xref: /openbmc/linux/kernel/fork.c (revision 52beb1fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 static int free_vm_stack_cache(unsigned int cpu)
197 {
198 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199 	int i;
200 
201 	for (i = 0; i < NR_CACHED_STACKS; i++) {
202 		struct vm_struct *vm_stack = cached_vm_stacks[i];
203 
204 		if (!vm_stack)
205 			continue;
206 
207 		vfree(vm_stack->addr);
208 		cached_vm_stacks[i] = NULL;
209 	}
210 
211 	return 0;
212 }
213 #endif
214 
215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 {
217 #ifdef CONFIG_VMAP_STACK
218 	void *stack;
219 	int i;
220 
221 	for (i = 0; i < NR_CACHED_STACKS; i++) {
222 		struct vm_struct *s;
223 
224 		s = this_cpu_xchg(cached_stacks[i], NULL);
225 
226 		if (!s)
227 			continue;
228 
229 		/* Mark stack accessible for KASAN. */
230 		kasan_unpoison_range(s->addr, THREAD_SIZE);
231 
232 		/* Clear stale pointers from reused stack. */
233 		memset(s->addr, 0, THREAD_SIZE);
234 
235 		tsk->stack_vm_area = s;
236 		tsk->stack = s->addr;
237 		return s->addr;
238 	}
239 
240 	/*
241 	 * Allocated stacks are cached and later reused by new threads,
242 	 * so memcg accounting is performed manually on assigning/releasing
243 	 * stacks to tasks. Drop __GFP_ACCOUNT.
244 	 */
245 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246 				     VMALLOC_START, VMALLOC_END,
247 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
248 				     PAGE_KERNEL,
249 				     0, node, __builtin_return_address(0));
250 
251 	/*
252 	 * We can't call find_vm_area() in interrupt context, and
253 	 * free_thread_stack() can be called in interrupt context,
254 	 * so cache the vm_struct.
255 	 */
256 	if (stack) {
257 		tsk->stack_vm_area = find_vm_area(stack);
258 		tsk->stack = stack;
259 	}
260 	return stack;
261 #else
262 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263 					     THREAD_SIZE_ORDER);
264 
265 	if (likely(page)) {
266 		tsk->stack = kasan_reset_tag(page_address(page));
267 		return tsk->stack;
268 	}
269 	return NULL;
270 #endif
271 }
272 
273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276 	struct vm_struct *vm = task_stack_vm_area(tsk);
277 
278 	if (vm) {
279 		int i;
280 
281 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
282 			memcg_kmem_uncharge_page(vm->pages[i], 0);
283 
284 		for (i = 0; i < NR_CACHED_STACKS; i++) {
285 			if (this_cpu_cmpxchg(cached_stacks[i],
286 					NULL, tsk->stack_vm_area) != NULL)
287 				continue;
288 
289 			return;
290 		}
291 
292 		vfree_atomic(tsk->stack);
293 		return;
294 	}
295 #endif
296 
297 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301 
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 						  int node)
304 {
305 	unsigned long *stack;
306 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 	stack = kasan_reset_tag(stack);
308 	tsk->stack = stack;
309 	return stack;
310 }
311 
312 static void free_thread_stack(struct task_struct *tsk)
313 {
314 	kmem_cache_free(thread_stack_cache, tsk->stack);
315 }
316 
317 void thread_stack_cache_init(void)
318 {
319 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
320 					THREAD_SIZE, THREAD_SIZE, 0, 0,
321 					THREAD_SIZE, NULL);
322 	BUG_ON(thread_stack_cache == NULL);
323 }
324 # endif
325 #endif
326 
327 /* SLAB cache for signal_struct structures (tsk->signal) */
328 static struct kmem_cache *signal_cachep;
329 
330 /* SLAB cache for sighand_struct structures (tsk->sighand) */
331 struct kmem_cache *sighand_cachep;
332 
333 /* SLAB cache for files_struct structures (tsk->files) */
334 struct kmem_cache *files_cachep;
335 
336 /* SLAB cache for fs_struct structures (tsk->fs) */
337 struct kmem_cache *fs_cachep;
338 
339 /* SLAB cache for vm_area_struct structures */
340 static struct kmem_cache *vm_area_cachep;
341 
342 /* SLAB cache for mm_struct structures (tsk->mm) */
343 static struct kmem_cache *mm_cachep;
344 
345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 {
347 	struct vm_area_struct *vma;
348 
349 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
350 	if (vma)
351 		vma_init(vma, mm);
352 	return vma;
353 }
354 
355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 {
357 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358 
359 	if (new) {
360 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
361 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362 		/*
363 		 * orig->shared.rb may be modified concurrently, but the clone
364 		 * will be reinitialized.
365 		 */
366 		*new = data_race(*orig);
367 		INIT_LIST_HEAD(&new->anon_vma_chain);
368 		new->vm_next = new->vm_prev = NULL;
369 		dup_vma_anon_name(orig, new);
370 	}
371 	return new;
372 }
373 
374 void vm_area_free(struct vm_area_struct *vma)
375 {
376 	free_vma_anon_name(vma);
377 	kmem_cache_free(vm_area_cachep, vma);
378 }
379 
380 static void account_kernel_stack(struct task_struct *tsk, int account)
381 {
382 	void *stack = task_stack_page(tsk);
383 	struct vm_struct *vm = task_stack_vm_area(tsk);
384 
385 	if (vm) {
386 		int i;
387 
388 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
389 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
390 					      account * (PAGE_SIZE / 1024));
391 	} else {
392 		/* All stack pages are in the same node. */
393 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
394 				      account * (THREAD_SIZE / 1024));
395 	}
396 }
397 
398 static int memcg_charge_kernel_stack(struct task_struct *tsk)
399 {
400 #ifdef CONFIG_VMAP_STACK
401 	struct vm_struct *vm = task_stack_vm_area(tsk);
402 	int ret;
403 
404 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
405 
406 	if (vm) {
407 		int i;
408 
409 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
410 
411 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 			/*
413 			 * If memcg_kmem_charge_page() fails, page's
414 			 * memory cgroup pointer is NULL, and
415 			 * memcg_kmem_uncharge_page() in free_thread_stack()
416 			 * will ignore this page.
417 			 */
418 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
419 						     0);
420 			if (ret)
421 				return ret;
422 		}
423 	}
424 #endif
425 	return 0;
426 }
427 
428 static void release_task_stack(struct task_struct *tsk)
429 {
430 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
431 		return;  /* Better to leak the stack than to free prematurely */
432 
433 	account_kernel_stack(tsk, -1);
434 	free_thread_stack(tsk);
435 	tsk->stack = NULL;
436 #ifdef CONFIG_VMAP_STACK
437 	tsk->stack_vm_area = NULL;
438 #endif
439 }
440 
441 #ifdef CONFIG_THREAD_INFO_IN_TASK
442 void put_task_stack(struct task_struct *tsk)
443 {
444 	if (refcount_dec_and_test(&tsk->stack_refcount))
445 		release_task_stack(tsk);
446 }
447 #endif
448 
449 void free_task(struct task_struct *tsk)
450 {
451 	release_user_cpus_ptr(tsk);
452 	scs_release(tsk);
453 
454 #ifndef CONFIG_THREAD_INFO_IN_TASK
455 	/*
456 	 * The task is finally done with both the stack and thread_info,
457 	 * so free both.
458 	 */
459 	release_task_stack(tsk);
460 #else
461 	/*
462 	 * If the task had a separate stack allocation, it should be gone
463 	 * by now.
464 	 */
465 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
466 #endif
467 	rt_mutex_debug_task_free(tsk);
468 	ftrace_graph_exit_task(tsk);
469 	arch_release_task_struct(tsk);
470 	if (tsk->flags & PF_KTHREAD)
471 		free_kthread_struct(tsk);
472 	free_task_struct(tsk);
473 }
474 EXPORT_SYMBOL(free_task);
475 
476 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
477 {
478 	struct file *exe_file;
479 
480 	exe_file = get_mm_exe_file(oldmm);
481 	RCU_INIT_POINTER(mm->exe_file, exe_file);
482 	/*
483 	 * We depend on the oldmm having properly denied write access to the
484 	 * exe_file already.
485 	 */
486 	if (exe_file && deny_write_access(exe_file))
487 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
488 }
489 
490 #ifdef CONFIG_MMU
491 static __latent_entropy int dup_mmap(struct mm_struct *mm,
492 					struct mm_struct *oldmm)
493 {
494 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
495 	struct rb_node **rb_link, *rb_parent;
496 	int retval;
497 	unsigned long charge;
498 	LIST_HEAD(uf);
499 
500 	uprobe_start_dup_mmap();
501 	if (mmap_write_lock_killable(oldmm)) {
502 		retval = -EINTR;
503 		goto fail_uprobe_end;
504 	}
505 	flush_cache_dup_mm(oldmm);
506 	uprobe_dup_mmap(oldmm, mm);
507 	/*
508 	 * Not linked in yet - no deadlock potential:
509 	 */
510 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
511 
512 	/* No ordering required: file already has been exposed. */
513 	dup_mm_exe_file(mm, oldmm);
514 
515 	mm->total_vm = oldmm->total_vm;
516 	mm->data_vm = oldmm->data_vm;
517 	mm->exec_vm = oldmm->exec_vm;
518 	mm->stack_vm = oldmm->stack_vm;
519 
520 	rb_link = &mm->mm_rb.rb_node;
521 	rb_parent = NULL;
522 	pprev = &mm->mmap;
523 	retval = ksm_fork(mm, oldmm);
524 	if (retval)
525 		goto out;
526 	retval = khugepaged_fork(mm, oldmm);
527 	if (retval)
528 		goto out;
529 
530 	prev = NULL;
531 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
532 		struct file *file;
533 
534 		if (mpnt->vm_flags & VM_DONTCOPY) {
535 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
536 			continue;
537 		}
538 		charge = 0;
539 		/*
540 		 * Don't duplicate many vmas if we've been oom-killed (for
541 		 * example)
542 		 */
543 		if (fatal_signal_pending(current)) {
544 			retval = -EINTR;
545 			goto out;
546 		}
547 		if (mpnt->vm_flags & VM_ACCOUNT) {
548 			unsigned long len = vma_pages(mpnt);
549 
550 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
551 				goto fail_nomem;
552 			charge = len;
553 		}
554 		tmp = vm_area_dup(mpnt);
555 		if (!tmp)
556 			goto fail_nomem;
557 		retval = vma_dup_policy(mpnt, tmp);
558 		if (retval)
559 			goto fail_nomem_policy;
560 		tmp->vm_mm = mm;
561 		retval = dup_userfaultfd(tmp, &uf);
562 		if (retval)
563 			goto fail_nomem_anon_vma_fork;
564 		if (tmp->vm_flags & VM_WIPEONFORK) {
565 			/*
566 			 * VM_WIPEONFORK gets a clean slate in the child.
567 			 * Don't prepare anon_vma until fault since we don't
568 			 * copy page for current vma.
569 			 */
570 			tmp->anon_vma = NULL;
571 		} else if (anon_vma_fork(tmp, mpnt))
572 			goto fail_nomem_anon_vma_fork;
573 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
574 		file = tmp->vm_file;
575 		if (file) {
576 			struct address_space *mapping = file->f_mapping;
577 
578 			get_file(file);
579 			i_mmap_lock_write(mapping);
580 			if (tmp->vm_flags & VM_SHARED)
581 				mapping_allow_writable(mapping);
582 			flush_dcache_mmap_lock(mapping);
583 			/* insert tmp into the share list, just after mpnt */
584 			vma_interval_tree_insert_after(tmp, mpnt,
585 					&mapping->i_mmap);
586 			flush_dcache_mmap_unlock(mapping);
587 			i_mmap_unlock_write(mapping);
588 		}
589 
590 		/*
591 		 * Clear hugetlb-related page reserves for children. This only
592 		 * affects MAP_PRIVATE mappings. Faults generated by the child
593 		 * are not guaranteed to succeed, even if read-only
594 		 */
595 		if (is_vm_hugetlb_page(tmp))
596 			reset_vma_resv_huge_pages(tmp);
597 
598 		/*
599 		 * Link in the new vma and copy the page table entries.
600 		 */
601 		*pprev = tmp;
602 		pprev = &tmp->vm_next;
603 		tmp->vm_prev = prev;
604 		prev = tmp;
605 
606 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
607 		rb_link = &tmp->vm_rb.rb_right;
608 		rb_parent = &tmp->vm_rb;
609 
610 		mm->map_count++;
611 		if (!(tmp->vm_flags & VM_WIPEONFORK))
612 			retval = copy_page_range(tmp, mpnt);
613 
614 		if (tmp->vm_ops && tmp->vm_ops->open)
615 			tmp->vm_ops->open(tmp);
616 
617 		if (retval)
618 			goto out;
619 	}
620 	/* a new mm has just been created */
621 	retval = arch_dup_mmap(oldmm, mm);
622 out:
623 	mmap_write_unlock(mm);
624 	flush_tlb_mm(oldmm);
625 	mmap_write_unlock(oldmm);
626 	dup_userfaultfd_complete(&uf);
627 fail_uprobe_end:
628 	uprobe_end_dup_mmap();
629 	return retval;
630 fail_nomem_anon_vma_fork:
631 	mpol_put(vma_policy(tmp));
632 fail_nomem_policy:
633 	vm_area_free(tmp);
634 fail_nomem:
635 	retval = -ENOMEM;
636 	vm_unacct_memory(charge);
637 	goto out;
638 }
639 
640 static inline int mm_alloc_pgd(struct mm_struct *mm)
641 {
642 	mm->pgd = pgd_alloc(mm);
643 	if (unlikely(!mm->pgd))
644 		return -ENOMEM;
645 	return 0;
646 }
647 
648 static inline void mm_free_pgd(struct mm_struct *mm)
649 {
650 	pgd_free(mm, mm->pgd);
651 }
652 #else
653 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
654 {
655 	mmap_write_lock(oldmm);
656 	dup_mm_exe_file(mm, oldmm);
657 	mmap_write_unlock(oldmm);
658 	return 0;
659 }
660 #define mm_alloc_pgd(mm)	(0)
661 #define mm_free_pgd(mm)
662 #endif /* CONFIG_MMU */
663 
664 static void check_mm(struct mm_struct *mm)
665 {
666 	int i;
667 
668 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
669 			 "Please make sure 'struct resident_page_types[]' is updated as well");
670 
671 	for (i = 0; i < NR_MM_COUNTERS; i++) {
672 		long x = atomic_long_read(&mm->rss_stat.count[i]);
673 
674 		if (unlikely(x))
675 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
676 				 mm, resident_page_types[i], x);
677 	}
678 
679 	if (mm_pgtables_bytes(mm))
680 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
681 				mm_pgtables_bytes(mm));
682 
683 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
684 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
685 #endif
686 }
687 
688 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
689 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
690 
691 /*
692  * Called when the last reference to the mm
693  * is dropped: either by a lazy thread or by
694  * mmput. Free the page directory and the mm.
695  */
696 void __mmdrop(struct mm_struct *mm)
697 {
698 	BUG_ON(mm == &init_mm);
699 	WARN_ON_ONCE(mm == current->mm);
700 	WARN_ON_ONCE(mm == current->active_mm);
701 	mm_free_pgd(mm);
702 	destroy_context(mm);
703 	mmu_notifier_subscriptions_destroy(mm);
704 	check_mm(mm);
705 	put_user_ns(mm->user_ns);
706 	free_mm(mm);
707 }
708 EXPORT_SYMBOL_GPL(__mmdrop);
709 
710 static void mmdrop_async_fn(struct work_struct *work)
711 {
712 	struct mm_struct *mm;
713 
714 	mm = container_of(work, struct mm_struct, async_put_work);
715 	__mmdrop(mm);
716 }
717 
718 static void mmdrop_async(struct mm_struct *mm)
719 {
720 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
721 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
722 		schedule_work(&mm->async_put_work);
723 	}
724 }
725 
726 static inline void free_signal_struct(struct signal_struct *sig)
727 {
728 	taskstats_tgid_free(sig);
729 	sched_autogroup_exit(sig);
730 	/*
731 	 * __mmdrop is not safe to call from softirq context on x86 due to
732 	 * pgd_dtor so postpone it to the async context
733 	 */
734 	if (sig->oom_mm)
735 		mmdrop_async(sig->oom_mm);
736 	kmem_cache_free(signal_cachep, sig);
737 }
738 
739 static inline void put_signal_struct(struct signal_struct *sig)
740 {
741 	if (refcount_dec_and_test(&sig->sigcnt))
742 		free_signal_struct(sig);
743 }
744 
745 void __put_task_struct(struct task_struct *tsk)
746 {
747 	WARN_ON(!tsk->exit_state);
748 	WARN_ON(refcount_read(&tsk->usage));
749 	WARN_ON(tsk == current);
750 
751 	io_uring_free(tsk);
752 	cgroup_free(tsk);
753 	task_numa_free(tsk, true);
754 	security_task_free(tsk);
755 	bpf_task_storage_free(tsk);
756 	exit_creds(tsk);
757 	delayacct_tsk_free(tsk);
758 	put_signal_struct(tsk->signal);
759 	sched_core_free(tsk);
760 	free_task(tsk);
761 }
762 EXPORT_SYMBOL_GPL(__put_task_struct);
763 
764 void __init __weak arch_task_cache_init(void) { }
765 
766 /*
767  * set_max_threads
768  */
769 static void set_max_threads(unsigned int max_threads_suggested)
770 {
771 	u64 threads;
772 	unsigned long nr_pages = totalram_pages();
773 
774 	/*
775 	 * The number of threads shall be limited such that the thread
776 	 * structures may only consume a small part of the available memory.
777 	 */
778 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
779 		threads = MAX_THREADS;
780 	else
781 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
782 				    (u64) THREAD_SIZE * 8UL);
783 
784 	if (threads > max_threads_suggested)
785 		threads = max_threads_suggested;
786 
787 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
788 }
789 
790 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
791 /* Initialized by the architecture: */
792 int arch_task_struct_size __read_mostly;
793 #endif
794 
795 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
796 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
797 {
798 	/* Fetch thread_struct whitelist for the architecture. */
799 	arch_thread_struct_whitelist(offset, size);
800 
801 	/*
802 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
803 	 * adjust offset to position of thread_struct in task_struct.
804 	 */
805 	if (unlikely(*size == 0))
806 		*offset = 0;
807 	else
808 		*offset += offsetof(struct task_struct, thread);
809 }
810 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
811 
812 void __init fork_init(void)
813 {
814 	int i;
815 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
816 #ifndef ARCH_MIN_TASKALIGN
817 #define ARCH_MIN_TASKALIGN	0
818 #endif
819 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
820 	unsigned long useroffset, usersize;
821 
822 	/* create a slab on which task_structs can be allocated */
823 	task_struct_whitelist(&useroffset, &usersize);
824 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
825 			arch_task_struct_size, align,
826 			SLAB_PANIC|SLAB_ACCOUNT,
827 			useroffset, usersize, NULL);
828 #endif
829 
830 	/* do the arch specific task caches init */
831 	arch_task_cache_init();
832 
833 	set_max_threads(MAX_THREADS);
834 
835 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
836 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
837 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
838 		init_task.signal->rlim[RLIMIT_NPROC];
839 
840 	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
841 		init_user_ns.ucount_max[i] = max_threads/2;
842 
843 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
844 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
845 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
846 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
847 
848 #ifdef CONFIG_VMAP_STACK
849 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
850 			  NULL, free_vm_stack_cache);
851 #endif
852 
853 	scs_init();
854 
855 	lockdep_init_task(&init_task);
856 	uprobes_init();
857 }
858 
859 int __weak arch_dup_task_struct(struct task_struct *dst,
860 					       struct task_struct *src)
861 {
862 	*dst = *src;
863 	return 0;
864 }
865 
866 void set_task_stack_end_magic(struct task_struct *tsk)
867 {
868 	unsigned long *stackend;
869 
870 	stackend = end_of_stack(tsk);
871 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
872 }
873 
874 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
875 {
876 	struct task_struct *tsk;
877 	unsigned long *stack;
878 	struct vm_struct *stack_vm_area __maybe_unused;
879 	int err;
880 
881 	if (node == NUMA_NO_NODE)
882 		node = tsk_fork_get_node(orig);
883 	tsk = alloc_task_struct_node(node);
884 	if (!tsk)
885 		return NULL;
886 
887 	stack = alloc_thread_stack_node(tsk, node);
888 	if (!stack)
889 		goto free_tsk;
890 
891 	if (memcg_charge_kernel_stack(tsk))
892 		goto free_stack;
893 
894 	stack_vm_area = task_stack_vm_area(tsk);
895 
896 	err = arch_dup_task_struct(tsk, orig);
897 
898 	/*
899 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
900 	 * sure they're properly initialized before using any stack-related
901 	 * functions again.
902 	 */
903 	tsk->stack = stack;
904 #ifdef CONFIG_VMAP_STACK
905 	tsk->stack_vm_area = stack_vm_area;
906 #endif
907 #ifdef CONFIG_THREAD_INFO_IN_TASK
908 	refcount_set(&tsk->stack_refcount, 1);
909 #endif
910 
911 	if (err)
912 		goto free_stack;
913 
914 	err = scs_prepare(tsk, node);
915 	if (err)
916 		goto free_stack;
917 
918 #ifdef CONFIG_SECCOMP
919 	/*
920 	 * We must handle setting up seccomp filters once we're under
921 	 * the sighand lock in case orig has changed between now and
922 	 * then. Until then, filter must be NULL to avoid messing up
923 	 * the usage counts on the error path calling free_task.
924 	 */
925 	tsk->seccomp.filter = NULL;
926 #endif
927 
928 	setup_thread_stack(tsk, orig);
929 	clear_user_return_notifier(tsk);
930 	clear_tsk_need_resched(tsk);
931 	set_task_stack_end_magic(tsk);
932 	clear_syscall_work_syscall_user_dispatch(tsk);
933 
934 #ifdef CONFIG_STACKPROTECTOR
935 	tsk->stack_canary = get_random_canary();
936 #endif
937 	if (orig->cpus_ptr == &orig->cpus_mask)
938 		tsk->cpus_ptr = &tsk->cpus_mask;
939 	dup_user_cpus_ptr(tsk, orig, node);
940 
941 	/*
942 	 * One for the user space visible state that goes away when reaped.
943 	 * One for the scheduler.
944 	 */
945 	refcount_set(&tsk->rcu_users, 2);
946 	/* One for the rcu users */
947 	refcount_set(&tsk->usage, 1);
948 #ifdef CONFIG_BLK_DEV_IO_TRACE
949 	tsk->btrace_seq = 0;
950 #endif
951 	tsk->splice_pipe = NULL;
952 	tsk->task_frag.page = NULL;
953 	tsk->wake_q.next = NULL;
954 	tsk->worker_private = NULL;
955 
956 	account_kernel_stack(tsk, 1);
957 
958 	kcov_task_init(tsk);
959 	kmap_local_fork(tsk);
960 
961 #ifdef CONFIG_FAULT_INJECTION
962 	tsk->fail_nth = 0;
963 #endif
964 
965 #ifdef CONFIG_BLK_CGROUP
966 	tsk->throttle_queue = NULL;
967 	tsk->use_memdelay = 0;
968 #endif
969 
970 #ifdef CONFIG_MEMCG
971 	tsk->active_memcg = NULL;
972 #endif
973 	return tsk;
974 
975 free_stack:
976 	free_thread_stack(tsk);
977 free_tsk:
978 	free_task_struct(tsk);
979 	return NULL;
980 }
981 
982 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
983 
984 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
985 
986 static int __init coredump_filter_setup(char *s)
987 {
988 	default_dump_filter =
989 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
990 		MMF_DUMP_FILTER_MASK;
991 	return 1;
992 }
993 
994 __setup("coredump_filter=", coredump_filter_setup);
995 
996 #include <linux/init_task.h>
997 
998 static void mm_init_aio(struct mm_struct *mm)
999 {
1000 #ifdef CONFIG_AIO
1001 	spin_lock_init(&mm->ioctx_lock);
1002 	mm->ioctx_table = NULL;
1003 #endif
1004 }
1005 
1006 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1007 					   struct task_struct *p)
1008 {
1009 #ifdef CONFIG_MEMCG
1010 	if (mm->owner == p)
1011 		WRITE_ONCE(mm->owner, NULL);
1012 #endif
1013 }
1014 
1015 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1016 {
1017 #ifdef CONFIG_MEMCG
1018 	mm->owner = p;
1019 #endif
1020 }
1021 
1022 static void mm_init_pasid(struct mm_struct *mm)
1023 {
1024 #ifdef CONFIG_IOMMU_SUPPORT
1025 	mm->pasid = INIT_PASID;
1026 #endif
1027 }
1028 
1029 static void mm_init_uprobes_state(struct mm_struct *mm)
1030 {
1031 #ifdef CONFIG_UPROBES
1032 	mm->uprobes_state.xol_area = NULL;
1033 #endif
1034 }
1035 
1036 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1037 	struct user_namespace *user_ns)
1038 {
1039 	mm->mmap = NULL;
1040 	mm->mm_rb = RB_ROOT;
1041 	mm->vmacache_seqnum = 0;
1042 	atomic_set(&mm->mm_users, 1);
1043 	atomic_set(&mm->mm_count, 1);
1044 	seqcount_init(&mm->write_protect_seq);
1045 	mmap_init_lock(mm);
1046 	INIT_LIST_HEAD(&mm->mmlist);
1047 	mm_pgtables_bytes_init(mm);
1048 	mm->map_count = 0;
1049 	mm->locked_vm = 0;
1050 	atomic64_set(&mm->pinned_vm, 0);
1051 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1052 	spin_lock_init(&mm->page_table_lock);
1053 	spin_lock_init(&mm->arg_lock);
1054 	mm_init_cpumask(mm);
1055 	mm_init_aio(mm);
1056 	mm_init_owner(mm, p);
1057 	mm_init_pasid(mm);
1058 	RCU_INIT_POINTER(mm->exe_file, NULL);
1059 	mmu_notifier_subscriptions_init(mm);
1060 	init_tlb_flush_pending(mm);
1061 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1062 	mm->pmd_huge_pte = NULL;
1063 #endif
1064 	mm_init_uprobes_state(mm);
1065 	hugetlb_count_init(mm);
1066 
1067 	if (current->mm) {
1068 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1069 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1070 	} else {
1071 		mm->flags = default_dump_filter;
1072 		mm->def_flags = 0;
1073 	}
1074 
1075 	if (mm_alloc_pgd(mm))
1076 		goto fail_nopgd;
1077 
1078 	if (init_new_context(p, mm))
1079 		goto fail_nocontext;
1080 
1081 	mm->user_ns = get_user_ns(user_ns);
1082 	return mm;
1083 
1084 fail_nocontext:
1085 	mm_free_pgd(mm);
1086 fail_nopgd:
1087 	free_mm(mm);
1088 	return NULL;
1089 }
1090 
1091 /*
1092  * Allocate and initialize an mm_struct.
1093  */
1094 struct mm_struct *mm_alloc(void)
1095 {
1096 	struct mm_struct *mm;
1097 
1098 	mm = allocate_mm();
1099 	if (!mm)
1100 		return NULL;
1101 
1102 	memset(mm, 0, sizeof(*mm));
1103 	return mm_init(mm, current, current_user_ns());
1104 }
1105 
1106 static inline void __mmput(struct mm_struct *mm)
1107 {
1108 	VM_BUG_ON(atomic_read(&mm->mm_users));
1109 
1110 	uprobe_clear_state(mm);
1111 	exit_aio(mm);
1112 	ksm_exit(mm);
1113 	khugepaged_exit(mm); /* must run before exit_mmap */
1114 	exit_mmap(mm);
1115 	mm_put_huge_zero_page(mm);
1116 	set_mm_exe_file(mm, NULL);
1117 	if (!list_empty(&mm->mmlist)) {
1118 		spin_lock(&mmlist_lock);
1119 		list_del(&mm->mmlist);
1120 		spin_unlock(&mmlist_lock);
1121 	}
1122 	if (mm->binfmt)
1123 		module_put(mm->binfmt->module);
1124 	mmdrop(mm);
1125 }
1126 
1127 /*
1128  * Decrement the use count and release all resources for an mm.
1129  */
1130 void mmput(struct mm_struct *mm)
1131 {
1132 	might_sleep();
1133 
1134 	if (atomic_dec_and_test(&mm->mm_users))
1135 		__mmput(mm);
1136 }
1137 EXPORT_SYMBOL_GPL(mmput);
1138 
1139 #ifdef CONFIG_MMU
1140 static void mmput_async_fn(struct work_struct *work)
1141 {
1142 	struct mm_struct *mm = container_of(work, struct mm_struct,
1143 					    async_put_work);
1144 
1145 	__mmput(mm);
1146 }
1147 
1148 void mmput_async(struct mm_struct *mm)
1149 {
1150 	if (atomic_dec_and_test(&mm->mm_users)) {
1151 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1152 		schedule_work(&mm->async_put_work);
1153 	}
1154 }
1155 #endif
1156 
1157 /**
1158  * set_mm_exe_file - change a reference to the mm's executable file
1159  *
1160  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1161  *
1162  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1163  * invocations: in mmput() nobody alive left, in execve task is single
1164  * threaded.
1165  *
1166  * Can only fail if new_exe_file != NULL.
1167  */
1168 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1169 {
1170 	struct file *old_exe_file;
1171 
1172 	/*
1173 	 * It is safe to dereference the exe_file without RCU as
1174 	 * this function is only called if nobody else can access
1175 	 * this mm -- see comment above for justification.
1176 	 */
1177 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1178 
1179 	if (new_exe_file) {
1180 		/*
1181 		 * We expect the caller (i.e., sys_execve) to already denied
1182 		 * write access, so this is unlikely to fail.
1183 		 */
1184 		if (unlikely(deny_write_access(new_exe_file)))
1185 			return -EACCES;
1186 		get_file(new_exe_file);
1187 	}
1188 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1189 	if (old_exe_file) {
1190 		allow_write_access(old_exe_file);
1191 		fput(old_exe_file);
1192 	}
1193 	return 0;
1194 }
1195 
1196 /**
1197  * replace_mm_exe_file - replace a reference to the mm's executable file
1198  *
1199  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1200  * dealing with concurrent invocation and without grabbing the mmap lock in
1201  * write mode.
1202  *
1203  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1204  */
1205 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1206 {
1207 	struct vm_area_struct *vma;
1208 	struct file *old_exe_file;
1209 	int ret = 0;
1210 
1211 	/* Forbid mm->exe_file change if old file still mapped. */
1212 	old_exe_file = get_mm_exe_file(mm);
1213 	if (old_exe_file) {
1214 		mmap_read_lock(mm);
1215 		for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1216 			if (!vma->vm_file)
1217 				continue;
1218 			if (path_equal(&vma->vm_file->f_path,
1219 				       &old_exe_file->f_path))
1220 				ret = -EBUSY;
1221 		}
1222 		mmap_read_unlock(mm);
1223 		fput(old_exe_file);
1224 		if (ret)
1225 			return ret;
1226 	}
1227 
1228 	/* set the new file, lockless */
1229 	ret = deny_write_access(new_exe_file);
1230 	if (ret)
1231 		return -EACCES;
1232 	get_file(new_exe_file);
1233 
1234 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1235 	if (old_exe_file) {
1236 		/*
1237 		 * Don't race with dup_mmap() getting the file and disallowing
1238 		 * write access while someone might open the file writable.
1239 		 */
1240 		mmap_read_lock(mm);
1241 		allow_write_access(old_exe_file);
1242 		fput(old_exe_file);
1243 		mmap_read_unlock(mm);
1244 	}
1245 	return 0;
1246 }
1247 
1248 /**
1249  * get_mm_exe_file - acquire a reference to the mm's executable file
1250  *
1251  * Returns %NULL if mm has no associated executable file.
1252  * User must release file via fput().
1253  */
1254 struct file *get_mm_exe_file(struct mm_struct *mm)
1255 {
1256 	struct file *exe_file;
1257 
1258 	rcu_read_lock();
1259 	exe_file = rcu_dereference(mm->exe_file);
1260 	if (exe_file && !get_file_rcu(exe_file))
1261 		exe_file = NULL;
1262 	rcu_read_unlock();
1263 	return exe_file;
1264 }
1265 
1266 /**
1267  * get_task_exe_file - acquire a reference to the task's executable file
1268  *
1269  * Returns %NULL if task's mm (if any) has no associated executable file or
1270  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1271  * User must release file via fput().
1272  */
1273 struct file *get_task_exe_file(struct task_struct *task)
1274 {
1275 	struct file *exe_file = NULL;
1276 	struct mm_struct *mm;
1277 
1278 	task_lock(task);
1279 	mm = task->mm;
1280 	if (mm) {
1281 		if (!(task->flags & PF_KTHREAD))
1282 			exe_file = get_mm_exe_file(mm);
1283 	}
1284 	task_unlock(task);
1285 	return exe_file;
1286 }
1287 
1288 /**
1289  * get_task_mm - acquire a reference to the task's mm
1290  *
1291  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1292  * this kernel workthread has transiently adopted a user mm with use_mm,
1293  * to do its AIO) is not set and if so returns a reference to it, after
1294  * bumping up the use count.  User must release the mm via mmput()
1295  * after use.  Typically used by /proc and ptrace.
1296  */
1297 struct mm_struct *get_task_mm(struct task_struct *task)
1298 {
1299 	struct mm_struct *mm;
1300 
1301 	task_lock(task);
1302 	mm = task->mm;
1303 	if (mm) {
1304 		if (task->flags & PF_KTHREAD)
1305 			mm = NULL;
1306 		else
1307 			mmget(mm);
1308 	}
1309 	task_unlock(task);
1310 	return mm;
1311 }
1312 EXPORT_SYMBOL_GPL(get_task_mm);
1313 
1314 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1315 {
1316 	struct mm_struct *mm;
1317 	int err;
1318 
1319 	err =  down_read_killable(&task->signal->exec_update_lock);
1320 	if (err)
1321 		return ERR_PTR(err);
1322 
1323 	mm = get_task_mm(task);
1324 	if (mm && mm != current->mm &&
1325 			!ptrace_may_access(task, mode)) {
1326 		mmput(mm);
1327 		mm = ERR_PTR(-EACCES);
1328 	}
1329 	up_read(&task->signal->exec_update_lock);
1330 
1331 	return mm;
1332 }
1333 
1334 static void complete_vfork_done(struct task_struct *tsk)
1335 {
1336 	struct completion *vfork;
1337 
1338 	task_lock(tsk);
1339 	vfork = tsk->vfork_done;
1340 	if (likely(vfork)) {
1341 		tsk->vfork_done = NULL;
1342 		complete(vfork);
1343 	}
1344 	task_unlock(tsk);
1345 }
1346 
1347 static int wait_for_vfork_done(struct task_struct *child,
1348 				struct completion *vfork)
1349 {
1350 	int killed;
1351 
1352 	freezer_do_not_count();
1353 	cgroup_enter_frozen();
1354 	killed = wait_for_completion_killable(vfork);
1355 	cgroup_leave_frozen(false);
1356 	freezer_count();
1357 
1358 	if (killed) {
1359 		task_lock(child);
1360 		child->vfork_done = NULL;
1361 		task_unlock(child);
1362 	}
1363 
1364 	put_task_struct(child);
1365 	return killed;
1366 }
1367 
1368 /* Please note the differences between mmput and mm_release.
1369  * mmput is called whenever we stop holding onto a mm_struct,
1370  * error success whatever.
1371  *
1372  * mm_release is called after a mm_struct has been removed
1373  * from the current process.
1374  *
1375  * This difference is important for error handling, when we
1376  * only half set up a mm_struct for a new process and need to restore
1377  * the old one.  Because we mmput the new mm_struct before
1378  * restoring the old one. . .
1379  * Eric Biederman 10 January 1998
1380  */
1381 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1382 {
1383 	uprobe_free_utask(tsk);
1384 
1385 	/* Get rid of any cached register state */
1386 	deactivate_mm(tsk, mm);
1387 
1388 	/*
1389 	 * Signal userspace if we're not exiting with a core dump
1390 	 * because we want to leave the value intact for debugging
1391 	 * purposes.
1392 	 */
1393 	if (tsk->clear_child_tid) {
1394 		if (atomic_read(&mm->mm_users) > 1) {
1395 			/*
1396 			 * We don't check the error code - if userspace has
1397 			 * not set up a proper pointer then tough luck.
1398 			 */
1399 			put_user(0, tsk->clear_child_tid);
1400 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1401 					1, NULL, NULL, 0, 0);
1402 		}
1403 		tsk->clear_child_tid = NULL;
1404 	}
1405 
1406 	/*
1407 	 * All done, finally we can wake up parent and return this mm to him.
1408 	 * Also kthread_stop() uses this completion for synchronization.
1409 	 */
1410 	if (tsk->vfork_done)
1411 		complete_vfork_done(tsk);
1412 }
1413 
1414 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1415 {
1416 	futex_exit_release(tsk);
1417 	mm_release(tsk, mm);
1418 }
1419 
1420 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1421 {
1422 	futex_exec_release(tsk);
1423 	mm_release(tsk, mm);
1424 }
1425 
1426 /**
1427  * dup_mm() - duplicates an existing mm structure
1428  * @tsk: the task_struct with which the new mm will be associated.
1429  * @oldmm: the mm to duplicate.
1430  *
1431  * Allocates a new mm structure and duplicates the provided @oldmm structure
1432  * content into it.
1433  *
1434  * Return: the duplicated mm or NULL on failure.
1435  */
1436 static struct mm_struct *dup_mm(struct task_struct *tsk,
1437 				struct mm_struct *oldmm)
1438 {
1439 	struct mm_struct *mm;
1440 	int err;
1441 
1442 	mm = allocate_mm();
1443 	if (!mm)
1444 		goto fail_nomem;
1445 
1446 	memcpy(mm, oldmm, sizeof(*mm));
1447 
1448 	if (!mm_init(mm, tsk, mm->user_ns))
1449 		goto fail_nomem;
1450 
1451 	err = dup_mmap(mm, oldmm);
1452 	if (err)
1453 		goto free_pt;
1454 
1455 	mm->hiwater_rss = get_mm_rss(mm);
1456 	mm->hiwater_vm = mm->total_vm;
1457 
1458 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1459 		goto free_pt;
1460 
1461 	return mm;
1462 
1463 free_pt:
1464 	/* don't put binfmt in mmput, we haven't got module yet */
1465 	mm->binfmt = NULL;
1466 	mm_init_owner(mm, NULL);
1467 	mmput(mm);
1468 
1469 fail_nomem:
1470 	return NULL;
1471 }
1472 
1473 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1474 {
1475 	struct mm_struct *mm, *oldmm;
1476 
1477 	tsk->min_flt = tsk->maj_flt = 0;
1478 	tsk->nvcsw = tsk->nivcsw = 0;
1479 #ifdef CONFIG_DETECT_HUNG_TASK
1480 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1481 	tsk->last_switch_time = 0;
1482 #endif
1483 
1484 	tsk->mm = NULL;
1485 	tsk->active_mm = NULL;
1486 
1487 	/*
1488 	 * Are we cloning a kernel thread?
1489 	 *
1490 	 * We need to steal a active VM for that..
1491 	 */
1492 	oldmm = current->mm;
1493 	if (!oldmm)
1494 		return 0;
1495 
1496 	/* initialize the new vmacache entries */
1497 	vmacache_flush(tsk);
1498 
1499 	if (clone_flags & CLONE_VM) {
1500 		mmget(oldmm);
1501 		mm = oldmm;
1502 	} else {
1503 		mm = dup_mm(tsk, current->mm);
1504 		if (!mm)
1505 			return -ENOMEM;
1506 	}
1507 
1508 	tsk->mm = mm;
1509 	tsk->active_mm = mm;
1510 	return 0;
1511 }
1512 
1513 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1514 {
1515 	struct fs_struct *fs = current->fs;
1516 	if (clone_flags & CLONE_FS) {
1517 		/* tsk->fs is already what we want */
1518 		spin_lock(&fs->lock);
1519 		if (fs->in_exec) {
1520 			spin_unlock(&fs->lock);
1521 			return -EAGAIN;
1522 		}
1523 		fs->users++;
1524 		spin_unlock(&fs->lock);
1525 		return 0;
1526 	}
1527 	tsk->fs = copy_fs_struct(fs);
1528 	if (!tsk->fs)
1529 		return -ENOMEM;
1530 	return 0;
1531 }
1532 
1533 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1534 {
1535 	struct files_struct *oldf, *newf;
1536 	int error = 0;
1537 
1538 	/*
1539 	 * A background process may not have any files ...
1540 	 */
1541 	oldf = current->files;
1542 	if (!oldf)
1543 		goto out;
1544 
1545 	if (clone_flags & CLONE_FILES) {
1546 		atomic_inc(&oldf->count);
1547 		goto out;
1548 	}
1549 
1550 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1551 	if (!newf)
1552 		goto out;
1553 
1554 	tsk->files = newf;
1555 	error = 0;
1556 out:
1557 	return error;
1558 }
1559 
1560 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1561 {
1562 	struct sighand_struct *sig;
1563 
1564 	if (clone_flags & CLONE_SIGHAND) {
1565 		refcount_inc(&current->sighand->count);
1566 		return 0;
1567 	}
1568 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1569 	RCU_INIT_POINTER(tsk->sighand, sig);
1570 	if (!sig)
1571 		return -ENOMEM;
1572 
1573 	refcount_set(&sig->count, 1);
1574 	spin_lock_irq(&current->sighand->siglock);
1575 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1576 	spin_unlock_irq(&current->sighand->siglock);
1577 
1578 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1579 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1580 		flush_signal_handlers(tsk, 0);
1581 
1582 	return 0;
1583 }
1584 
1585 void __cleanup_sighand(struct sighand_struct *sighand)
1586 {
1587 	if (refcount_dec_and_test(&sighand->count)) {
1588 		signalfd_cleanup(sighand);
1589 		/*
1590 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1591 		 * without an RCU grace period, see __lock_task_sighand().
1592 		 */
1593 		kmem_cache_free(sighand_cachep, sighand);
1594 	}
1595 }
1596 
1597 /*
1598  * Initialize POSIX timer handling for a thread group.
1599  */
1600 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1601 {
1602 	struct posix_cputimers *pct = &sig->posix_cputimers;
1603 	unsigned long cpu_limit;
1604 
1605 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1606 	posix_cputimers_group_init(pct, cpu_limit);
1607 }
1608 
1609 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1610 {
1611 	struct signal_struct *sig;
1612 
1613 	if (clone_flags & CLONE_THREAD)
1614 		return 0;
1615 
1616 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1617 	tsk->signal = sig;
1618 	if (!sig)
1619 		return -ENOMEM;
1620 
1621 	sig->nr_threads = 1;
1622 	atomic_set(&sig->live, 1);
1623 	refcount_set(&sig->sigcnt, 1);
1624 
1625 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1626 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1627 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1628 
1629 	init_waitqueue_head(&sig->wait_chldexit);
1630 	sig->curr_target = tsk;
1631 	init_sigpending(&sig->shared_pending);
1632 	INIT_HLIST_HEAD(&sig->multiprocess);
1633 	seqlock_init(&sig->stats_lock);
1634 	prev_cputime_init(&sig->prev_cputime);
1635 
1636 #ifdef CONFIG_POSIX_TIMERS
1637 	INIT_LIST_HEAD(&sig->posix_timers);
1638 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1639 	sig->real_timer.function = it_real_fn;
1640 #endif
1641 
1642 	task_lock(current->group_leader);
1643 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1644 	task_unlock(current->group_leader);
1645 
1646 	posix_cpu_timers_init_group(sig);
1647 
1648 	tty_audit_fork(sig);
1649 	sched_autogroup_fork(sig);
1650 
1651 	sig->oom_score_adj = current->signal->oom_score_adj;
1652 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1653 
1654 	mutex_init(&sig->cred_guard_mutex);
1655 	init_rwsem(&sig->exec_update_lock);
1656 
1657 	return 0;
1658 }
1659 
1660 static void copy_seccomp(struct task_struct *p)
1661 {
1662 #ifdef CONFIG_SECCOMP
1663 	/*
1664 	 * Must be called with sighand->lock held, which is common to
1665 	 * all threads in the group. Holding cred_guard_mutex is not
1666 	 * needed because this new task is not yet running and cannot
1667 	 * be racing exec.
1668 	 */
1669 	assert_spin_locked(&current->sighand->siglock);
1670 
1671 	/* Ref-count the new filter user, and assign it. */
1672 	get_seccomp_filter(current);
1673 	p->seccomp = current->seccomp;
1674 
1675 	/*
1676 	 * Explicitly enable no_new_privs here in case it got set
1677 	 * between the task_struct being duplicated and holding the
1678 	 * sighand lock. The seccomp state and nnp must be in sync.
1679 	 */
1680 	if (task_no_new_privs(current))
1681 		task_set_no_new_privs(p);
1682 
1683 	/*
1684 	 * If the parent gained a seccomp mode after copying thread
1685 	 * flags and between before we held the sighand lock, we have
1686 	 * to manually enable the seccomp thread flag here.
1687 	 */
1688 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1689 		set_task_syscall_work(p, SECCOMP);
1690 #endif
1691 }
1692 
1693 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1694 {
1695 	current->clear_child_tid = tidptr;
1696 
1697 	return task_pid_vnr(current);
1698 }
1699 
1700 static void rt_mutex_init_task(struct task_struct *p)
1701 {
1702 	raw_spin_lock_init(&p->pi_lock);
1703 #ifdef CONFIG_RT_MUTEXES
1704 	p->pi_waiters = RB_ROOT_CACHED;
1705 	p->pi_top_task = NULL;
1706 	p->pi_blocked_on = NULL;
1707 #endif
1708 }
1709 
1710 static inline void init_task_pid_links(struct task_struct *task)
1711 {
1712 	enum pid_type type;
1713 
1714 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1715 		INIT_HLIST_NODE(&task->pid_links[type]);
1716 }
1717 
1718 static inline void
1719 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1720 {
1721 	if (type == PIDTYPE_PID)
1722 		task->thread_pid = pid;
1723 	else
1724 		task->signal->pids[type] = pid;
1725 }
1726 
1727 static inline void rcu_copy_process(struct task_struct *p)
1728 {
1729 #ifdef CONFIG_PREEMPT_RCU
1730 	p->rcu_read_lock_nesting = 0;
1731 	p->rcu_read_unlock_special.s = 0;
1732 	p->rcu_blocked_node = NULL;
1733 	INIT_LIST_HEAD(&p->rcu_node_entry);
1734 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1735 #ifdef CONFIG_TASKS_RCU
1736 	p->rcu_tasks_holdout = false;
1737 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1738 	p->rcu_tasks_idle_cpu = -1;
1739 #endif /* #ifdef CONFIG_TASKS_RCU */
1740 #ifdef CONFIG_TASKS_TRACE_RCU
1741 	p->trc_reader_nesting = 0;
1742 	p->trc_reader_special.s = 0;
1743 	INIT_LIST_HEAD(&p->trc_holdout_list);
1744 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1745 }
1746 
1747 struct pid *pidfd_pid(const struct file *file)
1748 {
1749 	if (file->f_op == &pidfd_fops)
1750 		return file->private_data;
1751 
1752 	return ERR_PTR(-EBADF);
1753 }
1754 
1755 static int pidfd_release(struct inode *inode, struct file *file)
1756 {
1757 	struct pid *pid = file->private_data;
1758 
1759 	file->private_data = NULL;
1760 	put_pid(pid);
1761 	return 0;
1762 }
1763 
1764 #ifdef CONFIG_PROC_FS
1765 /**
1766  * pidfd_show_fdinfo - print information about a pidfd
1767  * @m: proc fdinfo file
1768  * @f: file referencing a pidfd
1769  *
1770  * Pid:
1771  * This function will print the pid that a given pidfd refers to in the
1772  * pid namespace of the procfs instance.
1773  * If the pid namespace of the process is not a descendant of the pid
1774  * namespace of the procfs instance 0 will be shown as its pid. This is
1775  * similar to calling getppid() on a process whose parent is outside of
1776  * its pid namespace.
1777  *
1778  * NSpid:
1779  * If pid namespaces are supported then this function will also print
1780  * the pid of a given pidfd refers to for all descendant pid namespaces
1781  * starting from the current pid namespace of the instance, i.e. the
1782  * Pid field and the first entry in the NSpid field will be identical.
1783  * If the pid namespace of the process is not a descendant of the pid
1784  * namespace of the procfs instance 0 will be shown as its first NSpid
1785  * entry and no others will be shown.
1786  * Note that this differs from the Pid and NSpid fields in
1787  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1788  * the  pid namespace of the procfs instance. The difference becomes
1789  * obvious when sending around a pidfd between pid namespaces from a
1790  * different branch of the tree, i.e. where no ancestral relation is
1791  * present between the pid namespaces:
1792  * - create two new pid namespaces ns1 and ns2 in the initial pid
1793  *   namespace (also take care to create new mount namespaces in the
1794  *   new pid namespace and mount procfs)
1795  * - create a process with a pidfd in ns1
1796  * - send pidfd from ns1 to ns2
1797  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1798  *   have exactly one entry, which is 0
1799  */
1800 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1801 {
1802 	struct pid *pid = f->private_data;
1803 	struct pid_namespace *ns;
1804 	pid_t nr = -1;
1805 
1806 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1807 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1808 		nr = pid_nr_ns(pid, ns);
1809 	}
1810 
1811 	seq_put_decimal_ll(m, "Pid:\t", nr);
1812 
1813 #ifdef CONFIG_PID_NS
1814 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1815 	if (nr > 0) {
1816 		int i;
1817 
1818 		/* If nr is non-zero it means that 'pid' is valid and that
1819 		 * ns, i.e. the pid namespace associated with the procfs
1820 		 * instance, is in the pid namespace hierarchy of pid.
1821 		 * Start at one below the already printed level.
1822 		 */
1823 		for (i = ns->level + 1; i <= pid->level; i++)
1824 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1825 	}
1826 #endif
1827 	seq_putc(m, '\n');
1828 }
1829 #endif
1830 
1831 /*
1832  * Poll support for process exit notification.
1833  */
1834 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1835 {
1836 	struct pid *pid = file->private_data;
1837 	__poll_t poll_flags = 0;
1838 
1839 	poll_wait(file, &pid->wait_pidfd, pts);
1840 
1841 	/*
1842 	 * Inform pollers only when the whole thread group exits.
1843 	 * If the thread group leader exits before all other threads in the
1844 	 * group, then poll(2) should block, similar to the wait(2) family.
1845 	 */
1846 	if (thread_group_exited(pid))
1847 		poll_flags = EPOLLIN | EPOLLRDNORM;
1848 
1849 	return poll_flags;
1850 }
1851 
1852 const struct file_operations pidfd_fops = {
1853 	.release = pidfd_release,
1854 	.poll = pidfd_poll,
1855 #ifdef CONFIG_PROC_FS
1856 	.show_fdinfo = pidfd_show_fdinfo,
1857 #endif
1858 };
1859 
1860 static void __delayed_free_task(struct rcu_head *rhp)
1861 {
1862 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1863 
1864 	free_task(tsk);
1865 }
1866 
1867 static __always_inline void delayed_free_task(struct task_struct *tsk)
1868 {
1869 	if (IS_ENABLED(CONFIG_MEMCG))
1870 		call_rcu(&tsk->rcu, __delayed_free_task);
1871 	else
1872 		free_task(tsk);
1873 }
1874 
1875 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1876 {
1877 	/* Skip if kernel thread */
1878 	if (!tsk->mm)
1879 		return;
1880 
1881 	/* Skip if spawning a thread or using vfork */
1882 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1883 		return;
1884 
1885 	/* We need to synchronize with __set_oom_adj */
1886 	mutex_lock(&oom_adj_mutex);
1887 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1888 	/* Update the values in case they were changed after copy_signal */
1889 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1890 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1891 	mutex_unlock(&oom_adj_mutex);
1892 }
1893 
1894 /*
1895  * This creates a new process as a copy of the old one,
1896  * but does not actually start it yet.
1897  *
1898  * It copies the registers, and all the appropriate
1899  * parts of the process environment (as per the clone
1900  * flags). The actual kick-off is left to the caller.
1901  */
1902 static __latent_entropy struct task_struct *copy_process(
1903 					struct pid *pid,
1904 					int trace,
1905 					int node,
1906 					struct kernel_clone_args *args)
1907 {
1908 	int pidfd = -1, retval;
1909 	struct task_struct *p;
1910 	struct multiprocess_signals delayed;
1911 	struct file *pidfile = NULL;
1912 	u64 clone_flags = args->flags;
1913 	struct nsproxy *nsp = current->nsproxy;
1914 
1915 	/*
1916 	 * Don't allow sharing the root directory with processes in a different
1917 	 * namespace
1918 	 */
1919 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1920 		return ERR_PTR(-EINVAL);
1921 
1922 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1923 		return ERR_PTR(-EINVAL);
1924 
1925 	/*
1926 	 * Thread groups must share signals as well, and detached threads
1927 	 * can only be started up within the thread group.
1928 	 */
1929 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1930 		return ERR_PTR(-EINVAL);
1931 
1932 	/*
1933 	 * Shared signal handlers imply shared VM. By way of the above,
1934 	 * thread groups also imply shared VM. Blocking this case allows
1935 	 * for various simplifications in other code.
1936 	 */
1937 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1938 		return ERR_PTR(-EINVAL);
1939 
1940 	/*
1941 	 * Siblings of global init remain as zombies on exit since they are
1942 	 * not reaped by their parent (swapper). To solve this and to avoid
1943 	 * multi-rooted process trees, prevent global and container-inits
1944 	 * from creating siblings.
1945 	 */
1946 	if ((clone_flags & CLONE_PARENT) &&
1947 				current->signal->flags & SIGNAL_UNKILLABLE)
1948 		return ERR_PTR(-EINVAL);
1949 
1950 	/*
1951 	 * If the new process will be in a different pid or user namespace
1952 	 * do not allow it to share a thread group with the forking task.
1953 	 */
1954 	if (clone_flags & CLONE_THREAD) {
1955 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1956 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1957 			return ERR_PTR(-EINVAL);
1958 	}
1959 
1960 	/*
1961 	 * If the new process will be in a different time namespace
1962 	 * do not allow it to share VM or a thread group with the forking task.
1963 	 */
1964 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1965 		if (nsp->time_ns != nsp->time_ns_for_children)
1966 			return ERR_PTR(-EINVAL);
1967 	}
1968 
1969 	if (clone_flags & CLONE_PIDFD) {
1970 		/*
1971 		 * - CLONE_DETACHED is blocked so that we can potentially
1972 		 *   reuse it later for CLONE_PIDFD.
1973 		 * - CLONE_THREAD is blocked until someone really needs it.
1974 		 */
1975 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1976 			return ERR_PTR(-EINVAL);
1977 	}
1978 
1979 	/*
1980 	 * Force any signals received before this point to be delivered
1981 	 * before the fork happens.  Collect up signals sent to multiple
1982 	 * processes that happen during the fork and delay them so that
1983 	 * they appear to happen after the fork.
1984 	 */
1985 	sigemptyset(&delayed.signal);
1986 	INIT_HLIST_NODE(&delayed.node);
1987 
1988 	spin_lock_irq(&current->sighand->siglock);
1989 	if (!(clone_flags & CLONE_THREAD))
1990 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1991 	recalc_sigpending();
1992 	spin_unlock_irq(&current->sighand->siglock);
1993 	retval = -ERESTARTNOINTR;
1994 	if (task_sigpending(current))
1995 		goto fork_out;
1996 
1997 	retval = -ENOMEM;
1998 	p = dup_task_struct(current, node);
1999 	if (!p)
2000 		goto fork_out;
2001 	if (args->io_thread) {
2002 		/*
2003 		 * Mark us an IO worker, and block any signal that isn't
2004 		 * fatal or STOP
2005 		 */
2006 		p->flags |= PF_IO_WORKER;
2007 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2008 	}
2009 
2010 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2011 	/*
2012 	 * Clear TID on mm_release()?
2013 	 */
2014 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2015 
2016 	ftrace_graph_init_task(p);
2017 
2018 	rt_mutex_init_task(p);
2019 
2020 	lockdep_assert_irqs_enabled();
2021 #ifdef CONFIG_PROVE_LOCKING
2022 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2023 #endif
2024 	retval = -EAGAIN;
2025 	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2026 		if (p->real_cred->user != INIT_USER &&
2027 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2028 			goto bad_fork_free;
2029 	}
2030 	current->flags &= ~PF_NPROC_EXCEEDED;
2031 
2032 	retval = copy_creds(p, clone_flags);
2033 	if (retval < 0)
2034 		goto bad_fork_free;
2035 
2036 	/*
2037 	 * If multiple threads are within copy_process(), then this check
2038 	 * triggers too late. This doesn't hurt, the check is only there
2039 	 * to stop root fork bombs.
2040 	 */
2041 	retval = -EAGAIN;
2042 	if (data_race(nr_threads >= max_threads))
2043 		goto bad_fork_cleanup_count;
2044 
2045 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2046 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2047 	p->flags |= PF_FORKNOEXEC;
2048 	INIT_LIST_HEAD(&p->children);
2049 	INIT_LIST_HEAD(&p->sibling);
2050 	rcu_copy_process(p);
2051 	p->vfork_done = NULL;
2052 	spin_lock_init(&p->alloc_lock);
2053 
2054 	init_sigpending(&p->pending);
2055 
2056 	p->utime = p->stime = p->gtime = 0;
2057 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2058 	p->utimescaled = p->stimescaled = 0;
2059 #endif
2060 	prev_cputime_init(&p->prev_cputime);
2061 
2062 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2063 	seqcount_init(&p->vtime.seqcount);
2064 	p->vtime.starttime = 0;
2065 	p->vtime.state = VTIME_INACTIVE;
2066 #endif
2067 
2068 #ifdef CONFIG_IO_URING
2069 	p->io_uring = NULL;
2070 #endif
2071 
2072 #if defined(SPLIT_RSS_COUNTING)
2073 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2074 #endif
2075 
2076 	p->default_timer_slack_ns = current->timer_slack_ns;
2077 
2078 #ifdef CONFIG_PSI
2079 	p->psi_flags = 0;
2080 #endif
2081 
2082 	task_io_accounting_init(&p->ioac);
2083 	acct_clear_integrals(p);
2084 
2085 	posix_cputimers_init(&p->posix_cputimers);
2086 
2087 	p->io_context = NULL;
2088 	audit_set_context(p, NULL);
2089 	cgroup_fork(p);
2090 	if (p->flags & PF_KTHREAD) {
2091 		if (!set_kthread_struct(p))
2092 			goto bad_fork_cleanup_delayacct;
2093 	}
2094 #ifdef CONFIG_NUMA
2095 	p->mempolicy = mpol_dup(p->mempolicy);
2096 	if (IS_ERR(p->mempolicy)) {
2097 		retval = PTR_ERR(p->mempolicy);
2098 		p->mempolicy = NULL;
2099 		goto bad_fork_cleanup_delayacct;
2100 	}
2101 #endif
2102 #ifdef CONFIG_CPUSETS
2103 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2104 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2105 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2106 #endif
2107 #ifdef CONFIG_TRACE_IRQFLAGS
2108 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2109 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2110 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2111 	p->softirqs_enabled		= 1;
2112 	p->softirq_context		= 0;
2113 #endif
2114 
2115 	p->pagefault_disabled = 0;
2116 
2117 #ifdef CONFIG_LOCKDEP
2118 	lockdep_init_task(p);
2119 #endif
2120 
2121 #ifdef CONFIG_DEBUG_MUTEXES
2122 	p->blocked_on = NULL; /* not blocked yet */
2123 #endif
2124 #ifdef CONFIG_BCACHE
2125 	p->sequential_io	= 0;
2126 	p->sequential_io_avg	= 0;
2127 #endif
2128 #ifdef CONFIG_BPF_SYSCALL
2129 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2130 	p->bpf_ctx = NULL;
2131 #endif
2132 
2133 	/* Perform scheduler related setup. Assign this task to a CPU. */
2134 	retval = sched_fork(clone_flags, p);
2135 	if (retval)
2136 		goto bad_fork_cleanup_policy;
2137 
2138 	retval = perf_event_init_task(p, clone_flags);
2139 	if (retval)
2140 		goto bad_fork_cleanup_policy;
2141 	retval = audit_alloc(p);
2142 	if (retval)
2143 		goto bad_fork_cleanup_perf;
2144 	/* copy all the process information */
2145 	shm_init_task(p);
2146 	retval = security_task_alloc(p, clone_flags);
2147 	if (retval)
2148 		goto bad_fork_cleanup_audit;
2149 	retval = copy_semundo(clone_flags, p);
2150 	if (retval)
2151 		goto bad_fork_cleanup_security;
2152 	retval = copy_files(clone_flags, p);
2153 	if (retval)
2154 		goto bad_fork_cleanup_semundo;
2155 	retval = copy_fs(clone_flags, p);
2156 	if (retval)
2157 		goto bad_fork_cleanup_files;
2158 	retval = copy_sighand(clone_flags, p);
2159 	if (retval)
2160 		goto bad_fork_cleanup_fs;
2161 	retval = copy_signal(clone_flags, p);
2162 	if (retval)
2163 		goto bad_fork_cleanup_sighand;
2164 	retval = copy_mm(clone_flags, p);
2165 	if (retval)
2166 		goto bad_fork_cleanup_signal;
2167 	retval = copy_namespaces(clone_flags, p);
2168 	if (retval)
2169 		goto bad_fork_cleanup_mm;
2170 	retval = copy_io(clone_flags, p);
2171 	if (retval)
2172 		goto bad_fork_cleanup_namespaces;
2173 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2174 	if (retval)
2175 		goto bad_fork_cleanup_io;
2176 
2177 	stackleak_task_init(p);
2178 
2179 	if (pid != &init_struct_pid) {
2180 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2181 				args->set_tid_size);
2182 		if (IS_ERR(pid)) {
2183 			retval = PTR_ERR(pid);
2184 			goto bad_fork_cleanup_thread;
2185 		}
2186 	}
2187 
2188 	/*
2189 	 * This has to happen after we've potentially unshared the file
2190 	 * descriptor table (so that the pidfd doesn't leak into the child
2191 	 * if the fd table isn't shared).
2192 	 */
2193 	if (clone_flags & CLONE_PIDFD) {
2194 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2195 		if (retval < 0)
2196 			goto bad_fork_free_pid;
2197 
2198 		pidfd = retval;
2199 
2200 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2201 					      O_RDWR | O_CLOEXEC);
2202 		if (IS_ERR(pidfile)) {
2203 			put_unused_fd(pidfd);
2204 			retval = PTR_ERR(pidfile);
2205 			goto bad_fork_free_pid;
2206 		}
2207 		get_pid(pid);	/* held by pidfile now */
2208 
2209 		retval = put_user(pidfd, args->pidfd);
2210 		if (retval)
2211 			goto bad_fork_put_pidfd;
2212 	}
2213 
2214 #ifdef CONFIG_BLOCK
2215 	p->plug = NULL;
2216 #endif
2217 	futex_init_task(p);
2218 
2219 	/*
2220 	 * sigaltstack should be cleared when sharing the same VM
2221 	 */
2222 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2223 		sas_ss_reset(p);
2224 
2225 	/*
2226 	 * Syscall tracing and stepping should be turned off in the
2227 	 * child regardless of CLONE_PTRACE.
2228 	 */
2229 	user_disable_single_step(p);
2230 	clear_task_syscall_work(p, SYSCALL_TRACE);
2231 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2232 	clear_task_syscall_work(p, SYSCALL_EMU);
2233 #endif
2234 	clear_tsk_latency_tracing(p);
2235 
2236 	/* ok, now we should be set up.. */
2237 	p->pid = pid_nr(pid);
2238 	if (clone_flags & CLONE_THREAD) {
2239 		p->group_leader = current->group_leader;
2240 		p->tgid = current->tgid;
2241 	} else {
2242 		p->group_leader = p;
2243 		p->tgid = p->pid;
2244 	}
2245 
2246 	p->nr_dirtied = 0;
2247 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2248 	p->dirty_paused_when = 0;
2249 
2250 	p->pdeath_signal = 0;
2251 	INIT_LIST_HEAD(&p->thread_group);
2252 	p->task_works = NULL;
2253 	clear_posix_cputimers_work(p);
2254 
2255 #ifdef CONFIG_KRETPROBES
2256 	p->kretprobe_instances.first = NULL;
2257 #endif
2258 
2259 	/*
2260 	 * Ensure that the cgroup subsystem policies allow the new process to be
2261 	 * forked. It should be noted that the new process's css_set can be changed
2262 	 * between here and cgroup_post_fork() if an organisation operation is in
2263 	 * progress.
2264 	 */
2265 	retval = cgroup_can_fork(p, args);
2266 	if (retval)
2267 		goto bad_fork_put_pidfd;
2268 
2269 	/*
2270 	 * From this point on we must avoid any synchronous user-space
2271 	 * communication until we take the tasklist-lock. In particular, we do
2272 	 * not want user-space to be able to predict the process start-time by
2273 	 * stalling fork(2) after we recorded the start_time but before it is
2274 	 * visible to the system.
2275 	 */
2276 
2277 	p->start_time = ktime_get_ns();
2278 	p->start_boottime = ktime_get_boottime_ns();
2279 
2280 	/*
2281 	 * Make it visible to the rest of the system, but dont wake it up yet.
2282 	 * Need tasklist lock for parent etc handling!
2283 	 */
2284 	write_lock_irq(&tasklist_lock);
2285 
2286 	/* CLONE_PARENT re-uses the old parent */
2287 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2288 		p->real_parent = current->real_parent;
2289 		p->parent_exec_id = current->parent_exec_id;
2290 		if (clone_flags & CLONE_THREAD)
2291 			p->exit_signal = -1;
2292 		else
2293 			p->exit_signal = current->group_leader->exit_signal;
2294 	} else {
2295 		p->real_parent = current;
2296 		p->parent_exec_id = current->self_exec_id;
2297 		p->exit_signal = args->exit_signal;
2298 	}
2299 
2300 	klp_copy_process(p);
2301 
2302 	sched_core_fork(p);
2303 
2304 	spin_lock(&current->sighand->siglock);
2305 
2306 	/*
2307 	 * Copy seccomp details explicitly here, in case they were changed
2308 	 * before holding sighand lock.
2309 	 */
2310 	copy_seccomp(p);
2311 
2312 	rseq_fork(p, clone_flags);
2313 
2314 	/* Don't start children in a dying pid namespace */
2315 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2316 		retval = -ENOMEM;
2317 		goto bad_fork_cancel_cgroup;
2318 	}
2319 
2320 	/* Let kill terminate clone/fork in the middle */
2321 	if (fatal_signal_pending(current)) {
2322 		retval = -EINTR;
2323 		goto bad_fork_cancel_cgroup;
2324 	}
2325 
2326 	/* past the last point of failure */
2327 	if (pidfile)
2328 		fd_install(pidfd, pidfile);
2329 
2330 	init_task_pid_links(p);
2331 	if (likely(p->pid)) {
2332 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2333 
2334 		init_task_pid(p, PIDTYPE_PID, pid);
2335 		if (thread_group_leader(p)) {
2336 			init_task_pid(p, PIDTYPE_TGID, pid);
2337 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2338 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2339 
2340 			if (is_child_reaper(pid)) {
2341 				ns_of_pid(pid)->child_reaper = p;
2342 				p->signal->flags |= SIGNAL_UNKILLABLE;
2343 			}
2344 			p->signal->shared_pending.signal = delayed.signal;
2345 			p->signal->tty = tty_kref_get(current->signal->tty);
2346 			/*
2347 			 * Inherit has_child_subreaper flag under the same
2348 			 * tasklist_lock with adding child to the process tree
2349 			 * for propagate_has_child_subreaper optimization.
2350 			 */
2351 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2352 							 p->real_parent->signal->is_child_subreaper;
2353 			list_add_tail(&p->sibling, &p->real_parent->children);
2354 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2355 			attach_pid(p, PIDTYPE_TGID);
2356 			attach_pid(p, PIDTYPE_PGID);
2357 			attach_pid(p, PIDTYPE_SID);
2358 			__this_cpu_inc(process_counts);
2359 		} else {
2360 			current->signal->nr_threads++;
2361 			atomic_inc(&current->signal->live);
2362 			refcount_inc(&current->signal->sigcnt);
2363 			task_join_group_stop(p);
2364 			list_add_tail_rcu(&p->thread_group,
2365 					  &p->group_leader->thread_group);
2366 			list_add_tail_rcu(&p->thread_node,
2367 					  &p->signal->thread_head);
2368 		}
2369 		attach_pid(p, PIDTYPE_PID);
2370 		nr_threads++;
2371 	}
2372 	total_forks++;
2373 	hlist_del_init(&delayed.node);
2374 	spin_unlock(&current->sighand->siglock);
2375 	syscall_tracepoint_update(p);
2376 	write_unlock_irq(&tasklist_lock);
2377 
2378 	proc_fork_connector(p);
2379 	sched_post_fork(p, args);
2380 	cgroup_post_fork(p, args);
2381 	perf_event_fork(p);
2382 
2383 	trace_task_newtask(p, clone_flags);
2384 	uprobe_copy_process(p, clone_flags);
2385 
2386 	copy_oom_score_adj(clone_flags, p);
2387 
2388 	return p;
2389 
2390 bad_fork_cancel_cgroup:
2391 	sched_core_free(p);
2392 	spin_unlock(&current->sighand->siglock);
2393 	write_unlock_irq(&tasklist_lock);
2394 	cgroup_cancel_fork(p, args);
2395 bad_fork_put_pidfd:
2396 	if (clone_flags & CLONE_PIDFD) {
2397 		fput(pidfile);
2398 		put_unused_fd(pidfd);
2399 	}
2400 bad_fork_free_pid:
2401 	if (pid != &init_struct_pid)
2402 		free_pid(pid);
2403 bad_fork_cleanup_thread:
2404 	exit_thread(p);
2405 bad_fork_cleanup_io:
2406 	if (p->io_context)
2407 		exit_io_context(p);
2408 bad_fork_cleanup_namespaces:
2409 	exit_task_namespaces(p);
2410 bad_fork_cleanup_mm:
2411 	if (p->mm) {
2412 		mm_clear_owner(p->mm, p);
2413 		mmput(p->mm);
2414 	}
2415 bad_fork_cleanup_signal:
2416 	if (!(clone_flags & CLONE_THREAD))
2417 		free_signal_struct(p->signal);
2418 bad_fork_cleanup_sighand:
2419 	__cleanup_sighand(p->sighand);
2420 bad_fork_cleanup_fs:
2421 	exit_fs(p); /* blocking */
2422 bad_fork_cleanup_files:
2423 	exit_files(p); /* blocking */
2424 bad_fork_cleanup_semundo:
2425 	exit_sem(p);
2426 bad_fork_cleanup_security:
2427 	security_task_free(p);
2428 bad_fork_cleanup_audit:
2429 	audit_free(p);
2430 bad_fork_cleanup_perf:
2431 	perf_event_free_task(p);
2432 bad_fork_cleanup_policy:
2433 	lockdep_free_task(p);
2434 #ifdef CONFIG_NUMA
2435 	mpol_put(p->mempolicy);
2436 #endif
2437 bad_fork_cleanup_delayacct:
2438 	delayacct_tsk_free(p);
2439 bad_fork_cleanup_count:
2440 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2441 	exit_creds(p);
2442 bad_fork_free:
2443 	WRITE_ONCE(p->__state, TASK_DEAD);
2444 	put_task_stack(p);
2445 	delayed_free_task(p);
2446 fork_out:
2447 	spin_lock_irq(&current->sighand->siglock);
2448 	hlist_del_init(&delayed.node);
2449 	spin_unlock_irq(&current->sighand->siglock);
2450 	return ERR_PTR(retval);
2451 }
2452 
2453 static inline void init_idle_pids(struct task_struct *idle)
2454 {
2455 	enum pid_type type;
2456 
2457 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2458 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2459 		init_task_pid(idle, type, &init_struct_pid);
2460 	}
2461 }
2462 
2463 struct task_struct * __init fork_idle(int cpu)
2464 {
2465 	struct task_struct *task;
2466 	struct kernel_clone_args args = {
2467 		.flags = CLONE_VM,
2468 	};
2469 
2470 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2471 	if (!IS_ERR(task)) {
2472 		init_idle_pids(task);
2473 		init_idle(task, cpu);
2474 	}
2475 
2476 	return task;
2477 }
2478 
2479 struct mm_struct *copy_init_mm(void)
2480 {
2481 	return dup_mm(NULL, &init_mm);
2482 }
2483 
2484 /*
2485  * This is like kernel_clone(), but shaved down and tailored to just
2486  * creating io_uring workers. It returns a created task, or an error pointer.
2487  * The returned task is inactive, and the caller must fire it up through
2488  * wake_up_new_task(p). All signals are blocked in the created task.
2489  */
2490 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2491 {
2492 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2493 				CLONE_IO;
2494 	struct kernel_clone_args args = {
2495 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2496 				    CLONE_UNTRACED) & ~CSIGNAL),
2497 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2498 		.stack		= (unsigned long)fn,
2499 		.stack_size	= (unsigned long)arg,
2500 		.io_thread	= 1,
2501 	};
2502 
2503 	return copy_process(NULL, 0, node, &args);
2504 }
2505 
2506 /*
2507  *  Ok, this is the main fork-routine.
2508  *
2509  * It copies the process, and if successful kick-starts
2510  * it and waits for it to finish using the VM if required.
2511  *
2512  * args->exit_signal is expected to be checked for sanity by the caller.
2513  */
2514 pid_t kernel_clone(struct kernel_clone_args *args)
2515 {
2516 	u64 clone_flags = args->flags;
2517 	struct completion vfork;
2518 	struct pid *pid;
2519 	struct task_struct *p;
2520 	int trace = 0;
2521 	pid_t nr;
2522 
2523 	/*
2524 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2525 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2526 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2527 	 * field in struct clone_args and it still doesn't make sense to have
2528 	 * them both point at the same memory location. Performing this check
2529 	 * here has the advantage that we don't need to have a separate helper
2530 	 * to check for legacy clone().
2531 	 */
2532 	if ((args->flags & CLONE_PIDFD) &&
2533 	    (args->flags & CLONE_PARENT_SETTID) &&
2534 	    (args->pidfd == args->parent_tid))
2535 		return -EINVAL;
2536 
2537 	/*
2538 	 * Determine whether and which event to report to ptracer.  When
2539 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2540 	 * requested, no event is reported; otherwise, report if the event
2541 	 * for the type of forking is enabled.
2542 	 */
2543 	if (!(clone_flags & CLONE_UNTRACED)) {
2544 		if (clone_flags & CLONE_VFORK)
2545 			trace = PTRACE_EVENT_VFORK;
2546 		else if (args->exit_signal != SIGCHLD)
2547 			trace = PTRACE_EVENT_CLONE;
2548 		else
2549 			trace = PTRACE_EVENT_FORK;
2550 
2551 		if (likely(!ptrace_event_enabled(current, trace)))
2552 			trace = 0;
2553 	}
2554 
2555 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2556 	add_latent_entropy();
2557 
2558 	if (IS_ERR(p))
2559 		return PTR_ERR(p);
2560 
2561 	/*
2562 	 * Do this prior waking up the new thread - the thread pointer
2563 	 * might get invalid after that point, if the thread exits quickly.
2564 	 */
2565 	trace_sched_process_fork(current, p);
2566 
2567 	pid = get_task_pid(p, PIDTYPE_PID);
2568 	nr = pid_vnr(pid);
2569 
2570 	if (clone_flags & CLONE_PARENT_SETTID)
2571 		put_user(nr, args->parent_tid);
2572 
2573 	if (clone_flags & CLONE_VFORK) {
2574 		p->vfork_done = &vfork;
2575 		init_completion(&vfork);
2576 		get_task_struct(p);
2577 	}
2578 
2579 	wake_up_new_task(p);
2580 
2581 	/* forking complete and child started to run, tell ptracer */
2582 	if (unlikely(trace))
2583 		ptrace_event_pid(trace, pid);
2584 
2585 	if (clone_flags & CLONE_VFORK) {
2586 		if (!wait_for_vfork_done(p, &vfork))
2587 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2588 	}
2589 
2590 	put_pid(pid);
2591 	return nr;
2592 }
2593 
2594 /*
2595  * Create a kernel thread.
2596  */
2597 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2598 {
2599 	struct kernel_clone_args args = {
2600 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2601 				    CLONE_UNTRACED) & ~CSIGNAL),
2602 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2603 		.stack		= (unsigned long)fn,
2604 		.stack_size	= (unsigned long)arg,
2605 	};
2606 
2607 	return kernel_clone(&args);
2608 }
2609 
2610 #ifdef __ARCH_WANT_SYS_FORK
2611 SYSCALL_DEFINE0(fork)
2612 {
2613 #ifdef CONFIG_MMU
2614 	struct kernel_clone_args args = {
2615 		.exit_signal = SIGCHLD,
2616 	};
2617 
2618 	return kernel_clone(&args);
2619 #else
2620 	/* can not support in nommu mode */
2621 	return -EINVAL;
2622 #endif
2623 }
2624 #endif
2625 
2626 #ifdef __ARCH_WANT_SYS_VFORK
2627 SYSCALL_DEFINE0(vfork)
2628 {
2629 	struct kernel_clone_args args = {
2630 		.flags		= CLONE_VFORK | CLONE_VM,
2631 		.exit_signal	= SIGCHLD,
2632 	};
2633 
2634 	return kernel_clone(&args);
2635 }
2636 #endif
2637 
2638 #ifdef __ARCH_WANT_SYS_CLONE
2639 #ifdef CONFIG_CLONE_BACKWARDS
2640 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2641 		 int __user *, parent_tidptr,
2642 		 unsigned long, tls,
2643 		 int __user *, child_tidptr)
2644 #elif defined(CONFIG_CLONE_BACKWARDS2)
2645 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2646 		 int __user *, parent_tidptr,
2647 		 int __user *, child_tidptr,
2648 		 unsigned long, tls)
2649 #elif defined(CONFIG_CLONE_BACKWARDS3)
2650 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2651 		int, stack_size,
2652 		int __user *, parent_tidptr,
2653 		int __user *, child_tidptr,
2654 		unsigned long, tls)
2655 #else
2656 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2657 		 int __user *, parent_tidptr,
2658 		 int __user *, child_tidptr,
2659 		 unsigned long, tls)
2660 #endif
2661 {
2662 	struct kernel_clone_args args = {
2663 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2664 		.pidfd		= parent_tidptr,
2665 		.child_tid	= child_tidptr,
2666 		.parent_tid	= parent_tidptr,
2667 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2668 		.stack		= newsp,
2669 		.tls		= tls,
2670 	};
2671 
2672 	return kernel_clone(&args);
2673 }
2674 #endif
2675 
2676 #ifdef __ARCH_WANT_SYS_CLONE3
2677 
2678 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2679 					      struct clone_args __user *uargs,
2680 					      size_t usize)
2681 {
2682 	int err;
2683 	struct clone_args args;
2684 	pid_t *kset_tid = kargs->set_tid;
2685 
2686 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2687 		     CLONE_ARGS_SIZE_VER0);
2688 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2689 		     CLONE_ARGS_SIZE_VER1);
2690 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2691 		     CLONE_ARGS_SIZE_VER2);
2692 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2693 
2694 	if (unlikely(usize > PAGE_SIZE))
2695 		return -E2BIG;
2696 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2697 		return -EINVAL;
2698 
2699 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2700 	if (err)
2701 		return err;
2702 
2703 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2704 		return -EINVAL;
2705 
2706 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2707 		return -EINVAL;
2708 
2709 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2710 		return -EINVAL;
2711 
2712 	/*
2713 	 * Verify that higher 32bits of exit_signal are unset and that
2714 	 * it is a valid signal
2715 	 */
2716 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2717 		     !valid_signal(args.exit_signal)))
2718 		return -EINVAL;
2719 
2720 	if ((args.flags & CLONE_INTO_CGROUP) &&
2721 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2722 		return -EINVAL;
2723 
2724 	*kargs = (struct kernel_clone_args){
2725 		.flags		= args.flags,
2726 		.pidfd		= u64_to_user_ptr(args.pidfd),
2727 		.child_tid	= u64_to_user_ptr(args.child_tid),
2728 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2729 		.exit_signal	= args.exit_signal,
2730 		.stack		= args.stack,
2731 		.stack_size	= args.stack_size,
2732 		.tls		= args.tls,
2733 		.set_tid_size	= args.set_tid_size,
2734 		.cgroup		= args.cgroup,
2735 	};
2736 
2737 	if (args.set_tid &&
2738 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2739 			(kargs->set_tid_size * sizeof(pid_t))))
2740 		return -EFAULT;
2741 
2742 	kargs->set_tid = kset_tid;
2743 
2744 	return 0;
2745 }
2746 
2747 /**
2748  * clone3_stack_valid - check and prepare stack
2749  * @kargs: kernel clone args
2750  *
2751  * Verify that the stack arguments userspace gave us are sane.
2752  * In addition, set the stack direction for userspace since it's easy for us to
2753  * determine.
2754  */
2755 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2756 {
2757 	if (kargs->stack == 0) {
2758 		if (kargs->stack_size > 0)
2759 			return false;
2760 	} else {
2761 		if (kargs->stack_size == 0)
2762 			return false;
2763 
2764 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2765 			return false;
2766 
2767 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2768 		kargs->stack += kargs->stack_size;
2769 #endif
2770 	}
2771 
2772 	return true;
2773 }
2774 
2775 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2776 {
2777 	/* Verify that no unknown flags are passed along. */
2778 	if (kargs->flags &
2779 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2780 		return false;
2781 
2782 	/*
2783 	 * - make the CLONE_DETACHED bit reusable for clone3
2784 	 * - make the CSIGNAL bits reusable for clone3
2785 	 */
2786 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2787 		return false;
2788 
2789 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2790 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2791 		return false;
2792 
2793 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2794 	    kargs->exit_signal)
2795 		return false;
2796 
2797 	if (!clone3_stack_valid(kargs))
2798 		return false;
2799 
2800 	return true;
2801 }
2802 
2803 /**
2804  * clone3 - create a new process with specific properties
2805  * @uargs: argument structure
2806  * @size:  size of @uargs
2807  *
2808  * clone3() is the extensible successor to clone()/clone2().
2809  * It takes a struct as argument that is versioned by its size.
2810  *
2811  * Return: On success, a positive PID for the child process.
2812  *         On error, a negative errno number.
2813  */
2814 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2815 {
2816 	int err;
2817 
2818 	struct kernel_clone_args kargs;
2819 	pid_t set_tid[MAX_PID_NS_LEVEL];
2820 
2821 	kargs.set_tid = set_tid;
2822 
2823 	err = copy_clone_args_from_user(&kargs, uargs, size);
2824 	if (err)
2825 		return err;
2826 
2827 	if (!clone3_args_valid(&kargs))
2828 		return -EINVAL;
2829 
2830 	return kernel_clone(&kargs);
2831 }
2832 #endif
2833 
2834 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2835 {
2836 	struct task_struct *leader, *parent, *child;
2837 	int res;
2838 
2839 	read_lock(&tasklist_lock);
2840 	leader = top = top->group_leader;
2841 down:
2842 	for_each_thread(leader, parent) {
2843 		list_for_each_entry(child, &parent->children, sibling) {
2844 			res = visitor(child, data);
2845 			if (res) {
2846 				if (res < 0)
2847 					goto out;
2848 				leader = child;
2849 				goto down;
2850 			}
2851 up:
2852 			;
2853 		}
2854 	}
2855 
2856 	if (leader != top) {
2857 		child = leader;
2858 		parent = child->real_parent;
2859 		leader = parent->group_leader;
2860 		goto up;
2861 	}
2862 out:
2863 	read_unlock(&tasklist_lock);
2864 }
2865 
2866 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2867 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2868 #endif
2869 
2870 static void sighand_ctor(void *data)
2871 {
2872 	struct sighand_struct *sighand = data;
2873 
2874 	spin_lock_init(&sighand->siglock);
2875 	init_waitqueue_head(&sighand->signalfd_wqh);
2876 }
2877 
2878 void __init proc_caches_init(void)
2879 {
2880 	unsigned int mm_size;
2881 
2882 	sighand_cachep = kmem_cache_create("sighand_cache",
2883 			sizeof(struct sighand_struct), 0,
2884 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2885 			SLAB_ACCOUNT, sighand_ctor);
2886 	signal_cachep = kmem_cache_create("signal_cache",
2887 			sizeof(struct signal_struct), 0,
2888 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2889 			NULL);
2890 	files_cachep = kmem_cache_create("files_cache",
2891 			sizeof(struct files_struct), 0,
2892 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2893 			NULL);
2894 	fs_cachep = kmem_cache_create("fs_cache",
2895 			sizeof(struct fs_struct), 0,
2896 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2897 			NULL);
2898 
2899 	/*
2900 	 * The mm_cpumask is located at the end of mm_struct, and is
2901 	 * dynamically sized based on the maximum CPU number this system
2902 	 * can have, taking hotplug into account (nr_cpu_ids).
2903 	 */
2904 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2905 
2906 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2907 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2908 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2909 			offsetof(struct mm_struct, saved_auxv),
2910 			sizeof_field(struct mm_struct, saved_auxv),
2911 			NULL);
2912 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2913 	mmap_init();
2914 	nsproxy_cache_init();
2915 }
2916 
2917 /*
2918  * Check constraints on flags passed to the unshare system call.
2919  */
2920 static int check_unshare_flags(unsigned long unshare_flags)
2921 {
2922 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2923 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2924 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2925 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2926 				CLONE_NEWTIME))
2927 		return -EINVAL;
2928 	/*
2929 	 * Not implemented, but pretend it works if there is nothing
2930 	 * to unshare.  Note that unsharing the address space or the
2931 	 * signal handlers also need to unshare the signal queues (aka
2932 	 * CLONE_THREAD).
2933 	 */
2934 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2935 		if (!thread_group_empty(current))
2936 			return -EINVAL;
2937 	}
2938 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2939 		if (refcount_read(&current->sighand->count) > 1)
2940 			return -EINVAL;
2941 	}
2942 	if (unshare_flags & CLONE_VM) {
2943 		if (!current_is_single_threaded())
2944 			return -EINVAL;
2945 	}
2946 
2947 	return 0;
2948 }
2949 
2950 /*
2951  * Unshare the filesystem structure if it is being shared
2952  */
2953 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2954 {
2955 	struct fs_struct *fs = current->fs;
2956 
2957 	if (!(unshare_flags & CLONE_FS) || !fs)
2958 		return 0;
2959 
2960 	/* don't need lock here; in the worst case we'll do useless copy */
2961 	if (fs->users == 1)
2962 		return 0;
2963 
2964 	*new_fsp = copy_fs_struct(fs);
2965 	if (!*new_fsp)
2966 		return -ENOMEM;
2967 
2968 	return 0;
2969 }
2970 
2971 /*
2972  * Unshare file descriptor table if it is being shared
2973  */
2974 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2975 	       struct files_struct **new_fdp)
2976 {
2977 	struct files_struct *fd = current->files;
2978 	int error = 0;
2979 
2980 	if ((unshare_flags & CLONE_FILES) &&
2981 	    (fd && atomic_read(&fd->count) > 1)) {
2982 		*new_fdp = dup_fd(fd, max_fds, &error);
2983 		if (!*new_fdp)
2984 			return error;
2985 	}
2986 
2987 	return 0;
2988 }
2989 
2990 /*
2991  * unshare allows a process to 'unshare' part of the process
2992  * context which was originally shared using clone.  copy_*
2993  * functions used by kernel_clone() cannot be used here directly
2994  * because they modify an inactive task_struct that is being
2995  * constructed. Here we are modifying the current, active,
2996  * task_struct.
2997  */
2998 int ksys_unshare(unsigned long unshare_flags)
2999 {
3000 	struct fs_struct *fs, *new_fs = NULL;
3001 	struct files_struct *new_fd = NULL;
3002 	struct cred *new_cred = NULL;
3003 	struct nsproxy *new_nsproxy = NULL;
3004 	int do_sysvsem = 0;
3005 	int err;
3006 
3007 	/*
3008 	 * If unsharing a user namespace must also unshare the thread group
3009 	 * and unshare the filesystem root and working directories.
3010 	 */
3011 	if (unshare_flags & CLONE_NEWUSER)
3012 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3013 	/*
3014 	 * If unsharing vm, must also unshare signal handlers.
3015 	 */
3016 	if (unshare_flags & CLONE_VM)
3017 		unshare_flags |= CLONE_SIGHAND;
3018 	/*
3019 	 * If unsharing a signal handlers, must also unshare the signal queues.
3020 	 */
3021 	if (unshare_flags & CLONE_SIGHAND)
3022 		unshare_flags |= CLONE_THREAD;
3023 	/*
3024 	 * If unsharing namespace, must also unshare filesystem information.
3025 	 */
3026 	if (unshare_flags & CLONE_NEWNS)
3027 		unshare_flags |= CLONE_FS;
3028 
3029 	err = check_unshare_flags(unshare_flags);
3030 	if (err)
3031 		goto bad_unshare_out;
3032 	/*
3033 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3034 	 * to a new ipc namespace, the semaphore arrays from the old
3035 	 * namespace are unreachable.
3036 	 */
3037 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3038 		do_sysvsem = 1;
3039 	err = unshare_fs(unshare_flags, &new_fs);
3040 	if (err)
3041 		goto bad_unshare_out;
3042 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3043 	if (err)
3044 		goto bad_unshare_cleanup_fs;
3045 	err = unshare_userns(unshare_flags, &new_cred);
3046 	if (err)
3047 		goto bad_unshare_cleanup_fd;
3048 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3049 					 new_cred, new_fs);
3050 	if (err)
3051 		goto bad_unshare_cleanup_cred;
3052 
3053 	if (new_cred) {
3054 		err = set_cred_ucounts(new_cred);
3055 		if (err)
3056 			goto bad_unshare_cleanup_cred;
3057 	}
3058 
3059 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3060 		if (do_sysvsem) {
3061 			/*
3062 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3063 			 */
3064 			exit_sem(current);
3065 		}
3066 		if (unshare_flags & CLONE_NEWIPC) {
3067 			/* Orphan segments in old ns (see sem above). */
3068 			exit_shm(current);
3069 			shm_init_task(current);
3070 		}
3071 
3072 		if (new_nsproxy)
3073 			switch_task_namespaces(current, new_nsproxy);
3074 
3075 		task_lock(current);
3076 
3077 		if (new_fs) {
3078 			fs = current->fs;
3079 			spin_lock(&fs->lock);
3080 			current->fs = new_fs;
3081 			if (--fs->users)
3082 				new_fs = NULL;
3083 			else
3084 				new_fs = fs;
3085 			spin_unlock(&fs->lock);
3086 		}
3087 
3088 		if (new_fd)
3089 			swap(current->files, new_fd);
3090 
3091 		task_unlock(current);
3092 
3093 		if (new_cred) {
3094 			/* Install the new user namespace */
3095 			commit_creds(new_cred);
3096 			new_cred = NULL;
3097 		}
3098 	}
3099 
3100 	perf_event_namespaces(current);
3101 
3102 bad_unshare_cleanup_cred:
3103 	if (new_cred)
3104 		put_cred(new_cred);
3105 bad_unshare_cleanup_fd:
3106 	if (new_fd)
3107 		put_files_struct(new_fd);
3108 
3109 bad_unshare_cleanup_fs:
3110 	if (new_fs)
3111 		free_fs_struct(new_fs);
3112 
3113 bad_unshare_out:
3114 	return err;
3115 }
3116 
3117 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3118 {
3119 	return ksys_unshare(unshare_flags);
3120 }
3121 
3122 /*
3123  *	Helper to unshare the files of the current task.
3124  *	We don't want to expose copy_files internals to
3125  *	the exec layer of the kernel.
3126  */
3127 
3128 int unshare_files(void)
3129 {
3130 	struct task_struct *task = current;
3131 	struct files_struct *old, *copy = NULL;
3132 	int error;
3133 
3134 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3135 	if (error || !copy)
3136 		return error;
3137 
3138 	old = task->files;
3139 	task_lock(task);
3140 	task->files = copy;
3141 	task_unlock(task);
3142 	put_files_struct(old);
3143 	return 0;
3144 }
3145 
3146 int sysctl_max_threads(struct ctl_table *table, int write,
3147 		       void *buffer, size_t *lenp, loff_t *ppos)
3148 {
3149 	struct ctl_table t;
3150 	int ret;
3151 	int threads = max_threads;
3152 	int min = 1;
3153 	int max = MAX_THREADS;
3154 
3155 	t = *table;
3156 	t.data = &threads;
3157 	t.extra1 = &min;
3158 	t.extra2 = &max;
3159 
3160 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3161 	if (ret || !write)
3162 		return ret;
3163 
3164 	max_threads = threads;
3165 
3166 	return 0;
3167 }
3168