xref: /openbmc/linux/kernel/fork.c (revision 56d06fa2)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79 
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86 
87 #include <trace/events/sched.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91 
92 /*
93  * Minimum number of threads to boot the kernel
94  */
95 #define MIN_THREADS 20
96 
97 /*
98  * Maximum number of threads
99  */
100 #define MAX_THREADS FUTEX_TID_MASK
101 
102 /*
103  * Protected counters by write_lock_irq(&tasklist_lock)
104  */
105 unsigned long total_forks;	/* Handle normal Linux uptimes. */
106 int nr_threads;			/* The idle threads do not count.. */
107 
108 int max_threads;		/* tunable limit on nr_threads */
109 
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
113 
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 	return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121 
122 int nr_processes(void)
123 {
124 	int cpu;
125 	int total = 0;
126 
127 	for_each_possible_cpu(cpu)
128 		total += per_cpu(process_counts, cpu);
129 
130 	return total;
131 }
132 
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136 
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139 
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144 
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 	kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150 
151 void __weak arch_release_thread_info(struct thread_info *ti)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
156 
157 /*
158  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159  * kmemcache based allocator.
160  */
161 # if THREAD_SIZE >= PAGE_SIZE
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 						  int node)
164 {
165 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
166 						  THREAD_SIZE_ORDER);
167 
168 	if (page)
169 		memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
170 					    1 << THREAD_SIZE_ORDER);
171 
172 	return page ? page_address(page) : NULL;
173 }
174 
175 static inline void free_thread_info(struct thread_info *ti)
176 {
177 	struct page *page = virt_to_page(ti);
178 
179 	memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
180 				    -(1 << THREAD_SIZE_ORDER));
181 	__free_kmem_pages(page, THREAD_SIZE_ORDER);
182 }
183 # else
184 static struct kmem_cache *thread_info_cache;
185 
186 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
187 						  int node)
188 {
189 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
190 }
191 
192 static void free_thread_info(struct thread_info *ti)
193 {
194 	kmem_cache_free(thread_info_cache, ti);
195 }
196 
197 void thread_info_cache_init(void)
198 {
199 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
200 					      THREAD_SIZE, 0, NULL);
201 	BUG_ON(thread_info_cache == NULL);
202 }
203 # endif
204 #endif
205 
206 /* SLAB cache for signal_struct structures (tsk->signal) */
207 static struct kmem_cache *signal_cachep;
208 
209 /* SLAB cache for sighand_struct structures (tsk->sighand) */
210 struct kmem_cache *sighand_cachep;
211 
212 /* SLAB cache for files_struct structures (tsk->files) */
213 struct kmem_cache *files_cachep;
214 
215 /* SLAB cache for fs_struct structures (tsk->fs) */
216 struct kmem_cache *fs_cachep;
217 
218 /* SLAB cache for vm_area_struct structures */
219 struct kmem_cache *vm_area_cachep;
220 
221 /* SLAB cache for mm_struct structures (tsk->mm) */
222 static struct kmem_cache *mm_cachep;
223 
224 static void account_kernel_stack(struct thread_info *ti, int account)
225 {
226 	struct zone *zone = page_zone(virt_to_page(ti));
227 
228 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
229 }
230 
231 void free_task(struct task_struct *tsk)
232 {
233 	account_kernel_stack(tsk->stack, -1);
234 	arch_release_thread_info(tsk->stack);
235 	free_thread_info(tsk->stack);
236 	rt_mutex_debug_task_free(tsk);
237 	ftrace_graph_exit_task(tsk);
238 	put_seccomp_filter(tsk);
239 	arch_release_task_struct(tsk);
240 	free_task_struct(tsk);
241 }
242 EXPORT_SYMBOL(free_task);
243 
244 static inline void free_signal_struct(struct signal_struct *sig)
245 {
246 	taskstats_tgid_free(sig);
247 	sched_autogroup_exit(sig);
248 	kmem_cache_free(signal_cachep, sig);
249 }
250 
251 static inline void put_signal_struct(struct signal_struct *sig)
252 {
253 	if (atomic_dec_and_test(&sig->sigcnt))
254 		free_signal_struct(sig);
255 }
256 
257 void __put_task_struct(struct task_struct *tsk)
258 {
259 	WARN_ON(!tsk->exit_state);
260 	WARN_ON(atomic_read(&tsk->usage));
261 	WARN_ON(tsk == current);
262 
263 	cgroup_free(tsk);
264 	task_numa_free(tsk);
265 	security_task_free(tsk);
266 	exit_creds(tsk);
267 	delayacct_tsk_free(tsk);
268 	put_signal_struct(tsk->signal);
269 
270 	if (!profile_handoff_task(tsk))
271 		free_task(tsk);
272 }
273 EXPORT_SYMBOL_GPL(__put_task_struct);
274 
275 void __init __weak arch_task_cache_init(void) { }
276 
277 /*
278  * set_max_threads
279  */
280 static void set_max_threads(unsigned int max_threads_suggested)
281 {
282 	u64 threads;
283 
284 	/*
285 	 * The number of threads shall be limited such that the thread
286 	 * structures may only consume a small part of the available memory.
287 	 */
288 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
289 		threads = MAX_THREADS;
290 	else
291 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
292 				    (u64) THREAD_SIZE * 8UL);
293 
294 	if (threads > max_threads_suggested)
295 		threads = max_threads_suggested;
296 
297 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
298 }
299 
300 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
301 /* Initialized by the architecture: */
302 int arch_task_struct_size __read_mostly;
303 #endif
304 
305 void __init fork_init(void)
306 {
307 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
308 #ifndef ARCH_MIN_TASKALIGN
309 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
310 #endif
311 	/* create a slab on which task_structs can be allocated */
312 	task_struct_cachep = kmem_cache_create("task_struct",
313 			arch_task_struct_size, ARCH_MIN_TASKALIGN,
314 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
315 #endif
316 
317 	/* do the arch specific task caches init */
318 	arch_task_cache_init();
319 
320 	set_max_threads(MAX_THREADS);
321 
322 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
323 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
324 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
325 		init_task.signal->rlim[RLIMIT_NPROC];
326 }
327 
328 int __weak arch_dup_task_struct(struct task_struct *dst,
329 					       struct task_struct *src)
330 {
331 	*dst = *src;
332 	return 0;
333 }
334 
335 void set_task_stack_end_magic(struct task_struct *tsk)
336 {
337 	unsigned long *stackend;
338 
339 	stackend = end_of_stack(tsk);
340 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
341 }
342 
343 static struct task_struct *dup_task_struct(struct task_struct *orig)
344 {
345 	struct task_struct *tsk;
346 	struct thread_info *ti;
347 	int node = tsk_fork_get_node(orig);
348 	int err;
349 
350 	tsk = alloc_task_struct_node(node);
351 	if (!tsk)
352 		return NULL;
353 
354 	ti = alloc_thread_info_node(tsk, node);
355 	if (!ti)
356 		goto free_tsk;
357 
358 	err = arch_dup_task_struct(tsk, orig);
359 	if (err)
360 		goto free_ti;
361 
362 	tsk->stack = ti;
363 #ifdef CONFIG_SECCOMP
364 	/*
365 	 * We must handle setting up seccomp filters once we're under
366 	 * the sighand lock in case orig has changed between now and
367 	 * then. Until then, filter must be NULL to avoid messing up
368 	 * the usage counts on the error path calling free_task.
369 	 */
370 	tsk->seccomp.filter = NULL;
371 #endif
372 
373 	setup_thread_stack(tsk, orig);
374 	clear_user_return_notifier(tsk);
375 	clear_tsk_need_resched(tsk);
376 	set_task_stack_end_magic(tsk);
377 
378 #ifdef CONFIG_CC_STACKPROTECTOR
379 	tsk->stack_canary = get_random_int();
380 #endif
381 
382 	/*
383 	 * One for us, one for whoever does the "release_task()" (usually
384 	 * parent)
385 	 */
386 	atomic_set(&tsk->usage, 2);
387 #ifdef CONFIG_BLK_DEV_IO_TRACE
388 	tsk->btrace_seq = 0;
389 #endif
390 	tsk->splice_pipe = NULL;
391 	tsk->task_frag.page = NULL;
392 	tsk->wake_q.next = NULL;
393 
394 	account_kernel_stack(ti, 1);
395 
396 	kcov_task_init(tsk);
397 
398 	return tsk;
399 
400 free_ti:
401 	free_thread_info(ti);
402 free_tsk:
403 	free_task_struct(tsk);
404 	return NULL;
405 }
406 
407 #ifdef CONFIG_MMU
408 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
409 {
410 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
411 	struct rb_node **rb_link, *rb_parent;
412 	int retval;
413 	unsigned long charge;
414 
415 	uprobe_start_dup_mmap();
416 	down_write(&oldmm->mmap_sem);
417 	flush_cache_dup_mm(oldmm);
418 	uprobe_dup_mmap(oldmm, mm);
419 	/*
420 	 * Not linked in yet - no deadlock potential:
421 	 */
422 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
423 
424 	/* No ordering required: file already has been exposed. */
425 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
426 
427 	mm->total_vm = oldmm->total_vm;
428 	mm->data_vm = oldmm->data_vm;
429 	mm->exec_vm = oldmm->exec_vm;
430 	mm->stack_vm = oldmm->stack_vm;
431 
432 	rb_link = &mm->mm_rb.rb_node;
433 	rb_parent = NULL;
434 	pprev = &mm->mmap;
435 	retval = ksm_fork(mm, oldmm);
436 	if (retval)
437 		goto out;
438 	retval = khugepaged_fork(mm, oldmm);
439 	if (retval)
440 		goto out;
441 
442 	prev = NULL;
443 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
444 		struct file *file;
445 
446 		if (mpnt->vm_flags & VM_DONTCOPY) {
447 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
448 			continue;
449 		}
450 		charge = 0;
451 		if (mpnt->vm_flags & VM_ACCOUNT) {
452 			unsigned long len = vma_pages(mpnt);
453 
454 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
455 				goto fail_nomem;
456 			charge = len;
457 		}
458 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 		if (!tmp)
460 			goto fail_nomem;
461 		*tmp = *mpnt;
462 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
463 		retval = vma_dup_policy(mpnt, tmp);
464 		if (retval)
465 			goto fail_nomem_policy;
466 		tmp->vm_mm = mm;
467 		if (anon_vma_fork(tmp, mpnt))
468 			goto fail_nomem_anon_vma_fork;
469 		tmp->vm_flags &=
470 			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
471 		tmp->vm_next = tmp->vm_prev = NULL;
472 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
473 		file = tmp->vm_file;
474 		if (file) {
475 			struct inode *inode = file_inode(file);
476 			struct address_space *mapping = file->f_mapping;
477 
478 			get_file(file);
479 			if (tmp->vm_flags & VM_DENYWRITE)
480 				atomic_dec(&inode->i_writecount);
481 			i_mmap_lock_write(mapping);
482 			if (tmp->vm_flags & VM_SHARED)
483 				atomic_inc(&mapping->i_mmap_writable);
484 			flush_dcache_mmap_lock(mapping);
485 			/* insert tmp into the share list, just after mpnt */
486 			vma_interval_tree_insert_after(tmp, mpnt,
487 					&mapping->i_mmap);
488 			flush_dcache_mmap_unlock(mapping);
489 			i_mmap_unlock_write(mapping);
490 		}
491 
492 		/*
493 		 * Clear hugetlb-related page reserves for children. This only
494 		 * affects MAP_PRIVATE mappings. Faults generated by the child
495 		 * are not guaranteed to succeed, even if read-only
496 		 */
497 		if (is_vm_hugetlb_page(tmp))
498 			reset_vma_resv_huge_pages(tmp);
499 
500 		/*
501 		 * Link in the new vma and copy the page table entries.
502 		 */
503 		*pprev = tmp;
504 		pprev = &tmp->vm_next;
505 		tmp->vm_prev = prev;
506 		prev = tmp;
507 
508 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
509 		rb_link = &tmp->vm_rb.rb_right;
510 		rb_parent = &tmp->vm_rb;
511 
512 		mm->map_count++;
513 		retval = copy_page_range(mm, oldmm, mpnt);
514 
515 		if (tmp->vm_ops && tmp->vm_ops->open)
516 			tmp->vm_ops->open(tmp);
517 
518 		if (retval)
519 			goto out;
520 	}
521 	/* a new mm has just been created */
522 	arch_dup_mmap(oldmm, mm);
523 	retval = 0;
524 out:
525 	up_write(&mm->mmap_sem);
526 	flush_tlb_mm(oldmm);
527 	up_write(&oldmm->mmap_sem);
528 	uprobe_end_dup_mmap();
529 	return retval;
530 fail_nomem_anon_vma_fork:
531 	mpol_put(vma_policy(tmp));
532 fail_nomem_policy:
533 	kmem_cache_free(vm_area_cachep, tmp);
534 fail_nomem:
535 	retval = -ENOMEM;
536 	vm_unacct_memory(charge);
537 	goto out;
538 }
539 
540 static inline int mm_alloc_pgd(struct mm_struct *mm)
541 {
542 	mm->pgd = pgd_alloc(mm);
543 	if (unlikely(!mm->pgd))
544 		return -ENOMEM;
545 	return 0;
546 }
547 
548 static inline void mm_free_pgd(struct mm_struct *mm)
549 {
550 	pgd_free(mm, mm->pgd);
551 }
552 #else
553 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
554 {
555 	down_write(&oldmm->mmap_sem);
556 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
557 	up_write(&oldmm->mmap_sem);
558 	return 0;
559 }
560 #define mm_alloc_pgd(mm)	(0)
561 #define mm_free_pgd(mm)
562 #endif /* CONFIG_MMU */
563 
564 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
565 
566 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
567 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
568 
569 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
570 
571 static int __init coredump_filter_setup(char *s)
572 {
573 	default_dump_filter =
574 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
575 		MMF_DUMP_FILTER_MASK;
576 	return 1;
577 }
578 
579 __setup("coredump_filter=", coredump_filter_setup);
580 
581 #include <linux/init_task.h>
582 
583 static void mm_init_aio(struct mm_struct *mm)
584 {
585 #ifdef CONFIG_AIO
586 	spin_lock_init(&mm->ioctx_lock);
587 	mm->ioctx_table = NULL;
588 #endif
589 }
590 
591 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
592 {
593 #ifdef CONFIG_MEMCG
594 	mm->owner = p;
595 #endif
596 }
597 
598 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
599 {
600 	mm->mmap = NULL;
601 	mm->mm_rb = RB_ROOT;
602 	mm->vmacache_seqnum = 0;
603 	atomic_set(&mm->mm_users, 1);
604 	atomic_set(&mm->mm_count, 1);
605 	init_rwsem(&mm->mmap_sem);
606 	INIT_LIST_HEAD(&mm->mmlist);
607 	mm->core_state = NULL;
608 	atomic_long_set(&mm->nr_ptes, 0);
609 	mm_nr_pmds_init(mm);
610 	mm->map_count = 0;
611 	mm->locked_vm = 0;
612 	mm->pinned_vm = 0;
613 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
614 	spin_lock_init(&mm->page_table_lock);
615 	mm_init_cpumask(mm);
616 	mm_init_aio(mm);
617 	mm_init_owner(mm, p);
618 	mmu_notifier_mm_init(mm);
619 	clear_tlb_flush_pending(mm);
620 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
621 	mm->pmd_huge_pte = NULL;
622 #endif
623 
624 	if (current->mm) {
625 		mm->flags = current->mm->flags & MMF_INIT_MASK;
626 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
627 	} else {
628 		mm->flags = default_dump_filter;
629 		mm->def_flags = 0;
630 	}
631 
632 	if (mm_alloc_pgd(mm))
633 		goto fail_nopgd;
634 
635 	if (init_new_context(p, mm))
636 		goto fail_nocontext;
637 
638 	return mm;
639 
640 fail_nocontext:
641 	mm_free_pgd(mm);
642 fail_nopgd:
643 	free_mm(mm);
644 	return NULL;
645 }
646 
647 static void check_mm(struct mm_struct *mm)
648 {
649 	int i;
650 
651 	for (i = 0; i < NR_MM_COUNTERS; i++) {
652 		long x = atomic_long_read(&mm->rss_stat.count[i]);
653 
654 		if (unlikely(x))
655 			printk(KERN_ALERT "BUG: Bad rss-counter state "
656 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
657 	}
658 
659 	if (atomic_long_read(&mm->nr_ptes))
660 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
661 				atomic_long_read(&mm->nr_ptes));
662 	if (mm_nr_pmds(mm))
663 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
664 				mm_nr_pmds(mm));
665 
666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
667 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
668 #endif
669 }
670 
671 /*
672  * Allocate and initialize an mm_struct.
673  */
674 struct mm_struct *mm_alloc(void)
675 {
676 	struct mm_struct *mm;
677 
678 	mm = allocate_mm();
679 	if (!mm)
680 		return NULL;
681 
682 	memset(mm, 0, sizeof(*mm));
683 	return mm_init(mm, current);
684 }
685 
686 /*
687  * Called when the last reference to the mm
688  * is dropped: either by a lazy thread or by
689  * mmput. Free the page directory and the mm.
690  */
691 void __mmdrop(struct mm_struct *mm)
692 {
693 	BUG_ON(mm == &init_mm);
694 	mm_free_pgd(mm);
695 	destroy_context(mm);
696 	mmu_notifier_mm_destroy(mm);
697 	check_mm(mm);
698 	free_mm(mm);
699 }
700 EXPORT_SYMBOL_GPL(__mmdrop);
701 
702 /*
703  * Decrement the use count and release all resources for an mm.
704  */
705 void mmput(struct mm_struct *mm)
706 {
707 	might_sleep();
708 
709 	if (atomic_dec_and_test(&mm->mm_users)) {
710 		uprobe_clear_state(mm);
711 		exit_aio(mm);
712 		ksm_exit(mm);
713 		khugepaged_exit(mm); /* must run before exit_mmap */
714 		exit_mmap(mm);
715 		set_mm_exe_file(mm, NULL);
716 		if (!list_empty(&mm->mmlist)) {
717 			spin_lock(&mmlist_lock);
718 			list_del(&mm->mmlist);
719 			spin_unlock(&mmlist_lock);
720 		}
721 		if (mm->binfmt)
722 			module_put(mm->binfmt->module);
723 		mmdrop(mm);
724 	}
725 }
726 EXPORT_SYMBOL_GPL(mmput);
727 
728 /**
729  * set_mm_exe_file - change a reference to the mm's executable file
730  *
731  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
732  *
733  * Main users are mmput() and sys_execve(). Callers prevent concurrent
734  * invocations: in mmput() nobody alive left, in execve task is single
735  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
736  * mm->exe_file, but does so without using set_mm_exe_file() in order
737  * to do avoid the need for any locks.
738  */
739 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
740 {
741 	struct file *old_exe_file;
742 
743 	/*
744 	 * It is safe to dereference the exe_file without RCU as
745 	 * this function is only called if nobody else can access
746 	 * this mm -- see comment above for justification.
747 	 */
748 	old_exe_file = rcu_dereference_raw(mm->exe_file);
749 
750 	if (new_exe_file)
751 		get_file(new_exe_file);
752 	rcu_assign_pointer(mm->exe_file, new_exe_file);
753 	if (old_exe_file)
754 		fput(old_exe_file);
755 }
756 
757 /**
758  * get_mm_exe_file - acquire a reference to the mm's executable file
759  *
760  * Returns %NULL if mm has no associated executable file.
761  * User must release file via fput().
762  */
763 struct file *get_mm_exe_file(struct mm_struct *mm)
764 {
765 	struct file *exe_file;
766 
767 	rcu_read_lock();
768 	exe_file = rcu_dereference(mm->exe_file);
769 	if (exe_file && !get_file_rcu(exe_file))
770 		exe_file = NULL;
771 	rcu_read_unlock();
772 	return exe_file;
773 }
774 EXPORT_SYMBOL(get_mm_exe_file);
775 
776 /**
777  * get_task_mm - acquire a reference to the task's mm
778  *
779  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
780  * this kernel workthread has transiently adopted a user mm with use_mm,
781  * to do its AIO) is not set and if so returns a reference to it, after
782  * bumping up the use count.  User must release the mm via mmput()
783  * after use.  Typically used by /proc and ptrace.
784  */
785 struct mm_struct *get_task_mm(struct task_struct *task)
786 {
787 	struct mm_struct *mm;
788 
789 	task_lock(task);
790 	mm = task->mm;
791 	if (mm) {
792 		if (task->flags & PF_KTHREAD)
793 			mm = NULL;
794 		else
795 			atomic_inc(&mm->mm_users);
796 	}
797 	task_unlock(task);
798 	return mm;
799 }
800 EXPORT_SYMBOL_GPL(get_task_mm);
801 
802 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
803 {
804 	struct mm_struct *mm;
805 	int err;
806 
807 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
808 	if (err)
809 		return ERR_PTR(err);
810 
811 	mm = get_task_mm(task);
812 	if (mm && mm != current->mm &&
813 			!ptrace_may_access(task, mode)) {
814 		mmput(mm);
815 		mm = ERR_PTR(-EACCES);
816 	}
817 	mutex_unlock(&task->signal->cred_guard_mutex);
818 
819 	return mm;
820 }
821 
822 static void complete_vfork_done(struct task_struct *tsk)
823 {
824 	struct completion *vfork;
825 
826 	task_lock(tsk);
827 	vfork = tsk->vfork_done;
828 	if (likely(vfork)) {
829 		tsk->vfork_done = NULL;
830 		complete(vfork);
831 	}
832 	task_unlock(tsk);
833 }
834 
835 static int wait_for_vfork_done(struct task_struct *child,
836 				struct completion *vfork)
837 {
838 	int killed;
839 
840 	freezer_do_not_count();
841 	killed = wait_for_completion_killable(vfork);
842 	freezer_count();
843 
844 	if (killed) {
845 		task_lock(child);
846 		child->vfork_done = NULL;
847 		task_unlock(child);
848 	}
849 
850 	put_task_struct(child);
851 	return killed;
852 }
853 
854 /* Please note the differences between mmput and mm_release.
855  * mmput is called whenever we stop holding onto a mm_struct,
856  * error success whatever.
857  *
858  * mm_release is called after a mm_struct has been removed
859  * from the current process.
860  *
861  * This difference is important for error handling, when we
862  * only half set up a mm_struct for a new process and need to restore
863  * the old one.  Because we mmput the new mm_struct before
864  * restoring the old one. . .
865  * Eric Biederman 10 January 1998
866  */
867 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
868 {
869 	/* Get rid of any futexes when releasing the mm */
870 #ifdef CONFIG_FUTEX
871 	if (unlikely(tsk->robust_list)) {
872 		exit_robust_list(tsk);
873 		tsk->robust_list = NULL;
874 	}
875 #ifdef CONFIG_COMPAT
876 	if (unlikely(tsk->compat_robust_list)) {
877 		compat_exit_robust_list(tsk);
878 		tsk->compat_robust_list = NULL;
879 	}
880 #endif
881 	if (unlikely(!list_empty(&tsk->pi_state_list)))
882 		exit_pi_state_list(tsk);
883 #endif
884 
885 	uprobe_free_utask(tsk);
886 
887 	/* Get rid of any cached register state */
888 	deactivate_mm(tsk, mm);
889 
890 	/*
891 	 * If we're exiting normally, clear a user-space tid field if
892 	 * requested.  We leave this alone when dying by signal, to leave
893 	 * the value intact in a core dump, and to save the unnecessary
894 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
895 	 * Userland only wants this done for a sys_exit.
896 	 */
897 	if (tsk->clear_child_tid) {
898 		if (!(tsk->flags & PF_SIGNALED) &&
899 		    atomic_read(&mm->mm_users) > 1) {
900 			/*
901 			 * We don't check the error code - if userspace has
902 			 * not set up a proper pointer then tough luck.
903 			 */
904 			put_user(0, tsk->clear_child_tid);
905 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
906 					1, NULL, NULL, 0);
907 		}
908 		tsk->clear_child_tid = NULL;
909 	}
910 
911 	/*
912 	 * All done, finally we can wake up parent and return this mm to him.
913 	 * Also kthread_stop() uses this completion for synchronization.
914 	 */
915 	if (tsk->vfork_done)
916 		complete_vfork_done(tsk);
917 }
918 
919 /*
920  * Allocate a new mm structure and copy contents from the
921  * mm structure of the passed in task structure.
922  */
923 static struct mm_struct *dup_mm(struct task_struct *tsk)
924 {
925 	struct mm_struct *mm, *oldmm = current->mm;
926 	int err;
927 
928 	mm = allocate_mm();
929 	if (!mm)
930 		goto fail_nomem;
931 
932 	memcpy(mm, oldmm, sizeof(*mm));
933 
934 	if (!mm_init(mm, tsk))
935 		goto fail_nomem;
936 
937 	err = dup_mmap(mm, oldmm);
938 	if (err)
939 		goto free_pt;
940 
941 	mm->hiwater_rss = get_mm_rss(mm);
942 	mm->hiwater_vm = mm->total_vm;
943 
944 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
945 		goto free_pt;
946 
947 	return mm;
948 
949 free_pt:
950 	/* don't put binfmt in mmput, we haven't got module yet */
951 	mm->binfmt = NULL;
952 	mmput(mm);
953 
954 fail_nomem:
955 	return NULL;
956 }
957 
958 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
959 {
960 	struct mm_struct *mm, *oldmm;
961 	int retval;
962 
963 	tsk->min_flt = tsk->maj_flt = 0;
964 	tsk->nvcsw = tsk->nivcsw = 0;
965 #ifdef CONFIG_DETECT_HUNG_TASK
966 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
967 #endif
968 
969 	tsk->mm = NULL;
970 	tsk->active_mm = NULL;
971 
972 	/*
973 	 * Are we cloning a kernel thread?
974 	 *
975 	 * We need to steal a active VM for that..
976 	 */
977 	oldmm = current->mm;
978 	if (!oldmm)
979 		return 0;
980 
981 	/* initialize the new vmacache entries */
982 	vmacache_flush(tsk);
983 
984 	if (clone_flags & CLONE_VM) {
985 		atomic_inc(&oldmm->mm_users);
986 		mm = oldmm;
987 		goto good_mm;
988 	}
989 
990 	retval = -ENOMEM;
991 	mm = dup_mm(tsk);
992 	if (!mm)
993 		goto fail_nomem;
994 
995 good_mm:
996 	tsk->mm = mm;
997 	tsk->active_mm = mm;
998 	return 0;
999 
1000 fail_nomem:
1001 	return retval;
1002 }
1003 
1004 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1005 {
1006 	struct fs_struct *fs = current->fs;
1007 	if (clone_flags & CLONE_FS) {
1008 		/* tsk->fs is already what we want */
1009 		spin_lock(&fs->lock);
1010 		if (fs->in_exec) {
1011 			spin_unlock(&fs->lock);
1012 			return -EAGAIN;
1013 		}
1014 		fs->users++;
1015 		spin_unlock(&fs->lock);
1016 		return 0;
1017 	}
1018 	tsk->fs = copy_fs_struct(fs);
1019 	if (!tsk->fs)
1020 		return -ENOMEM;
1021 	return 0;
1022 }
1023 
1024 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1025 {
1026 	struct files_struct *oldf, *newf;
1027 	int error = 0;
1028 
1029 	/*
1030 	 * A background process may not have any files ...
1031 	 */
1032 	oldf = current->files;
1033 	if (!oldf)
1034 		goto out;
1035 
1036 	if (clone_flags & CLONE_FILES) {
1037 		atomic_inc(&oldf->count);
1038 		goto out;
1039 	}
1040 
1041 	newf = dup_fd(oldf, &error);
1042 	if (!newf)
1043 		goto out;
1044 
1045 	tsk->files = newf;
1046 	error = 0;
1047 out:
1048 	return error;
1049 }
1050 
1051 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1052 {
1053 #ifdef CONFIG_BLOCK
1054 	struct io_context *ioc = current->io_context;
1055 	struct io_context *new_ioc;
1056 
1057 	if (!ioc)
1058 		return 0;
1059 	/*
1060 	 * Share io context with parent, if CLONE_IO is set
1061 	 */
1062 	if (clone_flags & CLONE_IO) {
1063 		ioc_task_link(ioc);
1064 		tsk->io_context = ioc;
1065 	} else if (ioprio_valid(ioc->ioprio)) {
1066 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1067 		if (unlikely(!new_ioc))
1068 			return -ENOMEM;
1069 
1070 		new_ioc->ioprio = ioc->ioprio;
1071 		put_io_context(new_ioc);
1072 	}
1073 #endif
1074 	return 0;
1075 }
1076 
1077 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1078 {
1079 	struct sighand_struct *sig;
1080 
1081 	if (clone_flags & CLONE_SIGHAND) {
1082 		atomic_inc(&current->sighand->count);
1083 		return 0;
1084 	}
1085 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1086 	rcu_assign_pointer(tsk->sighand, sig);
1087 	if (!sig)
1088 		return -ENOMEM;
1089 
1090 	atomic_set(&sig->count, 1);
1091 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1092 	return 0;
1093 }
1094 
1095 void __cleanup_sighand(struct sighand_struct *sighand)
1096 {
1097 	if (atomic_dec_and_test(&sighand->count)) {
1098 		signalfd_cleanup(sighand);
1099 		/*
1100 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1101 		 * without an RCU grace period, see __lock_task_sighand().
1102 		 */
1103 		kmem_cache_free(sighand_cachep, sighand);
1104 	}
1105 }
1106 
1107 /*
1108  * Initialize POSIX timer handling for a thread group.
1109  */
1110 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1111 {
1112 	unsigned long cpu_limit;
1113 
1114 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1115 	if (cpu_limit != RLIM_INFINITY) {
1116 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1117 		sig->cputimer.running = true;
1118 	}
1119 
1120 	/* The timer lists. */
1121 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1122 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1123 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1124 }
1125 
1126 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1127 {
1128 	struct signal_struct *sig;
1129 
1130 	if (clone_flags & CLONE_THREAD)
1131 		return 0;
1132 
1133 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1134 	tsk->signal = sig;
1135 	if (!sig)
1136 		return -ENOMEM;
1137 
1138 	sig->nr_threads = 1;
1139 	atomic_set(&sig->live, 1);
1140 	atomic_set(&sig->sigcnt, 1);
1141 
1142 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1143 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1144 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1145 
1146 	init_waitqueue_head(&sig->wait_chldexit);
1147 	sig->curr_target = tsk;
1148 	init_sigpending(&sig->shared_pending);
1149 	INIT_LIST_HEAD(&sig->posix_timers);
1150 	seqlock_init(&sig->stats_lock);
1151 	prev_cputime_init(&sig->prev_cputime);
1152 
1153 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1154 	sig->real_timer.function = it_real_fn;
1155 
1156 	task_lock(current->group_leader);
1157 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1158 	task_unlock(current->group_leader);
1159 
1160 	posix_cpu_timers_init_group(sig);
1161 
1162 	tty_audit_fork(sig);
1163 	sched_autogroup_fork(sig);
1164 
1165 	sig->oom_score_adj = current->signal->oom_score_adj;
1166 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1167 
1168 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1169 				   current->signal->is_child_subreaper;
1170 
1171 	mutex_init(&sig->cred_guard_mutex);
1172 
1173 	return 0;
1174 }
1175 
1176 static void copy_seccomp(struct task_struct *p)
1177 {
1178 #ifdef CONFIG_SECCOMP
1179 	/*
1180 	 * Must be called with sighand->lock held, which is common to
1181 	 * all threads in the group. Holding cred_guard_mutex is not
1182 	 * needed because this new task is not yet running and cannot
1183 	 * be racing exec.
1184 	 */
1185 	assert_spin_locked(&current->sighand->siglock);
1186 
1187 	/* Ref-count the new filter user, and assign it. */
1188 	get_seccomp_filter(current);
1189 	p->seccomp = current->seccomp;
1190 
1191 	/*
1192 	 * Explicitly enable no_new_privs here in case it got set
1193 	 * between the task_struct being duplicated and holding the
1194 	 * sighand lock. The seccomp state and nnp must be in sync.
1195 	 */
1196 	if (task_no_new_privs(current))
1197 		task_set_no_new_privs(p);
1198 
1199 	/*
1200 	 * If the parent gained a seccomp mode after copying thread
1201 	 * flags and between before we held the sighand lock, we have
1202 	 * to manually enable the seccomp thread flag here.
1203 	 */
1204 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1205 		set_tsk_thread_flag(p, TIF_SECCOMP);
1206 #endif
1207 }
1208 
1209 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1210 {
1211 	current->clear_child_tid = tidptr;
1212 
1213 	return task_pid_vnr(current);
1214 }
1215 
1216 static void rt_mutex_init_task(struct task_struct *p)
1217 {
1218 	raw_spin_lock_init(&p->pi_lock);
1219 #ifdef CONFIG_RT_MUTEXES
1220 	p->pi_waiters = RB_ROOT;
1221 	p->pi_waiters_leftmost = NULL;
1222 	p->pi_blocked_on = NULL;
1223 #endif
1224 }
1225 
1226 /*
1227  * Initialize POSIX timer handling for a single task.
1228  */
1229 static void posix_cpu_timers_init(struct task_struct *tsk)
1230 {
1231 	tsk->cputime_expires.prof_exp = 0;
1232 	tsk->cputime_expires.virt_exp = 0;
1233 	tsk->cputime_expires.sched_exp = 0;
1234 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1235 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1236 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1237 }
1238 
1239 static inline void
1240 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1241 {
1242 	 task->pids[type].pid = pid;
1243 }
1244 
1245 /*
1246  * This creates a new process as a copy of the old one,
1247  * but does not actually start it yet.
1248  *
1249  * It copies the registers, and all the appropriate
1250  * parts of the process environment (as per the clone
1251  * flags). The actual kick-off is left to the caller.
1252  */
1253 static struct task_struct *copy_process(unsigned long clone_flags,
1254 					unsigned long stack_start,
1255 					unsigned long stack_size,
1256 					int __user *child_tidptr,
1257 					struct pid *pid,
1258 					int trace,
1259 					unsigned long tls)
1260 {
1261 	int retval;
1262 	struct task_struct *p;
1263 
1264 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1265 		return ERR_PTR(-EINVAL);
1266 
1267 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1268 		return ERR_PTR(-EINVAL);
1269 
1270 	/*
1271 	 * Thread groups must share signals as well, and detached threads
1272 	 * can only be started up within the thread group.
1273 	 */
1274 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1275 		return ERR_PTR(-EINVAL);
1276 
1277 	/*
1278 	 * Shared signal handlers imply shared VM. By way of the above,
1279 	 * thread groups also imply shared VM. Blocking this case allows
1280 	 * for various simplifications in other code.
1281 	 */
1282 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1283 		return ERR_PTR(-EINVAL);
1284 
1285 	/*
1286 	 * Siblings of global init remain as zombies on exit since they are
1287 	 * not reaped by their parent (swapper). To solve this and to avoid
1288 	 * multi-rooted process trees, prevent global and container-inits
1289 	 * from creating siblings.
1290 	 */
1291 	if ((clone_flags & CLONE_PARENT) &&
1292 				current->signal->flags & SIGNAL_UNKILLABLE)
1293 		return ERR_PTR(-EINVAL);
1294 
1295 	/*
1296 	 * If the new process will be in a different pid or user namespace
1297 	 * do not allow it to share a thread group with the forking task.
1298 	 */
1299 	if (clone_flags & CLONE_THREAD) {
1300 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1301 		    (task_active_pid_ns(current) !=
1302 				current->nsproxy->pid_ns_for_children))
1303 			return ERR_PTR(-EINVAL);
1304 	}
1305 
1306 	retval = security_task_create(clone_flags);
1307 	if (retval)
1308 		goto fork_out;
1309 
1310 	retval = -ENOMEM;
1311 	p = dup_task_struct(current);
1312 	if (!p)
1313 		goto fork_out;
1314 
1315 	ftrace_graph_init_task(p);
1316 
1317 	rt_mutex_init_task(p);
1318 
1319 #ifdef CONFIG_PROVE_LOCKING
1320 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1321 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1322 #endif
1323 	retval = -EAGAIN;
1324 	if (atomic_read(&p->real_cred->user->processes) >=
1325 			task_rlimit(p, RLIMIT_NPROC)) {
1326 		if (p->real_cred->user != INIT_USER &&
1327 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1328 			goto bad_fork_free;
1329 	}
1330 	current->flags &= ~PF_NPROC_EXCEEDED;
1331 
1332 	retval = copy_creds(p, clone_flags);
1333 	if (retval < 0)
1334 		goto bad_fork_free;
1335 
1336 	/*
1337 	 * If multiple threads are within copy_process(), then this check
1338 	 * triggers too late. This doesn't hurt, the check is only there
1339 	 * to stop root fork bombs.
1340 	 */
1341 	retval = -EAGAIN;
1342 	if (nr_threads >= max_threads)
1343 		goto bad_fork_cleanup_count;
1344 
1345 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1346 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1347 	p->flags |= PF_FORKNOEXEC;
1348 	INIT_LIST_HEAD(&p->children);
1349 	INIT_LIST_HEAD(&p->sibling);
1350 	rcu_copy_process(p);
1351 	p->vfork_done = NULL;
1352 	spin_lock_init(&p->alloc_lock);
1353 
1354 	init_sigpending(&p->pending);
1355 
1356 	p->utime = p->stime = p->gtime = 0;
1357 	p->utimescaled = p->stimescaled = 0;
1358 	prev_cputime_init(&p->prev_cputime);
1359 
1360 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1361 	seqcount_init(&p->vtime_seqcount);
1362 	p->vtime_snap = 0;
1363 	p->vtime_snap_whence = VTIME_INACTIVE;
1364 #endif
1365 
1366 #if defined(SPLIT_RSS_COUNTING)
1367 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1368 #endif
1369 
1370 	p->default_timer_slack_ns = current->timer_slack_ns;
1371 
1372 	task_io_accounting_init(&p->ioac);
1373 	acct_clear_integrals(p);
1374 
1375 	posix_cpu_timers_init(p);
1376 
1377 	p->start_time = ktime_get_ns();
1378 	p->real_start_time = ktime_get_boot_ns();
1379 	p->io_context = NULL;
1380 	p->audit_context = NULL;
1381 	threadgroup_change_begin(current);
1382 	cgroup_fork(p);
1383 #ifdef CONFIG_NUMA
1384 	p->mempolicy = mpol_dup(p->mempolicy);
1385 	if (IS_ERR(p->mempolicy)) {
1386 		retval = PTR_ERR(p->mempolicy);
1387 		p->mempolicy = NULL;
1388 		goto bad_fork_cleanup_threadgroup_lock;
1389 	}
1390 #endif
1391 #ifdef CONFIG_CPUSETS
1392 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1393 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1394 	seqcount_init(&p->mems_allowed_seq);
1395 #endif
1396 #ifdef CONFIG_TRACE_IRQFLAGS
1397 	p->irq_events = 0;
1398 	p->hardirqs_enabled = 0;
1399 	p->hardirq_enable_ip = 0;
1400 	p->hardirq_enable_event = 0;
1401 	p->hardirq_disable_ip = _THIS_IP_;
1402 	p->hardirq_disable_event = 0;
1403 	p->softirqs_enabled = 1;
1404 	p->softirq_enable_ip = _THIS_IP_;
1405 	p->softirq_enable_event = 0;
1406 	p->softirq_disable_ip = 0;
1407 	p->softirq_disable_event = 0;
1408 	p->hardirq_context = 0;
1409 	p->softirq_context = 0;
1410 #endif
1411 
1412 	p->pagefault_disabled = 0;
1413 
1414 #ifdef CONFIG_LOCKDEP
1415 	p->lockdep_depth = 0; /* no locks held yet */
1416 	p->curr_chain_key = 0;
1417 	p->lockdep_recursion = 0;
1418 #endif
1419 
1420 #ifdef CONFIG_DEBUG_MUTEXES
1421 	p->blocked_on = NULL; /* not blocked yet */
1422 #endif
1423 #ifdef CONFIG_BCACHE
1424 	p->sequential_io	= 0;
1425 	p->sequential_io_avg	= 0;
1426 #endif
1427 
1428 	/* Perform scheduler related setup. Assign this task to a CPU. */
1429 	retval = sched_fork(clone_flags, p);
1430 	if (retval)
1431 		goto bad_fork_cleanup_policy;
1432 
1433 	retval = perf_event_init_task(p);
1434 	if (retval)
1435 		goto bad_fork_cleanup_policy;
1436 	retval = audit_alloc(p);
1437 	if (retval)
1438 		goto bad_fork_cleanup_perf;
1439 	/* copy all the process information */
1440 	shm_init_task(p);
1441 	retval = copy_semundo(clone_flags, p);
1442 	if (retval)
1443 		goto bad_fork_cleanup_audit;
1444 	retval = copy_files(clone_flags, p);
1445 	if (retval)
1446 		goto bad_fork_cleanup_semundo;
1447 	retval = copy_fs(clone_flags, p);
1448 	if (retval)
1449 		goto bad_fork_cleanup_files;
1450 	retval = copy_sighand(clone_flags, p);
1451 	if (retval)
1452 		goto bad_fork_cleanup_fs;
1453 	retval = copy_signal(clone_flags, p);
1454 	if (retval)
1455 		goto bad_fork_cleanup_sighand;
1456 	retval = copy_mm(clone_flags, p);
1457 	if (retval)
1458 		goto bad_fork_cleanup_signal;
1459 	retval = copy_namespaces(clone_flags, p);
1460 	if (retval)
1461 		goto bad_fork_cleanup_mm;
1462 	retval = copy_io(clone_flags, p);
1463 	if (retval)
1464 		goto bad_fork_cleanup_namespaces;
1465 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1466 	if (retval)
1467 		goto bad_fork_cleanup_io;
1468 
1469 	if (pid != &init_struct_pid) {
1470 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1471 		if (IS_ERR(pid)) {
1472 			retval = PTR_ERR(pid);
1473 			goto bad_fork_cleanup_io;
1474 		}
1475 	}
1476 
1477 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1478 	/*
1479 	 * Clear TID on mm_release()?
1480 	 */
1481 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1482 #ifdef CONFIG_BLOCK
1483 	p->plug = NULL;
1484 #endif
1485 #ifdef CONFIG_FUTEX
1486 	p->robust_list = NULL;
1487 #ifdef CONFIG_COMPAT
1488 	p->compat_robust_list = NULL;
1489 #endif
1490 	INIT_LIST_HEAD(&p->pi_state_list);
1491 	p->pi_state_cache = NULL;
1492 #endif
1493 	/*
1494 	 * sigaltstack should be cleared when sharing the same VM
1495 	 */
1496 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1497 		p->sas_ss_sp = p->sas_ss_size = 0;
1498 
1499 	/*
1500 	 * Syscall tracing and stepping should be turned off in the
1501 	 * child regardless of CLONE_PTRACE.
1502 	 */
1503 	user_disable_single_step(p);
1504 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1505 #ifdef TIF_SYSCALL_EMU
1506 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1507 #endif
1508 	clear_all_latency_tracing(p);
1509 
1510 	/* ok, now we should be set up.. */
1511 	p->pid = pid_nr(pid);
1512 	if (clone_flags & CLONE_THREAD) {
1513 		p->exit_signal = -1;
1514 		p->group_leader = current->group_leader;
1515 		p->tgid = current->tgid;
1516 	} else {
1517 		if (clone_flags & CLONE_PARENT)
1518 			p->exit_signal = current->group_leader->exit_signal;
1519 		else
1520 			p->exit_signal = (clone_flags & CSIGNAL);
1521 		p->group_leader = p;
1522 		p->tgid = p->pid;
1523 	}
1524 
1525 	p->nr_dirtied = 0;
1526 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1527 	p->dirty_paused_when = 0;
1528 
1529 	p->pdeath_signal = 0;
1530 	INIT_LIST_HEAD(&p->thread_group);
1531 	p->task_works = NULL;
1532 
1533 	/*
1534 	 * Ensure that the cgroup subsystem policies allow the new process to be
1535 	 * forked. It should be noted the the new process's css_set can be changed
1536 	 * between here and cgroup_post_fork() if an organisation operation is in
1537 	 * progress.
1538 	 */
1539 	retval = cgroup_can_fork(p);
1540 	if (retval)
1541 		goto bad_fork_free_pid;
1542 
1543 	/*
1544 	 * Make it visible to the rest of the system, but dont wake it up yet.
1545 	 * Need tasklist lock for parent etc handling!
1546 	 */
1547 	write_lock_irq(&tasklist_lock);
1548 
1549 	/* CLONE_PARENT re-uses the old parent */
1550 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1551 		p->real_parent = current->real_parent;
1552 		p->parent_exec_id = current->parent_exec_id;
1553 	} else {
1554 		p->real_parent = current;
1555 		p->parent_exec_id = current->self_exec_id;
1556 	}
1557 
1558 	spin_lock(&current->sighand->siglock);
1559 
1560 	/*
1561 	 * Copy seccomp details explicitly here, in case they were changed
1562 	 * before holding sighand lock.
1563 	 */
1564 	copy_seccomp(p);
1565 
1566 	/*
1567 	 * Process group and session signals need to be delivered to just the
1568 	 * parent before the fork or both the parent and the child after the
1569 	 * fork. Restart if a signal comes in before we add the new process to
1570 	 * it's process group.
1571 	 * A fatal signal pending means that current will exit, so the new
1572 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1573 	*/
1574 	recalc_sigpending();
1575 	if (signal_pending(current)) {
1576 		spin_unlock(&current->sighand->siglock);
1577 		write_unlock_irq(&tasklist_lock);
1578 		retval = -ERESTARTNOINTR;
1579 		goto bad_fork_cancel_cgroup;
1580 	}
1581 
1582 	if (likely(p->pid)) {
1583 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1584 
1585 		init_task_pid(p, PIDTYPE_PID, pid);
1586 		if (thread_group_leader(p)) {
1587 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1588 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1589 
1590 			if (is_child_reaper(pid)) {
1591 				ns_of_pid(pid)->child_reaper = p;
1592 				p->signal->flags |= SIGNAL_UNKILLABLE;
1593 			}
1594 
1595 			p->signal->leader_pid = pid;
1596 			p->signal->tty = tty_kref_get(current->signal->tty);
1597 			list_add_tail(&p->sibling, &p->real_parent->children);
1598 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1599 			attach_pid(p, PIDTYPE_PGID);
1600 			attach_pid(p, PIDTYPE_SID);
1601 			__this_cpu_inc(process_counts);
1602 		} else {
1603 			current->signal->nr_threads++;
1604 			atomic_inc(&current->signal->live);
1605 			atomic_inc(&current->signal->sigcnt);
1606 			list_add_tail_rcu(&p->thread_group,
1607 					  &p->group_leader->thread_group);
1608 			list_add_tail_rcu(&p->thread_node,
1609 					  &p->signal->thread_head);
1610 		}
1611 		attach_pid(p, PIDTYPE_PID);
1612 		nr_threads++;
1613 	}
1614 
1615 	total_forks++;
1616 	spin_unlock(&current->sighand->siglock);
1617 	syscall_tracepoint_update(p);
1618 	write_unlock_irq(&tasklist_lock);
1619 
1620 	proc_fork_connector(p);
1621 	cgroup_post_fork(p);
1622 	threadgroup_change_end(current);
1623 	perf_event_fork(p);
1624 
1625 	trace_task_newtask(p, clone_flags);
1626 	uprobe_copy_process(p, clone_flags);
1627 
1628 	return p;
1629 
1630 bad_fork_cancel_cgroup:
1631 	cgroup_cancel_fork(p);
1632 bad_fork_free_pid:
1633 	if (pid != &init_struct_pid)
1634 		free_pid(pid);
1635 bad_fork_cleanup_io:
1636 	if (p->io_context)
1637 		exit_io_context(p);
1638 bad_fork_cleanup_namespaces:
1639 	exit_task_namespaces(p);
1640 bad_fork_cleanup_mm:
1641 	if (p->mm)
1642 		mmput(p->mm);
1643 bad_fork_cleanup_signal:
1644 	if (!(clone_flags & CLONE_THREAD))
1645 		free_signal_struct(p->signal);
1646 bad_fork_cleanup_sighand:
1647 	__cleanup_sighand(p->sighand);
1648 bad_fork_cleanup_fs:
1649 	exit_fs(p); /* blocking */
1650 bad_fork_cleanup_files:
1651 	exit_files(p); /* blocking */
1652 bad_fork_cleanup_semundo:
1653 	exit_sem(p);
1654 bad_fork_cleanup_audit:
1655 	audit_free(p);
1656 bad_fork_cleanup_perf:
1657 	perf_event_free_task(p);
1658 bad_fork_cleanup_policy:
1659 #ifdef CONFIG_NUMA
1660 	mpol_put(p->mempolicy);
1661 bad_fork_cleanup_threadgroup_lock:
1662 #endif
1663 	threadgroup_change_end(current);
1664 	delayacct_tsk_free(p);
1665 bad_fork_cleanup_count:
1666 	atomic_dec(&p->cred->user->processes);
1667 	exit_creds(p);
1668 bad_fork_free:
1669 	free_task(p);
1670 fork_out:
1671 	return ERR_PTR(retval);
1672 }
1673 
1674 static inline void init_idle_pids(struct pid_link *links)
1675 {
1676 	enum pid_type type;
1677 
1678 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1679 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1680 		links[type].pid = &init_struct_pid;
1681 	}
1682 }
1683 
1684 struct task_struct *fork_idle(int cpu)
1685 {
1686 	struct task_struct *task;
1687 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1688 	if (!IS_ERR(task)) {
1689 		init_idle_pids(task->pids);
1690 		init_idle(task, cpu);
1691 	}
1692 
1693 	return task;
1694 }
1695 
1696 /*
1697  *  Ok, this is the main fork-routine.
1698  *
1699  * It copies the process, and if successful kick-starts
1700  * it and waits for it to finish using the VM if required.
1701  */
1702 long _do_fork(unsigned long clone_flags,
1703 	      unsigned long stack_start,
1704 	      unsigned long stack_size,
1705 	      int __user *parent_tidptr,
1706 	      int __user *child_tidptr,
1707 	      unsigned long tls)
1708 {
1709 	struct task_struct *p;
1710 	int trace = 0;
1711 	long nr;
1712 
1713 	/*
1714 	 * Determine whether and which event to report to ptracer.  When
1715 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1716 	 * requested, no event is reported; otherwise, report if the event
1717 	 * for the type of forking is enabled.
1718 	 */
1719 	if (!(clone_flags & CLONE_UNTRACED)) {
1720 		if (clone_flags & CLONE_VFORK)
1721 			trace = PTRACE_EVENT_VFORK;
1722 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1723 			trace = PTRACE_EVENT_CLONE;
1724 		else
1725 			trace = PTRACE_EVENT_FORK;
1726 
1727 		if (likely(!ptrace_event_enabled(current, trace)))
1728 			trace = 0;
1729 	}
1730 
1731 	p = copy_process(clone_flags, stack_start, stack_size,
1732 			 child_tidptr, NULL, trace, tls);
1733 	/*
1734 	 * Do this prior waking up the new thread - the thread pointer
1735 	 * might get invalid after that point, if the thread exits quickly.
1736 	 */
1737 	if (!IS_ERR(p)) {
1738 		struct completion vfork;
1739 		struct pid *pid;
1740 
1741 		trace_sched_process_fork(current, p);
1742 
1743 		pid = get_task_pid(p, PIDTYPE_PID);
1744 		nr = pid_vnr(pid);
1745 
1746 		if (clone_flags & CLONE_PARENT_SETTID)
1747 			put_user(nr, parent_tidptr);
1748 
1749 		if (clone_flags & CLONE_VFORK) {
1750 			p->vfork_done = &vfork;
1751 			init_completion(&vfork);
1752 			get_task_struct(p);
1753 		}
1754 
1755 		wake_up_new_task(p);
1756 
1757 		/* forking complete and child started to run, tell ptracer */
1758 		if (unlikely(trace))
1759 			ptrace_event_pid(trace, pid);
1760 
1761 		if (clone_flags & CLONE_VFORK) {
1762 			if (!wait_for_vfork_done(p, &vfork))
1763 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1764 		}
1765 
1766 		put_pid(pid);
1767 	} else {
1768 		nr = PTR_ERR(p);
1769 	}
1770 	return nr;
1771 }
1772 
1773 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1774 /* For compatibility with architectures that call do_fork directly rather than
1775  * using the syscall entry points below. */
1776 long do_fork(unsigned long clone_flags,
1777 	      unsigned long stack_start,
1778 	      unsigned long stack_size,
1779 	      int __user *parent_tidptr,
1780 	      int __user *child_tidptr)
1781 {
1782 	return _do_fork(clone_flags, stack_start, stack_size,
1783 			parent_tidptr, child_tidptr, 0);
1784 }
1785 #endif
1786 
1787 /*
1788  * Create a kernel thread.
1789  */
1790 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1791 {
1792 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1793 		(unsigned long)arg, NULL, NULL, 0);
1794 }
1795 
1796 #ifdef __ARCH_WANT_SYS_FORK
1797 SYSCALL_DEFINE0(fork)
1798 {
1799 #ifdef CONFIG_MMU
1800 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1801 #else
1802 	/* can not support in nommu mode */
1803 	return -EINVAL;
1804 #endif
1805 }
1806 #endif
1807 
1808 #ifdef __ARCH_WANT_SYS_VFORK
1809 SYSCALL_DEFINE0(vfork)
1810 {
1811 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1812 			0, NULL, NULL, 0);
1813 }
1814 #endif
1815 
1816 #ifdef __ARCH_WANT_SYS_CLONE
1817 #ifdef CONFIG_CLONE_BACKWARDS
1818 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1819 		 int __user *, parent_tidptr,
1820 		 unsigned long, tls,
1821 		 int __user *, child_tidptr)
1822 #elif defined(CONFIG_CLONE_BACKWARDS2)
1823 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1824 		 int __user *, parent_tidptr,
1825 		 int __user *, child_tidptr,
1826 		 unsigned long, tls)
1827 #elif defined(CONFIG_CLONE_BACKWARDS3)
1828 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1829 		int, stack_size,
1830 		int __user *, parent_tidptr,
1831 		int __user *, child_tidptr,
1832 		unsigned long, tls)
1833 #else
1834 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1835 		 int __user *, parent_tidptr,
1836 		 int __user *, child_tidptr,
1837 		 unsigned long, tls)
1838 #endif
1839 {
1840 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1841 }
1842 #endif
1843 
1844 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1845 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1846 #endif
1847 
1848 static void sighand_ctor(void *data)
1849 {
1850 	struct sighand_struct *sighand = data;
1851 
1852 	spin_lock_init(&sighand->siglock);
1853 	init_waitqueue_head(&sighand->signalfd_wqh);
1854 }
1855 
1856 void __init proc_caches_init(void)
1857 {
1858 	sighand_cachep = kmem_cache_create("sighand_cache",
1859 			sizeof(struct sighand_struct), 0,
1860 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1861 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1862 	signal_cachep = kmem_cache_create("signal_cache",
1863 			sizeof(struct signal_struct), 0,
1864 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1865 			NULL);
1866 	files_cachep = kmem_cache_create("files_cache",
1867 			sizeof(struct files_struct), 0,
1868 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1869 			NULL);
1870 	fs_cachep = kmem_cache_create("fs_cache",
1871 			sizeof(struct fs_struct), 0,
1872 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1873 			NULL);
1874 	/*
1875 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1876 	 * whole struct cpumask for the OFFSTACK case. We could change
1877 	 * this to *only* allocate as much of it as required by the
1878 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1879 	 * is at the end of the structure, exactly for that reason.
1880 	 */
1881 	mm_cachep = kmem_cache_create("mm_struct",
1882 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1883 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1884 			NULL);
1885 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1886 	mmap_init();
1887 	nsproxy_cache_init();
1888 }
1889 
1890 /*
1891  * Check constraints on flags passed to the unshare system call.
1892  */
1893 static int check_unshare_flags(unsigned long unshare_flags)
1894 {
1895 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1896 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1897 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1898 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1899 		return -EINVAL;
1900 	/*
1901 	 * Not implemented, but pretend it works if there is nothing
1902 	 * to unshare.  Note that unsharing the address space or the
1903 	 * signal handlers also need to unshare the signal queues (aka
1904 	 * CLONE_THREAD).
1905 	 */
1906 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1907 		if (!thread_group_empty(current))
1908 			return -EINVAL;
1909 	}
1910 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1911 		if (atomic_read(&current->sighand->count) > 1)
1912 			return -EINVAL;
1913 	}
1914 	if (unshare_flags & CLONE_VM) {
1915 		if (!current_is_single_threaded())
1916 			return -EINVAL;
1917 	}
1918 
1919 	return 0;
1920 }
1921 
1922 /*
1923  * Unshare the filesystem structure if it is being shared
1924  */
1925 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1926 {
1927 	struct fs_struct *fs = current->fs;
1928 
1929 	if (!(unshare_flags & CLONE_FS) || !fs)
1930 		return 0;
1931 
1932 	/* don't need lock here; in the worst case we'll do useless copy */
1933 	if (fs->users == 1)
1934 		return 0;
1935 
1936 	*new_fsp = copy_fs_struct(fs);
1937 	if (!*new_fsp)
1938 		return -ENOMEM;
1939 
1940 	return 0;
1941 }
1942 
1943 /*
1944  * Unshare file descriptor table if it is being shared
1945  */
1946 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1947 {
1948 	struct files_struct *fd = current->files;
1949 	int error = 0;
1950 
1951 	if ((unshare_flags & CLONE_FILES) &&
1952 	    (fd && atomic_read(&fd->count) > 1)) {
1953 		*new_fdp = dup_fd(fd, &error);
1954 		if (!*new_fdp)
1955 			return error;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 /*
1962  * unshare allows a process to 'unshare' part of the process
1963  * context which was originally shared using clone.  copy_*
1964  * functions used by do_fork() cannot be used here directly
1965  * because they modify an inactive task_struct that is being
1966  * constructed. Here we are modifying the current, active,
1967  * task_struct.
1968  */
1969 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1970 {
1971 	struct fs_struct *fs, *new_fs = NULL;
1972 	struct files_struct *fd, *new_fd = NULL;
1973 	struct cred *new_cred = NULL;
1974 	struct nsproxy *new_nsproxy = NULL;
1975 	int do_sysvsem = 0;
1976 	int err;
1977 
1978 	/*
1979 	 * If unsharing a user namespace must also unshare the thread group
1980 	 * and unshare the filesystem root and working directories.
1981 	 */
1982 	if (unshare_flags & CLONE_NEWUSER)
1983 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1984 	/*
1985 	 * If unsharing vm, must also unshare signal handlers.
1986 	 */
1987 	if (unshare_flags & CLONE_VM)
1988 		unshare_flags |= CLONE_SIGHAND;
1989 	/*
1990 	 * If unsharing a signal handlers, must also unshare the signal queues.
1991 	 */
1992 	if (unshare_flags & CLONE_SIGHAND)
1993 		unshare_flags |= CLONE_THREAD;
1994 	/*
1995 	 * If unsharing namespace, must also unshare filesystem information.
1996 	 */
1997 	if (unshare_flags & CLONE_NEWNS)
1998 		unshare_flags |= CLONE_FS;
1999 
2000 	err = check_unshare_flags(unshare_flags);
2001 	if (err)
2002 		goto bad_unshare_out;
2003 	/*
2004 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2005 	 * to a new ipc namespace, the semaphore arrays from the old
2006 	 * namespace are unreachable.
2007 	 */
2008 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2009 		do_sysvsem = 1;
2010 	err = unshare_fs(unshare_flags, &new_fs);
2011 	if (err)
2012 		goto bad_unshare_out;
2013 	err = unshare_fd(unshare_flags, &new_fd);
2014 	if (err)
2015 		goto bad_unshare_cleanup_fs;
2016 	err = unshare_userns(unshare_flags, &new_cred);
2017 	if (err)
2018 		goto bad_unshare_cleanup_fd;
2019 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2020 					 new_cred, new_fs);
2021 	if (err)
2022 		goto bad_unshare_cleanup_cred;
2023 
2024 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2025 		if (do_sysvsem) {
2026 			/*
2027 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2028 			 */
2029 			exit_sem(current);
2030 		}
2031 		if (unshare_flags & CLONE_NEWIPC) {
2032 			/* Orphan segments in old ns (see sem above). */
2033 			exit_shm(current);
2034 			shm_init_task(current);
2035 		}
2036 
2037 		if (new_nsproxy)
2038 			switch_task_namespaces(current, new_nsproxy);
2039 
2040 		task_lock(current);
2041 
2042 		if (new_fs) {
2043 			fs = current->fs;
2044 			spin_lock(&fs->lock);
2045 			current->fs = new_fs;
2046 			if (--fs->users)
2047 				new_fs = NULL;
2048 			else
2049 				new_fs = fs;
2050 			spin_unlock(&fs->lock);
2051 		}
2052 
2053 		if (new_fd) {
2054 			fd = current->files;
2055 			current->files = new_fd;
2056 			new_fd = fd;
2057 		}
2058 
2059 		task_unlock(current);
2060 
2061 		if (new_cred) {
2062 			/* Install the new user namespace */
2063 			commit_creds(new_cred);
2064 			new_cred = NULL;
2065 		}
2066 	}
2067 
2068 bad_unshare_cleanup_cred:
2069 	if (new_cred)
2070 		put_cred(new_cred);
2071 bad_unshare_cleanup_fd:
2072 	if (new_fd)
2073 		put_files_struct(new_fd);
2074 
2075 bad_unshare_cleanup_fs:
2076 	if (new_fs)
2077 		free_fs_struct(new_fs);
2078 
2079 bad_unshare_out:
2080 	return err;
2081 }
2082 
2083 /*
2084  *	Helper to unshare the files of the current task.
2085  *	We don't want to expose copy_files internals to
2086  *	the exec layer of the kernel.
2087  */
2088 
2089 int unshare_files(struct files_struct **displaced)
2090 {
2091 	struct task_struct *task = current;
2092 	struct files_struct *copy = NULL;
2093 	int error;
2094 
2095 	error = unshare_fd(CLONE_FILES, &copy);
2096 	if (error || !copy) {
2097 		*displaced = NULL;
2098 		return error;
2099 	}
2100 	*displaced = task->files;
2101 	task_lock(task);
2102 	task->files = copy;
2103 	task_unlock(task);
2104 	return 0;
2105 }
2106 
2107 int sysctl_max_threads(struct ctl_table *table, int write,
2108 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2109 {
2110 	struct ctl_table t;
2111 	int ret;
2112 	int threads = max_threads;
2113 	int min = MIN_THREADS;
2114 	int max = MAX_THREADS;
2115 
2116 	t = *table;
2117 	t.data = &threads;
2118 	t.extra1 = &min;
2119 	t.extra2 = &max;
2120 
2121 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2122 	if (ret || !write)
2123 		return ret;
2124 
2125 	set_max_threads(threads);
2126 
2127 	return 0;
2128 }
2129