xref: /openbmc/linux/kernel/fork.c (revision 547840bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 
99 #include <asm/pgtable.h>
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105 
106 #include <trace/events/sched.h>
107 
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110 
111 /*
112  * Minimum number of threads to boot the kernel
113  */
114 #define MIN_THREADS 20
115 
116 /*
117  * Maximum number of threads
118  */
119 #define MAX_THREADS FUTEX_TID_MASK
120 
121 /*
122  * Protected counters by write_lock_irq(&tasklist_lock)
123  */
124 unsigned long total_forks;	/* Handle normal Linux uptimes. */
125 int nr_threads;			/* The idle threads do not count.. */
126 
127 static int max_threads;		/* tunable limit on nr_threads */
128 
129 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
130 
131 static const char * const resident_page_types[] = {
132 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137 
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139 
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
141 
142 #ifdef CONFIG_PROVE_RCU
143 int lockdep_tasklist_lock_is_held(void)
144 {
145 	return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149 
150 int nr_processes(void)
151 {
152 	int cpu;
153 	int total = 0;
154 
155 	for_each_possible_cpu(cpu)
156 		total += per_cpu(process_counts, cpu);
157 
158 	return total;
159 }
160 
161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164 
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167 
168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172 
173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 	kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178 
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180 
181 /*
182  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183  * kmemcache based allocator.
184  */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186 
187 #ifdef CONFIG_VMAP_STACK
188 /*
189  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190  * flush.  Try to minimize the number of calls by caching stacks.
191  */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194 
195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 	int i;
199 
200 	for (i = 0; i < NR_CACHED_STACKS; i++) {
201 		struct vm_struct *vm_stack = cached_vm_stacks[i];
202 
203 		if (!vm_stack)
204 			continue;
205 
206 		vfree(vm_stack->addr);
207 		cached_vm_stacks[i] = NULL;
208 	}
209 
210 	return 0;
211 }
212 #endif
213 
214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	void *stack;
218 	int i;
219 
220 	for (i = 0; i < NR_CACHED_STACKS; i++) {
221 		struct vm_struct *s;
222 
223 		s = this_cpu_xchg(cached_stacks[i], NULL);
224 
225 		if (!s)
226 			continue;
227 
228 		/* Clear the KASAN shadow of the stack. */
229 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
230 
231 		/* Clear stale pointers from reused stack. */
232 		memset(s->addr, 0, THREAD_SIZE);
233 
234 		tsk->stack_vm_area = s;
235 		tsk->stack = s->addr;
236 		return s->addr;
237 	}
238 
239 	/*
240 	 * Allocated stacks are cached and later reused by new threads,
241 	 * so memcg accounting is performed manually on assigning/releasing
242 	 * stacks to tasks. Drop __GFP_ACCOUNT.
243 	 */
244 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 				     VMALLOC_START, VMALLOC_END,
246 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
247 				     PAGE_KERNEL,
248 				     0, node, __builtin_return_address(0));
249 
250 	/*
251 	 * We can't call find_vm_area() in interrupt context, and
252 	 * free_thread_stack() can be called in interrupt context,
253 	 * so cache the vm_struct.
254 	 */
255 	if (stack) {
256 		tsk->stack_vm_area = find_vm_area(stack);
257 		tsk->stack = stack;
258 	}
259 	return stack;
260 #else
261 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 					     THREAD_SIZE_ORDER);
263 
264 	if (likely(page)) {
265 		tsk->stack = page_address(page);
266 		return tsk->stack;
267 	}
268 	return NULL;
269 #endif
270 }
271 
272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 	struct vm_struct *vm = task_stack_vm_area(tsk);
276 
277 	if (vm) {
278 		int i;
279 
280 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
281 			mod_memcg_page_state(vm->pages[i],
282 					     MEMCG_KERNEL_STACK_KB,
283 					     -(int)(PAGE_SIZE / 1024));
284 
285 			memcg_kmem_uncharge_page(vm->pages[i], 0);
286 		}
287 
288 		for (i = 0; i < NR_CACHED_STACKS; i++) {
289 			if (this_cpu_cmpxchg(cached_stacks[i],
290 					NULL, tsk->stack_vm_area) != NULL)
291 				continue;
292 
293 			return;
294 		}
295 
296 		vfree_atomic(tsk->stack);
297 		return;
298 	}
299 #endif
300 
301 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
302 }
303 # else
304 static struct kmem_cache *thread_stack_cache;
305 
306 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
307 						  int node)
308 {
309 	unsigned long *stack;
310 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
311 	tsk->stack = stack;
312 	return stack;
313 }
314 
315 static void free_thread_stack(struct task_struct *tsk)
316 {
317 	kmem_cache_free(thread_stack_cache, tsk->stack);
318 }
319 
320 void thread_stack_cache_init(void)
321 {
322 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
323 					THREAD_SIZE, THREAD_SIZE, 0, 0,
324 					THREAD_SIZE, NULL);
325 	BUG_ON(thread_stack_cache == NULL);
326 }
327 # endif
328 #endif
329 
330 /* SLAB cache for signal_struct structures (tsk->signal) */
331 static struct kmem_cache *signal_cachep;
332 
333 /* SLAB cache for sighand_struct structures (tsk->sighand) */
334 struct kmem_cache *sighand_cachep;
335 
336 /* SLAB cache for files_struct structures (tsk->files) */
337 struct kmem_cache *files_cachep;
338 
339 /* SLAB cache for fs_struct structures (tsk->fs) */
340 struct kmem_cache *fs_cachep;
341 
342 /* SLAB cache for vm_area_struct structures */
343 static struct kmem_cache *vm_area_cachep;
344 
345 /* SLAB cache for mm_struct structures (tsk->mm) */
346 static struct kmem_cache *mm_cachep;
347 
348 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
349 {
350 	struct vm_area_struct *vma;
351 
352 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
353 	if (vma)
354 		vma_init(vma, mm);
355 	return vma;
356 }
357 
358 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
359 {
360 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
361 
362 	if (new) {
363 		*new = *orig;
364 		INIT_LIST_HEAD(&new->anon_vma_chain);
365 		new->vm_next = new->vm_prev = NULL;
366 	}
367 	return new;
368 }
369 
370 void vm_area_free(struct vm_area_struct *vma)
371 {
372 	kmem_cache_free(vm_area_cachep, vma);
373 }
374 
375 static void account_kernel_stack(struct task_struct *tsk, int account)
376 {
377 	void *stack = task_stack_page(tsk);
378 	struct vm_struct *vm = task_stack_vm_area(tsk);
379 
380 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
381 
382 	if (vm) {
383 		int i;
384 
385 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
386 
387 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
388 			mod_zone_page_state(page_zone(vm->pages[i]),
389 					    NR_KERNEL_STACK_KB,
390 					    PAGE_SIZE / 1024 * account);
391 		}
392 	} else {
393 		/*
394 		 * All stack pages are in the same zone and belong to the
395 		 * same memcg.
396 		 */
397 		struct page *first_page = virt_to_page(stack);
398 
399 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
400 				    THREAD_SIZE / 1024 * account);
401 
402 		mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
403 				    account * (THREAD_SIZE / 1024));
404 	}
405 }
406 
407 static int memcg_charge_kernel_stack(struct task_struct *tsk)
408 {
409 #ifdef CONFIG_VMAP_STACK
410 	struct vm_struct *vm = task_stack_vm_area(tsk);
411 	int ret;
412 
413 	if (vm) {
414 		int i;
415 
416 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
417 			/*
418 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
419 			 * pointer is NULL, and both memcg_kmem_uncharge_page()
420 			 * and mod_memcg_page_state() in free_thread_stack()
421 			 * will ignore this page. So it's safe.
422 			 */
423 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
424 						     0);
425 			if (ret)
426 				return ret;
427 
428 			mod_memcg_page_state(vm->pages[i],
429 					     MEMCG_KERNEL_STACK_KB,
430 					     PAGE_SIZE / 1024);
431 		}
432 	}
433 #endif
434 	return 0;
435 }
436 
437 static void release_task_stack(struct task_struct *tsk)
438 {
439 	if (WARN_ON(tsk->state != TASK_DEAD))
440 		return;  /* Better to leak the stack than to free prematurely */
441 
442 	account_kernel_stack(tsk, -1);
443 	free_thread_stack(tsk);
444 	tsk->stack = NULL;
445 #ifdef CONFIG_VMAP_STACK
446 	tsk->stack_vm_area = NULL;
447 #endif
448 }
449 
450 #ifdef CONFIG_THREAD_INFO_IN_TASK
451 void put_task_stack(struct task_struct *tsk)
452 {
453 	if (refcount_dec_and_test(&tsk->stack_refcount))
454 		release_task_stack(tsk);
455 }
456 #endif
457 
458 void free_task(struct task_struct *tsk)
459 {
460 	scs_release(tsk);
461 
462 #ifndef CONFIG_THREAD_INFO_IN_TASK
463 	/*
464 	 * The task is finally done with both the stack and thread_info,
465 	 * so free both.
466 	 */
467 	release_task_stack(tsk);
468 #else
469 	/*
470 	 * If the task had a separate stack allocation, it should be gone
471 	 * by now.
472 	 */
473 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
474 #endif
475 	rt_mutex_debug_task_free(tsk);
476 	ftrace_graph_exit_task(tsk);
477 	put_seccomp_filter(tsk);
478 	arch_release_task_struct(tsk);
479 	if (tsk->flags & PF_KTHREAD)
480 		free_kthread_struct(tsk);
481 	free_task_struct(tsk);
482 }
483 EXPORT_SYMBOL(free_task);
484 
485 #ifdef CONFIG_MMU
486 static __latent_entropy int dup_mmap(struct mm_struct *mm,
487 					struct mm_struct *oldmm)
488 {
489 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
490 	struct rb_node **rb_link, *rb_parent;
491 	int retval;
492 	unsigned long charge;
493 	LIST_HEAD(uf);
494 
495 	uprobe_start_dup_mmap();
496 	if (down_write_killable(&oldmm->mmap_sem)) {
497 		retval = -EINTR;
498 		goto fail_uprobe_end;
499 	}
500 	flush_cache_dup_mm(oldmm);
501 	uprobe_dup_mmap(oldmm, mm);
502 	/*
503 	 * Not linked in yet - no deadlock potential:
504 	 */
505 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
506 
507 	/* No ordering required: file already has been exposed. */
508 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
509 
510 	mm->total_vm = oldmm->total_vm;
511 	mm->data_vm = oldmm->data_vm;
512 	mm->exec_vm = oldmm->exec_vm;
513 	mm->stack_vm = oldmm->stack_vm;
514 
515 	rb_link = &mm->mm_rb.rb_node;
516 	rb_parent = NULL;
517 	pprev = &mm->mmap;
518 	retval = ksm_fork(mm, oldmm);
519 	if (retval)
520 		goto out;
521 	retval = khugepaged_fork(mm, oldmm);
522 	if (retval)
523 		goto out;
524 
525 	prev = NULL;
526 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
527 		struct file *file;
528 
529 		if (mpnt->vm_flags & VM_DONTCOPY) {
530 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
531 			continue;
532 		}
533 		charge = 0;
534 		/*
535 		 * Don't duplicate many vmas if we've been oom-killed (for
536 		 * example)
537 		 */
538 		if (fatal_signal_pending(current)) {
539 			retval = -EINTR;
540 			goto out;
541 		}
542 		if (mpnt->vm_flags & VM_ACCOUNT) {
543 			unsigned long len = vma_pages(mpnt);
544 
545 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
546 				goto fail_nomem;
547 			charge = len;
548 		}
549 		tmp = vm_area_dup(mpnt);
550 		if (!tmp)
551 			goto fail_nomem;
552 		retval = vma_dup_policy(mpnt, tmp);
553 		if (retval)
554 			goto fail_nomem_policy;
555 		tmp->vm_mm = mm;
556 		retval = dup_userfaultfd(tmp, &uf);
557 		if (retval)
558 			goto fail_nomem_anon_vma_fork;
559 		if (tmp->vm_flags & VM_WIPEONFORK) {
560 			/*
561 			 * VM_WIPEONFORK gets a clean slate in the child.
562 			 * Don't prepare anon_vma until fault since we don't
563 			 * copy page for current vma.
564 			 */
565 			tmp->anon_vma = NULL;
566 		} else if (anon_vma_fork(tmp, mpnt))
567 			goto fail_nomem_anon_vma_fork;
568 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
569 		file = tmp->vm_file;
570 		if (file) {
571 			struct inode *inode = file_inode(file);
572 			struct address_space *mapping = file->f_mapping;
573 
574 			get_file(file);
575 			if (tmp->vm_flags & VM_DENYWRITE)
576 				atomic_dec(&inode->i_writecount);
577 			i_mmap_lock_write(mapping);
578 			if (tmp->vm_flags & VM_SHARED)
579 				atomic_inc(&mapping->i_mmap_writable);
580 			flush_dcache_mmap_lock(mapping);
581 			/* insert tmp into the share list, just after mpnt */
582 			vma_interval_tree_insert_after(tmp, mpnt,
583 					&mapping->i_mmap);
584 			flush_dcache_mmap_unlock(mapping);
585 			i_mmap_unlock_write(mapping);
586 		}
587 
588 		/*
589 		 * Clear hugetlb-related page reserves for children. This only
590 		 * affects MAP_PRIVATE mappings. Faults generated by the child
591 		 * are not guaranteed to succeed, even if read-only
592 		 */
593 		if (is_vm_hugetlb_page(tmp))
594 			reset_vma_resv_huge_pages(tmp);
595 
596 		/*
597 		 * Link in the new vma and copy the page table entries.
598 		 */
599 		*pprev = tmp;
600 		pprev = &tmp->vm_next;
601 		tmp->vm_prev = prev;
602 		prev = tmp;
603 
604 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
605 		rb_link = &tmp->vm_rb.rb_right;
606 		rb_parent = &tmp->vm_rb;
607 
608 		mm->map_count++;
609 		if (!(tmp->vm_flags & VM_WIPEONFORK))
610 			retval = copy_page_range(mm, oldmm, mpnt);
611 
612 		if (tmp->vm_ops && tmp->vm_ops->open)
613 			tmp->vm_ops->open(tmp);
614 
615 		if (retval)
616 			goto out;
617 	}
618 	/* a new mm has just been created */
619 	retval = arch_dup_mmap(oldmm, mm);
620 out:
621 	up_write(&mm->mmap_sem);
622 	flush_tlb_mm(oldmm);
623 	up_write(&oldmm->mmap_sem);
624 	dup_userfaultfd_complete(&uf);
625 fail_uprobe_end:
626 	uprobe_end_dup_mmap();
627 	return retval;
628 fail_nomem_anon_vma_fork:
629 	mpol_put(vma_policy(tmp));
630 fail_nomem_policy:
631 	vm_area_free(tmp);
632 fail_nomem:
633 	retval = -ENOMEM;
634 	vm_unacct_memory(charge);
635 	goto out;
636 }
637 
638 static inline int mm_alloc_pgd(struct mm_struct *mm)
639 {
640 	mm->pgd = pgd_alloc(mm);
641 	if (unlikely(!mm->pgd))
642 		return -ENOMEM;
643 	return 0;
644 }
645 
646 static inline void mm_free_pgd(struct mm_struct *mm)
647 {
648 	pgd_free(mm, mm->pgd);
649 }
650 #else
651 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
652 {
653 	down_write(&oldmm->mmap_sem);
654 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
655 	up_write(&oldmm->mmap_sem);
656 	return 0;
657 }
658 #define mm_alloc_pgd(mm)	(0)
659 #define mm_free_pgd(mm)
660 #endif /* CONFIG_MMU */
661 
662 static void check_mm(struct mm_struct *mm)
663 {
664 	int i;
665 
666 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
667 			 "Please make sure 'struct resident_page_types[]' is updated as well");
668 
669 	for (i = 0; i < NR_MM_COUNTERS; i++) {
670 		long x = atomic_long_read(&mm->rss_stat.count[i]);
671 
672 		if (unlikely(x))
673 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
674 				 mm, resident_page_types[i], x);
675 	}
676 
677 	if (mm_pgtables_bytes(mm))
678 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
679 				mm_pgtables_bytes(mm));
680 
681 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
682 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
683 #endif
684 }
685 
686 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
687 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
688 
689 /*
690  * Called when the last reference to the mm
691  * is dropped: either by a lazy thread or by
692  * mmput. Free the page directory and the mm.
693  */
694 void __mmdrop(struct mm_struct *mm)
695 {
696 	BUG_ON(mm == &init_mm);
697 	WARN_ON_ONCE(mm == current->mm);
698 	WARN_ON_ONCE(mm == current->active_mm);
699 	mm_free_pgd(mm);
700 	destroy_context(mm);
701 	mmu_notifier_subscriptions_destroy(mm);
702 	check_mm(mm);
703 	put_user_ns(mm->user_ns);
704 	free_mm(mm);
705 }
706 EXPORT_SYMBOL_GPL(__mmdrop);
707 
708 static void mmdrop_async_fn(struct work_struct *work)
709 {
710 	struct mm_struct *mm;
711 
712 	mm = container_of(work, struct mm_struct, async_put_work);
713 	__mmdrop(mm);
714 }
715 
716 static void mmdrop_async(struct mm_struct *mm)
717 {
718 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
719 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
720 		schedule_work(&mm->async_put_work);
721 	}
722 }
723 
724 static inline void free_signal_struct(struct signal_struct *sig)
725 {
726 	taskstats_tgid_free(sig);
727 	sched_autogroup_exit(sig);
728 	/*
729 	 * __mmdrop is not safe to call from softirq context on x86 due to
730 	 * pgd_dtor so postpone it to the async context
731 	 */
732 	if (sig->oom_mm)
733 		mmdrop_async(sig->oom_mm);
734 	kmem_cache_free(signal_cachep, sig);
735 }
736 
737 static inline void put_signal_struct(struct signal_struct *sig)
738 {
739 	if (refcount_dec_and_test(&sig->sigcnt))
740 		free_signal_struct(sig);
741 }
742 
743 void __put_task_struct(struct task_struct *tsk)
744 {
745 	WARN_ON(!tsk->exit_state);
746 	WARN_ON(refcount_read(&tsk->usage));
747 	WARN_ON(tsk == current);
748 
749 	cgroup_free(tsk);
750 	task_numa_free(tsk, true);
751 	security_task_free(tsk);
752 	exit_creds(tsk);
753 	delayacct_tsk_free(tsk);
754 	put_signal_struct(tsk->signal);
755 
756 	if (!profile_handoff_task(tsk))
757 		free_task(tsk);
758 }
759 EXPORT_SYMBOL_GPL(__put_task_struct);
760 
761 void __init __weak arch_task_cache_init(void) { }
762 
763 /*
764  * set_max_threads
765  */
766 static void set_max_threads(unsigned int max_threads_suggested)
767 {
768 	u64 threads;
769 	unsigned long nr_pages = totalram_pages();
770 
771 	/*
772 	 * The number of threads shall be limited such that the thread
773 	 * structures may only consume a small part of the available memory.
774 	 */
775 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
776 		threads = MAX_THREADS;
777 	else
778 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
779 				    (u64) THREAD_SIZE * 8UL);
780 
781 	if (threads > max_threads_suggested)
782 		threads = max_threads_suggested;
783 
784 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
785 }
786 
787 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
788 /* Initialized by the architecture: */
789 int arch_task_struct_size __read_mostly;
790 #endif
791 
792 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
793 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
794 {
795 	/* Fetch thread_struct whitelist for the architecture. */
796 	arch_thread_struct_whitelist(offset, size);
797 
798 	/*
799 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
800 	 * adjust offset to position of thread_struct in task_struct.
801 	 */
802 	if (unlikely(*size == 0))
803 		*offset = 0;
804 	else
805 		*offset += offsetof(struct task_struct, thread);
806 }
807 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
808 
809 void __init fork_init(void)
810 {
811 	int i;
812 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
813 #ifndef ARCH_MIN_TASKALIGN
814 #define ARCH_MIN_TASKALIGN	0
815 #endif
816 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
817 	unsigned long useroffset, usersize;
818 
819 	/* create a slab on which task_structs can be allocated */
820 	task_struct_whitelist(&useroffset, &usersize);
821 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
822 			arch_task_struct_size, align,
823 			SLAB_PANIC|SLAB_ACCOUNT,
824 			useroffset, usersize, NULL);
825 #endif
826 
827 	/* do the arch specific task caches init */
828 	arch_task_cache_init();
829 
830 	set_max_threads(MAX_THREADS);
831 
832 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
833 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
834 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
835 		init_task.signal->rlim[RLIMIT_NPROC];
836 
837 	for (i = 0; i < UCOUNT_COUNTS; i++) {
838 		init_user_ns.ucount_max[i] = max_threads/2;
839 	}
840 
841 #ifdef CONFIG_VMAP_STACK
842 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
843 			  NULL, free_vm_stack_cache);
844 #endif
845 
846 	scs_init();
847 
848 	lockdep_init_task(&init_task);
849 	uprobes_init();
850 }
851 
852 int __weak arch_dup_task_struct(struct task_struct *dst,
853 					       struct task_struct *src)
854 {
855 	*dst = *src;
856 	return 0;
857 }
858 
859 void set_task_stack_end_magic(struct task_struct *tsk)
860 {
861 	unsigned long *stackend;
862 
863 	stackend = end_of_stack(tsk);
864 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
865 }
866 
867 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
868 {
869 	struct task_struct *tsk;
870 	unsigned long *stack;
871 	struct vm_struct *stack_vm_area __maybe_unused;
872 	int err;
873 
874 	if (node == NUMA_NO_NODE)
875 		node = tsk_fork_get_node(orig);
876 	tsk = alloc_task_struct_node(node);
877 	if (!tsk)
878 		return NULL;
879 
880 	stack = alloc_thread_stack_node(tsk, node);
881 	if (!stack)
882 		goto free_tsk;
883 
884 	if (memcg_charge_kernel_stack(tsk))
885 		goto free_stack;
886 
887 	stack_vm_area = task_stack_vm_area(tsk);
888 
889 	err = arch_dup_task_struct(tsk, orig);
890 
891 	/*
892 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
893 	 * sure they're properly initialized before using any stack-related
894 	 * functions again.
895 	 */
896 	tsk->stack = stack;
897 #ifdef CONFIG_VMAP_STACK
898 	tsk->stack_vm_area = stack_vm_area;
899 #endif
900 #ifdef CONFIG_THREAD_INFO_IN_TASK
901 	refcount_set(&tsk->stack_refcount, 1);
902 #endif
903 
904 	if (err)
905 		goto free_stack;
906 
907 	err = scs_prepare(tsk, node);
908 	if (err)
909 		goto free_stack;
910 
911 #ifdef CONFIG_SECCOMP
912 	/*
913 	 * We must handle setting up seccomp filters once we're under
914 	 * the sighand lock in case orig has changed between now and
915 	 * then. Until then, filter must be NULL to avoid messing up
916 	 * the usage counts on the error path calling free_task.
917 	 */
918 	tsk->seccomp.filter = NULL;
919 #endif
920 
921 	setup_thread_stack(tsk, orig);
922 	clear_user_return_notifier(tsk);
923 	clear_tsk_need_resched(tsk);
924 	set_task_stack_end_magic(tsk);
925 
926 #ifdef CONFIG_STACKPROTECTOR
927 	tsk->stack_canary = get_random_canary();
928 #endif
929 	if (orig->cpus_ptr == &orig->cpus_mask)
930 		tsk->cpus_ptr = &tsk->cpus_mask;
931 
932 	/*
933 	 * One for the user space visible state that goes away when reaped.
934 	 * One for the scheduler.
935 	 */
936 	refcount_set(&tsk->rcu_users, 2);
937 	/* One for the rcu users */
938 	refcount_set(&tsk->usage, 1);
939 #ifdef CONFIG_BLK_DEV_IO_TRACE
940 	tsk->btrace_seq = 0;
941 #endif
942 	tsk->splice_pipe = NULL;
943 	tsk->task_frag.page = NULL;
944 	tsk->wake_q.next = NULL;
945 
946 	account_kernel_stack(tsk, 1);
947 
948 	kcov_task_init(tsk);
949 
950 #ifdef CONFIG_FAULT_INJECTION
951 	tsk->fail_nth = 0;
952 #endif
953 
954 #ifdef CONFIG_BLK_CGROUP
955 	tsk->throttle_queue = NULL;
956 	tsk->use_memdelay = 0;
957 #endif
958 
959 #ifdef CONFIG_MEMCG
960 	tsk->active_memcg = NULL;
961 #endif
962 	return tsk;
963 
964 free_stack:
965 	free_thread_stack(tsk);
966 free_tsk:
967 	free_task_struct(tsk);
968 	return NULL;
969 }
970 
971 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
972 
973 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
974 
975 static int __init coredump_filter_setup(char *s)
976 {
977 	default_dump_filter =
978 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
979 		MMF_DUMP_FILTER_MASK;
980 	return 1;
981 }
982 
983 __setup("coredump_filter=", coredump_filter_setup);
984 
985 #include <linux/init_task.h>
986 
987 static void mm_init_aio(struct mm_struct *mm)
988 {
989 #ifdef CONFIG_AIO
990 	spin_lock_init(&mm->ioctx_lock);
991 	mm->ioctx_table = NULL;
992 #endif
993 }
994 
995 static __always_inline void mm_clear_owner(struct mm_struct *mm,
996 					   struct task_struct *p)
997 {
998 #ifdef CONFIG_MEMCG
999 	if (mm->owner == p)
1000 		WRITE_ONCE(mm->owner, NULL);
1001 #endif
1002 }
1003 
1004 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1005 {
1006 #ifdef CONFIG_MEMCG
1007 	mm->owner = p;
1008 #endif
1009 }
1010 
1011 static void mm_init_uprobes_state(struct mm_struct *mm)
1012 {
1013 #ifdef CONFIG_UPROBES
1014 	mm->uprobes_state.xol_area = NULL;
1015 #endif
1016 }
1017 
1018 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1019 	struct user_namespace *user_ns)
1020 {
1021 	mm->mmap = NULL;
1022 	mm->mm_rb = RB_ROOT;
1023 	mm->vmacache_seqnum = 0;
1024 	atomic_set(&mm->mm_users, 1);
1025 	atomic_set(&mm->mm_count, 1);
1026 	init_rwsem(&mm->mmap_sem);
1027 	INIT_LIST_HEAD(&mm->mmlist);
1028 	mm->core_state = NULL;
1029 	mm_pgtables_bytes_init(mm);
1030 	mm->map_count = 0;
1031 	mm->locked_vm = 0;
1032 	atomic64_set(&mm->pinned_vm, 0);
1033 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1034 	spin_lock_init(&mm->page_table_lock);
1035 	spin_lock_init(&mm->arg_lock);
1036 	mm_init_cpumask(mm);
1037 	mm_init_aio(mm);
1038 	mm_init_owner(mm, p);
1039 	RCU_INIT_POINTER(mm->exe_file, NULL);
1040 	mmu_notifier_subscriptions_init(mm);
1041 	init_tlb_flush_pending(mm);
1042 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1043 	mm->pmd_huge_pte = NULL;
1044 #endif
1045 	mm_init_uprobes_state(mm);
1046 
1047 	if (current->mm) {
1048 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1049 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1050 	} else {
1051 		mm->flags = default_dump_filter;
1052 		mm->def_flags = 0;
1053 	}
1054 
1055 	if (mm_alloc_pgd(mm))
1056 		goto fail_nopgd;
1057 
1058 	if (init_new_context(p, mm))
1059 		goto fail_nocontext;
1060 
1061 	mm->user_ns = get_user_ns(user_ns);
1062 	return mm;
1063 
1064 fail_nocontext:
1065 	mm_free_pgd(mm);
1066 fail_nopgd:
1067 	free_mm(mm);
1068 	return NULL;
1069 }
1070 
1071 /*
1072  * Allocate and initialize an mm_struct.
1073  */
1074 struct mm_struct *mm_alloc(void)
1075 {
1076 	struct mm_struct *mm;
1077 
1078 	mm = allocate_mm();
1079 	if (!mm)
1080 		return NULL;
1081 
1082 	memset(mm, 0, sizeof(*mm));
1083 	return mm_init(mm, current, current_user_ns());
1084 }
1085 
1086 static inline void __mmput(struct mm_struct *mm)
1087 {
1088 	VM_BUG_ON(atomic_read(&mm->mm_users));
1089 
1090 	uprobe_clear_state(mm);
1091 	exit_aio(mm);
1092 	ksm_exit(mm);
1093 	khugepaged_exit(mm); /* must run before exit_mmap */
1094 	exit_mmap(mm);
1095 	mm_put_huge_zero_page(mm);
1096 	set_mm_exe_file(mm, NULL);
1097 	if (!list_empty(&mm->mmlist)) {
1098 		spin_lock(&mmlist_lock);
1099 		list_del(&mm->mmlist);
1100 		spin_unlock(&mmlist_lock);
1101 	}
1102 	if (mm->binfmt)
1103 		module_put(mm->binfmt->module);
1104 	mmdrop(mm);
1105 }
1106 
1107 /*
1108  * Decrement the use count and release all resources for an mm.
1109  */
1110 void mmput(struct mm_struct *mm)
1111 {
1112 	might_sleep();
1113 
1114 	if (atomic_dec_and_test(&mm->mm_users))
1115 		__mmput(mm);
1116 }
1117 EXPORT_SYMBOL_GPL(mmput);
1118 
1119 #ifdef CONFIG_MMU
1120 static void mmput_async_fn(struct work_struct *work)
1121 {
1122 	struct mm_struct *mm = container_of(work, struct mm_struct,
1123 					    async_put_work);
1124 
1125 	__mmput(mm);
1126 }
1127 
1128 void mmput_async(struct mm_struct *mm)
1129 {
1130 	if (atomic_dec_and_test(&mm->mm_users)) {
1131 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1132 		schedule_work(&mm->async_put_work);
1133 	}
1134 }
1135 #endif
1136 
1137 /**
1138  * set_mm_exe_file - change a reference to the mm's executable file
1139  *
1140  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1141  *
1142  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1143  * invocations: in mmput() nobody alive left, in execve task is single
1144  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1145  * mm->exe_file, but does so without using set_mm_exe_file() in order
1146  * to do avoid the need for any locks.
1147  */
1148 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1149 {
1150 	struct file *old_exe_file;
1151 
1152 	/*
1153 	 * It is safe to dereference the exe_file without RCU as
1154 	 * this function is only called if nobody else can access
1155 	 * this mm -- see comment above for justification.
1156 	 */
1157 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1158 
1159 	if (new_exe_file)
1160 		get_file(new_exe_file);
1161 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1162 	if (old_exe_file)
1163 		fput(old_exe_file);
1164 }
1165 
1166 /**
1167  * get_mm_exe_file - acquire a reference to the mm's executable file
1168  *
1169  * Returns %NULL if mm has no associated executable file.
1170  * User must release file via fput().
1171  */
1172 struct file *get_mm_exe_file(struct mm_struct *mm)
1173 {
1174 	struct file *exe_file;
1175 
1176 	rcu_read_lock();
1177 	exe_file = rcu_dereference(mm->exe_file);
1178 	if (exe_file && !get_file_rcu(exe_file))
1179 		exe_file = NULL;
1180 	rcu_read_unlock();
1181 	return exe_file;
1182 }
1183 EXPORT_SYMBOL(get_mm_exe_file);
1184 
1185 /**
1186  * get_task_exe_file - acquire a reference to the task's executable file
1187  *
1188  * Returns %NULL if task's mm (if any) has no associated executable file or
1189  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1190  * User must release file via fput().
1191  */
1192 struct file *get_task_exe_file(struct task_struct *task)
1193 {
1194 	struct file *exe_file = NULL;
1195 	struct mm_struct *mm;
1196 
1197 	task_lock(task);
1198 	mm = task->mm;
1199 	if (mm) {
1200 		if (!(task->flags & PF_KTHREAD))
1201 			exe_file = get_mm_exe_file(mm);
1202 	}
1203 	task_unlock(task);
1204 	return exe_file;
1205 }
1206 EXPORT_SYMBOL(get_task_exe_file);
1207 
1208 /**
1209  * get_task_mm - acquire a reference to the task's mm
1210  *
1211  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1212  * this kernel workthread has transiently adopted a user mm with use_mm,
1213  * to do its AIO) is not set and if so returns a reference to it, after
1214  * bumping up the use count.  User must release the mm via mmput()
1215  * after use.  Typically used by /proc and ptrace.
1216  */
1217 struct mm_struct *get_task_mm(struct task_struct *task)
1218 {
1219 	struct mm_struct *mm;
1220 
1221 	task_lock(task);
1222 	mm = task->mm;
1223 	if (mm) {
1224 		if (task->flags & PF_KTHREAD)
1225 			mm = NULL;
1226 		else
1227 			mmget(mm);
1228 	}
1229 	task_unlock(task);
1230 	return mm;
1231 }
1232 EXPORT_SYMBOL_GPL(get_task_mm);
1233 
1234 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1235 {
1236 	struct mm_struct *mm;
1237 	int err;
1238 
1239 	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1240 	if (err)
1241 		return ERR_PTR(err);
1242 
1243 	mm = get_task_mm(task);
1244 	if (mm && mm != current->mm &&
1245 			!ptrace_may_access(task, mode)) {
1246 		mmput(mm);
1247 		mm = ERR_PTR(-EACCES);
1248 	}
1249 	mutex_unlock(&task->signal->exec_update_mutex);
1250 
1251 	return mm;
1252 }
1253 
1254 static void complete_vfork_done(struct task_struct *tsk)
1255 {
1256 	struct completion *vfork;
1257 
1258 	task_lock(tsk);
1259 	vfork = tsk->vfork_done;
1260 	if (likely(vfork)) {
1261 		tsk->vfork_done = NULL;
1262 		complete(vfork);
1263 	}
1264 	task_unlock(tsk);
1265 }
1266 
1267 static int wait_for_vfork_done(struct task_struct *child,
1268 				struct completion *vfork)
1269 {
1270 	int killed;
1271 
1272 	freezer_do_not_count();
1273 	cgroup_enter_frozen();
1274 	killed = wait_for_completion_killable(vfork);
1275 	cgroup_leave_frozen(false);
1276 	freezer_count();
1277 
1278 	if (killed) {
1279 		task_lock(child);
1280 		child->vfork_done = NULL;
1281 		task_unlock(child);
1282 	}
1283 
1284 	put_task_struct(child);
1285 	return killed;
1286 }
1287 
1288 /* Please note the differences between mmput and mm_release.
1289  * mmput is called whenever we stop holding onto a mm_struct,
1290  * error success whatever.
1291  *
1292  * mm_release is called after a mm_struct has been removed
1293  * from the current process.
1294  *
1295  * This difference is important for error handling, when we
1296  * only half set up a mm_struct for a new process and need to restore
1297  * the old one.  Because we mmput the new mm_struct before
1298  * restoring the old one. . .
1299  * Eric Biederman 10 January 1998
1300  */
1301 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1302 {
1303 	uprobe_free_utask(tsk);
1304 
1305 	/* Get rid of any cached register state */
1306 	deactivate_mm(tsk, mm);
1307 
1308 	/*
1309 	 * Signal userspace if we're not exiting with a core dump
1310 	 * because we want to leave the value intact for debugging
1311 	 * purposes.
1312 	 */
1313 	if (tsk->clear_child_tid) {
1314 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1315 		    atomic_read(&mm->mm_users) > 1) {
1316 			/*
1317 			 * We don't check the error code - if userspace has
1318 			 * not set up a proper pointer then tough luck.
1319 			 */
1320 			put_user(0, tsk->clear_child_tid);
1321 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1322 					1, NULL, NULL, 0, 0);
1323 		}
1324 		tsk->clear_child_tid = NULL;
1325 	}
1326 
1327 	/*
1328 	 * All done, finally we can wake up parent and return this mm to him.
1329 	 * Also kthread_stop() uses this completion for synchronization.
1330 	 */
1331 	if (tsk->vfork_done)
1332 		complete_vfork_done(tsk);
1333 }
1334 
1335 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1336 {
1337 	futex_exit_release(tsk);
1338 	mm_release(tsk, mm);
1339 }
1340 
1341 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1342 {
1343 	futex_exec_release(tsk);
1344 	mm_release(tsk, mm);
1345 }
1346 
1347 /**
1348  * dup_mm() - duplicates an existing mm structure
1349  * @tsk: the task_struct with which the new mm will be associated.
1350  * @oldmm: the mm to duplicate.
1351  *
1352  * Allocates a new mm structure and duplicates the provided @oldmm structure
1353  * content into it.
1354  *
1355  * Return: the duplicated mm or NULL on failure.
1356  */
1357 static struct mm_struct *dup_mm(struct task_struct *tsk,
1358 				struct mm_struct *oldmm)
1359 {
1360 	struct mm_struct *mm;
1361 	int err;
1362 
1363 	mm = allocate_mm();
1364 	if (!mm)
1365 		goto fail_nomem;
1366 
1367 	memcpy(mm, oldmm, sizeof(*mm));
1368 
1369 	if (!mm_init(mm, tsk, mm->user_ns))
1370 		goto fail_nomem;
1371 
1372 	err = dup_mmap(mm, oldmm);
1373 	if (err)
1374 		goto free_pt;
1375 
1376 	mm->hiwater_rss = get_mm_rss(mm);
1377 	mm->hiwater_vm = mm->total_vm;
1378 
1379 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1380 		goto free_pt;
1381 
1382 	return mm;
1383 
1384 free_pt:
1385 	/* don't put binfmt in mmput, we haven't got module yet */
1386 	mm->binfmt = NULL;
1387 	mm_init_owner(mm, NULL);
1388 	mmput(mm);
1389 
1390 fail_nomem:
1391 	return NULL;
1392 }
1393 
1394 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1395 {
1396 	struct mm_struct *mm, *oldmm;
1397 	int retval;
1398 
1399 	tsk->min_flt = tsk->maj_flt = 0;
1400 	tsk->nvcsw = tsk->nivcsw = 0;
1401 #ifdef CONFIG_DETECT_HUNG_TASK
1402 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1403 	tsk->last_switch_time = 0;
1404 #endif
1405 
1406 	tsk->mm = NULL;
1407 	tsk->active_mm = NULL;
1408 
1409 	/*
1410 	 * Are we cloning a kernel thread?
1411 	 *
1412 	 * We need to steal a active VM for that..
1413 	 */
1414 	oldmm = current->mm;
1415 	if (!oldmm)
1416 		return 0;
1417 
1418 	/* initialize the new vmacache entries */
1419 	vmacache_flush(tsk);
1420 
1421 	if (clone_flags & CLONE_VM) {
1422 		mmget(oldmm);
1423 		mm = oldmm;
1424 		goto good_mm;
1425 	}
1426 
1427 	retval = -ENOMEM;
1428 	mm = dup_mm(tsk, current->mm);
1429 	if (!mm)
1430 		goto fail_nomem;
1431 
1432 good_mm:
1433 	tsk->mm = mm;
1434 	tsk->active_mm = mm;
1435 	return 0;
1436 
1437 fail_nomem:
1438 	return retval;
1439 }
1440 
1441 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1442 {
1443 	struct fs_struct *fs = current->fs;
1444 	if (clone_flags & CLONE_FS) {
1445 		/* tsk->fs is already what we want */
1446 		spin_lock(&fs->lock);
1447 		if (fs->in_exec) {
1448 			spin_unlock(&fs->lock);
1449 			return -EAGAIN;
1450 		}
1451 		fs->users++;
1452 		spin_unlock(&fs->lock);
1453 		return 0;
1454 	}
1455 	tsk->fs = copy_fs_struct(fs);
1456 	if (!tsk->fs)
1457 		return -ENOMEM;
1458 	return 0;
1459 }
1460 
1461 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1462 {
1463 	struct files_struct *oldf, *newf;
1464 	int error = 0;
1465 
1466 	/*
1467 	 * A background process may not have any files ...
1468 	 */
1469 	oldf = current->files;
1470 	if (!oldf)
1471 		goto out;
1472 
1473 	if (clone_flags & CLONE_FILES) {
1474 		atomic_inc(&oldf->count);
1475 		goto out;
1476 	}
1477 
1478 	newf = dup_fd(oldf, &error);
1479 	if (!newf)
1480 		goto out;
1481 
1482 	tsk->files = newf;
1483 	error = 0;
1484 out:
1485 	return error;
1486 }
1487 
1488 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1489 {
1490 #ifdef CONFIG_BLOCK
1491 	struct io_context *ioc = current->io_context;
1492 	struct io_context *new_ioc;
1493 
1494 	if (!ioc)
1495 		return 0;
1496 	/*
1497 	 * Share io context with parent, if CLONE_IO is set
1498 	 */
1499 	if (clone_flags & CLONE_IO) {
1500 		ioc_task_link(ioc);
1501 		tsk->io_context = ioc;
1502 	} else if (ioprio_valid(ioc->ioprio)) {
1503 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1504 		if (unlikely(!new_ioc))
1505 			return -ENOMEM;
1506 
1507 		new_ioc->ioprio = ioc->ioprio;
1508 		put_io_context(new_ioc);
1509 	}
1510 #endif
1511 	return 0;
1512 }
1513 
1514 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1515 {
1516 	struct sighand_struct *sig;
1517 
1518 	if (clone_flags & CLONE_SIGHAND) {
1519 		refcount_inc(&current->sighand->count);
1520 		return 0;
1521 	}
1522 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1523 	RCU_INIT_POINTER(tsk->sighand, sig);
1524 	if (!sig)
1525 		return -ENOMEM;
1526 
1527 	refcount_set(&sig->count, 1);
1528 	spin_lock_irq(&current->sighand->siglock);
1529 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1530 	spin_unlock_irq(&current->sighand->siglock);
1531 
1532 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1533 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1534 		flush_signal_handlers(tsk, 0);
1535 
1536 	return 0;
1537 }
1538 
1539 void __cleanup_sighand(struct sighand_struct *sighand)
1540 {
1541 	if (refcount_dec_and_test(&sighand->count)) {
1542 		signalfd_cleanup(sighand);
1543 		/*
1544 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1545 		 * without an RCU grace period, see __lock_task_sighand().
1546 		 */
1547 		kmem_cache_free(sighand_cachep, sighand);
1548 	}
1549 }
1550 
1551 /*
1552  * Initialize POSIX timer handling for a thread group.
1553  */
1554 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1555 {
1556 	struct posix_cputimers *pct = &sig->posix_cputimers;
1557 	unsigned long cpu_limit;
1558 
1559 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1560 	posix_cputimers_group_init(pct, cpu_limit);
1561 }
1562 
1563 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1564 {
1565 	struct signal_struct *sig;
1566 
1567 	if (clone_flags & CLONE_THREAD)
1568 		return 0;
1569 
1570 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1571 	tsk->signal = sig;
1572 	if (!sig)
1573 		return -ENOMEM;
1574 
1575 	sig->nr_threads = 1;
1576 	atomic_set(&sig->live, 1);
1577 	refcount_set(&sig->sigcnt, 1);
1578 
1579 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1580 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1581 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1582 
1583 	init_waitqueue_head(&sig->wait_chldexit);
1584 	sig->curr_target = tsk;
1585 	init_sigpending(&sig->shared_pending);
1586 	INIT_HLIST_HEAD(&sig->multiprocess);
1587 	seqlock_init(&sig->stats_lock);
1588 	prev_cputime_init(&sig->prev_cputime);
1589 
1590 #ifdef CONFIG_POSIX_TIMERS
1591 	INIT_LIST_HEAD(&sig->posix_timers);
1592 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1593 	sig->real_timer.function = it_real_fn;
1594 #endif
1595 
1596 	task_lock(current->group_leader);
1597 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1598 	task_unlock(current->group_leader);
1599 
1600 	posix_cpu_timers_init_group(sig);
1601 
1602 	tty_audit_fork(sig);
1603 	sched_autogroup_fork(sig);
1604 
1605 	sig->oom_score_adj = current->signal->oom_score_adj;
1606 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1607 
1608 	mutex_init(&sig->cred_guard_mutex);
1609 	mutex_init(&sig->exec_update_mutex);
1610 
1611 	return 0;
1612 }
1613 
1614 static void copy_seccomp(struct task_struct *p)
1615 {
1616 #ifdef CONFIG_SECCOMP
1617 	/*
1618 	 * Must be called with sighand->lock held, which is common to
1619 	 * all threads in the group. Holding cred_guard_mutex is not
1620 	 * needed because this new task is not yet running and cannot
1621 	 * be racing exec.
1622 	 */
1623 	assert_spin_locked(&current->sighand->siglock);
1624 
1625 	/* Ref-count the new filter user, and assign it. */
1626 	get_seccomp_filter(current);
1627 	p->seccomp = current->seccomp;
1628 
1629 	/*
1630 	 * Explicitly enable no_new_privs here in case it got set
1631 	 * between the task_struct being duplicated and holding the
1632 	 * sighand lock. The seccomp state and nnp must be in sync.
1633 	 */
1634 	if (task_no_new_privs(current))
1635 		task_set_no_new_privs(p);
1636 
1637 	/*
1638 	 * If the parent gained a seccomp mode after copying thread
1639 	 * flags and between before we held the sighand lock, we have
1640 	 * to manually enable the seccomp thread flag here.
1641 	 */
1642 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1643 		set_tsk_thread_flag(p, TIF_SECCOMP);
1644 #endif
1645 }
1646 
1647 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1648 {
1649 	current->clear_child_tid = tidptr;
1650 
1651 	return task_pid_vnr(current);
1652 }
1653 
1654 static void rt_mutex_init_task(struct task_struct *p)
1655 {
1656 	raw_spin_lock_init(&p->pi_lock);
1657 #ifdef CONFIG_RT_MUTEXES
1658 	p->pi_waiters = RB_ROOT_CACHED;
1659 	p->pi_top_task = NULL;
1660 	p->pi_blocked_on = NULL;
1661 #endif
1662 }
1663 
1664 static inline void init_task_pid_links(struct task_struct *task)
1665 {
1666 	enum pid_type type;
1667 
1668 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1669 		INIT_HLIST_NODE(&task->pid_links[type]);
1670 	}
1671 }
1672 
1673 static inline void
1674 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1675 {
1676 	if (type == PIDTYPE_PID)
1677 		task->thread_pid = pid;
1678 	else
1679 		task->signal->pids[type] = pid;
1680 }
1681 
1682 static inline void rcu_copy_process(struct task_struct *p)
1683 {
1684 #ifdef CONFIG_PREEMPT_RCU
1685 	p->rcu_read_lock_nesting = 0;
1686 	p->rcu_read_unlock_special.s = 0;
1687 	p->rcu_blocked_node = NULL;
1688 	INIT_LIST_HEAD(&p->rcu_node_entry);
1689 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1690 #ifdef CONFIG_TASKS_RCU
1691 	p->rcu_tasks_holdout = false;
1692 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1693 	p->rcu_tasks_idle_cpu = -1;
1694 #endif /* #ifdef CONFIG_TASKS_RCU */
1695 #ifdef CONFIG_TASKS_TRACE_RCU
1696 	p->trc_reader_nesting = 0;
1697 	p->trc_reader_special.s = 0;
1698 	INIT_LIST_HEAD(&p->trc_holdout_list);
1699 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1700 }
1701 
1702 struct pid *pidfd_pid(const struct file *file)
1703 {
1704 	if (file->f_op == &pidfd_fops)
1705 		return file->private_data;
1706 
1707 	return ERR_PTR(-EBADF);
1708 }
1709 
1710 static int pidfd_release(struct inode *inode, struct file *file)
1711 {
1712 	struct pid *pid = file->private_data;
1713 
1714 	file->private_data = NULL;
1715 	put_pid(pid);
1716 	return 0;
1717 }
1718 
1719 #ifdef CONFIG_PROC_FS
1720 /**
1721  * pidfd_show_fdinfo - print information about a pidfd
1722  * @m: proc fdinfo file
1723  * @f: file referencing a pidfd
1724  *
1725  * Pid:
1726  * This function will print the pid that a given pidfd refers to in the
1727  * pid namespace of the procfs instance.
1728  * If the pid namespace of the process is not a descendant of the pid
1729  * namespace of the procfs instance 0 will be shown as its pid. This is
1730  * similar to calling getppid() on a process whose parent is outside of
1731  * its pid namespace.
1732  *
1733  * NSpid:
1734  * If pid namespaces are supported then this function will also print
1735  * the pid of a given pidfd refers to for all descendant pid namespaces
1736  * starting from the current pid namespace of the instance, i.e. the
1737  * Pid field and the first entry in the NSpid field will be identical.
1738  * If the pid namespace of the process is not a descendant of the pid
1739  * namespace of the procfs instance 0 will be shown as its first NSpid
1740  * entry and no others will be shown.
1741  * Note that this differs from the Pid and NSpid fields in
1742  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1743  * the  pid namespace of the procfs instance. The difference becomes
1744  * obvious when sending around a pidfd between pid namespaces from a
1745  * different branch of the tree, i.e. where no ancestoral relation is
1746  * present between the pid namespaces:
1747  * - create two new pid namespaces ns1 and ns2 in the initial pid
1748  *   namespace (also take care to create new mount namespaces in the
1749  *   new pid namespace and mount procfs)
1750  * - create a process with a pidfd in ns1
1751  * - send pidfd from ns1 to ns2
1752  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1753  *   have exactly one entry, which is 0
1754  */
1755 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1756 {
1757 	struct pid *pid = f->private_data;
1758 	struct pid_namespace *ns;
1759 	pid_t nr = -1;
1760 
1761 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1762 		ns = proc_pid_ns(file_inode(m->file));
1763 		nr = pid_nr_ns(pid, ns);
1764 	}
1765 
1766 	seq_put_decimal_ll(m, "Pid:\t", nr);
1767 
1768 #ifdef CONFIG_PID_NS
1769 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1770 	if (nr > 0) {
1771 		int i;
1772 
1773 		/* If nr is non-zero it means that 'pid' is valid and that
1774 		 * ns, i.e. the pid namespace associated with the procfs
1775 		 * instance, is in the pid namespace hierarchy of pid.
1776 		 * Start at one below the already printed level.
1777 		 */
1778 		for (i = ns->level + 1; i <= pid->level; i++)
1779 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1780 	}
1781 #endif
1782 	seq_putc(m, '\n');
1783 }
1784 #endif
1785 
1786 /*
1787  * Poll support for process exit notification.
1788  */
1789 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1790 {
1791 	struct task_struct *task;
1792 	struct pid *pid = file->private_data;
1793 	__poll_t poll_flags = 0;
1794 
1795 	poll_wait(file, &pid->wait_pidfd, pts);
1796 
1797 	rcu_read_lock();
1798 	task = pid_task(pid, PIDTYPE_PID);
1799 	/*
1800 	 * Inform pollers only when the whole thread group exits.
1801 	 * If the thread group leader exits before all other threads in the
1802 	 * group, then poll(2) should block, similar to the wait(2) family.
1803 	 */
1804 	if (!task || (task->exit_state && thread_group_empty(task)))
1805 		poll_flags = EPOLLIN | EPOLLRDNORM;
1806 	rcu_read_unlock();
1807 
1808 	return poll_flags;
1809 }
1810 
1811 const struct file_operations pidfd_fops = {
1812 	.release = pidfd_release,
1813 	.poll = pidfd_poll,
1814 #ifdef CONFIG_PROC_FS
1815 	.show_fdinfo = pidfd_show_fdinfo,
1816 #endif
1817 };
1818 
1819 static void __delayed_free_task(struct rcu_head *rhp)
1820 {
1821 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1822 
1823 	free_task(tsk);
1824 }
1825 
1826 static __always_inline void delayed_free_task(struct task_struct *tsk)
1827 {
1828 	if (IS_ENABLED(CONFIG_MEMCG))
1829 		call_rcu(&tsk->rcu, __delayed_free_task);
1830 	else
1831 		free_task(tsk);
1832 }
1833 
1834 /*
1835  * This creates a new process as a copy of the old one,
1836  * but does not actually start it yet.
1837  *
1838  * It copies the registers, and all the appropriate
1839  * parts of the process environment (as per the clone
1840  * flags). The actual kick-off is left to the caller.
1841  */
1842 static __latent_entropy struct task_struct *copy_process(
1843 					struct pid *pid,
1844 					int trace,
1845 					int node,
1846 					struct kernel_clone_args *args)
1847 {
1848 	int pidfd = -1, retval;
1849 	struct task_struct *p;
1850 	struct multiprocess_signals delayed;
1851 	struct file *pidfile = NULL;
1852 	u64 clone_flags = args->flags;
1853 	struct nsproxy *nsp = current->nsproxy;
1854 
1855 	/*
1856 	 * Don't allow sharing the root directory with processes in a different
1857 	 * namespace
1858 	 */
1859 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1860 		return ERR_PTR(-EINVAL);
1861 
1862 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1863 		return ERR_PTR(-EINVAL);
1864 
1865 	/*
1866 	 * Thread groups must share signals as well, and detached threads
1867 	 * can only be started up within the thread group.
1868 	 */
1869 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1870 		return ERR_PTR(-EINVAL);
1871 
1872 	/*
1873 	 * Shared signal handlers imply shared VM. By way of the above,
1874 	 * thread groups also imply shared VM. Blocking this case allows
1875 	 * for various simplifications in other code.
1876 	 */
1877 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1878 		return ERR_PTR(-EINVAL);
1879 
1880 	/*
1881 	 * Siblings of global init remain as zombies on exit since they are
1882 	 * not reaped by their parent (swapper). To solve this and to avoid
1883 	 * multi-rooted process trees, prevent global and container-inits
1884 	 * from creating siblings.
1885 	 */
1886 	if ((clone_flags & CLONE_PARENT) &&
1887 				current->signal->flags & SIGNAL_UNKILLABLE)
1888 		return ERR_PTR(-EINVAL);
1889 
1890 	/*
1891 	 * If the new process will be in a different pid or user namespace
1892 	 * do not allow it to share a thread group with the forking task.
1893 	 */
1894 	if (clone_flags & CLONE_THREAD) {
1895 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1896 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1897 			return ERR_PTR(-EINVAL);
1898 	}
1899 
1900 	/*
1901 	 * If the new process will be in a different time namespace
1902 	 * do not allow it to share VM or a thread group with the forking task.
1903 	 */
1904 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1905 		if (nsp->time_ns != nsp->time_ns_for_children)
1906 			return ERR_PTR(-EINVAL);
1907 	}
1908 
1909 	if (clone_flags & CLONE_PIDFD) {
1910 		/*
1911 		 * - CLONE_DETACHED is blocked so that we can potentially
1912 		 *   reuse it later for CLONE_PIDFD.
1913 		 * - CLONE_THREAD is blocked until someone really needs it.
1914 		 */
1915 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1916 			return ERR_PTR(-EINVAL);
1917 	}
1918 
1919 	/*
1920 	 * Force any signals received before this point to be delivered
1921 	 * before the fork happens.  Collect up signals sent to multiple
1922 	 * processes that happen during the fork and delay them so that
1923 	 * they appear to happen after the fork.
1924 	 */
1925 	sigemptyset(&delayed.signal);
1926 	INIT_HLIST_NODE(&delayed.node);
1927 
1928 	spin_lock_irq(&current->sighand->siglock);
1929 	if (!(clone_flags & CLONE_THREAD))
1930 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1931 	recalc_sigpending();
1932 	spin_unlock_irq(&current->sighand->siglock);
1933 	retval = -ERESTARTNOINTR;
1934 	if (signal_pending(current))
1935 		goto fork_out;
1936 
1937 	retval = -ENOMEM;
1938 	p = dup_task_struct(current, node);
1939 	if (!p)
1940 		goto fork_out;
1941 
1942 	/*
1943 	 * This _must_ happen before we call free_task(), i.e. before we jump
1944 	 * to any of the bad_fork_* labels. This is to avoid freeing
1945 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1946 	 * kernel threads (PF_KTHREAD).
1947 	 */
1948 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1949 	/*
1950 	 * Clear TID on mm_release()?
1951 	 */
1952 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1953 
1954 	ftrace_graph_init_task(p);
1955 
1956 	rt_mutex_init_task(p);
1957 
1958 #ifdef CONFIG_PROVE_LOCKING
1959 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1960 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1961 #endif
1962 	retval = -EAGAIN;
1963 	if (atomic_read(&p->real_cred->user->processes) >=
1964 			task_rlimit(p, RLIMIT_NPROC)) {
1965 		if (p->real_cred->user != INIT_USER &&
1966 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1967 			goto bad_fork_free;
1968 	}
1969 	current->flags &= ~PF_NPROC_EXCEEDED;
1970 
1971 	retval = copy_creds(p, clone_flags);
1972 	if (retval < 0)
1973 		goto bad_fork_free;
1974 
1975 	/*
1976 	 * If multiple threads are within copy_process(), then this check
1977 	 * triggers too late. This doesn't hurt, the check is only there
1978 	 * to stop root fork bombs.
1979 	 */
1980 	retval = -EAGAIN;
1981 	if (nr_threads >= max_threads)
1982 		goto bad_fork_cleanup_count;
1983 
1984 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1985 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1986 	p->flags |= PF_FORKNOEXEC;
1987 	INIT_LIST_HEAD(&p->children);
1988 	INIT_LIST_HEAD(&p->sibling);
1989 	rcu_copy_process(p);
1990 	p->vfork_done = NULL;
1991 	spin_lock_init(&p->alloc_lock);
1992 
1993 	init_sigpending(&p->pending);
1994 
1995 	p->utime = p->stime = p->gtime = 0;
1996 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1997 	p->utimescaled = p->stimescaled = 0;
1998 #endif
1999 	prev_cputime_init(&p->prev_cputime);
2000 
2001 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2002 	seqcount_init(&p->vtime.seqcount);
2003 	p->vtime.starttime = 0;
2004 	p->vtime.state = VTIME_INACTIVE;
2005 #endif
2006 
2007 #if defined(SPLIT_RSS_COUNTING)
2008 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2009 #endif
2010 
2011 	p->default_timer_slack_ns = current->timer_slack_ns;
2012 
2013 #ifdef CONFIG_PSI
2014 	p->psi_flags = 0;
2015 #endif
2016 
2017 	task_io_accounting_init(&p->ioac);
2018 	acct_clear_integrals(p);
2019 
2020 	posix_cputimers_init(&p->posix_cputimers);
2021 
2022 	p->io_context = NULL;
2023 	audit_set_context(p, NULL);
2024 	cgroup_fork(p);
2025 #ifdef CONFIG_NUMA
2026 	p->mempolicy = mpol_dup(p->mempolicy);
2027 	if (IS_ERR(p->mempolicy)) {
2028 		retval = PTR_ERR(p->mempolicy);
2029 		p->mempolicy = NULL;
2030 		goto bad_fork_cleanup_threadgroup_lock;
2031 	}
2032 #endif
2033 #ifdef CONFIG_CPUSETS
2034 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2035 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2036 	seqcount_init(&p->mems_allowed_seq);
2037 #endif
2038 #ifdef CONFIG_TRACE_IRQFLAGS
2039 	p->irq_events = 0;
2040 	p->hardirqs_enabled = 0;
2041 	p->hardirq_enable_ip = 0;
2042 	p->hardirq_enable_event = 0;
2043 	p->hardirq_disable_ip = _THIS_IP_;
2044 	p->hardirq_disable_event = 0;
2045 	p->softirqs_enabled = 1;
2046 	p->softirq_enable_ip = _THIS_IP_;
2047 	p->softirq_enable_event = 0;
2048 	p->softirq_disable_ip = 0;
2049 	p->softirq_disable_event = 0;
2050 	p->hardirq_context = 0;
2051 	p->softirq_context = 0;
2052 #endif
2053 
2054 	p->pagefault_disabled = 0;
2055 
2056 #ifdef CONFIG_LOCKDEP
2057 	lockdep_init_task(p);
2058 #endif
2059 
2060 #ifdef CONFIG_DEBUG_MUTEXES
2061 	p->blocked_on = NULL; /* not blocked yet */
2062 #endif
2063 #ifdef CONFIG_BCACHE
2064 	p->sequential_io	= 0;
2065 	p->sequential_io_avg	= 0;
2066 #endif
2067 
2068 	/* Perform scheduler related setup. Assign this task to a CPU. */
2069 	retval = sched_fork(clone_flags, p);
2070 	if (retval)
2071 		goto bad_fork_cleanup_policy;
2072 
2073 	retval = perf_event_init_task(p);
2074 	if (retval)
2075 		goto bad_fork_cleanup_policy;
2076 	retval = audit_alloc(p);
2077 	if (retval)
2078 		goto bad_fork_cleanup_perf;
2079 	/* copy all the process information */
2080 	shm_init_task(p);
2081 	retval = security_task_alloc(p, clone_flags);
2082 	if (retval)
2083 		goto bad_fork_cleanup_audit;
2084 	retval = copy_semundo(clone_flags, p);
2085 	if (retval)
2086 		goto bad_fork_cleanup_security;
2087 	retval = copy_files(clone_flags, p);
2088 	if (retval)
2089 		goto bad_fork_cleanup_semundo;
2090 	retval = copy_fs(clone_flags, p);
2091 	if (retval)
2092 		goto bad_fork_cleanup_files;
2093 	retval = copy_sighand(clone_flags, p);
2094 	if (retval)
2095 		goto bad_fork_cleanup_fs;
2096 	retval = copy_signal(clone_flags, p);
2097 	if (retval)
2098 		goto bad_fork_cleanup_sighand;
2099 	retval = copy_mm(clone_flags, p);
2100 	if (retval)
2101 		goto bad_fork_cleanup_signal;
2102 	retval = copy_namespaces(clone_flags, p);
2103 	if (retval)
2104 		goto bad_fork_cleanup_mm;
2105 	retval = copy_io(clone_flags, p);
2106 	if (retval)
2107 		goto bad_fork_cleanup_namespaces;
2108 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2109 				 args->tls);
2110 	if (retval)
2111 		goto bad_fork_cleanup_io;
2112 
2113 	stackleak_task_init(p);
2114 
2115 	if (pid != &init_struct_pid) {
2116 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2117 				args->set_tid_size);
2118 		if (IS_ERR(pid)) {
2119 			retval = PTR_ERR(pid);
2120 			goto bad_fork_cleanup_thread;
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * This has to happen after we've potentially unshared the file
2126 	 * descriptor table (so that the pidfd doesn't leak into the child
2127 	 * if the fd table isn't shared).
2128 	 */
2129 	if (clone_flags & CLONE_PIDFD) {
2130 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2131 		if (retval < 0)
2132 			goto bad_fork_free_pid;
2133 
2134 		pidfd = retval;
2135 
2136 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2137 					      O_RDWR | O_CLOEXEC);
2138 		if (IS_ERR(pidfile)) {
2139 			put_unused_fd(pidfd);
2140 			retval = PTR_ERR(pidfile);
2141 			goto bad_fork_free_pid;
2142 		}
2143 		get_pid(pid);	/* held by pidfile now */
2144 
2145 		retval = put_user(pidfd, args->pidfd);
2146 		if (retval)
2147 			goto bad_fork_put_pidfd;
2148 	}
2149 
2150 #ifdef CONFIG_BLOCK
2151 	p->plug = NULL;
2152 #endif
2153 	futex_init_task(p);
2154 
2155 	/*
2156 	 * sigaltstack should be cleared when sharing the same VM
2157 	 */
2158 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2159 		sas_ss_reset(p);
2160 
2161 	/*
2162 	 * Syscall tracing and stepping should be turned off in the
2163 	 * child regardless of CLONE_PTRACE.
2164 	 */
2165 	user_disable_single_step(p);
2166 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2167 #ifdef TIF_SYSCALL_EMU
2168 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2169 #endif
2170 	clear_tsk_latency_tracing(p);
2171 
2172 	/* ok, now we should be set up.. */
2173 	p->pid = pid_nr(pid);
2174 	if (clone_flags & CLONE_THREAD) {
2175 		p->exit_signal = -1;
2176 		p->group_leader = current->group_leader;
2177 		p->tgid = current->tgid;
2178 	} else {
2179 		if (clone_flags & CLONE_PARENT)
2180 			p->exit_signal = current->group_leader->exit_signal;
2181 		else
2182 			p->exit_signal = args->exit_signal;
2183 		p->group_leader = p;
2184 		p->tgid = p->pid;
2185 	}
2186 
2187 	p->nr_dirtied = 0;
2188 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2189 	p->dirty_paused_when = 0;
2190 
2191 	p->pdeath_signal = 0;
2192 	INIT_LIST_HEAD(&p->thread_group);
2193 	p->task_works = NULL;
2194 
2195 	/*
2196 	 * Ensure that the cgroup subsystem policies allow the new process to be
2197 	 * forked. It should be noted the the new process's css_set can be changed
2198 	 * between here and cgroup_post_fork() if an organisation operation is in
2199 	 * progress.
2200 	 */
2201 	retval = cgroup_can_fork(p, args);
2202 	if (retval)
2203 		goto bad_fork_put_pidfd;
2204 
2205 	/*
2206 	 * From this point on we must avoid any synchronous user-space
2207 	 * communication until we take the tasklist-lock. In particular, we do
2208 	 * not want user-space to be able to predict the process start-time by
2209 	 * stalling fork(2) after we recorded the start_time but before it is
2210 	 * visible to the system.
2211 	 */
2212 
2213 	p->start_time = ktime_get_ns();
2214 	p->start_boottime = ktime_get_boottime_ns();
2215 
2216 	/*
2217 	 * Make it visible to the rest of the system, but dont wake it up yet.
2218 	 * Need tasklist lock for parent etc handling!
2219 	 */
2220 	write_lock_irq(&tasklist_lock);
2221 
2222 	/* CLONE_PARENT re-uses the old parent */
2223 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2224 		p->real_parent = current->real_parent;
2225 		p->parent_exec_id = current->parent_exec_id;
2226 	} else {
2227 		p->real_parent = current;
2228 		p->parent_exec_id = current->self_exec_id;
2229 	}
2230 
2231 	klp_copy_process(p);
2232 
2233 	spin_lock(&current->sighand->siglock);
2234 
2235 	/*
2236 	 * Copy seccomp details explicitly here, in case they were changed
2237 	 * before holding sighand lock.
2238 	 */
2239 	copy_seccomp(p);
2240 
2241 	rseq_fork(p, clone_flags);
2242 
2243 	/* Don't start children in a dying pid namespace */
2244 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2245 		retval = -ENOMEM;
2246 		goto bad_fork_cancel_cgroup;
2247 	}
2248 
2249 	/* Let kill terminate clone/fork in the middle */
2250 	if (fatal_signal_pending(current)) {
2251 		retval = -EINTR;
2252 		goto bad_fork_cancel_cgroup;
2253 	}
2254 
2255 	/* past the last point of failure */
2256 	if (pidfile)
2257 		fd_install(pidfd, pidfile);
2258 
2259 	init_task_pid_links(p);
2260 	if (likely(p->pid)) {
2261 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2262 
2263 		init_task_pid(p, PIDTYPE_PID, pid);
2264 		if (thread_group_leader(p)) {
2265 			init_task_pid(p, PIDTYPE_TGID, pid);
2266 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2267 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2268 
2269 			if (is_child_reaper(pid)) {
2270 				ns_of_pid(pid)->child_reaper = p;
2271 				p->signal->flags |= SIGNAL_UNKILLABLE;
2272 			}
2273 			p->signal->shared_pending.signal = delayed.signal;
2274 			p->signal->tty = tty_kref_get(current->signal->tty);
2275 			/*
2276 			 * Inherit has_child_subreaper flag under the same
2277 			 * tasklist_lock with adding child to the process tree
2278 			 * for propagate_has_child_subreaper optimization.
2279 			 */
2280 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2281 							 p->real_parent->signal->is_child_subreaper;
2282 			list_add_tail(&p->sibling, &p->real_parent->children);
2283 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2284 			attach_pid(p, PIDTYPE_TGID);
2285 			attach_pid(p, PIDTYPE_PGID);
2286 			attach_pid(p, PIDTYPE_SID);
2287 			__this_cpu_inc(process_counts);
2288 		} else {
2289 			current->signal->nr_threads++;
2290 			atomic_inc(&current->signal->live);
2291 			refcount_inc(&current->signal->sigcnt);
2292 			task_join_group_stop(p);
2293 			list_add_tail_rcu(&p->thread_group,
2294 					  &p->group_leader->thread_group);
2295 			list_add_tail_rcu(&p->thread_node,
2296 					  &p->signal->thread_head);
2297 		}
2298 		attach_pid(p, PIDTYPE_PID);
2299 		nr_threads++;
2300 	}
2301 	total_forks++;
2302 	hlist_del_init(&delayed.node);
2303 	spin_unlock(&current->sighand->siglock);
2304 	syscall_tracepoint_update(p);
2305 	write_unlock_irq(&tasklist_lock);
2306 
2307 	proc_fork_connector(p);
2308 	cgroup_post_fork(p, args);
2309 	perf_event_fork(p);
2310 
2311 	trace_task_newtask(p, clone_flags);
2312 	uprobe_copy_process(p, clone_flags);
2313 
2314 	return p;
2315 
2316 bad_fork_cancel_cgroup:
2317 	spin_unlock(&current->sighand->siglock);
2318 	write_unlock_irq(&tasklist_lock);
2319 	cgroup_cancel_fork(p, args);
2320 bad_fork_put_pidfd:
2321 	if (clone_flags & CLONE_PIDFD) {
2322 		fput(pidfile);
2323 		put_unused_fd(pidfd);
2324 	}
2325 bad_fork_free_pid:
2326 	if (pid != &init_struct_pid)
2327 		free_pid(pid);
2328 bad_fork_cleanup_thread:
2329 	exit_thread(p);
2330 bad_fork_cleanup_io:
2331 	if (p->io_context)
2332 		exit_io_context(p);
2333 bad_fork_cleanup_namespaces:
2334 	exit_task_namespaces(p);
2335 bad_fork_cleanup_mm:
2336 	if (p->mm) {
2337 		mm_clear_owner(p->mm, p);
2338 		mmput(p->mm);
2339 	}
2340 bad_fork_cleanup_signal:
2341 	if (!(clone_flags & CLONE_THREAD))
2342 		free_signal_struct(p->signal);
2343 bad_fork_cleanup_sighand:
2344 	__cleanup_sighand(p->sighand);
2345 bad_fork_cleanup_fs:
2346 	exit_fs(p); /* blocking */
2347 bad_fork_cleanup_files:
2348 	exit_files(p); /* blocking */
2349 bad_fork_cleanup_semundo:
2350 	exit_sem(p);
2351 bad_fork_cleanup_security:
2352 	security_task_free(p);
2353 bad_fork_cleanup_audit:
2354 	audit_free(p);
2355 bad_fork_cleanup_perf:
2356 	perf_event_free_task(p);
2357 bad_fork_cleanup_policy:
2358 	lockdep_free_task(p);
2359 #ifdef CONFIG_NUMA
2360 	mpol_put(p->mempolicy);
2361 bad_fork_cleanup_threadgroup_lock:
2362 #endif
2363 	delayacct_tsk_free(p);
2364 bad_fork_cleanup_count:
2365 	atomic_dec(&p->cred->user->processes);
2366 	exit_creds(p);
2367 bad_fork_free:
2368 	p->state = TASK_DEAD;
2369 	put_task_stack(p);
2370 	delayed_free_task(p);
2371 fork_out:
2372 	spin_lock_irq(&current->sighand->siglock);
2373 	hlist_del_init(&delayed.node);
2374 	spin_unlock_irq(&current->sighand->siglock);
2375 	return ERR_PTR(retval);
2376 }
2377 
2378 static inline void init_idle_pids(struct task_struct *idle)
2379 {
2380 	enum pid_type type;
2381 
2382 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2383 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2384 		init_task_pid(idle, type, &init_struct_pid);
2385 	}
2386 }
2387 
2388 struct task_struct *fork_idle(int cpu)
2389 {
2390 	struct task_struct *task;
2391 	struct kernel_clone_args args = {
2392 		.flags = CLONE_VM,
2393 	};
2394 
2395 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2396 	if (!IS_ERR(task)) {
2397 		init_idle_pids(task);
2398 		init_idle(task, cpu);
2399 	}
2400 
2401 	return task;
2402 }
2403 
2404 struct mm_struct *copy_init_mm(void)
2405 {
2406 	return dup_mm(NULL, &init_mm);
2407 }
2408 
2409 /*
2410  *  Ok, this is the main fork-routine.
2411  *
2412  * It copies the process, and if successful kick-starts
2413  * it and waits for it to finish using the VM if required.
2414  *
2415  * args->exit_signal is expected to be checked for sanity by the caller.
2416  */
2417 long _do_fork(struct kernel_clone_args *args)
2418 {
2419 	u64 clone_flags = args->flags;
2420 	struct completion vfork;
2421 	struct pid *pid;
2422 	struct task_struct *p;
2423 	int trace = 0;
2424 	long nr;
2425 
2426 	/*
2427 	 * Determine whether and which event to report to ptracer.  When
2428 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2429 	 * requested, no event is reported; otherwise, report if the event
2430 	 * for the type of forking is enabled.
2431 	 */
2432 	if (!(clone_flags & CLONE_UNTRACED)) {
2433 		if (clone_flags & CLONE_VFORK)
2434 			trace = PTRACE_EVENT_VFORK;
2435 		else if (args->exit_signal != SIGCHLD)
2436 			trace = PTRACE_EVENT_CLONE;
2437 		else
2438 			trace = PTRACE_EVENT_FORK;
2439 
2440 		if (likely(!ptrace_event_enabled(current, trace)))
2441 			trace = 0;
2442 	}
2443 
2444 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2445 	add_latent_entropy();
2446 
2447 	if (IS_ERR(p))
2448 		return PTR_ERR(p);
2449 
2450 	/*
2451 	 * Do this prior waking up the new thread - the thread pointer
2452 	 * might get invalid after that point, if the thread exits quickly.
2453 	 */
2454 	trace_sched_process_fork(current, p);
2455 
2456 	pid = get_task_pid(p, PIDTYPE_PID);
2457 	nr = pid_vnr(pid);
2458 
2459 	if (clone_flags & CLONE_PARENT_SETTID)
2460 		put_user(nr, args->parent_tid);
2461 
2462 	if (clone_flags & CLONE_VFORK) {
2463 		p->vfork_done = &vfork;
2464 		init_completion(&vfork);
2465 		get_task_struct(p);
2466 	}
2467 
2468 	wake_up_new_task(p);
2469 
2470 	/* forking complete and child started to run, tell ptracer */
2471 	if (unlikely(trace))
2472 		ptrace_event_pid(trace, pid);
2473 
2474 	if (clone_flags & CLONE_VFORK) {
2475 		if (!wait_for_vfork_done(p, &vfork))
2476 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2477 	}
2478 
2479 	put_pid(pid);
2480 	return nr;
2481 }
2482 
2483 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2484 {
2485 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2486 	if ((kargs->flags & CLONE_PIDFD) &&
2487 	    (kargs->flags & CLONE_PARENT_SETTID))
2488 		return false;
2489 
2490 	return true;
2491 }
2492 
2493 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2494 /* For compatibility with architectures that call do_fork directly rather than
2495  * using the syscall entry points below. */
2496 long do_fork(unsigned long clone_flags,
2497 	      unsigned long stack_start,
2498 	      unsigned long stack_size,
2499 	      int __user *parent_tidptr,
2500 	      int __user *child_tidptr)
2501 {
2502 	struct kernel_clone_args args = {
2503 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2504 		.pidfd		= parent_tidptr,
2505 		.child_tid	= child_tidptr,
2506 		.parent_tid	= parent_tidptr,
2507 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2508 		.stack		= stack_start,
2509 		.stack_size	= stack_size,
2510 	};
2511 
2512 	if (!legacy_clone_args_valid(&args))
2513 		return -EINVAL;
2514 
2515 	return _do_fork(&args);
2516 }
2517 #endif
2518 
2519 /*
2520  * Create a kernel thread.
2521  */
2522 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2523 {
2524 	struct kernel_clone_args args = {
2525 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2526 				    CLONE_UNTRACED) & ~CSIGNAL),
2527 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2528 		.stack		= (unsigned long)fn,
2529 		.stack_size	= (unsigned long)arg,
2530 	};
2531 
2532 	return _do_fork(&args);
2533 }
2534 
2535 #ifdef __ARCH_WANT_SYS_FORK
2536 SYSCALL_DEFINE0(fork)
2537 {
2538 #ifdef CONFIG_MMU
2539 	struct kernel_clone_args args = {
2540 		.exit_signal = SIGCHLD,
2541 	};
2542 
2543 	return _do_fork(&args);
2544 #else
2545 	/* can not support in nommu mode */
2546 	return -EINVAL;
2547 #endif
2548 }
2549 #endif
2550 
2551 #ifdef __ARCH_WANT_SYS_VFORK
2552 SYSCALL_DEFINE0(vfork)
2553 {
2554 	struct kernel_clone_args args = {
2555 		.flags		= CLONE_VFORK | CLONE_VM,
2556 		.exit_signal	= SIGCHLD,
2557 	};
2558 
2559 	return _do_fork(&args);
2560 }
2561 #endif
2562 
2563 #ifdef __ARCH_WANT_SYS_CLONE
2564 #ifdef CONFIG_CLONE_BACKWARDS
2565 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2566 		 int __user *, parent_tidptr,
2567 		 unsigned long, tls,
2568 		 int __user *, child_tidptr)
2569 #elif defined(CONFIG_CLONE_BACKWARDS2)
2570 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2571 		 int __user *, parent_tidptr,
2572 		 int __user *, child_tidptr,
2573 		 unsigned long, tls)
2574 #elif defined(CONFIG_CLONE_BACKWARDS3)
2575 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2576 		int, stack_size,
2577 		int __user *, parent_tidptr,
2578 		int __user *, child_tidptr,
2579 		unsigned long, tls)
2580 #else
2581 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2582 		 int __user *, parent_tidptr,
2583 		 int __user *, child_tidptr,
2584 		 unsigned long, tls)
2585 #endif
2586 {
2587 	struct kernel_clone_args args = {
2588 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2589 		.pidfd		= parent_tidptr,
2590 		.child_tid	= child_tidptr,
2591 		.parent_tid	= parent_tidptr,
2592 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2593 		.stack		= newsp,
2594 		.tls		= tls,
2595 	};
2596 
2597 	if (!legacy_clone_args_valid(&args))
2598 		return -EINVAL;
2599 
2600 	return _do_fork(&args);
2601 }
2602 #endif
2603 
2604 #ifdef __ARCH_WANT_SYS_CLONE3
2605 
2606 /*
2607  * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2608  * the registers containing the syscall arguments for clone. This doesn't work
2609  * with clone3 since the TLS value is passed in clone_args instead.
2610  */
2611 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2612 #error clone3 requires copy_thread_tls support in arch
2613 #endif
2614 
2615 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2616 					      struct clone_args __user *uargs,
2617 					      size_t usize)
2618 {
2619 	int err;
2620 	struct clone_args args;
2621 	pid_t *kset_tid = kargs->set_tid;
2622 
2623 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2624 		     CLONE_ARGS_SIZE_VER0);
2625 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2626 		     CLONE_ARGS_SIZE_VER1);
2627 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2628 		     CLONE_ARGS_SIZE_VER2);
2629 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2630 
2631 	if (unlikely(usize > PAGE_SIZE))
2632 		return -E2BIG;
2633 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2634 		return -EINVAL;
2635 
2636 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2637 	if (err)
2638 		return err;
2639 
2640 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2641 		return -EINVAL;
2642 
2643 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2644 		return -EINVAL;
2645 
2646 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2647 		return -EINVAL;
2648 
2649 	/*
2650 	 * Verify that higher 32bits of exit_signal are unset and that
2651 	 * it is a valid signal
2652 	 */
2653 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2654 		     !valid_signal(args.exit_signal)))
2655 		return -EINVAL;
2656 
2657 	if ((args.flags & CLONE_INTO_CGROUP) &&
2658 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2659 		return -EINVAL;
2660 
2661 	*kargs = (struct kernel_clone_args){
2662 		.flags		= args.flags,
2663 		.pidfd		= u64_to_user_ptr(args.pidfd),
2664 		.child_tid	= u64_to_user_ptr(args.child_tid),
2665 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2666 		.exit_signal	= args.exit_signal,
2667 		.stack		= args.stack,
2668 		.stack_size	= args.stack_size,
2669 		.tls		= args.tls,
2670 		.set_tid_size	= args.set_tid_size,
2671 		.cgroup		= args.cgroup,
2672 	};
2673 
2674 	if (args.set_tid &&
2675 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2676 			(kargs->set_tid_size * sizeof(pid_t))))
2677 		return -EFAULT;
2678 
2679 	kargs->set_tid = kset_tid;
2680 
2681 	return 0;
2682 }
2683 
2684 /**
2685  * clone3_stack_valid - check and prepare stack
2686  * @kargs: kernel clone args
2687  *
2688  * Verify that the stack arguments userspace gave us are sane.
2689  * In addition, set the stack direction for userspace since it's easy for us to
2690  * determine.
2691  */
2692 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2693 {
2694 	if (kargs->stack == 0) {
2695 		if (kargs->stack_size > 0)
2696 			return false;
2697 	} else {
2698 		if (kargs->stack_size == 0)
2699 			return false;
2700 
2701 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2702 			return false;
2703 
2704 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2705 		kargs->stack += kargs->stack_size;
2706 #endif
2707 	}
2708 
2709 	return true;
2710 }
2711 
2712 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2713 {
2714 	/* Verify that no unknown flags are passed along. */
2715 	if (kargs->flags &
2716 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2717 		return false;
2718 
2719 	/*
2720 	 * - make the CLONE_DETACHED bit reuseable for clone3
2721 	 * - make the CSIGNAL bits reuseable for clone3
2722 	 */
2723 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2724 		return false;
2725 
2726 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2727 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2728 		return false;
2729 
2730 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2731 	    kargs->exit_signal)
2732 		return false;
2733 
2734 	if (!clone3_stack_valid(kargs))
2735 		return false;
2736 
2737 	return true;
2738 }
2739 
2740 /**
2741  * clone3 - create a new process with specific properties
2742  * @uargs: argument structure
2743  * @size:  size of @uargs
2744  *
2745  * clone3() is the extensible successor to clone()/clone2().
2746  * It takes a struct as argument that is versioned by its size.
2747  *
2748  * Return: On success, a positive PID for the child process.
2749  *         On error, a negative errno number.
2750  */
2751 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2752 {
2753 	int err;
2754 
2755 	struct kernel_clone_args kargs;
2756 	pid_t set_tid[MAX_PID_NS_LEVEL];
2757 
2758 	kargs.set_tid = set_tid;
2759 
2760 	err = copy_clone_args_from_user(&kargs, uargs, size);
2761 	if (err)
2762 		return err;
2763 
2764 	if (!clone3_args_valid(&kargs))
2765 		return -EINVAL;
2766 
2767 	return _do_fork(&kargs);
2768 }
2769 #endif
2770 
2771 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2772 {
2773 	struct task_struct *leader, *parent, *child;
2774 	int res;
2775 
2776 	read_lock(&tasklist_lock);
2777 	leader = top = top->group_leader;
2778 down:
2779 	for_each_thread(leader, parent) {
2780 		list_for_each_entry(child, &parent->children, sibling) {
2781 			res = visitor(child, data);
2782 			if (res) {
2783 				if (res < 0)
2784 					goto out;
2785 				leader = child;
2786 				goto down;
2787 			}
2788 up:
2789 			;
2790 		}
2791 	}
2792 
2793 	if (leader != top) {
2794 		child = leader;
2795 		parent = child->real_parent;
2796 		leader = parent->group_leader;
2797 		goto up;
2798 	}
2799 out:
2800 	read_unlock(&tasklist_lock);
2801 }
2802 
2803 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2804 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2805 #endif
2806 
2807 static void sighand_ctor(void *data)
2808 {
2809 	struct sighand_struct *sighand = data;
2810 
2811 	spin_lock_init(&sighand->siglock);
2812 	init_waitqueue_head(&sighand->signalfd_wqh);
2813 }
2814 
2815 void __init proc_caches_init(void)
2816 {
2817 	unsigned int mm_size;
2818 
2819 	sighand_cachep = kmem_cache_create("sighand_cache",
2820 			sizeof(struct sighand_struct), 0,
2821 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2822 			SLAB_ACCOUNT, sighand_ctor);
2823 	signal_cachep = kmem_cache_create("signal_cache",
2824 			sizeof(struct signal_struct), 0,
2825 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2826 			NULL);
2827 	files_cachep = kmem_cache_create("files_cache",
2828 			sizeof(struct files_struct), 0,
2829 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2830 			NULL);
2831 	fs_cachep = kmem_cache_create("fs_cache",
2832 			sizeof(struct fs_struct), 0,
2833 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2834 			NULL);
2835 
2836 	/*
2837 	 * The mm_cpumask is located at the end of mm_struct, and is
2838 	 * dynamically sized based on the maximum CPU number this system
2839 	 * can have, taking hotplug into account (nr_cpu_ids).
2840 	 */
2841 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2842 
2843 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2844 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2845 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2846 			offsetof(struct mm_struct, saved_auxv),
2847 			sizeof_field(struct mm_struct, saved_auxv),
2848 			NULL);
2849 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2850 	mmap_init();
2851 	nsproxy_cache_init();
2852 }
2853 
2854 /*
2855  * Check constraints on flags passed to the unshare system call.
2856  */
2857 static int check_unshare_flags(unsigned long unshare_flags)
2858 {
2859 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2860 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2861 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2862 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2863 				CLONE_NEWTIME))
2864 		return -EINVAL;
2865 	/*
2866 	 * Not implemented, but pretend it works if there is nothing
2867 	 * to unshare.  Note that unsharing the address space or the
2868 	 * signal handlers also need to unshare the signal queues (aka
2869 	 * CLONE_THREAD).
2870 	 */
2871 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2872 		if (!thread_group_empty(current))
2873 			return -EINVAL;
2874 	}
2875 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2876 		if (refcount_read(&current->sighand->count) > 1)
2877 			return -EINVAL;
2878 	}
2879 	if (unshare_flags & CLONE_VM) {
2880 		if (!current_is_single_threaded())
2881 			return -EINVAL;
2882 	}
2883 
2884 	return 0;
2885 }
2886 
2887 /*
2888  * Unshare the filesystem structure if it is being shared
2889  */
2890 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2891 {
2892 	struct fs_struct *fs = current->fs;
2893 
2894 	if (!(unshare_flags & CLONE_FS) || !fs)
2895 		return 0;
2896 
2897 	/* don't need lock here; in the worst case we'll do useless copy */
2898 	if (fs->users == 1)
2899 		return 0;
2900 
2901 	*new_fsp = copy_fs_struct(fs);
2902 	if (!*new_fsp)
2903 		return -ENOMEM;
2904 
2905 	return 0;
2906 }
2907 
2908 /*
2909  * Unshare file descriptor table if it is being shared
2910  */
2911 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2912 {
2913 	struct files_struct *fd = current->files;
2914 	int error = 0;
2915 
2916 	if ((unshare_flags & CLONE_FILES) &&
2917 	    (fd && atomic_read(&fd->count) > 1)) {
2918 		*new_fdp = dup_fd(fd, &error);
2919 		if (!*new_fdp)
2920 			return error;
2921 	}
2922 
2923 	return 0;
2924 }
2925 
2926 /*
2927  * unshare allows a process to 'unshare' part of the process
2928  * context which was originally shared using clone.  copy_*
2929  * functions used by do_fork() cannot be used here directly
2930  * because they modify an inactive task_struct that is being
2931  * constructed. Here we are modifying the current, active,
2932  * task_struct.
2933  */
2934 int ksys_unshare(unsigned long unshare_flags)
2935 {
2936 	struct fs_struct *fs, *new_fs = NULL;
2937 	struct files_struct *fd, *new_fd = NULL;
2938 	struct cred *new_cred = NULL;
2939 	struct nsproxy *new_nsproxy = NULL;
2940 	int do_sysvsem = 0;
2941 	int err;
2942 
2943 	/*
2944 	 * If unsharing a user namespace must also unshare the thread group
2945 	 * and unshare the filesystem root and working directories.
2946 	 */
2947 	if (unshare_flags & CLONE_NEWUSER)
2948 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2949 	/*
2950 	 * If unsharing vm, must also unshare signal handlers.
2951 	 */
2952 	if (unshare_flags & CLONE_VM)
2953 		unshare_flags |= CLONE_SIGHAND;
2954 	/*
2955 	 * If unsharing a signal handlers, must also unshare the signal queues.
2956 	 */
2957 	if (unshare_flags & CLONE_SIGHAND)
2958 		unshare_flags |= CLONE_THREAD;
2959 	/*
2960 	 * If unsharing namespace, must also unshare filesystem information.
2961 	 */
2962 	if (unshare_flags & CLONE_NEWNS)
2963 		unshare_flags |= CLONE_FS;
2964 
2965 	err = check_unshare_flags(unshare_flags);
2966 	if (err)
2967 		goto bad_unshare_out;
2968 	/*
2969 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2970 	 * to a new ipc namespace, the semaphore arrays from the old
2971 	 * namespace are unreachable.
2972 	 */
2973 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2974 		do_sysvsem = 1;
2975 	err = unshare_fs(unshare_flags, &new_fs);
2976 	if (err)
2977 		goto bad_unshare_out;
2978 	err = unshare_fd(unshare_flags, &new_fd);
2979 	if (err)
2980 		goto bad_unshare_cleanup_fs;
2981 	err = unshare_userns(unshare_flags, &new_cred);
2982 	if (err)
2983 		goto bad_unshare_cleanup_fd;
2984 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2985 					 new_cred, new_fs);
2986 	if (err)
2987 		goto bad_unshare_cleanup_cred;
2988 
2989 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2990 		if (do_sysvsem) {
2991 			/*
2992 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2993 			 */
2994 			exit_sem(current);
2995 		}
2996 		if (unshare_flags & CLONE_NEWIPC) {
2997 			/* Orphan segments in old ns (see sem above). */
2998 			exit_shm(current);
2999 			shm_init_task(current);
3000 		}
3001 
3002 		if (new_nsproxy)
3003 			switch_task_namespaces(current, new_nsproxy);
3004 
3005 		task_lock(current);
3006 
3007 		if (new_fs) {
3008 			fs = current->fs;
3009 			spin_lock(&fs->lock);
3010 			current->fs = new_fs;
3011 			if (--fs->users)
3012 				new_fs = NULL;
3013 			else
3014 				new_fs = fs;
3015 			spin_unlock(&fs->lock);
3016 		}
3017 
3018 		if (new_fd) {
3019 			fd = current->files;
3020 			current->files = new_fd;
3021 			new_fd = fd;
3022 		}
3023 
3024 		task_unlock(current);
3025 
3026 		if (new_cred) {
3027 			/* Install the new user namespace */
3028 			commit_creds(new_cred);
3029 			new_cred = NULL;
3030 		}
3031 	}
3032 
3033 	perf_event_namespaces(current);
3034 
3035 bad_unshare_cleanup_cred:
3036 	if (new_cred)
3037 		put_cred(new_cred);
3038 bad_unshare_cleanup_fd:
3039 	if (new_fd)
3040 		put_files_struct(new_fd);
3041 
3042 bad_unshare_cleanup_fs:
3043 	if (new_fs)
3044 		free_fs_struct(new_fs);
3045 
3046 bad_unshare_out:
3047 	return err;
3048 }
3049 
3050 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3051 {
3052 	return ksys_unshare(unshare_flags);
3053 }
3054 
3055 /*
3056  *	Helper to unshare the files of the current task.
3057  *	We don't want to expose copy_files internals to
3058  *	the exec layer of the kernel.
3059  */
3060 
3061 int unshare_files(struct files_struct **displaced)
3062 {
3063 	struct task_struct *task = current;
3064 	struct files_struct *copy = NULL;
3065 	int error;
3066 
3067 	error = unshare_fd(CLONE_FILES, &copy);
3068 	if (error || !copy) {
3069 		*displaced = NULL;
3070 		return error;
3071 	}
3072 	*displaced = task->files;
3073 	task_lock(task);
3074 	task->files = copy;
3075 	task_unlock(task);
3076 	return 0;
3077 }
3078 
3079 int sysctl_max_threads(struct ctl_table *table, int write,
3080 		       void __user *buffer, size_t *lenp, loff_t *ppos)
3081 {
3082 	struct ctl_table t;
3083 	int ret;
3084 	int threads = max_threads;
3085 	int min = 1;
3086 	int max = MAX_THREADS;
3087 
3088 	t = *table;
3089 	t.data = &threads;
3090 	t.extra1 = &min;
3091 	t.extra2 = &max;
3092 
3093 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3094 	if (ret || !write)
3095 		return ret;
3096 
3097 	max_threads = threads;
3098 
3099 	return 0;
3100 }
3101