xref: /openbmc/linux/kernel/fork.c (revision 5b25ab29)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <trace/sched.h>
65 #include <linux/magic.h>
66 
67 #include <asm/pgtable.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/cacheflush.h>
72 #include <asm/tlbflush.h>
73 
74 /*
75  * Protected counters by write_lock_irq(&tasklist_lock)
76  */
77 unsigned long total_forks;	/* Handle normal Linux uptimes. */
78 int nr_threads; 		/* The idle threads do not count.. */
79 
80 int max_threads;		/* tunable limit on nr_threads */
81 
82 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
83 
84 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
85 
86 DEFINE_TRACE(sched_process_fork);
87 
88 int nr_processes(void)
89 {
90 	int cpu;
91 	int total = 0;
92 
93 	for_each_online_cpu(cpu)
94 		total += per_cpu(process_counts, cpu);
95 
96 	return total;
97 }
98 
99 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
100 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
101 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
102 static struct kmem_cache *task_struct_cachep;
103 #endif
104 
105 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
106 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
107 {
108 #ifdef CONFIG_DEBUG_STACK_USAGE
109 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
110 #else
111 	gfp_t mask = GFP_KERNEL;
112 #endif
113 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
114 }
115 
116 static inline void free_thread_info(struct thread_info *ti)
117 {
118 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
119 }
120 #endif
121 
122 /* SLAB cache for signal_struct structures (tsk->signal) */
123 static struct kmem_cache *signal_cachep;
124 
125 /* SLAB cache for sighand_struct structures (tsk->sighand) */
126 struct kmem_cache *sighand_cachep;
127 
128 /* SLAB cache for files_struct structures (tsk->files) */
129 struct kmem_cache *files_cachep;
130 
131 /* SLAB cache for fs_struct structures (tsk->fs) */
132 struct kmem_cache *fs_cachep;
133 
134 /* SLAB cache for vm_area_struct structures */
135 struct kmem_cache *vm_area_cachep;
136 
137 /* SLAB cache for mm_struct structures (tsk->mm) */
138 static struct kmem_cache *mm_cachep;
139 
140 void free_task(struct task_struct *tsk)
141 {
142 	prop_local_destroy_single(&tsk->dirties);
143 	free_thread_info(tsk->stack);
144 	rt_mutex_debug_task_free(tsk);
145 	ftrace_graph_exit_task(tsk);
146 	free_task_struct(tsk);
147 }
148 EXPORT_SYMBOL(free_task);
149 
150 void __put_task_struct(struct task_struct *tsk)
151 {
152 	WARN_ON(!tsk->exit_state);
153 	WARN_ON(atomic_read(&tsk->usage));
154 	WARN_ON(tsk == current);
155 
156 	put_cred(tsk->real_cred);
157 	put_cred(tsk->cred);
158 	delayacct_tsk_free(tsk);
159 
160 	if (!profile_handoff_task(tsk))
161 		free_task(tsk);
162 }
163 
164 /*
165  * macro override instead of weak attribute alias, to workaround
166  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
167  */
168 #ifndef arch_task_cache_init
169 #define arch_task_cache_init()
170 #endif
171 
172 void __init fork_init(unsigned long mempages)
173 {
174 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
175 #ifndef ARCH_MIN_TASKALIGN
176 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
177 #endif
178 	/* create a slab on which task_structs can be allocated */
179 	task_struct_cachep =
180 		kmem_cache_create("task_struct", sizeof(struct task_struct),
181 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
182 #endif
183 
184 	/* do the arch specific task caches init */
185 	arch_task_cache_init();
186 
187 	/*
188 	 * The default maximum number of threads is set to a safe
189 	 * value: the thread structures can take up at most half
190 	 * of memory.
191 	 */
192 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
193 
194 	/*
195 	 * we need to allow at least 20 threads to boot a system
196 	 */
197 	if(max_threads < 20)
198 		max_threads = 20;
199 
200 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
201 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
202 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
203 		init_task.signal->rlim[RLIMIT_NPROC];
204 }
205 
206 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
207 					       struct task_struct *src)
208 {
209 	*dst = *src;
210 	return 0;
211 }
212 
213 static struct task_struct *dup_task_struct(struct task_struct *orig)
214 {
215 	struct task_struct *tsk;
216 	struct thread_info *ti;
217 	unsigned long *stackend;
218 
219 	int err;
220 
221 	prepare_to_copy(orig);
222 
223 	tsk = alloc_task_struct();
224 	if (!tsk)
225 		return NULL;
226 
227 	ti = alloc_thread_info(tsk);
228 	if (!ti) {
229 		free_task_struct(tsk);
230 		return NULL;
231 	}
232 
233  	err = arch_dup_task_struct(tsk, orig);
234 	if (err)
235 		goto out;
236 
237 	tsk->stack = ti;
238 
239 	err = prop_local_init_single(&tsk->dirties);
240 	if (err)
241 		goto out;
242 
243 	setup_thread_stack(tsk, orig);
244 	stackend = end_of_stack(tsk);
245 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
246 
247 #ifdef CONFIG_CC_STACKPROTECTOR
248 	tsk->stack_canary = get_random_int();
249 #endif
250 
251 	/* One for us, one for whoever does the "release_task()" (usually parent) */
252 	atomic_set(&tsk->usage,2);
253 	atomic_set(&tsk->fs_excl, 0);
254 #ifdef CONFIG_BLK_DEV_IO_TRACE
255 	tsk->btrace_seq = 0;
256 #endif
257 	tsk->splice_pipe = NULL;
258 	return tsk;
259 
260 out:
261 	free_thread_info(ti);
262 	free_task_struct(tsk);
263 	return NULL;
264 }
265 
266 #ifdef CONFIG_MMU
267 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
268 {
269 	struct vm_area_struct *mpnt, *tmp, **pprev;
270 	struct rb_node **rb_link, *rb_parent;
271 	int retval;
272 	unsigned long charge;
273 	struct mempolicy *pol;
274 
275 	down_write(&oldmm->mmap_sem);
276 	flush_cache_dup_mm(oldmm);
277 	/*
278 	 * Not linked in yet - no deadlock potential:
279 	 */
280 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
281 
282 	mm->locked_vm = 0;
283 	mm->mmap = NULL;
284 	mm->mmap_cache = NULL;
285 	mm->free_area_cache = oldmm->mmap_base;
286 	mm->cached_hole_size = ~0UL;
287 	mm->map_count = 0;
288 	cpumask_clear(mm_cpumask(mm));
289 	mm->mm_rb = RB_ROOT;
290 	rb_link = &mm->mm_rb.rb_node;
291 	rb_parent = NULL;
292 	pprev = &mm->mmap;
293 
294 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
295 		struct file *file;
296 
297 		if (mpnt->vm_flags & VM_DONTCOPY) {
298 			long pages = vma_pages(mpnt);
299 			mm->total_vm -= pages;
300 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
301 								-pages);
302 			continue;
303 		}
304 		charge = 0;
305 		if (mpnt->vm_flags & VM_ACCOUNT) {
306 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
307 			if (security_vm_enough_memory(len))
308 				goto fail_nomem;
309 			charge = len;
310 		}
311 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
312 		if (!tmp)
313 			goto fail_nomem;
314 		*tmp = *mpnt;
315 		pol = mpol_dup(vma_policy(mpnt));
316 		retval = PTR_ERR(pol);
317 		if (IS_ERR(pol))
318 			goto fail_nomem_policy;
319 		vma_set_policy(tmp, pol);
320 		tmp->vm_flags &= ~VM_LOCKED;
321 		tmp->vm_mm = mm;
322 		tmp->vm_next = NULL;
323 		anon_vma_link(tmp);
324 		file = tmp->vm_file;
325 		if (file) {
326 			struct inode *inode = file->f_path.dentry->d_inode;
327 			struct address_space *mapping = file->f_mapping;
328 
329 			get_file(file);
330 			if (tmp->vm_flags & VM_DENYWRITE)
331 				atomic_dec(&inode->i_writecount);
332 			spin_lock(&mapping->i_mmap_lock);
333 			if (tmp->vm_flags & VM_SHARED)
334 				mapping->i_mmap_writable++;
335 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
336 			flush_dcache_mmap_lock(mapping);
337 			/* insert tmp into the share list, just after mpnt */
338 			vma_prio_tree_add(tmp, mpnt);
339 			flush_dcache_mmap_unlock(mapping);
340 			spin_unlock(&mapping->i_mmap_lock);
341 		}
342 
343 		/*
344 		 * Clear hugetlb-related page reserves for children. This only
345 		 * affects MAP_PRIVATE mappings. Faults generated by the child
346 		 * are not guaranteed to succeed, even if read-only
347 		 */
348 		if (is_vm_hugetlb_page(tmp))
349 			reset_vma_resv_huge_pages(tmp);
350 
351 		/*
352 		 * Link in the new vma and copy the page table entries.
353 		 */
354 		*pprev = tmp;
355 		pprev = &tmp->vm_next;
356 
357 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
358 		rb_link = &tmp->vm_rb.rb_right;
359 		rb_parent = &tmp->vm_rb;
360 
361 		mm->map_count++;
362 		retval = copy_page_range(mm, oldmm, mpnt);
363 
364 		if (tmp->vm_ops && tmp->vm_ops->open)
365 			tmp->vm_ops->open(tmp);
366 
367 		if (retval)
368 			goto out;
369 	}
370 	/* a new mm has just been created */
371 	arch_dup_mmap(oldmm, mm);
372 	retval = 0;
373 out:
374 	up_write(&mm->mmap_sem);
375 	flush_tlb_mm(oldmm);
376 	up_write(&oldmm->mmap_sem);
377 	return retval;
378 fail_nomem_policy:
379 	kmem_cache_free(vm_area_cachep, tmp);
380 fail_nomem:
381 	retval = -ENOMEM;
382 	vm_unacct_memory(charge);
383 	goto out;
384 }
385 
386 static inline int mm_alloc_pgd(struct mm_struct * mm)
387 {
388 	mm->pgd = pgd_alloc(mm);
389 	if (unlikely(!mm->pgd))
390 		return -ENOMEM;
391 	return 0;
392 }
393 
394 static inline void mm_free_pgd(struct mm_struct * mm)
395 {
396 	pgd_free(mm, mm->pgd);
397 }
398 #else
399 #define dup_mmap(mm, oldmm)	(0)
400 #define mm_alloc_pgd(mm)	(0)
401 #define mm_free_pgd(mm)
402 #endif /* CONFIG_MMU */
403 
404 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
405 
406 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
407 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
408 
409 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
410 
411 static int __init coredump_filter_setup(char *s)
412 {
413 	default_dump_filter =
414 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
415 		MMF_DUMP_FILTER_MASK;
416 	return 1;
417 }
418 
419 __setup("coredump_filter=", coredump_filter_setup);
420 
421 #include <linux/init_task.h>
422 
423 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
424 {
425 	atomic_set(&mm->mm_users, 1);
426 	atomic_set(&mm->mm_count, 1);
427 	init_rwsem(&mm->mmap_sem);
428 	INIT_LIST_HEAD(&mm->mmlist);
429 	mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
430 	mm->core_state = NULL;
431 	mm->nr_ptes = 0;
432 	set_mm_counter(mm, file_rss, 0);
433 	set_mm_counter(mm, anon_rss, 0);
434 	spin_lock_init(&mm->page_table_lock);
435 	spin_lock_init(&mm->ioctx_lock);
436 	INIT_HLIST_HEAD(&mm->ioctx_list);
437 	mm->free_area_cache = TASK_UNMAPPED_BASE;
438 	mm->cached_hole_size = ~0UL;
439 	mm_init_owner(mm, p);
440 
441 	if (likely(!mm_alloc_pgd(mm))) {
442 		mm->def_flags = 0;
443 		mmu_notifier_mm_init(mm);
444 		return mm;
445 	}
446 
447 	free_mm(mm);
448 	return NULL;
449 }
450 
451 /*
452  * Allocate and initialize an mm_struct.
453  */
454 struct mm_struct * mm_alloc(void)
455 {
456 	struct mm_struct * mm;
457 
458 	mm = allocate_mm();
459 	if (mm) {
460 		memset(mm, 0, sizeof(*mm));
461 		mm = mm_init(mm, current);
462 	}
463 	return mm;
464 }
465 
466 /*
467  * Called when the last reference to the mm
468  * is dropped: either by a lazy thread or by
469  * mmput. Free the page directory and the mm.
470  */
471 void __mmdrop(struct mm_struct *mm)
472 {
473 	BUG_ON(mm == &init_mm);
474 	mm_free_pgd(mm);
475 	destroy_context(mm);
476 	mmu_notifier_mm_destroy(mm);
477 	free_mm(mm);
478 }
479 EXPORT_SYMBOL_GPL(__mmdrop);
480 
481 /*
482  * Decrement the use count and release all resources for an mm.
483  */
484 void mmput(struct mm_struct *mm)
485 {
486 	might_sleep();
487 
488 	if (atomic_dec_and_test(&mm->mm_users)) {
489 		exit_aio(mm);
490 		exit_mmap(mm);
491 		set_mm_exe_file(mm, NULL);
492 		if (!list_empty(&mm->mmlist)) {
493 			spin_lock(&mmlist_lock);
494 			list_del(&mm->mmlist);
495 			spin_unlock(&mmlist_lock);
496 		}
497 		put_swap_token(mm);
498 		mmdrop(mm);
499 	}
500 }
501 EXPORT_SYMBOL_GPL(mmput);
502 
503 /**
504  * get_task_mm - acquire a reference to the task's mm
505  *
506  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
507  * this kernel workthread has transiently adopted a user mm with use_mm,
508  * to do its AIO) is not set and if so returns a reference to it, after
509  * bumping up the use count.  User must release the mm via mmput()
510  * after use.  Typically used by /proc and ptrace.
511  */
512 struct mm_struct *get_task_mm(struct task_struct *task)
513 {
514 	struct mm_struct *mm;
515 
516 	task_lock(task);
517 	mm = task->mm;
518 	if (mm) {
519 		if (task->flags & PF_KTHREAD)
520 			mm = NULL;
521 		else
522 			atomic_inc(&mm->mm_users);
523 	}
524 	task_unlock(task);
525 	return mm;
526 }
527 EXPORT_SYMBOL_GPL(get_task_mm);
528 
529 /* Please note the differences between mmput and mm_release.
530  * mmput is called whenever we stop holding onto a mm_struct,
531  * error success whatever.
532  *
533  * mm_release is called after a mm_struct has been removed
534  * from the current process.
535  *
536  * This difference is important for error handling, when we
537  * only half set up a mm_struct for a new process and need to restore
538  * the old one.  Because we mmput the new mm_struct before
539  * restoring the old one. . .
540  * Eric Biederman 10 January 1998
541  */
542 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
543 {
544 	struct completion *vfork_done = tsk->vfork_done;
545 
546 	/* Get rid of any futexes when releasing the mm */
547 #ifdef CONFIG_FUTEX
548 	if (unlikely(tsk->robust_list))
549 		exit_robust_list(tsk);
550 #ifdef CONFIG_COMPAT
551 	if (unlikely(tsk->compat_robust_list))
552 		compat_exit_robust_list(tsk);
553 #endif
554 #endif
555 
556 	/* Get rid of any cached register state */
557 	deactivate_mm(tsk, mm);
558 
559 	/* notify parent sleeping on vfork() */
560 	if (vfork_done) {
561 		tsk->vfork_done = NULL;
562 		complete(vfork_done);
563 	}
564 
565 	/*
566 	 * If we're exiting normally, clear a user-space tid field if
567 	 * requested.  We leave this alone when dying by signal, to leave
568 	 * the value intact in a core dump, and to save the unnecessary
569 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
570 	 */
571 	if (tsk->clear_child_tid
572 	    && !(tsk->flags & PF_SIGNALED)
573 	    && atomic_read(&mm->mm_users) > 1) {
574 		u32 __user * tidptr = tsk->clear_child_tid;
575 		tsk->clear_child_tid = NULL;
576 
577 		/*
578 		 * We don't check the error code - if userspace has
579 		 * not set up a proper pointer then tough luck.
580 		 */
581 		put_user(0, tidptr);
582 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
583 	}
584 }
585 
586 /*
587  * Allocate a new mm structure and copy contents from the
588  * mm structure of the passed in task structure.
589  */
590 struct mm_struct *dup_mm(struct task_struct *tsk)
591 {
592 	struct mm_struct *mm, *oldmm = current->mm;
593 	int err;
594 
595 	if (!oldmm)
596 		return NULL;
597 
598 	mm = allocate_mm();
599 	if (!mm)
600 		goto fail_nomem;
601 
602 	memcpy(mm, oldmm, sizeof(*mm));
603 
604 	/* Initializing for Swap token stuff */
605 	mm->token_priority = 0;
606 	mm->last_interval = 0;
607 
608 	if (!mm_init(mm, tsk))
609 		goto fail_nomem;
610 
611 	if (init_new_context(tsk, mm))
612 		goto fail_nocontext;
613 
614 	dup_mm_exe_file(oldmm, mm);
615 
616 	err = dup_mmap(mm, oldmm);
617 	if (err)
618 		goto free_pt;
619 
620 	mm->hiwater_rss = get_mm_rss(mm);
621 	mm->hiwater_vm = mm->total_vm;
622 
623 	return mm;
624 
625 free_pt:
626 	mmput(mm);
627 
628 fail_nomem:
629 	return NULL;
630 
631 fail_nocontext:
632 	/*
633 	 * If init_new_context() failed, we cannot use mmput() to free the mm
634 	 * because it calls destroy_context()
635 	 */
636 	mm_free_pgd(mm);
637 	free_mm(mm);
638 	return NULL;
639 }
640 
641 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
642 {
643 	struct mm_struct * mm, *oldmm;
644 	int retval;
645 
646 	tsk->min_flt = tsk->maj_flt = 0;
647 	tsk->nvcsw = tsk->nivcsw = 0;
648 #ifdef CONFIG_DETECT_HUNG_TASK
649 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
650 #endif
651 
652 	tsk->mm = NULL;
653 	tsk->active_mm = NULL;
654 
655 	/*
656 	 * Are we cloning a kernel thread?
657 	 *
658 	 * We need to steal a active VM for that..
659 	 */
660 	oldmm = current->mm;
661 	if (!oldmm)
662 		return 0;
663 
664 	if (clone_flags & CLONE_VM) {
665 		atomic_inc(&oldmm->mm_users);
666 		mm = oldmm;
667 		goto good_mm;
668 	}
669 
670 	retval = -ENOMEM;
671 	mm = dup_mm(tsk);
672 	if (!mm)
673 		goto fail_nomem;
674 
675 good_mm:
676 	/* Initializing for Swap token stuff */
677 	mm->token_priority = 0;
678 	mm->last_interval = 0;
679 
680 	tsk->mm = mm;
681 	tsk->active_mm = mm;
682 	return 0;
683 
684 fail_nomem:
685 	return retval;
686 }
687 
688 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
689 {
690 	struct fs_struct *fs = current->fs;
691 	if (clone_flags & CLONE_FS) {
692 		/* tsk->fs is already what we want */
693 		write_lock(&fs->lock);
694 		if (fs->in_exec) {
695 			write_unlock(&fs->lock);
696 			return -EAGAIN;
697 		}
698 		fs->users++;
699 		write_unlock(&fs->lock);
700 		return 0;
701 	}
702 	tsk->fs = copy_fs_struct(fs);
703 	if (!tsk->fs)
704 		return -ENOMEM;
705 	return 0;
706 }
707 
708 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
709 {
710 	struct files_struct *oldf, *newf;
711 	int error = 0;
712 
713 	/*
714 	 * A background process may not have any files ...
715 	 */
716 	oldf = current->files;
717 	if (!oldf)
718 		goto out;
719 
720 	if (clone_flags & CLONE_FILES) {
721 		atomic_inc(&oldf->count);
722 		goto out;
723 	}
724 
725 	newf = dup_fd(oldf, &error);
726 	if (!newf)
727 		goto out;
728 
729 	tsk->files = newf;
730 	error = 0;
731 out:
732 	return error;
733 }
734 
735 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
736 {
737 #ifdef CONFIG_BLOCK
738 	struct io_context *ioc = current->io_context;
739 
740 	if (!ioc)
741 		return 0;
742 	/*
743 	 * Share io context with parent, if CLONE_IO is set
744 	 */
745 	if (clone_flags & CLONE_IO) {
746 		tsk->io_context = ioc_task_link(ioc);
747 		if (unlikely(!tsk->io_context))
748 			return -ENOMEM;
749 	} else if (ioprio_valid(ioc->ioprio)) {
750 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
751 		if (unlikely(!tsk->io_context))
752 			return -ENOMEM;
753 
754 		tsk->io_context->ioprio = ioc->ioprio;
755 	}
756 #endif
757 	return 0;
758 }
759 
760 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
761 {
762 	struct sighand_struct *sig;
763 
764 	if (clone_flags & CLONE_SIGHAND) {
765 		atomic_inc(&current->sighand->count);
766 		return 0;
767 	}
768 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
769 	rcu_assign_pointer(tsk->sighand, sig);
770 	if (!sig)
771 		return -ENOMEM;
772 	atomic_set(&sig->count, 1);
773 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
774 	return 0;
775 }
776 
777 void __cleanup_sighand(struct sighand_struct *sighand)
778 {
779 	if (atomic_dec_and_test(&sighand->count))
780 		kmem_cache_free(sighand_cachep, sighand);
781 }
782 
783 
784 /*
785  * Initialize POSIX timer handling for a thread group.
786  */
787 static void posix_cpu_timers_init_group(struct signal_struct *sig)
788 {
789 	/* Thread group counters. */
790 	thread_group_cputime_init(sig);
791 
792 	/* Expiration times and increments. */
793 	sig->it_virt_expires = cputime_zero;
794 	sig->it_virt_incr = cputime_zero;
795 	sig->it_prof_expires = cputime_zero;
796 	sig->it_prof_incr = cputime_zero;
797 
798 	/* Cached expiration times. */
799 	sig->cputime_expires.prof_exp = cputime_zero;
800 	sig->cputime_expires.virt_exp = cputime_zero;
801 	sig->cputime_expires.sched_exp = 0;
802 
803 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
804 		sig->cputime_expires.prof_exp =
805 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
806 		sig->cputimer.running = 1;
807 	}
808 
809 	/* The timer lists. */
810 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
811 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
812 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
813 }
814 
815 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
816 {
817 	struct signal_struct *sig;
818 
819 	if (clone_flags & CLONE_THREAD) {
820 		atomic_inc(&current->signal->count);
821 		atomic_inc(&current->signal->live);
822 		return 0;
823 	}
824 
825 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
826 	tsk->signal = sig;
827 	if (!sig)
828 		return -ENOMEM;
829 
830 	atomic_set(&sig->count, 1);
831 	atomic_set(&sig->live, 1);
832 	init_waitqueue_head(&sig->wait_chldexit);
833 	sig->flags = 0;
834 	if (clone_flags & CLONE_NEWPID)
835 		sig->flags |= SIGNAL_UNKILLABLE;
836 	sig->group_exit_code = 0;
837 	sig->group_exit_task = NULL;
838 	sig->group_stop_count = 0;
839 	sig->curr_target = tsk;
840 	init_sigpending(&sig->shared_pending);
841 	INIT_LIST_HEAD(&sig->posix_timers);
842 
843 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
844 	sig->it_real_incr.tv64 = 0;
845 	sig->real_timer.function = it_real_fn;
846 
847 	sig->leader = 0;	/* session leadership doesn't inherit */
848 	sig->tty_old_pgrp = NULL;
849 	sig->tty = NULL;
850 
851 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
852 	sig->gtime = cputime_zero;
853 	sig->cgtime = cputime_zero;
854 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
855 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
856 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
857 	task_io_accounting_init(&sig->ioac);
858 	sig->sum_sched_runtime = 0;
859 	taskstats_tgid_init(sig);
860 
861 	task_lock(current->group_leader);
862 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
863 	task_unlock(current->group_leader);
864 
865 	posix_cpu_timers_init_group(sig);
866 
867 	acct_init_pacct(&sig->pacct);
868 
869 	tty_audit_fork(sig);
870 
871 	return 0;
872 }
873 
874 void __cleanup_signal(struct signal_struct *sig)
875 {
876 	thread_group_cputime_free(sig);
877 	tty_kref_put(sig->tty);
878 	kmem_cache_free(signal_cachep, sig);
879 }
880 
881 static void cleanup_signal(struct task_struct *tsk)
882 {
883 	struct signal_struct *sig = tsk->signal;
884 
885 	atomic_dec(&sig->live);
886 
887 	if (atomic_dec_and_test(&sig->count))
888 		__cleanup_signal(sig);
889 }
890 
891 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
892 {
893 	unsigned long new_flags = p->flags;
894 
895 	new_flags &= ~PF_SUPERPRIV;
896 	new_flags |= PF_FORKNOEXEC;
897 	new_flags |= PF_STARTING;
898 	p->flags = new_flags;
899 	clear_freeze_flag(p);
900 }
901 
902 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
903 {
904 	current->clear_child_tid = tidptr;
905 
906 	return task_pid_vnr(current);
907 }
908 
909 static void rt_mutex_init_task(struct task_struct *p)
910 {
911 	spin_lock_init(&p->pi_lock);
912 #ifdef CONFIG_RT_MUTEXES
913 	plist_head_init(&p->pi_waiters, &p->pi_lock);
914 	p->pi_blocked_on = NULL;
915 #endif
916 }
917 
918 #ifdef CONFIG_MM_OWNER
919 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
920 {
921 	mm->owner = p;
922 }
923 #endif /* CONFIG_MM_OWNER */
924 
925 /*
926  * Initialize POSIX timer handling for a single task.
927  */
928 static void posix_cpu_timers_init(struct task_struct *tsk)
929 {
930 	tsk->cputime_expires.prof_exp = cputime_zero;
931 	tsk->cputime_expires.virt_exp = cputime_zero;
932 	tsk->cputime_expires.sched_exp = 0;
933 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
934 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
935 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
936 }
937 
938 /*
939  * This creates a new process as a copy of the old one,
940  * but does not actually start it yet.
941  *
942  * It copies the registers, and all the appropriate
943  * parts of the process environment (as per the clone
944  * flags). The actual kick-off is left to the caller.
945  */
946 static struct task_struct *copy_process(unsigned long clone_flags,
947 					unsigned long stack_start,
948 					struct pt_regs *regs,
949 					unsigned long stack_size,
950 					int __user *child_tidptr,
951 					struct pid *pid,
952 					int trace)
953 {
954 	int retval;
955 	struct task_struct *p;
956 	int cgroup_callbacks_done = 0;
957 
958 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
959 		return ERR_PTR(-EINVAL);
960 
961 	/*
962 	 * Thread groups must share signals as well, and detached threads
963 	 * can only be started up within the thread group.
964 	 */
965 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
966 		return ERR_PTR(-EINVAL);
967 
968 	/*
969 	 * Shared signal handlers imply shared VM. By way of the above,
970 	 * thread groups also imply shared VM. Blocking this case allows
971 	 * for various simplifications in other code.
972 	 */
973 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
974 		return ERR_PTR(-EINVAL);
975 
976 	retval = security_task_create(clone_flags);
977 	if (retval)
978 		goto fork_out;
979 
980 	retval = -ENOMEM;
981 	p = dup_task_struct(current);
982 	if (!p)
983 		goto fork_out;
984 
985 	rt_mutex_init_task(p);
986 
987 #ifdef CONFIG_PROVE_LOCKING
988 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
989 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
990 #endif
991 	retval = -EAGAIN;
992 	if (atomic_read(&p->real_cred->user->processes) >=
993 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
994 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
995 		    p->real_cred->user != INIT_USER)
996 			goto bad_fork_free;
997 	}
998 
999 	retval = copy_creds(p, clone_flags);
1000 	if (retval < 0)
1001 		goto bad_fork_free;
1002 
1003 	/*
1004 	 * If multiple threads are within copy_process(), then this check
1005 	 * triggers too late. This doesn't hurt, the check is only there
1006 	 * to stop root fork bombs.
1007 	 */
1008 	retval = -EAGAIN;
1009 	if (nr_threads >= max_threads)
1010 		goto bad_fork_cleanup_count;
1011 
1012 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1013 		goto bad_fork_cleanup_count;
1014 
1015 	if (p->binfmt && !try_module_get(p->binfmt->module))
1016 		goto bad_fork_cleanup_put_domain;
1017 
1018 	p->did_exec = 0;
1019 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1020 	copy_flags(clone_flags, p);
1021 	INIT_LIST_HEAD(&p->children);
1022 	INIT_LIST_HEAD(&p->sibling);
1023 #ifdef CONFIG_PREEMPT_RCU
1024 	p->rcu_read_lock_nesting = 0;
1025 	p->rcu_flipctr_idx = 0;
1026 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1027 	p->vfork_done = NULL;
1028 	spin_lock_init(&p->alloc_lock);
1029 
1030 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1031 	init_sigpending(&p->pending);
1032 
1033 	p->utime = cputime_zero;
1034 	p->stime = cputime_zero;
1035 	p->gtime = cputime_zero;
1036 	p->utimescaled = cputime_zero;
1037 	p->stimescaled = cputime_zero;
1038 	p->prev_utime = cputime_zero;
1039 	p->prev_stime = cputime_zero;
1040 
1041 	p->default_timer_slack_ns = current->timer_slack_ns;
1042 
1043 	task_io_accounting_init(&p->ioac);
1044 	acct_clear_integrals(p);
1045 
1046 	posix_cpu_timers_init(p);
1047 
1048 	p->lock_depth = -1;		/* -1 = no lock */
1049 	do_posix_clock_monotonic_gettime(&p->start_time);
1050 	p->real_start_time = p->start_time;
1051 	monotonic_to_bootbased(&p->real_start_time);
1052 	p->io_context = NULL;
1053 	p->audit_context = NULL;
1054 	cgroup_fork(p);
1055 #ifdef CONFIG_NUMA
1056 	p->mempolicy = mpol_dup(p->mempolicy);
1057  	if (IS_ERR(p->mempolicy)) {
1058  		retval = PTR_ERR(p->mempolicy);
1059  		p->mempolicy = NULL;
1060  		goto bad_fork_cleanup_cgroup;
1061  	}
1062 	mpol_fix_fork_child_flag(p);
1063 #endif
1064 #ifdef CONFIG_TRACE_IRQFLAGS
1065 	p->irq_events = 0;
1066 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1067 	p->hardirqs_enabled = 1;
1068 #else
1069 	p->hardirqs_enabled = 0;
1070 #endif
1071 	p->hardirq_enable_ip = 0;
1072 	p->hardirq_enable_event = 0;
1073 	p->hardirq_disable_ip = _THIS_IP_;
1074 	p->hardirq_disable_event = 0;
1075 	p->softirqs_enabled = 1;
1076 	p->softirq_enable_ip = _THIS_IP_;
1077 	p->softirq_enable_event = 0;
1078 	p->softirq_disable_ip = 0;
1079 	p->softirq_disable_event = 0;
1080 	p->hardirq_context = 0;
1081 	p->softirq_context = 0;
1082 #endif
1083 #ifdef CONFIG_LOCKDEP
1084 	p->lockdep_depth = 0; /* no locks held yet */
1085 	p->curr_chain_key = 0;
1086 	p->lockdep_recursion = 0;
1087 #endif
1088 
1089 #ifdef CONFIG_DEBUG_MUTEXES
1090 	p->blocked_on = NULL; /* not blocked yet */
1091 #endif
1092 	if (unlikely(current->ptrace))
1093 		ptrace_fork(p, clone_flags);
1094 
1095 	/* Perform scheduler related setup. Assign this task to a CPU. */
1096 	sched_fork(p, clone_flags);
1097 
1098 	if ((retval = audit_alloc(p)))
1099 		goto bad_fork_cleanup_policy;
1100 	/* copy all the process information */
1101 	if ((retval = copy_semundo(clone_flags, p)))
1102 		goto bad_fork_cleanup_audit;
1103 	if ((retval = copy_files(clone_flags, p)))
1104 		goto bad_fork_cleanup_semundo;
1105 	if ((retval = copy_fs(clone_flags, p)))
1106 		goto bad_fork_cleanup_files;
1107 	if ((retval = copy_sighand(clone_flags, p)))
1108 		goto bad_fork_cleanup_fs;
1109 	if ((retval = copy_signal(clone_flags, p)))
1110 		goto bad_fork_cleanup_sighand;
1111 	if ((retval = copy_mm(clone_flags, p)))
1112 		goto bad_fork_cleanup_signal;
1113 	if ((retval = copy_namespaces(clone_flags, p)))
1114 		goto bad_fork_cleanup_mm;
1115 	if ((retval = copy_io(clone_flags, p)))
1116 		goto bad_fork_cleanup_namespaces;
1117 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1118 	if (retval)
1119 		goto bad_fork_cleanup_io;
1120 
1121 	if (pid != &init_struct_pid) {
1122 		retval = -ENOMEM;
1123 		pid = alloc_pid(p->nsproxy->pid_ns);
1124 		if (!pid)
1125 			goto bad_fork_cleanup_io;
1126 
1127 		if (clone_flags & CLONE_NEWPID) {
1128 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1129 			if (retval < 0)
1130 				goto bad_fork_free_pid;
1131 		}
1132 	}
1133 
1134 	ftrace_graph_init_task(p);
1135 
1136 	p->pid = pid_nr(pid);
1137 	p->tgid = p->pid;
1138 	if (clone_flags & CLONE_THREAD)
1139 		p->tgid = current->tgid;
1140 
1141 	if (current->nsproxy != p->nsproxy) {
1142 		retval = ns_cgroup_clone(p, pid);
1143 		if (retval)
1144 			goto bad_fork_free_graph;
1145 	}
1146 
1147 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1148 	/*
1149 	 * Clear TID on mm_release()?
1150 	 */
1151 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1152 #ifdef CONFIG_FUTEX
1153 	p->robust_list = NULL;
1154 #ifdef CONFIG_COMPAT
1155 	p->compat_robust_list = NULL;
1156 #endif
1157 	INIT_LIST_HEAD(&p->pi_state_list);
1158 	p->pi_state_cache = NULL;
1159 #endif
1160 	/*
1161 	 * sigaltstack should be cleared when sharing the same VM
1162 	 */
1163 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1164 		p->sas_ss_sp = p->sas_ss_size = 0;
1165 
1166 	/*
1167 	 * Syscall tracing should be turned off in the child regardless
1168 	 * of CLONE_PTRACE.
1169 	 */
1170 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1171 #ifdef TIF_SYSCALL_EMU
1172 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1173 #endif
1174 	clear_all_latency_tracing(p);
1175 
1176 	/* ok, now we should be set up.. */
1177 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1178 	p->pdeath_signal = 0;
1179 	p->exit_state = 0;
1180 
1181 	/*
1182 	 * Ok, make it visible to the rest of the system.
1183 	 * We dont wake it up yet.
1184 	 */
1185 	p->group_leader = p;
1186 	INIT_LIST_HEAD(&p->thread_group);
1187 
1188 	/* Now that the task is set up, run cgroup callbacks if
1189 	 * necessary. We need to run them before the task is visible
1190 	 * on the tasklist. */
1191 	cgroup_fork_callbacks(p);
1192 	cgroup_callbacks_done = 1;
1193 
1194 	/* Need tasklist lock for parent etc handling! */
1195 	write_lock_irq(&tasklist_lock);
1196 
1197 	/*
1198 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1199 	 * not be changed, nor will its assigned CPU.
1200 	 *
1201 	 * The cpus_allowed mask of the parent may have changed after it was
1202 	 * copied first time - so re-copy it here, then check the child's CPU
1203 	 * to ensure it is on a valid CPU (and if not, just force it back to
1204 	 * parent's CPU). This avoids alot of nasty races.
1205 	 */
1206 	p->cpus_allowed = current->cpus_allowed;
1207 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1208 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1209 			!cpu_online(task_cpu(p))))
1210 		set_task_cpu(p, smp_processor_id());
1211 
1212 	/* CLONE_PARENT re-uses the old parent */
1213 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1214 		p->real_parent = current->real_parent;
1215 		p->parent_exec_id = current->parent_exec_id;
1216 	} else {
1217 		p->real_parent = current;
1218 		p->parent_exec_id = current->self_exec_id;
1219 	}
1220 
1221 	spin_lock(&current->sighand->siglock);
1222 
1223 	/*
1224 	 * Process group and session signals need to be delivered to just the
1225 	 * parent before the fork or both the parent and the child after the
1226 	 * fork. Restart if a signal comes in before we add the new process to
1227 	 * it's process group.
1228 	 * A fatal signal pending means that current will exit, so the new
1229 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1230  	 */
1231 	recalc_sigpending();
1232 	if (signal_pending(current)) {
1233 		spin_unlock(&current->sighand->siglock);
1234 		write_unlock_irq(&tasklist_lock);
1235 		retval = -ERESTARTNOINTR;
1236 		goto bad_fork_free_graph;
1237 	}
1238 
1239 	if (clone_flags & CLONE_THREAD) {
1240 		p->group_leader = current->group_leader;
1241 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1242 	}
1243 
1244 	if (likely(p->pid)) {
1245 		list_add_tail(&p->sibling, &p->real_parent->children);
1246 		tracehook_finish_clone(p, clone_flags, trace);
1247 
1248 		if (thread_group_leader(p)) {
1249 			if (clone_flags & CLONE_NEWPID)
1250 				p->nsproxy->pid_ns->child_reaper = p;
1251 
1252 			p->signal->leader_pid = pid;
1253 			tty_kref_put(p->signal->tty);
1254 			p->signal->tty = tty_kref_get(current->signal->tty);
1255 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1256 			attach_pid(p, PIDTYPE_SID, task_session(current));
1257 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1258 			__get_cpu_var(process_counts)++;
1259 		}
1260 		attach_pid(p, PIDTYPE_PID, pid);
1261 		nr_threads++;
1262 	}
1263 
1264 	total_forks++;
1265 	spin_unlock(&current->sighand->siglock);
1266 	write_unlock_irq(&tasklist_lock);
1267 	proc_fork_connector(p);
1268 	cgroup_post_fork(p);
1269 	return p;
1270 
1271 bad_fork_free_graph:
1272 	ftrace_graph_exit_task(p);
1273 bad_fork_free_pid:
1274 	if (pid != &init_struct_pid)
1275 		free_pid(pid);
1276 bad_fork_cleanup_io:
1277 	put_io_context(p->io_context);
1278 bad_fork_cleanup_namespaces:
1279 	exit_task_namespaces(p);
1280 bad_fork_cleanup_mm:
1281 	if (p->mm)
1282 		mmput(p->mm);
1283 bad_fork_cleanup_signal:
1284 	cleanup_signal(p);
1285 bad_fork_cleanup_sighand:
1286 	__cleanup_sighand(p->sighand);
1287 bad_fork_cleanup_fs:
1288 	exit_fs(p); /* blocking */
1289 bad_fork_cleanup_files:
1290 	exit_files(p); /* blocking */
1291 bad_fork_cleanup_semundo:
1292 	exit_sem(p);
1293 bad_fork_cleanup_audit:
1294 	audit_free(p);
1295 bad_fork_cleanup_policy:
1296 #ifdef CONFIG_NUMA
1297 	mpol_put(p->mempolicy);
1298 bad_fork_cleanup_cgroup:
1299 #endif
1300 	cgroup_exit(p, cgroup_callbacks_done);
1301 	delayacct_tsk_free(p);
1302 	if (p->binfmt)
1303 		module_put(p->binfmt->module);
1304 bad_fork_cleanup_put_domain:
1305 	module_put(task_thread_info(p)->exec_domain->module);
1306 bad_fork_cleanup_count:
1307 	atomic_dec(&p->cred->user->processes);
1308 	put_cred(p->real_cred);
1309 	put_cred(p->cred);
1310 bad_fork_free:
1311 	free_task(p);
1312 fork_out:
1313 	return ERR_PTR(retval);
1314 }
1315 
1316 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1317 {
1318 	memset(regs, 0, sizeof(struct pt_regs));
1319 	return regs;
1320 }
1321 
1322 struct task_struct * __cpuinit fork_idle(int cpu)
1323 {
1324 	struct task_struct *task;
1325 	struct pt_regs regs;
1326 
1327 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1328 			    &init_struct_pid, 0);
1329 	if (!IS_ERR(task))
1330 		init_idle(task, cpu);
1331 
1332 	return task;
1333 }
1334 
1335 /*
1336  *  Ok, this is the main fork-routine.
1337  *
1338  * It copies the process, and if successful kick-starts
1339  * it and waits for it to finish using the VM if required.
1340  */
1341 long do_fork(unsigned long clone_flags,
1342 	      unsigned long stack_start,
1343 	      struct pt_regs *regs,
1344 	      unsigned long stack_size,
1345 	      int __user *parent_tidptr,
1346 	      int __user *child_tidptr)
1347 {
1348 	struct task_struct *p;
1349 	int trace = 0;
1350 	long nr;
1351 
1352 	/*
1353 	 * Do some preliminary argument and permissions checking before we
1354 	 * actually start allocating stuff
1355 	 */
1356 	if (clone_flags & CLONE_NEWUSER) {
1357 		if (clone_flags & CLONE_THREAD)
1358 			return -EINVAL;
1359 		/* hopefully this check will go away when userns support is
1360 		 * complete
1361 		 */
1362 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1363 				!capable(CAP_SETGID))
1364 			return -EPERM;
1365 	}
1366 
1367 	/*
1368 	 * We hope to recycle these flags after 2.6.26
1369 	 */
1370 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1371 		static int __read_mostly count = 100;
1372 
1373 		if (count > 0 && printk_ratelimit()) {
1374 			char comm[TASK_COMM_LEN];
1375 
1376 			count--;
1377 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1378 					"clone flags 0x%lx\n",
1379 				get_task_comm(comm, current),
1380 				clone_flags & CLONE_STOPPED);
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * When called from kernel_thread, don't do user tracing stuff.
1386 	 */
1387 	if (likely(user_mode(regs)))
1388 		trace = tracehook_prepare_clone(clone_flags);
1389 
1390 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1391 			 child_tidptr, NULL, trace);
1392 	/*
1393 	 * Do this prior waking up the new thread - the thread pointer
1394 	 * might get invalid after that point, if the thread exits quickly.
1395 	 */
1396 	if (!IS_ERR(p)) {
1397 		struct completion vfork;
1398 
1399 		trace_sched_process_fork(current, p);
1400 
1401 		nr = task_pid_vnr(p);
1402 
1403 		if (clone_flags & CLONE_PARENT_SETTID)
1404 			put_user(nr, parent_tidptr);
1405 
1406 		if (clone_flags & CLONE_VFORK) {
1407 			p->vfork_done = &vfork;
1408 			init_completion(&vfork);
1409 		}
1410 
1411 		audit_finish_fork(p);
1412 		tracehook_report_clone(trace, regs, clone_flags, nr, p);
1413 
1414 		/*
1415 		 * We set PF_STARTING at creation in case tracing wants to
1416 		 * use this to distinguish a fully live task from one that
1417 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1418 		 * clear it and set the child going.
1419 		 */
1420 		p->flags &= ~PF_STARTING;
1421 
1422 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1423 			/*
1424 			 * We'll start up with an immediate SIGSTOP.
1425 			 */
1426 			sigaddset(&p->pending.signal, SIGSTOP);
1427 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1428 			__set_task_state(p, TASK_STOPPED);
1429 		} else {
1430 			wake_up_new_task(p, clone_flags);
1431 		}
1432 
1433 		tracehook_report_clone_complete(trace, regs,
1434 						clone_flags, nr, p);
1435 
1436 		if (clone_flags & CLONE_VFORK) {
1437 			freezer_do_not_count();
1438 			wait_for_completion(&vfork);
1439 			freezer_count();
1440 			tracehook_report_vfork_done(p, nr);
1441 		}
1442 	} else {
1443 		nr = PTR_ERR(p);
1444 	}
1445 	return nr;
1446 }
1447 
1448 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1449 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1450 #endif
1451 
1452 static void sighand_ctor(void *data)
1453 {
1454 	struct sighand_struct *sighand = data;
1455 
1456 	spin_lock_init(&sighand->siglock);
1457 	init_waitqueue_head(&sighand->signalfd_wqh);
1458 }
1459 
1460 void __init proc_caches_init(void)
1461 {
1462 	sighand_cachep = kmem_cache_create("sighand_cache",
1463 			sizeof(struct sighand_struct), 0,
1464 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1465 			sighand_ctor);
1466 	signal_cachep = kmem_cache_create("signal_cache",
1467 			sizeof(struct signal_struct), 0,
1468 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1469 	files_cachep = kmem_cache_create("files_cache",
1470 			sizeof(struct files_struct), 0,
1471 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1472 	fs_cachep = kmem_cache_create("fs_cache",
1473 			sizeof(struct fs_struct), 0,
1474 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1475 	mm_cachep = kmem_cache_create("mm_struct",
1476 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1477 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1478 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1479 	mmap_init();
1480 }
1481 
1482 /*
1483  * Check constraints on flags passed to the unshare system call and
1484  * force unsharing of additional process context as appropriate.
1485  */
1486 static void check_unshare_flags(unsigned long *flags_ptr)
1487 {
1488 	/*
1489 	 * If unsharing a thread from a thread group, must also
1490 	 * unshare vm.
1491 	 */
1492 	if (*flags_ptr & CLONE_THREAD)
1493 		*flags_ptr |= CLONE_VM;
1494 
1495 	/*
1496 	 * If unsharing vm, must also unshare signal handlers.
1497 	 */
1498 	if (*flags_ptr & CLONE_VM)
1499 		*flags_ptr |= CLONE_SIGHAND;
1500 
1501 	/*
1502 	 * If unsharing signal handlers and the task was created
1503 	 * using CLONE_THREAD, then must unshare the thread
1504 	 */
1505 	if ((*flags_ptr & CLONE_SIGHAND) &&
1506 	    (atomic_read(&current->signal->count) > 1))
1507 		*flags_ptr |= CLONE_THREAD;
1508 
1509 	/*
1510 	 * If unsharing namespace, must also unshare filesystem information.
1511 	 */
1512 	if (*flags_ptr & CLONE_NEWNS)
1513 		*flags_ptr |= CLONE_FS;
1514 }
1515 
1516 /*
1517  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1518  */
1519 static int unshare_thread(unsigned long unshare_flags)
1520 {
1521 	if (unshare_flags & CLONE_THREAD)
1522 		return -EINVAL;
1523 
1524 	return 0;
1525 }
1526 
1527 /*
1528  * Unshare the filesystem structure if it is being shared
1529  */
1530 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1531 {
1532 	struct fs_struct *fs = current->fs;
1533 
1534 	if (!(unshare_flags & CLONE_FS) || !fs)
1535 		return 0;
1536 
1537 	/* don't need lock here; in the worst case we'll do useless copy */
1538 	if (fs->users == 1)
1539 		return 0;
1540 
1541 	*new_fsp = copy_fs_struct(fs);
1542 	if (!*new_fsp)
1543 		return -ENOMEM;
1544 
1545 	return 0;
1546 }
1547 
1548 /*
1549  * Unsharing of sighand is not supported yet
1550  */
1551 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1552 {
1553 	struct sighand_struct *sigh = current->sighand;
1554 
1555 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1556 		return -EINVAL;
1557 	else
1558 		return 0;
1559 }
1560 
1561 /*
1562  * Unshare vm if it is being shared
1563  */
1564 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1565 {
1566 	struct mm_struct *mm = current->mm;
1567 
1568 	if ((unshare_flags & CLONE_VM) &&
1569 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1570 		return -EINVAL;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 /*
1577  * Unshare file descriptor table if it is being shared
1578  */
1579 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1580 {
1581 	struct files_struct *fd = current->files;
1582 	int error = 0;
1583 
1584 	if ((unshare_flags & CLONE_FILES) &&
1585 	    (fd && atomic_read(&fd->count) > 1)) {
1586 		*new_fdp = dup_fd(fd, &error);
1587 		if (!*new_fdp)
1588 			return error;
1589 	}
1590 
1591 	return 0;
1592 }
1593 
1594 /*
1595  * unshare allows a process to 'unshare' part of the process
1596  * context which was originally shared using clone.  copy_*
1597  * functions used by do_fork() cannot be used here directly
1598  * because they modify an inactive task_struct that is being
1599  * constructed. Here we are modifying the current, active,
1600  * task_struct.
1601  */
1602 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1603 {
1604 	int err = 0;
1605 	struct fs_struct *fs, *new_fs = NULL;
1606 	struct sighand_struct *new_sigh = NULL;
1607 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1608 	struct files_struct *fd, *new_fd = NULL;
1609 	struct nsproxy *new_nsproxy = NULL;
1610 	int do_sysvsem = 0;
1611 
1612 	check_unshare_flags(&unshare_flags);
1613 
1614 	/* Return -EINVAL for all unsupported flags */
1615 	err = -EINVAL;
1616 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1617 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1618 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1619 		goto bad_unshare_out;
1620 
1621 	/*
1622 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1623 	 * to a new ipc namespace, the semaphore arrays from the old
1624 	 * namespace are unreachable.
1625 	 */
1626 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1627 		do_sysvsem = 1;
1628 	if ((err = unshare_thread(unshare_flags)))
1629 		goto bad_unshare_out;
1630 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1631 		goto bad_unshare_cleanup_thread;
1632 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1633 		goto bad_unshare_cleanup_fs;
1634 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1635 		goto bad_unshare_cleanup_sigh;
1636 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1637 		goto bad_unshare_cleanup_vm;
1638 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1639 			new_fs)))
1640 		goto bad_unshare_cleanup_fd;
1641 
1642 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1643 		if (do_sysvsem) {
1644 			/*
1645 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1646 			 */
1647 			exit_sem(current);
1648 		}
1649 
1650 		if (new_nsproxy) {
1651 			switch_task_namespaces(current, new_nsproxy);
1652 			new_nsproxy = NULL;
1653 		}
1654 
1655 		task_lock(current);
1656 
1657 		if (new_fs) {
1658 			fs = current->fs;
1659 			write_lock(&fs->lock);
1660 			current->fs = new_fs;
1661 			if (--fs->users)
1662 				new_fs = NULL;
1663 			else
1664 				new_fs = fs;
1665 			write_unlock(&fs->lock);
1666 		}
1667 
1668 		if (new_mm) {
1669 			mm = current->mm;
1670 			active_mm = current->active_mm;
1671 			current->mm = new_mm;
1672 			current->active_mm = new_mm;
1673 			activate_mm(active_mm, new_mm);
1674 			new_mm = mm;
1675 		}
1676 
1677 		if (new_fd) {
1678 			fd = current->files;
1679 			current->files = new_fd;
1680 			new_fd = fd;
1681 		}
1682 
1683 		task_unlock(current);
1684 	}
1685 
1686 	if (new_nsproxy)
1687 		put_nsproxy(new_nsproxy);
1688 
1689 bad_unshare_cleanup_fd:
1690 	if (new_fd)
1691 		put_files_struct(new_fd);
1692 
1693 bad_unshare_cleanup_vm:
1694 	if (new_mm)
1695 		mmput(new_mm);
1696 
1697 bad_unshare_cleanup_sigh:
1698 	if (new_sigh)
1699 		if (atomic_dec_and_test(&new_sigh->count))
1700 			kmem_cache_free(sighand_cachep, new_sigh);
1701 
1702 bad_unshare_cleanup_fs:
1703 	if (new_fs)
1704 		free_fs_struct(new_fs);
1705 
1706 bad_unshare_cleanup_thread:
1707 bad_unshare_out:
1708 	return err;
1709 }
1710 
1711 /*
1712  *	Helper to unshare the files of the current task.
1713  *	We don't want to expose copy_files internals to
1714  *	the exec layer of the kernel.
1715  */
1716 
1717 int unshare_files(struct files_struct **displaced)
1718 {
1719 	struct task_struct *task = current;
1720 	struct files_struct *copy = NULL;
1721 	int error;
1722 
1723 	error = unshare_fd(CLONE_FILES, &copy);
1724 	if (error || !copy) {
1725 		*displaced = NULL;
1726 		return error;
1727 	}
1728 	*displaced = task->files;
1729 	task_lock(task);
1730 	task->files = copy;
1731 	task_unlock(task);
1732 	return 0;
1733 }
1734