err) 1376 goto free_pt; 1377 1378 mm->hiwater_rss = get_mm_rss(mm); 1379 mm->hiwater_vm = mm->total_vm; 1380 1381 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1382 goto free_pt; 1383 1384 return mm; 1385 1386 free_pt: 1387 /* don't put binfmt in mmput, we haven't got module yet */ 1388 mm->binfmt = NULL; 1389 mm_init_owner(mm, NULL); 1390 mmput(mm); 1391 1392 fail_nomem: 1393 return NULL; 1394 } 1395 1396 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1397 { 1398 struct mm_struct *mm, *oldmm; 1399 int retval; 1400 1401 tsk->min_flt = tsk->maj_flt = 0; 1402 tsk->nvcsw = tsk->nivcsw = 0; 1403 #ifdef CONFIG_DETECT_HUNG_TASK 1404 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1405 tsk->last_switch_time = 0; 1406 #endif 1407 1408 tsk->mm = NULL; 1409 tsk->active_mm = NULL; 1410 1411 /* 1412 * Are we cloning a kernel thread? 1413 * 1414 * We need to steal a active VM for that.. 1415 */ 1416 oldmm = current->mm; 1417 if (!oldmm) 1418 return 0; 1419 1420 /* initialize the new vmacache entries */ 1421 vmacache_flush(tsk); 1422 1423 if (clone_flags & CLONE_VM) { 1424 mmget(oldmm); 1425 mm = oldmm; 1426 goto good_mm; 1427 } 1428 1429 retval = -ENOMEM; 1430 mm = dup_mm(tsk, current->mm); 1431 if (!mm) 1432 goto fail_nomem; 1433 1434 good_mm: 1435 tsk->mm = mm; 1436 tsk->active_mm = mm; 1437 return 0; 1438 1439 fail_nomem: 1440 return retval; 1441 } 1442 1443 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1444 { 1445 struct fs_struct *fs = current->fs; 1446 if (clone_flags & CLONE_FS) { 1447 /* tsk->fs is already what we want */ 1448 spin_lock(&fs->lock); 1449 if (fs->in_exec) { 1450 spin_unlock(&fs->lock); 1451 return -EAGAIN; 1452 } 1453 fs->users++; 1454 spin_unlock(&fs->lock); 1455 return 0; 1456 } 1457 tsk->fs = copy_fs_struct(fs); 1458 if (!tsk->fs) 1459 return -ENOMEM; 1460 return 0; 1461 } 1462 1463 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1464 { 1465 struct files_struct *oldf, *newf; 1466 int error = 0; 1467 1468 /* 1469 * A background process may not have any files ... 1470 */ 1471 oldf = current->files; 1472 if (!oldf) 1473 goto out; 1474 1475 if (clone_flags & CLONE_FILES) { 1476 atomic_inc(&oldf->count); 1477 goto out; 1478 } 1479 1480 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1481 if (!newf) 1482 goto out; 1483 1484 tsk->files = newf; 1485 error = 0; 1486 out: 1487 return error; 1488 } 1489 1490 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1491 { 1492 #ifdef CONFIG_BLOCK 1493 struct io_context *ioc = current->io_context; 1494 struct io_context *new_ioc; 1495 1496 if (!ioc) 1497 return 0; 1498 /* 1499 * Share io context with parent, if CLONE_IO is set 1500 */ 1501 if (clone_flags & CLONE_IO) { 1502 ioc_task_link(ioc); 1503 tsk->io_context = ioc; 1504 } else if (ioprio_valid(ioc->ioprio)) { 1505 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1506 if (unlikely(!new_ioc)) 1507 return -ENOMEM; 1508 1509 new_ioc->ioprio = ioc->ioprio; 1510 put_io_context(new_ioc); 1511 } 1512 #endif 1513 return 0; 1514 } 1515 1516 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1517 { 1518 struct sighand_struct *sig; 1519 1520 if (clone_flags & CLONE_SIGHAND) { 1521 refcount_inc(¤t->sighand->count); 1522 return 0; 1523 } 1524 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1525 RCU_INIT_POINTER(tsk->sighand, sig); 1526 if (!sig) 1527 return -ENOMEM; 1528 1529 refcount_set(&sig->count, 1); 1530 spin_lock_irq(¤t->sighand->siglock); 1531 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1532 spin_unlock_irq(¤t->sighand->siglock); 1533 1534 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1535 if (clone_flags & CLONE_CLEAR_SIGHAND) 1536 flush_signal_handlers(tsk, 0); 1537 1538 return 0; 1539 } 1540 1541 void __cleanup_sighand(struct sighand_struct *sighand) 1542 { 1543 if (refcount_dec_and_test(&sighand->count)) { 1544 signalfd_cleanup(sighand); 1545 /* 1546 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1547 * without an RCU grace period, see __lock_task_sighand(). 1548 */ 1549 kmem_cache_free(sighand_cachep, sighand); 1550 } 1551 } 1552 1553 /* 1554 * Initialize POSIX timer handling for a thread group. 1555 */ 1556 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1557 { 1558 struct posix_cputimers *pct = &sig->posix_cputimers; 1559 unsigned long cpu_limit; 1560 1561 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1562 posix_cputimers_group_init(pct, cpu_limit); 1563 } 1564 1565 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1566 { 1567 struct signal_struct *sig; 1568 1569 if (clone_flags & CLONE_THREAD) 1570 return 0; 1571 1572 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1573 tsk->signal = sig; 1574 if (!sig) 1575 return -ENOMEM; 1576 1577 sig->nr_threads = 1; 1578 atomic_set(&sig->live, 1); 1579 refcount_set(&sig->sigcnt, 1); 1580 1581 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1582 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1583 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1584 1585 init_waitqueue_head(&sig->wait_chldexit); 1586 sig->curr_target = tsk; 1587 init_sigpending(&sig->shared_pending); 1588 INIT_HLIST_HEAD(&sig->multiprocess); 1589 seqlock_init(&sig->stats_lock); 1590 prev_cputime_init(&sig->prev_cputime); 1591 1592 #ifdef CONFIG_POSIX_TIMERS 1593 INIT_LIST_HEAD(&sig->posix_timers); 1594 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1595 sig->real_timer.function = it_real_fn; 1596 #endif 1597 1598 task_lock(current->group_leader); 1599 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1600 task_unlock(current->group_leader); 1601 1602 posix_cpu_timers_init_group(sig); 1603 1604 tty_audit_fork(sig); 1605 sched_autogroup_fork(sig); 1606 1607 sig->oom_score_adj = current->signal->oom_score_adj; 1608 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1609 1610 mutex_init(&sig->cred_guard_mutex); 1611 init_rwsem(&sig->exec_update_lock); 1612 1613 return 0; 1614 } 1615 1616 static void copy_seccomp(struct task_struct *p) 1617 { 1618 #ifdef CONFIG_SECCOMP 1619 /* 1620 * Must be called with sighand->lock held, which is common to 1621 * all threads in the group. Holding cred_guard_mutex is not 1622 * needed because this new task is not yet running and cannot 1623 * be racing exec. 1624 */ 1625 assert_spin_locked(¤t->sighand->siglock); 1626 1627 /* Ref-count the new filter user, and assign it. */ 1628 get_seccomp_filter(current); 1629 p->seccomp = current->seccomp; 1630 1631 /* 1632 * Explicitly enable no_new_privs here in case it got set 1633 * between the task_struct being duplicated and holding the 1634 * sighand lock. The seccomp state and nnp must be in sync. 1635 */ 1636 if (task_no_new_privs(current)) 1637 task_set_no_new_privs(p); 1638 1639 /* 1640 * If the parent gained a seccomp mode after copying thread 1641 * flags and between before we held the sighand lock, we have 1642 * to manually enable the seccomp thread flag here. 1643 */ 1644 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1645 set_task_syscall_work(p, SECCOMP); 1646 #endif 1647 } 1648 1649 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1650 { 1651 current->clear_child_tid = tidptr; 1652 1653 return task_pid_vnr(current); 1654 } 1655 1656 static void rt_mutex_init_task(struct task_struct *p) 1657 { 1658 raw_spin_lock_init(&p->pi_lock); 1659 #ifdef CONFIG_RT_MUTEXES 1660 p->pi_waiters = RB_ROOT_CACHED; 1661 p->pi_top_task = NULL; 1662 p->pi_blocked_on = NULL; 1663 #endif 1664 } 1665 1666 static inline void init_task_pid_links(struct task_struct *task) 1667 { 1668 enum pid_type type; 1669 1670 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1671 INIT_HLIST_NODE(&task->pid_links[type]); 1672 } 1673 1674 static inline void 1675 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1676 { 1677 if (type == PIDTYPE_PID) 1678 task->thread_pid = pid; 1679 else 1680 task->signal->pids[type] = pid; 1681 } 1682 1683 static inline void rcu_copy_process(struct task_struct *p) 1684 { 1685 #ifdef CONFIG_PREEMPT_RCU 1686 p->rcu_read_lock_nesting = 0; 1687 p->rcu_read_unlock_special.s = 0; 1688 p->rcu_blocked_node = NULL; 1689 INIT_LIST_HEAD(&p->rcu_node_entry); 1690 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1691 #ifdef CONFIG_TASKS_RCU 1692 p->rcu_tasks_holdout = false; 1693 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1694 p->rcu_tasks_idle_cpu = -1; 1695 #endif /* #ifdef CONFIG_TASKS_RCU */ 1696 #ifdef CONFIG_TASKS_TRACE_RCU 1697 p->trc_reader_nesting = 0; 1698 p->trc_reader_special.s = 0; 1699 INIT_LIST_HEAD(&p->trc_holdout_list); 1700 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1701 } 1702 1703 struct pid *pidfd_pid(const struct file *file) 1704 { 1705 if (file->f_op == &pidfd_fops) 1706 return file->private_data; 1707 1708 return ERR_PTR(-EBADF); 1709 } 1710 1711 static int pidfd_release(struct inode *inode, struct file *file) 1712 { 1713 struct pid *pid = file->private_data; 1714 1715 file->private_data = NULL; 1716 put_pid(pid); 1717 return 0; 1718 } 1719 1720 #ifdef CONFIG_PROC_FS 1721 /** 1722 * pidfd_show_fdinfo - print information about a pidfd 1723 * @m: proc fdinfo file 1724 * @f: file referencing a pidfd 1725 * 1726 * Pid: 1727 * This function will print the pid that a given pidfd refers to in the 1728 * pid namespace of the procfs instance. 1729 * If the pid namespace of the process is not a descendant of the pid 1730 * namespace of the procfs instance 0 will be shown as its pid. This is 1731 * similar to calling getppid() on a process whose parent is outside of 1732 * its pid namespace. 1733 * 1734 * NSpid: 1735 * If pid namespaces are supported then this function will also print 1736 * the pid of a given pidfd refers to for all descendant pid namespaces 1737 * starting from the current pid namespace of the instance, i.e. the 1738 * Pid field and the first entry in the NSpid field will be identical. 1739 * If the pid namespace of the process is not a descendant of the pid 1740 * namespace of the procfs instance 0 will be shown as its first NSpid 1741 * entry and no others will be shown. 1742 * Note that this differs from the Pid and NSpid fields in 1743 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1744 * the pid namespace of the procfs instance. The difference becomes 1745 * obvious when sending around a pidfd between pid namespaces from a 1746 * different branch of the tree, i.e. where no ancestoral relation is 1747 * present between the pid namespaces: 1748 * - create two new pid namespaces ns1 and ns2 in the initial pid 1749 * namespace (also take care to create new mount namespaces in the 1750 * new pid namespace and mount procfs) 1751 * - create a process with a pidfd in ns1 1752 * - send pidfd from ns1 to ns2 1753 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1754 * have exactly one entry, which is 0 1755 */ 1756 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1757 { 1758 struct pid *pid = f->private_data; 1759 struct pid_namespace *ns; 1760 pid_t nr = -1; 1761 1762 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1763 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1764 nr = pid_nr_ns(pid, ns); 1765 } 1766 1767 seq_put_decimal_ll(m, "Pid:\t", nr); 1768 1769 #ifdef CONFIG_PID_NS 1770 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1771 if (nr > 0) { 1772 int i; 1773 1774 /* If nr is non-zero it means that 'pid' is valid and that 1775 * ns, i.e. the pid namespace associated with the procfs 1776 * instance, is in the pid namespace hierarchy of pid. 1777 * Start at one below the already printed level. 1778 */ 1779 for (i = ns->level + 1; i <= pid->level; i++) 1780 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1781 } 1782 #endif 1783 seq_putc(m, '\n'); 1784 } 1785 #endif 1786 1787 /* 1788 * Poll support for process exit notification. 1789 */ 1790 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1791 { 1792 struct pid *pid = file->private_data; 1793 __poll_t poll_flags = 0; 1794 1795 poll_wait(file, &pid->wait_pidfd, pts); 1796 1797 /* 1798 * Inform pollers only when the whole thread group exits. 1799 * If the thread group leader exits before all other threads in the 1800 * group, then poll(2) should block, similar to the wait(2) family. 1801 */ 1802 if (thread_group_exited(pid)) 1803 poll_flags = EPOLLIN | EPOLLRDNORM; 1804 1805 return poll_flags; 1806 } 1807 1808 const struct file_operations pidfd_fops = { 1809 .release = pidfd_release, 1810 .poll = pidfd_poll, 1811 #ifdef CONFIG_PROC_FS 1812 .show_fdinfo = pidfd_show_fdinfo, 1813 #endif 1814 }; 1815 1816 static void __delayed_free_task(struct rcu_head *rhp) 1817 { 1818 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1819 1820 free_task(tsk); 1821 } 1822 1823 static __always_inline void delayed_free_task(struct task_struct *tsk) 1824 { 1825 if (IS_ENABLED(CONFIG_MEMCG)) 1826 call_rcu(&tsk->rcu, __delayed_free_task); 1827 else 1828 free_task(tsk); 1829 } 1830 1831 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1832 { 1833 /* Skip if kernel thread */ 1834 if (!tsk->mm) 1835 return; 1836 1837 /* Skip if spawning a thread or using vfork */ 1838 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1839 return; 1840 1841 /* We need to synchronize with __set_oom_adj */ 1842 mutex_lock(&oom_adj_mutex); 1843 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1844 /* Update the values in case they were changed after copy_signal */ 1845 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1846 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1847 mutex_unlock(&oom_adj_mutex); 1848 } 1849 1850 /* 1851 * This creates a new process as a copy of the old one, 1852 * but does not actually start it yet. 1853 * 1854 * It copies the registers, and all the appropriate 1855 * parts of the process environment (as per the clone 1856 * flags). The actual kick-off is left to the caller. 1857 */ 1858 static __latent_entropy struct task_struct *copy_process( 1859 struct pid *pid, 1860 int trace, 1861 int node, 1862 struct kernel_clone_args *args) 1863 { 1864 int pidfd = -1, retval; 1865 struct task_struct *p; 1866 struct multiprocess_signals delayed; 1867 struct file *pidfile = NULL; 1868 u64 clone_flags = args->flags; 1869 struct nsproxy *nsp = current->nsproxy; 1870 1871 /* 1872 * Don't allow sharing the root directory with processes in a different 1873 * namespace 1874 */ 1875 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1876 return ERR_PTR(-EINVAL); 1877 1878 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1879 return ERR_PTR(-EINVAL); 1880 1881 /* 1882 * Thread groups must share signals as well, and detached threads 1883 * can only be started up within the thread group. 1884 */ 1885 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1886 return ERR_PTR(-EINVAL); 1887 1888 /* 1889 * Shared signal handlers imply shared VM. By way of the above, 1890 * thread groups also imply shared VM. Blocking this case allows 1891 * for various simplifications in other code. 1892 */ 1893 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1894 return ERR_PTR(-EINVAL); 1895 1896 /* 1897 * Siblings of global init remain as zombies on exit since they are 1898 * not reaped by their parent (swapper). To solve this and to avoid 1899 * multi-rooted process trees, prevent global and container-inits 1900 * from creating siblings. 1901 */ 1902 if ((clone_flags & CLONE_PARENT) && 1903 current->signal->flags & SIGNAL_UNKILLABLE) 1904 return ERR_PTR(-EINVAL); 1905 1906 /* 1907 * If the new process will be in a different pid or user namespace 1908 * do not allow it to share a thread group with the forking task. 1909 */ 1910 if (clone_flags & CLONE_THREAD) { 1911 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1912 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1913 return ERR_PTR(-EINVAL); 1914 } 1915 1916 /* 1917 * If the new process will be in a different time namespace 1918 * do not allow it to share VM or a thread group with the forking task. 1919 */ 1920 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1921 if (nsp->time_ns != nsp->time_ns_for_children) 1922 return ERR_PTR(-EINVAL); 1923 } 1924 1925 if (clone_flags & CLONE_PIDFD) { 1926 /* 1927 * - CLONE_DETACHED is blocked so that we can potentially 1928 * reuse it later for CLONE_PIDFD. 1929 * - CLONE_THREAD is blocked until someone really needs it. 1930 */ 1931 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1932 return ERR_PTR(-EINVAL); 1933 } 1934 1935 /* 1936 * Force any signals received before this point to be delivered 1937 * before the fork happens. Collect up signals sent to multiple 1938 * processes that happen during the fork and delay them so that 1939 * they appear to happen after the fork. 1940 */ 1941 sigemptyset(&delayed.signal); 1942 INIT_HLIST_NODE(&delayed.node); 1943 1944 spin_lock_irq(¤t->sighand->siglock); 1945 if (!(clone_flags & CLONE_THREAD)) 1946 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1947 recalc_sigpending(); 1948 spin_unlock_irq(¤t->sighand->siglock); 1949 retval = -ERESTARTNOINTR; 1950 if (task_sigpending(current)) 1951 goto fork_out; 1952 1953 retval = -ENOMEM; 1954 p = dup_task_struct(current, node); 1955 if (!p) 1956 goto fork_out; 1957 if (args->io_thread) { 1958 /* 1959 * Mark us an IO worker, and block any signal that isn't 1960 * fatal or STOP 1961 */ 1962 p->flags |= PF_IO_WORKER; 1963 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1964 } 1965 1966 /* 1967 * This _must_ happen before we call free_task(), i.e. before we jump 1968 * to any of the bad_fork_* labels. This is to avoid freeing 1969 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1970 * kernel threads (PF_KTHREAD). 1971 */ 1972 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1973 /* 1974 * Clear TID on mm_release()? 1975 */ 1976 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1977 1978 ftrace_graph_init_task(p); 1979 1980 rt_mutex_init_task(p); 1981 1982 lockdep_assert_irqs_enabled(); 1983 #ifdef CONFIG_PROVE_LOCKING 1984 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1985 #endif 1986 retval = -EAGAIN; 1987 if (atomic_read(&p->real_cred->user->processes) >= 1988 task_rlimit(p, RLIMIT_NPROC)) { 1989 if (p->real_cred->user != INIT_USER && 1990 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1991 goto bad_fork_free; 1992 } 1993 current->flags &= ~PF_NPROC_EXCEEDED; 1994 1995 retval = copy_creds(p, clone_flags); 1996 if (retval < 0) 1997 goto bad_fork_free; 1998 1999 /* 2000 * If multiple threads are within copy_process(), then this check 2001 * triggers too late. This doesn't hurt, the check is only there 2002 * to stop root fork bombs. 2003 */ 2004 retval = -EAGAIN; 2005 if (data_race(nr_threads >= max_threads)) 2006 goto bad_fork_cleanup_count; 2007 2008 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2009 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 2010 p->flags |= PF_FORKNOEXEC; 2011 INIT_LIST_HEAD(&p->children); 2012 INIT_LIST_HEAD(&p->sibling); 2013 rcu_copy_process(p); 2014 p->vfork_done = NULL; 2015 spin_lock_init(&p->alloc_lock); 2016 2017 init_sigpending(&p->pending); 2018 p->sigqueue_cache = NULL; 2019 2020 p->utime = p->stime = p->gtime = 0; 2021 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2022 p->utimescaled = p->stimescaled = 0; 2023 #endif 2024 prev_cputime_init(&p->prev_cputime); 2025 2026 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2027 seqcount_init(&p->vtime.seqcount); 2028 p->vtime.starttime = 0; 2029 p->vtime.state = VTIME_INACTIVE; 2030 #endif 2031 2032 #ifdef CONFIG_IO_URING 2033 p->io_uring = NULL; 2034 #endif 2035 2036 #if defined(SPLIT_RSS_COUNTING) 2037 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2038 #endif 2039 2040 p->default_timer_slack_ns = current->timer_slack_ns; 2041 2042 #ifdef CONFIG_PSI 2043 p->psi_flags = 0; 2044 #endif 2045 2046 task_io_accounting_init(&p->ioac); 2047 acct_clear_integrals(p); 2048 2049 posix_cputimers_init(&p->posix_cputimers); 2050 2051 p->io_context = NULL; 2052 audit_set_context(p, NULL); 2053 cgroup_fork(p); 2054 #ifdef CONFIG_NUMA 2055 p->mempolicy = mpol_dup(p->mempolicy); 2056 if (IS_ERR(p->mempolicy)) { 2057 retval = PTR_ERR(p->mempolicy); 2058 p->mempolicy = NULL; 2059 goto bad_fork_cleanup_threadgroup_lock; 2060 } 2061 #endif 2062 #ifdef CONFIG_CPUSETS 2063 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2064 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2065 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2066 #endif 2067 #ifdef CONFIG_TRACE_IRQFLAGS 2068 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2069 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2070 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2071 p->softirqs_enabled = 1; 2072 p->softirq_context = 0; 2073 #endif 2074 2075 p->pagefault_disabled = 0; 2076 2077 #ifdef CONFIG_LOCKDEP 2078 lockdep_init_task(p); 2079 #endif 2080 2081 #ifdef CONFIG_DEBUG_MUTEXES 2082 p->blocked_on = NULL; /* not blocked yet */ 2083 #endif 2084 #ifdef CONFIG_BCACHE 2085 p->sequential_io = 0; 2086 p->sequential_io_avg = 0; 2087 #endif 2088 #ifdef CONFIG_BPF_SYSCALL 2089 RCU_INIT_POINTER(p->bpf_storage, NULL); 2090 #endif 2091 2092 /* Perform scheduler related setup. Assign this task to a CPU. */ 2093 retval = sched_fork(clone_flags, p); 2094 if (retval) 2095 goto bad_fork_cleanup_policy; 2096 2097 retval = perf_event_init_task(p, clone_flags); 2098 if (retval) 2099 goto bad_fork_cleanup_policy; 2100 retval = audit_alloc(p); 2101 if (retval) 2102 goto bad_fork_cleanup_perf; 2103 /* copy all the process information */ 2104 shm_init_task(p); 2105 retval = security_task_alloc(p, clone_flags); 2106 if (retval) 2107 goto bad_fork_cleanup_audit; 2108 retval = copy_semundo(clone_flags, p); 2109 if (retval) 2110 goto bad_fork_cleanup_security; 2111 retval = copy_files(clone_flags, p); 2112 if (retval) 2113 goto bad_fork_cleanup_semundo; 2114 retval = copy_fs(clone_flags, p); 2115 if (retval) 2116 goto bad_fork_cleanup_files; 2117 retval = copy_sighand(clone_flags, p); 2118 if (retval) 2119 goto bad_fork_cleanup_fs; 2120 retval = copy_signal(clone_flags, p); 2121 if (retval) 2122 goto bad_fork_cleanup_sighand; 2123 retval = copy_mm(clone_flags, p); 2124 if (retval) 2125 goto bad_fork_cleanup_signal; 2126 retval = copy_namespaces(clone_flags, p); 2127 if (retval) 2128 goto bad_fork_cleanup_mm; 2129 retval = copy_io(clone_flags, p); 2130 if (retval) 2131 goto bad_fork_cleanup_namespaces; 2132 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2133 if (retval) 2134 goto bad_fork_cleanup_io; 2135 2136 stackleak_task_init(p); 2137 2138 if (pid != &init_struct_pid) { 2139 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2140 args->set_tid_size); 2141 if (IS_ERR(pid)) { 2142 retval = PTR_ERR(pid); 2143 goto bad_fork_cleanup_thread; 2144 } 2145 } 2146 2147 /* 2148 * This has to happen after we've potentially unshared the file 2149 * descriptor table (so that the pidfd doesn't leak into the child 2150 * if the fd table isn't shared). 2151 */ 2152 if (clone_flags & CLONE_PIDFD) { 2153 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2154 if (retval < 0) 2155 goto bad_fork_free_pid; 2156 2157 pidfd = retval; 2158 2159 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2160 O_RDWR | O_CLOEXEC); 2161 if (IS_ERR(pidfile)) { 2162 put_unused_fd(pidfd); 2163 retval = PTR_ERR(pidfile); 2164 goto bad_fork_free_pid; 2165 } 2166 get_pid(pid); /* held by pidfile now */ 2167 2168 retval = put_user(pidfd, args->pidfd); 2169 if (retval) 2170 goto bad_fork_put_pidfd; 2171 } 2172 2173 #ifdef CONFIG_BLOCK 2174 p->plug = NULL; 2175 #endif 2176 futex_init_task(p); 2177 2178 /* 2179 * sigaltstack should be cleared when sharing the same VM 2180 */ 2181 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2182 sas_ss_reset(p); 2183 2184 /* 2185 * Syscall tracing and stepping should be turned off in the 2186 * child regardless of CLONE_PTRACE. 2187 */ 2188 user_disable_single_step(p); 2189 clear_task_syscall_work(p, SYSCALL_TRACE); 2190 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2191 clear_task_syscall_work(p, SYSCALL_EMU); 2192 #endif 2193 clear_tsk_latency_tracing(p); 2194 2195 /* ok, now we should be set up.. */ 2196 p->pid = pid_nr(pid); 2197 if (clone_flags & CLONE_THREAD) { 2198 p->group_leader = current->group_leader; 2199 p->tgid = current->tgid; 2200 } else { 2201 p->group_leader = p; 2202 p->tgid = p->pid; 2203 } 2204 2205 p->nr_dirtied = 0; 2206 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2207 p->dirty_paused_when = 0; 2208 2209 p->pdeath_signal = 0; 2210 INIT_LIST_HEAD(&p->thread_group); 2211 p->task_works = NULL; 2212 2213 #ifdef CONFIG_KRETPROBES 2214 p->kretprobe_instances.first = NULL; 2215 #endif 2216 2217 /* 2218 * Ensure that the cgroup subsystem policies allow the new process to be 2219 * forked. It should be noted that the new process's css_set can be changed 2220 * between here and cgroup_post_fork() if an organisation operation is in 2221 * progress. 2222 */ 2223 retval = cgroup_can_fork(p, args); 2224 if (retval) 2225 goto bad_fork_put_pidfd; 2226 2227 /* 2228 * From this point on we must avoid any synchronous user-space 2229 * communication until we take the tasklist-lock. In particular, we do 2230 * not want user-space to be able to predict the process start-time by 2231 * stalling fork(2) after we recorded the start_time but before it is 2232 * visible to the system. 2233 */ 2234 2235 p->start_time = ktime_get_ns(); 2236 p->start_boottime = ktime_get_boottime_ns(); 2237 2238 /* 2239 * Make it visible to the rest of the system, but dont wake it up yet. 2240 * Need tasklist lock for parent etc handling! 2241 */ 2242 write_lock_irq(&tasklist_lock); 2243 2244 /* CLONE_PARENT re-uses the old parent */ 2245 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2246 p->real_parent = current->real_parent; 2247 p->parent_exec_id = current->parent_exec_id; 2248 if (clone_flags & CLONE_THREAD) 2249 p->exit_signal = -1; 2250 else 2251 p->exit_signal = current->group_leader->exit_signal; 2252 } else { 2253 p->real_parent = current; 2254 p->parent_exec_id = current->self_exec_id; 2255 p->exit_signal = args->exit_signal; 2256 } 2257 2258 klp_copy_process(p); 2259 2260 spin_lock(¤t->sighand->siglock); 2261 2262 /* 2263 * Copy seccomp details explicitly here, in case they were changed 2264 * before holding sighand lock. 2265 */ 2266 copy_seccomp(p); 2267 2268 rseq_fork(p, clone_flags); 2269 2270 /* Don't start children in a dying pid namespace */ 2271 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2272 retval = -ENOMEM; 2273 goto bad_fork_cancel_cgroup; 2274 } 2275 2276 /* Let kill terminate clone/fork in the middle */ 2277 if (fatal_signal_pending(current)) { 2278 retval = -EINTR; 2279 goto bad_fork_cancel_cgroup; 2280 } 2281 2282 /* past the last point of failure */ 2283 if (pidfile) 2284 fd_install(pidfd, pidfile); 2285 2286 init_task_pid_links(p); 2287 if (likely(p->pid)) { 2288 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2289 2290 init_task_pid(p, PIDTYPE_PID, pid); 2291 if (thread_group_leader(p)) { 2292 init_task_pid(p, PIDTYPE_TGID, pid); 2293 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2294 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2295 2296 if (is_child_reaper(pid)) { 2297 ns_of_pid(pid)->child_reaper = p; 2298 p->signal->flags |= SIGNAL_UNKILLABLE; 2299 } 2300 p->signal->shared_pending.signal = delayed.signal; 2301 p->signal->tty = tty_kref_get(current->signal->tty); 2302 /* 2303 * Inherit has_child_subreaper flag under the same 2304 * tasklist_lock with adding child to the process tree 2305 * for propagate_has_child_subreaper optimization. 2306 */ 2307 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2308 p->real_parent->signal->is_child_subreaper; 2309 list_add_tail(&p->sibling, &p->real_parent->children); 2310 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2311 attach_pid(p, PIDTYPE_TGID); 2312 attach_pid(p, PIDTYPE_PGID); 2313 attach_pid(p, PIDTYPE_SID); 2314 __this_cpu_inc(process_counts); 2315 } else { 2316 current->signal->nr_threads++; 2317 atomic_inc(¤t->signal->live); 2318 refcount_inc(¤t->signal->sigcnt); 2319 task_join_group_stop(p); 2320 list_add_tail_rcu(&p->thread_group, 2321 &p->group_leader->thread_group); 2322 list_add_tail_rcu(&p->thread_node, 2323 &p->signal->thread_head); 2324 } 2325 attach_pid(p, PIDTYPE_PID); 2326 nr_threads++; 2327 } 2328 total_forks++; 2329 hlist_del_init(&delayed.node); 2330 spin_unlock(¤t->sighand->siglock); 2331 syscall_tracepoint_update(p); 2332 write_unlock_irq(&tasklist_lock); 2333 2334 proc_fork_connector(p); 2335 sched_post_fork(p); 2336 cgroup_post_fork(p, args); 2337 perf_event_fork(p); 2338 2339 trace_task_newtask(p, clone_flags); 2340 uprobe_copy_process(p, clone_flags); 2341 2342 copy_oom_score_adj(clone_flags, p); 2343 2344 return p; 2345 2346 bad_fork_cancel_cgroup: 2347 spin_unlock(¤t->sighand->siglock); 2348 write_unlock_irq(&tasklist_lock); 2349 cgroup_cancel_fork(p, args); 2350 bad_fork_put_pidfd: 2351 if (clone_flags & CLONE_PIDFD) { 2352 fput(pidfile); 2353 put_unused_fd(pidfd); 2354 } 2355 bad_fork_free_pid: 2356 if (pid != &init_struct_pid) 2357 free_pid(pid); 2358 bad_fork_cleanup_thread: 2359 exit_thread(p); 2360 bad_fork_cleanup_io: 2361 if (p->io_context) 2362 exit_io_context(p); 2363 bad_fork_cleanup_namespaces: 2364 exit_task_namespaces(p); 2365 bad_fork_cleanup_mm: 2366 if (p->mm) { 2367 mm_clear_owner(p->mm, p); 2368 mmput(p->mm); 2369 } 2370 bad_fork_cleanup_signal: 2371 if (!(clone_flags & CLONE_THREAD)) 2372 free_signal_struct(p->signal); 2373 bad_fork_cleanup_sighand: 2374 __cleanup_sighand(p->sighand); 2375 bad_fork_cleanup_fs: 2376 exit_fs(p); /* blocking */ 2377 bad_fork_cleanup_files: 2378 exit_files(p); /* blocking */ 2379 bad_fork_cleanup_semundo: 2380 exit_sem(p); 2381 bad_fork_cleanup_security: 2382 security_task_free(p); 2383 bad_fork_cleanup_audit: 2384 audit_free(p); 2385 bad_fork_cleanup_perf: 2386 perf_event_free_task(p); 2387 bad_fork_cleanup_policy: 2388 lockdep_free_task(p); 2389 #ifdef CONFIG_NUMA 2390 mpol_put(p->mempolicy); 2391 bad_fork_cleanup_threadgroup_lock: 2392 #endif 2393 delayacct_tsk_free(p); 2394 bad_fork_cleanup_count: 2395 atomic_dec(&p->cred->user->processes); 2396 exit_creds(p); 2397 bad_fork_free: 2398 p->state = TASK_DEAD; 2399 put_task_stack(p); 2400 delayed_free_task(p); 2401 fork_out: 2402 spin_lock_irq(¤t->sighand->siglock); 2403 hlist_del_init(&delayed.node); 2404 spin_unlock_irq(¤t->sighand->siglock); 2405 return ERR_PTR(retval); 2406 } 2407 2408 static inline void init_idle_pids(struct task_struct *idle) 2409 { 2410 enum pid_type type; 2411 2412 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2413 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2414 init_task_pid(idle, type, &init_struct_pid); 2415 } 2416 } 2417 2418 struct task_struct *fork_idle(int cpu) 2419 { 2420 struct task_struct *task; 2421 struct kernel_clone_args args = { 2422 .flags = CLONE_VM, 2423 }; 2424 2425 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2426 if (!IS_ERR(task)) { 2427 init_idle_pids(task); 2428 init_idle(task, cpu); 2429 } 2430 2431 return task; 2432 } 2433 2434 struct mm_struct *copy_init_mm(void) 2435 { 2436 return dup_mm(NULL, &init_mm); 2437 } 2438 2439 /* 2440 * This is like kernel_clone(), but shaved down and tailored to just 2441 * creating io_uring workers. It returns a created task, or an error pointer. 2442 * The returned task is inactive, and the caller must fire it up through 2443 * wake_up_new_task(p). All signals are blocked in the created task. 2444 */ 2445 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2446 { 2447 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2448 CLONE_IO; 2449 struct kernel_clone_args args = { 2450 .flags = ((lower_32_bits(flags) | CLONE_VM | 2451 CLONE_UNTRACED) & ~CSIGNAL), 2452 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2453 .stack = (unsigned long)fn, 2454 .stack_size = (unsigned long)arg, 2455 .io_thread = 1, 2456 }; 2457 2458 return copy_process(NULL, 0, node, &args); 2459 } 2460 2461 /* 2462 * Ok, this is the main fork-routine. 2463 * 2464 * It copies the process, and if successful kick-starts 2465 * it and waits for it to finish using the VM if required. 2466 * 2467 * args->exit_signal is expected to be checked for sanity by the caller. 2468 */ 2469 pid_t kernel_clone(struct kernel_clone_args *args) 2470 { 2471 u64 clone_flags = args->flags; 2472 struct completion vfork; 2473 struct pid *pid; 2474 struct task_struct *p; 2475 int trace = 0; 2476 pid_t nr; 2477 2478 /* 2479 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2480 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2481 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2482 * field in struct clone_args and it still doesn't make sense to have 2483 * them both point at the same memory location. Performing this check 2484 * here has the advantage that we don't need to have a separate helper 2485 * to check for legacy clone(). 2486 */ 2487 if ((args->flags & CLONE_PIDFD) && 2488 (args->flags & CLONE_PARENT_SETTID) && 2489 (args->pidfd == args->parent_tid)) 2490 return -EINVAL; 2491 2492 /* 2493 * Determine whether and which event to report to ptracer. When 2494 * called from kernel_thread or CLONE_UNTRACED is explicitly 2495 * requested, no event is reported; otherwise, report if the event 2496 * for the type of forking is enabled. 2497 */ 2498 if (!(clone_flags & CLONE_UNTRACED)) { 2499 if (clone_flags & CLONE_VFORK) 2500 trace = PTRACE_EVENT_VFORK; 2501 else if (args->exit_signal != SIGCHLD) 2502 trace = PTRACE_EVENT_CLONE; 2503 else 2504 trace = PTRACE_EVENT_FORK; 2505 2506 if (likely(!ptrace_event_enabled(current, trace))) 2507 trace = 0; 2508 } 2509 2510 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2511 add_latent_entropy(); 2512 2513 if (IS_ERR(p)) 2514 return PTR_ERR(p); 2515 2516 /* 2517 * Do this prior waking up the new thread - the thread pointer 2518 * might get invalid after that point, if the thread exits quickly. 2519 */ 2520 trace_sched_process_fork(current, p); 2521 2522 pid = get_task_pid(p, PIDTYPE_PID); 2523 nr = pid_vnr(pid); 2524 2525 if (clone_flags & CLONE_PARENT_SETTID) 2526 put_user(nr, args->parent_tid); 2527 2528 if (clone_flags & CLONE_VFORK) { 2529 p->vfork_done = &vfork; 2530 init_completion(&vfork); 2531 get_task_struct(p); 2532 } 2533 2534 wake_up_new_task(p); 2535 2536 /* forking complete and child started to run, tell ptracer */ 2537 if (unlikely(trace)) 2538 ptrace_event_pid(trace, pid); 2539 2540 if (clone_flags & CLONE_VFORK) { 2541 if (!wait_for_vfork_done(p, &vfork)) 2542 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2543 } 2544 2545 put_pid(pid); 2546 return nr; 2547 } 2548 2549 /* 2550 * Create a kernel thread. 2551 */ 2552 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2553 { 2554 struct kernel_clone_args args = { 2555 .flags = ((lower_32_bits(flags) | CLONE_VM | 2556 CLONE_UNTRACED) & ~CSIGNAL), 2557 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2558 .stack = (unsigned long)fn, 2559 .stack_size = (unsigned long)arg, 2560 }; 2561 2562 return kernel_clone(&args); 2563 } 2564 2565 #ifdef __ARCH_WANT_SYS_FORK 2566 SYSCALL_DEFINE0(fork) 2567 { 2568 #ifdef CONFIG_MMU 2569 struct kernel_clone_args args = { 2570 .exit_signal = SIGCHLD, 2571 }; 2572 2573 return kernel_clone(&args); 2574 #else 2575 /* can not support in nommu mode */ 2576 return -EINVAL; 2577 #endif 2578 } 2579 #endif 2580 2581 #ifdef __ARCH_WANT_SYS_VFORK 2582 SYSCALL_DEFINE0(vfork) 2583 { 2584 struct kernel_clone_args args = { 2585 .flags = CLONE_VFORK | CLONE_VM, 2586 .exit_signal = SIGCHLD, 2587 }; 2588 2589 return kernel_clone(&args); 2590 } 2591 #endif 2592 2593 #ifdef __ARCH_WANT_SYS_CLONE 2594 #ifdef CONFIG_CLONE_BACKWARDS 2595 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2596 int __user *, parent_tidptr, 2597 unsigned long, tls, 2598 int __user *, child_tidptr) 2599 #elif defined(CONFIG_CLONE_BACKWARDS2) 2600 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2601 int __user *, parent_tidptr, 2602 int __user *, child_tidptr, 2603 unsigned long, tls) 2604 #elif defined(CONFIG_CLONE_BACKWARDS3) 2605 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2606 int, stack_size, 2607 int __user *, parent_tidptr, 2608 int __user *, child_tidptr, 2609 unsigned long, tls) 2610 #else 2611 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2612 int __user *, parent_tidptr, 2613 int __user *, child_tidptr, 2614 unsigned long, tls) 2615 #endif 2616 { 2617 struct kernel_clone_args args = { 2618 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2619 .pidfd = parent_tidptr, 2620 .child_tid = child_tidptr, 2621 .parent_tid = parent_tidptr, 2622 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2623 .stack = newsp, 2624 .tls = tls, 2625 }; 2626 2627 return kernel_clone(&args); 2628 } 2629 #endif 2630 2631 #ifdef __ARCH_WANT_SYS_CLONE3 2632 2633 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2634 struct clone_args __user *uargs, 2635 size_t usize) 2636 { 2637 int err; 2638 struct clone_args args; 2639 pid_t *kset_tid = kargs->set_tid; 2640 2641 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2642 CLONE_ARGS_SIZE_VER0); 2643 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2644 CLONE_ARGS_SIZE_VER1); 2645 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2646 CLONE_ARGS_SIZE_VER2); 2647 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2648 2649 if (unlikely(usize > PAGE_SIZE)) 2650 return -E2BIG; 2651 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2652 return -EINVAL; 2653 2654 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2655 if (err) 2656 return err; 2657 2658 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2659 return -EINVAL; 2660 2661 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2662 return -EINVAL; 2663 2664 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2665 return -EINVAL; 2666 2667 /* 2668 * Verify that higher 32bits of exit_signal are unset and that 2669 * it is a valid signal 2670 */ 2671 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2672 !valid_signal(args.exit_signal))) 2673 return -EINVAL; 2674 2675 if ((args.flags & CLONE_INTO_CGROUP) && 2676 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2677 return -EINVAL; 2678 2679 *kargs = (struct kernel_clone_args){ 2680 .flags = args.flags, 2681 .pidfd = u64_to_user_ptr(args.pidfd), 2682 .child_tid = u64_to_user_ptr(args.child_tid), 2683 .parent_tid = u64_to_user_ptr(args.parent_tid), 2684 .exit_signal = args.exit_signal, 2685 .stack = args.stack, 2686 .stack_size = args.stack_size, 2687 .tls = args.tls, 2688 .set_tid_size = args.set_tid_size, 2689 .cgroup = args.cgroup, 2690 }; 2691 2692 if (args.set_tid && 2693 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2694 (kargs->set_tid_size * sizeof(pid_t)))) 2695 return -EFAULT; 2696 2697 kargs->set_tid = kset_tid; 2698 2699 return 0; 2700 } 2701 2702 /** 2703 * clone3_stack_valid - check and prepare stack 2704 * @kargs: kernel clone args 2705 * 2706 * Verify that the stack arguments userspace gave us are sane. 2707 * In addition, set the stack direction for userspace since it's easy for us to 2708 * determine. 2709 */ 2710 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2711 { 2712 if (kargs->stack == 0) { 2713 if (kargs->stack_size > 0) 2714 return false; 2715 } else { 2716 if (kargs->stack_size == 0) 2717 return false; 2718 2719 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2720 return false; 2721 2722 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2723 kargs->stack += kargs->stack_size; 2724 #endif 2725 } 2726 2727 return true; 2728 } 2729 2730 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2731 { 2732 /* Verify that no unknown flags are passed along. */ 2733 if (kargs->flags & 2734 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2735 return false; 2736 2737 /* 2738 * - make the CLONE_DETACHED bit reuseable for clone3 2739 * - make the CSIGNAL bits reuseable for clone3 2740 */ 2741 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2742 return false; 2743 2744 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2745 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2746 return false; 2747 2748 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2749 kargs->exit_signal) 2750 return false; 2751 2752 if (!clone3_stack_valid(kargs)) 2753 return false; 2754 2755 return true; 2756 } 2757 2758 /** 2759 * clone3 - create a new process with specific properties 2760 * @uargs: argument structure 2761 * @size: size of @uargs 2762 * 2763 * clone3() is the extensible successor to clone()/clone2(). 2764 * It takes a struct as argument that is versioned by its size. 2765 * 2766 * Return: On success, a positive PID for the child process. 2767 * On error, a negative errno number. 2768 */ 2769 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2770 { 2771 int err; 2772 2773 struct kernel_clone_args kargs; 2774 pid_t set_tid[MAX_PID_NS_LEVEL]; 2775 2776 kargs.set_tid = set_tid; 2777 2778 err = copy_clone_args_from_user(&kargs, uargs, size); 2779 if (err) 2780 return err; 2781 2782 if (!clone3_args_valid(&kargs)) 2783 return -EINVAL; 2784 2785 return kernel_clone(&kargs); 2786 } 2787 #endif 2788 2789 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2790 { 2791 struct task_struct *leader, *parent, *child; 2792 int res; 2793 2794 read_lock(&tasklist_lock); 2795 leader = top = top->group_leader; 2796 down: 2797 for_each_thread(leader, parent) { 2798 list_for_each_entry(child, &parent->children, sibling) { 2799 res = visitor(child, data); 2800 if (res) { 2801 if (res < 0) 2802 goto out; 2803 leader = child; 2804 goto down; 2805 } 2806 up: 2807 ; 2808 } 2809 } 2810 2811 if (leader != top) { 2812 child = leader; 2813 parent = child->real_parent; 2814 leader = parent->group_leader; 2815 goto up; 2816 } 2817 out: 2818 read_unlock(&tasklist_lock); 2819 } 2820 2821 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2822 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2823 #endif 2824 2825 static void sighand_ctor(void *data) 2826 { 2827 struct sighand_struct *sighand = data; 2828 2829 spin_lock_init(&sighand->siglock); 2830 init_waitqueue_head(&sighand->signalfd_wqh); 2831 } 2832 2833 void __init proc_caches_init(void) 2834 { 2835 unsigned int mm_size; 2836 2837 sighand_cachep = kmem_cache_create("sighand_cache", 2838 sizeof(struct sighand_struct), 0, 2839 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2840 SLAB_ACCOUNT, sighand_ctor); 2841 signal_cachep = kmem_cache_create("signal_cache", 2842 sizeof(struct signal_struct), 0, 2843 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2844 NULL); 2845 files_cachep = kmem_cache_create("files_cache", 2846 sizeof(struct files_struct), 0, 2847 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2848 NULL); 2849 fs_cachep = kmem_cache_create("fs_cache", 2850 sizeof(struct fs_struct), 0, 2851 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2852 NULL); 2853 2854 /* 2855 * The mm_cpumask is located at the end of mm_struct, and is 2856 * dynamically sized based on the maximum CPU number this system 2857 * can have, taking hotplug into account (nr_cpu_ids). 2858 */ 2859 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2860 2861 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2862 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2863 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2864 offsetof(struct mm_struct, saved_auxv), 2865 sizeof_field(struct mm_struct, saved_auxv), 2866 NULL); 2867 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2868 mmap_init(); 2869 nsproxy_cache_init(); 2870 } 2871 2872 /* 2873 * Check constraints on flags passed to the unshare system call. 2874 */ 2875 static int check_unshare_flags(unsigned long unshare_flags) 2876 { 2877 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2878 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2879 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2880 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2881 CLONE_NEWTIME)) 2882 return -EINVAL; 2883 /* 2884 * Not implemented, but pretend it works if there is nothing 2885 * to unshare. Note that unsharing the address space or the 2886 * signal handlers also need to unshare the signal queues (aka 2887 * CLONE_THREAD). 2888 */ 2889 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2890 if (!thread_group_empty(current)) 2891 return -EINVAL; 2892 } 2893 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2894 if (refcount_read(¤t->sighand->count) > 1) 2895 return -EINVAL; 2896 } 2897 if (unshare_flags & CLONE_VM) { 2898 if (!current_is_single_threaded()) 2899 return -EINVAL; 2900 } 2901 2902 return 0; 2903 } 2904 2905 /* 2906 * Unshare the filesystem structure if it is being shared 2907 */ 2908 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2909 { 2910 struct fs_struct *fs = current->fs; 2911 2912 if (!(unshare_flags & CLONE_FS) || !fs) 2913 return 0; 2914 2915 /* don't need lock here; in the worst case we'll do useless copy */ 2916 if (fs->users == 1) 2917 return 0; 2918 2919 *new_fsp = copy_fs_struct(fs); 2920 if (!*new_fsp) 2921 return -ENOMEM; 2922 2923 return 0; 2924 } 2925 2926 /* 2927 * Unshare file descriptor table if it is being shared 2928 */ 2929 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2930 struct files_struct **new_fdp) 2931 { 2932 struct files_struct *fd = current->files; 2933 int error = 0; 2934 2935 if ((unshare_flags & CLONE_FILES) && 2936 (fd && atomic_read(&fd->count) > 1)) { 2937 *new_fdp = dup_fd(fd, max_fds, &error); 2938 if (!*new_fdp) 2939 return error; 2940 } 2941 2942 return 0; 2943 } 2944 2945 /* 2946 * unshare allows a process to 'unshare' part of the process 2947 * context which was originally shared using clone. copy_* 2948 * functions used by kernel_clone() cannot be used here directly 2949 * because they modify an inactive task_struct that is being 2950 * constructed. Here we are modifying the current, active, 2951 * task_struct. 2952 */ 2953 int ksys_unshare(unsigned long unshare_flags) 2954 { 2955 struct fs_struct *fs, *new_fs = NULL; 2956 struct files_struct *fd, *new_fd = NULL; 2957 struct cred *new_cred = NULL; 2958 struct nsproxy *new_nsproxy = NULL; 2959 int do_sysvsem = 0; 2960 int err; 2961 2962 /* 2963 * If unsharing a user namespace must also unshare the thread group 2964 * and unshare the filesystem root and working directories. 2965 */ 2966 if (unshare_flags & CLONE_NEWUSER) 2967 unshare_flags |= CLONE_THREAD | CLONE_FS; 2968 /* 2969 * If unsharing vm, must also unshare signal handlers. 2970 */ 2971 if (unshare_flags & CLONE_VM) 2972 unshare_flags |= CLONE_SIGHAND; 2973 /* 2974 * If unsharing a signal handlers, must also unshare the signal queues. 2975 */ 2976 if (unshare_flags & CLONE_SIGHAND) 2977 unshare_flags |= CLONE_THREAD; 2978 /* 2979 * If unsharing namespace, must also unshare filesystem information. 2980 */ 2981 if (unshare_flags & CLONE_NEWNS) 2982 unshare_flags |= CLONE_FS; 2983 2984 err = check_unshare_flags(unshare_flags); 2985 if (err) 2986 goto bad_unshare_out; 2987 /* 2988 * CLONE_NEWIPC must also detach from the undolist: after switching 2989 * to a new ipc namespace, the semaphore arrays from the old 2990 * namespace are unreachable. 2991 */ 2992 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2993 do_sysvsem = 1; 2994 err = unshare_fs(unshare_flags, &new_fs); 2995 if (err) 2996 goto bad_unshare_out; 2997 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2998 if (err) 2999 goto bad_unshare_cleanup_fs; 3000 err = unshare_userns(unshare_flags, &new_cred); 3001 if (err) 3002 goto bad_unshare_cleanup_fd; 3003 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3004 new_cred, new_fs); 3005 if (err) 3006 goto bad_unshare_cleanup_cred; 3007 3008 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3009 if (do_sysvsem) { 3010 /* 3011 * CLONE_SYSVSEM is equivalent to sys_exit(). 3012 */ 3013 exit_sem(current); 3014 } 3015 if (unshare_flags & CLONE_NEWIPC) { 3016 /* Orphan segments in old ns (see sem above). */ 3017 exit_shm(current); 3018 shm_init_task(current); 3019 } 3020 3021 if (new_nsproxy) 3022 switch_task_namespaces(current, new_nsproxy); 3023 3024 task_lock(current); 3025 3026 if (new_fs) { 3027 fs = current->fs; 3028 spin_lock(&fs->lock); 3029 current->fs = new_fs; 3030 if (--fs->users) 3031 new_fs = NULL; 3032 else 3033 new_fs = fs; 3034 spin_unlock(&fs->lock); 3035 } 3036 3037 if (new_fd) { 3038 fd = current->files; 3039 current->files = new_fd; 3040 new_fd = fd; 3041 } 3042 3043 task_unlock(current); 3044 3045 if (new_cred) { 3046 /* Install the new user namespace */ 3047 commit_creds(new_cred); 3048 new_cred = NULL; 3049 } 3050 } 3051 3052 perf_event_namespaces(current); 3053 3054 bad_unshare_cleanup_cred: 3055 if (new_cred) 3056 put_cred(new_cred); 3057 bad_unshare_cleanup_fd: 3058 if (new_fd) 3059 put_files_struct(new_fd); 3060 3061 bad_unshare_cleanup_fs: 3062 if (new_fs) 3063 free_fs_struct(new_fs); 3064 3065 bad_unshare_out: 3066 return err; 3067 } 3068 3069 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3070 { 3071 return ksys_unshare(unshare_flags); 3072 } 3073 3074 /* 3075 * Helper to unshare the files of the current task. 3076 * We don't want to expose copy_files internals to 3077 * the exec layer of the kernel. 3078 */ 3079 3080 int unshare_files(void) 3081 { 3082 struct task_struct *task = current; 3083 struct files_struct *old, *copy = NULL; 3084 int error; 3085 3086 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3087 if (error || !copy) 3088 return error; 3089 3090 old = task->files; 3091 task_lock(task); 3092 task->files = copy; 3093 task_unlock(task); 3094 put_files_struct(old); 3095 return 0; 3096 } 3097 3098 int sysctl_max_threads(struct ctl_table *table, int write, 3099 void *buffer, size_t *lenp, loff_t *ppos) 3100 { 3101 struct ctl_table t; 3102 int ret; 3103 int threads = max_threads; 3104 int min = 1; 3105 int max = MAX_THREADS; 3106 3107 t = *table; 3108 t.data = &threads; 3109 t.extra1 = &min; 3110 t.extra2 = &max; 3111 3112 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3113 if (ret || !write) 3114 return ret; 3115 3116 max_threads = threads; 3117 3118 return 0; 3119 } 3120