xref: /openbmc/linux/kernel/fork.c (revision 54a8a222)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 
46 #include <asm/pgtable.h>
47 #include <asm/pgalloc.h>
48 #include <asm/uaccess.h>
49 #include <asm/mmu_context.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlbflush.h>
52 
53 /*
54  * Protected counters by write_lock_irq(&tasklist_lock)
55  */
56 unsigned long total_forks;	/* Handle normal Linux uptimes. */
57 int nr_threads; 		/* The idle threads do not count.. */
58 
59 int max_threads;		/* tunable limit on nr_threads */
60 
61 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
62 
63  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
64 
65 EXPORT_SYMBOL(tasklist_lock);
66 
67 int nr_processes(void)
68 {
69 	int cpu;
70 	int total = 0;
71 
72 	for_each_online_cpu(cpu)
73 		total += per_cpu(process_counts, cpu);
74 
75 	return total;
76 }
77 
78 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
79 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
80 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
81 static kmem_cache_t *task_struct_cachep;
82 #endif
83 
84 /* SLAB cache for signal_struct structures (tsk->signal) */
85 kmem_cache_t *signal_cachep;
86 
87 /* SLAB cache for sighand_struct structures (tsk->sighand) */
88 kmem_cache_t *sighand_cachep;
89 
90 /* SLAB cache for files_struct structures (tsk->files) */
91 kmem_cache_t *files_cachep;
92 
93 /* SLAB cache for fs_struct structures (tsk->fs) */
94 kmem_cache_t *fs_cachep;
95 
96 /* SLAB cache for vm_area_struct structures */
97 kmem_cache_t *vm_area_cachep;
98 
99 /* SLAB cache for mm_struct structures (tsk->mm) */
100 static kmem_cache_t *mm_cachep;
101 
102 void free_task(struct task_struct *tsk)
103 {
104 	free_thread_info(tsk->thread_info);
105 	free_task_struct(tsk);
106 }
107 EXPORT_SYMBOL(free_task);
108 
109 void __put_task_struct(struct task_struct *tsk)
110 {
111 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
112 	WARN_ON(atomic_read(&tsk->usage));
113 	WARN_ON(tsk == current);
114 
115 	if (unlikely(tsk->audit_context))
116 		audit_free(tsk);
117 	security_task_free(tsk);
118 	free_uid(tsk->user);
119 	put_group_info(tsk->group_info);
120 
121 	if (!profile_handoff_task(tsk))
122 		free_task(tsk);
123 }
124 
125 void __init fork_init(unsigned long mempages)
126 {
127 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
128 #ifndef ARCH_MIN_TASKALIGN
129 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
130 #endif
131 	/* create a slab on which task_structs can be allocated */
132 	task_struct_cachep =
133 		kmem_cache_create("task_struct", sizeof(struct task_struct),
134 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
135 #endif
136 
137 	/*
138 	 * The default maximum number of threads is set to a safe
139 	 * value: the thread structures can take up at most half
140 	 * of memory.
141 	 */
142 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
143 
144 	/*
145 	 * we need to allow at least 20 threads to boot a system
146 	 */
147 	if(max_threads < 20)
148 		max_threads = 20;
149 
150 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
151 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
152 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
153 		init_task.signal->rlim[RLIMIT_NPROC];
154 }
155 
156 static struct task_struct *dup_task_struct(struct task_struct *orig)
157 {
158 	struct task_struct *tsk;
159 	struct thread_info *ti;
160 
161 	prepare_to_copy(orig);
162 
163 	tsk = alloc_task_struct();
164 	if (!tsk)
165 		return NULL;
166 
167 	ti = alloc_thread_info(tsk);
168 	if (!ti) {
169 		free_task_struct(tsk);
170 		return NULL;
171 	}
172 
173 	*ti = *orig->thread_info;
174 	*tsk = *orig;
175 	tsk->thread_info = ti;
176 	ti->task = tsk;
177 
178 	/* One for us, one for whoever does the "release_task()" (usually parent) */
179 	atomic_set(&tsk->usage,2);
180 	atomic_set(&tsk->fs_excl, 0);
181 	return tsk;
182 }
183 
184 #ifdef CONFIG_MMU
185 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
186 {
187 	struct vm_area_struct * mpnt, *tmp, **pprev;
188 	struct rb_node **rb_link, *rb_parent;
189 	int retval;
190 	unsigned long charge;
191 	struct mempolicy *pol;
192 
193 	down_write(&oldmm->mmap_sem);
194 	flush_cache_mm(current->mm);
195 	mm->locked_vm = 0;
196 	mm->mmap = NULL;
197 	mm->mmap_cache = NULL;
198 	mm->free_area_cache = oldmm->mmap_base;
199 	mm->cached_hole_size = ~0UL;
200 	mm->map_count = 0;
201 	set_mm_counter(mm, rss, 0);
202 	set_mm_counter(mm, anon_rss, 0);
203 	cpus_clear(mm->cpu_vm_mask);
204 	mm->mm_rb = RB_ROOT;
205 	rb_link = &mm->mm_rb.rb_node;
206 	rb_parent = NULL;
207 	pprev = &mm->mmap;
208 
209 	for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
210 		struct file *file;
211 
212 		if (mpnt->vm_flags & VM_DONTCOPY) {
213 			long pages = vma_pages(mpnt);
214 			mm->total_vm -= pages;
215 			__vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
216 								-pages);
217 			continue;
218 		}
219 		charge = 0;
220 		if (mpnt->vm_flags & VM_ACCOUNT) {
221 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
222 			if (security_vm_enough_memory(len))
223 				goto fail_nomem;
224 			charge = len;
225 		}
226 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
227 		if (!tmp)
228 			goto fail_nomem;
229 		*tmp = *mpnt;
230 		pol = mpol_copy(vma_policy(mpnt));
231 		retval = PTR_ERR(pol);
232 		if (IS_ERR(pol))
233 			goto fail_nomem_policy;
234 		vma_set_policy(tmp, pol);
235 		tmp->vm_flags &= ~VM_LOCKED;
236 		tmp->vm_mm = mm;
237 		tmp->vm_next = NULL;
238 		anon_vma_link(tmp);
239 		file = tmp->vm_file;
240 		if (file) {
241 			struct inode *inode = file->f_dentry->d_inode;
242 			get_file(file);
243 			if (tmp->vm_flags & VM_DENYWRITE)
244 				atomic_dec(&inode->i_writecount);
245 
246 			/* insert tmp into the share list, just after mpnt */
247 			spin_lock(&file->f_mapping->i_mmap_lock);
248 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
249 			flush_dcache_mmap_lock(file->f_mapping);
250 			vma_prio_tree_add(tmp, mpnt);
251 			flush_dcache_mmap_unlock(file->f_mapping);
252 			spin_unlock(&file->f_mapping->i_mmap_lock);
253 		}
254 
255 		/*
256 		 * Link in the new vma and copy the page table entries:
257 		 * link in first so that swapoff can see swap entries.
258 		 * Note that, exceptionally, here the vma is inserted
259 		 * without holding mm->mmap_sem.
260 		 */
261 		spin_lock(&mm->page_table_lock);
262 		*pprev = tmp;
263 		pprev = &tmp->vm_next;
264 
265 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
266 		rb_link = &tmp->vm_rb.rb_right;
267 		rb_parent = &tmp->vm_rb;
268 
269 		mm->map_count++;
270 		retval = copy_page_range(mm, current->mm, tmp);
271 		spin_unlock(&mm->page_table_lock);
272 
273 		if (tmp->vm_ops && tmp->vm_ops->open)
274 			tmp->vm_ops->open(tmp);
275 
276 		if (retval)
277 			goto out;
278 	}
279 	retval = 0;
280 
281 out:
282 	flush_tlb_mm(current->mm);
283 	up_write(&oldmm->mmap_sem);
284 	return retval;
285 fail_nomem_policy:
286 	kmem_cache_free(vm_area_cachep, tmp);
287 fail_nomem:
288 	retval = -ENOMEM;
289 	vm_unacct_memory(charge);
290 	goto out;
291 }
292 
293 static inline int mm_alloc_pgd(struct mm_struct * mm)
294 {
295 	mm->pgd = pgd_alloc(mm);
296 	if (unlikely(!mm->pgd))
297 		return -ENOMEM;
298 	return 0;
299 }
300 
301 static inline void mm_free_pgd(struct mm_struct * mm)
302 {
303 	pgd_free(mm->pgd);
304 }
305 #else
306 #define dup_mmap(mm, oldmm)	(0)
307 #define mm_alloc_pgd(mm)	(0)
308 #define mm_free_pgd(mm)
309 #endif /* CONFIG_MMU */
310 
311  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
312 
313 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
314 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
315 
316 #include <linux/init_task.h>
317 
318 static struct mm_struct * mm_init(struct mm_struct * mm)
319 {
320 	atomic_set(&mm->mm_users, 1);
321 	atomic_set(&mm->mm_count, 1);
322 	init_rwsem(&mm->mmap_sem);
323 	INIT_LIST_HEAD(&mm->mmlist);
324 	mm->core_waiters = 0;
325 	mm->nr_ptes = 0;
326 	spin_lock_init(&mm->page_table_lock);
327 	rwlock_init(&mm->ioctx_list_lock);
328 	mm->ioctx_list = NULL;
329 	mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
330 	mm->free_area_cache = TASK_UNMAPPED_BASE;
331 	mm->cached_hole_size = ~0UL;
332 
333 	if (likely(!mm_alloc_pgd(mm))) {
334 		mm->def_flags = 0;
335 		return mm;
336 	}
337 	free_mm(mm);
338 	return NULL;
339 }
340 
341 /*
342  * Allocate and initialize an mm_struct.
343  */
344 struct mm_struct * mm_alloc(void)
345 {
346 	struct mm_struct * mm;
347 
348 	mm = allocate_mm();
349 	if (mm) {
350 		memset(mm, 0, sizeof(*mm));
351 		mm = mm_init(mm);
352 	}
353 	return mm;
354 }
355 
356 /*
357  * Called when the last reference to the mm
358  * is dropped: either by a lazy thread or by
359  * mmput. Free the page directory and the mm.
360  */
361 void fastcall __mmdrop(struct mm_struct *mm)
362 {
363 	BUG_ON(mm == &init_mm);
364 	mm_free_pgd(mm);
365 	destroy_context(mm);
366 	free_mm(mm);
367 }
368 
369 /*
370  * Decrement the use count and release all resources for an mm.
371  */
372 void mmput(struct mm_struct *mm)
373 {
374 	if (atomic_dec_and_test(&mm->mm_users)) {
375 		exit_aio(mm);
376 		exit_mmap(mm);
377 		if (!list_empty(&mm->mmlist)) {
378 			spin_lock(&mmlist_lock);
379 			list_del(&mm->mmlist);
380 			spin_unlock(&mmlist_lock);
381 		}
382 		put_swap_token(mm);
383 		mmdrop(mm);
384 	}
385 }
386 EXPORT_SYMBOL_GPL(mmput);
387 
388 /**
389  * get_task_mm - acquire a reference to the task's mm
390  *
391  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
392  * this kernel workthread has transiently adopted a user mm with use_mm,
393  * to do its AIO) is not set and if so returns a reference to it, after
394  * bumping up the use count.  User must release the mm via mmput()
395  * after use.  Typically used by /proc and ptrace.
396  */
397 struct mm_struct *get_task_mm(struct task_struct *task)
398 {
399 	struct mm_struct *mm;
400 
401 	task_lock(task);
402 	mm = task->mm;
403 	if (mm) {
404 		if (task->flags & PF_BORROWED_MM)
405 			mm = NULL;
406 		else
407 			atomic_inc(&mm->mm_users);
408 	}
409 	task_unlock(task);
410 	return mm;
411 }
412 EXPORT_SYMBOL_GPL(get_task_mm);
413 
414 /* Please note the differences between mmput and mm_release.
415  * mmput is called whenever we stop holding onto a mm_struct,
416  * error success whatever.
417  *
418  * mm_release is called after a mm_struct has been removed
419  * from the current process.
420  *
421  * This difference is important for error handling, when we
422  * only half set up a mm_struct for a new process and need to restore
423  * the old one.  Because we mmput the new mm_struct before
424  * restoring the old one. . .
425  * Eric Biederman 10 January 1998
426  */
427 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
428 {
429 	struct completion *vfork_done = tsk->vfork_done;
430 
431 	/* Get rid of any cached register state */
432 	deactivate_mm(tsk, mm);
433 
434 	/* notify parent sleeping on vfork() */
435 	if (vfork_done) {
436 		tsk->vfork_done = NULL;
437 		complete(vfork_done);
438 	}
439 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
440 		u32 __user * tidptr = tsk->clear_child_tid;
441 		tsk->clear_child_tid = NULL;
442 
443 		/*
444 		 * We don't check the error code - if userspace has
445 		 * not set up a proper pointer then tough luck.
446 		 */
447 		put_user(0, tidptr);
448 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
449 	}
450 }
451 
452 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
453 {
454 	struct mm_struct * mm, *oldmm;
455 	int retval;
456 
457 	tsk->min_flt = tsk->maj_flt = 0;
458 	tsk->nvcsw = tsk->nivcsw = 0;
459 
460 	tsk->mm = NULL;
461 	tsk->active_mm = NULL;
462 
463 	/*
464 	 * Are we cloning a kernel thread?
465 	 *
466 	 * We need to steal a active VM for that..
467 	 */
468 	oldmm = current->mm;
469 	if (!oldmm)
470 		return 0;
471 
472 	if (clone_flags & CLONE_VM) {
473 		atomic_inc(&oldmm->mm_users);
474 		mm = oldmm;
475 		/*
476 		 * There are cases where the PTL is held to ensure no
477 		 * new threads start up in user mode using an mm, which
478 		 * allows optimizing out ipis; the tlb_gather_mmu code
479 		 * is an example.
480 		 */
481 		spin_unlock_wait(&oldmm->page_table_lock);
482 		goto good_mm;
483 	}
484 
485 	retval = -ENOMEM;
486 	mm = allocate_mm();
487 	if (!mm)
488 		goto fail_nomem;
489 
490 	/* Copy the current MM stuff.. */
491 	memcpy(mm, oldmm, sizeof(*mm));
492 	if (!mm_init(mm))
493 		goto fail_nomem;
494 
495 	if (init_new_context(tsk,mm))
496 		goto fail_nocontext;
497 
498 	retval = dup_mmap(mm, oldmm);
499 	if (retval)
500 		goto free_pt;
501 
502 	mm->hiwater_rss = get_mm_counter(mm,rss);
503 	mm->hiwater_vm = mm->total_vm;
504 
505 good_mm:
506 	tsk->mm = mm;
507 	tsk->active_mm = mm;
508 	return 0;
509 
510 free_pt:
511 	mmput(mm);
512 fail_nomem:
513 	return retval;
514 
515 fail_nocontext:
516 	/*
517 	 * If init_new_context() failed, we cannot use mmput() to free the mm
518 	 * because it calls destroy_context()
519 	 */
520 	mm_free_pgd(mm);
521 	free_mm(mm);
522 	return retval;
523 }
524 
525 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
526 {
527 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
528 	/* We don't need to lock fs - think why ;-) */
529 	if (fs) {
530 		atomic_set(&fs->count, 1);
531 		rwlock_init(&fs->lock);
532 		fs->umask = old->umask;
533 		read_lock(&old->lock);
534 		fs->rootmnt = mntget(old->rootmnt);
535 		fs->root = dget(old->root);
536 		fs->pwdmnt = mntget(old->pwdmnt);
537 		fs->pwd = dget(old->pwd);
538 		if (old->altroot) {
539 			fs->altrootmnt = mntget(old->altrootmnt);
540 			fs->altroot = dget(old->altroot);
541 		} else {
542 			fs->altrootmnt = NULL;
543 			fs->altroot = NULL;
544 		}
545 		read_unlock(&old->lock);
546 	}
547 	return fs;
548 }
549 
550 struct fs_struct *copy_fs_struct(struct fs_struct *old)
551 {
552 	return __copy_fs_struct(old);
553 }
554 
555 EXPORT_SYMBOL_GPL(copy_fs_struct);
556 
557 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
558 {
559 	if (clone_flags & CLONE_FS) {
560 		atomic_inc(&current->fs->count);
561 		return 0;
562 	}
563 	tsk->fs = __copy_fs_struct(current->fs);
564 	if (!tsk->fs)
565 		return -ENOMEM;
566 	return 0;
567 }
568 
569 static int count_open_files(struct fdtable *fdt)
570 {
571 	int size = fdt->max_fdset;
572 	int i;
573 
574 	/* Find the last open fd */
575 	for (i = size/(8*sizeof(long)); i > 0; ) {
576 		if (fdt->open_fds->fds_bits[--i])
577 			break;
578 	}
579 	i = (i+1) * 8 * sizeof(long);
580 	return i;
581 }
582 
583 static struct files_struct *alloc_files(void)
584 {
585 	struct files_struct *newf;
586 	struct fdtable *fdt;
587 
588 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
589 	if (!newf)
590 		goto out;
591 
592 	atomic_set(&newf->count, 1);
593 
594 	spin_lock_init(&newf->file_lock);
595 	fdt = &newf->fdtab;
596 	fdt->next_fd = 0;
597 	fdt->max_fds = NR_OPEN_DEFAULT;
598 	fdt->max_fdset = __FD_SETSIZE;
599 	fdt->close_on_exec = &newf->close_on_exec_init;
600 	fdt->open_fds = &newf->open_fds_init;
601 	fdt->fd = &newf->fd_array[0];
602 	INIT_RCU_HEAD(&fdt->rcu);
603 	fdt->free_files = NULL;
604 	fdt->next = NULL;
605 	rcu_assign_pointer(newf->fdt, fdt);
606 out:
607 	return newf;
608 }
609 
610 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
611 {
612 	struct files_struct *oldf, *newf;
613 	struct file **old_fds, **new_fds;
614 	int open_files, size, i, error = 0, expand;
615 	struct fdtable *old_fdt, *new_fdt;
616 
617 	/*
618 	 * A background process may not have any files ...
619 	 */
620 	oldf = current->files;
621 	if (!oldf)
622 		goto out;
623 
624 	if (clone_flags & CLONE_FILES) {
625 		atomic_inc(&oldf->count);
626 		goto out;
627 	}
628 
629 	/*
630 	 * Note: we may be using current for both targets (See exec.c)
631 	 * This works because we cache current->files (old) as oldf. Don't
632 	 * break this.
633 	 */
634 	tsk->files = NULL;
635 	error = -ENOMEM;
636 	newf = alloc_files();
637 	if (!newf)
638 		goto out;
639 
640 	spin_lock(&oldf->file_lock);
641 	old_fdt = files_fdtable(oldf);
642 	new_fdt = files_fdtable(newf);
643 	size = old_fdt->max_fdset;
644 	open_files = count_open_files(old_fdt);
645 	expand = 0;
646 
647 	/*
648 	 * Check whether we need to allocate a larger fd array or fd set.
649 	 * Note: we're not a clone task, so the open count won't  change.
650 	 */
651 	if (open_files > new_fdt->max_fdset) {
652 		new_fdt->max_fdset = 0;
653 		expand = 1;
654 	}
655 	if (open_files > new_fdt->max_fds) {
656 		new_fdt->max_fds = 0;
657 		expand = 1;
658 	}
659 
660 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
661 	if (expand) {
662 		spin_unlock(&oldf->file_lock);
663 		spin_lock(&newf->file_lock);
664 		error = expand_files(newf, open_files-1);
665 		spin_unlock(&newf->file_lock);
666 		if (error < 0)
667 			goto out_release;
668 		new_fdt = files_fdtable(newf);
669 		/*
670 		 * Reacquire the oldf lock and a pointer to its fd table
671 		 * who knows it may have a new bigger fd table. We need
672 		 * the latest pointer.
673 		 */
674 		spin_lock(&oldf->file_lock);
675 		old_fdt = files_fdtable(oldf);
676 	}
677 
678 	old_fds = old_fdt->fd;
679 	new_fds = new_fdt->fd;
680 
681 	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
682 	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
683 
684 	for (i = open_files; i != 0; i--) {
685 		struct file *f = *old_fds++;
686 		if (f) {
687 			get_file(f);
688 		} else {
689 			/*
690 			 * The fd may be claimed in the fd bitmap but not yet
691 			 * instantiated in the files array if a sibling thread
692 			 * is partway through open().  So make sure that this
693 			 * fd is available to the new process.
694 			 */
695 			FD_CLR(open_files - i, new_fdt->open_fds);
696 		}
697 		rcu_assign_pointer(*new_fds++, f);
698 	}
699 	spin_unlock(&oldf->file_lock);
700 
701 	/* compute the remainder to be cleared */
702 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
703 
704 	/* This is long word aligned thus could use a optimized version */
705 	memset(new_fds, 0, size);
706 
707 	if (new_fdt->max_fdset > open_files) {
708 		int left = (new_fdt->max_fdset-open_files)/8;
709 		int start = open_files / (8 * sizeof(unsigned long));
710 
711 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
712 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
713 	}
714 
715 	tsk->files = newf;
716 	error = 0;
717 out:
718 	return error;
719 
720 out_release:
721 	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
722 	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
723 	free_fd_array(new_fdt->fd, new_fdt->max_fds);
724 	kmem_cache_free(files_cachep, newf);
725 	goto out;
726 }
727 
728 /*
729  *	Helper to unshare the files of the current task.
730  *	We don't want to expose copy_files internals to
731  *	the exec layer of the kernel.
732  */
733 
734 int unshare_files(void)
735 {
736 	struct files_struct *files  = current->files;
737 	int rc;
738 
739 	if(!files)
740 		BUG();
741 
742 	/* This can race but the race causes us to copy when we don't
743 	   need to and drop the copy */
744 	if(atomic_read(&files->count) == 1)
745 	{
746 		atomic_inc(&files->count);
747 		return 0;
748 	}
749 	rc = copy_files(0, current);
750 	if(rc)
751 		current->files = files;
752 	return rc;
753 }
754 
755 EXPORT_SYMBOL(unshare_files);
756 
757 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
758 {
759 	struct sighand_struct *sig;
760 
761 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
762 		atomic_inc(&current->sighand->count);
763 		return 0;
764 	}
765 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
766 	tsk->sighand = sig;
767 	if (!sig)
768 		return -ENOMEM;
769 	spin_lock_init(&sig->siglock);
770 	atomic_set(&sig->count, 1);
771 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
772 	return 0;
773 }
774 
775 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
776 {
777 	struct signal_struct *sig;
778 	int ret;
779 
780 	if (clone_flags & CLONE_THREAD) {
781 		atomic_inc(&current->signal->count);
782 		atomic_inc(&current->signal->live);
783 		return 0;
784 	}
785 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
786 	tsk->signal = sig;
787 	if (!sig)
788 		return -ENOMEM;
789 
790 	ret = copy_thread_group_keys(tsk);
791 	if (ret < 0) {
792 		kmem_cache_free(signal_cachep, sig);
793 		return ret;
794 	}
795 
796 	atomic_set(&sig->count, 1);
797 	atomic_set(&sig->live, 1);
798 	init_waitqueue_head(&sig->wait_chldexit);
799 	sig->flags = 0;
800 	sig->group_exit_code = 0;
801 	sig->group_exit_task = NULL;
802 	sig->group_stop_count = 0;
803 	sig->curr_target = NULL;
804 	init_sigpending(&sig->shared_pending);
805 	INIT_LIST_HEAD(&sig->posix_timers);
806 
807 	sig->it_real_value = sig->it_real_incr = 0;
808 	sig->real_timer.function = it_real_fn;
809 	sig->real_timer.data = (unsigned long) tsk;
810 	init_timer(&sig->real_timer);
811 
812 	sig->it_virt_expires = cputime_zero;
813 	sig->it_virt_incr = cputime_zero;
814 	sig->it_prof_expires = cputime_zero;
815 	sig->it_prof_incr = cputime_zero;
816 
817 	sig->tty = current->signal->tty;
818 	sig->pgrp = process_group(current);
819 	sig->session = current->signal->session;
820 	sig->leader = 0;	/* session leadership doesn't inherit */
821 	sig->tty_old_pgrp = 0;
822 
823 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
824 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
825 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
826 	sig->sched_time = 0;
827 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
828 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
829 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
830 
831 	task_lock(current->group_leader);
832 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
833 	task_unlock(current->group_leader);
834 
835 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
836 		/*
837 		 * New sole thread in the process gets an expiry time
838 		 * of the whole CPU time limit.
839 		 */
840 		tsk->it_prof_expires =
841 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
842 	}
843 
844 	return 0;
845 }
846 
847 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
848 {
849 	unsigned long new_flags = p->flags;
850 
851 	new_flags &= ~PF_SUPERPRIV;
852 	new_flags |= PF_FORKNOEXEC;
853 	if (!(clone_flags & CLONE_PTRACE))
854 		p->ptrace = 0;
855 	p->flags = new_flags;
856 }
857 
858 asmlinkage long sys_set_tid_address(int __user *tidptr)
859 {
860 	current->clear_child_tid = tidptr;
861 
862 	return current->pid;
863 }
864 
865 /*
866  * This creates a new process as a copy of the old one,
867  * but does not actually start it yet.
868  *
869  * It copies the registers, and all the appropriate
870  * parts of the process environment (as per the clone
871  * flags). The actual kick-off is left to the caller.
872  */
873 static task_t *copy_process(unsigned long clone_flags,
874 				 unsigned long stack_start,
875 				 struct pt_regs *regs,
876 				 unsigned long stack_size,
877 				 int __user *parent_tidptr,
878 				 int __user *child_tidptr,
879 				 int pid)
880 {
881 	int retval;
882 	struct task_struct *p = NULL;
883 
884 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
885 		return ERR_PTR(-EINVAL);
886 
887 	/*
888 	 * Thread groups must share signals as well, and detached threads
889 	 * can only be started up within the thread group.
890 	 */
891 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
892 		return ERR_PTR(-EINVAL);
893 
894 	/*
895 	 * Shared signal handlers imply shared VM. By way of the above,
896 	 * thread groups also imply shared VM. Blocking this case allows
897 	 * for various simplifications in other code.
898 	 */
899 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
900 		return ERR_PTR(-EINVAL);
901 
902 	retval = security_task_create(clone_flags);
903 	if (retval)
904 		goto fork_out;
905 
906 	retval = -ENOMEM;
907 	p = dup_task_struct(current);
908 	if (!p)
909 		goto fork_out;
910 
911 	retval = -EAGAIN;
912 	if (atomic_read(&p->user->processes) >=
913 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
914 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
915 				p->user != &root_user)
916 			goto bad_fork_free;
917 	}
918 
919 	atomic_inc(&p->user->__count);
920 	atomic_inc(&p->user->processes);
921 	get_group_info(p->group_info);
922 
923 	/*
924 	 * If multiple threads are within copy_process(), then this check
925 	 * triggers too late. This doesn't hurt, the check is only there
926 	 * to stop root fork bombs.
927 	 */
928 	if (nr_threads >= max_threads)
929 		goto bad_fork_cleanup_count;
930 
931 	if (!try_module_get(p->thread_info->exec_domain->module))
932 		goto bad_fork_cleanup_count;
933 
934 	if (p->binfmt && !try_module_get(p->binfmt->module))
935 		goto bad_fork_cleanup_put_domain;
936 
937 	p->did_exec = 0;
938 	copy_flags(clone_flags, p);
939 	p->pid = pid;
940 	retval = -EFAULT;
941 	if (clone_flags & CLONE_PARENT_SETTID)
942 		if (put_user(p->pid, parent_tidptr))
943 			goto bad_fork_cleanup;
944 
945 	p->proc_dentry = NULL;
946 
947 	INIT_LIST_HEAD(&p->children);
948 	INIT_LIST_HEAD(&p->sibling);
949 	p->vfork_done = NULL;
950 	spin_lock_init(&p->alloc_lock);
951 	spin_lock_init(&p->proc_lock);
952 
953 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
954 	init_sigpending(&p->pending);
955 
956 	p->utime = cputime_zero;
957 	p->stime = cputime_zero;
958  	p->sched_time = 0;
959 	p->rchar = 0;		/* I/O counter: bytes read */
960 	p->wchar = 0;		/* I/O counter: bytes written */
961 	p->syscr = 0;		/* I/O counter: read syscalls */
962 	p->syscw = 0;		/* I/O counter: write syscalls */
963 	acct_clear_integrals(p);
964 
965  	p->it_virt_expires = cputime_zero;
966 	p->it_prof_expires = cputime_zero;
967  	p->it_sched_expires = 0;
968  	INIT_LIST_HEAD(&p->cpu_timers[0]);
969  	INIT_LIST_HEAD(&p->cpu_timers[1]);
970  	INIT_LIST_HEAD(&p->cpu_timers[2]);
971 
972 	p->lock_depth = -1;		/* -1 = no lock */
973 	do_posix_clock_monotonic_gettime(&p->start_time);
974 	p->security = NULL;
975 	p->io_context = NULL;
976 	p->io_wait = NULL;
977 	p->audit_context = NULL;
978 #ifdef CONFIG_NUMA
979  	p->mempolicy = mpol_copy(p->mempolicy);
980  	if (IS_ERR(p->mempolicy)) {
981  		retval = PTR_ERR(p->mempolicy);
982  		p->mempolicy = NULL;
983  		goto bad_fork_cleanup;
984  	}
985 #endif
986 
987 	p->tgid = p->pid;
988 	if (clone_flags & CLONE_THREAD)
989 		p->tgid = current->tgid;
990 
991 	if ((retval = security_task_alloc(p)))
992 		goto bad_fork_cleanup_policy;
993 	if ((retval = audit_alloc(p)))
994 		goto bad_fork_cleanup_security;
995 	/* copy all the process information */
996 	if ((retval = copy_semundo(clone_flags, p)))
997 		goto bad_fork_cleanup_audit;
998 	if ((retval = copy_files(clone_flags, p)))
999 		goto bad_fork_cleanup_semundo;
1000 	if ((retval = copy_fs(clone_flags, p)))
1001 		goto bad_fork_cleanup_files;
1002 	if ((retval = copy_sighand(clone_flags, p)))
1003 		goto bad_fork_cleanup_fs;
1004 	if ((retval = copy_signal(clone_flags, p)))
1005 		goto bad_fork_cleanup_sighand;
1006 	if ((retval = copy_mm(clone_flags, p)))
1007 		goto bad_fork_cleanup_signal;
1008 	if ((retval = copy_keys(clone_flags, p)))
1009 		goto bad_fork_cleanup_mm;
1010 	if ((retval = copy_namespace(clone_flags, p)))
1011 		goto bad_fork_cleanup_keys;
1012 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1013 	if (retval)
1014 		goto bad_fork_cleanup_namespace;
1015 
1016 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1017 	/*
1018 	 * Clear TID on mm_release()?
1019 	 */
1020 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1021 
1022 	/*
1023 	 * Syscall tracing should be turned off in the child regardless
1024 	 * of CLONE_PTRACE.
1025 	 */
1026 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1027 #ifdef TIF_SYSCALL_EMU
1028 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1029 #endif
1030 
1031 	/* Our parent execution domain becomes current domain
1032 	   These must match for thread signalling to apply */
1033 
1034 	p->parent_exec_id = p->self_exec_id;
1035 
1036 	/* ok, now we should be set up.. */
1037 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1038 	p->pdeath_signal = 0;
1039 	p->exit_state = 0;
1040 
1041 	/*
1042 	 * Ok, make it visible to the rest of the system.
1043 	 * We dont wake it up yet.
1044 	 */
1045 	p->group_leader = p;
1046 	INIT_LIST_HEAD(&p->ptrace_children);
1047 	INIT_LIST_HEAD(&p->ptrace_list);
1048 
1049 	/* Perform scheduler related setup. Assign this task to a CPU. */
1050 	sched_fork(p, clone_flags);
1051 
1052 	/* Need tasklist lock for parent etc handling! */
1053 	write_lock_irq(&tasklist_lock);
1054 
1055 	/*
1056 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1057 	 * not be changed, nor will its assigned CPU.
1058 	 *
1059 	 * The cpus_allowed mask of the parent may have changed after it was
1060 	 * copied first time - so re-copy it here, then check the child's CPU
1061 	 * to ensure it is on a valid CPU (and if not, just force it back to
1062 	 * parent's CPU). This avoids alot of nasty races.
1063 	 */
1064 	p->cpus_allowed = current->cpus_allowed;
1065 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1066 			!cpu_online(task_cpu(p))))
1067 		set_task_cpu(p, smp_processor_id());
1068 
1069 	/*
1070 	 * Check for pending SIGKILL! The new thread should not be allowed
1071 	 * to slip out of an OOM kill. (or normal SIGKILL.)
1072 	 */
1073 	if (sigismember(&current->pending.signal, SIGKILL)) {
1074 		write_unlock_irq(&tasklist_lock);
1075 		retval = -EINTR;
1076 		goto bad_fork_cleanup_namespace;
1077 	}
1078 
1079 	/* CLONE_PARENT re-uses the old parent */
1080 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1081 		p->real_parent = current->real_parent;
1082 	else
1083 		p->real_parent = current;
1084 	p->parent = p->real_parent;
1085 
1086 	if (clone_flags & CLONE_THREAD) {
1087 		spin_lock(&current->sighand->siglock);
1088 		/*
1089 		 * Important: if an exit-all has been started then
1090 		 * do not create this new thread - the whole thread
1091 		 * group is supposed to exit anyway.
1092 		 */
1093 		if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1094 			spin_unlock(&current->sighand->siglock);
1095 			write_unlock_irq(&tasklist_lock);
1096 			retval = -EAGAIN;
1097 			goto bad_fork_cleanup_namespace;
1098 		}
1099 		p->group_leader = current->group_leader;
1100 
1101 		if (current->signal->group_stop_count > 0) {
1102 			/*
1103 			 * There is an all-stop in progress for the group.
1104 			 * We ourselves will stop as soon as we check signals.
1105 			 * Make the new thread part of that group stop too.
1106 			 */
1107 			current->signal->group_stop_count++;
1108 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1109 		}
1110 
1111 		if (!cputime_eq(current->signal->it_virt_expires,
1112 				cputime_zero) ||
1113 		    !cputime_eq(current->signal->it_prof_expires,
1114 				cputime_zero) ||
1115 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1116 		    !list_empty(&current->signal->cpu_timers[0]) ||
1117 		    !list_empty(&current->signal->cpu_timers[1]) ||
1118 		    !list_empty(&current->signal->cpu_timers[2])) {
1119 			/*
1120 			 * Have child wake up on its first tick to check
1121 			 * for process CPU timers.
1122 			 */
1123 			p->it_prof_expires = jiffies_to_cputime(1);
1124 		}
1125 
1126 		spin_unlock(&current->sighand->siglock);
1127 	}
1128 
1129 	/*
1130 	 * inherit ioprio
1131 	 */
1132 	p->ioprio = current->ioprio;
1133 
1134 	SET_LINKS(p);
1135 	if (unlikely(p->ptrace & PT_PTRACED))
1136 		__ptrace_link(p, current->parent);
1137 
1138 	cpuset_fork(p);
1139 
1140 	attach_pid(p, PIDTYPE_PID, p->pid);
1141 	attach_pid(p, PIDTYPE_TGID, p->tgid);
1142 	if (thread_group_leader(p)) {
1143 		attach_pid(p, PIDTYPE_PGID, process_group(p));
1144 		attach_pid(p, PIDTYPE_SID, p->signal->session);
1145 		if (p->pid)
1146 			__get_cpu_var(process_counts)++;
1147 	}
1148 
1149 	if (!current->signal->tty && p->signal->tty)
1150 		p->signal->tty = NULL;
1151 
1152 	nr_threads++;
1153 	total_forks++;
1154 	write_unlock_irq(&tasklist_lock);
1155 	retval = 0;
1156 
1157 fork_out:
1158 	if (retval)
1159 		return ERR_PTR(retval);
1160 	return p;
1161 
1162 bad_fork_cleanup_namespace:
1163 	exit_namespace(p);
1164 bad_fork_cleanup_keys:
1165 	exit_keys(p);
1166 bad_fork_cleanup_mm:
1167 	if (p->mm)
1168 		mmput(p->mm);
1169 bad_fork_cleanup_signal:
1170 	exit_signal(p);
1171 bad_fork_cleanup_sighand:
1172 	exit_sighand(p);
1173 bad_fork_cleanup_fs:
1174 	exit_fs(p); /* blocking */
1175 bad_fork_cleanup_files:
1176 	exit_files(p); /* blocking */
1177 bad_fork_cleanup_semundo:
1178 	exit_sem(p);
1179 bad_fork_cleanup_audit:
1180 	audit_free(p);
1181 bad_fork_cleanup_security:
1182 	security_task_free(p);
1183 bad_fork_cleanup_policy:
1184 #ifdef CONFIG_NUMA
1185 	mpol_free(p->mempolicy);
1186 #endif
1187 bad_fork_cleanup:
1188 	if (p->binfmt)
1189 		module_put(p->binfmt->module);
1190 bad_fork_cleanup_put_domain:
1191 	module_put(p->thread_info->exec_domain->module);
1192 bad_fork_cleanup_count:
1193 	put_group_info(p->group_info);
1194 	atomic_dec(&p->user->processes);
1195 	free_uid(p->user);
1196 bad_fork_free:
1197 	free_task(p);
1198 	goto fork_out;
1199 }
1200 
1201 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1202 {
1203 	memset(regs, 0, sizeof(struct pt_regs));
1204 	return regs;
1205 }
1206 
1207 task_t * __devinit fork_idle(int cpu)
1208 {
1209 	task_t *task;
1210 	struct pt_regs regs;
1211 
1212 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1213 	if (!task)
1214 		return ERR_PTR(-ENOMEM);
1215 	init_idle(task, cpu);
1216 	unhash_process(task);
1217 	return task;
1218 }
1219 
1220 static inline int fork_traceflag (unsigned clone_flags)
1221 {
1222 	if (clone_flags & CLONE_UNTRACED)
1223 		return 0;
1224 	else if (clone_flags & CLONE_VFORK) {
1225 		if (current->ptrace & PT_TRACE_VFORK)
1226 			return PTRACE_EVENT_VFORK;
1227 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1228 		if (current->ptrace & PT_TRACE_CLONE)
1229 			return PTRACE_EVENT_CLONE;
1230 	} else if (current->ptrace & PT_TRACE_FORK)
1231 		return PTRACE_EVENT_FORK;
1232 
1233 	return 0;
1234 }
1235 
1236 /*
1237  *  Ok, this is the main fork-routine.
1238  *
1239  * It copies the process, and if successful kick-starts
1240  * it and waits for it to finish using the VM if required.
1241  */
1242 long do_fork(unsigned long clone_flags,
1243 	      unsigned long stack_start,
1244 	      struct pt_regs *regs,
1245 	      unsigned long stack_size,
1246 	      int __user *parent_tidptr,
1247 	      int __user *child_tidptr)
1248 {
1249 	struct task_struct *p;
1250 	int trace = 0;
1251 	long pid = alloc_pidmap();
1252 
1253 	if (pid < 0)
1254 		return -EAGAIN;
1255 	if (unlikely(current->ptrace)) {
1256 		trace = fork_traceflag (clone_flags);
1257 		if (trace)
1258 			clone_flags |= CLONE_PTRACE;
1259 	}
1260 
1261 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1262 	/*
1263 	 * Do this prior waking up the new thread - the thread pointer
1264 	 * might get invalid after that point, if the thread exits quickly.
1265 	 */
1266 	if (!IS_ERR(p)) {
1267 		struct completion vfork;
1268 
1269 		if (clone_flags & CLONE_VFORK) {
1270 			p->vfork_done = &vfork;
1271 			init_completion(&vfork);
1272 		}
1273 
1274 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1275 			/*
1276 			 * We'll start up with an immediate SIGSTOP.
1277 			 */
1278 			sigaddset(&p->pending.signal, SIGSTOP);
1279 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1280 		}
1281 
1282 		if (!(clone_flags & CLONE_STOPPED))
1283 			wake_up_new_task(p, clone_flags);
1284 		else
1285 			p->state = TASK_STOPPED;
1286 
1287 		if (unlikely (trace)) {
1288 			current->ptrace_message = pid;
1289 			ptrace_notify ((trace << 8) | SIGTRAP);
1290 		}
1291 
1292 		if (clone_flags & CLONE_VFORK) {
1293 			wait_for_completion(&vfork);
1294 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1295 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1296 		}
1297 	} else {
1298 		free_pidmap(pid);
1299 		pid = PTR_ERR(p);
1300 	}
1301 	return pid;
1302 }
1303 
1304 void __init proc_caches_init(void)
1305 {
1306 	sighand_cachep = kmem_cache_create("sighand_cache",
1307 			sizeof(struct sighand_struct), 0,
1308 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1309 	signal_cachep = kmem_cache_create("signal_cache",
1310 			sizeof(struct signal_struct), 0,
1311 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1312 	files_cachep = kmem_cache_create("files_cache",
1313 			sizeof(struct files_struct), 0,
1314 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1315 	fs_cachep = kmem_cache_create("fs_cache",
1316 			sizeof(struct fs_struct), 0,
1317 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1318 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1319 			sizeof(struct vm_area_struct), 0,
1320 			SLAB_PANIC, NULL, NULL);
1321 	mm_cachep = kmem_cache_create("mm_struct",
1322 			sizeof(struct mm_struct), 0,
1323 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1324 }
1325