1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 99 #include <asm/pgtable.h> 100 #include <asm/pgalloc.h> 101 #include <linux/uaccess.h> 102 #include <asm/mmu_context.h> 103 #include <asm/cacheflush.h> 104 #include <asm/tlbflush.h> 105 106 #include <trace/events/sched.h> 107 108 #define CREATE_TRACE_POINTS 109 #include <trace/events/task.h> 110 111 /* 112 * Minimum number of threads to boot the kernel 113 */ 114 #define MIN_THREADS 20 115 116 /* 117 * Maximum number of threads 118 */ 119 #define MAX_THREADS FUTEX_TID_MASK 120 121 /* 122 * Protected counters by write_lock_irq(&tasklist_lock) 123 */ 124 unsigned long total_forks; /* Handle normal Linux uptimes. */ 125 int nr_threads; /* The idle threads do not count.. */ 126 127 static int max_threads; /* tunable limit on nr_threads */ 128 129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 130 131 static const char * const resident_page_types[] = { 132 NAMED_ARRAY_INDEX(MM_FILEPAGES), 133 NAMED_ARRAY_INDEX(MM_ANONPAGES), 134 NAMED_ARRAY_INDEX(MM_SWAPENTS), 135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 136 }; 137 138 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 139 140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 141 142 #ifdef CONFIG_PROVE_RCU 143 int lockdep_tasklist_lock_is_held(void) 144 { 145 return lockdep_is_held(&tasklist_lock); 146 } 147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 148 #endif /* #ifdef CONFIG_PROVE_RCU */ 149 150 int nr_processes(void) 151 { 152 int cpu; 153 int total = 0; 154 155 for_each_possible_cpu(cpu) 156 total += per_cpu(process_counts, cpu); 157 158 return total; 159 } 160 161 void __weak arch_release_task_struct(struct task_struct *tsk) 162 { 163 } 164 165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 166 static struct kmem_cache *task_struct_cachep; 167 168 static inline struct task_struct *alloc_task_struct_node(int node) 169 { 170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 171 } 172 173 static inline void free_task_struct(struct task_struct *tsk) 174 { 175 kmem_cache_free(task_struct_cachep, tsk); 176 } 177 #endif 178 179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 180 181 /* 182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 183 * kmemcache based allocator. 184 */ 185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 186 187 #ifdef CONFIG_VMAP_STACK 188 /* 189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 190 * flush. Try to minimize the number of calls by caching stacks. 191 */ 192 #define NR_CACHED_STACKS 2 193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 194 195 static int free_vm_stack_cache(unsigned int cpu) 196 { 197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 198 int i; 199 200 for (i = 0; i < NR_CACHED_STACKS; i++) { 201 struct vm_struct *vm_stack = cached_vm_stacks[i]; 202 203 if (!vm_stack) 204 continue; 205 206 vfree(vm_stack->addr); 207 cached_vm_stacks[i] = NULL; 208 } 209 210 return 0; 211 } 212 #endif 213 214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 215 { 216 #ifdef CONFIG_VMAP_STACK 217 void *stack; 218 int i; 219 220 for (i = 0; i < NR_CACHED_STACKS; i++) { 221 struct vm_struct *s; 222 223 s = this_cpu_xchg(cached_stacks[i], NULL); 224 225 if (!s) 226 continue; 227 228 /* Clear the KASAN shadow of the stack. */ 229 kasan_unpoison_shadow(s->addr, THREAD_SIZE); 230 231 /* Clear stale pointers from reused stack. */ 232 memset(s->addr, 0, THREAD_SIZE); 233 234 tsk->stack_vm_area = s; 235 tsk->stack = s->addr; 236 return s->addr; 237 } 238 239 /* 240 * Allocated stacks are cached and later reused by new threads, 241 * so memcg accounting is performed manually on assigning/releasing 242 * stacks to tasks. Drop __GFP_ACCOUNT. 243 */ 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 245 VMALLOC_START, VMALLOC_END, 246 THREADINFO_GFP & ~__GFP_ACCOUNT, 247 PAGE_KERNEL, 248 0, node, __builtin_return_address(0)); 249 250 /* 251 * We can't call find_vm_area() in interrupt context, and 252 * free_thread_stack() can be called in interrupt context, 253 * so cache the vm_struct. 254 */ 255 if (stack) { 256 tsk->stack_vm_area = find_vm_area(stack); 257 tsk->stack = stack; 258 } 259 return stack; 260 #else 261 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 262 THREAD_SIZE_ORDER); 263 264 if (likely(page)) { 265 tsk->stack = page_address(page); 266 return tsk->stack; 267 } 268 return NULL; 269 #endif 270 } 271 272 static inline void free_thread_stack(struct task_struct *tsk) 273 { 274 #ifdef CONFIG_VMAP_STACK 275 struct vm_struct *vm = task_stack_vm_area(tsk); 276 277 if (vm) { 278 int i; 279 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 281 mod_memcg_page_state(vm->pages[i], 282 MEMCG_KERNEL_STACK_KB, 283 -(int)(PAGE_SIZE / 1024)); 284 285 memcg_kmem_uncharge_page(vm->pages[i], 0); 286 } 287 288 for (i = 0; i < NR_CACHED_STACKS; i++) { 289 if (this_cpu_cmpxchg(cached_stacks[i], 290 NULL, tsk->stack_vm_area) != NULL) 291 continue; 292 293 return; 294 } 295 296 vfree_atomic(tsk->stack); 297 return; 298 } 299 #endif 300 301 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 302 } 303 # else 304 static struct kmem_cache *thread_stack_cache; 305 306 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 307 int node) 308 { 309 unsigned long *stack; 310 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 311 tsk->stack = stack; 312 return stack; 313 } 314 315 static void free_thread_stack(struct task_struct *tsk) 316 { 317 kmem_cache_free(thread_stack_cache, tsk->stack); 318 } 319 320 void thread_stack_cache_init(void) 321 { 322 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 323 THREAD_SIZE, THREAD_SIZE, 0, 0, 324 THREAD_SIZE, NULL); 325 BUG_ON(thread_stack_cache == NULL); 326 } 327 # endif 328 #endif 329 330 /* SLAB cache for signal_struct structures (tsk->signal) */ 331 static struct kmem_cache *signal_cachep; 332 333 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 334 struct kmem_cache *sighand_cachep; 335 336 /* SLAB cache for files_struct structures (tsk->files) */ 337 struct kmem_cache *files_cachep; 338 339 /* SLAB cache for fs_struct structures (tsk->fs) */ 340 struct kmem_cache *fs_cachep; 341 342 /* SLAB cache for vm_area_struct structures */ 343 static struct kmem_cache *vm_area_cachep; 344 345 /* SLAB cache for mm_struct structures (tsk->mm) */ 346 static struct kmem_cache *mm_cachep; 347 348 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 349 { 350 struct vm_area_struct *vma; 351 352 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 353 if (vma) 354 vma_init(vma, mm); 355 return vma; 356 } 357 358 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 359 { 360 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 361 362 if (new) { 363 *new = *orig; 364 INIT_LIST_HEAD(&new->anon_vma_chain); 365 new->vm_next = new->vm_prev = NULL; 366 } 367 return new; 368 } 369 370 void vm_area_free(struct vm_area_struct *vma) 371 { 372 kmem_cache_free(vm_area_cachep, vma); 373 } 374 375 static void account_kernel_stack(struct task_struct *tsk, int account) 376 { 377 void *stack = task_stack_page(tsk); 378 struct vm_struct *vm = task_stack_vm_area(tsk); 379 380 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 381 382 if (vm) { 383 int i; 384 385 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 386 387 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 388 mod_zone_page_state(page_zone(vm->pages[i]), 389 NR_KERNEL_STACK_KB, 390 PAGE_SIZE / 1024 * account); 391 } 392 } else { 393 /* 394 * All stack pages are in the same zone and belong to the 395 * same memcg. 396 */ 397 struct page *first_page = virt_to_page(stack); 398 399 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 400 THREAD_SIZE / 1024 * account); 401 402 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB, 403 account * (THREAD_SIZE / 1024)); 404 } 405 } 406 407 static int memcg_charge_kernel_stack(struct task_struct *tsk) 408 { 409 #ifdef CONFIG_VMAP_STACK 410 struct vm_struct *vm = task_stack_vm_area(tsk); 411 int ret; 412 413 if (vm) { 414 int i; 415 416 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 417 /* 418 * If memcg_kmem_charge_page() fails, page->mem_cgroup 419 * pointer is NULL, and both memcg_kmem_uncharge_page() 420 * and mod_memcg_page_state() in free_thread_stack() 421 * will ignore this page. So it's safe. 422 */ 423 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 424 0); 425 if (ret) 426 return ret; 427 428 mod_memcg_page_state(vm->pages[i], 429 MEMCG_KERNEL_STACK_KB, 430 PAGE_SIZE / 1024); 431 } 432 } 433 #endif 434 return 0; 435 } 436 437 static void release_task_stack(struct task_struct *tsk) 438 { 439 if (WARN_ON(tsk->state != TASK_DEAD)) 440 return; /* Better to leak the stack than to free prematurely */ 441 442 account_kernel_stack(tsk, -1); 443 free_thread_stack(tsk); 444 tsk->stack = NULL; 445 #ifdef CONFIG_VMAP_STACK 446 tsk->stack_vm_area = NULL; 447 #endif 448 } 449 450 #ifdef CONFIG_THREAD_INFO_IN_TASK 451 void put_task_stack(struct task_struct *tsk) 452 { 453 if (refcount_dec_and_test(&tsk->stack_refcount)) 454 release_task_stack(tsk); 455 } 456 #endif 457 458 void free_task(struct task_struct *tsk) 459 { 460 scs_release(tsk); 461 462 #ifndef CONFIG_THREAD_INFO_IN_TASK 463 /* 464 * The task is finally done with both the stack and thread_info, 465 * so free both. 466 */ 467 release_task_stack(tsk); 468 #else 469 /* 470 * If the task had a separate stack allocation, it should be gone 471 * by now. 472 */ 473 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 474 #endif 475 rt_mutex_debug_task_free(tsk); 476 ftrace_graph_exit_task(tsk); 477 put_seccomp_filter(tsk); 478 arch_release_task_struct(tsk); 479 if (tsk->flags & PF_KTHREAD) 480 free_kthread_struct(tsk); 481 free_task_struct(tsk); 482 } 483 EXPORT_SYMBOL(free_task); 484 485 #ifdef CONFIG_MMU 486 static __latent_entropy int dup_mmap(struct mm_struct *mm, 487 struct mm_struct *oldmm) 488 { 489 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 490 struct rb_node **rb_link, *rb_parent; 491 int retval; 492 unsigned long charge; 493 LIST_HEAD(uf); 494 495 uprobe_start_dup_mmap(); 496 if (down_write_killable(&oldmm->mmap_sem)) { 497 retval = -EINTR; 498 goto fail_uprobe_end; 499 } 500 flush_cache_dup_mm(oldmm); 501 uprobe_dup_mmap(oldmm, mm); 502 /* 503 * Not linked in yet - no deadlock potential: 504 */ 505 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 506 507 /* No ordering required: file already has been exposed. */ 508 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 509 510 mm->total_vm = oldmm->total_vm; 511 mm->data_vm = oldmm->data_vm; 512 mm->exec_vm = oldmm->exec_vm; 513 mm->stack_vm = oldmm->stack_vm; 514 515 rb_link = &mm->mm_rb.rb_node; 516 rb_parent = NULL; 517 pprev = &mm->mmap; 518 retval = ksm_fork(mm, oldmm); 519 if (retval) 520 goto out; 521 retval = khugepaged_fork(mm, oldmm); 522 if (retval) 523 goto out; 524 525 prev = NULL; 526 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 527 struct file *file; 528 529 if (mpnt->vm_flags & VM_DONTCOPY) { 530 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 531 continue; 532 } 533 charge = 0; 534 /* 535 * Don't duplicate many vmas if we've been oom-killed (for 536 * example) 537 */ 538 if (fatal_signal_pending(current)) { 539 retval = -EINTR; 540 goto out; 541 } 542 if (mpnt->vm_flags & VM_ACCOUNT) { 543 unsigned long len = vma_pages(mpnt); 544 545 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 546 goto fail_nomem; 547 charge = len; 548 } 549 tmp = vm_area_dup(mpnt); 550 if (!tmp) 551 goto fail_nomem; 552 retval = vma_dup_policy(mpnt, tmp); 553 if (retval) 554 goto fail_nomem_policy; 555 tmp->vm_mm = mm; 556 retval = dup_userfaultfd(tmp, &uf); 557 if (retval) 558 goto fail_nomem_anon_vma_fork; 559 if (tmp->vm_flags & VM_WIPEONFORK) { 560 /* 561 * VM_WIPEONFORK gets a clean slate in the child. 562 * Don't prepare anon_vma until fault since we don't 563 * copy page for current vma. 564 */ 565 tmp->anon_vma = NULL; 566 } else if (anon_vma_fork(tmp, mpnt)) 567 goto fail_nomem_anon_vma_fork; 568 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 569 file = tmp->vm_file; 570 if (file) { 571 struct inode *inode = file_inode(file); 572 struct address_space *mapping = file->f_mapping; 573 574 get_file(file); 575 if (tmp->vm_flags & VM_DENYWRITE) 576 atomic_dec(&inode->i_writecount); 577 i_mmap_lock_write(mapping); 578 if (tmp->vm_flags & VM_SHARED) 579 atomic_inc(&mapping->i_mmap_writable); 580 flush_dcache_mmap_lock(mapping); 581 /* insert tmp into the share list, just after mpnt */ 582 vma_interval_tree_insert_after(tmp, mpnt, 583 &mapping->i_mmap); 584 flush_dcache_mmap_unlock(mapping); 585 i_mmap_unlock_write(mapping); 586 } 587 588 /* 589 * Clear hugetlb-related page reserves for children. This only 590 * affects MAP_PRIVATE mappings. Faults generated by the child 591 * are not guaranteed to succeed, even if read-only 592 */ 593 if (is_vm_hugetlb_page(tmp)) 594 reset_vma_resv_huge_pages(tmp); 595 596 /* 597 * Link in the new vma and copy the page table entries. 598 */ 599 *pprev = tmp; 600 pprev = &tmp->vm_next; 601 tmp->vm_prev = prev; 602 prev = tmp; 603 604 __vma_link_rb(mm, tmp, rb_link, rb_parent); 605 rb_link = &tmp->vm_rb.rb_right; 606 rb_parent = &tmp->vm_rb; 607 608 mm->map_count++; 609 if (!(tmp->vm_flags & VM_WIPEONFORK)) 610 retval = copy_page_range(mm, oldmm, mpnt); 611 612 if (tmp->vm_ops && tmp->vm_ops->open) 613 tmp->vm_ops->open(tmp); 614 615 if (retval) 616 goto out; 617 } 618 /* a new mm has just been created */ 619 retval = arch_dup_mmap(oldmm, mm); 620 out: 621 up_write(&mm->mmap_sem); 622 flush_tlb_mm(oldmm); 623 up_write(&oldmm->mmap_sem); 624 dup_userfaultfd_complete(&uf); 625 fail_uprobe_end: 626 uprobe_end_dup_mmap(); 627 return retval; 628 fail_nomem_anon_vma_fork: 629 mpol_put(vma_policy(tmp)); 630 fail_nomem_policy: 631 vm_area_free(tmp); 632 fail_nomem: 633 retval = -ENOMEM; 634 vm_unacct_memory(charge); 635 goto out; 636 } 637 638 static inline int mm_alloc_pgd(struct mm_struct *mm) 639 { 640 mm->pgd = pgd_alloc(mm); 641 if (unlikely(!mm->pgd)) 642 return -ENOMEM; 643 return 0; 644 } 645 646 static inline void mm_free_pgd(struct mm_struct *mm) 647 { 648 pgd_free(mm, mm->pgd); 649 } 650 #else 651 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 652 { 653 down_write(&oldmm->mmap_sem); 654 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 655 up_write(&oldmm->mmap_sem); 656 return 0; 657 } 658 #define mm_alloc_pgd(mm) (0) 659 #define mm_free_pgd(mm) 660 #endif /* CONFIG_MMU */ 661 662 static void check_mm(struct mm_struct *mm) 663 { 664 int i; 665 666 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 667 "Please make sure 'struct resident_page_types[]' is updated as well"); 668 669 for (i = 0; i < NR_MM_COUNTERS; i++) { 670 long x = atomic_long_read(&mm->rss_stat.count[i]); 671 672 if (unlikely(x)) 673 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 674 mm, resident_page_types[i], x); 675 } 676 677 if (mm_pgtables_bytes(mm)) 678 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 679 mm_pgtables_bytes(mm)); 680 681 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 682 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 683 #endif 684 } 685 686 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 687 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 688 689 /* 690 * Called when the last reference to the mm 691 * is dropped: either by a lazy thread or by 692 * mmput. Free the page directory and the mm. 693 */ 694 void __mmdrop(struct mm_struct *mm) 695 { 696 BUG_ON(mm == &init_mm); 697 WARN_ON_ONCE(mm == current->mm); 698 WARN_ON_ONCE(mm == current->active_mm); 699 mm_free_pgd(mm); 700 destroy_context(mm); 701 mmu_notifier_subscriptions_destroy(mm); 702 check_mm(mm); 703 put_user_ns(mm->user_ns); 704 free_mm(mm); 705 } 706 EXPORT_SYMBOL_GPL(__mmdrop); 707 708 static void mmdrop_async_fn(struct work_struct *work) 709 { 710 struct mm_struct *mm; 711 712 mm = container_of(work, struct mm_struct, async_put_work); 713 __mmdrop(mm); 714 } 715 716 static void mmdrop_async(struct mm_struct *mm) 717 { 718 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 719 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 720 schedule_work(&mm->async_put_work); 721 } 722 } 723 724 static inline void free_signal_struct(struct signal_struct *sig) 725 { 726 taskstats_tgid_free(sig); 727 sched_autogroup_exit(sig); 728 /* 729 * __mmdrop is not safe to call from softirq context on x86 due to 730 * pgd_dtor so postpone it to the async context 731 */ 732 if (sig->oom_mm) 733 mmdrop_async(sig->oom_mm); 734 kmem_cache_free(signal_cachep, sig); 735 } 736 737 static inline void put_signal_struct(struct signal_struct *sig) 738 { 739 if (refcount_dec_and_test(&sig->sigcnt)) 740 free_signal_struct(sig); 741 } 742 743 void __put_task_struct(struct task_struct *tsk) 744 { 745 WARN_ON(!tsk->exit_state); 746 WARN_ON(refcount_read(&tsk->usage)); 747 WARN_ON(tsk == current); 748 749 cgroup_free(tsk); 750 task_numa_free(tsk, true); 751 security_task_free(tsk); 752 exit_creds(tsk); 753 delayacct_tsk_free(tsk); 754 put_signal_struct(tsk->signal); 755 756 if (!profile_handoff_task(tsk)) 757 free_task(tsk); 758 } 759 EXPORT_SYMBOL_GPL(__put_task_struct); 760 761 void __init __weak arch_task_cache_init(void) { } 762 763 /* 764 * set_max_threads 765 */ 766 static void set_max_threads(unsigned int max_threads_suggested) 767 { 768 u64 threads; 769 unsigned long nr_pages = totalram_pages(); 770 771 /* 772 * The number of threads shall be limited such that the thread 773 * structures may only consume a small part of the available memory. 774 */ 775 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 776 threads = MAX_THREADS; 777 else 778 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 779 (u64) THREAD_SIZE * 8UL); 780 781 if (threads > max_threads_suggested) 782 threads = max_threads_suggested; 783 784 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 785 } 786 787 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 788 /* Initialized by the architecture: */ 789 int arch_task_struct_size __read_mostly; 790 #endif 791 792 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 793 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 794 { 795 /* Fetch thread_struct whitelist for the architecture. */ 796 arch_thread_struct_whitelist(offset, size); 797 798 /* 799 * Handle zero-sized whitelist or empty thread_struct, otherwise 800 * adjust offset to position of thread_struct in task_struct. 801 */ 802 if (unlikely(*size == 0)) 803 *offset = 0; 804 else 805 *offset += offsetof(struct task_struct, thread); 806 } 807 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 808 809 void __init fork_init(void) 810 { 811 int i; 812 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 813 #ifndef ARCH_MIN_TASKALIGN 814 #define ARCH_MIN_TASKALIGN 0 815 #endif 816 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 817 unsigned long useroffset, usersize; 818 819 /* create a slab on which task_structs can be allocated */ 820 task_struct_whitelist(&useroffset, &usersize); 821 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 822 arch_task_struct_size, align, 823 SLAB_PANIC|SLAB_ACCOUNT, 824 useroffset, usersize, NULL); 825 #endif 826 827 /* do the arch specific task caches init */ 828 arch_task_cache_init(); 829 830 set_max_threads(MAX_THREADS); 831 832 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 833 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 834 init_task.signal->rlim[RLIMIT_SIGPENDING] = 835 init_task.signal->rlim[RLIMIT_NPROC]; 836 837 for (i = 0; i < UCOUNT_COUNTS; i++) { 838 init_user_ns.ucount_max[i] = max_threads/2; 839 } 840 841 #ifdef CONFIG_VMAP_STACK 842 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 843 NULL, free_vm_stack_cache); 844 #endif 845 846 scs_init(); 847 848 lockdep_init_task(&init_task); 849 uprobes_init(); 850 } 851 852 int __weak arch_dup_task_struct(struct task_struct *dst, 853 struct task_struct *src) 854 { 855 *dst = *src; 856 return 0; 857 } 858 859 void set_task_stack_end_magic(struct task_struct *tsk) 860 { 861 unsigned long *stackend; 862 863 stackend = end_of_stack(tsk); 864 *stackend = STACK_END_MAGIC; /* for overflow detection */ 865 } 866 867 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 868 { 869 struct task_struct *tsk; 870 unsigned long *stack; 871 struct vm_struct *stack_vm_area __maybe_unused; 872 int err; 873 874 if (node == NUMA_NO_NODE) 875 node = tsk_fork_get_node(orig); 876 tsk = alloc_task_struct_node(node); 877 if (!tsk) 878 return NULL; 879 880 stack = alloc_thread_stack_node(tsk, node); 881 if (!stack) 882 goto free_tsk; 883 884 if (memcg_charge_kernel_stack(tsk)) 885 goto free_stack; 886 887 stack_vm_area = task_stack_vm_area(tsk); 888 889 err = arch_dup_task_struct(tsk, orig); 890 891 /* 892 * arch_dup_task_struct() clobbers the stack-related fields. Make 893 * sure they're properly initialized before using any stack-related 894 * functions again. 895 */ 896 tsk->stack = stack; 897 #ifdef CONFIG_VMAP_STACK 898 tsk->stack_vm_area = stack_vm_area; 899 #endif 900 #ifdef CONFIG_THREAD_INFO_IN_TASK 901 refcount_set(&tsk->stack_refcount, 1); 902 #endif 903 904 if (err) 905 goto free_stack; 906 907 err = scs_prepare(tsk, node); 908 if (err) 909 goto free_stack; 910 911 #ifdef CONFIG_SECCOMP 912 /* 913 * We must handle setting up seccomp filters once we're under 914 * the sighand lock in case orig has changed between now and 915 * then. Until then, filter must be NULL to avoid messing up 916 * the usage counts on the error path calling free_task. 917 */ 918 tsk->seccomp.filter = NULL; 919 #endif 920 921 setup_thread_stack(tsk, orig); 922 clear_user_return_notifier(tsk); 923 clear_tsk_need_resched(tsk); 924 set_task_stack_end_magic(tsk); 925 926 #ifdef CONFIG_STACKPROTECTOR 927 tsk->stack_canary = get_random_canary(); 928 #endif 929 if (orig->cpus_ptr == &orig->cpus_mask) 930 tsk->cpus_ptr = &tsk->cpus_mask; 931 932 /* 933 * One for the user space visible state that goes away when reaped. 934 * One for the scheduler. 935 */ 936 refcount_set(&tsk->rcu_users, 2); 937 /* One for the rcu users */ 938 refcount_set(&tsk->usage, 1); 939 #ifdef CONFIG_BLK_DEV_IO_TRACE 940 tsk->btrace_seq = 0; 941 #endif 942 tsk->splice_pipe = NULL; 943 tsk->task_frag.page = NULL; 944 tsk->wake_q.next = NULL; 945 946 account_kernel_stack(tsk, 1); 947 948 kcov_task_init(tsk); 949 950 #ifdef CONFIG_FAULT_INJECTION 951 tsk->fail_nth = 0; 952 #endif 953 954 #ifdef CONFIG_BLK_CGROUP 955 tsk->throttle_queue = NULL; 956 tsk->use_memdelay = 0; 957 #endif 958 959 #ifdef CONFIG_MEMCG 960 tsk->active_memcg = NULL; 961 #endif 962 return tsk; 963 964 free_stack: 965 free_thread_stack(tsk); 966 free_tsk: 967 free_task_struct(tsk); 968 return NULL; 969 } 970 971 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 972 973 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 974 975 static int __init coredump_filter_setup(char *s) 976 { 977 default_dump_filter = 978 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 979 MMF_DUMP_FILTER_MASK; 980 return 1; 981 } 982 983 __setup("coredump_filter=", coredump_filter_setup); 984 985 #include <linux/init_task.h> 986 987 static void mm_init_aio(struct mm_struct *mm) 988 { 989 #ifdef CONFIG_AIO 990 spin_lock_init(&mm->ioctx_lock); 991 mm->ioctx_table = NULL; 992 #endif 993 } 994 995 static __always_inline void mm_clear_owner(struct mm_struct *mm, 996 struct task_struct *p) 997 { 998 #ifdef CONFIG_MEMCG 999 if (mm->owner == p) 1000 WRITE_ONCE(mm->owner, NULL); 1001 #endif 1002 } 1003 1004 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1005 { 1006 #ifdef CONFIG_MEMCG 1007 mm->owner = p; 1008 #endif 1009 } 1010 1011 static void mm_init_uprobes_state(struct mm_struct *mm) 1012 { 1013 #ifdef CONFIG_UPROBES 1014 mm->uprobes_state.xol_area = NULL; 1015 #endif 1016 } 1017 1018 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1019 struct user_namespace *user_ns) 1020 { 1021 mm->mmap = NULL; 1022 mm->mm_rb = RB_ROOT; 1023 mm->vmacache_seqnum = 0; 1024 atomic_set(&mm->mm_users, 1); 1025 atomic_set(&mm->mm_count, 1); 1026 init_rwsem(&mm->mmap_sem); 1027 INIT_LIST_HEAD(&mm->mmlist); 1028 mm->core_state = NULL; 1029 mm_pgtables_bytes_init(mm); 1030 mm->map_count = 0; 1031 mm->locked_vm = 0; 1032 atomic64_set(&mm->pinned_vm, 0); 1033 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1034 spin_lock_init(&mm->page_table_lock); 1035 spin_lock_init(&mm->arg_lock); 1036 mm_init_cpumask(mm); 1037 mm_init_aio(mm); 1038 mm_init_owner(mm, p); 1039 RCU_INIT_POINTER(mm->exe_file, NULL); 1040 mmu_notifier_subscriptions_init(mm); 1041 init_tlb_flush_pending(mm); 1042 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1043 mm->pmd_huge_pte = NULL; 1044 #endif 1045 mm_init_uprobes_state(mm); 1046 1047 if (current->mm) { 1048 mm->flags = current->mm->flags & MMF_INIT_MASK; 1049 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1050 } else { 1051 mm->flags = default_dump_filter; 1052 mm->def_flags = 0; 1053 } 1054 1055 if (mm_alloc_pgd(mm)) 1056 goto fail_nopgd; 1057 1058 if (init_new_context(p, mm)) 1059 goto fail_nocontext; 1060 1061 mm->user_ns = get_user_ns(user_ns); 1062 return mm; 1063 1064 fail_nocontext: 1065 mm_free_pgd(mm); 1066 fail_nopgd: 1067 free_mm(mm); 1068 return NULL; 1069 } 1070 1071 /* 1072 * Allocate and initialize an mm_struct. 1073 */ 1074 struct mm_struct *mm_alloc(void) 1075 { 1076 struct mm_struct *mm; 1077 1078 mm = allocate_mm(); 1079 if (!mm) 1080 return NULL; 1081 1082 memset(mm, 0, sizeof(*mm)); 1083 return mm_init(mm, current, current_user_ns()); 1084 } 1085 1086 static inline void __mmput(struct mm_struct *mm) 1087 { 1088 VM_BUG_ON(atomic_read(&mm->mm_users)); 1089 1090 uprobe_clear_state(mm); 1091 exit_aio(mm); 1092 ksm_exit(mm); 1093 khugepaged_exit(mm); /* must run before exit_mmap */ 1094 exit_mmap(mm); 1095 mm_put_huge_zero_page(mm); 1096 set_mm_exe_file(mm, NULL); 1097 if (!list_empty(&mm->mmlist)) { 1098 spin_lock(&mmlist_lock); 1099 list_del(&mm->mmlist); 1100 spin_unlock(&mmlist_lock); 1101 } 1102 if (mm->binfmt) 1103 module_put(mm->binfmt->module); 1104 mmdrop(mm); 1105 } 1106 1107 /* 1108 * Decrement the use count and release all resources for an mm. 1109 */ 1110 void mmput(struct mm_struct *mm) 1111 { 1112 might_sleep(); 1113 1114 if (atomic_dec_and_test(&mm->mm_users)) 1115 __mmput(mm); 1116 } 1117 EXPORT_SYMBOL_GPL(mmput); 1118 1119 #ifdef CONFIG_MMU 1120 static void mmput_async_fn(struct work_struct *work) 1121 { 1122 struct mm_struct *mm = container_of(work, struct mm_struct, 1123 async_put_work); 1124 1125 __mmput(mm); 1126 } 1127 1128 void mmput_async(struct mm_struct *mm) 1129 { 1130 if (atomic_dec_and_test(&mm->mm_users)) { 1131 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1132 schedule_work(&mm->async_put_work); 1133 } 1134 } 1135 #endif 1136 1137 /** 1138 * set_mm_exe_file - change a reference to the mm's executable file 1139 * 1140 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1141 * 1142 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1143 * invocations: in mmput() nobody alive left, in execve task is single 1144 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1145 * mm->exe_file, but does so without using set_mm_exe_file() in order 1146 * to do avoid the need for any locks. 1147 */ 1148 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1149 { 1150 struct file *old_exe_file; 1151 1152 /* 1153 * It is safe to dereference the exe_file without RCU as 1154 * this function is only called if nobody else can access 1155 * this mm -- see comment above for justification. 1156 */ 1157 old_exe_file = rcu_dereference_raw(mm->exe_file); 1158 1159 if (new_exe_file) 1160 get_file(new_exe_file); 1161 rcu_assign_pointer(mm->exe_file, new_exe_file); 1162 if (old_exe_file) 1163 fput(old_exe_file); 1164 } 1165 1166 /** 1167 * get_mm_exe_file - acquire a reference to the mm's executable file 1168 * 1169 * Returns %NULL if mm has no associated executable file. 1170 * User must release file via fput(). 1171 */ 1172 struct file *get_mm_exe_file(struct mm_struct *mm) 1173 { 1174 struct file *exe_file; 1175 1176 rcu_read_lock(); 1177 exe_file = rcu_dereference(mm->exe_file); 1178 if (exe_file && !get_file_rcu(exe_file)) 1179 exe_file = NULL; 1180 rcu_read_unlock(); 1181 return exe_file; 1182 } 1183 EXPORT_SYMBOL(get_mm_exe_file); 1184 1185 /** 1186 * get_task_exe_file - acquire a reference to the task's executable file 1187 * 1188 * Returns %NULL if task's mm (if any) has no associated executable file or 1189 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1190 * User must release file via fput(). 1191 */ 1192 struct file *get_task_exe_file(struct task_struct *task) 1193 { 1194 struct file *exe_file = NULL; 1195 struct mm_struct *mm; 1196 1197 task_lock(task); 1198 mm = task->mm; 1199 if (mm) { 1200 if (!(task->flags & PF_KTHREAD)) 1201 exe_file = get_mm_exe_file(mm); 1202 } 1203 task_unlock(task); 1204 return exe_file; 1205 } 1206 EXPORT_SYMBOL(get_task_exe_file); 1207 1208 /** 1209 * get_task_mm - acquire a reference to the task's mm 1210 * 1211 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1212 * this kernel workthread has transiently adopted a user mm with use_mm, 1213 * to do its AIO) is not set and if so returns a reference to it, after 1214 * bumping up the use count. User must release the mm via mmput() 1215 * after use. Typically used by /proc and ptrace. 1216 */ 1217 struct mm_struct *get_task_mm(struct task_struct *task) 1218 { 1219 struct mm_struct *mm; 1220 1221 task_lock(task); 1222 mm = task->mm; 1223 if (mm) { 1224 if (task->flags & PF_KTHREAD) 1225 mm = NULL; 1226 else 1227 mmget(mm); 1228 } 1229 task_unlock(task); 1230 return mm; 1231 } 1232 EXPORT_SYMBOL_GPL(get_task_mm); 1233 1234 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1235 { 1236 struct mm_struct *mm; 1237 int err; 1238 1239 err = mutex_lock_killable(&task->signal->exec_update_mutex); 1240 if (err) 1241 return ERR_PTR(err); 1242 1243 mm = get_task_mm(task); 1244 if (mm && mm != current->mm && 1245 !ptrace_may_access(task, mode)) { 1246 mmput(mm); 1247 mm = ERR_PTR(-EACCES); 1248 } 1249 mutex_unlock(&task->signal->exec_update_mutex); 1250 1251 return mm; 1252 } 1253 1254 static void complete_vfork_done(struct task_struct *tsk) 1255 { 1256 struct completion *vfork; 1257 1258 task_lock(tsk); 1259 vfork = tsk->vfork_done; 1260 if (likely(vfork)) { 1261 tsk->vfork_done = NULL; 1262 complete(vfork); 1263 } 1264 task_unlock(tsk); 1265 } 1266 1267 static int wait_for_vfork_done(struct task_struct *child, 1268 struct completion *vfork) 1269 { 1270 int killed; 1271 1272 freezer_do_not_count(); 1273 cgroup_enter_frozen(); 1274 killed = wait_for_completion_killable(vfork); 1275 cgroup_leave_frozen(false); 1276 freezer_count(); 1277 1278 if (killed) { 1279 task_lock(child); 1280 child->vfork_done = NULL; 1281 task_unlock(child); 1282 } 1283 1284 put_task_struct(child); 1285 return killed; 1286 } 1287 1288 /* Please note the differences between mmput and mm_release. 1289 * mmput is called whenever we stop holding onto a mm_struct, 1290 * error success whatever. 1291 * 1292 * mm_release is called after a mm_struct has been removed 1293 * from the current process. 1294 * 1295 * This difference is important for error handling, when we 1296 * only half set up a mm_struct for a new process and need to restore 1297 * the old one. Because we mmput the new mm_struct before 1298 * restoring the old one. . . 1299 * Eric Biederman 10 January 1998 1300 */ 1301 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1302 { 1303 uprobe_free_utask(tsk); 1304 1305 /* Get rid of any cached register state */ 1306 deactivate_mm(tsk, mm); 1307 1308 /* 1309 * Signal userspace if we're not exiting with a core dump 1310 * because we want to leave the value intact for debugging 1311 * purposes. 1312 */ 1313 if (tsk->clear_child_tid) { 1314 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1315 atomic_read(&mm->mm_users) > 1) { 1316 /* 1317 * We don't check the error code - if userspace has 1318 * not set up a proper pointer then tough luck. 1319 */ 1320 put_user(0, tsk->clear_child_tid); 1321 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1322 1, NULL, NULL, 0, 0); 1323 } 1324 tsk->clear_child_tid = NULL; 1325 } 1326 1327 /* 1328 * All done, finally we can wake up parent and return this mm to him. 1329 * Also kthread_stop() uses this completion for synchronization. 1330 */ 1331 if (tsk->vfork_done) 1332 complete_vfork_done(tsk); 1333 } 1334 1335 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1336 { 1337 futex_exit_release(tsk); 1338 mm_release(tsk, mm); 1339 } 1340 1341 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1342 { 1343 futex_exec_release(tsk); 1344 mm_release(tsk, mm); 1345 } 1346 1347 /** 1348 * dup_mm() - duplicates an existing mm structure 1349 * @tsk: the task_struct with which the new mm will be associated. 1350 * @oldmm: the mm to duplicate. 1351 * 1352 * Allocates a new mm structure and duplicates the provided @oldmm structure 1353 * content into it. 1354 * 1355 * Return: the duplicated mm or NULL on failure. 1356 */ 1357 static struct mm_struct *dup_mm(struct task_struct *tsk, 1358 struct mm_struct *oldmm) 1359 { 1360 struct mm_struct *mm; 1361 int err; 1362 1363 mm = allocate_mm(); 1364 if (!mm) 1365 goto fail_nomem; 1366 1367 memcpy(mm, oldmm, sizeof(*mm)); 1368 1369 if (!mm_init(mm, tsk, mm->user_ns)) 1370 goto fail_nomem; 1371 1372 err = dup_mmap(mm, oldmm); 1373 if (err) 1374 goto free_pt; 1375 1376 mm->hiwater_rss = get_mm_rss(mm); 1377 mm->hiwater_vm = mm->total_vm; 1378 1379 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1380 goto free_pt; 1381 1382 return mm; 1383 1384 free_pt: 1385 /* don't put binfmt in mmput, we haven't got module yet */ 1386 mm->binfmt = NULL; 1387 mm_init_owner(mm, NULL); 1388 mmput(mm); 1389 1390 fail_nomem: 1391 return NULL; 1392 } 1393 1394 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1395 { 1396 struct mm_struct *mm, *oldmm; 1397 int retval; 1398 1399 tsk->min_flt = tsk->maj_flt = 0; 1400 tsk->nvcsw = tsk->nivcsw = 0; 1401 #ifdef CONFIG_DETECT_HUNG_TASK 1402 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1403 tsk->last_switch_time = 0; 1404 #endif 1405 1406 tsk->mm = NULL; 1407 tsk->active_mm = NULL; 1408 1409 /* 1410 * Are we cloning a kernel thread? 1411 * 1412 * We need to steal a active VM for that.. 1413 */ 1414 oldmm = current->mm; 1415 if (!oldmm) 1416 return 0; 1417 1418 /* initialize the new vmacache entries */ 1419 vmacache_flush(tsk); 1420 1421 if (clone_flags & CLONE_VM) { 1422 mmget(oldmm); 1423 mm = oldmm; 1424 goto good_mm; 1425 } 1426 1427 retval = -ENOMEM; 1428 mm = dup_mm(tsk, current->mm); 1429 if (!mm) 1430 goto fail_nomem; 1431 1432 good_mm: 1433 tsk->mm = mm; 1434 tsk->active_mm = mm; 1435 return 0; 1436 1437 fail_nomem: 1438 return retval; 1439 } 1440 1441 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1442 { 1443 struct fs_struct *fs = current->fs; 1444 if (clone_flags & CLONE_FS) { 1445 /* tsk->fs is already what we want */ 1446 spin_lock(&fs->lock); 1447 if (fs->in_exec) { 1448 spin_unlock(&fs->lock); 1449 return -EAGAIN; 1450 } 1451 fs->users++; 1452 spin_unlock(&fs->lock); 1453 return 0; 1454 } 1455 tsk->fs = copy_fs_struct(fs); 1456 if (!tsk->fs) 1457 return -ENOMEM; 1458 return 0; 1459 } 1460 1461 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1462 { 1463 struct files_struct *oldf, *newf; 1464 int error = 0; 1465 1466 /* 1467 * A background process may not have any files ... 1468 */ 1469 oldf = current->files; 1470 if (!oldf) 1471 goto out; 1472 1473 if (clone_flags & CLONE_FILES) { 1474 atomic_inc(&oldf->count); 1475 goto out; 1476 } 1477 1478 newf = dup_fd(oldf, &error); 1479 if (!newf) 1480 goto out; 1481 1482 tsk->files = newf; 1483 error = 0; 1484 out: 1485 return error; 1486 } 1487 1488 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1489 { 1490 #ifdef CONFIG_BLOCK 1491 struct io_context *ioc = current->io_context; 1492 struct io_context *new_ioc; 1493 1494 if (!ioc) 1495 return 0; 1496 /* 1497 * Share io context with parent, if CLONE_IO is set 1498 */ 1499 if (clone_flags & CLONE_IO) { 1500 ioc_task_link(ioc); 1501 tsk->io_context = ioc; 1502 } else if (ioprio_valid(ioc->ioprio)) { 1503 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1504 if (unlikely(!new_ioc)) 1505 return -ENOMEM; 1506 1507 new_ioc->ioprio = ioc->ioprio; 1508 put_io_context(new_ioc); 1509 } 1510 #endif 1511 return 0; 1512 } 1513 1514 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1515 { 1516 struct sighand_struct *sig; 1517 1518 if (clone_flags & CLONE_SIGHAND) { 1519 refcount_inc(¤t->sighand->count); 1520 return 0; 1521 } 1522 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1523 RCU_INIT_POINTER(tsk->sighand, sig); 1524 if (!sig) 1525 return -ENOMEM; 1526 1527 refcount_set(&sig->count, 1); 1528 spin_lock_irq(¤t->sighand->siglock); 1529 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1530 spin_unlock_irq(¤t->sighand->siglock); 1531 1532 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1533 if (clone_flags & CLONE_CLEAR_SIGHAND) 1534 flush_signal_handlers(tsk, 0); 1535 1536 return 0; 1537 } 1538 1539 void __cleanup_sighand(struct sighand_struct *sighand) 1540 { 1541 if (refcount_dec_and_test(&sighand->count)) { 1542 signalfd_cleanup(sighand); 1543 /* 1544 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1545 * without an RCU grace period, see __lock_task_sighand(). 1546 */ 1547 kmem_cache_free(sighand_cachep, sighand); 1548 } 1549 } 1550 1551 /* 1552 * Initialize POSIX timer handling for a thread group. 1553 */ 1554 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1555 { 1556 struct posix_cputimers *pct = &sig->posix_cputimers; 1557 unsigned long cpu_limit; 1558 1559 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1560 posix_cputimers_group_init(pct, cpu_limit); 1561 } 1562 1563 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1564 { 1565 struct signal_struct *sig; 1566 1567 if (clone_flags & CLONE_THREAD) 1568 return 0; 1569 1570 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1571 tsk->signal = sig; 1572 if (!sig) 1573 return -ENOMEM; 1574 1575 sig->nr_threads = 1; 1576 atomic_set(&sig->live, 1); 1577 refcount_set(&sig->sigcnt, 1); 1578 1579 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1580 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1581 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1582 1583 init_waitqueue_head(&sig->wait_chldexit); 1584 sig->curr_target = tsk; 1585 init_sigpending(&sig->shared_pending); 1586 INIT_HLIST_HEAD(&sig->multiprocess); 1587 seqlock_init(&sig->stats_lock); 1588 prev_cputime_init(&sig->prev_cputime); 1589 1590 #ifdef CONFIG_POSIX_TIMERS 1591 INIT_LIST_HEAD(&sig->posix_timers); 1592 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1593 sig->real_timer.function = it_real_fn; 1594 #endif 1595 1596 task_lock(current->group_leader); 1597 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1598 task_unlock(current->group_leader); 1599 1600 posix_cpu_timers_init_group(sig); 1601 1602 tty_audit_fork(sig); 1603 sched_autogroup_fork(sig); 1604 1605 sig->oom_score_adj = current->signal->oom_score_adj; 1606 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1607 1608 mutex_init(&sig->cred_guard_mutex); 1609 mutex_init(&sig->exec_update_mutex); 1610 1611 return 0; 1612 } 1613 1614 static void copy_seccomp(struct task_struct *p) 1615 { 1616 #ifdef CONFIG_SECCOMP 1617 /* 1618 * Must be called with sighand->lock held, which is common to 1619 * all threads in the group. Holding cred_guard_mutex is not 1620 * needed because this new task is not yet running and cannot 1621 * be racing exec. 1622 */ 1623 assert_spin_locked(¤t->sighand->siglock); 1624 1625 /* Ref-count the new filter user, and assign it. */ 1626 get_seccomp_filter(current); 1627 p->seccomp = current->seccomp; 1628 1629 /* 1630 * Explicitly enable no_new_privs here in case it got set 1631 * between the task_struct being duplicated and holding the 1632 * sighand lock. The seccomp state and nnp must be in sync. 1633 */ 1634 if (task_no_new_privs(current)) 1635 task_set_no_new_privs(p); 1636 1637 /* 1638 * If the parent gained a seccomp mode after copying thread 1639 * flags and between before we held the sighand lock, we have 1640 * to manually enable the seccomp thread flag here. 1641 */ 1642 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1643 set_tsk_thread_flag(p, TIF_SECCOMP); 1644 #endif 1645 } 1646 1647 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1648 { 1649 current->clear_child_tid = tidptr; 1650 1651 return task_pid_vnr(current); 1652 } 1653 1654 static void rt_mutex_init_task(struct task_struct *p) 1655 { 1656 raw_spin_lock_init(&p->pi_lock); 1657 #ifdef CONFIG_RT_MUTEXES 1658 p->pi_waiters = RB_ROOT_CACHED; 1659 p->pi_top_task = NULL; 1660 p->pi_blocked_on = NULL; 1661 #endif 1662 } 1663 1664 static inline void init_task_pid_links(struct task_struct *task) 1665 { 1666 enum pid_type type; 1667 1668 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1669 INIT_HLIST_NODE(&task->pid_links[type]); 1670 } 1671 } 1672 1673 static inline void 1674 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1675 { 1676 if (type == PIDTYPE_PID) 1677 task->thread_pid = pid; 1678 else 1679 task->signal->pids[type] = pid; 1680 } 1681 1682 static inline void rcu_copy_process(struct task_struct *p) 1683 { 1684 #ifdef CONFIG_PREEMPT_RCU 1685 p->rcu_read_lock_nesting = 0; 1686 p->rcu_read_unlock_special.s = 0; 1687 p->rcu_blocked_node = NULL; 1688 INIT_LIST_HEAD(&p->rcu_node_entry); 1689 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1690 #ifdef CONFIG_TASKS_RCU 1691 p->rcu_tasks_holdout = false; 1692 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1693 p->rcu_tasks_idle_cpu = -1; 1694 #endif /* #ifdef CONFIG_TASKS_RCU */ 1695 #ifdef CONFIG_TASKS_TRACE_RCU 1696 p->trc_reader_nesting = 0; 1697 p->trc_reader_special.s = 0; 1698 INIT_LIST_HEAD(&p->trc_holdout_list); 1699 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1700 } 1701 1702 struct pid *pidfd_pid(const struct file *file) 1703 { 1704 if (file->f_op == &pidfd_fops) 1705 return file->private_data; 1706 1707 return ERR_PTR(-EBADF); 1708 } 1709 1710 static int pidfd_release(struct inode *inode, struct file *file) 1711 { 1712 struct pid *pid = file->private_data; 1713 1714 file->private_data = NULL; 1715 put_pid(pid); 1716 return 0; 1717 } 1718 1719 #ifdef CONFIG_PROC_FS 1720 /** 1721 * pidfd_show_fdinfo - print information about a pidfd 1722 * @m: proc fdinfo file 1723 * @f: file referencing a pidfd 1724 * 1725 * Pid: 1726 * This function will print the pid that a given pidfd refers to in the 1727 * pid namespace of the procfs instance. 1728 * If the pid namespace of the process is not a descendant of the pid 1729 * namespace of the procfs instance 0 will be shown as its pid. This is 1730 * similar to calling getppid() on a process whose parent is outside of 1731 * its pid namespace. 1732 * 1733 * NSpid: 1734 * If pid namespaces are supported then this function will also print 1735 * the pid of a given pidfd refers to for all descendant pid namespaces 1736 * starting from the current pid namespace of the instance, i.e. the 1737 * Pid field and the first entry in the NSpid field will be identical. 1738 * If the pid namespace of the process is not a descendant of the pid 1739 * namespace of the procfs instance 0 will be shown as its first NSpid 1740 * entry and no others will be shown. 1741 * Note that this differs from the Pid and NSpid fields in 1742 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1743 * the pid namespace of the procfs instance. The difference becomes 1744 * obvious when sending around a pidfd between pid namespaces from a 1745 * different branch of the tree, i.e. where no ancestoral relation is 1746 * present between the pid namespaces: 1747 * - create two new pid namespaces ns1 and ns2 in the initial pid 1748 * namespace (also take care to create new mount namespaces in the 1749 * new pid namespace and mount procfs) 1750 * - create a process with a pidfd in ns1 1751 * - send pidfd from ns1 to ns2 1752 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1753 * have exactly one entry, which is 0 1754 */ 1755 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1756 { 1757 struct pid *pid = f->private_data; 1758 struct pid_namespace *ns; 1759 pid_t nr = -1; 1760 1761 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1762 ns = proc_pid_ns(file_inode(m->file)); 1763 nr = pid_nr_ns(pid, ns); 1764 } 1765 1766 seq_put_decimal_ll(m, "Pid:\t", nr); 1767 1768 #ifdef CONFIG_PID_NS 1769 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1770 if (nr > 0) { 1771 int i; 1772 1773 /* If nr is non-zero it means that 'pid' is valid and that 1774 * ns, i.e. the pid namespace associated with the procfs 1775 * instance, is in the pid namespace hierarchy of pid. 1776 * Start at one below the already printed level. 1777 */ 1778 for (i = ns->level + 1; i <= pid->level; i++) 1779 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1780 } 1781 #endif 1782 seq_putc(m, '\n'); 1783 } 1784 #endif 1785 1786 /* 1787 * Poll support for process exit notification. 1788 */ 1789 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1790 { 1791 struct task_struct *task; 1792 struct pid *pid = file->private_data; 1793 __poll_t poll_flags = 0; 1794 1795 poll_wait(file, &pid->wait_pidfd, pts); 1796 1797 rcu_read_lock(); 1798 task = pid_task(pid, PIDTYPE_PID); 1799 /* 1800 * Inform pollers only when the whole thread group exits. 1801 * If the thread group leader exits before all other threads in the 1802 * group, then poll(2) should block, similar to the wait(2) family. 1803 */ 1804 if (!task || (task->exit_state && thread_group_empty(task))) 1805 poll_flags = EPOLLIN | EPOLLRDNORM; 1806 rcu_read_unlock(); 1807 1808 return poll_flags; 1809 } 1810 1811 const struct file_operations pidfd_fops = { 1812 .release = pidfd_release, 1813 .poll = pidfd_poll, 1814 #ifdef CONFIG_PROC_FS 1815 .show_fdinfo = pidfd_show_fdinfo, 1816 #endif 1817 }; 1818 1819 static void __delayed_free_task(struct rcu_head *rhp) 1820 { 1821 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1822 1823 free_task(tsk); 1824 } 1825 1826 static __always_inline void delayed_free_task(struct task_struct *tsk) 1827 { 1828 if (IS_ENABLED(CONFIG_MEMCG)) 1829 call_rcu(&tsk->rcu, __delayed_free_task); 1830 else 1831 free_task(tsk); 1832 } 1833 1834 /* 1835 * This creates a new process as a copy of the old one, 1836 * but does not actually start it yet. 1837 * 1838 * It copies the registers, and all the appropriate 1839 * parts of the process environment (as per the clone 1840 * flags). The actual kick-off is left to the caller. 1841 */ 1842 static __latent_entropy struct task_struct *copy_process( 1843 struct pid *pid, 1844 int trace, 1845 int node, 1846 struct kernel_clone_args *args) 1847 { 1848 int pidfd = -1, retval; 1849 struct task_struct *p; 1850 struct multiprocess_signals delayed; 1851 struct file *pidfile = NULL; 1852 u64 clone_flags = args->flags; 1853 struct nsproxy *nsp = current->nsproxy; 1854 1855 /* 1856 * Don't allow sharing the root directory with processes in a different 1857 * namespace 1858 */ 1859 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1860 return ERR_PTR(-EINVAL); 1861 1862 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1863 return ERR_PTR(-EINVAL); 1864 1865 /* 1866 * Thread groups must share signals as well, and detached threads 1867 * can only be started up within the thread group. 1868 */ 1869 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1870 return ERR_PTR(-EINVAL); 1871 1872 /* 1873 * Shared signal handlers imply shared VM. By way of the above, 1874 * thread groups also imply shared VM. Blocking this case allows 1875 * for various simplifications in other code. 1876 */ 1877 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1878 return ERR_PTR(-EINVAL); 1879 1880 /* 1881 * Siblings of global init remain as zombies on exit since they are 1882 * not reaped by their parent (swapper). To solve this and to avoid 1883 * multi-rooted process trees, prevent global and container-inits 1884 * from creating siblings. 1885 */ 1886 if ((clone_flags & CLONE_PARENT) && 1887 current->signal->flags & SIGNAL_UNKILLABLE) 1888 return ERR_PTR(-EINVAL); 1889 1890 /* 1891 * If the new process will be in a different pid or user namespace 1892 * do not allow it to share a thread group with the forking task. 1893 */ 1894 if (clone_flags & CLONE_THREAD) { 1895 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1896 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1897 return ERR_PTR(-EINVAL); 1898 } 1899 1900 /* 1901 * If the new process will be in a different time namespace 1902 * do not allow it to share VM or a thread group with the forking task. 1903 */ 1904 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1905 if (nsp->time_ns != nsp->time_ns_for_children) 1906 return ERR_PTR(-EINVAL); 1907 } 1908 1909 if (clone_flags & CLONE_PIDFD) { 1910 /* 1911 * - CLONE_DETACHED is blocked so that we can potentially 1912 * reuse it later for CLONE_PIDFD. 1913 * - CLONE_THREAD is blocked until someone really needs it. 1914 */ 1915 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1916 return ERR_PTR(-EINVAL); 1917 } 1918 1919 /* 1920 * Force any signals received before this point to be delivered 1921 * before the fork happens. Collect up signals sent to multiple 1922 * processes that happen during the fork and delay them so that 1923 * they appear to happen after the fork. 1924 */ 1925 sigemptyset(&delayed.signal); 1926 INIT_HLIST_NODE(&delayed.node); 1927 1928 spin_lock_irq(¤t->sighand->siglock); 1929 if (!(clone_flags & CLONE_THREAD)) 1930 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1931 recalc_sigpending(); 1932 spin_unlock_irq(¤t->sighand->siglock); 1933 retval = -ERESTARTNOINTR; 1934 if (signal_pending(current)) 1935 goto fork_out; 1936 1937 retval = -ENOMEM; 1938 p = dup_task_struct(current, node); 1939 if (!p) 1940 goto fork_out; 1941 1942 /* 1943 * This _must_ happen before we call free_task(), i.e. before we jump 1944 * to any of the bad_fork_* labels. This is to avoid freeing 1945 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1946 * kernel threads (PF_KTHREAD). 1947 */ 1948 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1949 /* 1950 * Clear TID on mm_release()? 1951 */ 1952 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1953 1954 ftrace_graph_init_task(p); 1955 1956 rt_mutex_init_task(p); 1957 1958 #ifdef CONFIG_PROVE_LOCKING 1959 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1960 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1961 #endif 1962 retval = -EAGAIN; 1963 if (atomic_read(&p->real_cred->user->processes) >= 1964 task_rlimit(p, RLIMIT_NPROC)) { 1965 if (p->real_cred->user != INIT_USER && 1966 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1967 goto bad_fork_free; 1968 } 1969 current->flags &= ~PF_NPROC_EXCEEDED; 1970 1971 retval = copy_creds(p, clone_flags); 1972 if (retval < 0) 1973 goto bad_fork_free; 1974 1975 /* 1976 * If multiple threads are within copy_process(), then this check 1977 * triggers too late. This doesn't hurt, the check is only there 1978 * to stop root fork bombs. 1979 */ 1980 retval = -EAGAIN; 1981 if (nr_threads >= max_threads) 1982 goto bad_fork_cleanup_count; 1983 1984 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1985 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1986 p->flags |= PF_FORKNOEXEC; 1987 INIT_LIST_HEAD(&p->children); 1988 INIT_LIST_HEAD(&p->sibling); 1989 rcu_copy_process(p); 1990 p->vfork_done = NULL; 1991 spin_lock_init(&p->alloc_lock); 1992 1993 init_sigpending(&p->pending); 1994 1995 p->utime = p->stime = p->gtime = 0; 1996 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1997 p->utimescaled = p->stimescaled = 0; 1998 #endif 1999 prev_cputime_init(&p->prev_cputime); 2000 2001 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2002 seqcount_init(&p->vtime.seqcount); 2003 p->vtime.starttime = 0; 2004 p->vtime.state = VTIME_INACTIVE; 2005 #endif 2006 2007 #if defined(SPLIT_RSS_COUNTING) 2008 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2009 #endif 2010 2011 p->default_timer_slack_ns = current->timer_slack_ns; 2012 2013 #ifdef CONFIG_PSI 2014 p->psi_flags = 0; 2015 #endif 2016 2017 task_io_accounting_init(&p->ioac); 2018 acct_clear_integrals(p); 2019 2020 posix_cputimers_init(&p->posix_cputimers); 2021 2022 p->io_context = NULL; 2023 audit_set_context(p, NULL); 2024 cgroup_fork(p); 2025 #ifdef CONFIG_NUMA 2026 p->mempolicy = mpol_dup(p->mempolicy); 2027 if (IS_ERR(p->mempolicy)) { 2028 retval = PTR_ERR(p->mempolicy); 2029 p->mempolicy = NULL; 2030 goto bad_fork_cleanup_threadgroup_lock; 2031 } 2032 #endif 2033 #ifdef CONFIG_CPUSETS 2034 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2035 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2036 seqcount_init(&p->mems_allowed_seq); 2037 #endif 2038 #ifdef CONFIG_TRACE_IRQFLAGS 2039 p->irq_events = 0; 2040 p->hardirqs_enabled = 0; 2041 p->hardirq_enable_ip = 0; 2042 p->hardirq_enable_event = 0; 2043 p->hardirq_disable_ip = _THIS_IP_; 2044 p->hardirq_disable_event = 0; 2045 p->softirqs_enabled = 1; 2046 p->softirq_enable_ip = _THIS_IP_; 2047 p->softirq_enable_event = 0; 2048 p->softirq_disable_ip = 0; 2049 p->softirq_disable_event = 0; 2050 p->hardirq_context = 0; 2051 p->softirq_context = 0; 2052 #endif 2053 2054 p->pagefault_disabled = 0; 2055 2056 #ifdef CONFIG_LOCKDEP 2057 lockdep_init_task(p); 2058 #endif 2059 2060 #ifdef CONFIG_DEBUG_MUTEXES 2061 p->blocked_on = NULL; /* not blocked yet */ 2062 #endif 2063 #ifdef CONFIG_BCACHE 2064 p->sequential_io = 0; 2065 p->sequential_io_avg = 0; 2066 #endif 2067 2068 /* Perform scheduler related setup. Assign this task to a CPU. */ 2069 retval = sched_fork(clone_flags, p); 2070 if (retval) 2071 goto bad_fork_cleanup_policy; 2072 2073 retval = perf_event_init_task(p); 2074 if (retval) 2075 goto bad_fork_cleanup_policy; 2076 retval = audit_alloc(p); 2077 if (retval) 2078 goto bad_fork_cleanup_perf; 2079 /* copy all the process information */ 2080 shm_init_task(p); 2081 retval = security_task_alloc(p, clone_flags); 2082 if (retval) 2083 goto bad_fork_cleanup_audit; 2084 retval = copy_semundo(clone_flags, p); 2085 if (retval) 2086 goto bad_fork_cleanup_security; 2087 retval = copy_files(clone_flags, p); 2088 if (retval) 2089 goto bad_fork_cleanup_semundo; 2090 retval = copy_fs(clone_flags, p); 2091 if (retval) 2092 goto bad_fork_cleanup_files; 2093 retval = copy_sighand(clone_flags, p); 2094 if (retval) 2095 goto bad_fork_cleanup_fs; 2096 retval = copy_signal(clone_flags, p); 2097 if (retval) 2098 goto bad_fork_cleanup_sighand; 2099 retval = copy_mm(clone_flags, p); 2100 if (retval) 2101 goto bad_fork_cleanup_signal; 2102 retval = copy_namespaces(clone_flags, p); 2103 if (retval) 2104 goto bad_fork_cleanup_mm; 2105 retval = copy_io(clone_flags, p); 2106 if (retval) 2107 goto bad_fork_cleanup_namespaces; 2108 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p, 2109 args->tls); 2110 if (retval) 2111 goto bad_fork_cleanup_io; 2112 2113 stackleak_task_init(p); 2114 2115 if (pid != &init_struct_pid) { 2116 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2117 args->set_tid_size); 2118 if (IS_ERR(pid)) { 2119 retval = PTR_ERR(pid); 2120 goto bad_fork_cleanup_thread; 2121 } 2122 } 2123 2124 /* 2125 * This has to happen after we've potentially unshared the file 2126 * descriptor table (so that the pidfd doesn't leak into the child 2127 * if the fd table isn't shared). 2128 */ 2129 if (clone_flags & CLONE_PIDFD) { 2130 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2131 if (retval < 0) 2132 goto bad_fork_free_pid; 2133 2134 pidfd = retval; 2135 2136 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2137 O_RDWR | O_CLOEXEC); 2138 if (IS_ERR(pidfile)) { 2139 put_unused_fd(pidfd); 2140 retval = PTR_ERR(pidfile); 2141 goto bad_fork_free_pid; 2142 } 2143 get_pid(pid); /* held by pidfile now */ 2144 2145 retval = put_user(pidfd, args->pidfd); 2146 if (retval) 2147 goto bad_fork_put_pidfd; 2148 } 2149 2150 #ifdef CONFIG_BLOCK 2151 p->plug = NULL; 2152 #endif 2153 futex_init_task(p); 2154 2155 /* 2156 * sigaltstack should be cleared when sharing the same VM 2157 */ 2158 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2159 sas_ss_reset(p); 2160 2161 /* 2162 * Syscall tracing and stepping should be turned off in the 2163 * child regardless of CLONE_PTRACE. 2164 */ 2165 user_disable_single_step(p); 2166 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2167 #ifdef TIF_SYSCALL_EMU 2168 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2169 #endif 2170 clear_tsk_latency_tracing(p); 2171 2172 /* ok, now we should be set up.. */ 2173 p->pid = pid_nr(pid); 2174 if (clone_flags & CLONE_THREAD) { 2175 p->exit_signal = -1; 2176 p->group_leader = current->group_leader; 2177 p->tgid = current->tgid; 2178 } else { 2179 if (clone_flags & CLONE_PARENT) 2180 p->exit_signal = current->group_leader->exit_signal; 2181 else 2182 p->exit_signal = args->exit_signal; 2183 p->group_leader = p; 2184 p->tgid = p->pid; 2185 } 2186 2187 p->nr_dirtied = 0; 2188 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2189 p->dirty_paused_when = 0; 2190 2191 p->pdeath_signal = 0; 2192 INIT_LIST_HEAD(&p->thread_group); 2193 p->task_works = NULL; 2194 2195 /* 2196 * Ensure that the cgroup subsystem policies allow the new process to be 2197 * forked. It should be noted the the new process's css_set can be changed 2198 * between here and cgroup_post_fork() if an organisation operation is in 2199 * progress. 2200 */ 2201 retval = cgroup_can_fork(p, args); 2202 if (retval) 2203 goto bad_fork_put_pidfd; 2204 2205 /* 2206 * From this point on we must avoid any synchronous user-space 2207 * communication until we take the tasklist-lock. In particular, we do 2208 * not want user-space to be able to predict the process start-time by 2209 * stalling fork(2) after we recorded the start_time but before it is 2210 * visible to the system. 2211 */ 2212 2213 p->start_time = ktime_get_ns(); 2214 p->start_boottime = ktime_get_boottime_ns(); 2215 2216 /* 2217 * Make it visible to the rest of the system, but dont wake it up yet. 2218 * Need tasklist lock for parent etc handling! 2219 */ 2220 write_lock_irq(&tasklist_lock); 2221 2222 /* CLONE_PARENT re-uses the old parent */ 2223 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2224 p->real_parent = current->real_parent; 2225 p->parent_exec_id = current->parent_exec_id; 2226 } else { 2227 p->real_parent = current; 2228 p->parent_exec_id = current->self_exec_id; 2229 } 2230 2231 klp_copy_process(p); 2232 2233 spin_lock(¤t->sighand->siglock); 2234 2235 /* 2236 * Copy seccomp details explicitly here, in case they were changed 2237 * before holding sighand lock. 2238 */ 2239 copy_seccomp(p); 2240 2241 rseq_fork(p, clone_flags); 2242 2243 /* Don't start children in a dying pid namespace */ 2244 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2245 retval = -ENOMEM; 2246 goto bad_fork_cancel_cgroup; 2247 } 2248 2249 /* Let kill terminate clone/fork in the middle */ 2250 if (fatal_signal_pending(current)) { 2251 retval = -EINTR; 2252 goto bad_fork_cancel_cgroup; 2253 } 2254 2255 /* past the last point of failure */ 2256 if (pidfile) 2257 fd_install(pidfd, pidfile); 2258 2259 init_task_pid_links(p); 2260 if (likely(p->pid)) { 2261 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2262 2263 init_task_pid(p, PIDTYPE_PID, pid); 2264 if (thread_group_leader(p)) { 2265 init_task_pid(p, PIDTYPE_TGID, pid); 2266 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2267 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2268 2269 if (is_child_reaper(pid)) { 2270 ns_of_pid(pid)->child_reaper = p; 2271 p->signal->flags |= SIGNAL_UNKILLABLE; 2272 } 2273 p->signal->shared_pending.signal = delayed.signal; 2274 p->signal->tty = tty_kref_get(current->signal->tty); 2275 /* 2276 * Inherit has_child_subreaper flag under the same 2277 * tasklist_lock with adding child to the process tree 2278 * for propagate_has_child_subreaper optimization. 2279 */ 2280 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2281 p->real_parent->signal->is_child_subreaper; 2282 list_add_tail(&p->sibling, &p->real_parent->children); 2283 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2284 attach_pid(p, PIDTYPE_TGID); 2285 attach_pid(p, PIDTYPE_PGID); 2286 attach_pid(p, PIDTYPE_SID); 2287 __this_cpu_inc(process_counts); 2288 } else { 2289 current->signal->nr_threads++; 2290 atomic_inc(¤t->signal->live); 2291 refcount_inc(¤t->signal->sigcnt); 2292 task_join_group_stop(p); 2293 list_add_tail_rcu(&p->thread_group, 2294 &p->group_leader->thread_group); 2295 list_add_tail_rcu(&p->thread_node, 2296 &p->signal->thread_head); 2297 } 2298 attach_pid(p, PIDTYPE_PID); 2299 nr_threads++; 2300 } 2301 total_forks++; 2302 hlist_del_init(&delayed.node); 2303 spin_unlock(¤t->sighand->siglock); 2304 syscall_tracepoint_update(p); 2305 write_unlock_irq(&tasklist_lock); 2306 2307 proc_fork_connector(p); 2308 cgroup_post_fork(p, args); 2309 perf_event_fork(p); 2310 2311 trace_task_newtask(p, clone_flags); 2312 uprobe_copy_process(p, clone_flags); 2313 2314 return p; 2315 2316 bad_fork_cancel_cgroup: 2317 spin_unlock(¤t->sighand->siglock); 2318 write_unlock_irq(&tasklist_lock); 2319 cgroup_cancel_fork(p, args); 2320 bad_fork_put_pidfd: 2321 if (clone_flags & CLONE_PIDFD) { 2322 fput(pidfile); 2323 put_unused_fd(pidfd); 2324 } 2325 bad_fork_free_pid: 2326 if (pid != &init_struct_pid) 2327 free_pid(pid); 2328 bad_fork_cleanup_thread: 2329 exit_thread(p); 2330 bad_fork_cleanup_io: 2331 if (p->io_context) 2332 exit_io_context(p); 2333 bad_fork_cleanup_namespaces: 2334 exit_task_namespaces(p); 2335 bad_fork_cleanup_mm: 2336 if (p->mm) { 2337 mm_clear_owner(p->mm, p); 2338 mmput(p->mm); 2339 } 2340 bad_fork_cleanup_signal: 2341 if (!(clone_flags & CLONE_THREAD)) 2342 free_signal_struct(p->signal); 2343 bad_fork_cleanup_sighand: 2344 __cleanup_sighand(p->sighand); 2345 bad_fork_cleanup_fs: 2346 exit_fs(p); /* blocking */ 2347 bad_fork_cleanup_files: 2348 exit_files(p); /* blocking */ 2349 bad_fork_cleanup_semundo: 2350 exit_sem(p); 2351 bad_fork_cleanup_security: 2352 security_task_free(p); 2353 bad_fork_cleanup_audit: 2354 audit_free(p); 2355 bad_fork_cleanup_perf: 2356 perf_event_free_task(p); 2357 bad_fork_cleanup_policy: 2358 lockdep_free_task(p); 2359 #ifdef CONFIG_NUMA 2360 mpol_put(p->mempolicy); 2361 bad_fork_cleanup_threadgroup_lock: 2362 #endif 2363 delayacct_tsk_free(p); 2364 bad_fork_cleanup_count: 2365 atomic_dec(&p->cred->user->processes); 2366 exit_creds(p); 2367 bad_fork_free: 2368 p->state = TASK_DEAD; 2369 put_task_stack(p); 2370 delayed_free_task(p); 2371 fork_out: 2372 spin_lock_irq(¤t->sighand->siglock); 2373 hlist_del_init(&delayed.node); 2374 spin_unlock_irq(¤t->sighand->siglock); 2375 return ERR_PTR(retval); 2376 } 2377 2378 static inline void init_idle_pids(struct task_struct *idle) 2379 { 2380 enum pid_type type; 2381 2382 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2383 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2384 init_task_pid(idle, type, &init_struct_pid); 2385 } 2386 } 2387 2388 struct task_struct *fork_idle(int cpu) 2389 { 2390 struct task_struct *task; 2391 struct kernel_clone_args args = { 2392 .flags = CLONE_VM, 2393 }; 2394 2395 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2396 if (!IS_ERR(task)) { 2397 init_idle_pids(task); 2398 init_idle(task, cpu); 2399 } 2400 2401 return task; 2402 } 2403 2404 struct mm_struct *copy_init_mm(void) 2405 { 2406 return dup_mm(NULL, &init_mm); 2407 } 2408 2409 /* 2410 * Ok, this is the main fork-routine. 2411 * 2412 * It copies the process, and if successful kick-starts 2413 * it and waits for it to finish using the VM if required. 2414 * 2415 * args->exit_signal is expected to be checked for sanity by the caller. 2416 */ 2417 long _do_fork(struct kernel_clone_args *args) 2418 { 2419 u64 clone_flags = args->flags; 2420 struct completion vfork; 2421 struct pid *pid; 2422 struct task_struct *p; 2423 int trace = 0; 2424 long nr; 2425 2426 /* 2427 * Determine whether and which event to report to ptracer. When 2428 * called from kernel_thread or CLONE_UNTRACED is explicitly 2429 * requested, no event is reported; otherwise, report if the event 2430 * for the type of forking is enabled. 2431 */ 2432 if (!(clone_flags & CLONE_UNTRACED)) { 2433 if (clone_flags & CLONE_VFORK) 2434 trace = PTRACE_EVENT_VFORK; 2435 else if (args->exit_signal != SIGCHLD) 2436 trace = PTRACE_EVENT_CLONE; 2437 else 2438 trace = PTRACE_EVENT_FORK; 2439 2440 if (likely(!ptrace_event_enabled(current, trace))) 2441 trace = 0; 2442 } 2443 2444 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2445 add_latent_entropy(); 2446 2447 if (IS_ERR(p)) 2448 return PTR_ERR(p); 2449 2450 /* 2451 * Do this prior waking up the new thread - the thread pointer 2452 * might get invalid after that point, if the thread exits quickly. 2453 */ 2454 trace_sched_process_fork(current, p); 2455 2456 pid = get_task_pid(p, PIDTYPE_PID); 2457 nr = pid_vnr(pid); 2458 2459 if (clone_flags & CLONE_PARENT_SETTID) 2460 put_user(nr, args->parent_tid); 2461 2462 if (clone_flags & CLONE_VFORK) { 2463 p->vfork_done = &vfork; 2464 init_completion(&vfork); 2465 get_task_struct(p); 2466 } 2467 2468 wake_up_new_task(p); 2469 2470 /* forking complete and child started to run, tell ptracer */ 2471 if (unlikely(trace)) 2472 ptrace_event_pid(trace, pid); 2473 2474 if (clone_flags & CLONE_VFORK) { 2475 if (!wait_for_vfork_done(p, &vfork)) 2476 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2477 } 2478 2479 put_pid(pid); 2480 return nr; 2481 } 2482 2483 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs) 2484 { 2485 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */ 2486 if ((kargs->flags & CLONE_PIDFD) && 2487 (kargs->flags & CLONE_PARENT_SETTID)) 2488 return false; 2489 2490 return true; 2491 } 2492 2493 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2494 /* For compatibility with architectures that call do_fork directly rather than 2495 * using the syscall entry points below. */ 2496 long do_fork(unsigned long clone_flags, 2497 unsigned long stack_start, 2498 unsigned long stack_size, 2499 int __user *parent_tidptr, 2500 int __user *child_tidptr) 2501 { 2502 struct kernel_clone_args args = { 2503 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2504 .pidfd = parent_tidptr, 2505 .child_tid = child_tidptr, 2506 .parent_tid = parent_tidptr, 2507 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2508 .stack = stack_start, 2509 .stack_size = stack_size, 2510 }; 2511 2512 if (!legacy_clone_args_valid(&args)) 2513 return -EINVAL; 2514 2515 return _do_fork(&args); 2516 } 2517 #endif 2518 2519 /* 2520 * Create a kernel thread. 2521 */ 2522 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2523 { 2524 struct kernel_clone_args args = { 2525 .flags = ((lower_32_bits(flags) | CLONE_VM | 2526 CLONE_UNTRACED) & ~CSIGNAL), 2527 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2528 .stack = (unsigned long)fn, 2529 .stack_size = (unsigned long)arg, 2530 }; 2531 2532 return _do_fork(&args); 2533 } 2534 2535 #ifdef __ARCH_WANT_SYS_FORK 2536 SYSCALL_DEFINE0(fork) 2537 { 2538 #ifdef CONFIG_MMU 2539 struct kernel_clone_args args = { 2540 .exit_signal = SIGCHLD, 2541 }; 2542 2543 return _do_fork(&args); 2544 #else 2545 /* can not support in nommu mode */ 2546 return -EINVAL; 2547 #endif 2548 } 2549 #endif 2550 2551 #ifdef __ARCH_WANT_SYS_VFORK 2552 SYSCALL_DEFINE0(vfork) 2553 { 2554 struct kernel_clone_args args = { 2555 .flags = CLONE_VFORK | CLONE_VM, 2556 .exit_signal = SIGCHLD, 2557 }; 2558 2559 return _do_fork(&args); 2560 } 2561 #endif 2562 2563 #ifdef __ARCH_WANT_SYS_CLONE 2564 #ifdef CONFIG_CLONE_BACKWARDS 2565 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2566 int __user *, parent_tidptr, 2567 unsigned long, tls, 2568 int __user *, child_tidptr) 2569 #elif defined(CONFIG_CLONE_BACKWARDS2) 2570 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2571 int __user *, parent_tidptr, 2572 int __user *, child_tidptr, 2573 unsigned long, tls) 2574 #elif defined(CONFIG_CLONE_BACKWARDS3) 2575 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2576 int, stack_size, 2577 int __user *, parent_tidptr, 2578 int __user *, child_tidptr, 2579 unsigned long, tls) 2580 #else 2581 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2582 int __user *, parent_tidptr, 2583 int __user *, child_tidptr, 2584 unsigned long, tls) 2585 #endif 2586 { 2587 struct kernel_clone_args args = { 2588 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2589 .pidfd = parent_tidptr, 2590 .child_tid = child_tidptr, 2591 .parent_tid = parent_tidptr, 2592 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2593 .stack = newsp, 2594 .tls = tls, 2595 }; 2596 2597 if (!legacy_clone_args_valid(&args)) 2598 return -EINVAL; 2599 2600 return _do_fork(&args); 2601 } 2602 #endif 2603 2604 #ifdef __ARCH_WANT_SYS_CLONE3 2605 2606 /* 2607 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from 2608 * the registers containing the syscall arguments for clone. This doesn't work 2609 * with clone3 since the TLS value is passed in clone_args instead. 2610 */ 2611 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2612 #error clone3 requires copy_thread_tls support in arch 2613 #endif 2614 2615 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2616 struct clone_args __user *uargs, 2617 size_t usize) 2618 { 2619 int err; 2620 struct clone_args args; 2621 pid_t *kset_tid = kargs->set_tid; 2622 2623 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2624 CLONE_ARGS_SIZE_VER0); 2625 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2626 CLONE_ARGS_SIZE_VER1); 2627 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2628 CLONE_ARGS_SIZE_VER2); 2629 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2630 2631 if (unlikely(usize > PAGE_SIZE)) 2632 return -E2BIG; 2633 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2634 return -EINVAL; 2635 2636 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2637 if (err) 2638 return err; 2639 2640 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2641 return -EINVAL; 2642 2643 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2644 return -EINVAL; 2645 2646 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2647 return -EINVAL; 2648 2649 /* 2650 * Verify that higher 32bits of exit_signal are unset and that 2651 * it is a valid signal 2652 */ 2653 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2654 !valid_signal(args.exit_signal))) 2655 return -EINVAL; 2656 2657 if ((args.flags & CLONE_INTO_CGROUP) && 2658 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2659 return -EINVAL; 2660 2661 *kargs = (struct kernel_clone_args){ 2662 .flags = args.flags, 2663 .pidfd = u64_to_user_ptr(args.pidfd), 2664 .child_tid = u64_to_user_ptr(args.child_tid), 2665 .parent_tid = u64_to_user_ptr(args.parent_tid), 2666 .exit_signal = args.exit_signal, 2667 .stack = args.stack, 2668 .stack_size = args.stack_size, 2669 .tls = args.tls, 2670 .set_tid_size = args.set_tid_size, 2671 .cgroup = args.cgroup, 2672 }; 2673 2674 if (args.set_tid && 2675 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2676 (kargs->set_tid_size * sizeof(pid_t)))) 2677 return -EFAULT; 2678 2679 kargs->set_tid = kset_tid; 2680 2681 return 0; 2682 } 2683 2684 /** 2685 * clone3_stack_valid - check and prepare stack 2686 * @kargs: kernel clone args 2687 * 2688 * Verify that the stack arguments userspace gave us are sane. 2689 * In addition, set the stack direction for userspace since it's easy for us to 2690 * determine. 2691 */ 2692 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2693 { 2694 if (kargs->stack == 0) { 2695 if (kargs->stack_size > 0) 2696 return false; 2697 } else { 2698 if (kargs->stack_size == 0) 2699 return false; 2700 2701 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2702 return false; 2703 2704 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2705 kargs->stack += kargs->stack_size; 2706 #endif 2707 } 2708 2709 return true; 2710 } 2711 2712 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2713 { 2714 /* Verify that no unknown flags are passed along. */ 2715 if (kargs->flags & 2716 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2717 return false; 2718 2719 /* 2720 * - make the CLONE_DETACHED bit reuseable for clone3 2721 * - make the CSIGNAL bits reuseable for clone3 2722 */ 2723 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2724 return false; 2725 2726 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2727 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2728 return false; 2729 2730 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2731 kargs->exit_signal) 2732 return false; 2733 2734 if (!clone3_stack_valid(kargs)) 2735 return false; 2736 2737 return true; 2738 } 2739 2740 /** 2741 * clone3 - create a new process with specific properties 2742 * @uargs: argument structure 2743 * @size: size of @uargs 2744 * 2745 * clone3() is the extensible successor to clone()/clone2(). 2746 * It takes a struct as argument that is versioned by its size. 2747 * 2748 * Return: On success, a positive PID for the child process. 2749 * On error, a negative errno number. 2750 */ 2751 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2752 { 2753 int err; 2754 2755 struct kernel_clone_args kargs; 2756 pid_t set_tid[MAX_PID_NS_LEVEL]; 2757 2758 kargs.set_tid = set_tid; 2759 2760 err = copy_clone_args_from_user(&kargs, uargs, size); 2761 if (err) 2762 return err; 2763 2764 if (!clone3_args_valid(&kargs)) 2765 return -EINVAL; 2766 2767 return _do_fork(&kargs); 2768 } 2769 #endif 2770 2771 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2772 { 2773 struct task_struct *leader, *parent, *child; 2774 int res; 2775 2776 read_lock(&tasklist_lock); 2777 leader = top = top->group_leader; 2778 down: 2779 for_each_thread(leader, parent) { 2780 list_for_each_entry(child, &parent->children, sibling) { 2781 res = visitor(child, data); 2782 if (res) { 2783 if (res < 0) 2784 goto out; 2785 leader = child; 2786 goto down; 2787 } 2788 up: 2789 ; 2790 } 2791 } 2792 2793 if (leader != top) { 2794 child = leader; 2795 parent = child->real_parent; 2796 leader = parent->group_leader; 2797 goto up; 2798 } 2799 out: 2800 read_unlock(&tasklist_lock); 2801 } 2802 2803 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2804 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2805 #endif 2806 2807 static void sighand_ctor(void *data) 2808 { 2809 struct sighand_struct *sighand = data; 2810 2811 spin_lock_init(&sighand->siglock); 2812 init_waitqueue_head(&sighand->signalfd_wqh); 2813 } 2814 2815 void __init proc_caches_init(void) 2816 { 2817 unsigned int mm_size; 2818 2819 sighand_cachep = kmem_cache_create("sighand_cache", 2820 sizeof(struct sighand_struct), 0, 2821 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2822 SLAB_ACCOUNT, sighand_ctor); 2823 signal_cachep = kmem_cache_create("signal_cache", 2824 sizeof(struct signal_struct), 0, 2825 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2826 NULL); 2827 files_cachep = kmem_cache_create("files_cache", 2828 sizeof(struct files_struct), 0, 2829 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2830 NULL); 2831 fs_cachep = kmem_cache_create("fs_cache", 2832 sizeof(struct fs_struct), 0, 2833 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2834 NULL); 2835 2836 /* 2837 * The mm_cpumask is located at the end of mm_struct, and is 2838 * dynamically sized based on the maximum CPU number this system 2839 * can have, taking hotplug into account (nr_cpu_ids). 2840 */ 2841 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2842 2843 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2844 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2845 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2846 offsetof(struct mm_struct, saved_auxv), 2847 sizeof_field(struct mm_struct, saved_auxv), 2848 NULL); 2849 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2850 mmap_init(); 2851 nsproxy_cache_init(); 2852 } 2853 2854 /* 2855 * Check constraints on flags passed to the unshare system call. 2856 */ 2857 static int check_unshare_flags(unsigned long unshare_flags) 2858 { 2859 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2860 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2861 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2862 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2863 CLONE_NEWTIME)) 2864 return -EINVAL; 2865 /* 2866 * Not implemented, but pretend it works if there is nothing 2867 * to unshare. Note that unsharing the address space or the 2868 * signal handlers also need to unshare the signal queues (aka 2869 * CLONE_THREAD). 2870 */ 2871 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2872 if (!thread_group_empty(current)) 2873 return -EINVAL; 2874 } 2875 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2876 if (refcount_read(¤t->sighand->count) > 1) 2877 return -EINVAL; 2878 } 2879 if (unshare_flags & CLONE_VM) { 2880 if (!current_is_single_threaded()) 2881 return -EINVAL; 2882 } 2883 2884 return 0; 2885 } 2886 2887 /* 2888 * Unshare the filesystem structure if it is being shared 2889 */ 2890 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2891 { 2892 struct fs_struct *fs = current->fs; 2893 2894 if (!(unshare_flags & CLONE_FS) || !fs) 2895 return 0; 2896 2897 /* don't need lock here; in the worst case we'll do useless copy */ 2898 if (fs->users == 1) 2899 return 0; 2900 2901 *new_fsp = copy_fs_struct(fs); 2902 if (!*new_fsp) 2903 return -ENOMEM; 2904 2905 return 0; 2906 } 2907 2908 /* 2909 * Unshare file descriptor table if it is being shared 2910 */ 2911 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2912 { 2913 struct files_struct *fd = current->files; 2914 int error = 0; 2915 2916 if ((unshare_flags & CLONE_FILES) && 2917 (fd && atomic_read(&fd->count) > 1)) { 2918 *new_fdp = dup_fd(fd, &error); 2919 if (!*new_fdp) 2920 return error; 2921 } 2922 2923 return 0; 2924 } 2925 2926 /* 2927 * unshare allows a process to 'unshare' part of the process 2928 * context which was originally shared using clone. copy_* 2929 * functions used by do_fork() cannot be used here directly 2930 * because they modify an inactive task_struct that is being 2931 * constructed. Here we are modifying the current, active, 2932 * task_struct. 2933 */ 2934 int ksys_unshare(unsigned long unshare_flags) 2935 { 2936 struct fs_struct *fs, *new_fs = NULL; 2937 struct files_struct *fd, *new_fd = NULL; 2938 struct cred *new_cred = NULL; 2939 struct nsproxy *new_nsproxy = NULL; 2940 int do_sysvsem = 0; 2941 int err; 2942 2943 /* 2944 * If unsharing a user namespace must also unshare the thread group 2945 * and unshare the filesystem root and working directories. 2946 */ 2947 if (unshare_flags & CLONE_NEWUSER) 2948 unshare_flags |= CLONE_THREAD | CLONE_FS; 2949 /* 2950 * If unsharing vm, must also unshare signal handlers. 2951 */ 2952 if (unshare_flags & CLONE_VM) 2953 unshare_flags |= CLONE_SIGHAND; 2954 /* 2955 * If unsharing a signal handlers, must also unshare the signal queues. 2956 */ 2957 if (unshare_flags & CLONE_SIGHAND) 2958 unshare_flags |= CLONE_THREAD; 2959 /* 2960 * If unsharing namespace, must also unshare filesystem information. 2961 */ 2962 if (unshare_flags & CLONE_NEWNS) 2963 unshare_flags |= CLONE_FS; 2964 2965 err = check_unshare_flags(unshare_flags); 2966 if (err) 2967 goto bad_unshare_out; 2968 /* 2969 * CLONE_NEWIPC must also detach from the undolist: after switching 2970 * to a new ipc namespace, the semaphore arrays from the old 2971 * namespace are unreachable. 2972 */ 2973 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2974 do_sysvsem = 1; 2975 err = unshare_fs(unshare_flags, &new_fs); 2976 if (err) 2977 goto bad_unshare_out; 2978 err = unshare_fd(unshare_flags, &new_fd); 2979 if (err) 2980 goto bad_unshare_cleanup_fs; 2981 err = unshare_userns(unshare_flags, &new_cred); 2982 if (err) 2983 goto bad_unshare_cleanup_fd; 2984 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2985 new_cred, new_fs); 2986 if (err) 2987 goto bad_unshare_cleanup_cred; 2988 2989 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2990 if (do_sysvsem) { 2991 /* 2992 * CLONE_SYSVSEM is equivalent to sys_exit(). 2993 */ 2994 exit_sem(current); 2995 } 2996 if (unshare_flags & CLONE_NEWIPC) { 2997 /* Orphan segments in old ns (see sem above). */ 2998 exit_shm(current); 2999 shm_init_task(current); 3000 } 3001 3002 if (new_nsproxy) 3003 switch_task_namespaces(current, new_nsproxy); 3004 3005 task_lock(current); 3006 3007 if (new_fs) { 3008 fs = current->fs; 3009 spin_lock(&fs->lock); 3010 current->fs = new_fs; 3011 if (--fs->users) 3012 new_fs = NULL; 3013 else 3014 new_fs = fs; 3015 spin_unlock(&fs->lock); 3016 } 3017 3018 if (new_fd) { 3019 fd = current->files; 3020 current->files = new_fd; 3021 new_fd = fd; 3022 } 3023 3024 task_unlock(current); 3025 3026 if (new_cred) { 3027 /* Install the new user namespace */ 3028 commit_creds(new_cred); 3029 new_cred = NULL; 3030 } 3031 } 3032 3033 perf_event_namespaces(current); 3034 3035 bad_unshare_cleanup_cred: 3036 if (new_cred) 3037 put_cred(new_cred); 3038 bad_unshare_cleanup_fd: 3039 if (new_fd) 3040 put_files_struct(new_fd); 3041 3042 bad_unshare_cleanup_fs: 3043 if (new_fs) 3044 free_fs_struct(new_fs); 3045 3046 bad_unshare_out: 3047 return err; 3048 } 3049 3050 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3051 { 3052 return ksys_unshare(unshare_flags); 3053 } 3054 3055 /* 3056 * Helper to unshare the files of the current task. 3057 * We don't want to expose copy_files internals to 3058 * the exec layer of the kernel. 3059 */ 3060 3061 int unshare_files(struct files_struct **displaced) 3062 { 3063 struct task_struct *task = current; 3064 struct files_struct *copy = NULL; 3065 int error; 3066 3067 error = unshare_fd(CLONE_FILES, ©); 3068 if (error || !copy) { 3069 *displaced = NULL; 3070 return error; 3071 } 3072 *displaced = task->files; 3073 task_lock(task); 3074 task->files = copy; 3075 task_unlock(task); 3076 return 0; 3077 } 3078 3079 int sysctl_max_threads(struct ctl_table *table, int write, 3080 void __user *buffer, size_t *lenp, loff_t *ppos) 3081 { 3082 struct ctl_table t; 3083 int ret; 3084 int threads = max_threads; 3085 int min = 1; 3086 int max = MAX_THREADS; 3087 3088 t = *table; 3089 t.data = &threads; 3090 t.extra1 = &min; 3091 t.extra2 = &max; 3092 3093 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3094 if (ret || !write) 3095 return ret; 3096 3097 max_threads = threads; 3098 3099 return 0; 3100 } 3101