xref: /openbmc/linux/kernel/fork.c (revision 5d4a2e29)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75 
76 #include <trace/events/sched.h>
77 
78 /*
79  * Protected counters by write_lock_irq(&tasklist_lock)
80  */
81 unsigned long total_forks;	/* Handle normal Linux uptimes. */
82 int nr_threads; 		/* The idle threads do not count.. */
83 
84 int max_threads;		/* tunable limit on nr_threads */
85 
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87 
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
89 
90 #ifdef CONFIG_PROVE_RCU
91 int lockdep_tasklist_lock_is_held(void)
92 {
93 	return lockdep_is_held(&tasklist_lock);
94 }
95 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
96 #endif /* #ifdef CONFIG_PROVE_RCU */
97 
98 int nr_processes(void)
99 {
100 	int cpu;
101 	int total = 0;
102 
103 	for_each_possible_cpu(cpu)
104 		total += per_cpu(process_counts, cpu);
105 
106 	return total;
107 }
108 
109 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
110 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
111 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
112 static struct kmem_cache *task_struct_cachep;
113 #endif
114 
115 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
116 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
117 {
118 #ifdef CONFIG_DEBUG_STACK_USAGE
119 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
120 #else
121 	gfp_t mask = GFP_KERNEL;
122 #endif
123 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
124 }
125 
126 static inline void free_thread_info(struct thread_info *ti)
127 {
128 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
129 }
130 #endif
131 
132 /* SLAB cache for signal_struct structures (tsk->signal) */
133 static struct kmem_cache *signal_cachep;
134 
135 /* SLAB cache for sighand_struct structures (tsk->sighand) */
136 struct kmem_cache *sighand_cachep;
137 
138 /* SLAB cache for files_struct structures (tsk->files) */
139 struct kmem_cache *files_cachep;
140 
141 /* SLAB cache for fs_struct structures (tsk->fs) */
142 struct kmem_cache *fs_cachep;
143 
144 /* SLAB cache for vm_area_struct structures */
145 struct kmem_cache *vm_area_cachep;
146 
147 /* SLAB cache for mm_struct structures (tsk->mm) */
148 static struct kmem_cache *mm_cachep;
149 
150 static void account_kernel_stack(struct thread_info *ti, int account)
151 {
152 	struct zone *zone = page_zone(virt_to_page(ti));
153 
154 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
155 }
156 
157 void free_task(struct task_struct *tsk)
158 {
159 	prop_local_destroy_single(&tsk->dirties);
160 	account_kernel_stack(tsk->stack, -1);
161 	free_thread_info(tsk->stack);
162 	rt_mutex_debug_task_free(tsk);
163 	ftrace_graph_exit_task(tsk);
164 	free_task_struct(tsk);
165 }
166 EXPORT_SYMBOL(free_task);
167 
168 static inline void free_signal_struct(struct signal_struct *sig)
169 {
170 	taskstats_tgid_free(sig);
171 	kmem_cache_free(signal_cachep, sig);
172 }
173 
174 static inline void put_signal_struct(struct signal_struct *sig)
175 {
176 	if (atomic_dec_and_test(&sig->sigcnt))
177 		free_signal_struct(sig);
178 }
179 
180 void __put_task_struct(struct task_struct *tsk)
181 {
182 	WARN_ON(!tsk->exit_state);
183 	WARN_ON(atomic_read(&tsk->usage));
184 	WARN_ON(tsk == current);
185 
186 	exit_creds(tsk);
187 	delayacct_tsk_free(tsk);
188 	put_signal_struct(tsk->signal);
189 
190 	if (!profile_handoff_task(tsk))
191 		free_task(tsk);
192 }
193 
194 /*
195  * macro override instead of weak attribute alias, to workaround
196  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
197  */
198 #ifndef arch_task_cache_init
199 #define arch_task_cache_init()
200 #endif
201 
202 void __init fork_init(unsigned long mempages)
203 {
204 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
205 #ifndef ARCH_MIN_TASKALIGN
206 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
207 #endif
208 	/* create a slab on which task_structs can be allocated */
209 	task_struct_cachep =
210 		kmem_cache_create("task_struct", sizeof(struct task_struct),
211 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
212 #endif
213 
214 	/* do the arch specific task caches init */
215 	arch_task_cache_init();
216 
217 	/*
218 	 * The default maximum number of threads is set to a safe
219 	 * value: the thread structures can take up at most half
220 	 * of memory.
221 	 */
222 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
223 
224 	/*
225 	 * we need to allow at least 20 threads to boot a system
226 	 */
227 	if(max_threads < 20)
228 		max_threads = 20;
229 
230 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
231 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
232 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
233 		init_task.signal->rlim[RLIMIT_NPROC];
234 }
235 
236 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
237 					       struct task_struct *src)
238 {
239 	*dst = *src;
240 	return 0;
241 }
242 
243 static struct task_struct *dup_task_struct(struct task_struct *orig)
244 {
245 	struct task_struct *tsk;
246 	struct thread_info *ti;
247 	unsigned long *stackend;
248 
249 	int err;
250 
251 	prepare_to_copy(orig);
252 
253 	tsk = alloc_task_struct();
254 	if (!tsk)
255 		return NULL;
256 
257 	ti = alloc_thread_info(tsk);
258 	if (!ti) {
259 		free_task_struct(tsk);
260 		return NULL;
261 	}
262 
263  	err = arch_dup_task_struct(tsk, orig);
264 	if (err)
265 		goto out;
266 
267 	tsk->stack = ti;
268 
269 	err = prop_local_init_single(&tsk->dirties);
270 	if (err)
271 		goto out;
272 
273 	setup_thread_stack(tsk, orig);
274 	clear_user_return_notifier(tsk);
275 	stackend = end_of_stack(tsk);
276 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
277 
278 #ifdef CONFIG_CC_STACKPROTECTOR
279 	tsk->stack_canary = get_random_int();
280 #endif
281 
282 	/* One for us, one for whoever does the "release_task()" (usually parent) */
283 	atomic_set(&tsk->usage,2);
284 	atomic_set(&tsk->fs_excl, 0);
285 #ifdef CONFIG_BLK_DEV_IO_TRACE
286 	tsk->btrace_seq = 0;
287 #endif
288 	tsk->splice_pipe = NULL;
289 
290 	account_kernel_stack(ti, 1);
291 
292 	return tsk;
293 
294 out:
295 	free_thread_info(ti);
296 	free_task_struct(tsk);
297 	return NULL;
298 }
299 
300 #ifdef CONFIG_MMU
301 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
302 {
303 	struct vm_area_struct *mpnt, *tmp, **pprev;
304 	struct rb_node **rb_link, *rb_parent;
305 	int retval;
306 	unsigned long charge;
307 	struct mempolicy *pol;
308 
309 	down_write(&oldmm->mmap_sem);
310 	flush_cache_dup_mm(oldmm);
311 	/*
312 	 * Not linked in yet - no deadlock potential:
313 	 */
314 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
315 
316 	mm->locked_vm = 0;
317 	mm->mmap = NULL;
318 	mm->mmap_cache = NULL;
319 	mm->free_area_cache = oldmm->mmap_base;
320 	mm->cached_hole_size = ~0UL;
321 	mm->map_count = 0;
322 	cpumask_clear(mm_cpumask(mm));
323 	mm->mm_rb = RB_ROOT;
324 	rb_link = &mm->mm_rb.rb_node;
325 	rb_parent = NULL;
326 	pprev = &mm->mmap;
327 	retval = ksm_fork(mm, oldmm);
328 	if (retval)
329 		goto out;
330 
331 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
332 		struct file *file;
333 
334 		if (mpnt->vm_flags & VM_DONTCOPY) {
335 			long pages = vma_pages(mpnt);
336 			mm->total_vm -= pages;
337 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
338 								-pages);
339 			continue;
340 		}
341 		charge = 0;
342 		if (mpnt->vm_flags & VM_ACCOUNT) {
343 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
344 			if (security_vm_enough_memory(len))
345 				goto fail_nomem;
346 			charge = len;
347 		}
348 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 		if (!tmp)
350 			goto fail_nomem;
351 		*tmp = *mpnt;
352 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
353 		pol = mpol_dup(vma_policy(mpnt));
354 		retval = PTR_ERR(pol);
355 		if (IS_ERR(pol))
356 			goto fail_nomem_policy;
357 		vma_set_policy(tmp, pol);
358 		if (anon_vma_fork(tmp, mpnt))
359 			goto fail_nomem_anon_vma_fork;
360 		tmp->vm_flags &= ~VM_LOCKED;
361 		tmp->vm_mm = mm;
362 		tmp->vm_next = NULL;
363 		file = tmp->vm_file;
364 		if (file) {
365 			struct inode *inode = file->f_path.dentry->d_inode;
366 			struct address_space *mapping = file->f_mapping;
367 
368 			get_file(file);
369 			if (tmp->vm_flags & VM_DENYWRITE)
370 				atomic_dec(&inode->i_writecount);
371 			spin_lock(&mapping->i_mmap_lock);
372 			if (tmp->vm_flags & VM_SHARED)
373 				mapping->i_mmap_writable++;
374 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
375 			flush_dcache_mmap_lock(mapping);
376 			/* insert tmp into the share list, just after mpnt */
377 			vma_prio_tree_add(tmp, mpnt);
378 			flush_dcache_mmap_unlock(mapping);
379 			spin_unlock(&mapping->i_mmap_lock);
380 		}
381 
382 		/*
383 		 * Clear hugetlb-related page reserves for children. This only
384 		 * affects MAP_PRIVATE mappings. Faults generated by the child
385 		 * are not guaranteed to succeed, even if read-only
386 		 */
387 		if (is_vm_hugetlb_page(tmp))
388 			reset_vma_resv_huge_pages(tmp);
389 
390 		/*
391 		 * Link in the new vma and copy the page table entries.
392 		 */
393 		*pprev = tmp;
394 		pprev = &tmp->vm_next;
395 
396 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
397 		rb_link = &tmp->vm_rb.rb_right;
398 		rb_parent = &tmp->vm_rb;
399 
400 		mm->map_count++;
401 		retval = copy_page_range(mm, oldmm, mpnt);
402 
403 		if (tmp->vm_ops && tmp->vm_ops->open)
404 			tmp->vm_ops->open(tmp);
405 
406 		if (retval)
407 			goto out;
408 	}
409 	/* a new mm has just been created */
410 	arch_dup_mmap(oldmm, mm);
411 	retval = 0;
412 out:
413 	up_write(&mm->mmap_sem);
414 	flush_tlb_mm(oldmm);
415 	up_write(&oldmm->mmap_sem);
416 	return retval;
417 fail_nomem_anon_vma_fork:
418 	mpol_put(pol);
419 fail_nomem_policy:
420 	kmem_cache_free(vm_area_cachep, tmp);
421 fail_nomem:
422 	retval = -ENOMEM;
423 	vm_unacct_memory(charge);
424 	goto out;
425 }
426 
427 static inline int mm_alloc_pgd(struct mm_struct * mm)
428 {
429 	mm->pgd = pgd_alloc(mm);
430 	if (unlikely(!mm->pgd))
431 		return -ENOMEM;
432 	return 0;
433 }
434 
435 static inline void mm_free_pgd(struct mm_struct * mm)
436 {
437 	pgd_free(mm, mm->pgd);
438 }
439 #else
440 #define dup_mmap(mm, oldmm)	(0)
441 #define mm_alloc_pgd(mm)	(0)
442 #define mm_free_pgd(mm)
443 #endif /* CONFIG_MMU */
444 
445 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
446 
447 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
448 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
449 
450 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
451 
452 static int __init coredump_filter_setup(char *s)
453 {
454 	default_dump_filter =
455 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
456 		MMF_DUMP_FILTER_MASK;
457 	return 1;
458 }
459 
460 __setup("coredump_filter=", coredump_filter_setup);
461 
462 #include <linux/init_task.h>
463 
464 static void mm_init_aio(struct mm_struct *mm)
465 {
466 #ifdef CONFIG_AIO
467 	spin_lock_init(&mm->ioctx_lock);
468 	INIT_HLIST_HEAD(&mm->ioctx_list);
469 #endif
470 }
471 
472 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
473 {
474 	atomic_set(&mm->mm_users, 1);
475 	atomic_set(&mm->mm_count, 1);
476 	init_rwsem(&mm->mmap_sem);
477 	INIT_LIST_HEAD(&mm->mmlist);
478 	mm->flags = (current->mm) ?
479 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
480 	mm->core_state = NULL;
481 	mm->nr_ptes = 0;
482 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
483 	spin_lock_init(&mm->page_table_lock);
484 	mm->free_area_cache = TASK_UNMAPPED_BASE;
485 	mm->cached_hole_size = ~0UL;
486 	mm_init_aio(mm);
487 	mm_init_owner(mm, p);
488 
489 	if (likely(!mm_alloc_pgd(mm))) {
490 		mm->def_flags = 0;
491 		mmu_notifier_mm_init(mm);
492 		return mm;
493 	}
494 
495 	free_mm(mm);
496 	return NULL;
497 }
498 
499 /*
500  * Allocate and initialize an mm_struct.
501  */
502 struct mm_struct * mm_alloc(void)
503 {
504 	struct mm_struct * mm;
505 
506 	mm = allocate_mm();
507 	if (mm) {
508 		memset(mm, 0, sizeof(*mm));
509 		mm = mm_init(mm, current);
510 	}
511 	return mm;
512 }
513 
514 /*
515  * Called when the last reference to the mm
516  * is dropped: either by a lazy thread or by
517  * mmput. Free the page directory and the mm.
518  */
519 void __mmdrop(struct mm_struct *mm)
520 {
521 	BUG_ON(mm == &init_mm);
522 	mm_free_pgd(mm);
523 	destroy_context(mm);
524 	mmu_notifier_mm_destroy(mm);
525 	free_mm(mm);
526 }
527 EXPORT_SYMBOL_GPL(__mmdrop);
528 
529 /*
530  * Decrement the use count and release all resources for an mm.
531  */
532 void mmput(struct mm_struct *mm)
533 {
534 	might_sleep();
535 
536 	if (atomic_dec_and_test(&mm->mm_users)) {
537 		exit_aio(mm);
538 		ksm_exit(mm);
539 		exit_mmap(mm);
540 		set_mm_exe_file(mm, NULL);
541 		if (!list_empty(&mm->mmlist)) {
542 			spin_lock(&mmlist_lock);
543 			list_del(&mm->mmlist);
544 			spin_unlock(&mmlist_lock);
545 		}
546 		put_swap_token(mm);
547 		if (mm->binfmt)
548 			module_put(mm->binfmt->module);
549 		mmdrop(mm);
550 	}
551 }
552 EXPORT_SYMBOL_GPL(mmput);
553 
554 /**
555  * get_task_mm - acquire a reference to the task's mm
556  *
557  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
558  * this kernel workthread has transiently adopted a user mm with use_mm,
559  * to do its AIO) is not set and if so returns a reference to it, after
560  * bumping up the use count.  User must release the mm via mmput()
561  * after use.  Typically used by /proc and ptrace.
562  */
563 struct mm_struct *get_task_mm(struct task_struct *task)
564 {
565 	struct mm_struct *mm;
566 
567 	task_lock(task);
568 	mm = task->mm;
569 	if (mm) {
570 		if (task->flags & PF_KTHREAD)
571 			mm = NULL;
572 		else
573 			atomic_inc(&mm->mm_users);
574 	}
575 	task_unlock(task);
576 	return mm;
577 }
578 EXPORT_SYMBOL_GPL(get_task_mm);
579 
580 /* Please note the differences between mmput and mm_release.
581  * mmput is called whenever we stop holding onto a mm_struct,
582  * error success whatever.
583  *
584  * mm_release is called after a mm_struct has been removed
585  * from the current process.
586  *
587  * This difference is important for error handling, when we
588  * only half set up a mm_struct for a new process and need to restore
589  * the old one.  Because we mmput the new mm_struct before
590  * restoring the old one. . .
591  * Eric Biederman 10 January 1998
592  */
593 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
594 {
595 	struct completion *vfork_done = tsk->vfork_done;
596 
597 	/* Get rid of any futexes when releasing the mm */
598 #ifdef CONFIG_FUTEX
599 	if (unlikely(tsk->robust_list)) {
600 		exit_robust_list(tsk);
601 		tsk->robust_list = NULL;
602 	}
603 #ifdef CONFIG_COMPAT
604 	if (unlikely(tsk->compat_robust_list)) {
605 		compat_exit_robust_list(tsk);
606 		tsk->compat_robust_list = NULL;
607 	}
608 #endif
609 	if (unlikely(!list_empty(&tsk->pi_state_list)))
610 		exit_pi_state_list(tsk);
611 #endif
612 
613 	/* Get rid of any cached register state */
614 	deactivate_mm(tsk, mm);
615 
616 	/* notify parent sleeping on vfork() */
617 	if (vfork_done) {
618 		tsk->vfork_done = NULL;
619 		complete(vfork_done);
620 	}
621 
622 	/*
623 	 * If we're exiting normally, clear a user-space tid field if
624 	 * requested.  We leave this alone when dying by signal, to leave
625 	 * the value intact in a core dump, and to save the unnecessary
626 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
627 	 */
628 	if (tsk->clear_child_tid) {
629 		if (!(tsk->flags & PF_SIGNALED) &&
630 		    atomic_read(&mm->mm_users) > 1) {
631 			/*
632 			 * We don't check the error code - if userspace has
633 			 * not set up a proper pointer then tough luck.
634 			 */
635 			put_user(0, tsk->clear_child_tid);
636 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
637 					1, NULL, NULL, 0);
638 		}
639 		tsk->clear_child_tid = NULL;
640 	}
641 }
642 
643 /*
644  * Allocate a new mm structure and copy contents from the
645  * mm structure of the passed in task structure.
646  */
647 struct mm_struct *dup_mm(struct task_struct *tsk)
648 {
649 	struct mm_struct *mm, *oldmm = current->mm;
650 	int err;
651 
652 	if (!oldmm)
653 		return NULL;
654 
655 	mm = allocate_mm();
656 	if (!mm)
657 		goto fail_nomem;
658 
659 	memcpy(mm, oldmm, sizeof(*mm));
660 
661 	/* Initializing for Swap token stuff */
662 	mm->token_priority = 0;
663 	mm->last_interval = 0;
664 
665 	if (!mm_init(mm, tsk))
666 		goto fail_nomem;
667 
668 	if (init_new_context(tsk, mm))
669 		goto fail_nocontext;
670 
671 	dup_mm_exe_file(oldmm, mm);
672 
673 	err = dup_mmap(mm, oldmm);
674 	if (err)
675 		goto free_pt;
676 
677 	mm->hiwater_rss = get_mm_rss(mm);
678 	mm->hiwater_vm = mm->total_vm;
679 
680 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
681 		goto free_pt;
682 
683 	return mm;
684 
685 free_pt:
686 	/* don't put binfmt in mmput, we haven't got module yet */
687 	mm->binfmt = NULL;
688 	mmput(mm);
689 
690 fail_nomem:
691 	return NULL;
692 
693 fail_nocontext:
694 	/*
695 	 * If init_new_context() failed, we cannot use mmput() to free the mm
696 	 * because it calls destroy_context()
697 	 */
698 	mm_free_pgd(mm);
699 	free_mm(mm);
700 	return NULL;
701 }
702 
703 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
704 {
705 	struct mm_struct * mm, *oldmm;
706 	int retval;
707 
708 	tsk->min_flt = tsk->maj_flt = 0;
709 	tsk->nvcsw = tsk->nivcsw = 0;
710 #ifdef CONFIG_DETECT_HUNG_TASK
711 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
712 #endif
713 
714 	tsk->mm = NULL;
715 	tsk->active_mm = NULL;
716 
717 	/*
718 	 * Are we cloning a kernel thread?
719 	 *
720 	 * We need to steal a active VM for that..
721 	 */
722 	oldmm = current->mm;
723 	if (!oldmm)
724 		return 0;
725 
726 	if (clone_flags & CLONE_VM) {
727 		atomic_inc(&oldmm->mm_users);
728 		mm = oldmm;
729 		goto good_mm;
730 	}
731 
732 	retval = -ENOMEM;
733 	mm = dup_mm(tsk);
734 	if (!mm)
735 		goto fail_nomem;
736 
737 good_mm:
738 	/* Initializing for Swap token stuff */
739 	mm->token_priority = 0;
740 	mm->last_interval = 0;
741 
742 	tsk->mm = mm;
743 	tsk->active_mm = mm;
744 	return 0;
745 
746 fail_nomem:
747 	return retval;
748 }
749 
750 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
751 {
752 	struct fs_struct *fs = current->fs;
753 	if (clone_flags & CLONE_FS) {
754 		/* tsk->fs is already what we want */
755 		write_lock(&fs->lock);
756 		if (fs->in_exec) {
757 			write_unlock(&fs->lock);
758 			return -EAGAIN;
759 		}
760 		fs->users++;
761 		write_unlock(&fs->lock);
762 		return 0;
763 	}
764 	tsk->fs = copy_fs_struct(fs);
765 	if (!tsk->fs)
766 		return -ENOMEM;
767 	return 0;
768 }
769 
770 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
771 {
772 	struct files_struct *oldf, *newf;
773 	int error = 0;
774 
775 	/*
776 	 * A background process may not have any files ...
777 	 */
778 	oldf = current->files;
779 	if (!oldf)
780 		goto out;
781 
782 	if (clone_flags & CLONE_FILES) {
783 		atomic_inc(&oldf->count);
784 		goto out;
785 	}
786 
787 	newf = dup_fd(oldf, &error);
788 	if (!newf)
789 		goto out;
790 
791 	tsk->files = newf;
792 	error = 0;
793 out:
794 	return error;
795 }
796 
797 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
798 {
799 #ifdef CONFIG_BLOCK
800 	struct io_context *ioc = current->io_context;
801 
802 	if (!ioc)
803 		return 0;
804 	/*
805 	 * Share io context with parent, if CLONE_IO is set
806 	 */
807 	if (clone_flags & CLONE_IO) {
808 		tsk->io_context = ioc_task_link(ioc);
809 		if (unlikely(!tsk->io_context))
810 			return -ENOMEM;
811 	} else if (ioprio_valid(ioc->ioprio)) {
812 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
813 		if (unlikely(!tsk->io_context))
814 			return -ENOMEM;
815 
816 		tsk->io_context->ioprio = ioc->ioprio;
817 	}
818 #endif
819 	return 0;
820 }
821 
822 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
823 {
824 	struct sighand_struct *sig;
825 
826 	if (clone_flags & CLONE_SIGHAND) {
827 		atomic_inc(&current->sighand->count);
828 		return 0;
829 	}
830 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
831 	rcu_assign_pointer(tsk->sighand, sig);
832 	if (!sig)
833 		return -ENOMEM;
834 	atomic_set(&sig->count, 1);
835 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
836 	return 0;
837 }
838 
839 void __cleanup_sighand(struct sighand_struct *sighand)
840 {
841 	if (atomic_dec_and_test(&sighand->count))
842 		kmem_cache_free(sighand_cachep, sighand);
843 }
844 
845 
846 /*
847  * Initialize POSIX timer handling for a thread group.
848  */
849 static void posix_cpu_timers_init_group(struct signal_struct *sig)
850 {
851 	unsigned long cpu_limit;
852 
853 	/* Thread group counters. */
854 	thread_group_cputime_init(sig);
855 
856 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
857 	if (cpu_limit != RLIM_INFINITY) {
858 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
859 		sig->cputimer.running = 1;
860 	}
861 
862 	/* The timer lists. */
863 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
864 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
865 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
866 }
867 
868 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
869 {
870 	struct signal_struct *sig;
871 
872 	if (clone_flags & CLONE_THREAD)
873 		return 0;
874 
875 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
876 	tsk->signal = sig;
877 	if (!sig)
878 		return -ENOMEM;
879 
880 	sig->nr_threads = 1;
881 	atomic_set(&sig->live, 1);
882 	atomic_set(&sig->sigcnt, 1);
883 	init_waitqueue_head(&sig->wait_chldexit);
884 	if (clone_flags & CLONE_NEWPID)
885 		sig->flags |= SIGNAL_UNKILLABLE;
886 	sig->curr_target = tsk;
887 	init_sigpending(&sig->shared_pending);
888 	INIT_LIST_HEAD(&sig->posix_timers);
889 
890 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
891 	sig->real_timer.function = it_real_fn;
892 
893 	task_lock(current->group_leader);
894 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
895 	task_unlock(current->group_leader);
896 
897 	posix_cpu_timers_init_group(sig);
898 
899 	tty_audit_fork(sig);
900 
901 	sig->oom_adj = current->signal->oom_adj;
902 
903 	return 0;
904 }
905 
906 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
907 {
908 	unsigned long new_flags = p->flags;
909 
910 	new_flags &= ~PF_SUPERPRIV;
911 	new_flags |= PF_FORKNOEXEC;
912 	new_flags |= PF_STARTING;
913 	p->flags = new_flags;
914 	clear_freeze_flag(p);
915 }
916 
917 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
918 {
919 	current->clear_child_tid = tidptr;
920 
921 	return task_pid_vnr(current);
922 }
923 
924 static void rt_mutex_init_task(struct task_struct *p)
925 {
926 	raw_spin_lock_init(&p->pi_lock);
927 #ifdef CONFIG_RT_MUTEXES
928 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
929 	p->pi_blocked_on = NULL;
930 #endif
931 }
932 
933 #ifdef CONFIG_MM_OWNER
934 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
935 {
936 	mm->owner = p;
937 }
938 #endif /* CONFIG_MM_OWNER */
939 
940 /*
941  * Initialize POSIX timer handling for a single task.
942  */
943 static void posix_cpu_timers_init(struct task_struct *tsk)
944 {
945 	tsk->cputime_expires.prof_exp = cputime_zero;
946 	tsk->cputime_expires.virt_exp = cputime_zero;
947 	tsk->cputime_expires.sched_exp = 0;
948 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
949 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
950 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
951 }
952 
953 /*
954  * This creates a new process as a copy of the old one,
955  * but does not actually start it yet.
956  *
957  * It copies the registers, and all the appropriate
958  * parts of the process environment (as per the clone
959  * flags). The actual kick-off is left to the caller.
960  */
961 static struct task_struct *copy_process(unsigned long clone_flags,
962 					unsigned long stack_start,
963 					struct pt_regs *regs,
964 					unsigned long stack_size,
965 					int __user *child_tidptr,
966 					struct pid *pid,
967 					int trace)
968 {
969 	int retval;
970 	struct task_struct *p;
971 	int cgroup_callbacks_done = 0;
972 
973 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
974 		return ERR_PTR(-EINVAL);
975 
976 	/*
977 	 * Thread groups must share signals as well, and detached threads
978 	 * can only be started up within the thread group.
979 	 */
980 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
981 		return ERR_PTR(-EINVAL);
982 
983 	/*
984 	 * Shared signal handlers imply shared VM. By way of the above,
985 	 * thread groups also imply shared VM. Blocking this case allows
986 	 * for various simplifications in other code.
987 	 */
988 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
989 		return ERR_PTR(-EINVAL);
990 
991 	/*
992 	 * Siblings of global init remain as zombies on exit since they are
993 	 * not reaped by their parent (swapper). To solve this and to avoid
994 	 * multi-rooted process trees, prevent global and container-inits
995 	 * from creating siblings.
996 	 */
997 	if ((clone_flags & CLONE_PARENT) &&
998 				current->signal->flags & SIGNAL_UNKILLABLE)
999 		return ERR_PTR(-EINVAL);
1000 
1001 	retval = security_task_create(clone_flags);
1002 	if (retval)
1003 		goto fork_out;
1004 
1005 	retval = -ENOMEM;
1006 	p = dup_task_struct(current);
1007 	if (!p)
1008 		goto fork_out;
1009 
1010 	ftrace_graph_init_task(p);
1011 
1012 	rt_mutex_init_task(p);
1013 
1014 #ifdef CONFIG_PROVE_LOCKING
1015 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1016 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1017 #endif
1018 	retval = -EAGAIN;
1019 	if (atomic_read(&p->real_cred->user->processes) >=
1020 			task_rlimit(p, RLIMIT_NPROC)) {
1021 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1022 		    p->real_cred->user != INIT_USER)
1023 			goto bad_fork_free;
1024 	}
1025 
1026 	retval = copy_creds(p, clone_flags);
1027 	if (retval < 0)
1028 		goto bad_fork_free;
1029 
1030 	/*
1031 	 * If multiple threads are within copy_process(), then this check
1032 	 * triggers too late. This doesn't hurt, the check is only there
1033 	 * to stop root fork bombs.
1034 	 */
1035 	retval = -EAGAIN;
1036 	if (nr_threads >= max_threads)
1037 		goto bad_fork_cleanup_count;
1038 
1039 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1040 		goto bad_fork_cleanup_count;
1041 
1042 	p->did_exec = 0;
1043 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1044 	copy_flags(clone_flags, p);
1045 	INIT_LIST_HEAD(&p->children);
1046 	INIT_LIST_HEAD(&p->sibling);
1047 	rcu_copy_process(p);
1048 	p->vfork_done = NULL;
1049 	spin_lock_init(&p->alloc_lock);
1050 
1051 	init_sigpending(&p->pending);
1052 
1053 	p->utime = cputime_zero;
1054 	p->stime = cputime_zero;
1055 	p->gtime = cputime_zero;
1056 	p->utimescaled = cputime_zero;
1057 	p->stimescaled = cputime_zero;
1058 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1059 	p->prev_utime = cputime_zero;
1060 	p->prev_stime = cputime_zero;
1061 #endif
1062 #if defined(SPLIT_RSS_COUNTING)
1063 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1064 #endif
1065 
1066 	p->default_timer_slack_ns = current->timer_slack_ns;
1067 
1068 	task_io_accounting_init(&p->ioac);
1069 	acct_clear_integrals(p);
1070 
1071 	posix_cpu_timers_init(p);
1072 
1073 	p->lock_depth = -1;		/* -1 = no lock */
1074 	do_posix_clock_monotonic_gettime(&p->start_time);
1075 	p->real_start_time = p->start_time;
1076 	monotonic_to_bootbased(&p->real_start_time);
1077 	p->io_context = NULL;
1078 	p->audit_context = NULL;
1079 	cgroup_fork(p);
1080 #ifdef CONFIG_NUMA
1081 	p->mempolicy = mpol_dup(p->mempolicy);
1082  	if (IS_ERR(p->mempolicy)) {
1083  		retval = PTR_ERR(p->mempolicy);
1084  		p->mempolicy = NULL;
1085  		goto bad_fork_cleanup_cgroup;
1086  	}
1087 	mpol_fix_fork_child_flag(p);
1088 #endif
1089 #ifdef CONFIG_TRACE_IRQFLAGS
1090 	p->irq_events = 0;
1091 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1092 	p->hardirqs_enabled = 1;
1093 #else
1094 	p->hardirqs_enabled = 0;
1095 #endif
1096 	p->hardirq_enable_ip = 0;
1097 	p->hardirq_enable_event = 0;
1098 	p->hardirq_disable_ip = _THIS_IP_;
1099 	p->hardirq_disable_event = 0;
1100 	p->softirqs_enabled = 1;
1101 	p->softirq_enable_ip = _THIS_IP_;
1102 	p->softirq_enable_event = 0;
1103 	p->softirq_disable_ip = 0;
1104 	p->softirq_disable_event = 0;
1105 	p->hardirq_context = 0;
1106 	p->softirq_context = 0;
1107 #endif
1108 #ifdef CONFIG_LOCKDEP
1109 	p->lockdep_depth = 0; /* no locks held yet */
1110 	p->curr_chain_key = 0;
1111 	p->lockdep_recursion = 0;
1112 #endif
1113 
1114 #ifdef CONFIG_DEBUG_MUTEXES
1115 	p->blocked_on = NULL; /* not blocked yet */
1116 #endif
1117 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1118 	p->memcg_batch.do_batch = 0;
1119 	p->memcg_batch.memcg = NULL;
1120 #endif
1121 
1122 	/* Perform scheduler related setup. Assign this task to a CPU. */
1123 	sched_fork(p, clone_flags);
1124 
1125 	retval = perf_event_init_task(p);
1126 	if (retval)
1127 		goto bad_fork_cleanup_policy;
1128 
1129 	if ((retval = audit_alloc(p)))
1130 		goto bad_fork_cleanup_policy;
1131 	/* copy all the process information */
1132 	if ((retval = copy_semundo(clone_flags, p)))
1133 		goto bad_fork_cleanup_audit;
1134 	if ((retval = copy_files(clone_flags, p)))
1135 		goto bad_fork_cleanup_semundo;
1136 	if ((retval = copy_fs(clone_flags, p)))
1137 		goto bad_fork_cleanup_files;
1138 	if ((retval = copy_sighand(clone_flags, p)))
1139 		goto bad_fork_cleanup_fs;
1140 	if ((retval = copy_signal(clone_flags, p)))
1141 		goto bad_fork_cleanup_sighand;
1142 	if ((retval = copy_mm(clone_flags, p)))
1143 		goto bad_fork_cleanup_signal;
1144 	if ((retval = copy_namespaces(clone_flags, p)))
1145 		goto bad_fork_cleanup_mm;
1146 	if ((retval = copy_io(clone_flags, p)))
1147 		goto bad_fork_cleanup_namespaces;
1148 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1149 	if (retval)
1150 		goto bad_fork_cleanup_io;
1151 
1152 	if (pid != &init_struct_pid) {
1153 		retval = -ENOMEM;
1154 		pid = alloc_pid(p->nsproxy->pid_ns);
1155 		if (!pid)
1156 			goto bad_fork_cleanup_io;
1157 
1158 		if (clone_flags & CLONE_NEWPID) {
1159 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1160 			if (retval < 0)
1161 				goto bad_fork_free_pid;
1162 		}
1163 	}
1164 
1165 	p->pid = pid_nr(pid);
1166 	p->tgid = p->pid;
1167 	if (clone_flags & CLONE_THREAD)
1168 		p->tgid = current->tgid;
1169 
1170 	if (current->nsproxy != p->nsproxy) {
1171 		retval = ns_cgroup_clone(p, pid);
1172 		if (retval)
1173 			goto bad_fork_free_pid;
1174 	}
1175 
1176 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1177 	/*
1178 	 * Clear TID on mm_release()?
1179 	 */
1180 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1181 #ifdef CONFIG_FUTEX
1182 	p->robust_list = NULL;
1183 #ifdef CONFIG_COMPAT
1184 	p->compat_robust_list = NULL;
1185 #endif
1186 	INIT_LIST_HEAD(&p->pi_state_list);
1187 	p->pi_state_cache = NULL;
1188 #endif
1189 	/*
1190 	 * sigaltstack should be cleared when sharing the same VM
1191 	 */
1192 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1193 		p->sas_ss_sp = p->sas_ss_size = 0;
1194 
1195 	/*
1196 	 * Syscall tracing and stepping should be turned off in the
1197 	 * child regardless of CLONE_PTRACE.
1198 	 */
1199 	user_disable_single_step(p);
1200 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1201 #ifdef TIF_SYSCALL_EMU
1202 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1203 #endif
1204 	clear_all_latency_tracing(p);
1205 
1206 	/* ok, now we should be set up.. */
1207 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1208 	p->pdeath_signal = 0;
1209 	p->exit_state = 0;
1210 
1211 	/*
1212 	 * Ok, make it visible to the rest of the system.
1213 	 * We dont wake it up yet.
1214 	 */
1215 	p->group_leader = p;
1216 	INIT_LIST_HEAD(&p->thread_group);
1217 
1218 	/* Now that the task is set up, run cgroup callbacks if
1219 	 * necessary. We need to run them before the task is visible
1220 	 * on the tasklist. */
1221 	cgroup_fork_callbacks(p);
1222 	cgroup_callbacks_done = 1;
1223 
1224 	/* Need tasklist lock for parent etc handling! */
1225 	write_lock_irq(&tasklist_lock);
1226 
1227 	/* CLONE_PARENT re-uses the old parent */
1228 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1229 		p->real_parent = current->real_parent;
1230 		p->parent_exec_id = current->parent_exec_id;
1231 	} else {
1232 		p->real_parent = current;
1233 		p->parent_exec_id = current->self_exec_id;
1234 	}
1235 
1236 	spin_lock(&current->sighand->siglock);
1237 
1238 	/*
1239 	 * Process group and session signals need to be delivered to just the
1240 	 * parent before the fork or both the parent and the child after the
1241 	 * fork. Restart if a signal comes in before we add the new process to
1242 	 * it's process group.
1243 	 * A fatal signal pending means that current will exit, so the new
1244 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1245  	 */
1246 	recalc_sigpending();
1247 	if (signal_pending(current)) {
1248 		spin_unlock(&current->sighand->siglock);
1249 		write_unlock_irq(&tasklist_lock);
1250 		retval = -ERESTARTNOINTR;
1251 		goto bad_fork_free_pid;
1252 	}
1253 
1254 	if (clone_flags & CLONE_THREAD) {
1255 		current->signal->nr_threads++;
1256 		atomic_inc(&current->signal->live);
1257 		atomic_inc(&current->signal->sigcnt);
1258 		p->group_leader = current->group_leader;
1259 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1260 	}
1261 
1262 	if (likely(p->pid)) {
1263 		tracehook_finish_clone(p, clone_flags, trace);
1264 
1265 		if (thread_group_leader(p)) {
1266 			if (clone_flags & CLONE_NEWPID)
1267 				p->nsproxy->pid_ns->child_reaper = p;
1268 
1269 			p->signal->leader_pid = pid;
1270 			p->signal->tty = tty_kref_get(current->signal->tty);
1271 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1272 			attach_pid(p, PIDTYPE_SID, task_session(current));
1273 			list_add_tail(&p->sibling, &p->real_parent->children);
1274 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1275 			__get_cpu_var(process_counts)++;
1276 		}
1277 		attach_pid(p, PIDTYPE_PID, pid);
1278 		nr_threads++;
1279 	}
1280 
1281 	total_forks++;
1282 	spin_unlock(&current->sighand->siglock);
1283 	write_unlock_irq(&tasklist_lock);
1284 	proc_fork_connector(p);
1285 	cgroup_post_fork(p);
1286 	perf_event_fork(p);
1287 	return p;
1288 
1289 bad_fork_free_pid:
1290 	if (pid != &init_struct_pid)
1291 		free_pid(pid);
1292 bad_fork_cleanup_io:
1293 	if (p->io_context)
1294 		exit_io_context(p);
1295 bad_fork_cleanup_namespaces:
1296 	exit_task_namespaces(p);
1297 bad_fork_cleanup_mm:
1298 	if (p->mm)
1299 		mmput(p->mm);
1300 bad_fork_cleanup_signal:
1301 	if (!(clone_flags & CLONE_THREAD))
1302 		free_signal_struct(p->signal);
1303 bad_fork_cleanup_sighand:
1304 	__cleanup_sighand(p->sighand);
1305 bad_fork_cleanup_fs:
1306 	exit_fs(p); /* blocking */
1307 bad_fork_cleanup_files:
1308 	exit_files(p); /* blocking */
1309 bad_fork_cleanup_semundo:
1310 	exit_sem(p);
1311 bad_fork_cleanup_audit:
1312 	audit_free(p);
1313 bad_fork_cleanup_policy:
1314 	perf_event_free_task(p);
1315 #ifdef CONFIG_NUMA
1316 	mpol_put(p->mempolicy);
1317 bad_fork_cleanup_cgroup:
1318 #endif
1319 	cgroup_exit(p, cgroup_callbacks_done);
1320 	delayacct_tsk_free(p);
1321 	module_put(task_thread_info(p)->exec_domain->module);
1322 bad_fork_cleanup_count:
1323 	atomic_dec(&p->cred->user->processes);
1324 	exit_creds(p);
1325 bad_fork_free:
1326 	free_task(p);
1327 fork_out:
1328 	return ERR_PTR(retval);
1329 }
1330 
1331 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1332 {
1333 	memset(regs, 0, sizeof(struct pt_regs));
1334 	return regs;
1335 }
1336 
1337 static inline void init_idle_pids(struct pid_link *links)
1338 {
1339 	enum pid_type type;
1340 
1341 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1342 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1343 		links[type].pid = &init_struct_pid;
1344 	}
1345 }
1346 
1347 struct task_struct * __cpuinit fork_idle(int cpu)
1348 {
1349 	struct task_struct *task;
1350 	struct pt_regs regs;
1351 
1352 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1353 			    &init_struct_pid, 0);
1354 	if (!IS_ERR(task)) {
1355 		init_idle_pids(task->pids);
1356 		init_idle(task, cpu);
1357 	}
1358 
1359 	return task;
1360 }
1361 
1362 /*
1363  *  Ok, this is the main fork-routine.
1364  *
1365  * It copies the process, and if successful kick-starts
1366  * it and waits for it to finish using the VM if required.
1367  */
1368 long do_fork(unsigned long clone_flags,
1369 	      unsigned long stack_start,
1370 	      struct pt_regs *regs,
1371 	      unsigned long stack_size,
1372 	      int __user *parent_tidptr,
1373 	      int __user *child_tidptr)
1374 {
1375 	struct task_struct *p;
1376 	int trace = 0;
1377 	long nr;
1378 
1379 	/*
1380 	 * Do some preliminary argument and permissions checking before we
1381 	 * actually start allocating stuff
1382 	 */
1383 	if (clone_flags & CLONE_NEWUSER) {
1384 		if (clone_flags & CLONE_THREAD)
1385 			return -EINVAL;
1386 		/* hopefully this check will go away when userns support is
1387 		 * complete
1388 		 */
1389 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1390 				!capable(CAP_SETGID))
1391 			return -EPERM;
1392 	}
1393 
1394 	/*
1395 	 * We hope to recycle these flags after 2.6.26
1396 	 */
1397 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1398 		static int __read_mostly count = 100;
1399 
1400 		if (count > 0 && printk_ratelimit()) {
1401 			char comm[TASK_COMM_LEN];
1402 
1403 			count--;
1404 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1405 					"clone flags 0x%lx\n",
1406 				get_task_comm(comm, current),
1407 				clone_flags & CLONE_STOPPED);
1408 		}
1409 	}
1410 
1411 	/*
1412 	 * When called from kernel_thread, don't do user tracing stuff.
1413 	 */
1414 	if (likely(user_mode(regs)))
1415 		trace = tracehook_prepare_clone(clone_flags);
1416 
1417 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1418 			 child_tidptr, NULL, trace);
1419 	/*
1420 	 * Do this prior waking up the new thread - the thread pointer
1421 	 * might get invalid after that point, if the thread exits quickly.
1422 	 */
1423 	if (!IS_ERR(p)) {
1424 		struct completion vfork;
1425 
1426 		trace_sched_process_fork(current, p);
1427 
1428 		nr = task_pid_vnr(p);
1429 
1430 		if (clone_flags & CLONE_PARENT_SETTID)
1431 			put_user(nr, parent_tidptr);
1432 
1433 		if (clone_flags & CLONE_VFORK) {
1434 			p->vfork_done = &vfork;
1435 			init_completion(&vfork);
1436 		}
1437 
1438 		audit_finish_fork(p);
1439 		tracehook_report_clone(regs, clone_flags, nr, p);
1440 
1441 		/*
1442 		 * We set PF_STARTING at creation in case tracing wants to
1443 		 * use this to distinguish a fully live task from one that
1444 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1445 		 * clear it and set the child going.
1446 		 */
1447 		p->flags &= ~PF_STARTING;
1448 
1449 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1450 			/*
1451 			 * We'll start up with an immediate SIGSTOP.
1452 			 */
1453 			sigaddset(&p->pending.signal, SIGSTOP);
1454 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1455 			__set_task_state(p, TASK_STOPPED);
1456 		} else {
1457 			wake_up_new_task(p, clone_flags);
1458 		}
1459 
1460 		tracehook_report_clone_complete(trace, regs,
1461 						clone_flags, nr, p);
1462 
1463 		if (clone_flags & CLONE_VFORK) {
1464 			freezer_do_not_count();
1465 			wait_for_completion(&vfork);
1466 			freezer_count();
1467 			tracehook_report_vfork_done(p, nr);
1468 		}
1469 	} else {
1470 		nr = PTR_ERR(p);
1471 	}
1472 	return nr;
1473 }
1474 
1475 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1476 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1477 #endif
1478 
1479 static void sighand_ctor(void *data)
1480 {
1481 	struct sighand_struct *sighand = data;
1482 
1483 	spin_lock_init(&sighand->siglock);
1484 	init_waitqueue_head(&sighand->signalfd_wqh);
1485 }
1486 
1487 void __init proc_caches_init(void)
1488 {
1489 	sighand_cachep = kmem_cache_create("sighand_cache",
1490 			sizeof(struct sighand_struct), 0,
1491 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1492 			SLAB_NOTRACK, sighand_ctor);
1493 	signal_cachep = kmem_cache_create("signal_cache",
1494 			sizeof(struct signal_struct), 0,
1495 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1496 	files_cachep = kmem_cache_create("files_cache",
1497 			sizeof(struct files_struct), 0,
1498 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1499 	fs_cachep = kmem_cache_create("fs_cache",
1500 			sizeof(struct fs_struct), 0,
1501 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1502 	mm_cachep = kmem_cache_create("mm_struct",
1503 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1504 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1505 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1506 	mmap_init();
1507 }
1508 
1509 /*
1510  * Check constraints on flags passed to the unshare system call and
1511  * force unsharing of additional process context as appropriate.
1512  */
1513 static void check_unshare_flags(unsigned long *flags_ptr)
1514 {
1515 	/*
1516 	 * If unsharing a thread from a thread group, must also
1517 	 * unshare vm.
1518 	 */
1519 	if (*flags_ptr & CLONE_THREAD)
1520 		*flags_ptr |= CLONE_VM;
1521 
1522 	/*
1523 	 * If unsharing vm, must also unshare signal handlers.
1524 	 */
1525 	if (*flags_ptr & CLONE_VM)
1526 		*flags_ptr |= CLONE_SIGHAND;
1527 
1528 	/*
1529 	 * If unsharing namespace, must also unshare filesystem information.
1530 	 */
1531 	if (*flags_ptr & CLONE_NEWNS)
1532 		*flags_ptr |= CLONE_FS;
1533 }
1534 
1535 /*
1536  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1537  */
1538 static int unshare_thread(unsigned long unshare_flags)
1539 {
1540 	if (unshare_flags & CLONE_THREAD)
1541 		return -EINVAL;
1542 
1543 	return 0;
1544 }
1545 
1546 /*
1547  * Unshare the filesystem structure if it is being shared
1548  */
1549 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1550 {
1551 	struct fs_struct *fs = current->fs;
1552 
1553 	if (!(unshare_flags & CLONE_FS) || !fs)
1554 		return 0;
1555 
1556 	/* don't need lock here; in the worst case we'll do useless copy */
1557 	if (fs->users == 1)
1558 		return 0;
1559 
1560 	*new_fsp = copy_fs_struct(fs);
1561 	if (!*new_fsp)
1562 		return -ENOMEM;
1563 
1564 	return 0;
1565 }
1566 
1567 /*
1568  * Unsharing of sighand is not supported yet
1569  */
1570 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1571 {
1572 	struct sighand_struct *sigh = current->sighand;
1573 
1574 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1575 		return -EINVAL;
1576 	else
1577 		return 0;
1578 }
1579 
1580 /*
1581  * Unshare vm if it is being shared
1582  */
1583 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1584 {
1585 	struct mm_struct *mm = current->mm;
1586 
1587 	if ((unshare_flags & CLONE_VM) &&
1588 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1589 		return -EINVAL;
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 /*
1596  * Unshare file descriptor table if it is being shared
1597  */
1598 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1599 {
1600 	struct files_struct *fd = current->files;
1601 	int error = 0;
1602 
1603 	if ((unshare_flags & CLONE_FILES) &&
1604 	    (fd && atomic_read(&fd->count) > 1)) {
1605 		*new_fdp = dup_fd(fd, &error);
1606 		if (!*new_fdp)
1607 			return error;
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 /*
1614  * unshare allows a process to 'unshare' part of the process
1615  * context which was originally shared using clone.  copy_*
1616  * functions used by do_fork() cannot be used here directly
1617  * because they modify an inactive task_struct that is being
1618  * constructed. Here we are modifying the current, active,
1619  * task_struct.
1620  */
1621 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1622 {
1623 	int err = 0;
1624 	struct fs_struct *fs, *new_fs = NULL;
1625 	struct sighand_struct *new_sigh = NULL;
1626 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1627 	struct files_struct *fd, *new_fd = NULL;
1628 	struct nsproxy *new_nsproxy = NULL;
1629 	int do_sysvsem = 0;
1630 
1631 	check_unshare_flags(&unshare_flags);
1632 
1633 	/* Return -EINVAL for all unsupported flags */
1634 	err = -EINVAL;
1635 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1636 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1637 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1638 		goto bad_unshare_out;
1639 
1640 	/*
1641 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1642 	 * to a new ipc namespace, the semaphore arrays from the old
1643 	 * namespace are unreachable.
1644 	 */
1645 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1646 		do_sysvsem = 1;
1647 	if ((err = unshare_thread(unshare_flags)))
1648 		goto bad_unshare_out;
1649 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1650 		goto bad_unshare_cleanup_thread;
1651 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1652 		goto bad_unshare_cleanup_fs;
1653 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1654 		goto bad_unshare_cleanup_sigh;
1655 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1656 		goto bad_unshare_cleanup_vm;
1657 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1658 			new_fs)))
1659 		goto bad_unshare_cleanup_fd;
1660 
1661 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1662 		if (do_sysvsem) {
1663 			/*
1664 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1665 			 */
1666 			exit_sem(current);
1667 		}
1668 
1669 		if (new_nsproxy) {
1670 			switch_task_namespaces(current, new_nsproxy);
1671 			new_nsproxy = NULL;
1672 		}
1673 
1674 		task_lock(current);
1675 
1676 		if (new_fs) {
1677 			fs = current->fs;
1678 			write_lock(&fs->lock);
1679 			current->fs = new_fs;
1680 			if (--fs->users)
1681 				new_fs = NULL;
1682 			else
1683 				new_fs = fs;
1684 			write_unlock(&fs->lock);
1685 		}
1686 
1687 		if (new_mm) {
1688 			mm = current->mm;
1689 			active_mm = current->active_mm;
1690 			current->mm = new_mm;
1691 			current->active_mm = new_mm;
1692 			activate_mm(active_mm, new_mm);
1693 			new_mm = mm;
1694 		}
1695 
1696 		if (new_fd) {
1697 			fd = current->files;
1698 			current->files = new_fd;
1699 			new_fd = fd;
1700 		}
1701 
1702 		task_unlock(current);
1703 	}
1704 
1705 	if (new_nsproxy)
1706 		put_nsproxy(new_nsproxy);
1707 
1708 bad_unshare_cleanup_fd:
1709 	if (new_fd)
1710 		put_files_struct(new_fd);
1711 
1712 bad_unshare_cleanup_vm:
1713 	if (new_mm)
1714 		mmput(new_mm);
1715 
1716 bad_unshare_cleanup_sigh:
1717 	if (new_sigh)
1718 		if (atomic_dec_and_test(&new_sigh->count))
1719 			kmem_cache_free(sighand_cachep, new_sigh);
1720 
1721 bad_unshare_cleanup_fs:
1722 	if (new_fs)
1723 		free_fs_struct(new_fs);
1724 
1725 bad_unshare_cleanup_thread:
1726 bad_unshare_out:
1727 	return err;
1728 }
1729 
1730 /*
1731  *	Helper to unshare the files of the current task.
1732  *	We don't want to expose copy_files internals to
1733  *	the exec layer of the kernel.
1734  */
1735 
1736 int unshare_files(struct files_struct **displaced)
1737 {
1738 	struct task_struct *task = current;
1739 	struct files_struct *copy = NULL;
1740 	int error;
1741 
1742 	error = unshare_fd(CLONE_FILES, &copy);
1743 	if (error || !copy) {
1744 		*displaced = NULL;
1745 		return error;
1746 	}
1747 	*displaced = task->files;
1748 	task_lock(task);
1749 	task->files = copy;
1750 	task_unlock(task);
1751 	return 0;
1752 }
1753