xref: /openbmc/linux/kernel/fork.c (revision 53809828)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 
96 #include <asm/pgtable.h>
97 #include <asm/pgalloc.h>
98 #include <linux/uaccess.h>
99 #include <asm/mmu_context.h>
100 #include <asm/cacheflush.h>
101 #include <asm/tlbflush.h>
102 
103 #include <trace/events/sched.h>
104 
105 #define CREATE_TRACE_POINTS
106 #include <trace/events/task.h>
107 
108 /*
109  * Minimum number of threads to boot the kernel
110  */
111 #define MIN_THREADS 20
112 
113 /*
114  * Maximum number of threads
115  */
116 #define MAX_THREADS FUTEX_TID_MASK
117 
118 /*
119  * Protected counters by write_lock_irq(&tasklist_lock)
120  */
121 unsigned long total_forks;	/* Handle normal Linux uptimes. */
122 int nr_threads;			/* The idle threads do not count.. */
123 
124 int max_threads;		/* tunable limit on nr_threads */
125 
126 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
127 
128 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
129 
130 #ifdef CONFIG_PROVE_RCU
131 int lockdep_tasklist_lock_is_held(void)
132 {
133 	return lockdep_is_held(&tasklist_lock);
134 }
135 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
136 #endif /* #ifdef CONFIG_PROVE_RCU */
137 
138 int nr_processes(void)
139 {
140 	int cpu;
141 	int total = 0;
142 
143 	for_each_possible_cpu(cpu)
144 		total += per_cpu(process_counts, cpu);
145 
146 	return total;
147 }
148 
149 void __weak arch_release_task_struct(struct task_struct *tsk)
150 {
151 }
152 
153 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
154 static struct kmem_cache *task_struct_cachep;
155 
156 static inline struct task_struct *alloc_task_struct_node(int node)
157 {
158 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
159 }
160 
161 static inline void free_task_struct(struct task_struct *tsk)
162 {
163 	kmem_cache_free(task_struct_cachep, tsk);
164 }
165 #endif
166 
167 void __weak arch_release_thread_stack(unsigned long *stack)
168 {
169 }
170 
171 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
172 
173 /*
174  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
175  * kmemcache based allocator.
176  */
177 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
178 
179 #ifdef CONFIG_VMAP_STACK
180 /*
181  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
182  * flush.  Try to minimize the number of calls by caching stacks.
183  */
184 #define NR_CACHED_STACKS 2
185 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
186 
187 static int free_vm_stack_cache(unsigned int cpu)
188 {
189 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
190 	int i;
191 
192 	for (i = 0; i < NR_CACHED_STACKS; i++) {
193 		struct vm_struct *vm_stack = cached_vm_stacks[i];
194 
195 		if (!vm_stack)
196 			continue;
197 
198 		vfree(vm_stack->addr);
199 		cached_vm_stacks[i] = NULL;
200 	}
201 
202 	return 0;
203 }
204 #endif
205 
206 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
207 {
208 #ifdef CONFIG_VMAP_STACK
209 	void *stack;
210 	int i;
211 
212 	for (i = 0; i < NR_CACHED_STACKS; i++) {
213 		struct vm_struct *s;
214 
215 		s = this_cpu_xchg(cached_stacks[i], NULL);
216 
217 		if (!s)
218 			continue;
219 
220 		/* Clear stale pointers from reused stack. */
221 		memset(s->addr, 0, THREAD_SIZE);
222 
223 		tsk->stack_vm_area = s;
224 		return s->addr;
225 	}
226 
227 	/*
228 	 * Allocated stacks are cached and later reused by new threads,
229 	 * so memcg accounting is performed manually on assigning/releasing
230 	 * stacks to tasks. Drop __GFP_ACCOUNT.
231 	 */
232 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
233 				     VMALLOC_START, VMALLOC_END,
234 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
235 				     PAGE_KERNEL,
236 				     0, node, __builtin_return_address(0));
237 
238 	/*
239 	 * We can't call find_vm_area() in interrupt context, and
240 	 * free_thread_stack() can be called in interrupt context,
241 	 * so cache the vm_struct.
242 	 */
243 	if (stack)
244 		tsk->stack_vm_area = find_vm_area(stack);
245 	return stack;
246 #else
247 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
248 					     THREAD_SIZE_ORDER);
249 
250 	return page ? page_address(page) : NULL;
251 #endif
252 }
253 
254 static inline void free_thread_stack(struct task_struct *tsk)
255 {
256 #ifdef CONFIG_VMAP_STACK
257 	struct vm_struct *vm = task_stack_vm_area(tsk);
258 
259 	if (vm) {
260 		int i;
261 
262 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
263 			mod_memcg_page_state(vm->pages[i],
264 					     MEMCG_KERNEL_STACK_KB,
265 					     -(int)(PAGE_SIZE / 1024));
266 
267 			memcg_kmem_uncharge(vm->pages[i], 0);
268 		}
269 
270 		for (i = 0; i < NR_CACHED_STACKS; i++) {
271 			if (this_cpu_cmpxchg(cached_stacks[i],
272 					NULL, tsk->stack_vm_area) != NULL)
273 				continue;
274 
275 			return;
276 		}
277 
278 		vfree_atomic(tsk->stack);
279 		return;
280 	}
281 #endif
282 
283 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
284 }
285 # else
286 static struct kmem_cache *thread_stack_cache;
287 
288 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
289 						  int node)
290 {
291 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
292 }
293 
294 static void free_thread_stack(struct task_struct *tsk)
295 {
296 	kmem_cache_free(thread_stack_cache, tsk->stack);
297 }
298 
299 void thread_stack_cache_init(void)
300 {
301 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
302 					THREAD_SIZE, THREAD_SIZE, 0, 0,
303 					THREAD_SIZE, NULL);
304 	BUG_ON(thread_stack_cache == NULL);
305 }
306 # endif
307 #endif
308 
309 /* SLAB cache for signal_struct structures (tsk->signal) */
310 static struct kmem_cache *signal_cachep;
311 
312 /* SLAB cache for sighand_struct structures (tsk->sighand) */
313 struct kmem_cache *sighand_cachep;
314 
315 /* SLAB cache for files_struct structures (tsk->files) */
316 struct kmem_cache *files_cachep;
317 
318 /* SLAB cache for fs_struct structures (tsk->fs) */
319 struct kmem_cache *fs_cachep;
320 
321 /* SLAB cache for vm_area_struct structures */
322 static struct kmem_cache *vm_area_cachep;
323 
324 /* SLAB cache for mm_struct structures (tsk->mm) */
325 static struct kmem_cache *mm_cachep;
326 
327 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
328 {
329 	struct vm_area_struct *vma;
330 
331 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
332 	if (vma)
333 		vma_init(vma, mm);
334 	return vma;
335 }
336 
337 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
338 {
339 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
340 
341 	if (new) {
342 		*new = *orig;
343 		INIT_LIST_HEAD(&new->anon_vma_chain);
344 	}
345 	return new;
346 }
347 
348 void vm_area_free(struct vm_area_struct *vma)
349 {
350 	kmem_cache_free(vm_area_cachep, vma);
351 }
352 
353 static void account_kernel_stack(struct task_struct *tsk, int account)
354 {
355 	void *stack = task_stack_page(tsk);
356 	struct vm_struct *vm = task_stack_vm_area(tsk);
357 
358 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
359 
360 	if (vm) {
361 		int i;
362 
363 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
364 
365 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
366 			mod_zone_page_state(page_zone(vm->pages[i]),
367 					    NR_KERNEL_STACK_KB,
368 					    PAGE_SIZE / 1024 * account);
369 		}
370 	} else {
371 		/*
372 		 * All stack pages are in the same zone and belong to the
373 		 * same memcg.
374 		 */
375 		struct page *first_page = virt_to_page(stack);
376 
377 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
378 				    THREAD_SIZE / 1024 * account);
379 
380 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
381 				     account * (THREAD_SIZE / 1024));
382 	}
383 }
384 
385 static int memcg_charge_kernel_stack(struct task_struct *tsk)
386 {
387 #ifdef CONFIG_VMAP_STACK
388 	struct vm_struct *vm = task_stack_vm_area(tsk);
389 	int ret;
390 
391 	if (vm) {
392 		int i;
393 
394 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
395 			/*
396 			 * If memcg_kmem_charge() fails, page->mem_cgroup
397 			 * pointer is NULL, and both memcg_kmem_uncharge()
398 			 * and mod_memcg_page_state() in free_thread_stack()
399 			 * will ignore this page. So it's safe.
400 			 */
401 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
402 			if (ret)
403 				return ret;
404 
405 			mod_memcg_page_state(vm->pages[i],
406 					     MEMCG_KERNEL_STACK_KB,
407 					     PAGE_SIZE / 1024);
408 		}
409 	}
410 #endif
411 	return 0;
412 }
413 
414 static void release_task_stack(struct task_struct *tsk)
415 {
416 	if (WARN_ON(tsk->state != TASK_DEAD))
417 		return;  /* Better to leak the stack than to free prematurely */
418 
419 	account_kernel_stack(tsk, -1);
420 	arch_release_thread_stack(tsk->stack);
421 	free_thread_stack(tsk);
422 	tsk->stack = NULL;
423 #ifdef CONFIG_VMAP_STACK
424 	tsk->stack_vm_area = NULL;
425 #endif
426 }
427 
428 #ifdef CONFIG_THREAD_INFO_IN_TASK
429 void put_task_stack(struct task_struct *tsk)
430 {
431 	if (atomic_dec_and_test(&tsk->stack_refcount))
432 		release_task_stack(tsk);
433 }
434 #endif
435 
436 void free_task(struct task_struct *tsk)
437 {
438 #ifndef CONFIG_THREAD_INFO_IN_TASK
439 	/*
440 	 * The task is finally done with both the stack and thread_info,
441 	 * so free both.
442 	 */
443 	release_task_stack(tsk);
444 #else
445 	/*
446 	 * If the task had a separate stack allocation, it should be gone
447 	 * by now.
448 	 */
449 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
450 #endif
451 	rt_mutex_debug_task_free(tsk);
452 	ftrace_graph_exit_task(tsk);
453 	put_seccomp_filter(tsk);
454 	arch_release_task_struct(tsk);
455 	if (tsk->flags & PF_KTHREAD)
456 		free_kthread_struct(tsk);
457 	free_task_struct(tsk);
458 }
459 EXPORT_SYMBOL(free_task);
460 
461 #ifdef CONFIG_MMU
462 static __latent_entropy int dup_mmap(struct mm_struct *mm,
463 					struct mm_struct *oldmm)
464 {
465 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
466 	struct rb_node **rb_link, *rb_parent;
467 	int retval;
468 	unsigned long charge;
469 	LIST_HEAD(uf);
470 
471 	uprobe_start_dup_mmap();
472 	if (down_write_killable(&oldmm->mmap_sem)) {
473 		retval = -EINTR;
474 		goto fail_uprobe_end;
475 	}
476 	flush_cache_dup_mm(oldmm);
477 	uprobe_dup_mmap(oldmm, mm);
478 	/*
479 	 * Not linked in yet - no deadlock potential:
480 	 */
481 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
482 
483 	/* No ordering required: file already has been exposed. */
484 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
485 
486 	mm->total_vm = oldmm->total_vm;
487 	mm->data_vm = oldmm->data_vm;
488 	mm->exec_vm = oldmm->exec_vm;
489 	mm->stack_vm = oldmm->stack_vm;
490 
491 	rb_link = &mm->mm_rb.rb_node;
492 	rb_parent = NULL;
493 	pprev = &mm->mmap;
494 	retval = ksm_fork(mm, oldmm);
495 	if (retval)
496 		goto out;
497 	retval = khugepaged_fork(mm, oldmm);
498 	if (retval)
499 		goto out;
500 
501 	prev = NULL;
502 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
503 		struct file *file;
504 
505 		if (mpnt->vm_flags & VM_DONTCOPY) {
506 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
507 			continue;
508 		}
509 		charge = 0;
510 		/*
511 		 * Don't duplicate many vmas if we've been oom-killed (for
512 		 * example)
513 		 */
514 		if (fatal_signal_pending(current)) {
515 			retval = -EINTR;
516 			goto out;
517 		}
518 		if (mpnt->vm_flags & VM_ACCOUNT) {
519 			unsigned long len = vma_pages(mpnt);
520 
521 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
522 				goto fail_nomem;
523 			charge = len;
524 		}
525 		tmp = vm_area_dup(mpnt);
526 		if (!tmp)
527 			goto fail_nomem;
528 		retval = vma_dup_policy(mpnt, tmp);
529 		if (retval)
530 			goto fail_nomem_policy;
531 		tmp->vm_mm = mm;
532 		retval = dup_userfaultfd(tmp, &uf);
533 		if (retval)
534 			goto fail_nomem_anon_vma_fork;
535 		if (tmp->vm_flags & VM_WIPEONFORK) {
536 			/* VM_WIPEONFORK gets a clean slate in the child. */
537 			tmp->anon_vma = NULL;
538 			if (anon_vma_prepare(tmp))
539 				goto fail_nomem_anon_vma_fork;
540 		} else if (anon_vma_fork(tmp, mpnt))
541 			goto fail_nomem_anon_vma_fork;
542 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
543 		tmp->vm_next = tmp->vm_prev = NULL;
544 		file = tmp->vm_file;
545 		if (file) {
546 			struct inode *inode = file_inode(file);
547 			struct address_space *mapping = file->f_mapping;
548 
549 			get_file(file);
550 			if (tmp->vm_flags & VM_DENYWRITE)
551 				atomic_dec(&inode->i_writecount);
552 			i_mmap_lock_write(mapping);
553 			if (tmp->vm_flags & VM_SHARED)
554 				atomic_inc(&mapping->i_mmap_writable);
555 			flush_dcache_mmap_lock(mapping);
556 			/* insert tmp into the share list, just after mpnt */
557 			vma_interval_tree_insert_after(tmp, mpnt,
558 					&mapping->i_mmap);
559 			flush_dcache_mmap_unlock(mapping);
560 			i_mmap_unlock_write(mapping);
561 		}
562 
563 		/*
564 		 * Clear hugetlb-related page reserves for children. This only
565 		 * affects MAP_PRIVATE mappings. Faults generated by the child
566 		 * are not guaranteed to succeed, even if read-only
567 		 */
568 		if (is_vm_hugetlb_page(tmp))
569 			reset_vma_resv_huge_pages(tmp);
570 
571 		/*
572 		 * Link in the new vma and copy the page table entries.
573 		 */
574 		*pprev = tmp;
575 		pprev = &tmp->vm_next;
576 		tmp->vm_prev = prev;
577 		prev = tmp;
578 
579 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
580 		rb_link = &tmp->vm_rb.rb_right;
581 		rb_parent = &tmp->vm_rb;
582 
583 		mm->map_count++;
584 		if (!(tmp->vm_flags & VM_WIPEONFORK))
585 			retval = copy_page_range(mm, oldmm, mpnt);
586 
587 		if (tmp->vm_ops && tmp->vm_ops->open)
588 			tmp->vm_ops->open(tmp);
589 
590 		if (retval)
591 			goto out;
592 	}
593 	/* a new mm has just been created */
594 	retval = arch_dup_mmap(oldmm, mm);
595 out:
596 	up_write(&mm->mmap_sem);
597 	flush_tlb_mm(oldmm);
598 	up_write(&oldmm->mmap_sem);
599 	dup_userfaultfd_complete(&uf);
600 fail_uprobe_end:
601 	uprobe_end_dup_mmap();
602 	return retval;
603 fail_nomem_anon_vma_fork:
604 	mpol_put(vma_policy(tmp));
605 fail_nomem_policy:
606 	vm_area_free(tmp);
607 fail_nomem:
608 	retval = -ENOMEM;
609 	vm_unacct_memory(charge);
610 	goto out;
611 }
612 
613 static inline int mm_alloc_pgd(struct mm_struct *mm)
614 {
615 	mm->pgd = pgd_alloc(mm);
616 	if (unlikely(!mm->pgd))
617 		return -ENOMEM;
618 	return 0;
619 }
620 
621 static inline void mm_free_pgd(struct mm_struct *mm)
622 {
623 	pgd_free(mm, mm->pgd);
624 }
625 #else
626 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
627 {
628 	down_write(&oldmm->mmap_sem);
629 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
630 	up_write(&oldmm->mmap_sem);
631 	return 0;
632 }
633 #define mm_alloc_pgd(mm)	(0)
634 #define mm_free_pgd(mm)
635 #endif /* CONFIG_MMU */
636 
637 static void check_mm(struct mm_struct *mm)
638 {
639 	int i;
640 
641 	for (i = 0; i < NR_MM_COUNTERS; i++) {
642 		long x = atomic_long_read(&mm->rss_stat.count[i]);
643 
644 		if (unlikely(x))
645 			printk(KERN_ALERT "BUG: Bad rss-counter state "
646 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
647 	}
648 
649 	if (mm_pgtables_bytes(mm))
650 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
651 				mm_pgtables_bytes(mm));
652 
653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
654 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
655 #endif
656 }
657 
658 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
659 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
660 
661 /*
662  * Called when the last reference to the mm
663  * is dropped: either by a lazy thread or by
664  * mmput. Free the page directory and the mm.
665  */
666 void __mmdrop(struct mm_struct *mm)
667 {
668 	BUG_ON(mm == &init_mm);
669 	WARN_ON_ONCE(mm == current->mm);
670 	WARN_ON_ONCE(mm == current->active_mm);
671 	mm_free_pgd(mm);
672 	destroy_context(mm);
673 	hmm_mm_destroy(mm);
674 	mmu_notifier_mm_destroy(mm);
675 	check_mm(mm);
676 	put_user_ns(mm->user_ns);
677 	free_mm(mm);
678 }
679 EXPORT_SYMBOL_GPL(__mmdrop);
680 
681 static void mmdrop_async_fn(struct work_struct *work)
682 {
683 	struct mm_struct *mm;
684 
685 	mm = container_of(work, struct mm_struct, async_put_work);
686 	__mmdrop(mm);
687 }
688 
689 static void mmdrop_async(struct mm_struct *mm)
690 {
691 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
692 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
693 		schedule_work(&mm->async_put_work);
694 	}
695 }
696 
697 static inline void free_signal_struct(struct signal_struct *sig)
698 {
699 	taskstats_tgid_free(sig);
700 	sched_autogroup_exit(sig);
701 	/*
702 	 * __mmdrop is not safe to call from softirq context on x86 due to
703 	 * pgd_dtor so postpone it to the async context
704 	 */
705 	if (sig->oom_mm)
706 		mmdrop_async(sig->oom_mm);
707 	kmem_cache_free(signal_cachep, sig);
708 }
709 
710 static inline void put_signal_struct(struct signal_struct *sig)
711 {
712 	if (atomic_dec_and_test(&sig->sigcnt))
713 		free_signal_struct(sig);
714 }
715 
716 void __put_task_struct(struct task_struct *tsk)
717 {
718 	WARN_ON(!tsk->exit_state);
719 	WARN_ON(atomic_read(&tsk->usage));
720 	WARN_ON(tsk == current);
721 
722 	cgroup_free(tsk);
723 	task_numa_free(tsk);
724 	security_task_free(tsk);
725 	exit_creds(tsk);
726 	delayacct_tsk_free(tsk);
727 	put_signal_struct(tsk->signal);
728 
729 	if (!profile_handoff_task(tsk))
730 		free_task(tsk);
731 }
732 EXPORT_SYMBOL_GPL(__put_task_struct);
733 
734 void __init __weak arch_task_cache_init(void) { }
735 
736 /*
737  * set_max_threads
738  */
739 static void set_max_threads(unsigned int max_threads_suggested)
740 {
741 	u64 threads;
742 
743 	/*
744 	 * The number of threads shall be limited such that the thread
745 	 * structures may only consume a small part of the available memory.
746 	 */
747 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
748 		threads = MAX_THREADS;
749 	else
750 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
751 				    (u64) THREAD_SIZE * 8UL);
752 
753 	if (threads > max_threads_suggested)
754 		threads = max_threads_suggested;
755 
756 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
757 }
758 
759 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
760 /* Initialized by the architecture: */
761 int arch_task_struct_size __read_mostly;
762 #endif
763 
764 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
765 {
766 	/* Fetch thread_struct whitelist for the architecture. */
767 	arch_thread_struct_whitelist(offset, size);
768 
769 	/*
770 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
771 	 * adjust offset to position of thread_struct in task_struct.
772 	 */
773 	if (unlikely(*size == 0))
774 		*offset = 0;
775 	else
776 		*offset += offsetof(struct task_struct, thread);
777 }
778 
779 void __init fork_init(void)
780 {
781 	int i;
782 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
783 #ifndef ARCH_MIN_TASKALIGN
784 #define ARCH_MIN_TASKALIGN	0
785 #endif
786 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
787 	unsigned long useroffset, usersize;
788 
789 	/* create a slab on which task_structs can be allocated */
790 	task_struct_whitelist(&useroffset, &usersize);
791 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
792 			arch_task_struct_size, align,
793 			SLAB_PANIC|SLAB_ACCOUNT,
794 			useroffset, usersize, NULL);
795 #endif
796 
797 	/* do the arch specific task caches init */
798 	arch_task_cache_init();
799 
800 	set_max_threads(MAX_THREADS);
801 
802 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
803 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
804 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
805 		init_task.signal->rlim[RLIMIT_NPROC];
806 
807 	for (i = 0; i < UCOUNT_COUNTS; i++) {
808 		init_user_ns.ucount_max[i] = max_threads/2;
809 	}
810 
811 #ifdef CONFIG_VMAP_STACK
812 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
813 			  NULL, free_vm_stack_cache);
814 #endif
815 
816 	lockdep_init_task(&init_task);
817 }
818 
819 int __weak arch_dup_task_struct(struct task_struct *dst,
820 					       struct task_struct *src)
821 {
822 	*dst = *src;
823 	return 0;
824 }
825 
826 void set_task_stack_end_magic(struct task_struct *tsk)
827 {
828 	unsigned long *stackend;
829 
830 	stackend = end_of_stack(tsk);
831 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
832 }
833 
834 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
835 {
836 	struct task_struct *tsk;
837 	unsigned long *stack;
838 	struct vm_struct *stack_vm_area;
839 	int err;
840 
841 	if (node == NUMA_NO_NODE)
842 		node = tsk_fork_get_node(orig);
843 	tsk = alloc_task_struct_node(node);
844 	if (!tsk)
845 		return NULL;
846 
847 	stack = alloc_thread_stack_node(tsk, node);
848 	if (!stack)
849 		goto free_tsk;
850 
851 	if (memcg_charge_kernel_stack(tsk))
852 		goto free_stack;
853 
854 	stack_vm_area = task_stack_vm_area(tsk);
855 
856 	err = arch_dup_task_struct(tsk, orig);
857 
858 	/*
859 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
860 	 * sure they're properly initialized before using any stack-related
861 	 * functions again.
862 	 */
863 	tsk->stack = stack;
864 #ifdef CONFIG_VMAP_STACK
865 	tsk->stack_vm_area = stack_vm_area;
866 #endif
867 #ifdef CONFIG_THREAD_INFO_IN_TASK
868 	atomic_set(&tsk->stack_refcount, 1);
869 #endif
870 
871 	if (err)
872 		goto free_stack;
873 
874 #ifdef CONFIG_SECCOMP
875 	/*
876 	 * We must handle setting up seccomp filters once we're under
877 	 * the sighand lock in case orig has changed between now and
878 	 * then. Until then, filter must be NULL to avoid messing up
879 	 * the usage counts on the error path calling free_task.
880 	 */
881 	tsk->seccomp.filter = NULL;
882 #endif
883 
884 	setup_thread_stack(tsk, orig);
885 	clear_user_return_notifier(tsk);
886 	clear_tsk_need_resched(tsk);
887 	set_task_stack_end_magic(tsk);
888 
889 #ifdef CONFIG_STACKPROTECTOR
890 	tsk->stack_canary = get_random_canary();
891 #endif
892 
893 	/*
894 	 * One for us, one for whoever does the "release_task()" (usually
895 	 * parent)
896 	 */
897 	atomic_set(&tsk->usage, 2);
898 #ifdef CONFIG_BLK_DEV_IO_TRACE
899 	tsk->btrace_seq = 0;
900 #endif
901 	tsk->splice_pipe = NULL;
902 	tsk->task_frag.page = NULL;
903 	tsk->wake_q.next = NULL;
904 
905 	account_kernel_stack(tsk, 1);
906 
907 	kcov_task_init(tsk);
908 
909 #ifdef CONFIG_FAULT_INJECTION
910 	tsk->fail_nth = 0;
911 #endif
912 
913 #ifdef CONFIG_BLK_CGROUP
914 	tsk->throttle_queue = NULL;
915 	tsk->use_memdelay = 0;
916 #endif
917 
918 #ifdef CONFIG_MEMCG
919 	tsk->active_memcg = NULL;
920 #endif
921 	return tsk;
922 
923 free_stack:
924 	free_thread_stack(tsk);
925 free_tsk:
926 	free_task_struct(tsk);
927 	return NULL;
928 }
929 
930 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
931 
932 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
933 
934 static int __init coredump_filter_setup(char *s)
935 {
936 	default_dump_filter =
937 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
938 		MMF_DUMP_FILTER_MASK;
939 	return 1;
940 }
941 
942 __setup("coredump_filter=", coredump_filter_setup);
943 
944 #include <linux/init_task.h>
945 
946 static void mm_init_aio(struct mm_struct *mm)
947 {
948 #ifdef CONFIG_AIO
949 	spin_lock_init(&mm->ioctx_lock);
950 	mm->ioctx_table = NULL;
951 #endif
952 }
953 
954 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
955 {
956 #ifdef CONFIG_MEMCG
957 	mm->owner = p;
958 #endif
959 }
960 
961 static void mm_init_uprobes_state(struct mm_struct *mm)
962 {
963 #ifdef CONFIG_UPROBES
964 	mm->uprobes_state.xol_area = NULL;
965 #endif
966 }
967 
968 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
969 	struct user_namespace *user_ns)
970 {
971 	mm->mmap = NULL;
972 	mm->mm_rb = RB_ROOT;
973 	mm->vmacache_seqnum = 0;
974 	atomic_set(&mm->mm_users, 1);
975 	atomic_set(&mm->mm_count, 1);
976 	init_rwsem(&mm->mmap_sem);
977 	INIT_LIST_HEAD(&mm->mmlist);
978 	mm->core_state = NULL;
979 	mm_pgtables_bytes_init(mm);
980 	mm->map_count = 0;
981 	mm->locked_vm = 0;
982 	mm->pinned_vm = 0;
983 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
984 	spin_lock_init(&mm->page_table_lock);
985 	spin_lock_init(&mm->arg_lock);
986 	mm_init_cpumask(mm);
987 	mm_init_aio(mm);
988 	mm_init_owner(mm, p);
989 	RCU_INIT_POINTER(mm->exe_file, NULL);
990 	mmu_notifier_mm_init(mm);
991 	hmm_mm_init(mm);
992 	init_tlb_flush_pending(mm);
993 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
994 	mm->pmd_huge_pte = NULL;
995 #endif
996 	mm_init_uprobes_state(mm);
997 
998 	if (current->mm) {
999 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1000 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1001 	} else {
1002 		mm->flags = default_dump_filter;
1003 		mm->def_flags = 0;
1004 	}
1005 
1006 	if (mm_alloc_pgd(mm))
1007 		goto fail_nopgd;
1008 
1009 	if (init_new_context(p, mm))
1010 		goto fail_nocontext;
1011 
1012 	mm->user_ns = get_user_ns(user_ns);
1013 	return mm;
1014 
1015 fail_nocontext:
1016 	mm_free_pgd(mm);
1017 fail_nopgd:
1018 	free_mm(mm);
1019 	return NULL;
1020 }
1021 
1022 /*
1023  * Allocate and initialize an mm_struct.
1024  */
1025 struct mm_struct *mm_alloc(void)
1026 {
1027 	struct mm_struct *mm;
1028 
1029 	mm = allocate_mm();
1030 	if (!mm)
1031 		return NULL;
1032 
1033 	memset(mm, 0, sizeof(*mm));
1034 	return mm_init(mm, current, current_user_ns());
1035 }
1036 
1037 static inline void __mmput(struct mm_struct *mm)
1038 {
1039 	VM_BUG_ON(atomic_read(&mm->mm_users));
1040 
1041 	uprobe_clear_state(mm);
1042 	exit_aio(mm);
1043 	ksm_exit(mm);
1044 	khugepaged_exit(mm); /* must run before exit_mmap */
1045 	exit_mmap(mm);
1046 	mm_put_huge_zero_page(mm);
1047 	set_mm_exe_file(mm, NULL);
1048 	if (!list_empty(&mm->mmlist)) {
1049 		spin_lock(&mmlist_lock);
1050 		list_del(&mm->mmlist);
1051 		spin_unlock(&mmlist_lock);
1052 	}
1053 	if (mm->binfmt)
1054 		module_put(mm->binfmt->module);
1055 	mmdrop(mm);
1056 }
1057 
1058 /*
1059  * Decrement the use count and release all resources for an mm.
1060  */
1061 void mmput(struct mm_struct *mm)
1062 {
1063 	might_sleep();
1064 
1065 	if (atomic_dec_and_test(&mm->mm_users))
1066 		__mmput(mm);
1067 }
1068 EXPORT_SYMBOL_GPL(mmput);
1069 
1070 #ifdef CONFIG_MMU
1071 static void mmput_async_fn(struct work_struct *work)
1072 {
1073 	struct mm_struct *mm = container_of(work, struct mm_struct,
1074 					    async_put_work);
1075 
1076 	__mmput(mm);
1077 }
1078 
1079 void mmput_async(struct mm_struct *mm)
1080 {
1081 	if (atomic_dec_and_test(&mm->mm_users)) {
1082 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1083 		schedule_work(&mm->async_put_work);
1084 	}
1085 }
1086 #endif
1087 
1088 /**
1089  * set_mm_exe_file - change a reference to the mm's executable file
1090  *
1091  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1092  *
1093  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1094  * invocations: in mmput() nobody alive left, in execve task is single
1095  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1096  * mm->exe_file, but does so without using set_mm_exe_file() in order
1097  * to do avoid the need for any locks.
1098  */
1099 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1100 {
1101 	struct file *old_exe_file;
1102 
1103 	/*
1104 	 * It is safe to dereference the exe_file without RCU as
1105 	 * this function is only called if nobody else can access
1106 	 * this mm -- see comment above for justification.
1107 	 */
1108 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1109 
1110 	if (new_exe_file)
1111 		get_file(new_exe_file);
1112 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1113 	if (old_exe_file)
1114 		fput(old_exe_file);
1115 }
1116 
1117 /**
1118  * get_mm_exe_file - acquire a reference to the mm's executable file
1119  *
1120  * Returns %NULL if mm has no associated executable file.
1121  * User must release file via fput().
1122  */
1123 struct file *get_mm_exe_file(struct mm_struct *mm)
1124 {
1125 	struct file *exe_file;
1126 
1127 	rcu_read_lock();
1128 	exe_file = rcu_dereference(mm->exe_file);
1129 	if (exe_file && !get_file_rcu(exe_file))
1130 		exe_file = NULL;
1131 	rcu_read_unlock();
1132 	return exe_file;
1133 }
1134 EXPORT_SYMBOL(get_mm_exe_file);
1135 
1136 /**
1137  * get_task_exe_file - acquire a reference to the task's executable file
1138  *
1139  * Returns %NULL if task's mm (if any) has no associated executable file or
1140  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1141  * User must release file via fput().
1142  */
1143 struct file *get_task_exe_file(struct task_struct *task)
1144 {
1145 	struct file *exe_file = NULL;
1146 	struct mm_struct *mm;
1147 
1148 	task_lock(task);
1149 	mm = task->mm;
1150 	if (mm) {
1151 		if (!(task->flags & PF_KTHREAD))
1152 			exe_file = get_mm_exe_file(mm);
1153 	}
1154 	task_unlock(task);
1155 	return exe_file;
1156 }
1157 EXPORT_SYMBOL(get_task_exe_file);
1158 
1159 /**
1160  * get_task_mm - acquire a reference to the task's mm
1161  *
1162  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1163  * this kernel workthread has transiently adopted a user mm with use_mm,
1164  * to do its AIO) is not set and if so returns a reference to it, after
1165  * bumping up the use count.  User must release the mm via mmput()
1166  * after use.  Typically used by /proc and ptrace.
1167  */
1168 struct mm_struct *get_task_mm(struct task_struct *task)
1169 {
1170 	struct mm_struct *mm;
1171 
1172 	task_lock(task);
1173 	mm = task->mm;
1174 	if (mm) {
1175 		if (task->flags & PF_KTHREAD)
1176 			mm = NULL;
1177 		else
1178 			mmget(mm);
1179 	}
1180 	task_unlock(task);
1181 	return mm;
1182 }
1183 EXPORT_SYMBOL_GPL(get_task_mm);
1184 
1185 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1186 {
1187 	struct mm_struct *mm;
1188 	int err;
1189 
1190 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1191 	if (err)
1192 		return ERR_PTR(err);
1193 
1194 	mm = get_task_mm(task);
1195 	if (mm && mm != current->mm &&
1196 			!ptrace_may_access(task, mode)) {
1197 		mmput(mm);
1198 		mm = ERR_PTR(-EACCES);
1199 	}
1200 	mutex_unlock(&task->signal->cred_guard_mutex);
1201 
1202 	return mm;
1203 }
1204 
1205 static void complete_vfork_done(struct task_struct *tsk)
1206 {
1207 	struct completion *vfork;
1208 
1209 	task_lock(tsk);
1210 	vfork = tsk->vfork_done;
1211 	if (likely(vfork)) {
1212 		tsk->vfork_done = NULL;
1213 		complete(vfork);
1214 	}
1215 	task_unlock(tsk);
1216 }
1217 
1218 static int wait_for_vfork_done(struct task_struct *child,
1219 				struct completion *vfork)
1220 {
1221 	int killed;
1222 
1223 	freezer_do_not_count();
1224 	killed = wait_for_completion_killable(vfork);
1225 	freezer_count();
1226 
1227 	if (killed) {
1228 		task_lock(child);
1229 		child->vfork_done = NULL;
1230 		task_unlock(child);
1231 	}
1232 
1233 	put_task_struct(child);
1234 	return killed;
1235 }
1236 
1237 /* Please note the differences between mmput and mm_release.
1238  * mmput is called whenever we stop holding onto a mm_struct,
1239  * error success whatever.
1240  *
1241  * mm_release is called after a mm_struct has been removed
1242  * from the current process.
1243  *
1244  * This difference is important for error handling, when we
1245  * only half set up a mm_struct for a new process and need to restore
1246  * the old one.  Because we mmput the new mm_struct before
1247  * restoring the old one. . .
1248  * Eric Biederman 10 January 1998
1249  */
1250 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1251 {
1252 	/* Get rid of any futexes when releasing the mm */
1253 #ifdef CONFIG_FUTEX
1254 	if (unlikely(tsk->robust_list)) {
1255 		exit_robust_list(tsk);
1256 		tsk->robust_list = NULL;
1257 	}
1258 #ifdef CONFIG_COMPAT
1259 	if (unlikely(tsk->compat_robust_list)) {
1260 		compat_exit_robust_list(tsk);
1261 		tsk->compat_robust_list = NULL;
1262 	}
1263 #endif
1264 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1265 		exit_pi_state_list(tsk);
1266 #endif
1267 
1268 	uprobe_free_utask(tsk);
1269 
1270 	/* Get rid of any cached register state */
1271 	deactivate_mm(tsk, mm);
1272 
1273 	/*
1274 	 * Signal userspace if we're not exiting with a core dump
1275 	 * because we want to leave the value intact for debugging
1276 	 * purposes.
1277 	 */
1278 	if (tsk->clear_child_tid) {
1279 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1280 		    atomic_read(&mm->mm_users) > 1) {
1281 			/*
1282 			 * We don't check the error code - if userspace has
1283 			 * not set up a proper pointer then tough luck.
1284 			 */
1285 			put_user(0, tsk->clear_child_tid);
1286 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1287 					1, NULL, NULL, 0, 0);
1288 		}
1289 		tsk->clear_child_tid = NULL;
1290 	}
1291 
1292 	/*
1293 	 * All done, finally we can wake up parent and return this mm to him.
1294 	 * Also kthread_stop() uses this completion for synchronization.
1295 	 */
1296 	if (tsk->vfork_done)
1297 		complete_vfork_done(tsk);
1298 }
1299 
1300 /*
1301  * Allocate a new mm structure and copy contents from the
1302  * mm structure of the passed in task structure.
1303  */
1304 static struct mm_struct *dup_mm(struct task_struct *tsk)
1305 {
1306 	struct mm_struct *mm, *oldmm = current->mm;
1307 	int err;
1308 
1309 	mm = allocate_mm();
1310 	if (!mm)
1311 		goto fail_nomem;
1312 
1313 	memcpy(mm, oldmm, sizeof(*mm));
1314 
1315 	if (!mm_init(mm, tsk, mm->user_ns))
1316 		goto fail_nomem;
1317 
1318 	err = dup_mmap(mm, oldmm);
1319 	if (err)
1320 		goto free_pt;
1321 
1322 	mm->hiwater_rss = get_mm_rss(mm);
1323 	mm->hiwater_vm = mm->total_vm;
1324 
1325 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1326 		goto free_pt;
1327 
1328 	return mm;
1329 
1330 free_pt:
1331 	/* don't put binfmt in mmput, we haven't got module yet */
1332 	mm->binfmt = NULL;
1333 	mmput(mm);
1334 
1335 fail_nomem:
1336 	return NULL;
1337 }
1338 
1339 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1340 {
1341 	struct mm_struct *mm, *oldmm;
1342 	int retval;
1343 
1344 	tsk->min_flt = tsk->maj_flt = 0;
1345 	tsk->nvcsw = tsk->nivcsw = 0;
1346 #ifdef CONFIG_DETECT_HUNG_TASK
1347 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1348 	tsk->last_switch_time = 0;
1349 #endif
1350 
1351 	tsk->mm = NULL;
1352 	tsk->active_mm = NULL;
1353 
1354 	/*
1355 	 * Are we cloning a kernel thread?
1356 	 *
1357 	 * We need to steal a active VM for that..
1358 	 */
1359 	oldmm = current->mm;
1360 	if (!oldmm)
1361 		return 0;
1362 
1363 	/* initialize the new vmacache entries */
1364 	vmacache_flush(tsk);
1365 
1366 	if (clone_flags & CLONE_VM) {
1367 		mmget(oldmm);
1368 		mm = oldmm;
1369 		goto good_mm;
1370 	}
1371 
1372 	retval = -ENOMEM;
1373 	mm = dup_mm(tsk);
1374 	if (!mm)
1375 		goto fail_nomem;
1376 
1377 good_mm:
1378 	tsk->mm = mm;
1379 	tsk->active_mm = mm;
1380 	return 0;
1381 
1382 fail_nomem:
1383 	return retval;
1384 }
1385 
1386 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1387 {
1388 	struct fs_struct *fs = current->fs;
1389 	if (clone_flags & CLONE_FS) {
1390 		/* tsk->fs is already what we want */
1391 		spin_lock(&fs->lock);
1392 		if (fs->in_exec) {
1393 			spin_unlock(&fs->lock);
1394 			return -EAGAIN;
1395 		}
1396 		fs->users++;
1397 		spin_unlock(&fs->lock);
1398 		return 0;
1399 	}
1400 	tsk->fs = copy_fs_struct(fs);
1401 	if (!tsk->fs)
1402 		return -ENOMEM;
1403 	return 0;
1404 }
1405 
1406 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1407 {
1408 	struct files_struct *oldf, *newf;
1409 	int error = 0;
1410 
1411 	/*
1412 	 * A background process may not have any files ...
1413 	 */
1414 	oldf = current->files;
1415 	if (!oldf)
1416 		goto out;
1417 
1418 	if (clone_flags & CLONE_FILES) {
1419 		atomic_inc(&oldf->count);
1420 		goto out;
1421 	}
1422 
1423 	newf = dup_fd(oldf, &error);
1424 	if (!newf)
1425 		goto out;
1426 
1427 	tsk->files = newf;
1428 	error = 0;
1429 out:
1430 	return error;
1431 }
1432 
1433 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1434 {
1435 #ifdef CONFIG_BLOCK
1436 	struct io_context *ioc = current->io_context;
1437 	struct io_context *new_ioc;
1438 
1439 	if (!ioc)
1440 		return 0;
1441 	/*
1442 	 * Share io context with parent, if CLONE_IO is set
1443 	 */
1444 	if (clone_flags & CLONE_IO) {
1445 		ioc_task_link(ioc);
1446 		tsk->io_context = ioc;
1447 	} else if (ioprio_valid(ioc->ioprio)) {
1448 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1449 		if (unlikely(!new_ioc))
1450 			return -ENOMEM;
1451 
1452 		new_ioc->ioprio = ioc->ioprio;
1453 		put_io_context(new_ioc);
1454 	}
1455 #endif
1456 	return 0;
1457 }
1458 
1459 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1460 {
1461 	struct sighand_struct *sig;
1462 
1463 	if (clone_flags & CLONE_SIGHAND) {
1464 		atomic_inc(&current->sighand->count);
1465 		return 0;
1466 	}
1467 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1468 	rcu_assign_pointer(tsk->sighand, sig);
1469 	if (!sig)
1470 		return -ENOMEM;
1471 
1472 	atomic_set(&sig->count, 1);
1473 	spin_lock_irq(&current->sighand->siglock);
1474 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1475 	spin_unlock_irq(&current->sighand->siglock);
1476 	return 0;
1477 }
1478 
1479 void __cleanup_sighand(struct sighand_struct *sighand)
1480 {
1481 	if (atomic_dec_and_test(&sighand->count)) {
1482 		signalfd_cleanup(sighand);
1483 		/*
1484 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1485 		 * without an RCU grace period, see __lock_task_sighand().
1486 		 */
1487 		kmem_cache_free(sighand_cachep, sighand);
1488 	}
1489 }
1490 
1491 #ifdef CONFIG_POSIX_TIMERS
1492 /*
1493  * Initialize POSIX timer handling for a thread group.
1494  */
1495 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1496 {
1497 	unsigned long cpu_limit;
1498 
1499 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1500 	if (cpu_limit != RLIM_INFINITY) {
1501 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1502 		sig->cputimer.running = true;
1503 	}
1504 
1505 	/* The timer lists. */
1506 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1507 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1508 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1509 }
1510 #else
1511 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1512 #endif
1513 
1514 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1515 {
1516 	struct signal_struct *sig;
1517 
1518 	if (clone_flags & CLONE_THREAD)
1519 		return 0;
1520 
1521 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1522 	tsk->signal = sig;
1523 	if (!sig)
1524 		return -ENOMEM;
1525 
1526 	sig->nr_threads = 1;
1527 	atomic_set(&sig->live, 1);
1528 	atomic_set(&sig->sigcnt, 1);
1529 
1530 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1531 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1532 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1533 
1534 	init_waitqueue_head(&sig->wait_chldexit);
1535 	sig->curr_target = tsk;
1536 	init_sigpending(&sig->shared_pending);
1537 	INIT_HLIST_HEAD(&sig->multiprocess);
1538 	seqlock_init(&sig->stats_lock);
1539 	prev_cputime_init(&sig->prev_cputime);
1540 
1541 #ifdef CONFIG_POSIX_TIMERS
1542 	INIT_LIST_HEAD(&sig->posix_timers);
1543 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1544 	sig->real_timer.function = it_real_fn;
1545 #endif
1546 
1547 	task_lock(current->group_leader);
1548 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1549 	task_unlock(current->group_leader);
1550 
1551 	posix_cpu_timers_init_group(sig);
1552 
1553 	tty_audit_fork(sig);
1554 	sched_autogroup_fork(sig);
1555 
1556 	sig->oom_score_adj = current->signal->oom_score_adj;
1557 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1558 
1559 	mutex_init(&sig->cred_guard_mutex);
1560 
1561 	return 0;
1562 }
1563 
1564 static void copy_seccomp(struct task_struct *p)
1565 {
1566 #ifdef CONFIG_SECCOMP
1567 	/*
1568 	 * Must be called with sighand->lock held, which is common to
1569 	 * all threads in the group. Holding cred_guard_mutex is not
1570 	 * needed because this new task is not yet running and cannot
1571 	 * be racing exec.
1572 	 */
1573 	assert_spin_locked(&current->sighand->siglock);
1574 
1575 	/* Ref-count the new filter user, and assign it. */
1576 	get_seccomp_filter(current);
1577 	p->seccomp = current->seccomp;
1578 
1579 	/*
1580 	 * Explicitly enable no_new_privs here in case it got set
1581 	 * between the task_struct being duplicated and holding the
1582 	 * sighand lock. The seccomp state and nnp must be in sync.
1583 	 */
1584 	if (task_no_new_privs(current))
1585 		task_set_no_new_privs(p);
1586 
1587 	/*
1588 	 * If the parent gained a seccomp mode after copying thread
1589 	 * flags and between before we held the sighand lock, we have
1590 	 * to manually enable the seccomp thread flag here.
1591 	 */
1592 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1593 		set_tsk_thread_flag(p, TIF_SECCOMP);
1594 #endif
1595 }
1596 
1597 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1598 {
1599 	current->clear_child_tid = tidptr;
1600 
1601 	return task_pid_vnr(current);
1602 }
1603 
1604 static void rt_mutex_init_task(struct task_struct *p)
1605 {
1606 	raw_spin_lock_init(&p->pi_lock);
1607 #ifdef CONFIG_RT_MUTEXES
1608 	p->pi_waiters = RB_ROOT_CACHED;
1609 	p->pi_top_task = NULL;
1610 	p->pi_blocked_on = NULL;
1611 #endif
1612 }
1613 
1614 #ifdef CONFIG_POSIX_TIMERS
1615 /*
1616  * Initialize POSIX timer handling for a single task.
1617  */
1618 static void posix_cpu_timers_init(struct task_struct *tsk)
1619 {
1620 	tsk->cputime_expires.prof_exp = 0;
1621 	tsk->cputime_expires.virt_exp = 0;
1622 	tsk->cputime_expires.sched_exp = 0;
1623 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1624 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1625 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1626 }
1627 #else
1628 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1629 #endif
1630 
1631 static inline void init_task_pid_links(struct task_struct *task)
1632 {
1633 	enum pid_type type;
1634 
1635 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1636 		INIT_HLIST_NODE(&task->pid_links[type]);
1637 	}
1638 }
1639 
1640 static inline void
1641 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1642 {
1643 	if (type == PIDTYPE_PID)
1644 		task->thread_pid = pid;
1645 	else
1646 		task->signal->pids[type] = pid;
1647 }
1648 
1649 static inline void rcu_copy_process(struct task_struct *p)
1650 {
1651 #ifdef CONFIG_PREEMPT_RCU
1652 	p->rcu_read_lock_nesting = 0;
1653 	p->rcu_read_unlock_special.s = 0;
1654 	p->rcu_blocked_node = NULL;
1655 	INIT_LIST_HEAD(&p->rcu_node_entry);
1656 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1657 #ifdef CONFIG_TASKS_RCU
1658 	p->rcu_tasks_holdout = false;
1659 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1660 	p->rcu_tasks_idle_cpu = -1;
1661 #endif /* #ifdef CONFIG_TASKS_RCU */
1662 }
1663 
1664 /*
1665  * This creates a new process as a copy of the old one,
1666  * but does not actually start it yet.
1667  *
1668  * It copies the registers, and all the appropriate
1669  * parts of the process environment (as per the clone
1670  * flags). The actual kick-off is left to the caller.
1671  */
1672 static __latent_entropy struct task_struct *copy_process(
1673 					unsigned long clone_flags,
1674 					unsigned long stack_start,
1675 					unsigned long stack_size,
1676 					int __user *child_tidptr,
1677 					struct pid *pid,
1678 					int trace,
1679 					unsigned long tls,
1680 					int node)
1681 {
1682 	int retval;
1683 	struct task_struct *p;
1684 	struct multiprocess_signals delayed;
1685 
1686 	/*
1687 	 * Don't allow sharing the root directory with processes in a different
1688 	 * namespace
1689 	 */
1690 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1691 		return ERR_PTR(-EINVAL);
1692 
1693 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1694 		return ERR_PTR(-EINVAL);
1695 
1696 	/*
1697 	 * Thread groups must share signals as well, and detached threads
1698 	 * can only be started up within the thread group.
1699 	 */
1700 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1701 		return ERR_PTR(-EINVAL);
1702 
1703 	/*
1704 	 * Shared signal handlers imply shared VM. By way of the above,
1705 	 * thread groups also imply shared VM. Blocking this case allows
1706 	 * for various simplifications in other code.
1707 	 */
1708 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1709 		return ERR_PTR(-EINVAL);
1710 
1711 	/*
1712 	 * Siblings of global init remain as zombies on exit since they are
1713 	 * not reaped by their parent (swapper). To solve this and to avoid
1714 	 * multi-rooted process trees, prevent global and container-inits
1715 	 * from creating siblings.
1716 	 */
1717 	if ((clone_flags & CLONE_PARENT) &&
1718 				current->signal->flags & SIGNAL_UNKILLABLE)
1719 		return ERR_PTR(-EINVAL);
1720 
1721 	/*
1722 	 * If the new process will be in a different pid or user namespace
1723 	 * do not allow it to share a thread group with the forking task.
1724 	 */
1725 	if (clone_flags & CLONE_THREAD) {
1726 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1727 		    (task_active_pid_ns(current) !=
1728 				current->nsproxy->pid_ns_for_children))
1729 			return ERR_PTR(-EINVAL);
1730 	}
1731 
1732 	/*
1733 	 * Force any signals received before this point to be delivered
1734 	 * before the fork happens.  Collect up signals sent to multiple
1735 	 * processes that happen during the fork and delay them so that
1736 	 * they appear to happen after the fork.
1737 	 */
1738 	sigemptyset(&delayed.signal);
1739 	INIT_HLIST_NODE(&delayed.node);
1740 
1741 	spin_lock_irq(&current->sighand->siglock);
1742 	if (!(clone_flags & CLONE_THREAD))
1743 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1744 	recalc_sigpending();
1745 	spin_unlock_irq(&current->sighand->siglock);
1746 	retval = -ERESTARTNOINTR;
1747 	if (signal_pending(current))
1748 		goto fork_out;
1749 
1750 	retval = -ENOMEM;
1751 	p = dup_task_struct(current, node);
1752 	if (!p)
1753 		goto fork_out;
1754 
1755 	/*
1756 	 * This _must_ happen before we call free_task(), i.e. before we jump
1757 	 * to any of the bad_fork_* labels. This is to avoid freeing
1758 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1759 	 * kernel threads (PF_KTHREAD).
1760 	 */
1761 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1762 	/*
1763 	 * Clear TID on mm_release()?
1764 	 */
1765 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1766 
1767 	ftrace_graph_init_task(p);
1768 
1769 	rt_mutex_init_task(p);
1770 
1771 #ifdef CONFIG_PROVE_LOCKING
1772 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1773 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1774 #endif
1775 	retval = -EAGAIN;
1776 	if (atomic_read(&p->real_cred->user->processes) >=
1777 			task_rlimit(p, RLIMIT_NPROC)) {
1778 		if (p->real_cred->user != INIT_USER &&
1779 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1780 			goto bad_fork_free;
1781 	}
1782 	current->flags &= ~PF_NPROC_EXCEEDED;
1783 
1784 	retval = copy_creds(p, clone_flags);
1785 	if (retval < 0)
1786 		goto bad_fork_free;
1787 
1788 	/*
1789 	 * If multiple threads are within copy_process(), then this check
1790 	 * triggers too late. This doesn't hurt, the check is only there
1791 	 * to stop root fork bombs.
1792 	 */
1793 	retval = -EAGAIN;
1794 	if (nr_threads >= max_threads)
1795 		goto bad_fork_cleanup_count;
1796 
1797 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1798 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1799 	p->flags |= PF_FORKNOEXEC;
1800 	INIT_LIST_HEAD(&p->children);
1801 	INIT_LIST_HEAD(&p->sibling);
1802 	rcu_copy_process(p);
1803 	p->vfork_done = NULL;
1804 	spin_lock_init(&p->alloc_lock);
1805 
1806 	init_sigpending(&p->pending);
1807 
1808 	p->utime = p->stime = p->gtime = 0;
1809 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1810 	p->utimescaled = p->stimescaled = 0;
1811 #endif
1812 	prev_cputime_init(&p->prev_cputime);
1813 
1814 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1815 	seqcount_init(&p->vtime.seqcount);
1816 	p->vtime.starttime = 0;
1817 	p->vtime.state = VTIME_INACTIVE;
1818 #endif
1819 
1820 #if defined(SPLIT_RSS_COUNTING)
1821 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1822 #endif
1823 
1824 	p->default_timer_slack_ns = current->timer_slack_ns;
1825 
1826 #ifdef CONFIG_PSI
1827 	p->psi_flags = 0;
1828 #endif
1829 
1830 	task_io_accounting_init(&p->ioac);
1831 	acct_clear_integrals(p);
1832 
1833 	posix_cpu_timers_init(p);
1834 
1835 	p->start_time = ktime_get_ns();
1836 	p->real_start_time = ktime_get_boot_ns();
1837 	p->io_context = NULL;
1838 	audit_set_context(p, NULL);
1839 	cgroup_fork(p);
1840 #ifdef CONFIG_NUMA
1841 	p->mempolicy = mpol_dup(p->mempolicy);
1842 	if (IS_ERR(p->mempolicy)) {
1843 		retval = PTR_ERR(p->mempolicy);
1844 		p->mempolicy = NULL;
1845 		goto bad_fork_cleanup_threadgroup_lock;
1846 	}
1847 #endif
1848 #ifdef CONFIG_CPUSETS
1849 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1850 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1851 	seqcount_init(&p->mems_allowed_seq);
1852 #endif
1853 #ifdef CONFIG_TRACE_IRQFLAGS
1854 	p->irq_events = 0;
1855 	p->hardirqs_enabled = 0;
1856 	p->hardirq_enable_ip = 0;
1857 	p->hardirq_enable_event = 0;
1858 	p->hardirq_disable_ip = _THIS_IP_;
1859 	p->hardirq_disable_event = 0;
1860 	p->softirqs_enabled = 1;
1861 	p->softirq_enable_ip = _THIS_IP_;
1862 	p->softirq_enable_event = 0;
1863 	p->softirq_disable_ip = 0;
1864 	p->softirq_disable_event = 0;
1865 	p->hardirq_context = 0;
1866 	p->softirq_context = 0;
1867 #endif
1868 
1869 	p->pagefault_disabled = 0;
1870 
1871 #ifdef CONFIG_LOCKDEP
1872 	p->lockdep_depth = 0; /* no locks held yet */
1873 	p->curr_chain_key = 0;
1874 	p->lockdep_recursion = 0;
1875 	lockdep_init_task(p);
1876 #endif
1877 
1878 #ifdef CONFIG_DEBUG_MUTEXES
1879 	p->blocked_on = NULL; /* not blocked yet */
1880 #endif
1881 #ifdef CONFIG_BCACHE
1882 	p->sequential_io	= 0;
1883 	p->sequential_io_avg	= 0;
1884 #endif
1885 
1886 	/* Perform scheduler related setup. Assign this task to a CPU. */
1887 	retval = sched_fork(clone_flags, p);
1888 	if (retval)
1889 		goto bad_fork_cleanup_policy;
1890 
1891 	retval = perf_event_init_task(p);
1892 	if (retval)
1893 		goto bad_fork_cleanup_policy;
1894 	retval = audit_alloc(p);
1895 	if (retval)
1896 		goto bad_fork_cleanup_perf;
1897 	/* copy all the process information */
1898 	shm_init_task(p);
1899 	retval = security_task_alloc(p, clone_flags);
1900 	if (retval)
1901 		goto bad_fork_cleanup_audit;
1902 	retval = copy_semundo(clone_flags, p);
1903 	if (retval)
1904 		goto bad_fork_cleanup_security;
1905 	retval = copy_files(clone_flags, p);
1906 	if (retval)
1907 		goto bad_fork_cleanup_semundo;
1908 	retval = copy_fs(clone_flags, p);
1909 	if (retval)
1910 		goto bad_fork_cleanup_files;
1911 	retval = copy_sighand(clone_flags, p);
1912 	if (retval)
1913 		goto bad_fork_cleanup_fs;
1914 	retval = copy_signal(clone_flags, p);
1915 	if (retval)
1916 		goto bad_fork_cleanup_sighand;
1917 	retval = copy_mm(clone_flags, p);
1918 	if (retval)
1919 		goto bad_fork_cleanup_signal;
1920 	retval = copy_namespaces(clone_flags, p);
1921 	if (retval)
1922 		goto bad_fork_cleanup_mm;
1923 	retval = copy_io(clone_flags, p);
1924 	if (retval)
1925 		goto bad_fork_cleanup_namespaces;
1926 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1927 	if (retval)
1928 		goto bad_fork_cleanup_io;
1929 
1930 	stackleak_task_init(p);
1931 
1932 	if (pid != &init_struct_pid) {
1933 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1934 		if (IS_ERR(pid)) {
1935 			retval = PTR_ERR(pid);
1936 			goto bad_fork_cleanup_thread;
1937 		}
1938 	}
1939 
1940 #ifdef CONFIG_BLOCK
1941 	p->plug = NULL;
1942 #endif
1943 #ifdef CONFIG_FUTEX
1944 	p->robust_list = NULL;
1945 #ifdef CONFIG_COMPAT
1946 	p->compat_robust_list = NULL;
1947 #endif
1948 	INIT_LIST_HEAD(&p->pi_state_list);
1949 	p->pi_state_cache = NULL;
1950 #endif
1951 	/*
1952 	 * sigaltstack should be cleared when sharing the same VM
1953 	 */
1954 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1955 		sas_ss_reset(p);
1956 
1957 	/*
1958 	 * Syscall tracing and stepping should be turned off in the
1959 	 * child regardless of CLONE_PTRACE.
1960 	 */
1961 	user_disable_single_step(p);
1962 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1963 #ifdef TIF_SYSCALL_EMU
1964 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1965 #endif
1966 	clear_all_latency_tracing(p);
1967 
1968 	/* ok, now we should be set up.. */
1969 	p->pid = pid_nr(pid);
1970 	if (clone_flags & CLONE_THREAD) {
1971 		p->exit_signal = -1;
1972 		p->group_leader = current->group_leader;
1973 		p->tgid = current->tgid;
1974 	} else {
1975 		if (clone_flags & CLONE_PARENT)
1976 			p->exit_signal = current->group_leader->exit_signal;
1977 		else
1978 			p->exit_signal = (clone_flags & CSIGNAL);
1979 		p->group_leader = p;
1980 		p->tgid = p->pid;
1981 	}
1982 
1983 	p->nr_dirtied = 0;
1984 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1985 	p->dirty_paused_when = 0;
1986 
1987 	p->pdeath_signal = 0;
1988 	INIT_LIST_HEAD(&p->thread_group);
1989 	p->task_works = NULL;
1990 
1991 	cgroup_threadgroup_change_begin(current);
1992 	/*
1993 	 * Ensure that the cgroup subsystem policies allow the new process to be
1994 	 * forked. It should be noted the the new process's css_set can be changed
1995 	 * between here and cgroup_post_fork() if an organisation operation is in
1996 	 * progress.
1997 	 */
1998 	retval = cgroup_can_fork(p);
1999 	if (retval)
2000 		goto bad_fork_free_pid;
2001 
2002 	/*
2003 	 * Make it visible to the rest of the system, but dont wake it up yet.
2004 	 * Need tasklist lock for parent etc handling!
2005 	 */
2006 	write_lock_irq(&tasklist_lock);
2007 
2008 	/* CLONE_PARENT re-uses the old parent */
2009 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2010 		p->real_parent = current->real_parent;
2011 		p->parent_exec_id = current->parent_exec_id;
2012 	} else {
2013 		p->real_parent = current;
2014 		p->parent_exec_id = current->self_exec_id;
2015 	}
2016 
2017 	klp_copy_process(p);
2018 
2019 	spin_lock(&current->sighand->siglock);
2020 
2021 	/*
2022 	 * Copy seccomp details explicitly here, in case they were changed
2023 	 * before holding sighand lock.
2024 	 */
2025 	copy_seccomp(p);
2026 
2027 	rseq_fork(p, clone_flags);
2028 
2029 	/* Don't start children in a dying pid namespace */
2030 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2031 		retval = -ENOMEM;
2032 		goto bad_fork_cancel_cgroup;
2033 	}
2034 
2035 	/* Let kill terminate clone/fork in the middle */
2036 	if (fatal_signal_pending(current)) {
2037 		retval = -EINTR;
2038 		goto bad_fork_cancel_cgroup;
2039 	}
2040 
2041 
2042 	init_task_pid_links(p);
2043 	if (likely(p->pid)) {
2044 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2045 
2046 		init_task_pid(p, PIDTYPE_PID, pid);
2047 		if (thread_group_leader(p)) {
2048 			init_task_pid(p, PIDTYPE_TGID, pid);
2049 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2050 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2051 
2052 			if (is_child_reaper(pid)) {
2053 				ns_of_pid(pid)->child_reaper = p;
2054 				p->signal->flags |= SIGNAL_UNKILLABLE;
2055 			}
2056 			p->signal->shared_pending.signal = delayed.signal;
2057 			p->signal->tty = tty_kref_get(current->signal->tty);
2058 			/*
2059 			 * Inherit has_child_subreaper flag under the same
2060 			 * tasklist_lock with adding child to the process tree
2061 			 * for propagate_has_child_subreaper optimization.
2062 			 */
2063 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2064 							 p->real_parent->signal->is_child_subreaper;
2065 			list_add_tail(&p->sibling, &p->real_parent->children);
2066 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2067 			attach_pid(p, PIDTYPE_TGID);
2068 			attach_pid(p, PIDTYPE_PGID);
2069 			attach_pid(p, PIDTYPE_SID);
2070 			__this_cpu_inc(process_counts);
2071 		} else {
2072 			current->signal->nr_threads++;
2073 			atomic_inc(&current->signal->live);
2074 			atomic_inc(&current->signal->sigcnt);
2075 			task_join_group_stop(p);
2076 			list_add_tail_rcu(&p->thread_group,
2077 					  &p->group_leader->thread_group);
2078 			list_add_tail_rcu(&p->thread_node,
2079 					  &p->signal->thread_head);
2080 		}
2081 		attach_pid(p, PIDTYPE_PID);
2082 		nr_threads++;
2083 	}
2084 	total_forks++;
2085 	hlist_del_init(&delayed.node);
2086 	spin_unlock(&current->sighand->siglock);
2087 	syscall_tracepoint_update(p);
2088 	write_unlock_irq(&tasklist_lock);
2089 
2090 	proc_fork_connector(p);
2091 	cgroup_post_fork(p);
2092 	cgroup_threadgroup_change_end(current);
2093 	perf_event_fork(p);
2094 
2095 	trace_task_newtask(p, clone_flags);
2096 	uprobe_copy_process(p, clone_flags);
2097 
2098 	return p;
2099 
2100 bad_fork_cancel_cgroup:
2101 	spin_unlock(&current->sighand->siglock);
2102 	write_unlock_irq(&tasklist_lock);
2103 	cgroup_cancel_fork(p);
2104 bad_fork_free_pid:
2105 	cgroup_threadgroup_change_end(current);
2106 	if (pid != &init_struct_pid)
2107 		free_pid(pid);
2108 bad_fork_cleanup_thread:
2109 	exit_thread(p);
2110 bad_fork_cleanup_io:
2111 	if (p->io_context)
2112 		exit_io_context(p);
2113 bad_fork_cleanup_namespaces:
2114 	exit_task_namespaces(p);
2115 bad_fork_cleanup_mm:
2116 	if (p->mm)
2117 		mmput(p->mm);
2118 bad_fork_cleanup_signal:
2119 	if (!(clone_flags & CLONE_THREAD))
2120 		free_signal_struct(p->signal);
2121 bad_fork_cleanup_sighand:
2122 	__cleanup_sighand(p->sighand);
2123 bad_fork_cleanup_fs:
2124 	exit_fs(p); /* blocking */
2125 bad_fork_cleanup_files:
2126 	exit_files(p); /* blocking */
2127 bad_fork_cleanup_semundo:
2128 	exit_sem(p);
2129 bad_fork_cleanup_security:
2130 	security_task_free(p);
2131 bad_fork_cleanup_audit:
2132 	audit_free(p);
2133 bad_fork_cleanup_perf:
2134 	perf_event_free_task(p);
2135 bad_fork_cleanup_policy:
2136 	lockdep_free_task(p);
2137 #ifdef CONFIG_NUMA
2138 	mpol_put(p->mempolicy);
2139 bad_fork_cleanup_threadgroup_lock:
2140 #endif
2141 	delayacct_tsk_free(p);
2142 bad_fork_cleanup_count:
2143 	atomic_dec(&p->cred->user->processes);
2144 	exit_creds(p);
2145 bad_fork_free:
2146 	p->state = TASK_DEAD;
2147 	put_task_stack(p);
2148 	free_task(p);
2149 fork_out:
2150 	spin_lock_irq(&current->sighand->siglock);
2151 	hlist_del_init(&delayed.node);
2152 	spin_unlock_irq(&current->sighand->siglock);
2153 	return ERR_PTR(retval);
2154 }
2155 
2156 static inline void init_idle_pids(struct task_struct *idle)
2157 {
2158 	enum pid_type type;
2159 
2160 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2161 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2162 		init_task_pid(idle, type, &init_struct_pid);
2163 	}
2164 }
2165 
2166 struct task_struct *fork_idle(int cpu)
2167 {
2168 	struct task_struct *task;
2169 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2170 			    cpu_to_node(cpu));
2171 	if (!IS_ERR(task)) {
2172 		init_idle_pids(task);
2173 		init_idle(task, cpu);
2174 	}
2175 
2176 	return task;
2177 }
2178 
2179 /*
2180  *  Ok, this is the main fork-routine.
2181  *
2182  * It copies the process, and if successful kick-starts
2183  * it and waits for it to finish using the VM if required.
2184  */
2185 long _do_fork(unsigned long clone_flags,
2186 	      unsigned long stack_start,
2187 	      unsigned long stack_size,
2188 	      int __user *parent_tidptr,
2189 	      int __user *child_tidptr,
2190 	      unsigned long tls)
2191 {
2192 	struct completion vfork;
2193 	struct pid *pid;
2194 	struct task_struct *p;
2195 	int trace = 0;
2196 	long nr;
2197 
2198 	/*
2199 	 * Determine whether and which event to report to ptracer.  When
2200 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2201 	 * requested, no event is reported; otherwise, report if the event
2202 	 * for the type of forking is enabled.
2203 	 */
2204 	if (!(clone_flags & CLONE_UNTRACED)) {
2205 		if (clone_flags & CLONE_VFORK)
2206 			trace = PTRACE_EVENT_VFORK;
2207 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2208 			trace = PTRACE_EVENT_CLONE;
2209 		else
2210 			trace = PTRACE_EVENT_FORK;
2211 
2212 		if (likely(!ptrace_event_enabled(current, trace)))
2213 			trace = 0;
2214 	}
2215 
2216 	p = copy_process(clone_flags, stack_start, stack_size,
2217 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2218 	add_latent_entropy();
2219 
2220 	if (IS_ERR(p))
2221 		return PTR_ERR(p);
2222 
2223 	/*
2224 	 * Do this prior waking up the new thread - the thread pointer
2225 	 * might get invalid after that point, if the thread exits quickly.
2226 	 */
2227 	trace_sched_process_fork(current, p);
2228 
2229 	pid = get_task_pid(p, PIDTYPE_PID);
2230 	nr = pid_vnr(pid);
2231 
2232 	if (clone_flags & CLONE_PARENT_SETTID)
2233 		put_user(nr, parent_tidptr);
2234 
2235 	if (clone_flags & CLONE_VFORK) {
2236 		p->vfork_done = &vfork;
2237 		init_completion(&vfork);
2238 		get_task_struct(p);
2239 	}
2240 
2241 	wake_up_new_task(p);
2242 
2243 	/* forking complete and child started to run, tell ptracer */
2244 	if (unlikely(trace))
2245 		ptrace_event_pid(trace, pid);
2246 
2247 	if (clone_flags & CLONE_VFORK) {
2248 		if (!wait_for_vfork_done(p, &vfork))
2249 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2250 	}
2251 
2252 	put_pid(pid);
2253 	return nr;
2254 }
2255 
2256 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2257 /* For compatibility with architectures that call do_fork directly rather than
2258  * using the syscall entry points below. */
2259 long do_fork(unsigned long clone_flags,
2260 	      unsigned long stack_start,
2261 	      unsigned long stack_size,
2262 	      int __user *parent_tidptr,
2263 	      int __user *child_tidptr)
2264 {
2265 	return _do_fork(clone_flags, stack_start, stack_size,
2266 			parent_tidptr, child_tidptr, 0);
2267 }
2268 #endif
2269 
2270 /*
2271  * Create a kernel thread.
2272  */
2273 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2274 {
2275 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2276 		(unsigned long)arg, NULL, NULL, 0);
2277 }
2278 
2279 #ifdef __ARCH_WANT_SYS_FORK
2280 SYSCALL_DEFINE0(fork)
2281 {
2282 #ifdef CONFIG_MMU
2283 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2284 #else
2285 	/* can not support in nommu mode */
2286 	return -EINVAL;
2287 #endif
2288 }
2289 #endif
2290 
2291 #ifdef __ARCH_WANT_SYS_VFORK
2292 SYSCALL_DEFINE0(vfork)
2293 {
2294 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2295 			0, NULL, NULL, 0);
2296 }
2297 #endif
2298 
2299 #ifdef __ARCH_WANT_SYS_CLONE
2300 #ifdef CONFIG_CLONE_BACKWARDS
2301 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2302 		 int __user *, parent_tidptr,
2303 		 unsigned long, tls,
2304 		 int __user *, child_tidptr)
2305 #elif defined(CONFIG_CLONE_BACKWARDS2)
2306 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2307 		 int __user *, parent_tidptr,
2308 		 int __user *, child_tidptr,
2309 		 unsigned long, tls)
2310 #elif defined(CONFIG_CLONE_BACKWARDS3)
2311 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2312 		int, stack_size,
2313 		int __user *, parent_tidptr,
2314 		int __user *, child_tidptr,
2315 		unsigned long, tls)
2316 #else
2317 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2318 		 int __user *, parent_tidptr,
2319 		 int __user *, child_tidptr,
2320 		 unsigned long, tls)
2321 #endif
2322 {
2323 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2324 }
2325 #endif
2326 
2327 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2328 {
2329 	struct task_struct *leader, *parent, *child;
2330 	int res;
2331 
2332 	read_lock(&tasklist_lock);
2333 	leader = top = top->group_leader;
2334 down:
2335 	for_each_thread(leader, parent) {
2336 		list_for_each_entry(child, &parent->children, sibling) {
2337 			res = visitor(child, data);
2338 			if (res) {
2339 				if (res < 0)
2340 					goto out;
2341 				leader = child;
2342 				goto down;
2343 			}
2344 up:
2345 			;
2346 		}
2347 	}
2348 
2349 	if (leader != top) {
2350 		child = leader;
2351 		parent = child->real_parent;
2352 		leader = parent->group_leader;
2353 		goto up;
2354 	}
2355 out:
2356 	read_unlock(&tasklist_lock);
2357 }
2358 
2359 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2360 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2361 #endif
2362 
2363 static void sighand_ctor(void *data)
2364 {
2365 	struct sighand_struct *sighand = data;
2366 
2367 	spin_lock_init(&sighand->siglock);
2368 	init_waitqueue_head(&sighand->signalfd_wqh);
2369 }
2370 
2371 void __init proc_caches_init(void)
2372 {
2373 	unsigned int mm_size;
2374 
2375 	sighand_cachep = kmem_cache_create("sighand_cache",
2376 			sizeof(struct sighand_struct), 0,
2377 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2378 			SLAB_ACCOUNT, sighand_ctor);
2379 	signal_cachep = kmem_cache_create("signal_cache",
2380 			sizeof(struct signal_struct), 0,
2381 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2382 			NULL);
2383 	files_cachep = kmem_cache_create("files_cache",
2384 			sizeof(struct files_struct), 0,
2385 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2386 			NULL);
2387 	fs_cachep = kmem_cache_create("fs_cache",
2388 			sizeof(struct fs_struct), 0,
2389 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2390 			NULL);
2391 
2392 	/*
2393 	 * The mm_cpumask is located at the end of mm_struct, and is
2394 	 * dynamically sized based on the maximum CPU number this system
2395 	 * can have, taking hotplug into account (nr_cpu_ids).
2396 	 */
2397 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2398 
2399 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2400 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2401 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2402 			offsetof(struct mm_struct, saved_auxv),
2403 			sizeof_field(struct mm_struct, saved_auxv),
2404 			NULL);
2405 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2406 	mmap_init();
2407 	nsproxy_cache_init();
2408 }
2409 
2410 /*
2411  * Check constraints on flags passed to the unshare system call.
2412  */
2413 static int check_unshare_flags(unsigned long unshare_flags)
2414 {
2415 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2416 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2417 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2418 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2419 		return -EINVAL;
2420 	/*
2421 	 * Not implemented, but pretend it works if there is nothing
2422 	 * to unshare.  Note that unsharing the address space or the
2423 	 * signal handlers also need to unshare the signal queues (aka
2424 	 * CLONE_THREAD).
2425 	 */
2426 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2427 		if (!thread_group_empty(current))
2428 			return -EINVAL;
2429 	}
2430 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2431 		if (atomic_read(&current->sighand->count) > 1)
2432 			return -EINVAL;
2433 	}
2434 	if (unshare_flags & CLONE_VM) {
2435 		if (!current_is_single_threaded())
2436 			return -EINVAL;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 /*
2443  * Unshare the filesystem structure if it is being shared
2444  */
2445 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2446 {
2447 	struct fs_struct *fs = current->fs;
2448 
2449 	if (!(unshare_flags & CLONE_FS) || !fs)
2450 		return 0;
2451 
2452 	/* don't need lock here; in the worst case we'll do useless copy */
2453 	if (fs->users == 1)
2454 		return 0;
2455 
2456 	*new_fsp = copy_fs_struct(fs);
2457 	if (!*new_fsp)
2458 		return -ENOMEM;
2459 
2460 	return 0;
2461 }
2462 
2463 /*
2464  * Unshare file descriptor table if it is being shared
2465  */
2466 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2467 {
2468 	struct files_struct *fd = current->files;
2469 	int error = 0;
2470 
2471 	if ((unshare_flags & CLONE_FILES) &&
2472 	    (fd && atomic_read(&fd->count) > 1)) {
2473 		*new_fdp = dup_fd(fd, &error);
2474 		if (!*new_fdp)
2475 			return error;
2476 	}
2477 
2478 	return 0;
2479 }
2480 
2481 /*
2482  * unshare allows a process to 'unshare' part of the process
2483  * context which was originally shared using clone.  copy_*
2484  * functions used by do_fork() cannot be used here directly
2485  * because they modify an inactive task_struct that is being
2486  * constructed. Here we are modifying the current, active,
2487  * task_struct.
2488  */
2489 int ksys_unshare(unsigned long unshare_flags)
2490 {
2491 	struct fs_struct *fs, *new_fs = NULL;
2492 	struct files_struct *fd, *new_fd = NULL;
2493 	struct cred *new_cred = NULL;
2494 	struct nsproxy *new_nsproxy = NULL;
2495 	int do_sysvsem = 0;
2496 	int err;
2497 
2498 	/*
2499 	 * If unsharing a user namespace must also unshare the thread group
2500 	 * and unshare the filesystem root and working directories.
2501 	 */
2502 	if (unshare_flags & CLONE_NEWUSER)
2503 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2504 	/*
2505 	 * If unsharing vm, must also unshare signal handlers.
2506 	 */
2507 	if (unshare_flags & CLONE_VM)
2508 		unshare_flags |= CLONE_SIGHAND;
2509 	/*
2510 	 * If unsharing a signal handlers, must also unshare the signal queues.
2511 	 */
2512 	if (unshare_flags & CLONE_SIGHAND)
2513 		unshare_flags |= CLONE_THREAD;
2514 	/*
2515 	 * If unsharing namespace, must also unshare filesystem information.
2516 	 */
2517 	if (unshare_flags & CLONE_NEWNS)
2518 		unshare_flags |= CLONE_FS;
2519 
2520 	err = check_unshare_flags(unshare_flags);
2521 	if (err)
2522 		goto bad_unshare_out;
2523 	/*
2524 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2525 	 * to a new ipc namespace, the semaphore arrays from the old
2526 	 * namespace are unreachable.
2527 	 */
2528 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2529 		do_sysvsem = 1;
2530 	err = unshare_fs(unshare_flags, &new_fs);
2531 	if (err)
2532 		goto bad_unshare_out;
2533 	err = unshare_fd(unshare_flags, &new_fd);
2534 	if (err)
2535 		goto bad_unshare_cleanup_fs;
2536 	err = unshare_userns(unshare_flags, &new_cred);
2537 	if (err)
2538 		goto bad_unshare_cleanup_fd;
2539 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2540 					 new_cred, new_fs);
2541 	if (err)
2542 		goto bad_unshare_cleanup_cred;
2543 
2544 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2545 		if (do_sysvsem) {
2546 			/*
2547 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2548 			 */
2549 			exit_sem(current);
2550 		}
2551 		if (unshare_flags & CLONE_NEWIPC) {
2552 			/* Orphan segments in old ns (see sem above). */
2553 			exit_shm(current);
2554 			shm_init_task(current);
2555 		}
2556 
2557 		if (new_nsproxy)
2558 			switch_task_namespaces(current, new_nsproxy);
2559 
2560 		task_lock(current);
2561 
2562 		if (new_fs) {
2563 			fs = current->fs;
2564 			spin_lock(&fs->lock);
2565 			current->fs = new_fs;
2566 			if (--fs->users)
2567 				new_fs = NULL;
2568 			else
2569 				new_fs = fs;
2570 			spin_unlock(&fs->lock);
2571 		}
2572 
2573 		if (new_fd) {
2574 			fd = current->files;
2575 			current->files = new_fd;
2576 			new_fd = fd;
2577 		}
2578 
2579 		task_unlock(current);
2580 
2581 		if (new_cred) {
2582 			/* Install the new user namespace */
2583 			commit_creds(new_cred);
2584 			new_cred = NULL;
2585 		}
2586 	}
2587 
2588 	perf_event_namespaces(current);
2589 
2590 bad_unshare_cleanup_cred:
2591 	if (new_cred)
2592 		put_cred(new_cred);
2593 bad_unshare_cleanup_fd:
2594 	if (new_fd)
2595 		put_files_struct(new_fd);
2596 
2597 bad_unshare_cleanup_fs:
2598 	if (new_fs)
2599 		free_fs_struct(new_fs);
2600 
2601 bad_unshare_out:
2602 	return err;
2603 }
2604 
2605 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2606 {
2607 	return ksys_unshare(unshare_flags);
2608 }
2609 
2610 /*
2611  *	Helper to unshare the files of the current task.
2612  *	We don't want to expose copy_files internals to
2613  *	the exec layer of the kernel.
2614  */
2615 
2616 int unshare_files(struct files_struct **displaced)
2617 {
2618 	struct task_struct *task = current;
2619 	struct files_struct *copy = NULL;
2620 	int error;
2621 
2622 	error = unshare_fd(CLONE_FILES, &copy);
2623 	if (error || !copy) {
2624 		*displaced = NULL;
2625 		return error;
2626 	}
2627 	*displaced = task->files;
2628 	task_lock(task);
2629 	task->files = copy;
2630 	task_unlock(task);
2631 	return 0;
2632 }
2633 
2634 int sysctl_max_threads(struct ctl_table *table, int write,
2635 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2636 {
2637 	struct ctl_table t;
2638 	int ret;
2639 	int threads = max_threads;
2640 	int min = MIN_THREADS;
2641 	int max = MAX_THREADS;
2642 
2643 	t = *table;
2644 	t.data = &threads;
2645 	t.extra1 = &min;
2646 	t.extra2 = &max;
2647 
2648 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2649 	if (ret || !write)
2650 		return ret;
2651 
2652 	set_max_threads(threads);
2653 
2654 	return 0;
2655 }
2656