xref: /openbmc/linux/kernel/fork.c (revision 4f3865fb)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
47 
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 
55 /*
56  * Protected counters by write_lock_irq(&tasklist_lock)
57  */
58 unsigned long total_forks;	/* Handle normal Linux uptimes. */
59 int nr_threads; 		/* The idle threads do not count.. */
60 
61 int max_threads;		/* tunable limit on nr_threads */
62 
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64 
65  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
66 
67 EXPORT_SYMBOL(tasklist_lock);
68 
69 int nr_processes(void)
70 {
71 	int cpu;
72 	int total = 0;
73 
74 	for_each_online_cpu(cpu)
75 		total += per_cpu(process_counts, cpu);
76 
77 	return total;
78 }
79 
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85 
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88 
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91 
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94 
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97 
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100 
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103 
104 void free_task(struct task_struct *tsk)
105 {
106 	free_thread_info(tsk->thread_info);
107 	free_task_struct(tsk);
108 }
109 EXPORT_SYMBOL(free_task);
110 
111 void __put_task_struct(struct task_struct *tsk)
112 {
113 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114 	WARN_ON(atomic_read(&tsk->usage));
115 	WARN_ON(tsk == current);
116 
117 	security_task_free(tsk);
118 	free_uid(tsk->user);
119 	put_group_info(tsk->group_info);
120 
121 	if (!profile_handoff_task(tsk))
122 		free_task(tsk);
123 }
124 
125 void __init fork_init(unsigned long mempages)
126 {
127 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
128 #ifndef ARCH_MIN_TASKALIGN
129 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
130 #endif
131 	/* create a slab on which task_structs can be allocated */
132 	task_struct_cachep =
133 		kmem_cache_create("task_struct", sizeof(struct task_struct),
134 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
135 #endif
136 
137 	/*
138 	 * The default maximum number of threads is set to a safe
139 	 * value: the thread structures can take up at most half
140 	 * of memory.
141 	 */
142 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
143 
144 	/*
145 	 * we need to allow at least 20 threads to boot a system
146 	 */
147 	if(max_threads < 20)
148 		max_threads = 20;
149 
150 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
151 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
152 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
153 		init_task.signal->rlim[RLIMIT_NPROC];
154 }
155 
156 static struct task_struct *dup_task_struct(struct task_struct *orig)
157 {
158 	struct task_struct *tsk;
159 	struct thread_info *ti;
160 
161 	prepare_to_copy(orig);
162 
163 	tsk = alloc_task_struct();
164 	if (!tsk)
165 		return NULL;
166 
167 	ti = alloc_thread_info(tsk);
168 	if (!ti) {
169 		free_task_struct(tsk);
170 		return NULL;
171 	}
172 
173 	*tsk = *orig;
174 	tsk->thread_info = ti;
175 	setup_thread_stack(tsk, orig);
176 
177 	/* One for us, one for whoever does the "release_task()" (usually parent) */
178 	atomic_set(&tsk->usage,2);
179 	atomic_set(&tsk->fs_excl, 0);
180 	tsk->btrace_seq = 0;
181 	tsk->splice_pipe = NULL;
182 	return tsk;
183 }
184 
185 #ifdef CONFIG_MMU
186 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
187 {
188 	struct vm_area_struct *mpnt, *tmp, **pprev;
189 	struct rb_node **rb_link, *rb_parent;
190 	int retval;
191 	unsigned long charge;
192 	struct mempolicy *pol;
193 
194 	down_write(&oldmm->mmap_sem);
195 	flush_cache_mm(oldmm);
196 	down_write(&mm->mmap_sem);
197 
198 	mm->locked_vm = 0;
199 	mm->mmap = NULL;
200 	mm->mmap_cache = NULL;
201 	mm->free_area_cache = oldmm->mmap_base;
202 	mm->cached_hole_size = ~0UL;
203 	mm->map_count = 0;
204 	cpus_clear(mm->cpu_vm_mask);
205 	mm->mm_rb = RB_ROOT;
206 	rb_link = &mm->mm_rb.rb_node;
207 	rb_parent = NULL;
208 	pprev = &mm->mmap;
209 
210 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
211 		struct file *file;
212 
213 		if (mpnt->vm_flags & VM_DONTCOPY) {
214 			long pages = vma_pages(mpnt);
215 			mm->total_vm -= pages;
216 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
217 								-pages);
218 			continue;
219 		}
220 		charge = 0;
221 		if (mpnt->vm_flags & VM_ACCOUNT) {
222 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
223 			if (security_vm_enough_memory(len))
224 				goto fail_nomem;
225 			charge = len;
226 		}
227 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
228 		if (!tmp)
229 			goto fail_nomem;
230 		*tmp = *mpnt;
231 		pol = mpol_copy(vma_policy(mpnt));
232 		retval = PTR_ERR(pol);
233 		if (IS_ERR(pol))
234 			goto fail_nomem_policy;
235 		vma_set_policy(tmp, pol);
236 		tmp->vm_flags &= ~VM_LOCKED;
237 		tmp->vm_mm = mm;
238 		tmp->vm_next = NULL;
239 		anon_vma_link(tmp);
240 		file = tmp->vm_file;
241 		if (file) {
242 			struct inode *inode = file->f_dentry->d_inode;
243 			get_file(file);
244 			if (tmp->vm_flags & VM_DENYWRITE)
245 				atomic_dec(&inode->i_writecount);
246 
247 			/* insert tmp into the share list, just after mpnt */
248 			spin_lock(&file->f_mapping->i_mmap_lock);
249 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
250 			flush_dcache_mmap_lock(file->f_mapping);
251 			vma_prio_tree_add(tmp, mpnt);
252 			flush_dcache_mmap_unlock(file->f_mapping);
253 			spin_unlock(&file->f_mapping->i_mmap_lock);
254 		}
255 
256 		/*
257 		 * Link in the new vma and copy the page table entries.
258 		 */
259 		*pprev = tmp;
260 		pprev = &tmp->vm_next;
261 
262 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
263 		rb_link = &tmp->vm_rb.rb_right;
264 		rb_parent = &tmp->vm_rb;
265 
266 		mm->map_count++;
267 		retval = copy_page_range(mm, oldmm, mpnt);
268 
269 		if (tmp->vm_ops && tmp->vm_ops->open)
270 			tmp->vm_ops->open(tmp);
271 
272 		if (retval)
273 			goto out;
274 	}
275 	retval = 0;
276 out:
277 	up_write(&mm->mmap_sem);
278 	flush_tlb_mm(oldmm);
279 	up_write(&oldmm->mmap_sem);
280 	return retval;
281 fail_nomem_policy:
282 	kmem_cache_free(vm_area_cachep, tmp);
283 fail_nomem:
284 	retval = -ENOMEM;
285 	vm_unacct_memory(charge);
286 	goto out;
287 }
288 
289 static inline int mm_alloc_pgd(struct mm_struct * mm)
290 {
291 	mm->pgd = pgd_alloc(mm);
292 	if (unlikely(!mm->pgd))
293 		return -ENOMEM;
294 	return 0;
295 }
296 
297 static inline void mm_free_pgd(struct mm_struct * mm)
298 {
299 	pgd_free(mm->pgd);
300 }
301 #else
302 #define dup_mmap(mm, oldmm)	(0)
303 #define mm_alloc_pgd(mm)	(0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
306 
307  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
308 
309 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
311 
312 #include <linux/init_task.h>
313 
314 static struct mm_struct * mm_init(struct mm_struct * mm)
315 {
316 	atomic_set(&mm->mm_users, 1);
317 	atomic_set(&mm->mm_count, 1);
318 	init_rwsem(&mm->mmap_sem);
319 	INIT_LIST_HEAD(&mm->mmlist);
320 	mm->core_waiters = 0;
321 	mm->nr_ptes = 0;
322 	set_mm_counter(mm, file_rss, 0);
323 	set_mm_counter(mm, anon_rss, 0);
324 	spin_lock_init(&mm->page_table_lock);
325 	rwlock_init(&mm->ioctx_list_lock);
326 	mm->ioctx_list = NULL;
327 	mm->free_area_cache = TASK_UNMAPPED_BASE;
328 	mm->cached_hole_size = ~0UL;
329 
330 	if (likely(!mm_alloc_pgd(mm))) {
331 		mm->def_flags = 0;
332 		return mm;
333 	}
334 	free_mm(mm);
335 	return NULL;
336 }
337 
338 /*
339  * Allocate and initialize an mm_struct.
340  */
341 struct mm_struct * mm_alloc(void)
342 {
343 	struct mm_struct * mm;
344 
345 	mm = allocate_mm();
346 	if (mm) {
347 		memset(mm, 0, sizeof(*mm));
348 		mm = mm_init(mm);
349 	}
350 	return mm;
351 }
352 
353 /*
354  * Called when the last reference to the mm
355  * is dropped: either by a lazy thread or by
356  * mmput. Free the page directory and the mm.
357  */
358 void fastcall __mmdrop(struct mm_struct *mm)
359 {
360 	BUG_ON(mm == &init_mm);
361 	mm_free_pgd(mm);
362 	destroy_context(mm);
363 	free_mm(mm);
364 }
365 
366 /*
367  * Decrement the use count and release all resources for an mm.
368  */
369 void mmput(struct mm_struct *mm)
370 {
371 	if (atomic_dec_and_test(&mm->mm_users)) {
372 		exit_aio(mm);
373 		exit_mmap(mm);
374 		if (!list_empty(&mm->mmlist)) {
375 			spin_lock(&mmlist_lock);
376 			list_del(&mm->mmlist);
377 			spin_unlock(&mmlist_lock);
378 		}
379 		put_swap_token(mm);
380 		mmdrop(mm);
381 	}
382 }
383 EXPORT_SYMBOL_GPL(mmput);
384 
385 /**
386  * get_task_mm - acquire a reference to the task's mm
387  *
388  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
389  * this kernel workthread has transiently adopted a user mm with use_mm,
390  * to do its AIO) is not set and if so returns a reference to it, after
391  * bumping up the use count.  User must release the mm via mmput()
392  * after use.  Typically used by /proc and ptrace.
393  */
394 struct mm_struct *get_task_mm(struct task_struct *task)
395 {
396 	struct mm_struct *mm;
397 
398 	task_lock(task);
399 	mm = task->mm;
400 	if (mm) {
401 		if (task->flags & PF_BORROWED_MM)
402 			mm = NULL;
403 		else
404 			atomic_inc(&mm->mm_users);
405 	}
406 	task_unlock(task);
407 	return mm;
408 }
409 EXPORT_SYMBOL_GPL(get_task_mm);
410 
411 /* Please note the differences between mmput and mm_release.
412  * mmput is called whenever we stop holding onto a mm_struct,
413  * error success whatever.
414  *
415  * mm_release is called after a mm_struct has been removed
416  * from the current process.
417  *
418  * This difference is important for error handling, when we
419  * only half set up a mm_struct for a new process and need to restore
420  * the old one.  Because we mmput the new mm_struct before
421  * restoring the old one. . .
422  * Eric Biederman 10 January 1998
423  */
424 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
425 {
426 	struct completion *vfork_done = tsk->vfork_done;
427 
428 	/* Get rid of any cached register state */
429 	deactivate_mm(tsk, mm);
430 
431 	/* notify parent sleeping on vfork() */
432 	if (vfork_done) {
433 		tsk->vfork_done = NULL;
434 		complete(vfork_done);
435 	}
436 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
437 		u32 __user * tidptr = tsk->clear_child_tid;
438 		tsk->clear_child_tid = NULL;
439 
440 		/*
441 		 * We don't check the error code - if userspace has
442 		 * not set up a proper pointer then tough luck.
443 		 */
444 		put_user(0, tidptr);
445 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
446 	}
447 }
448 
449 /*
450  * Allocate a new mm structure and copy contents from the
451  * mm structure of the passed in task structure.
452  */
453 static struct mm_struct *dup_mm(struct task_struct *tsk)
454 {
455 	struct mm_struct *mm, *oldmm = current->mm;
456 	int err;
457 
458 	if (!oldmm)
459 		return NULL;
460 
461 	mm = allocate_mm();
462 	if (!mm)
463 		goto fail_nomem;
464 
465 	memcpy(mm, oldmm, sizeof(*mm));
466 
467 	if (!mm_init(mm))
468 		goto fail_nomem;
469 
470 	if (init_new_context(tsk, mm))
471 		goto fail_nocontext;
472 
473 	err = dup_mmap(mm, oldmm);
474 	if (err)
475 		goto free_pt;
476 
477 	mm->hiwater_rss = get_mm_rss(mm);
478 	mm->hiwater_vm = mm->total_vm;
479 
480 	return mm;
481 
482 free_pt:
483 	mmput(mm);
484 
485 fail_nomem:
486 	return NULL;
487 
488 fail_nocontext:
489 	/*
490 	 * If init_new_context() failed, we cannot use mmput() to free the mm
491 	 * because it calls destroy_context()
492 	 */
493 	mm_free_pgd(mm);
494 	free_mm(mm);
495 	return NULL;
496 }
497 
498 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
499 {
500 	struct mm_struct * mm, *oldmm;
501 	int retval;
502 
503 	tsk->min_flt = tsk->maj_flt = 0;
504 	tsk->nvcsw = tsk->nivcsw = 0;
505 
506 	tsk->mm = NULL;
507 	tsk->active_mm = NULL;
508 
509 	/*
510 	 * Are we cloning a kernel thread?
511 	 *
512 	 * We need to steal a active VM for that..
513 	 */
514 	oldmm = current->mm;
515 	if (!oldmm)
516 		return 0;
517 
518 	if (clone_flags & CLONE_VM) {
519 		atomic_inc(&oldmm->mm_users);
520 		mm = oldmm;
521 		goto good_mm;
522 	}
523 
524 	retval = -ENOMEM;
525 	mm = dup_mm(tsk);
526 	if (!mm)
527 		goto fail_nomem;
528 
529 good_mm:
530 	tsk->mm = mm;
531 	tsk->active_mm = mm;
532 	return 0;
533 
534 fail_nomem:
535 	return retval;
536 }
537 
538 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
539 {
540 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
541 	/* We don't need to lock fs - think why ;-) */
542 	if (fs) {
543 		atomic_set(&fs->count, 1);
544 		rwlock_init(&fs->lock);
545 		fs->umask = old->umask;
546 		read_lock(&old->lock);
547 		fs->rootmnt = mntget(old->rootmnt);
548 		fs->root = dget(old->root);
549 		fs->pwdmnt = mntget(old->pwdmnt);
550 		fs->pwd = dget(old->pwd);
551 		if (old->altroot) {
552 			fs->altrootmnt = mntget(old->altrootmnt);
553 			fs->altroot = dget(old->altroot);
554 		} else {
555 			fs->altrootmnt = NULL;
556 			fs->altroot = NULL;
557 		}
558 		read_unlock(&old->lock);
559 	}
560 	return fs;
561 }
562 
563 struct fs_struct *copy_fs_struct(struct fs_struct *old)
564 {
565 	return __copy_fs_struct(old);
566 }
567 
568 EXPORT_SYMBOL_GPL(copy_fs_struct);
569 
570 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
571 {
572 	if (clone_flags & CLONE_FS) {
573 		atomic_inc(&current->fs->count);
574 		return 0;
575 	}
576 	tsk->fs = __copy_fs_struct(current->fs);
577 	if (!tsk->fs)
578 		return -ENOMEM;
579 	return 0;
580 }
581 
582 static int count_open_files(struct fdtable *fdt)
583 {
584 	int size = fdt->max_fdset;
585 	int i;
586 
587 	/* Find the last open fd */
588 	for (i = size/(8*sizeof(long)); i > 0; ) {
589 		if (fdt->open_fds->fds_bits[--i])
590 			break;
591 	}
592 	i = (i+1) * 8 * sizeof(long);
593 	return i;
594 }
595 
596 static struct files_struct *alloc_files(void)
597 {
598 	struct files_struct *newf;
599 	struct fdtable *fdt;
600 
601 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
602 	if (!newf)
603 		goto out;
604 
605 	atomic_set(&newf->count, 1);
606 
607 	spin_lock_init(&newf->file_lock);
608 	newf->next_fd = 0;
609 	fdt = &newf->fdtab;
610 	fdt->max_fds = NR_OPEN_DEFAULT;
611 	fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
612 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
613 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
614 	fdt->fd = &newf->fd_array[0];
615 	INIT_RCU_HEAD(&fdt->rcu);
616 	fdt->free_files = NULL;
617 	fdt->next = NULL;
618 	rcu_assign_pointer(newf->fdt, fdt);
619 out:
620 	return newf;
621 }
622 
623 /*
624  * Allocate a new files structure and copy contents from the
625  * passed in files structure.
626  */
627 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
628 {
629 	struct files_struct *newf;
630 	struct file **old_fds, **new_fds;
631 	int open_files, size, i, expand;
632 	struct fdtable *old_fdt, *new_fdt;
633 
634 	newf = alloc_files();
635 	if (!newf)
636 		goto out;
637 
638 	spin_lock(&oldf->file_lock);
639 	old_fdt = files_fdtable(oldf);
640 	new_fdt = files_fdtable(newf);
641 	size = old_fdt->max_fdset;
642 	open_files = count_open_files(old_fdt);
643 	expand = 0;
644 
645 	/*
646 	 * Check whether we need to allocate a larger fd array or fd set.
647 	 * Note: we're not a clone task, so the open count won't  change.
648 	 */
649 	if (open_files > new_fdt->max_fdset) {
650 		new_fdt->max_fdset = 0;
651 		expand = 1;
652 	}
653 	if (open_files > new_fdt->max_fds) {
654 		new_fdt->max_fds = 0;
655 		expand = 1;
656 	}
657 
658 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
659 	if (expand) {
660 		spin_unlock(&oldf->file_lock);
661 		spin_lock(&newf->file_lock);
662 		*errorp = expand_files(newf, open_files-1);
663 		spin_unlock(&newf->file_lock);
664 		if (*errorp < 0)
665 			goto out_release;
666 		new_fdt = files_fdtable(newf);
667 		/*
668 		 * Reacquire the oldf lock and a pointer to its fd table
669 		 * who knows it may have a new bigger fd table. We need
670 		 * the latest pointer.
671 		 */
672 		spin_lock(&oldf->file_lock);
673 		old_fdt = files_fdtable(oldf);
674 	}
675 
676 	old_fds = old_fdt->fd;
677 	new_fds = new_fdt->fd;
678 
679 	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
680 	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
681 
682 	for (i = open_files; i != 0; i--) {
683 		struct file *f = *old_fds++;
684 		if (f) {
685 			get_file(f);
686 		} else {
687 			/*
688 			 * The fd may be claimed in the fd bitmap but not yet
689 			 * instantiated in the files array if a sibling thread
690 			 * is partway through open().  So make sure that this
691 			 * fd is available to the new process.
692 			 */
693 			FD_CLR(open_files - i, new_fdt->open_fds);
694 		}
695 		rcu_assign_pointer(*new_fds++, f);
696 	}
697 	spin_unlock(&oldf->file_lock);
698 
699 	/* compute the remainder to be cleared */
700 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
701 
702 	/* This is long word aligned thus could use a optimized version */
703 	memset(new_fds, 0, size);
704 
705 	if (new_fdt->max_fdset > open_files) {
706 		int left = (new_fdt->max_fdset-open_files)/8;
707 		int start = open_files / (8 * sizeof(unsigned long));
708 
709 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
710 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
711 	}
712 
713 out:
714 	return newf;
715 
716 out_release:
717 	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
718 	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
719 	free_fd_array(new_fdt->fd, new_fdt->max_fds);
720 	kmem_cache_free(files_cachep, newf);
721 	return NULL;
722 }
723 
724 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
725 {
726 	struct files_struct *oldf, *newf;
727 	int error = 0;
728 
729 	/*
730 	 * A background process may not have any files ...
731 	 */
732 	oldf = current->files;
733 	if (!oldf)
734 		goto out;
735 
736 	if (clone_flags & CLONE_FILES) {
737 		atomic_inc(&oldf->count);
738 		goto out;
739 	}
740 
741 	/*
742 	 * Note: we may be using current for both targets (See exec.c)
743 	 * This works because we cache current->files (old) as oldf. Don't
744 	 * break this.
745 	 */
746 	tsk->files = NULL;
747 	error = -ENOMEM;
748 	newf = dup_fd(oldf, &error);
749 	if (!newf)
750 		goto out;
751 
752 	tsk->files = newf;
753 	error = 0;
754 out:
755 	return error;
756 }
757 
758 /*
759  *	Helper to unshare the files of the current task.
760  *	We don't want to expose copy_files internals to
761  *	the exec layer of the kernel.
762  */
763 
764 int unshare_files(void)
765 {
766 	struct files_struct *files  = current->files;
767 	int rc;
768 
769 	BUG_ON(!files);
770 
771 	/* This can race but the race causes us to copy when we don't
772 	   need to and drop the copy */
773 	if(atomic_read(&files->count) == 1)
774 	{
775 		atomic_inc(&files->count);
776 		return 0;
777 	}
778 	rc = copy_files(0, current);
779 	if(rc)
780 		current->files = files;
781 	return rc;
782 }
783 
784 EXPORT_SYMBOL(unshare_files);
785 
786 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
787 {
788 	struct sighand_struct *sig;
789 
790 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
791 		atomic_inc(&current->sighand->count);
792 		return 0;
793 	}
794 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
795 	rcu_assign_pointer(tsk->sighand, sig);
796 	if (!sig)
797 		return -ENOMEM;
798 	atomic_set(&sig->count, 1);
799 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
800 	return 0;
801 }
802 
803 void __cleanup_sighand(struct sighand_struct *sighand)
804 {
805 	if (atomic_dec_and_test(&sighand->count))
806 		kmem_cache_free(sighand_cachep, sighand);
807 }
808 
809 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
810 {
811 	struct signal_struct *sig;
812 	int ret;
813 
814 	if (clone_flags & CLONE_THREAD) {
815 		atomic_inc(&current->signal->count);
816 		atomic_inc(&current->signal->live);
817 		return 0;
818 	}
819 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
820 	tsk->signal = sig;
821 	if (!sig)
822 		return -ENOMEM;
823 
824 	ret = copy_thread_group_keys(tsk);
825 	if (ret < 0) {
826 		kmem_cache_free(signal_cachep, sig);
827 		return ret;
828 	}
829 
830 	atomic_set(&sig->count, 1);
831 	atomic_set(&sig->live, 1);
832 	init_waitqueue_head(&sig->wait_chldexit);
833 	sig->flags = 0;
834 	sig->group_exit_code = 0;
835 	sig->group_exit_task = NULL;
836 	sig->group_stop_count = 0;
837 	sig->curr_target = NULL;
838 	init_sigpending(&sig->shared_pending);
839 	INIT_LIST_HEAD(&sig->posix_timers);
840 
841 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
842 	sig->it_real_incr.tv64 = 0;
843 	sig->real_timer.function = it_real_fn;
844 	sig->tsk = tsk;
845 
846 	sig->it_virt_expires = cputime_zero;
847 	sig->it_virt_incr = cputime_zero;
848 	sig->it_prof_expires = cputime_zero;
849 	sig->it_prof_incr = cputime_zero;
850 
851 	sig->leader = 0;	/* session leadership doesn't inherit */
852 	sig->tty_old_pgrp = 0;
853 
854 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
855 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
856 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
857 	sig->sched_time = 0;
858 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
859 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
860 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
861 
862 	task_lock(current->group_leader);
863 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
864 	task_unlock(current->group_leader);
865 
866 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
867 		/*
868 		 * New sole thread in the process gets an expiry time
869 		 * of the whole CPU time limit.
870 		 */
871 		tsk->it_prof_expires =
872 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
873 	}
874 
875 	return 0;
876 }
877 
878 void __cleanup_signal(struct signal_struct *sig)
879 {
880 	exit_thread_group_keys(sig);
881 	kmem_cache_free(signal_cachep, sig);
882 }
883 
884 static inline void cleanup_signal(struct task_struct *tsk)
885 {
886 	struct signal_struct *sig = tsk->signal;
887 
888 	atomic_dec(&sig->live);
889 
890 	if (atomic_dec_and_test(&sig->count))
891 		__cleanup_signal(sig);
892 }
893 
894 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
895 {
896 	unsigned long new_flags = p->flags;
897 
898 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
899 	new_flags |= PF_FORKNOEXEC;
900 	if (!(clone_flags & CLONE_PTRACE))
901 		p->ptrace = 0;
902 	p->flags = new_flags;
903 }
904 
905 asmlinkage long sys_set_tid_address(int __user *tidptr)
906 {
907 	current->clear_child_tid = tidptr;
908 
909 	return current->pid;
910 }
911 
912 /*
913  * This creates a new process as a copy of the old one,
914  * but does not actually start it yet.
915  *
916  * It copies the registers, and all the appropriate
917  * parts of the process environment (as per the clone
918  * flags). The actual kick-off is left to the caller.
919  */
920 static task_t *copy_process(unsigned long clone_flags,
921 				 unsigned long stack_start,
922 				 struct pt_regs *regs,
923 				 unsigned long stack_size,
924 				 int __user *parent_tidptr,
925 				 int __user *child_tidptr,
926 				 int pid)
927 {
928 	int retval;
929 	struct task_struct *p = NULL;
930 
931 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
932 		return ERR_PTR(-EINVAL);
933 
934 	/*
935 	 * Thread groups must share signals as well, and detached threads
936 	 * can only be started up within the thread group.
937 	 */
938 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
939 		return ERR_PTR(-EINVAL);
940 
941 	/*
942 	 * Shared signal handlers imply shared VM. By way of the above,
943 	 * thread groups also imply shared VM. Blocking this case allows
944 	 * for various simplifications in other code.
945 	 */
946 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
947 		return ERR_PTR(-EINVAL);
948 
949 	retval = security_task_create(clone_flags);
950 	if (retval)
951 		goto fork_out;
952 
953 	retval = -ENOMEM;
954 	p = dup_task_struct(current);
955 	if (!p)
956 		goto fork_out;
957 
958 	retval = -EAGAIN;
959 	if (atomic_read(&p->user->processes) >=
960 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
961 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
962 				p->user != &root_user)
963 			goto bad_fork_free;
964 	}
965 
966 	atomic_inc(&p->user->__count);
967 	atomic_inc(&p->user->processes);
968 	get_group_info(p->group_info);
969 
970 	/*
971 	 * If multiple threads are within copy_process(), then this check
972 	 * triggers too late. This doesn't hurt, the check is only there
973 	 * to stop root fork bombs.
974 	 */
975 	if (nr_threads >= max_threads)
976 		goto bad_fork_cleanup_count;
977 
978 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
979 		goto bad_fork_cleanup_count;
980 
981 	if (p->binfmt && !try_module_get(p->binfmt->module))
982 		goto bad_fork_cleanup_put_domain;
983 
984 	p->did_exec = 0;
985 	copy_flags(clone_flags, p);
986 	p->pid = pid;
987 	retval = -EFAULT;
988 	if (clone_flags & CLONE_PARENT_SETTID)
989 		if (put_user(p->pid, parent_tidptr))
990 			goto bad_fork_cleanup;
991 
992 	p->proc_dentry = NULL;
993 
994 	INIT_LIST_HEAD(&p->children);
995 	INIT_LIST_HEAD(&p->sibling);
996 	p->vfork_done = NULL;
997 	spin_lock_init(&p->alloc_lock);
998 	spin_lock_init(&p->proc_lock);
999 
1000 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1001 	init_sigpending(&p->pending);
1002 
1003 	p->utime = cputime_zero;
1004 	p->stime = cputime_zero;
1005  	p->sched_time = 0;
1006 	p->rchar = 0;		/* I/O counter: bytes read */
1007 	p->wchar = 0;		/* I/O counter: bytes written */
1008 	p->syscr = 0;		/* I/O counter: read syscalls */
1009 	p->syscw = 0;		/* I/O counter: write syscalls */
1010 	acct_clear_integrals(p);
1011 
1012  	p->it_virt_expires = cputime_zero;
1013 	p->it_prof_expires = cputime_zero;
1014  	p->it_sched_expires = 0;
1015  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1016  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1017  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1018 
1019 	p->lock_depth = -1;		/* -1 = no lock */
1020 	do_posix_clock_monotonic_gettime(&p->start_time);
1021 	p->security = NULL;
1022 	p->io_context = NULL;
1023 	p->io_wait = NULL;
1024 	p->audit_context = NULL;
1025 	cpuset_fork(p);
1026 #ifdef CONFIG_NUMA
1027  	p->mempolicy = mpol_copy(p->mempolicy);
1028  	if (IS_ERR(p->mempolicy)) {
1029  		retval = PTR_ERR(p->mempolicy);
1030  		p->mempolicy = NULL;
1031  		goto bad_fork_cleanup_cpuset;
1032  	}
1033 	mpol_fix_fork_child_flag(p);
1034 #endif
1035 
1036 #ifdef CONFIG_DEBUG_MUTEXES
1037 	p->blocked_on = NULL; /* not blocked yet */
1038 #endif
1039 
1040 	p->tgid = p->pid;
1041 	if (clone_flags & CLONE_THREAD)
1042 		p->tgid = current->tgid;
1043 
1044 	if ((retval = security_task_alloc(p)))
1045 		goto bad_fork_cleanup_policy;
1046 	if ((retval = audit_alloc(p)))
1047 		goto bad_fork_cleanup_security;
1048 	/* copy all the process information */
1049 	if ((retval = copy_semundo(clone_flags, p)))
1050 		goto bad_fork_cleanup_audit;
1051 	if ((retval = copy_files(clone_flags, p)))
1052 		goto bad_fork_cleanup_semundo;
1053 	if ((retval = copy_fs(clone_flags, p)))
1054 		goto bad_fork_cleanup_files;
1055 	if ((retval = copy_sighand(clone_flags, p)))
1056 		goto bad_fork_cleanup_fs;
1057 	if ((retval = copy_signal(clone_flags, p)))
1058 		goto bad_fork_cleanup_sighand;
1059 	if ((retval = copy_mm(clone_flags, p)))
1060 		goto bad_fork_cleanup_signal;
1061 	if ((retval = copy_keys(clone_flags, p)))
1062 		goto bad_fork_cleanup_mm;
1063 	if ((retval = copy_namespace(clone_flags, p)))
1064 		goto bad_fork_cleanup_keys;
1065 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1066 	if (retval)
1067 		goto bad_fork_cleanup_namespace;
1068 
1069 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1070 	/*
1071 	 * Clear TID on mm_release()?
1072 	 */
1073 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1074 	p->robust_list = NULL;
1075 #ifdef CONFIG_COMPAT
1076 	p->compat_robust_list = NULL;
1077 #endif
1078 	/*
1079 	 * sigaltstack should be cleared when sharing the same VM
1080 	 */
1081 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1082 		p->sas_ss_sp = p->sas_ss_size = 0;
1083 
1084 	/*
1085 	 * Syscall tracing should be turned off in the child regardless
1086 	 * of CLONE_PTRACE.
1087 	 */
1088 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1089 #ifdef TIF_SYSCALL_EMU
1090 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1091 #endif
1092 
1093 	/* Our parent execution domain becomes current domain
1094 	   These must match for thread signalling to apply */
1095 
1096 	p->parent_exec_id = p->self_exec_id;
1097 
1098 	/* ok, now we should be set up.. */
1099 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1100 	p->pdeath_signal = 0;
1101 	p->exit_state = 0;
1102 
1103 	/*
1104 	 * Ok, make it visible to the rest of the system.
1105 	 * We dont wake it up yet.
1106 	 */
1107 	p->group_leader = p;
1108 	INIT_LIST_HEAD(&p->thread_group);
1109 	INIT_LIST_HEAD(&p->ptrace_children);
1110 	INIT_LIST_HEAD(&p->ptrace_list);
1111 
1112 	/* Perform scheduler related setup. Assign this task to a CPU. */
1113 	sched_fork(p, clone_flags);
1114 
1115 	/* Need tasklist lock for parent etc handling! */
1116 	write_lock_irq(&tasklist_lock);
1117 
1118 	/*
1119 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1120 	 * not be changed, nor will its assigned CPU.
1121 	 *
1122 	 * The cpus_allowed mask of the parent may have changed after it was
1123 	 * copied first time - so re-copy it here, then check the child's CPU
1124 	 * to ensure it is on a valid CPU (and if not, just force it back to
1125 	 * parent's CPU). This avoids alot of nasty races.
1126 	 */
1127 	p->cpus_allowed = current->cpus_allowed;
1128 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1129 			!cpu_online(task_cpu(p))))
1130 		set_task_cpu(p, smp_processor_id());
1131 
1132 	/* CLONE_PARENT re-uses the old parent */
1133 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1134 		p->real_parent = current->real_parent;
1135 	else
1136 		p->real_parent = current;
1137 	p->parent = p->real_parent;
1138 
1139 	spin_lock(&current->sighand->siglock);
1140 
1141 	/*
1142 	 * Process group and session signals need to be delivered to just the
1143 	 * parent before the fork or both the parent and the child after the
1144 	 * fork. Restart if a signal comes in before we add the new process to
1145 	 * it's process group.
1146 	 * A fatal signal pending means that current will exit, so the new
1147 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1148  	 */
1149  	recalc_sigpending();
1150 	if (signal_pending(current)) {
1151 		spin_unlock(&current->sighand->siglock);
1152 		write_unlock_irq(&tasklist_lock);
1153 		retval = -ERESTARTNOINTR;
1154 		goto bad_fork_cleanup_namespace;
1155 	}
1156 
1157 	if (clone_flags & CLONE_THREAD) {
1158 		/*
1159 		 * Important: if an exit-all has been started then
1160 		 * do not create this new thread - the whole thread
1161 		 * group is supposed to exit anyway.
1162 		 */
1163 		if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1164 			spin_unlock(&current->sighand->siglock);
1165 			write_unlock_irq(&tasklist_lock);
1166 			retval = -EAGAIN;
1167 			goto bad_fork_cleanup_namespace;
1168 		}
1169 
1170 		p->group_leader = current->group_leader;
1171 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1172 
1173 		if (!cputime_eq(current->signal->it_virt_expires,
1174 				cputime_zero) ||
1175 		    !cputime_eq(current->signal->it_prof_expires,
1176 				cputime_zero) ||
1177 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1178 		    !list_empty(&current->signal->cpu_timers[0]) ||
1179 		    !list_empty(&current->signal->cpu_timers[1]) ||
1180 		    !list_empty(&current->signal->cpu_timers[2])) {
1181 			/*
1182 			 * Have child wake up on its first tick to check
1183 			 * for process CPU timers.
1184 			 */
1185 			p->it_prof_expires = jiffies_to_cputime(1);
1186 		}
1187 	}
1188 
1189 	/*
1190 	 * inherit ioprio
1191 	 */
1192 	p->ioprio = current->ioprio;
1193 
1194 	if (likely(p->pid)) {
1195 		add_parent(p);
1196 		if (unlikely(p->ptrace & PT_PTRACED))
1197 			__ptrace_link(p, current->parent);
1198 
1199 		if (thread_group_leader(p)) {
1200 			p->signal->tty = current->signal->tty;
1201 			p->signal->pgrp = process_group(current);
1202 			p->signal->session = current->signal->session;
1203 			attach_pid(p, PIDTYPE_PGID, process_group(p));
1204 			attach_pid(p, PIDTYPE_SID, p->signal->session);
1205 
1206 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1207 			__get_cpu_var(process_counts)++;
1208 		}
1209 		attach_pid(p, PIDTYPE_PID, p->pid);
1210 		nr_threads++;
1211 	}
1212 
1213 	total_forks++;
1214 	spin_unlock(&current->sighand->siglock);
1215 	write_unlock_irq(&tasklist_lock);
1216 	proc_fork_connector(p);
1217 	return p;
1218 
1219 bad_fork_cleanup_namespace:
1220 	exit_namespace(p);
1221 bad_fork_cleanup_keys:
1222 	exit_keys(p);
1223 bad_fork_cleanup_mm:
1224 	if (p->mm)
1225 		mmput(p->mm);
1226 bad_fork_cleanup_signal:
1227 	cleanup_signal(p);
1228 bad_fork_cleanup_sighand:
1229 	__cleanup_sighand(p->sighand);
1230 bad_fork_cleanup_fs:
1231 	exit_fs(p); /* blocking */
1232 bad_fork_cleanup_files:
1233 	exit_files(p); /* blocking */
1234 bad_fork_cleanup_semundo:
1235 	exit_sem(p);
1236 bad_fork_cleanup_audit:
1237 	audit_free(p);
1238 bad_fork_cleanup_security:
1239 	security_task_free(p);
1240 bad_fork_cleanup_policy:
1241 #ifdef CONFIG_NUMA
1242 	mpol_free(p->mempolicy);
1243 bad_fork_cleanup_cpuset:
1244 #endif
1245 	cpuset_exit(p);
1246 bad_fork_cleanup:
1247 	if (p->binfmt)
1248 		module_put(p->binfmt->module);
1249 bad_fork_cleanup_put_domain:
1250 	module_put(task_thread_info(p)->exec_domain->module);
1251 bad_fork_cleanup_count:
1252 	put_group_info(p->group_info);
1253 	atomic_dec(&p->user->processes);
1254 	free_uid(p->user);
1255 bad_fork_free:
1256 	free_task(p);
1257 fork_out:
1258 	return ERR_PTR(retval);
1259 }
1260 
1261 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1262 {
1263 	memset(regs, 0, sizeof(struct pt_regs));
1264 	return regs;
1265 }
1266 
1267 task_t * __devinit fork_idle(int cpu)
1268 {
1269 	task_t *task;
1270 	struct pt_regs regs;
1271 
1272 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1273 	if (!task)
1274 		return ERR_PTR(-ENOMEM);
1275 	init_idle(task, cpu);
1276 
1277 	return task;
1278 }
1279 
1280 static inline int fork_traceflag (unsigned clone_flags)
1281 {
1282 	if (clone_flags & CLONE_UNTRACED)
1283 		return 0;
1284 	else if (clone_flags & CLONE_VFORK) {
1285 		if (current->ptrace & PT_TRACE_VFORK)
1286 			return PTRACE_EVENT_VFORK;
1287 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1288 		if (current->ptrace & PT_TRACE_CLONE)
1289 			return PTRACE_EVENT_CLONE;
1290 	} else if (current->ptrace & PT_TRACE_FORK)
1291 		return PTRACE_EVENT_FORK;
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  *  Ok, this is the main fork-routine.
1298  *
1299  * It copies the process, and if successful kick-starts
1300  * it and waits for it to finish using the VM if required.
1301  */
1302 long do_fork(unsigned long clone_flags,
1303 	      unsigned long stack_start,
1304 	      struct pt_regs *regs,
1305 	      unsigned long stack_size,
1306 	      int __user *parent_tidptr,
1307 	      int __user *child_tidptr)
1308 {
1309 	struct task_struct *p;
1310 	int trace = 0;
1311 	struct pid *pid = alloc_pid();
1312 	long nr;
1313 
1314 	if (!pid)
1315 		return -EAGAIN;
1316 	nr = pid->nr;
1317 	if (unlikely(current->ptrace)) {
1318 		trace = fork_traceflag (clone_flags);
1319 		if (trace)
1320 			clone_flags |= CLONE_PTRACE;
1321 	}
1322 
1323 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1324 	/*
1325 	 * Do this prior waking up the new thread - the thread pointer
1326 	 * might get invalid after that point, if the thread exits quickly.
1327 	 */
1328 	if (!IS_ERR(p)) {
1329 		struct completion vfork;
1330 
1331 		if (clone_flags & CLONE_VFORK) {
1332 			p->vfork_done = &vfork;
1333 			init_completion(&vfork);
1334 		}
1335 
1336 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1337 			/*
1338 			 * We'll start up with an immediate SIGSTOP.
1339 			 */
1340 			sigaddset(&p->pending.signal, SIGSTOP);
1341 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1342 		}
1343 
1344 		if (!(clone_flags & CLONE_STOPPED))
1345 			wake_up_new_task(p, clone_flags);
1346 		else
1347 			p->state = TASK_STOPPED;
1348 
1349 		if (unlikely (trace)) {
1350 			current->ptrace_message = nr;
1351 			ptrace_notify ((trace << 8) | SIGTRAP);
1352 		}
1353 
1354 		if (clone_flags & CLONE_VFORK) {
1355 			wait_for_completion(&vfork);
1356 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1357 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1358 		}
1359 	} else {
1360 		free_pid(pid);
1361 		nr = PTR_ERR(p);
1362 	}
1363 	return nr;
1364 }
1365 
1366 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1367 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1368 #endif
1369 
1370 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1371 {
1372 	struct sighand_struct *sighand = data;
1373 
1374 	if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1375 					SLAB_CTOR_CONSTRUCTOR)
1376 		spin_lock_init(&sighand->siglock);
1377 }
1378 
1379 void __init proc_caches_init(void)
1380 {
1381 	sighand_cachep = kmem_cache_create("sighand_cache",
1382 			sizeof(struct sighand_struct), 0,
1383 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1384 			sighand_ctor, NULL);
1385 	signal_cachep = kmem_cache_create("signal_cache",
1386 			sizeof(struct signal_struct), 0,
1387 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1388 	files_cachep = kmem_cache_create("files_cache",
1389 			sizeof(struct files_struct), 0,
1390 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1391 	fs_cachep = kmem_cache_create("fs_cache",
1392 			sizeof(struct fs_struct), 0,
1393 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1394 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1395 			sizeof(struct vm_area_struct), 0,
1396 			SLAB_PANIC, NULL, NULL);
1397 	mm_cachep = kmem_cache_create("mm_struct",
1398 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1399 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1400 }
1401 
1402 
1403 /*
1404  * Check constraints on flags passed to the unshare system call and
1405  * force unsharing of additional process context as appropriate.
1406  */
1407 static inline void check_unshare_flags(unsigned long *flags_ptr)
1408 {
1409 	/*
1410 	 * If unsharing a thread from a thread group, must also
1411 	 * unshare vm.
1412 	 */
1413 	if (*flags_ptr & CLONE_THREAD)
1414 		*flags_ptr |= CLONE_VM;
1415 
1416 	/*
1417 	 * If unsharing vm, must also unshare signal handlers.
1418 	 */
1419 	if (*flags_ptr & CLONE_VM)
1420 		*flags_ptr |= CLONE_SIGHAND;
1421 
1422 	/*
1423 	 * If unsharing signal handlers and the task was created
1424 	 * using CLONE_THREAD, then must unshare the thread
1425 	 */
1426 	if ((*flags_ptr & CLONE_SIGHAND) &&
1427 	    (atomic_read(&current->signal->count) > 1))
1428 		*flags_ptr |= CLONE_THREAD;
1429 
1430 	/*
1431 	 * If unsharing namespace, must also unshare filesystem information.
1432 	 */
1433 	if (*flags_ptr & CLONE_NEWNS)
1434 		*flags_ptr |= CLONE_FS;
1435 }
1436 
1437 /*
1438  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1439  */
1440 static int unshare_thread(unsigned long unshare_flags)
1441 {
1442 	if (unshare_flags & CLONE_THREAD)
1443 		return -EINVAL;
1444 
1445 	return 0;
1446 }
1447 
1448 /*
1449  * Unshare the filesystem structure if it is being shared
1450  */
1451 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1452 {
1453 	struct fs_struct *fs = current->fs;
1454 
1455 	if ((unshare_flags & CLONE_FS) &&
1456 	    (fs && atomic_read(&fs->count) > 1)) {
1457 		*new_fsp = __copy_fs_struct(current->fs);
1458 		if (!*new_fsp)
1459 			return -ENOMEM;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 /*
1466  * Unshare the namespace structure if it is being shared
1467  */
1468 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1469 {
1470 	struct namespace *ns = current->namespace;
1471 
1472 	if ((unshare_flags & CLONE_NEWNS) &&
1473 	    (ns && atomic_read(&ns->count) > 1)) {
1474 		if (!capable(CAP_SYS_ADMIN))
1475 			return -EPERM;
1476 
1477 		*new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1478 		if (!*new_nsp)
1479 			return -ENOMEM;
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 /*
1486  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1487  * supported yet
1488  */
1489 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1490 {
1491 	struct sighand_struct *sigh = current->sighand;
1492 
1493 	if ((unshare_flags & CLONE_SIGHAND) &&
1494 	    (sigh && atomic_read(&sigh->count) > 1))
1495 		return -EINVAL;
1496 	else
1497 		return 0;
1498 }
1499 
1500 /*
1501  * Unshare vm if it is being shared
1502  */
1503 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1504 {
1505 	struct mm_struct *mm = current->mm;
1506 
1507 	if ((unshare_flags & CLONE_VM) &&
1508 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1509 		return -EINVAL;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Unshare file descriptor table if it is being shared
1517  */
1518 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1519 {
1520 	struct files_struct *fd = current->files;
1521 	int error = 0;
1522 
1523 	if ((unshare_flags & CLONE_FILES) &&
1524 	    (fd && atomic_read(&fd->count) > 1)) {
1525 		*new_fdp = dup_fd(fd, &error);
1526 		if (!*new_fdp)
1527 			return error;
1528 	}
1529 
1530 	return 0;
1531 }
1532 
1533 /*
1534  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1535  * supported yet
1536  */
1537 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1538 {
1539 	if (unshare_flags & CLONE_SYSVSEM)
1540 		return -EINVAL;
1541 
1542 	return 0;
1543 }
1544 
1545 /*
1546  * unshare allows a process to 'unshare' part of the process
1547  * context which was originally shared using clone.  copy_*
1548  * functions used by do_fork() cannot be used here directly
1549  * because they modify an inactive task_struct that is being
1550  * constructed. Here we are modifying the current, active,
1551  * task_struct.
1552  */
1553 asmlinkage long sys_unshare(unsigned long unshare_flags)
1554 {
1555 	int err = 0;
1556 	struct fs_struct *fs, *new_fs = NULL;
1557 	struct namespace *ns, *new_ns = NULL;
1558 	struct sighand_struct *sigh, *new_sigh = NULL;
1559 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1560 	struct files_struct *fd, *new_fd = NULL;
1561 	struct sem_undo_list *new_ulist = NULL;
1562 
1563 	check_unshare_flags(&unshare_flags);
1564 
1565 	/* Return -EINVAL for all unsupported flags */
1566 	err = -EINVAL;
1567 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1568 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1569 		goto bad_unshare_out;
1570 
1571 	if ((err = unshare_thread(unshare_flags)))
1572 		goto bad_unshare_out;
1573 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1574 		goto bad_unshare_cleanup_thread;
1575 	if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1576 		goto bad_unshare_cleanup_fs;
1577 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1578 		goto bad_unshare_cleanup_ns;
1579 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1580 		goto bad_unshare_cleanup_sigh;
1581 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1582 		goto bad_unshare_cleanup_vm;
1583 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1584 		goto bad_unshare_cleanup_fd;
1585 
1586 	if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1587 
1588 		task_lock(current);
1589 
1590 		if (new_fs) {
1591 			fs = current->fs;
1592 			current->fs = new_fs;
1593 			new_fs = fs;
1594 		}
1595 
1596 		if (new_ns) {
1597 			ns = current->namespace;
1598 			current->namespace = new_ns;
1599 			new_ns = ns;
1600 		}
1601 
1602 		if (new_sigh) {
1603 			sigh = current->sighand;
1604 			rcu_assign_pointer(current->sighand, new_sigh);
1605 			new_sigh = sigh;
1606 		}
1607 
1608 		if (new_mm) {
1609 			mm = current->mm;
1610 			active_mm = current->active_mm;
1611 			current->mm = new_mm;
1612 			current->active_mm = new_mm;
1613 			activate_mm(active_mm, new_mm);
1614 			new_mm = mm;
1615 		}
1616 
1617 		if (new_fd) {
1618 			fd = current->files;
1619 			current->files = new_fd;
1620 			new_fd = fd;
1621 		}
1622 
1623 		task_unlock(current);
1624 	}
1625 
1626 bad_unshare_cleanup_fd:
1627 	if (new_fd)
1628 		put_files_struct(new_fd);
1629 
1630 bad_unshare_cleanup_vm:
1631 	if (new_mm)
1632 		mmput(new_mm);
1633 
1634 bad_unshare_cleanup_sigh:
1635 	if (new_sigh)
1636 		if (atomic_dec_and_test(&new_sigh->count))
1637 			kmem_cache_free(sighand_cachep, new_sigh);
1638 
1639 bad_unshare_cleanup_ns:
1640 	if (new_ns)
1641 		put_namespace(new_ns);
1642 
1643 bad_unshare_cleanup_fs:
1644 	if (new_fs)
1645 		put_fs_struct(new_fs);
1646 
1647 bad_unshare_cleanup_thread:
1648 bad_unshare_out:
1649 	return err;
1650 }
1651