xref: /openbmc/linux/kernel/fork.c (revision 565485b8)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 
96 #include <asm/pgtable.h>
97 #include <asm/pgalloc.h>
98 #include <linux/uaccess.h>
99 #include <asm/mmu_context.h>
100 #include <asm/cacheflush.h>
101 #include <asm/tlbflush.h>
102 
103 #include <trace/events/sched.h>
104 
105 #define CREATE_TRACE_POINTS
106 #include <trace/events/task.h>
107 
108 /*
109  * Minimum number of threads to boot the kernel
110  */
111 #define MIN_THREADS 20
112 
113 /*
114  * Maximum number of threads
115  */
116 #define MAX_THREADS FUTEX_TID_MASK
117 
118 /*
119  * Protected counters by write_lock_irq(&tasklist_lock)
120  */
121 unsigned long total_forks;	/* Handle normal Linux uptimes. */
122 int nr_threads;			/* The idle threads do not count.. */
123 
124 int max_threads;		/* tunable limit on nr_threads */
125 
126 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
127 
128 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
129 
130 #ifdef CONFIG_PROVE_RCU
131 int lockdep_tasklist_lock_is_held(void)
132 {
133 	return lockdep_is_held(&tasklist_lock);
134 }
135 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
136 #endif /* #ifdef CONFIG_PROVE_RCU */
137 
138 int nr_processes(void)
139 {
140 	int cpu;
141 	int total = 0;
142 
143 	for_each_possible_cpu(cpu)
144 		total += per_cpu(process_counts, cpu);
145 
146 	return total;
147 }
148 
149 void __weak arch_release_task_struct(struct task_struct *tsk)
150 {
151 }
152 
153 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
154 static struct kmem_cache *task_struct_cachep;
155 
156 static inline struct task_struct *alloc_task_struct_node(int node)
157 {
158 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
159 }
160 
161 static inline void free_task_struct(struct task_struct *tsk)
162 {
163 	kmem_cache_free(task_struct_cachep, tsk);
164 }
165 #endif
166 
167 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
168 
169 /*
170  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
171  * kmemcache based allocator.
172  */
173 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
174 
175 #ifdef CONFIG_VMAP_STACK
176 /*
177  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
178  * flush.  Try to minimize the number of calls by caching stacks.
179  */
180 #define NR_CACHED_STACKS 2
181 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
182 
183 static int free_vm_stack_cache(unsigned int cpu)
184 {
185 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
186 	int i;
187 
188 	for (i = 0; i < NR_CACHED_STACKS; i++) {
189 		struct vm_struct *vm_stack = cached_vm_stacks[i];
190 
191 		if (!vm_stack)
192 			continue;
193 
194 		vfree(vm_stack->addr);
195 		cached_vm_stacks[i] = NULL;
196 	}
197 
198 	return 0;
199 }
200 #endif
201 
202 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
203 {
204 #ifdef CONFIG_VMAP_STACK
205 	void *stack;
206 	int i;
207 
208 	for (i = 0; i < NR_CACHED_STACKS; i++) {
209 		struct vm_struct *s;
210 
211 		s = this_cpu_xchg(cached_stacks[i], NULL);
212 
213 		if (!s)
214 			continue;
215 
216 		/* Clear stale pointers from reused stack. */
217 		memset(s->addr, 0, THREAD_SIZE);
218 
219 		tsk->stack_vm_area = s;
220 		tsk->stack = s->addr;
221 		return s->addr;
222 	}
223 
224 	/*
225 	 * Allocated stacks are cached and later reused by new threads,
226 	 * so memcg accounting is performed manually on assigning/releasing
227 	 * stacks to tasks. Drop __GFP_ACCOUNT.
228 	 */
229 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
230 				     VMALLOC_START, VMALLOC_END,
231 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
232 				     PAGE_KERNEL,
233 				     0, node, __builtin_return_address(0));
234 
235 	/*
236 	 * We can't call find_vm_area() in interrupt context, and
237 	 * free_thread_stack() can be called in interrupt context,
238 	 * so cache the vm_struct.
239 	 */
240 	if (stack) {
241 		tsk->stack_vm_area = find_vm_area(stack);
242 		tsk->stack = stack;
243 	}
244 	return stack;
245 #else
246 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
247 					     THREAD_SIZE_ORDER);
248 
249 	return page ? page_address(page) : NULL;
250 #endif
251 }
252 
253 static inline void free_thread_stack(struct task_struct *tsk)
254 {
255 #ifdef CONFIG_VMAP_STACK
256 	struct vm_struct *vm = task_stack_vm_area(tsk);
257 
258 	if (vm) {
259 		int i;
260 
261 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
262 			mod_memcg_page_state(vm->pages[i],
263 					     MEMCG_KERNEL_STACK_KB,
264 					     -(int)(PAGE_SIZE / 1024));
265 
266 			memcg_kmem_uncharge(vm->pages[i], 0);
267 		}
268 
269 		for (i = 0; i < NR_CACHED_STACKS; i++) {
270 			if (this_cpu_cmpxchg(cached_stacks[i],
271 					NULL, tsk->stack_vm_area) != NULL)
272 				continue;
273 
274 			return;
275 		}
276 
277 		vfree_atomic(tsk->stack);
278 		return;
279 	}
280 #endif
281 
282 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
283 }
284 # else
285 static struct kmem_cache *thread_stack_cache;
286 
287 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
288 						  int node)
289 {
290 	unsigned long *stack;
291 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
292 	tsk->stack = stack;
293 	return stack;
294 }
295 
296 static void free_thread_stack(struct task_struct *tsk)
297 {
298 	kmem_cache_free(thread_stack_cache, tsk->stack);
299 }
300 
301 void thread_stack_cache_init(void)
302 {
303 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
304 					THREAD_SIZE, THREAD_SIZE, 0, 0,
305 					THREAD_SIZE, NULL);
306 	BUG_ON(thread_stack_cache == NULL);
307 }
308 # endif
309 #endif
310 
311 /* SLAB cache for signal_struct structures (tsk->signal) */
312 static struct kmem_cache *signal_cachep;
313 
314 /* SLAB cache for sighand_struct structures (tsk->sighand) */
315 struct kmem_cache *sighand_cachep;
316 
317 /* SLAB cache for files_struct structures (tsk->files) */
318 struct kmem_cache *files_cachep;
319 
320 /* SLAB cache for fs_struct structures (tsk->fs) */
321 struct kmem_cache *fs_cachep;
322 
323 /* SLAB cache for vm_area_struct structures */
324 static struct kmem_cache *vm_area_cachep;
325 
326 /* SLAB cache for mm_struct structures (tsk->mm) */
327 static struct kmem_cache *mm_cachep;
328 
329 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
330 {
331 	struct vm_area_struct *vma;
332 
333 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
334 	if (vma)
335 		vma_init(vma, mm);
336 	return vma;
337 }
338 
339 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
340 {
341 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
342 
343 	if (new) {
344 		*new = *orig;
345 		INIT_LIST_HEAD(&new->anon_vma_chain);
346 	}
347 	return new;
348 }
349 
350 void vm_area_free(struct vm_area_struct *vma)
351 {
352 	kmem_cache_free(vm_area_cachep, vma);
353 }
354 
355 static void account_kernel_stack(struct task_struct *tsk, int account)
356 {
357 	void *stack = task_stack_page(tsk);
358 	struct vm_struct *vm = task_stack_vm_area(tsk);
359 
360 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
361 
362 	if (vm) {
363 		int i;
364 
365 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
366 
367 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
368 			mod_zone_page_state(page_zone(vm->pages[i]),
369 					    NR_KERNEL_STACK_KB,
370 					    PAGE_SIZE / 1024 * account);
371 		}
372 	} else {
373 		/*
374 		 * All stack pages are in the same zone and belong to the
375 		 * same memcg.
376 		 */
377 		struct page *first_page = virt_to_page(stack);
378 
379 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
380 				    THREAD_SIZE / 1024 * account);
381 
382 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
383 				     account * (THREAD_SIZE / 1024));
384 	}
385 }
386 
387 static int memcg_charge_kernel_stack(struct task_struct *tsk)
388 {
389 #ifdef CONFIG_VMAP_STACK
390 	struct vm_struct *vm = task_stack_vm_area(tsk);
391 	int ret;
392 
393 	if (vm) {
394 		int i;
395 
396 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
397 			/*
398 			 * If memcg_kmem_charge() fails, page->mem_cgroup
399 			 * pointer is NULL, and both memcg_kmem_uncharge()
400 			 * and mod_memcg_page_state() in free_thread_stack()
401 			 * will ignore this page. So it's safe.
402 			 */
403 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
404 			if (ret)
405 				return ret;
406 
407 			mod_memcg_page_state(vm->pages[i],
408 					     MEMCG_KERNEL_STACK_KB,
409 					     PAGE_SIZE / 1024);
410 		}
411 	}
412 #endif
413 	return 0;
414 }
415 
416 static void release_task_stack(struct task_struct *tsk)
417 {
418 	if (WARN_ON(tsk->state != TASK_DEAD))
419 		return;  /* Better to leak the stack than to free prematurely */
420 
421 	account_kernel_stack(tsk, -1);
422 	free_thread_stack(tsk);
423 	tsk->stack = NULL;
424 #ifdef CONFIG_VMAP_STACK
425 	tsk->stack_vm_area = NULL;
426 #endif
427 }
428 
429 #ifdef CONFIG_THREAD_INFO_IN_TASK
430 void put_task_stack(struct task_struct *tsk)
431 {
432 	if (atomic_dec_and_test(&tsk->stack_refcount))
433 		release_task_stack(tsk);
434 }
435 #endif
436 
437 void free_task(struct task_struct *tsk)
438 {
439 #ifndef CONFIG_THREAD_INFO_IN_TASK
440 	/*
441 	 * The task is finally done with both the stack and thread_info,
442 	 * so free both.
443 	 */
444 	release_task_stack(tsk);
445 #else
446 	/*
447 	 * If the task had a separate stack allocation, it should be gone
448 	 * by now.
449 	 */
450 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
451 #endif
452 	rt_mutex_debug_task_free(tsk);
453 	ftrace_graph_exit_task(tsk);
454 	put_seccomp_filter(tsk);
455 	arch_release_task_struct(tsk);
456 	if (tsk->flags & PF_KTHREAD)
457 		free_kthread_struct(tsk);
458 	free_task_struct(tsk);
459 }
460 EXPORT_SYMBOL(free_task);
461 
462 #ifdef CONFIG_MMU
463 static __latent_entropy int dup_mmap(struct mm_struct *mm,
464 					struct mm_struct *oldmm)
465 {
466 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
467 	struct rb_node **rb_link, *rb_parent;
468 	int retval;
469 	unsigned long charge;
470 	LIST_HEAD(uf);
471 
472 	uprobe_start_dup_mmap();
473 	if (down_write_killable(&oldmm->mmap_sem)) {
474 		retval = -EINTR;
475 		goto fail_uprobe_end;
476 	}
477 	flush_cache_dup_mm(oldmm);
478 	uprobe_dup_mmap(oldmm, mm);
479 	/*
480 	 * Not linked in yet - no deadlock potential:
481 	 */
482 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
483 
484 	/* No ordering required: file already has been exposed. */
485 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
486 
487 	mm->total_vm = oldmm->total_vm;
488 	mm->data_vm = oldmm->data_vm;
489 	mm->exec_vm = oldmm->exec_vm;
490 	mm->stack_vm = oldmm->stack_vm;
491 
492 	rb_link = &mm->mm_rb.rb_node;
493 	rb_parent = NULL;
494 	pprev = &mm->mmap;
495 	retval = ksm_fork(mm, oldmm);
496 	if (retval)
497 		goto out;
498 	retval = khugepaged_fork(mm, oldmm);
499 	if (retval)
500 		goto out;
501 
502 	prev = NULL;
503 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
504 		struct file *file;
505 
506 		if (mpnt->vm_flags & VM_DONTCOPY) {
507 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
508 			continue;
509 		}
510 		charge = 0;
511 		/*
512 		 * Don't duplicate many vmas if we've been oom-killed (for
513 		 * example)
514 		 */
515 		if (fatal_signal_pending(current)) {
516 			retval = -EINTR;
517 			goto out;
518 		}
519 		if (mpnt->vm_flags & VM_ACCOUNT) {
520 			unsigned long len = vma_pages(mpnt);
521 
522 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
523 				goto fail_nomem;
524 			charge = len;
525 		}
526 		tmp = vm_area_dup(mpnt);
527 		if (!tmp)
528 			goto fail_nomem;
529 		retval = vma_dup_policy(mpnt, tmp);
530 		if (retval)
531 			goto fail_nomem_policy;
532 		tmp->vm_mm = mm;
533 		retval = dup_userfaultfd(tmp, &uf);
534 		if (retval)
535 			goto fail_nomem_anon_vma_fork;
536 		if (tmp->vm_flags & VM_WIPEONFORK) {
537 			/* VM_WIPEONFORK gets a clean slate in the child. */
538 			tmp->anon_vma = NULL;
539 			if (anon_vma_prepare(tmp))
540 				goto fail_nomem_anon_vma_fork;
541 		} else if (anon_vma_fork(tmp, mpnt))
542 			goto fail_nomem_anon_vma_fork;
543 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
544 		tmp->vm_next = tmp->vm_prev = NULL;
545 		file = tmp->vm_file;
546 		if (file) {
547 			struct inode *inode = file_inode(file);
548 			struct address_space *mapping = file->f_mapping;
549 
550 			get_file(file);
551 			if (tmp->vm_flags & VM_DENYWRITE)
552 				atomic_dec(&inode->i_writecount);
553 			i_mmap_lock_write(mapping);
554 			if (tmp->vm_flags & VM_SHARED)
555 				atomic_inc(&mapping->i_mmap_writable);
556 			flush_dcache_mmap_lock(mapping);
557 			/* insert tmp into the share list, just after mpnt */
558 			vma_interval_tree_insert_after(tmp, mpnt,
559 					&mapping->i_mmap);
560 			flush_dcache_mmap_unlock(mapping);
561 			i_mmap_unlock_write(mapping);
562 		}
563 
564 		/*
565 		 * Clear hugetlb-related page reserves for children. This only
566 		 * affects MAP_PRIVATE mappings. Faults generated by the child
567 		 * are not guaranteed to succeed, even if read-only
568 		 */
569 		if (is_vm_hugetlb_page(tmp))
570 			reset_vma_resv_huge_pages(tmp);
571 
572 		/*
573 		 * Link in the new vma and copy the page table entries.
574 		 */
575 		*pprev = tmp;
576 		pprev = &tmp->vm_next;
577 		tmp->vm_prev = prev;
578 		prev = tmp;
579 
580 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
581 		rb_link = &tmp->vm_rb.rb_right;
582 		rb_parent = &tmp->vm_rb;
583 
584 		mm->map_count++;
585 		if (!(tmp->vm_flags & VM_WIPEONFORK))
586 			retval = copy_page_range(mm, oldmm, mpnt);
587 
588 		if (tmp->vm_ops && tmp->vm_ops->open)
589 			tmp->vm_ops->open(tmp);
590 
591 		if (retval)
592 			goto out;
593 	}
594 	/* a new mm has just been created */
595 	retval = arch_dup_mmap(oldmm, mm);
596 out:
597 	up_write(&mm->mmap_sem);
598 	flush_tlb_mm(oldmm);
599 	up_write(&oldmm->mmap_sem);
600 	dup_userfaultfd_complete(&uf);
601 fail_uprobe_end:
602 	uprobe_end_dup_mmap();
603 	return retval;
604 fail_nomem_anon_vma_fork:
605 	mpol_put(vma_policy(tmp));
606 fail_nomem_policy:
607 	vm_area_free(tmp);
608 fail_nomem:
609 	retval = -ENOMEM;
610 	vm_unacct_memory(charge);
611 	goto out;
612 }
613 
614 static inline int mm_alloc_pgd(struct mm_struct *mm)
615 {
616 	mm->pgd = pgd_alloc(mm);
617 	if (unlikely(!mm->pgd))
618 		return -ENOMEM;
619 	return 0;
620 }
621 
622 static inline void mm_free_pgd(struct mm_struct *mm)
623 {
624 	pgd_free(mm, mm->pgd);
625 }
626 #else
627 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
628 {
629 	down_write(&oldmm->mmap_sem);
630 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
631 	up_write(&oldmm->mmap_sem);
632 	return 0;
633 }
634 #define mm_alloc_pgd(mm)	(0)
635 #define mm_free_pgd(mm)
636 #endif /* CONFIG_MMU */
637 
638 static void check_mm(struct mm_struct *mm)
639 {
640 	int i;
641 
642 	for (i = 0; i < NR_MM_COUNTERS; i++) {
643 		long x = atomic_long_read(&mm->rss_stat.count[i]);
644 
645 		if (unlikely(x))
646 			printk(KERN_ALERT "BUG: Bad rss-counter state "
647 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
648 	}
649 
650 	if (mm_pgtables_bytes(mm))
651 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
652 				mm_pgtables_bytes(mm));
653 
654 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
655 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
656 #endif
657 }
658 
659 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
660 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
661 
662 /*
663  * Called when the last reference to the mm
664  * is dropped: either by a lazy thread or by
665  * mmput. Free the page directory and the mm.
666  */
667 void __mmdrop(struct mm_struct *mm)
668 {
669 	BUG_ON(mm == &init_mm);
670 	WARN_ON_ONCE(mm == current->mm);
671 	WARN_ON_ONCE(mm == current->active_mm);
672 	mm_free_pgd(mm);
673 	destroy_context(mm);
674 	hmm_mm_destroy(mm);
675 	mmu_notifier_mm_destroy(mm);
676 	check_mm(mm);
677 	put_user_ns(mm->user_ns);
678 	free_mm(mm);
679 }
680 EXPORT_SYMBOL_GPL(__mmdrop);
681 
682 static void mmdrop_async_fn(struct work_struct *work)
683 {
684 	struct mm_struct *mm;
685 
686 	mm = container_of(work, struct mm_struct, async_put_work);
687 	__mmdrop(mm);
688 }
689 
690 static void mmdrop_async(struct mm_struct *mm)
691 {
692 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
693 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
694 		schedule_work(&mm->async_put_work);
695 	}
696 }
697 
698 static inline void free_signal_struct(struct signal_struct *sig)
699 {
700 	taskstats_tgid_free(sig);
701 	sched_autogroup_exit(sig);
702 	/*
703 	 * __mmdrop is not safe to call from softirq context on x86 due to
704 	 * pgd_dtor so postpone it to the async context
705 	 */
706 	if (sig->oom_mm)
707 		mmdrop_async(sig->oom_mm);
708 	kmem_cache_free(signal_cachep, sig);
709 }
710 
711 static inline void put_signal_struct(struct signal_struct *sig)
712 {
713 	if (atomic_dec_and_test(&sig->sigcnt))
714 		free_signal_struct(sig);
715 }
716 
717 void __put_task_struct(struct task_struct *tsk)
718 {
719 	WARN_ON(!tsk->exit_state);
720 	WARN_ON(atomic_read(&tsk->usage));
721 	WARN_ON(tsk == current);
722 
723 	cgroup_free(tsk);
724 	task_numa_free(tsk);
725 	security_task_free(tsk);
726 	exit_creds(tsk);
727 	delayacct_tsk_free(tsk);
728 	put_signal_struct(tsk->signal);
729 
730 	if (!profile_handoff_task(tsk))
731 		free_task(tsk);
732 }
733 EXPORT_SYMBOL_GPL(__put_task_struct);
734 
735 void __init __weak arch_task_cache_init(void) { }
736 
737 /*
738  * set_max_threads
739  */
740 static void set_max_threads(unsigned int max_threads_suggested)
741 {
742 	u64 threads;
743 	unsigned long nr_pages = totalram_pages();
744 
745 	/*
746 	 * The number of threads shall be limited such that the thread
747 	 * structures may only consume a small part of the available memory.
748 	 */
749 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
750 		threads = MAX_THREADS;
751 	else
752 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
753 				    (u64) THREAD_SIZE * 8UL);
754 
755 	if (threads > max_threads_suggested)
756 		threads = max_threads_suggested;
757 
758 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
759 }
760 
761 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
762 /* Initialized by the architecture: */
763 int arch_task_struct_size __read_mostly;
764 #endif
765 
766 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
767 {
768 	/* Fetch thread_struct whitelist for the architecture. */
769 	arch_thread_struct_whitelist(offset, size);
770 
771 	/*
772 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
773 	 * adjust offset to position of thread_struct in task_struct.
774 	 */
775 	if (unlikely(*size == 0))
776 		*offset = 0;
777 	else
778 		*offset += offsetof(struct task_struct, thread);
779 }
780 
781 void __init fork_init(void)
782 {
783 	int i;
784 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
785 #ifndef ARCH_MIN_TASKALIGN
786 #define ARCH_MIN_TASKALIGN	0
787 #endif
788 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
789 	unsigned long useroffset, usersize;
790 
791 	/* create a slab on which task_structs can be allocated */
792 	task_struct_whitelist(&useroffset, &usersize);
793 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
794 			arch_task_struct_size, align,
795 			SLAB_PANIC|SLAB_ACCOUNT,
796 			useroffset, usersize, NULL);
797 #endif
798 
799 	/* do the arch specific task caches init */
800 	arch_task_cache_init();
801 
802 	set_max_threads(MAX_THREADS);
803 
804 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
805 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
806 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
807 		init_task.signal->rlim[RLIMIT_NPROC];
808 
809 	for (i = 0; i < UCOUNT_COUNTS; i++) {
810 		init_user_ns.ucount_max[i] = max_threads/2;
811 	}
812 
813 #ifdef CONFIG_VMAP_STACK
814 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
815 			  NULL, free_vm_stack_cache);
816 #endif
817 
818 	lockdep_init_task(&init_task);
819 }
820 
821 int __weak arch_dup_task_struct(struct task_struct *dst,
822 					       struct task_struct *src)
823 {
824 	*dst = *src;
825 	return 0;
826 }
827 
828 void set_task_stack_end_magic(struct task_struct *tsk)
829 {
830 	unsigned long *stackend;
831 
832 	stackend = end_of_stack(tsk);
833 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
834 }
835 
836 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
837 {
838 	struct task_struct *tsk;
839 	unsigned long *stack;
840 	struct vm_struct *stack_vm_area __maybe_unused;
841 	int err;
842 
843 	if (node == NUMA_NO_NODE)
844 		node = tsk_fork_get_node(orig);
845 	tsk = alloc_task_struct_node(node);
846 	if (!tsk)
847 		return NULL;
848 
849 	stack = alloc_thread_stack_node(tsk, node);
850 	if (!stack)
851 		goto free_tsk;
852 
853 	if (memcg_charge_kernel_stack(tsk))
854 		goto free_stack;
855 
856 	stack_vm_area = task_stack_vm_area(tsk);
857 
858 	err = arch_dup_task_struct(tsk, orig);
859 
860 	/*
861 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
862 	 * sure they're properly initialized before using any stack-related
863 	 * functions again.
864 	 */
865 	tsk->stack = stack;
866 #ifdef CONFIG_VMAP_STACK
867 	tsk->stack_vm_area = stack_vm_area;
868 #endif
869 #ifdef CONFIG_THREAD_INFO_IN_TASK
870 	atomic_set(&tsk->stack_refcount, 1);
871 #endif
872 
873 	if (err)
874 		goto free_stack;
875 
876 #ifdef CONFIG_SECCOMP
877 	/*
878 	 * We must handle setting up seccomp filters once we're under
879 	 * the sighand lock in case orig has changed between now and
880 	 * then. Until then, filter must be NULL to avoid messing up
881 	 * the usage counts on the error path calling free_task.
882 	 */
883 	tsk->seccomp.filter = NULL;
884 #endif
885 
886 	setup_thread_stack(tsk, orig);
887 	clear_user_return_notifier(tsk);
888 	clear_tsk_need_resched(tsk);
889 	set_task_stack_end_magic(tsk);
890 
891 #ifdef CONFIG_STACKPROTECTOR
892 	tsk->stack_canary = get_random_canary();
893 #endif
894 
895 	/*
896 	 * One for us, one for whoever does the "release_task()" (usually
897 	 * parent)
898 	 */
899 	atomic_set(&tsk->usage, 2);
900 #ifdef CONFIG_BLK_DEV_IO_TRACE
901 	tsk->btrace_seq = 0;
902 #endif
903 	tsk->splice_pipe = NULL;
904 	tsk->task_frag.page = NULL;
905 	tsk->wake_q.next = NULL;
906 
907 	account_kernel_stack(tsk, 1);
908 
909 	kcov_task_init(tsk);
910 
911 #ifdef CONFIG_FAULT_INJECTION
912 	tsk->fail_nth = 0;
913 #endif
914 
915 #ifdef CONFIG_BLK_CGROUP
916 	tsk->throttle_queue = NULL;
917 	tsk->use_memdelay = 0;
918 #endif
919 
920 #ifdef CONFIG_MEMCG
921 	tsk->active_memcg = NULL;
922 #endif
923 	return tsk;
924 
925 free_stack:
926 	free_thread_stack(tsk);
927 free_tsk:
928 	free_task_struct(tsk);
929 	return NULL;
930 }
931 
932 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
933 
934 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
935 
936 static int __init coredump_filter_setup(char *s)
937 {
938 	default_dump_filter =
939 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
940 		MMF_DUMP_FILTER_MASK;
941 	return 1;
942 }
943 
944 __setup("coredump_filter=", coredump_filter_setup);
945 
946 #include <linux/init_task.h>
947 
948 static void mm_init_aio(struct mm_struct *mm)
949 {
950 #ifdef CONFIG_AIO
951 	spin_lock_init(&mm->ioctx_lock);
952 	mm->ioctx_table = NULL;
953 #endif
954 }
955 
956 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
957 {
958 #ifdef CONFIG_MEMCG
959 	mm->owner = p;
960 #endif
961 }
962 
963 static void mm_init_uprobes_state(struct mm_struct *mm)
964 {
965 #ifdef CONFIG_UPROBES
966 	mm->uprobes_state.xol_area = NULL;
967 #endif
968 }
969 
970 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
971 	struct user_namespace *user_ns)
972 {
973 	mm->mmap = NULL;
974 	mm->mm_rb = RB_ROOT;
975 	mm->vmacache_seqnum = 0;
976 	atomic_set(&mm->mm_users, 1);
977 	atomic_set(&mm->mm_count, 1);
978 	init_rwsem(&mm->mmap_sem);
979 	INIT_LIST_HEAD(&mm->mmlist);
980 	mm->core_state = NULL;
981 	mm_pgtables_bytes_init(mm);
982 	mm->map_count = 0;
983 	mm->locked_vm = 0;
984 	mm->pinned_vm = 0;
985 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
986 	spin_lock_init(&mm->page_table_lock);
987 	spin_lock_init(&mm->arg_lock);
988 	mm_init_cpumask(mm);
989 	mm_init_aio(mm);
990 	mm_init_owner(mm, p);
991 	RCU_INIT_POINTER(mm->exe_file, NULL);
992 	mmu_notifier_mm_init(mm);
993 	hmm_mm_init(mm);
994 	init_tlb_flush_pending(mm);
995 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
996 	mm->pmd_huge_pte = NULL;
997 #endif
998 	mm_init_uprobes_state(mm);
999 
1000 	if (current->mm) {
1001 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1002 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1003 	} else {
1004 		mm->flags = default_dump_filter;
1005 		mm->def_flags = 0;
1006 	}
1007 
1008 	if (mm_alloc_pgd(mm))
1009 		goto fail_nopgd;
1010 
1011 	if (init_new_context(p, mm))
1012 		goto fail_nocontext;
1013 
1014 	mm->user_ns = get_user_ns(user_ns);
1015 	return mm;
1016 
1017 fail_nocontext:
1018 	mm_free_pgd(mm);
1019 fail_nopgd:
1020 	free_mm(mm);
1021 	return NULL;
1022 }
1023 
1024 /*
1025  * Allocate and initialize an mm_struct.
1026  */
1027 struct mm_struct *mm_alloc(void)
1028 {
1029 	struct mm_struct *mm;
1030 
1031 	mm = allocate_mm();
1032 	if (!mm)
1033 		return NULL;
1034 
1035 	memset(mm, 0, sizeof(*mm));
1036 	return mm_init(mm, current, current_user_ns());
1037 }
1038 
1039 static inline void __mmput(struct mm_struct *mm)
1040 {
1041 	VM_BUG_ON(atomic_read(&mm->mm_users));
1042 
1043 	uprobe_clear_state(mm);
1044 	exit_aio(mm);
1045 	ksm_exit(mm);
1046 	khugepaged_exit(mm); /* must run before exit_mmap */
1047 	exit_mmap(mm);
1048 	mm_put_huge_zero_page(mm);
1049 	set_mm_exe_file(mm, NULL);
1050 	if (!list_empty(&mm->mmlist)) {
1051 		spin_lock(&mmlist_lock);
1052 		list_del(&mm->mmlist);
1053 		spin_unlock(&mmlist_lock);
1054 	}
1055 	if (mm->binfmt)
1056 		module_put(mm->binfmt->module);
1057 	mmdrop(mm);
1058 }
1059 
1060 /*
1061  * Decrement the use count and release all resources for an mm.
1062  */
1063 void mmput(struct mm_struct *mm)
1064 {
1065 	might_sleep();
1066 
1067 	if (atomic_dec_and_test(&mm->mm_users))
1068 		__mmput(mm);
1069 }
1070 EXPORT_SYMBOL_GPL(mmput);
1071 
1072 #ifdef CONFIG_MMU
1073 static void mmput_async_fn(struct work_struct *work)
1074 {
1075 	struct mm_struct *mm = container_of(work, struct mm_struct,
1076 					    async_put_work);
1077 
1078 	__mmput(mm);
1079 }
1080 
1081 void mmput_async(struct mm_struct *mm)
1082 {
1083 	if (atomic_dec_and_test(&mm->mm_users)) {
1084 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1085 		schedule_work(&mm->async_put_work);
1086 	}
1087 }
1088 #endif
1089 
1090 /**
1091  * set_mm_exe_file - change a reference to the mm's executable file
1092  *
1093  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1094  *
1095  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1096  * invocations: in mmput() nobody alive left, in execve task is single
1097  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1098  * mm->exe_file, but does so without using set_mm_exe_file() in order
1099  * to do avoid the need for any locks.
1100  */
1101 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1102 {
1103 	struct file *old_exe_file;
1104 
1105 	/*
1106 	 * It is safe to dereference the exe_file without RCU as
1107 	 * this function is only called if nobody else can access
1108 	 * this mm -- see comment above for justification.
1109 	 */
1110 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1111 
1112 	if (new_exe_file)
1113 		get_file(new_exe_file);
1114 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1115 	if (old_exe_file)
1116 		fput(old_exe_file);
1117 }
1118 
1119 /**
1120  * get_mm_exe_file - acquire a reference to the mm's executable file
1121  *
1122  * Returns %NULL if mm has no associated executable file.
1123  * User must release file via fput().
1124  */
1125 struct file *get_mm_exe_file(struct mm_struct *mm)
1126 {
1127 	struct file *exe_file;
1128 
1129 	rcu_read_lock();
1130 	exe_file = rcu_dereference(mm->exe_file);
1131 	if (exe_file && !get_file_rcu(exe_file))
1132 		exe_file = NULL;
1133 	rcu_read_unlock();
1134 	return exe_file;
1135 }
1136 EXPORT_SYMBOL(get_mm_exe_file);
1137 
1138 /**
1139  * get_task_exe_file - acquire a reference to the task's executable file
1140  *
1141  * Returns %NULL if task's mm (if any) has no associated executable file or
1142  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1143  * User must release file via fput().
1144  */
1145 struct file *get_task_exe_file(struct task_struct *task)
1146 {
1147 	struct file *exe_file = NULL;
1148 	struct mm_struct *mm;
1149 
1150 	task_lock(task);
1151 	mm = task->mm;
1152 	if (mm) {
1153 		if (!(task->flags & PF_KTHREAD))
1154 			exe_file = get_mm_exe_file(mm);
1155 	}
1156 	task_unlock(task);
1157 	return exe_file;
1158 }
1159 EXPORT_SYMBOL(get_task_exe_file);
1160 
1161 /**
1162  * get_task_mm - acquire a reference to the task's mm
1163  *
1164  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1165  * this kernel workthread has transiently adopted a user mm with use_mm,
1166  * to do its AIO) is not set and if so returns a reference to it, after
1167  * bumping up the use count.  User must release the mm via mmput()
1168  * after use.  Typically used by /proc and ptrace.
1169  */
1170 struct mm_struct *get_task_mm(struct task_struct *task)
1171 {
1172 	struct mm_struct *mm;
1173 
1174 	task_lock(task);
1175 	mm = task->mm;
1176 	if (mm) {
1177 		if (task->flags & PF_KTHREAD)
1178 			mm = NULL;
1179 		else
1180 			mmget(mm);
1181 	}
1182 	task_unlock(task);
1183 	return mm;
1184 }
1185 EXPORT_SYMBOL_GPL(get_task_mm);
1186 
1187 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1188 {
1189 	struct mm_struct *mm;
1190 	int err;
1191 
1192 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1193 	if (err)
1194 		return ERR_PTR(err);
1195 
1196 	mm = get_task_mm(task);
1197 	if (mm && mm != current->mm &&
1198 			!ptrace_may_access(task, mode)) {
1199 		mmput(mm);
1200 		mm = ERR_PTR(-EACCES);
1201 	}
1202 	mutex_unlock(&task->signal->cred_guard_mutex);
1203 
1204 	return mm;
1205 }
1206 
1207 static void complete_vfork_done(struct task_struct *tsk)
1208 {
1209 	struct completion *vfork;
1210 
1211 	task_lock(tsk);
1212 	vfork = tsk->vfork_done;
1213 	if (likely(vfork)) {
1214 		tsk->vfork_done = NULL;
1215 		complete(vfork);
1216 	}
1217 	task_unlock(tsk);
1218 }
1219 
1220 static int wait_for_vfork_done(struct task_struct *child,
1221 				struct completion *vfork)
1222 {
1223 	int killed;
1224 
1225 	freezer_do_not_count();
1226 	killed = wait_for_completion_killable(vfork);
1227 	freezer_count();
1228 
1229 	if (killed) {
1230 		task_lock(child);
1231 		child->vfork_done = NULL;
1232 		task_unlock(child);
1233 	}
1234 
1235 	put_task_struct(child);
1236 	return killed;
1237 }
1238 
1239 /* Please note the differences between mmput and mm_release.
1240  * mmput is called whenever we stop holding onto a mm_struct,
1241  * error success whatever.
1242  *
1243  * mm_release is called after a mm_struct has been removed
1244  * from the current process.
1245  *
1246  * This difference is important for error handling, when we
1247  * only half set up a mm_struct for a new process and need to restore
1248  * the old one.  Because we mmput the new mm_struct before
1249  * restoring the old one. . .
1250  * Eric Biederman 10 January 1998
1251  */
1252 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1253 {
1254 	/* Get rid of any futexes when releasing the mm */
1255 #ifdef CONFIG_FUTEX
1256 	if (unlikely(tsk->robust_list)) {
1257 		exit_robust_list(tsk);
1258 		tsk->robust_list = NULL;
1259 	}
1260 #ifdef CONFIG_COMPAT
1261 	if (unlikely(tsk->compat_robust_list)) {
1262 		compat_exit_robust_list(tsk);
1263 		tsk->compat_robust_list = NULL;
1264 	}
1265 #endif
1266 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1267 		exit_pi_state_list(tsk);
1268 #endif
1269 
1270 	uprobe_free_utask(tsk);
1271 
1272 	/* Get rid of any cached register state */
1273 	deactivate_mm(tsk, mm);
1274 
1275 	/*
1276 	 * Signal userspace if we're not exiting with a core dump
1277 	 * because we want to leave the value intact for debugging
1278 	 * purposes.
1279 	 */
1280 	if (tsk->clear_child_tid) {
1281 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1282 		    atomic_read(&mm->mm_users) > 1) {
1283 			/*
1284 			 * We don't check the error code - if userspace has
1285 			 * not set up a proper pointer then tough luck.
1286 			 */
1287 			put_user(0, tsk->clear_child_tid);
1288 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1289 					1, NULL, NULL, 0, 0);
1290 		}
1291 		tsk->clear_child_tid = NULL;
1292 	}
1293 
1294 	/*
1295 	 * All done, finally we can wake up parent and return this mm to him.
1296 	 * Also kthread_stop() uses this completion for synchronization.
1297 	 */
1298 	if (tsk->vfork_done)
1299 		complete_vfork_done(tsk);
1300 }
1301 
1302 /*
1303  * Allocate a new mm structure and copy contents from the
1304  * mm structure of the passed in task structure.
1305  */
1306 static struct mm_struct *dup_mm(struct task_struct *tsk)
1307 {
1308 	struct mm_struct *mm, *oldmm = current->mm;
1309 	int err;
1310 
1311 	mm = allocate_mm();
1312 	if (!mm)
1313 		goto fail_nomem;
1314 
1315 	memcpy(mm, oldmm, sizeof(*mm));
1316 
1317 	if (!mm_init(mm, tsk, mm->user_ns))
1318 		goto fail_nomem;
1319 
1320 	err = dup_mmap(mm, oldmm);
1321 	if (err)
1322 		goto free_pt;
1323 
1324 	mm->hiwater_rss = get_mm_rss(mm);
1325 	mm->hiwater_vm = mm->total_vm;
1326 
1327 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1328 		goto free_pt;
1329 
1330 	return mm;
1331 
1332 free_pt:
1333 	/* don't put binfmt in mmput, we haven't got module yet */
1334 	mm->binfmt = NULL;
1335 	mmput(mm);
1336 
1337 fail_nomem:
1338 	return NULL;
1339 }
1340 
1341 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1342 {
1343 	struct mm_struct *mm, *oldmm;
1344 	int retval;
1345 
1346 	tsk->min_flt = tsk->maj_flt = 0;
1347 	tsk->nvcsw = tsk->nivcsw = 0;
1348 #ifdef CONFIG_DETECT_HUNG_TASK
1349 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1350 	tsk->last_switch_time = 0;
1351 #endif
1352 
1353 	tsk->mm = NULL;
1354 	tsk->active_mm = NULL;
1355 
1356 	/*
1357 	 * Are we cloning a kernel thread?
1358 	 *
1359 	 * We need to steal a active VM for that..
1360 	 */
1361 	oldmm = current->mm;
1362 	if (!oldmm)
1363 		return 0;
1364 
1365 	/* initialize the new vmacache entries */
1366 	vmacache_flush(tsk);
1367 
1368 	if (clone_flags & CLONE_VM) {
1369 		mmget(oldmm);
1370 		mm = oldmm;
1371 		goto good_mm;
1372 	}
1373 
1374 	retval = -ENOMEM;
1375 	mm = dup_mm(tsk);
1376 	if (!mm)
1377 		goto fail_nomem;
1378 
1379 good_mm:
1380 	tsk->mm = mm;
1381 	tsk->active_mm = mm;
1382 	return 0;
1383 
1384 fail_nomem:
1385 	return retval;
1386 }
1387 
1388 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1389 {
1390 	struct fs_struct *fs = current->fs;
1391 	if (clone_flags & CLONE_FS) {
1392 		/* tsk->fs is already what we want */
1393 		spin_lock(&fs->lock);
1394 		if (fs->in_exec) {
1395 			spin_unlock(&fs->lock);
1396 			return -EAGAIN;
1397 		}
1398 		fs->users++;
1399 		spin_unlock(&fs->lock);
1400 		return 0;
1401 	}
1402 	tsk->fs = copy_fs_struct(fs);
1403 	if (!tsk->fs)
1404 		return -ENOMEM;
1405 	return 0;
1406 }
1407 
1408 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1409 {
1410 	struct files_struct *oldf, *newf;
1411 	int error = 0;
1412 
1413 	/*
1414 	 * A background process may not have any files ...
1415 	 */
1416 	oldf = current->files;
1417 	if (!oldf)
1418 		goto out;
1419 
1420 	if (clone_flags & CLONE_FILES) {
1421 		atomic_inc(&oldf->count);
1422 		goto out;
1423 	}
1424 
1425 	newf = dup_fd(oldf, &error);
1426 	if (!newf)
1427 		goto out;
1428 
1429 	tsk->files = newf;
1430 	error = 0;
1431 out:
1432 	return error;
1433 }
1434 
1435 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1436 {
1437 #ifdef CONFIG_BLOCK
1438 	struct io_context *ioc = current->io_context;
1439 	struct io_context *new_ioc;
1440 
1441 	if (!ioc)
1442 		return 0;
1443 	/*
1444 	 * Share io context with parent, if CLONE_IO is set
1445 	 */
1446 	if (clone_flags & CLONE_IO) {
1447 		ioc_task_link(ioc);
1448 		tsk->io_context = ioc;
1449 	} else if (ioprio_valid(ioc->ioprio)) {
1450 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1451 		if (unlikely(!new_ioc))
1452 			return -ENOMEM;
1453 
1454 		new_ioc->ioprio = ioc->ioprio;
1455 		put_io_context(new_ioc);
1456 	}
1457 #endif
1458 	return 0;
1459 }
1460 
1461 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1462 {
1463 	struct sighand_struct *sig;
1464 
1465 	if (clone_flags & CLONE_SIGHAND) {
1466 		atomic_inc(&current->sighand->count);
1467 		return 0;
1468 	}
1469 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1470 	rcu_assign_pointer(tsk->sighand, sig);
1471 	if (!sig)
1472 		return -ENOMEM;
1473 
1474 	atomic_set(&sig->count, 1);
1475 	spin_lock_irq(&current->sighand->siglock);
1476 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1477 	spin_unlock_irq(&current->sighand->siglock);
1478 	return 0;
1479 }
1480 
1481 void __cleanup_sighand(struct sighand_struct *sighand)
1482 {
1483 	if (atomic_dec_and_test(&sighand->count)) {
1484 		signalfd_cleanup(sighand);
1485 		/*
1486 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1487 		 * without an RCU grace period, see __lock_task_sighand().
1488 		 */
1489 		kmem_cache_free(sighand_cachep, sighand);
1490 	}
1491 }
1492 
1493 #ifdef CONFIG_POSIX_TIMERS
1494 /*
1495  * Initialize POSIX timer handling for a thread group.
1496  */
1497 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1498 {
1499 	unsigned long cpu_limit;
1500 
1501 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1502 	if (cpu_limit != RLIM_INFINITY) {
1503 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1504 		sig->cputimer.running = true;
1505 	}
1506 
1507 	/* The timer lists. */
1508 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1509 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1510 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1511 }
1512 #else
1513 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1514 #endif
1515 
1516 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1517 {
1518 	struct signal_struct *sig;
1519 
1520 	if (clone_flags & CLONE_THREAD)
1521 		return 0;
1522 
1523 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1524 	tsk->signal = sig;
1525 	if (!sig)
1526 		return -ENOMEM;
1527 
1528 	sig->nr_threads = 1;
1529 	atomic_set(&sig->live, 1);
1530 	atomic_set(&sig->sigcnt, 1);
1531 
1532 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1533 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1534 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1535 
1536 	init_waitqueue_head(&sig->wait_chldexit);
1537 	sig->curr_target = tsk;
1538 	init_sigpending(&sig->shared_pending);
1539 	INIT_HLIST_HEAD(&sig->multiprocess);
1540 	seqlock_init(&sig->stats_lock);
1541 	prev_cputime_init(&sig->prev_cputime);
1542 
1543 #ifdef CONFIG_POSIX_TIMERS
1544 	INIT_LIST_HEAD(&sig->posix_timers);
1545 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1546 	sig->real_timer.function = it_real_fn;
1547 #endif
1548 
1549 	task_lock(current->group_leader);
1550 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1551 	task_unlock(current->group_leader);
1552 
1553 	posix_cpu_timers_init_group(sig);
1554 
1555 	tty_audit_fork(sig);
1556 	sched_autogroup_fork(sig);
1557 
1558 	sig->oom_score_adj = current->signal->oom_score_adj;
1559 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1560 
1561 	mutex_init(&sig->cred_guard_mutex);
1562 
1563 	return 0;
1564 }
1565 
1566 static void copy_seccomp(struct task_struct *p)
1567 {
1568 #ifdef CONFIG_SECCOMP
1569 	/*
1570 	 * Must be called with sighand->lock held, which is common to
1571 	 * all threads in the group. Holding cred_guard_mutex is not
1572 	 * needed because this new task is not yet running and cannot
1573 	 * be racing exec.
1574 	 */
1575 	assert_spin_locked(&current->sighand->siglock);
1576 
1577 	/* Ref-count the new filter user, and assign it. */
1578 	get_seccomp_filter(current);
1579 	p->seccomp = current->seccomp;
1580 
1581 	/*
1582 	 * Explicitly enable no_new_privs here in case it got set
1583 	 * between the task_struct being duplicated and holding the
1584 	 * sighand lock. The seccomp state and nnp must be in sync.
1585 	 */
1586 	if (task_no_new_privs(current))
1587 		task_set_no_new_privs(p);
1588 
1589 	/*
1590 	 * If the parent gained a seccomp mode after copying thread
1591 	 * flags and between before we held the sighand lock, we have
1592 	 * to manually enable the seccomp thread flag here.
1593 	 */
1594 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1595 		set_tsk_thread_flag(p, TIF_SECCOMP);
1596 #endif
1597 }
1598 
1599 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1600 {
1601 	current->clear_child_tid = tidptr;
1602 
1603 	return task_pid_vnr(current);
1604 }
1605 
1606 static void rt_mutex_init_task(struct task_struct *p)
1607 {
1608 	raw_spin_lock_init(&p->pi_lock);
1609 #ifdef CONFIG_RT_MUTEXES
1610 	p->pi_waiters = RB_ROOT_CACHED;
1611 	p->pi_top_task = NULL;
1612 	p->pi_blocked_on = NULL;
1613 #endif
1614 }
1615 
1616 #ifdef CONFIG_POSIX_TIMERS
1617 /*
1618  * Initialize POSIX timer handling for a single task.
1619  */
1620 static void posix_cpu_timers_init(struct task_struct *tsk)
1621 {
1622 	tsk->cputime_expires.prof_exp = 0;
1623 	tsk->cputime_expires.virt_exp = 0;
1624 	tsk->cputime_expires.sched_exp = 0;
1625 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1626 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1627 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1628 }
1629 #else
1630 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1631 #endif
1632 
1633 static inline void init_task_pid_links(struct task_struct *task)
1634 {
1635 	enum pid_type type;
1636 
1637 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1638 		INIT_HLIST_NODE(&task->pid_links[type]);
1639 	}
1640 }
1641 
1642 static inline void
1643 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1644 {
1645 	if (type == PIDTYPE_PID)
1646 		task->thread_pid = pid;
1647 	else
1648 		task->signal->pids[type] = pid;
1649 }
1650 
1651 static inline void rcu_copy_process(struct task_struct *p)
1652 {
1653 #ifdef CONFIG_PREEMPT_RCU
1654 	p->rcu_read_lock_nesting = 0;
1655 	p->rcu_read_unlock_special.s = 0;
1656 	p->rcu_blocked_node = NULL;
1657 	INIT_LIST_HEAD(&p->rcu_node_entry);
1658 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1659 #ifdef CONFIG_TASKS_RCU
1660 	p->rcu_tasks_holdout = false;
1661 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1662 	p->rcu_tasks_idle_cpu = -1;
1663 #endif /* #ifdef CONFIG_TASKS_RCU */
1664 }
1665 
1666 /*
1667  * This creates a new process as a copy of the old one,
1668  * but does not actually start it yet.
1669  *
1670  * It copies the registers, and all the appropriate
1671  * parts of the process environment (as per the clone
1672  * flags). The actual kick-off is left to the caller.
1673  */
1674 static __latent_entropy struct task_struct *copy_process(
1675 					unsigned long clone_flags,
1676 					unsigned long stack_start,
1677 					unsigned long stack_size,
1678 					int __user *child_tidptr,
1679 					struct pid *pid,
1680 					int trace,
1681 					unsigned long tls,
1682 					int node)
1683 {
1684 	int retval;
1685 	struct task_struct *p;
1686 	struct multiprocess_signals delayed;
1687 
1688 	/*
1689 	 * Don't allow sharing the root directory with processes in a different
1690 	 * namespace
1691 	 */
1692 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1693 		return ERR_PTR(-EINVAL);
1694 
1695 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1696 		return ERR_PTR(-EINVAL);
1697 
1698 	/*
1699 	 * Thread groups must share signals as well, and detached threads
1700 	 * can only be started up within the thread group.
1701 	 */
1702 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1703 		return ERR_PTR(-EINVAL);
1704 
1705 	/*
1706 	 * Shared signal handlers imply shared VM. By way of the above,
1707 	 * thread groups also imply shared VM. Blocking this case allows
1708 	 * for various simplifications in other code.
1709 	 */
1710 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1711 		return ERR_PTR(-EINVAL);
1712 
1713 	/*
1714 	 * Siblings of global init remain as zombies on exit since they are
1715 	 * not reaped by their parent (swapper). To solve this and to avoid
1716 	 * multi-rooted process trees, prevent global and container-inits
1717 	 * from creating siblings.
1718 	 */
1719 	if ((clone_flags & CLONE_PARENT) &&
1720 				current->signal->flags & SIGNAL_UNKILLABLE)
1721 		return ERR_PTR(-EINVAL);
1722 
1723 	/*
1724 	 * If the new process will be in a different pid or user namespace
1725 	 * do not allow it to share a thread group with the forking task.
1726 	 */
1727 	if (clone_flags & CLONE_THREAD) {
1728 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1729 		    (task_active_pid_ns(current) !=
1730 				current->nsproxy->pid_ns_for_children))
1731 			return ERR_PTR(-EINVAL);
1732 	}
1733 
1734 	/*
1735 	 * Force any signals received before this point to be delivered
1736 	 * before the fork happens.  Collect up signals sent to multiple
1737 	 * processes that happen during the fork and delay them so that
1738 	 * they appear to happen after the fork.
1739 	 */
1740 	sigemptyset(&delayed.signal);
1741 	INIT_HLIST_NODE(&delayed.node);
1742 
1743 	spin_lock_irq(&current->sighand->siglock);
1744 	if (!(clone_flags & CLONE_THREAD))
1745 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1746 	recalc_sigpending();
1747 	spin_unlock_irq(&current->sighand->siglock);
1748 	retval = -ERESTARTNOINTR;
1749 	if (signal_pending(current))
1750 		goto fork_out;
1751 
1752 	retval = -ENOMEM;
1753 	p = dup_task_struct(current, node);
1754 	if (!p)
1755 		goto fork_out;
1756 
1757 	/*
1758 	 * This _must_ happen before we call free_task(), i.e. before we jump
1759 	 * to any of the bad_fork_* labels. This is to avoid freeing
1760 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1761 	 * kernel threads (PF_KTHREAD).
1762 	 */
1763 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1764 	/*
1765 	 * Clear TID on mm_release()?
1766 	 */
1767 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1768 
1769 	ftrace_graph_init_task(p);
1770 
1771 	rt_mutex_init_task(p);
1772 
1773 #ifdef CONFIG_PROVE_LOCKING
1774 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1775 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1776 #endif
1777 	retval = -EAGAIN;
1778 	if (atomic_read(&p->real_cred->user->processes) >=
1779 			task_rlimit(p, RLIMIT_NPROC)) {
1780 		if (p->real_cred->user != INIT_USER &&
1781 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1782 			goto bad_fork_free;
1783 	}
1784 	current->flags &= ~PF_NPROC_EXCEEDED;
1785 
1786 	retval = copy_creds(p, clone_flags);
1787 	if (retval < 0)
1788 		goto bad_fork_free;
1789 
1790 	/*
1791 	 * If multiple threads are within copy_process(), then this check
1792 	 * triggers too late. This doesn't hurt, the check is only there
1793 	 * to stop root fork bombs.
1794 	 */
1795 	retval = -EAGAIN;
1796 	if (nr_threads >= max_threads)
1797 		goto bad_fork_cleanup_count;
1798 
1799 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1800 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1801 	p->flags |= PF_FORKNOEXEC;
1802 	INIT_LIST_HEAD(&p->children);
1803 	INIT_LIST_HEAD(&p->sibling);
1804 	rcu_copy_process(p);
1805 	p->vfork_done = NULL;
1806 	spin_lock_init(&p->alloc_lock);
1807 
1808 	init_sigpending(&p->pending);
1809 
1810 	p->utime = p->stime = p->gtime = 0;
1811 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1812 	p->utimescaled = p->stimescaled = 0;
1813 #endif
1814 	prev_cputime_init(&p->prev_cputime);
1815 
1816 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1817 	seqcount_init(&p->vtime.seqcount);
1818 	p->vtime.starttime = 0;
1819 	p->vtime.state = VTIME_INACTIVE;
1820 #endif
1821 
1822 #if defined(SPLIT_RSS_COUNTING)
1823 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1824 #endif
1825 
1826 	p->default_timer_slack_ns = current->timer_slack_ns;
1827 
1828 #ifdef CONFIG_PSI
1829 	p->psi_flags = 0;
1830 #endif
1831 
1832 	task_io_accounting_init(&p->ioac);
1833 	acct_clear_integrals(p);
1834 
1835 	posix_cpu_timers_init(p);
1836 
1837 	p->io_context = NULL;
1838 	audit_set_context(p, NULL);
1839 	cgroup_fork(p);
1840 #ifdef CONFIG_NUMA
1841 	p->mempolicy = mpol_dup(p->mempolicy);
1842 	if (IS_ERR(p->mempolicy)) {
1843 		retval = PTR_ERR(p->mempolicy);
1844 		p->mempolicy = NULL;
1845 		goto bad_fork_cleanup_threadgroup_lock;
1846 	}
1847 #endif
1848 #ifdef CONFIG_CPUSETS
1849 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1850 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1851 	seqcount_init(&p->mems_allowed_seq);
1852 #endif
1853 #ifdef CONFIG_TRACE_IRQFLAGS
1854 	p->irq_events = 0;
1855 	p->hardirqs_enabled = 0;
1856 	p->hardirq_enable_ip = 0;
1857 	p->hardirq_enable_event = 0;
1858 	p->hardirq_disable_ip = _THIS_IP_;
1859 	p->hardirq_disable_event = 0;
1860 	p->softirqs_enabled = 1;
1861 	p->softirq_enable_ip = _THIS_IP_;
1862 	p->softirq_enable_event = 0;
1863 	p->softirq_disable_ip = 0;
1864 	p->softirq_disable_event = 0;
1865 	p->hardirq_context = 0;
1866 	p->softirq_context = 0;
1867 #endif
1868 
1869 	p->pagefault_disabled = 0;
1870 
1871 #ifdef CONFIG_LOCKDEP
1872 	p->lockdep_depth = 0; /* no locks held yet */
1873 	p->curr_chain_key = 0;
1874 	p->lockdep_recursion = 0;
1875 	lockdep_init_task(p);
1876 #endif
1877 
1878 #ifdef CONFIG_DEBUG_MUTEXES
1879 	p->blocked_on = NULL; /* not blocked yet */
1880 #endif
1881 #ifdef CONFIG_BCACHE
1882 	p->sequential_io	= 0;
1883 	p->sequential_io_avg	= 0;
1884 #endif
1885 
1886 	/* Perform scheduler related setup. Assign this task to a CPU. */
1887 	retval = sched_fork(clone_flags, p);
1888 	if (retval)
1889 		goto bad_fork_cleanup_policy;
1890 
1891 	retval = perf_event_init_task(p);
1892 	if (retval)
1893 		goto bad_fork_cleanup_policy;
1894 	retval = audit_alloc(p);
1895 	if (retval)
1896 		goto bad_fork_cleanup_perf;
1897 	/* copy all the process information */
1898 	shm_init_task(p);
1899 	retval = security_task_alloc(p, clone_flags);
1900 	if (retval)
1901 		goto bad_fork_cleanup_audit;
1902 	retval = copy_semundo(clone_flags, p);
1903 	if (retval)
1904 		goto bad_fork_cleanup_security;
1905 	retval = copy_files(clone_flags, p);
1906 	if (retval)
1907 		goto bad_fork_cleanup_semundo;
1908 	retval = copy_fs(clone_flags, p);
1909 	if (retval)
1910 		goto bad_fork_cleanup_files;
1911 	retval = copy_sighand(clone_flags, p);
1912 	if (retval)
1913 		goto bad_fork_cleanup_fs;
1914 	retval = copy_signal(clone_flags, p);
1915 	if (retval)
1916 		goto bad_fork_cleanup_sighand;
1917 	retval = copy_mm(clone_flags, p);
1918 	if (retval)
1919 		goto bad_fork_cleanup_signal;
1920 	retval = copy_namespaces(clone_flags, p);
1921 	if (retval)
1922 		goto bad_fork_cleanup_mm;
1923 	retval = copy_io(clone_flags, p);
1924 	if (retval)
1925 		goto bad_fork_cleanup_namespaces;
1926 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1927 	if (retval)
1928 		goto bad_fork_cleanup_io;
1929 
1930 	stackleak_task_init(p);
1931 
1932 	if (pid != &init_struct_pid) {
1933 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1934 		if (IS_ERR(pid)) {
1935 			retval = PTR_ERR(pid);
1936 			goto bad_fork_cleanup_thread;
1937 		}
1938 	}
1939 
1940 #ifdef CONFIG_BLOCK
1941 	p->plug = NULL;
1942 #endif
1943 #ifdef CONFIG_FUTEX
1944 	p->robust_list = NULL;
1945 #ifdef CONFIG_COMPAT
1946 	p->compat_robust_list = NULL;
1947 #endif
1948 	INIT_LIST_HEAD(&p->pi_state_list);
1949 	p->pi_state_cache = NULL;
1950 #endif
1951 	/*
1952 	 * sigaltstack should be cleared when sharing the same VM
1953 	 */
1954 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1955 		sas_ss_reset(p);
1956 
1957 	/*
1958 	 * Syscall tracing and stepping should be turned off in the
1959 	 * child regardless of CLONE_PTRACE.
1960 	 */
1961 	user_disable_single_step(p);
1962 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1963 #ifdef TIF_SYSCALL_EMU
1964 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1965 #endif
1966 	clear_all_latency_tracing(p);
1967 
1968 	/* ok, now we should be set up.. */
1969 	p->pid = pid_nr(pid);
1970 	if (clone_flags & CLONE_THREAD) {
1971 		p->exit_signal = -1;
1972 		p->group_leader = current->group_leader;
1973 		p->tgid = current->tgid;
1974 	} else {
1975 		if (clone_flags & CLONE_PARENT)
1976 			p->exit_signal = current->group_leader->exit_signal;
1977 		else
1978 			p->exit_signal = (clone_flags & CSIGNAL);
1979 		p->group_leader = p;
1980 		p->tgid = p->pid;
1981 	}
1982 
1983 	p->nr_dirtied = 0;
1984 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1985 	p->dirty_paused_when = 0;
1986 
1987 	p->pdeath_signal = 0;
1988 	INIT_LIST_HEAD(&p->thread_group);
1989 	p->task_works = NULL;
1990 
1991 	cgroup_threadgroup_change_begin(current);
1992 	/*
1993 	 * Ensure that the cgroup subsystem policies allow the new process to be
1994 	 * forked. It should be noted the the new process's css_set can be changed
1995 	 * between here and cgroup_post_fork() if an organisation operation is in
1996 	 * progress.
1997 	 */
1998 	retval = cgroup_can_fork(p);
1999 	if (retval)
2000 		goto bad_fork_free_pid;
2001 
2002 	/*
2003 	 * From this point on we must avoid any synchronous user-space
2004 	 * communication until we take the tasklist-lock. In particular, we do
2005 	 * not want user-space to be able to predict the process start-time by
2006 	 * stalling fork(2) after we recorded the start_time but before it is
2007 	 * visible to the system.
2008 	 */
2009 
2010 	p->start_time = ktime_get_ns();
2011 	p->real_start_time = ktime_get_boot_ns();
2012 
2013 	/*
2014 	 * Make it visible to the rest of the system, but dont wake it up yet.
2015 	 * Need tasklist lock for parent etc handling!
2016 	 */
2017 	write_lock_irq(&tasklist_lock);
2018 
2019 	/* CLONE_PARENT re-uses the old parent */
2020 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2021 		p->real_parent = current->real_parent;
2022 		p->parent_exec_id = current->parent_exec_id;
2023 	} else {
2024 		p->real_parent = current;
2025 		p->parent_exec_id = current->self_exec_id;
2026 	}
2027 
2028 	klp_copy_process(p);
2029 
2030 	spin_lock(&current->sighand->siglock);
2031 
2032 	/*
2033 	 * Copy seccomp details explicitly here, in case they were changed
2034 	 * before holding sighand lock.
2035 	 */
2036 	copy_seccomp(p);
2037 
2038 	rseq_fork(p, clone_flags);
2039 
2040 	/* Don't start children in a dying pid namespace */
2041 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2042 		retval = -ENOMEM;
2043 		goto bad_fork_cancel_cgroup;
2044 	}
2045 
2046 	/* Let kill terminate clone/fork in the middle */
2047 	if (fatal_signal_pending(current)) {
2048 		retval = -EINTR;
2049 		goto bad_fork_cancel_cgroup;
2050 	}
2051 
2052 
2053 	init_task_pid_links(p);
2054 	if (likely(p->pid)) {
2055 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2056 
2057 		init_task_pid(p, PIDTYPE_PID, pid);
2058 		if (thread_group_leader(p)) {
2059 			init_task_pid(p, PIDTYPE_TGID, pid);
2060 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2061 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2062 
2063 			if (is_child_reaper(pid)) {
2064 				ns_of_pid(pid)->child_reaper = p;
2065 				p->signal->flags |= SIGNAL_UNKILLABLE;
2066 			}
2067 			p->signal->shared_pending.signal = delayed.signal;
2068 			p->signal->tty = tty_kref_get(current->signal->tty);
2069 			/*
2070 			 * Inherit has_child_subreaper flag under the same
2071 			 * tasklist_lock with adding child to the process tree
2072 			 * for propagate_has_child_subreaper optimization.
2073 			 */
2074 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2075 							 p->real_parent->signal->is_child_subreaper;
2076 			list_add_tail(&p->sibling, &p->real_parent->children);
2077 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2078 			attach_pid(p, PIDTYPE_TGID);
2079 			attach_pid(p, PIDTYPE_PGID);
2080 			attach_pid(p, PIDTYPE_SID);
2081 			__this_cpu_inc(process_counts);
2082 		} else {
2083 			current->signal->nr_threads++;
2084 			atomic_inc(&current->signal->live);
2085 			atomic_inc(&current->signal->sigcnt);
2086 			task_join_group_stop(p);
2087 			list_add_tail_rcu(&p->thread_group,
2088 					  &p->group_leader->thread_group);
2089 			list_add_tail_rcu(&p->thread_node,
2090 					  &p->signal->thread_head);
2091 		}
2092 		attach_pid(p, PIDTYPE_PID);
2093 		nr_threads++;
2094 	}
2095 	total_forks++;
2096 	hlist_del_init(&delayed.node);
2097 	spin_unlock(&current->sighand->siglock);
2098 	syscall_tracepoint_update(p);
2099 	write_unlock_irq(&tasklist_lock);
2100 
2101 	proc_fork_connector(p);
2102 	cgroup_post_fork(p);
2103 	cgroup_threadgroup_change_end(current);
2104 	perf_event_fork(p);
2105 
2106 	trace_task_newtask(p, clone_flags);
2107 	uprobe_copy_process(p, clone_flags);
2108 
2109 	return p;
2110 
2111 bad_fork_cancel_cgroup:
2112 	spin_unlock(&current->sighand->siglock);
2113 	write_unlock_irq(&tasklist_lock);
2114 	cgroup_cancel_fork(p);
2115 bad_fork_free_pid:
2116 	cgroup_threadgroup_change_end(current);
2117 	if (pid != &init_struct_pid)
2118 		free_pid(pid);
2119 bad_fork_cleanup_thread:
2120 	exit_thread(p);
2121 bad_fork_cleanup_io:
2122 	if (p->io_context)
2123 		exit_io_context(p);
2124 bad_fork_cleanup_namespaces:
2125 	exit_task_namespaces(p);
2126 bad_fork_cleanup_mm:
2127 	if (p->mm)
2128 		mmput(p->mm);
2129 bad_fork_cleanup_signal:
2130 	if (!(clone_flags & CLONE_THREAD))
2131 		free_signal_struct(p->signal);
2132 bad_fork_cleanup_sighand:
2133 	__cleanup_sighand(p->sighand);
2134 bad_fork_cleanup_fs:
2135 	exit_fs(p); /* blocking */
2136 bad_fork_cleanup_files:
2137 	exit_files(p); /* blocking */
2138 bad_fork_cleanup_semundo:
2139 	exit_sem(p);
2140 bad_fork_cleanup_security:
2141 	security_task_free(p);
2142 bad_fork_cleanup_audit:
2143 	audit_free(p);
2144 bad_fork_cleanup_perf:
2145 	perf_event_free_task(p);
2146 bad_fork_cleanup_policy:
2147 	lockdep_free_task(p);
2148 #ifdef CONFIG_NUMA
2149 	mpol_put(p->mempolicy);
2150 bad_fork_cleanup_threadgroup_lock:
2151 #endif
2152 	delayacct_tsk_free(p);
2153 bad_fork_cleanup_count:
2154 	atomic_dec(&p->cred->user->processes);
2155 	exit_creds(p);
2156 bad_fork_free:
2157 	p->state = TASK_DEAD;
2158 	put_task_stack(p);
2159 	free_task(p);
2160 fork_out:
2161 	spin_lock_irq(&current->sighand->siglock);
2162 	hlist_del_init(&delayed.node);
2163 	spin_unlock_irq(&current->sighand->siglock);
2164 	return ERR_PTR(retval);
2165 }
2166 
2167 static inline void init_idle_pids(struct task_struct *idle)
2168 {
2169 	enum pid_type type;
2170 
2171 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2172 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2173 		init_task_pid(idle, type, &init_struct_pid);
2174 	}
2175 }
2176 
2177 struct task_struct *fork_idle(int cpu)
2178 {
2179 	struct task_struct *task;
2180 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2181 			    cpu_to_node(cpu));
2182 	if (!IS_ERR(task)) {
2183 		init_idle_pids(task);
2184 		init_idle(task, cpu);
2185 	}
2186 
2187 	return task;
2188 }
2189 
2190 /*
2191  *  Ok, this is the main fork-routine.
2192  *
2193  * It copies the process, and if successful kick-starts
2194  * it and waits for it to finish using the VM if required.
2195  */
2196 long _do_fork(unsigned long clone_flags,
2197 	      unsigned long stack_start,
2198 	      unsigned long stack_size,
2199 	      int __user *parent_tidptr,
2200 	      int __user *child_tidptr,
2201 	      unsigned long tls)
2202 {
2203 	struct completion vfork;
2204 	struct pid *pid;
2205 	struct task_struct *p;
2206 	int trace = 0;
2207 	long nr;
2208 
2209 	/*
2210 	 * Determine whether and which event to report to ptracer.  When
2211 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2212 	 * requested, no event is reported; otherwise, report if the event
2213 	 * for the type of forking is enabled.
2214 	 */
2215 	if (!(clone_flags & CLONE_UNTRACED)) {
2216 		if (clone_flags & CLONE_VFORK)
2217 			trace = PTRACE_EVENT_VFORK;
2218 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2219 			trace = PTRACE_EVENT_CLONE;
2220 		else
2221 			trace = PTRACE_EVENT_FORK;
2222 
2223 		if (likely(!ptrace_event_enabled(current, trace)))
2224 			trace = 0;
2225 	}
2226 
2227 	p = copy_process(clone_flags, stack_start, stack_size,
2228 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2229 	add_latent_entropy();
2230 
2231 	if (IS_ERR(p))
2232 		return PTR_ERR(p);
2233 
2234 	/*
2235 	 * Do this prior waking up the new thread - the thread pointer
2236 	 * might get invalid after that point, if the thread exits quickly.
2237 	 */
2238 	trace_sched_process_fork(current, p);
2239 
2240 	pid = get_task_pid(p, PIDTYPE_PID);
2241 	nr = pid_vnr(pid);
2242 
2243 	if (clone_flags & CLONE_PARENT_SETTID)
2244 		put_user(nr, parent_tidptr);
2245 
2246 	if (clone_flags & CLONE_VFORK) {
2247 		p->vfork_done = &vfork;
2248 		init_completion(&vfork);
2249 		get_task_struct(p);
2250 	}
2251 
2252 	wake_up_new_task(p);
2253 
2254 	/* forking complete and child started to run, tell ptracer */
2255 	if (unlikely(trace))
2256 		ptrace_event_pid(trace, pid);
2257 
2258 	if (clone_flags & CLONE_VFORK) {
2259 		if (!wait_for_vfork_done(p, &vfork))
2260 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2261 	}
2262 
2263 	put_pid(pid);
2264 	return nr;
2265 }
2266 
2267 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2268 /* For compatibility with architectures that call do_fork directly rather than
2269  * using the syscall entry points below. */
2270 long do_fork(unsigned long clone_flags,
2271 	      unsigned long stack_start,
2272 	      unsigned long stack_size,
2273 	      int __user *parent_tidptr,
2274 	      int __user *child_tidptr)
2275 {
2276 	return _do_fork(clone_flags, stack_start, stack_size,
2277 			parent_tidptr, child_tidptr, 0);
2278 }
2279 #endif
2280 
2281 /*
2282  * Create a kernel thread.
2283  */
2284 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2285 {
2286 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2287 		(unsigned long)arg, NULL, NULL, 0);
2288 }
2289 
2290 #ifdef __ARCH_WANT_SYS_FORK
2291 SYSCALL_DEFINE0(fork)
2292 {
2293 #ifdef CONFIG_MMU
2294 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2295 #else
2296 	/* can not support in nommu mode */
2297 	return -EINVAL;
2298 #endif
2299 }
2300 #endif
2301 
2302 #ifdef __ARCH_WANT_SYS_VFORK
2303 SYSCALL_DEFINE0(vfork)
2304 {
2305 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2306 			0, NULL, NULL, 0);
2307 }
2308 #endif
2309 
2310 #ifdef __ARCH_WANT_SYS_CLONE
2311 #ifdef CONFIG_CLONE_BACKWARDS
2312 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2313 		 int __user *, parent_tidptr,
2314 		 unsigned long, tls,
2315 		 int __user *, child_tidptr)
2316 #elif defined(CONFIG_CLONE_BACKWARDS2)
2317 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2318 		 int __user *, parent_tidptr,
2319 		 int __user *, child_tidptr,
2320 		 unsigned long, tls)
2321 #elif defined(CONFIG_CLONE_BACKWARDS3)
2322 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2323 		int, stack_size,
2324 		int __user *, parent_tidptr,
2325 		int __user *, child_tidptr,
2326 		unsigned long, tls)
2327 #else
2328 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2329 		 int __user *, parent_tidptr,
2330 		 int __user *, child_tidptr,
2331 		 unsigned long, tls)
2332 #endif
2333 {
2334 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2335 }
2336 #endif
2337 
2338 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2339 {
2340 	struct task_struct *leader, *parent, *child;
2341 	int res;
2342 
2343 	read_lock(&tasklist_lock);
2344 	leader = top = top->group_leader;
2345 down:
2346 	for_each_thread(leader, parent) {
2347 		list_for_each_entry(child, &parent->children, sibling) {
2348 			res = visitor(child, data);
2349 			if (res) {
2350 				if (res < 0)
2351 					goto out;
2352 				leader = child;
2353 				goto down;
2354 			}
2355 up:
2356 			;
2357 		}
2358 	}
2359 
2360 	if (leader != top) {
2361 		child = leader;
2362 		parent = child->real_parent;
2363 		leader = parent->group_leader;
2364 		goto up;
2365 	}
2366 out:
2367 	read_unlock(&tasklist_lock);
2368 }
2369 
2370 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2371 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2372 #endif
2373 
2374 static void sighand_ctor(void *data)
2375 {
2376 	struct sighand_struct *sighand = data;
2377 
2378 	spin_lock_init(&sighand->siglock);
2379 	init_waitqueue_head(&sighand->signalfd_wqh);
2380 }
2381 
2382 void __init proc_caches_init(void)
2383 {
2384 	unsigned int mm_size;
2385 
2386 	sighand_cachep = kmem_cache_create("sighand_cache",
2387 			sizeof(struct sighand_struct), 0,
2388 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2389 			SLAB_ACCOUNT, sighand_ctor);
2390 	signal_cachep = kmem_cache_create("signal_cache",
2391 			sizeof(struct signal_struct), 0,
2392 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2393 			NULL);
2394 	files_cachep = kmem_cache_create("files_cache",
2395 			sizeof(struct files_struct), 0,
2396 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2397 			NULL);
2398 	fs_cachep = kmem_cache_create("fs_cache",
2399 			sizeof(struct fs_struct), 0,
2400 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2401 			NULL);
2402 
2403 	/*
2404 	 * The mm_cpumask is located at the end of mm_struct, and is
2405 	 * dynamically sized based on the maximum CPU number this system
2406 	 * can have, taking hotplug into account (nr_cpu_ids).
2407 	 */
2408 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2409 
2410 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2411 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2412 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2413 			offsetof(struct mm_struct, saved_auxv),
2414 			sizeof_field(struct mm_struct, saved_auxv),
2415 			NULL);
2416 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2417 	mmap_init();
2418 	nsproxy_cache_init();
2419 }
2420 
2421 /*
2422  * Check constraints on flags passed to the unshare system call.
2423  */
2424 static int check_unshare_flags(unsigned long unshare_flags)
2425 {
2426 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2427 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2428 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2429 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2430 		return -EINVAL;
2431 	/*
2432 	 * Not implemented, but pretend it works if there is nothing
2433 	 * to unshare.  Note that unsharing the address space or the
2434 	 * signal handlers also need to unshare the signal queues (aka
2435 	 * CLONE_THREAD).
2436 	 */
2437 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2438 		if (!thread_group_empty(current))
2439 			return -EINVAL;
2440 	}
2441 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2442 		if (atomic_read(&current->sighand->count) > 1)
2443 			return -EINVAL;
2444 	}
2445 	if (unshare_flags & CLONE_VM) {
2446 		if (!current_is_single_threaded())
2447 			return -EINVAL;
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 /*
2454  * Unshare the filesystem structure if it is being shared
2455  */
2456 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2457 {
2458 	struct fs_struct *fs = current->fs;
2459 
2460 	if (!(unshare_flags & CLONE_FS) || !fs)
2461 		return 0;
2462 
2463 	/* don't need lock here; in the worst case we'll do useless copy */
2464 	if (fs->users == 1)
2465 		return 0;
2466 
2467 	*new_fsp = copy_fs_struct(fs);
2468 	if (!*new_fsp)
2469 		return -ENOMEM;
2470 
2471 	return 0;
2472 }
2473 
2474 /*
2475  * Unshare file descriptor table if it is being shared
2476  */
2477 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2478 {
2479 	struct files_struct *fd = current->files;
2480 	int error = 0;
2481 
2482 	if ((unshare_flags & CLONE_FILES) &&
2483 	    (fd && atomic_read(&fd->count) > 1)) {
2484 		*new_fdp = dup_fd(fd, &error);
2485 		if (!*new_fdp)
2486 			return error;
2487 	}
2488 
2489 	return 0;
2490 }
2491 
2492 /*
2493  * unshare allows a process to 'unshare' part of the process
2494  * context which was originally shared using clone.  copy_*
2495  * functions used by do_fork() cannot be used here directly
2496  * because they modify an inactive task_struct that is being
2497  * constructed. Here we are modifying the current, active,
2498  * task_struct.
2499  */
2500 int ksys_unshare(unsigned long unshare_flags)
2501 {
2502 	struct fs_struct *fs, *new_fs = NULL;
2503 	struct files_struct *fd, *new_fd = NULL;
2504 	struct cred *new_cred = NULL;
2505 	struct nsproxy *new_nsproxy = NULL;
2506 	int do_sysvsem = 0;
2507 	int err;
2508 
2509 	/*
2510 	 * If unsharing a user namespace must also unshare the thread group
2511 	 * and unshare the filesystem root and working directories.
2512 	 */
2513 	if (unshare_flags & CLONE_NEWUSER)
2514 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2515 	/*
2516 	 * If unsharing vm, must also unshare signal handlers.
2517 	 */
2518 	if (unshare_flags & CLONE_VM)
2519 		unshare_flags |= CLONE_SIGHAND;
2520 	/*
2521 	 * If unsharing a signal handlers, must also unshare the signal queues.
2522 	 */
2523 	if (unshare_flags & CLONE_SIGHAND)
2524 		unshare_flags |= CLONE_THREAD;
2525 	/*
2526 	 * If unsharing namespace, must also unshare filesystem information.
2527 	 */
2528 	if (unshare_flags & CLONE_NEWNS)
2529 		unshare_flags |= CLONE_FS;
2530 
2531 	err = check_unshare_flags(unshare_flags);
2532 	if (err)
2533 		goto bad_unshare_out;
2534 	/*
2535 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2536 	 * to a new ipc namespace, the semaphore arrays from the old
2537 	 * namespace are unreachable.
2538 	 */
2539 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2540 		do_sysvsem = 1;
2541 	err = unshare_fs(unshare_flags, &new_fs);
2542 	if (err)
2543 		goto bad_unshare_out;
2544 	err = unshare_fd(unshare_flags, &new_fd);
2545 	if (err)
2546 		goto bad_unshare_cleanup_fs;
2547 	err = unshare_userns(unshare_flags, &new_cred);
2548 	if (err)
2549 		goto bad_unshare_cleanup_fd;
2550 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2551 					 new_cred, new_fs);
2552 	if (err)
2553 		goto bad_unshare_cleanup_cred;
2554 
2555 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2556 		if (do_sysvsem) {
2557 			/*
2558 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2559 			 */
2560 			exit_sem(current);
2561 		}
2562 		if (unshare_flags & CLONE_NEWIPC) {
2563 			/* Orphan segments in old ns (see sem above). */
2564 			exit_shm(current);
2565 			shm_init_task(current);
2566 		}
2567 
2568 		if (new_nsproxy)
2569 			switch_task_namespaces(current, new_nsproxy);
2570 
2571 		task_lock(current);
2572 
2573 		if (new_fs) {
2574 			fs = current->fs;
2575 			spin_lock(&fs->lock);
2576 			current->fs = new_fs;
2577 			if (--fs->users)
2578 				new_fs = NULL;
2579 			else
2580 				new_fs = fs;
2581 			spin_unlock(&fs->lock);
2582 		}
2583 
2584 		if (new_fd) {
2585 			fd = current->files;
2586 			current->files = new_fd;
2587 			new_fd = fd;
2588 		}
2589 
2590 		task_unlock(current);
2591 
2592 		if (new_cred) {
2593 			/* Install the new user namespace */
2594 			commit_creds(new_cred);
2595 			new_cred = NULL;
2596 		}
2597 	}
2598 
2599 	perf_event_namespaces(current);
2600 
2601 bad_unshare_cleanup_cred:
2602 	if (new_cred)
2603 		put_cred(new_cred);
2604 bad_unshare_cleanup_fd:
2605 	if (new_fd)
2606 		put_files_struct(new_fd);
2607 
2608 bad_unshare_cleanup_fs:
2609 	if (new_fs)
2610 		free_fs_struct(new_fs);
2611 
2612 bad_unshare_out:
2613 	return err;
2614 }
2615 
2616 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2617 {
2618 	return ksys_unshare(unshare_flags);
2619 }
2620 
2621 /*
2622  *	Helper to unshare the files of the current task.
2623  *	We don't want to expose copy_files internals to
2624  *	the exec layer of the kernel.
2625  */
2626 
2627 int unshare_files(struct files_struct **displaced)
2628 {
2629 	struct task_struct *task = current;
2630 	struct files_struct *copy = NULL;
2631 	int error;
2632 
2633 	error = unshare_fd(CLONE_FILES, &copy);
2634 	if (error || !copy) {
2635 		*displaced = NULL;
2636 		return error;
2637 	}
2638 	*displaced = task->files;
2639 	task_lock(task);
2640 	task->files = copy;
2641 	task_unlock(task);
2642 	return 0;
2643 }
2644 
2645 int sysctl_max_threads(struct ctl_table *table, int write,
2646 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2647 {
2648 	struct ctl_table t;
2649 	int ret;
2650 	int threads = max_threads;
2651 	int min = MIN_THREADS;
2652 	int max = MAX_THREADS;
2653 
2654 	t = *table;
2655 	t.data = &threads;
2656 	t.extra1 = &min;
2657 	t.extra2 = &max;
2658 
2659 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2660 	if (ret || !write)
2661 		return ret;
2662 
2663 	set_max_threads(threads);
2664 
2665 	return 0;
2666 }
2667