1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 100 #include <asm/pgalloc.h> 101 #include <linux/uaccess.h> 102 #include <asm/mmu_context.h> 103 #include <asm/cacheflush.h> 104 #include <asm/tlbflush.h> 105 106 #include <trace/events/sched.h> 107 108 #define CREATE_TRACE_POINTS 109 #include <trace/events/task.h> 110 111 /* 112 * Minimum number of threads to boot the kernel 113 */ 114 #define MIN_THREADS 20 115 116 /* 117 * Maximum number of threads 118 */ 119 #define MAX_THREADS FUTEX_TID_MASK 120 121 /* 122 * Protected counters by write_lock_irq(&tasklist_lock) 123 */ 124 unsigned long total_forks; /* Handle normal Linux uptimes. */ 125 int nr_threads; /* The idle threads do not count.. */ 126 127 static int max_threads; /* tunable limit on nr_threads */ 128 129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 130 131 static const char * const resident_page_types[] = { 132 NAMED_ARRAY_INDEX(MM_FILEPAGES), 133 NAMED_ARRAY_INDEX(MM_ANONPAGES), 134 NAMED_ARRAY_INDEX(MM_SWAPENTS), 135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 136 }; 137 138 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 139 140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 141 142 #ifdef CONFIG_PROVE_RCU 143 int lockdep_tasklist_lock_is_held(void) 144 { 145 return lockdep_is_held(&tasklist_lock); 146 } 147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 148 #endif /* #ifdef CONFIG_PROVE_RCU */ 149 150 int nr_processes(void) 151 { 152 int cpu; 153 int total = 0; 154 155 for_each_possible_cpu(cpu) 156 total += per_cpu(process_counts, cpu); 157 158 return total; 159 } 160 161 void __weak arch_release_task_struct(struct task_struct *tsk) 162 { 163 } 164 165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 166 static struct kmem_cache *task_struct_cachep; 167 168 static inline struct task_struct *alloc_task_struct_node(int node) 169 { 170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 171 } 172 173 static inline void free_task_struct(struct task_struct *tsk) 174 { 175 kmem_cache_free(task_struct_cachep, tsk); 176 } 177 #endif 178 179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 180 181 /* 182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 183 * kmemcache based allocator. 184 */ 185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 186 187 #ifdef CONFIG_VMAP_STACK 188 /* 189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 190 * flush. Try to minimize the number of calls by caching stacks. 191 */ 192 #define NR_CACHED_STACKS 2 193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 194 195 static int free_vm_stack_cache(unsigned int cpu) 196 { 197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 198 int i; 199 200 for (i = 0; i < NR_CACHED_STACKS; i++) { 201 struct vm_struct *vm_stack = cached_vm_stacks[i]; 202 203 if (!vm_stack) 204 continue; 205 206 vfree(vm_stack->addr); 207 cached_vm_stacks[i] = NULL; 208 } 209 210 return 0; 211 } 212 #endif 213 214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 215 { 216 #ifdef CONFIG_VMAP_STACK 217 void *stack; 218 int i; 219 220 for (i = 0; i < NR_CACHED_STACKS; i++) { 221 struct vm_struct *s; 222 223 s = this_cpu_xchg(cached_stacks[i], NULL); 224 225 if (!s) 226 continue; 227 228 /* Clear the KASAN shadow of the stack. */ 229 kasan_unpoison_shadow(s->addr, THREAD_SIZE); 230 231 /* Clear stale pointers from reused stack. */ 232 memset(s->addr, 0, THREAD_SIZE); 233 234 tsk->stack_vm_area = s; 235 tsk->stack = s->addr; 236 return s->addr; 237 } 238 239 /* 240 * Allocated stacks are cached and later reused by new threads, 241 * so memcg accounting is performed manually on assigning/releasing 242 * stacks to tasks. Drop __GFP_ACCOUNT. 243 */ 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 245 VMALLOC_START, VMALLOC_END, 246 THREADINFO_GFP & ~__GFP_ACCOUNT, 247 PAGE_KERNEL, 248 0, node, __builtin_return_address(0)); 249 250 /* 251 * We can't call find_vm_area() in interrupt context, and 252 * free_thread_stack() can be called in interrupt context, 253 * so cache the vm_struct. 254 */ 255 if (stack) { 256 tsk->stack_vm_area = find_vm_area(stack); 257 tsk->stack = stack; 258 } 259 return stack; 260 #else 261 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 262 THREAD_SIZE_ORDER); 263 264 if (likely(page)) { 265 tsk->stack = kasan_reset_tag(page_address(page)); 266 return tsk->stack; 267 } 268 return NULL; 269 #endif 270 } 271 272 static inline void free_thread_stack(struct task_struct *tsk) 273 { 274 #ifdef CONFIG_VMAP_STACK 275 struct vm_struct *vm = task_stack_vm_area(tsk); 276 277 if (vm) { 278 int i; 279 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 281 memcg_kmem_uncharge_page(vm->pages[i], 0); 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 if (this_cpu_cmpxchg(cached_stacks[i], 285 NULL, tsk->stack_vm_area) != NULL) 286 continue; 287 288 return; 289 } 290 291 vfree_atomic(tsk->stack); 292 return; 293 } 294 #endif 295 296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 297 } 298 # else 299 static struct kmem_cache *thread_stack_cache; 300 301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 302 int node) 303 { 304 unsigned long *stack; 305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 306 stack = kasan_reset_tag(stack); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 361 /* 362 * orig->shared.rb may be modified concurrently, but the clone 363 * will be reinitialized. 364 */ 365 *new = data_race(*orig); 366 INIT_LIST_HEAD(&new->anon_vma_chain); 367 new->vm_next = new->vm_prev = NULL; 368 } 369 return new; 370 } 371 372 void vm_area_free(struct vm_area_struct *vma) 373 { 374 kmem_cache_free(vm_area_cachep, vma); 375 } 376 377 static void account_kernel_stack(struct task_struct *tsk, int account) 378 { 379 void *stack = task_stack_page(tsk); 380 struct vm_struct *vm = task_stack_vm_area(tsk); 381 382 383 /* All stack pages are in the same node. */ 384 if (vm) 385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 386 account * (THREAD_SIZE / 1024)); 387 else 388 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB, 389 account * (THREAD_SIZE / 1024)); 390 } 391 392 static int memcg_charge_kernel_stack(struct task_struct *tsk) 393 { 394 #ifdef CONFIG_VMAP_STACK 395 struct vm_struct *vm = task_stack_vm_area(tsk); 396 int ret; 397 398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 399 400 if (vm) { 401 int i; 402 403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 404 405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 406 /* 407 * If memcg_kmem_charge_page() fails, page->mem_cgroup 408 * pointer is NULL, and memcg_kmem_uncharge_page() in 409 * free_thread_stack() will ignore this page. 410 */ 411 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 412 0); 413 if (ret) 414 return ret; 415 } 416 } 417 #endif 418 return 0; 419 } 420 421 static void release_task_stack(struct task_struct *tsk) 422 { 423 if (WARN_ON(tsk->state != TASK_DEAD)) 424 return; /* Better to leak the stack than to free prematurely */ 425 426 account_kernel_stack(tsk, -1); 427 free_thread_stack(tsk); 428 tsk->stack = NULL; 429 #ifdef CONFIG_VMAP_STACK 430 tsk->stack_vm_area = NULL; 431 #endif 432 } 433 434 #ifdef CONFIG_THREAD_INFO_IN_TASK 435 void put_task_stack(struct task_struct *tsk) 436 { 437 if (refcount_dec_and_test(&tsk->stack_refcount)) 438 release_task_stack(tsk); 439 } 440 #endif 441 442 void free_task(struct task_struct *tsk) 443 { 444 scs_release(tsk); 445 446 #ifndef CONFIG_THREAD_INFO_IN_TASK 447 /* 448 * The task is finally done with both the stack and thread_info, 449 * so free both. 450 */ 451 release_task_stack(tsk); 452 #else 453 /* 454 * If the task had a separate stack allocation, it should be gone 455 * by now. 456 */ 457 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 458 #endif 459 rt_mutex_debug_task_free(tsk); 460 ftrace_graph_exit_task(tsk); 461 arch_release_task_struct(tsk); 462 if (tsk->flags & PF_KTHREAD) 463 free_kthread_struct(tsk); 464 free_task_struct(tsk); 465 } 466 EXPORT_SYMBOL(free_task); 467 468 #ifdef CONFIG_MMU 469 static __latent_entropy int dup_mmap(struct mm_struct *mm, 470 struct mm_struct *oldmm) 471 { 472 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 473 struct rb_node **rb_link, *rb_parent; 474 int retval; 475 unsigned long charge; 476 LIST_HEAD(uf); 477 478 uprobe_start_dup_mmap(); 479 if (mmap_write_lock_killable(oldmm)) { 480 retval = -EINTR; 481 goto fail_uprobe_end; 482 } 483 flush_cache_dup_mm(oldmm); 484 uprobe_dup_mmap(oldmm, mm); 485 /* 486 * Not linked in yet - no deadlock potential: 487 */ 488 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 489 490 /* No ordering required: file already has been exposed. */ 491 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 492 493 mm->total_vm = oldmm->total_vm; 494 mm->data_vm = oldmm->data_vm; 495 mm->exec_vm = oldmm->exec_vm; 496 mm->stack_vm = oldmm->stack_vm; 497 498 rb_link = &mm->mm_rb.rb_node; 499 rb_parent = NULL; 500 pprev = &mm->mmap; 501 retval = ksm_fork(mm, oldmm); 502 if (retval) 503 goto out; 504 retval = khugepaged_fork(mm, oldmm); 505 if (retval) 506 goto out; 507 508 prev = NULL; 509 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 510 struct file *file; 511 512 if (mpnt->vm_flags & VM_DONTCOPY) { 513 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 514 continue; 515 } 516 charge = 0; 517 /* 518 * Don't duplicate many vmas if we've been oom-killed (for 519 * example) 520 */ 521 if (fatal_signal_pending(current)) { 522 retval = -EINTR; 523 goto out; 524 } 525 if (mpnt->vm_flags & VM_ACCOUNT) { 526 unsigned long len = vma_pages(mpnt); 527 528 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 529 goto fail_nomem; 530 charge = len; 531 } 532 tmp = vm_area_dup(mpnt); 533 if (!tmp) 534 goto fail_nomem; 535 retval = vma_dup_policy(mpnt, tmp); 536 if (retval) 537 goto fail_nomem_policy; 538 tmp->vm_mm = mm; 539 retval = dup_userfaultfd(tmp, &uf); 540 if (retval) 541 goto fail_nomem_anon_vma_fork; 542 if (tmp->vm_flags & VM_WIPEONFORK) { 543 /* 544 * VM_WIPEONFORK gets a clean slate in the child. 545 * Don't prepare anon_vma until fault since we don't 546 * copy page for current vma. 547 */ 548 tmp->anon_vma = NULL; 549 } else if (anon_vma_fork(tmp, mpnt)) 550 goto fail_nomem_anon_vma_fork; 551 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 552 file = tmp->vm_file; 553 if (file) { 554 struct inode *inode = file_inode(file); 555 struct address_space *mapping = file->f_mapping; 556 557 get_file(file); 558 if (tmp->vm_flags & VM_DENYWRITE) 559 put_write_access(inode); 560 i_mmap_lock_write(mapping); 561 if (tmp->vm_flags & VM_SHARED) 562 mapping_allow_writable(mapping); 563 flush_dcache_mmap_lock(mapping); 564 /* insert tmp into the share list, just after mpnt */ 565 vma_interval_tree_insert_after(tmp, mpnt, 566 &mapping->i_mmap); 567 flush_dcache_mmap_unlock(mapping); 568 i_mmap_unlock_write(mapping); 569 } 570 571 /* 572 * Clear hugetlb-related page reserves for children. This only 573 * affects MAP_PRIVATE mappings. Faults generated by the child 574 * are not guaranteed to succeed, even if read-only 575 */ 576 if (is_vm_hugetlb_page(tmp)) 577 reset_vma_resv_huge_pages(tmp); 578 579 /* 580 * Link in the new vma and copy the page table entries. 581 */ 582 *pprev = tmp; 583 pprev = &tmp->vm_next; 584 tmp->vm_prev = prev; 585 prev = tmp; 586 587 __vma_link_rb(mm, tmp, rb_link, rb_parent); 588 rb_link = &tmp->vm_rb.rb_right; 589 rb_parent = &tmp->vm_rb; 590 591 mm->map_count++; 592 if (!(tmp->vm_flags & VM_WIPEONFORK)) 593 retval = copy_page_range(tmp, mpnt); 594 595 if (tmp->vm_ops && tmp->vm_ops->open) 596 tmp->vm_ops->open(tmp); 597 598 if (retval) 599 goto out; 600 } 601 /* a new mm has just been created */ 602 retval = arch_dup_mmap(oldmm, mm); 603 out: 604 mmap_write_unlock(mm); 605 flush_tlb_mm(oldmm); 606 mmap_write_unlock(oldmm); 607 dup_userfaultfd_complete(&uf); 608 fail_uprobe_end: 609 uprobe_end_dup_mmap(); 610 return retval; 611 fail_nomem_anon_vma_fork: 612 mpol_put(vma_policy(tmp)); 613 fail_nomem_policy: 614 vm_area_free(tmp); 615 fail_nomem: 616 retval = -ENOMEM; 617 vm_unacct_memory(charge); 618 goto out; 619 } 620 621 static inline int mm_alloc_pgd(struct mm_struct *mm) 622 { 623 mm->pgd = pgd_alloc(mm); 624 if (unlikely(!mm->pgd)) 625 return -ENOMEM; 626 return 0; 627 } 628 629 static inline void mm_free_pgd(struct mm_struct *mm) 630 { 631 pgd_free(mm, mm->pgd); 632 } 633 #else 634 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 635 { 636 mmap_write_lock(oldmm); 637 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 638 mmap_write_unlock(oldmm); 639 return 0; 640 } 641 #define mm_alloc_pgd(mm) (0) 642 #define mm_free_pgd(mm) 643 #endif /* CONFIG_MMU */ 644 645 static void check_mm(struct mm_struct *mm) 646 { 647 int i; 648 649 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 650 "Please make sure 'struct resident_page_types[]' is updated as well"); 651 652 for (i = 0; i < NR_MM_COUNTERS; i++) { 653 long x = atomic_long_read(&mm->rss_stat.count[i]); 654 655 if (unlikely(x)) 656 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 657 mm, resident_page_types[i], x); 658 } 659 660 if (mm_pgtables_bytes(mm)) 661 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 662 mm_pgtables_bytes(mm)); 663 664 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 665 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 666 #endif 667 } 668 669 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 670 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 671 672 /* 673 * Called when the last reference to the mm 674 * is dropped: either by a lazy thread or by 675 * mmput. Free the page directory and the mm. 676 */ 677 void __mmdrop(struct mm_struct *mm) 678 { 679 BUG_ON(mm == &init_mm); 680 WARN_ON_ONCE(mm == current->mm); 681 WARN_ON_ONCE(mm == current->active_mm); 682 mm_free_pgd(mm); 683 destroy_context(mm); 684 mmu_notifier_subscriptions_destroy(mm); 685 check_mm(mm); 686 put_user_ns(mm->user_ns); 687 free_mm(mm); 688 } 689 EXPORT_SYMBOL_GPL(__mmdrop); 690 691 static void mmdrop_async_fn(struct work_struct *work) 692 { 693 struct mm_struct *mm; 694 695 mm = container_of(work, struct mm_struct, async_put_work); 696 __mmdrop(mm); 697 } 698 699 static void mmdrop_async(struct mm_struct *mm) 700 { 701 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 702 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 703 schedule_work(&mm->async_put_work); 704 } 705 } 706 707 static inline void free_signal_struct(struct signal_struct *sig) 708 { 709 taskstats_tgid_free(sig); 710 sched_autogroup_exit(sig); 711 /* 712 * __mmdrop is not safe to call from softirq context on x86 due to 713 * pgd_dtor so postpone it to the async context 714 */ 715 if (sig->oom_mm) 716 mmdrop_async(sig->oom_mm); 717 kmem_cache_free(signal_cachep, sig); 718 } 719 720 static inline void put_signal_struct(struct signal_struct *sig) 721 { 722 if (refcount_dec_and_test(&sig->sigcnt)) 723 free_signal_struct(sig); 724 } 725 726 void __put_task_struct(struct task_struct *tsk) 727 { 728 WARN_ON(!tsk->exit_state); 729 WARN_ON(refcount_read(&tsk->usage)); 730 WARN_ON(tsk == current); 731 732 io_uring_free(tsk); 733 cgroup_free(tsk); 734 task_numa_free(tsk, true); 735 security_task_free(tsk); 736 exit_creds(tsk); 737 delayacct_tsk_free(tsk); 738 put_signal_struct(tsk->signal); 739 740 if (!profile_handoff_task(tsk)) 741 free_task(tsk); 742 } 743 EXPORT_SYMBOL_GPL(__put_task_struct); 744 745 void __init __weak arch_task_cache_init(void) { } 746 747 /* 748 * set_max_threads 749 */ 750 static void set_max_threads(unsigned int max_threads_suggested) 751 { 752 u64 threads; 753 unsigned long nr_pages = totalram_pages(); 754 755 /* 756 * The number of threads shall be limited such that the thread 757 * structures may only consume a small part of the available memory. 758 */ 759 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 760 threads = MAX_THREADS; 761 else 762 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 763 (u64) THREAD_SIZE * 8UL); 764 765 if (threads > max_threads_suggested) 766 threads = max_threads_suggested; 767 768 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 769 } 770 771 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 772 /* Initialized by the architecture: */ 773 int arch_task_struct_size __read_mostly; 774 #endif 775 776 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 777 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 778 { 779 /* Fetch thread_struct whitelist for the architecture. */ 780 arch_thread_struct_whitelist(offset, size); 781 782 /* 783 * Handle zero-sized whitelist or empty thread_struct, otherwise 784 * adjust offset to position of thread_struct in task_struct. 785 */ 786 if (unlikely(*size == 0)) 787 *offset = 0; 788 else 789 *offset += offsetof(struct task_struct, thread); 790 } 791 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 792 793 void __init fork_init(void) 794 { 795 int i; 796 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 797 #ifndef ARCH_MIN_TASKALIGN 798 #define ARCH_MIN_TASKALIGN 0 799 #endif 800 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 801 unsigned long useroffset, usersize; 802 803 /* create a slab on which task_structs can be allocated */ 804 task_struct_whitelist(&useroffset, &usersize); 805 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 806 arch_task_struct_size, align, 807 SLAB_PANIC|SLAB_ACCOUNT, 808 useroffset, usersize, NULL); 809 #endif 810 811 /* do the arch specific task caches init */ 812 arch_task_cache_init(); 813 814 set_max_threads(MAX_THREADS); 815 816 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 817 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 818 init_task.signal->rlim[RLIMIT_SIGPENDING] = 819 init_task.signal->rlim[RLIMIT_NPROC]; 820 821 for (i = 0; i < UCOUNT_COUNTS; i++) { 822 init_user_ns.ucount_max[i] = max_threads/2; 823 } 824 825 #ifdef CONFIG_VMAP_STACK 826 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 827 NULL, free_vm_stack_cache); 828 #endif 829 830 scs_init(); 831 832 lockdep_init_task(&init_task); 833 uprobes_init(); 834 } 835 836 int __weak arch_dup_task_struct(struct task_struct *dst, 837 struct task_struct *src) 838 { 839 *dst = *src; 840 return 0; 841 } 842 843 void set_task_stack_end_magic(struct task_struct *tsk) 844 { 845 unsigned long *stackend; 846 847 stackend = end_of_stack(tsk); 848 *stackend = STACK_END_MAGIC; /* for overflow detection */ 849 } 850 851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 852 { 853 struct task_struct *tsk; 854 unsigned long *stack; 855 struct vm_struct *stack_vm_area __maybe_unused; 856 int err; 857 858 if (node == NUMA_NO_NODE) 859 node = tsk_fork_get_node(orig); 860 tsk = alloc_task_struct_node(node); 861 if (!tsk) 862 return NULL; 863 864 stack = alloc_thread_stack_node(tsk, node); 865 if (!stack) 866 goto free_tsk; 867 868 if (memcg_charge_kernel_stack(tsk)) 869 goto free_stack; 870 871 stack_vm_area = task_stack_vm_area(tsk); 872 873 err = arch_dup_task_struct(tsk, orig); 874 875 /* 876 * arch_dup_task_struct() clobbers the stack-related fields. Make 877 * sure they're properly initialized before using any stack-related 878 * functions again. 879 */ 880 tsk->stack = stack; 881 #ifdef CONFIG_VMAP_STACK 882 tsk->stack_vm_area = stack_vm_area; 883 #endif 884 #ifdef CONFIG_THREAD_INFO_IN_TASK 885 refcount_set(&tsk->stack_refcount, 1); 886 #endif 887 888 if (err) 889 goto free_stack; 890 891 err = scs_prepare(tsk, node); 892 if (err) 893 goto free_stack; 894 895 #ifdef CONFIG_SECCOMP 896 /* 897 * We must handle setting up seccomp filters once we're under 898 * the sighand lock in case orig has changed between now and 899 * then. Until then, filter must be NULL to avoid messing up 900 * the usage counts on the error path calling free_task. 901 */ 902 tsk->seccomp.filter = NULL; 903 #endif 904 905 setup_thread_stack(tsk, orig); 906 clear_user_return_notifier(tsk); 907 clear_tsk_need_resched(tsk); 908 set_task_stack_end_magic(tsk); 909 910 #ifdef CONFIG_STACKPROTECTOR 911 tsk->stack_canary = get_random_canary(); 912 #endif 913 if (orig->cpus_ptr == &orig->cpus_mask) 914 tsk->cpus_ptr = &tsk->cpus_mask; 915 916 /* 917 * One for the user space visible state that goes away when reaped. 918 * One for the scheduler. 919 */ 920 refcount_set(&tsk->rcu_users, 2); 921 /* One for the rcu users */ 922 refcount_set(&tsk->usage, 1); 923 #ifdef CONFIG_BLK_DEV_IO_TRACE 924 tsk->btrace_seq = 0; 925 #endif 926 tsk->splice_pipe = NULL; 927 tsk->task_frag.page = NULL; 928 tsk->wake_q.next = NULL; 929 930 account_kernel_stack(tsk, 1); 931 932 kcov_task_init(tsk); 933 934 #ifdef CONFIG_FAULT_INJECTION 935 tsk->fail_nth = 0; 936 #endif 937 938 #ifdef CONFIG_BLK_CGROUP 939 tsk->throttle_queue = NULL; 940 tsk->use_memdelay = 0; 941 #endif 942 943 #ifdef CONFIG_MEMCG 944 tsk->active_memcg = NULL; 945 #endif 946 return tsk; 947 948 free_stack: 949 free_thread_stack(tsk); 950 free_tsk: 951 free_task_struct(tsk); 952 return NULL; 953 } 954 955 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 956 957 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 958 959 static int __init coredump_filter_setup(char *s) 960 { 961 default_dump_filter = 962 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 963 MMF_DUMP_FILTER_MASK; 964 return 1; 965 } 966 967 __setup("coredump_filter=", coredump_filter_setup); 968 969 #include <linux/init_task.h> 970 971 static void mm_init_aio(struct mm_struct *mm) 972 { 973 #ifdef CONFIG_AIO 974 spin_lock_init(&mm->ioctx_lock); 975 mm->ioctx_table = NULL; 976 #endif 977 } 978 979 static __always_inline void mm_clear_owner(struct mm_struct *mm, 980 struct task_struct *p) 981 { 982 #ifdef CONFIG_MEMCG 983 if (mm->owner == p) 984 WRITE_ONCE(mm->owner, NULL); 985 #endif 986 } 987 988 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 989 { 990 #ifdef CONFIG_MEMCG 991 mm->owner = p; 992 #endif 993 } 994 995 static void mm_init_uprobes_state(struct mm_struct *mm) 996 { 997 #ifdef CONFIG_UPROBES 998 mm->uprobes_state.xol_area = NULL; 999 #endif 1000 } 1001 1002 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1003 struct user_namespace *user_ns) 1004 { 1005 mm->mmap = NULL; 1006 mm->mm_rb = RB_ROOT; 1007 mm->vmacache_seqnum = 0; 1008 atomic_set(&mm->mm_users, 1); 1009 atomic_set(&mm->mm_count, 1); 1010 mmap_init_lock(mm); 1011 INIT_LIST_HEAD(&mm->mmlist); 1012 mm->core_state = NULL; 1013 mm_pgtables_bytes_init(mm); 1014 mm->map_count = 0; 1015 mm->locked_vm = 0; 1016 atomic_set(&mm->has_pinned, 0); 1017 atomic64_set(&mm->pinned_vm, 0); 1018 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1019 spin_lock_init(&mm->page_table_lock); 1020 spin_lock_init(&mm->arg_lock); 1021 mm_init_cpumask(mm); 1022 mm_init_aio(mm); 1023 mm_init_owner(mm, p); 1024 RCU_INIT_POINTER(mm->exe_file, NULL); 1025 mmu_notifier_subscriptions_init(mm); 1026 init_tlb_flush_pending(mm); 1027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1028 mm->pmd_huge_pte = NULL; 1029 #endif 1030 mm_init_uprobes_state(mm); 1031 1032 if (current->mm) { 1033 mm->flags = current->mm->flags & MMF_INIT_MASK; 1034 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1035 } else { 1036 mm->flags = default_dump_filter; 1037 mm->def_flags = 0; 1038 } 1039 1040 if (mm_alloc_pgd(mm)) 1041 goto fail_nopgd; 1042 1043 if (init_new_context(p, mm)) 1044 goto fail_nocontext; 1045 1046 mm->user_ns = get_user_ns(user_ns); 1047 return mm; 1048 1049 fail_nocontext: 1050 mm_free_pgd(mm); 1051 fail_nopgd: 1052 free_mm(mm); 1053 return NULL; 1054 } 1055 1056 /* 1057 * Allocate and initialize an mm_struct. 1058 */ 1059 struct mm_struct *mm_alloc(void) 1060 { 1061 struct mm_struct *mm; 1062 1063 mm = allocate_mm(); 1064 if (!mm) 1065 return NULL; 1066 1067 memset(mm, 0, sizeof(*mm)); 1068 return mm_init(mm, current, current_user_ns()); 1069 } 1070 1071 static inline void __mmput(struct mm_struct *mm) 1072 { 1073 VM_BUG_ON(atomic_read(&mm->mm_users)); 1074 1075 uprobe_clear_state(mm); 1076 exit_aio(mm); 1077 ksm_exit(mm); 1078 khugepaged_exit(mm); /* must run before exit_mmap */ 1079 exit_mmap(mm); 1080 mm_put_huge_zero_page(mm); 1081 set_mm_exe_file(mm, NULL); 1082 if (!list_empty(&mm->mmlist)) { 1083 spin_lock(&mmlist_lock); 1084 list_del(&mm->mmlist); 1085 spin_unlock(&mmlist_lock); 1086 } 1087 if (mm->binfmt) 1088 module_put(mm->binfmt->module); 1089 mmdrop(mm); 1090 } 1091 1092 /* 1093 * Decrement the use count and release all resources for an mm. 1094 */ 1095 void mmput(struct mm_struct *mm) 1096 { 1097 might_sleep(); 1098 1099 if (atomic_dec_and_test(&mm->mm_users)) 1100 __mmput(mm); 1101 } 1102 EXPORT_SYMBOL_GPL(mmput); 1103 1104 #ifdef CONFIG_MMU 1105 static void mmput_async_fn(struct work_struct *work) 1106 { 1107 struct mm_struct *mm = container_of(work, struct mm_struct, 1108 async_put_work); 1109 1110 __mmput(mm); 1111 } 1112 1113 void mmput_async(struct mm_struct *mm) 1114 { 1115 if (atomic_dec_and_test(&mm->mm_users)) { 1116 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1117 schedule_work(&mm->async_put_work); 1118 } 1119 } 1120 #endif 1121 1122 /** 1123 * set_mm_exe_file - change a reference to the mm's executable file 1124 * 1125 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1126 * 1127 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1128 * invocations: in mmput() nobody alive left, in execve task is single 1129 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1130 * mm->exe_file, but does so without using set_mm_exe_file() in order 1131 * to do avoid the need for any locks. 1132 */ 1133 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1134 { 1135 struct file *old_exe_file; 1136 1137 /* 1138 * It is safe to dereference the exe_file without RCU as 1139 * this function is only called if nobody else can access 1140 * this mm -- see comment above for justification. 1141 */ 1142 old_exe_file = rcu_dereference_raw(mm->exe_file); 1143 1144 if (new_exe_file) 1145 get_file(new_exe_file); 1146 rcu_assign_pointer(mm->exe_file, new_exe_file); 1147 if (old_exe_file) 1148 fput(old_exe_file); 1149 } 1150 1151 /** 1152 * get_mm_exe_file - acquire a reference to the mm's executable file 1153 * 1154 * Returns %NULL if mm has no associated executable file. 1155 * User must release file via fput(). 1156 */ 1157 struct file *get_mm_exe_file(struct mm_struct *mm) 1158 { 1159 struct file *exe_file; 1160 1161 rcu_read_lock(); 1162 exe_file = rcu_dereference(mm->exe_file); 1163 if (exe_file && !get_file_rcu(exe_file)) 1164 exe_file = NULL; 1165 rcu_read_unlock(); 1166 return exe_file; 1167 } 1168 EXPORT_SYMBOL(get_mm_exe_file); 1169 1170 /** 1171 * get_task_exe_file - acquire a reference to the task's executable file 1172 * 1173 * Returns %NULL if task's mm (if any) has no associated executable file or 1174 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1175 * User must release file via fput(). 1176 */ 1177 struct file *get_task_exe_file(struct task_struct *task) 1178 { 1179 struct file *exe_file = NULL; 1180 struct mm_struct *mm; 1181 1182 task_lock(task); 1183 mm = task->mm; 1184 if (mm) { 1185 if (!(task->flags & PF_KTHREAD)) 1186 exe_file = get_mm_exe_file(mm); 1187 } 1188 task_unlock(task); 1189 return exe_file; 1190 } 1191 EXPORT_SYMBOL(get_task_exe_file); 1192 1193 /** 1194 * get_task_mm - acquire a reference to the task's mm 1195 * 1196 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1197 * this kernel workthread has transiently adopted a user mm with use_mm, 1198 * to do its AIO) is not set and if so returns a reference to it, after 1199 * bumping up the use count. User must release the mm via mmput() 1200 * after use. Typically used by /proc and ptrace. 1201 */ 1202 struct mm_struct *get_task_mm(struct task_struct *task) 1203 { 1204 struct mm_struct *mm; 1205 1206 task_lock(task); 1207 mm = task->mm; 1208 if (mm) { 1209 if (task->flags & PF_KTHREAD) 1210 mm = NULL; 1211 else 1212 mmget(mm); 1213 } 1214 task_unlock(task); 1215 return mm; 1216 } 1217 EXPORT_SYMBOL_GPL(get_task_mm); 1218 1219 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1220 { 1221 struct mm_struct *mm; 1222 int err; 1223 1224 err = mutex_lock_killable(&task->signal->exec_update_mutex); 1225 if (err) 1226 return ERR_PTR(err); 1227 1228 mm = get_task_mm(task); 1229 if (mm && mm != current->mm && 1230 !ptrace_may_access(task, mode)) { 1231 mmput(mm); 1232 mm = ERR_PTR(-EACCES); 1233 } 1234 mutex_unlock(&task->signal->exec_update_mutex); 1235 1236 return mm; 1237 } 1238 1239 static void complete_vfork_done(struct task_struct *tsk) 1240 { 1241 struct completion *vfork; 1242 1243 task_lock(tsk); 1244 vfork = tsk->vfork_done; 1245 if (likely(vfork)) { 1246 tsk->vfork_done = NULL; 1247 complete(vfork); 1248 } 1249 task_unlock(tsk); 1250 } 1251 1252 static int wait_for_vfork_done(struct task_struct *child, 1253 struct completion *vfork) 1254 { 1255 int killed; 1256 1257 freezer_do_not_count(); 1258 cgroup_enter_frozen(); 1259 killed = wait_for_completion_killable(vfork); 1260 cgroup_leave_frozen(false); 1261 freezer_count(); 1262 1263 if (killed) { 1264 task_lock(child); 1265 child->vfork_done = NULL; 1266 task_unlock(child); 1267 } 1268 1269 put_task_struct(child); 1270 return killed; 1271 } 1272 1273 /* Please note the differences between mmput and mm_release. 1274 * mmput is called whenever we stop holding onto a mm_struct, 1275 * error success whatever. 1276 * 1277 * mm_release is called after a mm_struct has been removed 1278 * from the current process. 1279 * 1280 * This difference is important for error handling, when we 1281 * only half set up a mm_struct for a new process and need to restore 1282 * the old one. Because we mmput the new mm_struct before 1283 * restoring the old one. . . 1284 * Eric Biederman 10 January 1998 1285 */ 1286 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1287 { 1288 uprobe_free_utask(tsk); 1289 1290 /* Get rid of any cached register state */ 1291 deactivate_mm(tsk, mm); 1292 1293 /* 1294 * Signal userspace if we're not exiting with a core dump 1295 * because we want to leave the value intact for debugging 1296 * purposes. 1297 */ 1298 if (tsk->clear_child_tid) { 1299 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1300 atomic_read(&mm->mm_users) > 1) { 1301 /* 1302 * We don't check the error code - if userspace has 1303 * not set up a proper pointer then tough luck. 1304 */ 1305 put_user(0, tsk->clear_child_tid); 1306 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1307 1, NULL, NULL, 0, 0); 1308 } 1309 tsk->clear_child_tid = NULL; 1310 } 1311 1312 /* 1313 * All done, finally we can wake up parent and return this mm to him. 1314 * Also kthread_stop() uses this completion for synchronization. 1315 */ 1316 if (tsk->vfork_done) 1317 complete_vfork_done(tsk); 1318 } 1319 1320 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1321 { 1322 futex_exit_release(tsk); 1323 mm_release(tsk, mm); 1324 } 1325 1326 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1327 { 1328 futex_exec_release(tsk); 1329 mm_release(tsk, mm); 1330 } 1331 1332 /** 1333 * dup_mm() - duplicates an existing mm structure 1334 * @tsk: the task_struct with which the new mm will be associated. 1335 * @oldmm: the mm to duplicate. 1336 * 1337 * Allocates a new mm structure and duplicates the provided @oldmm structure 1338 * content into it. 1339 * 1340 * Return: the duplicated mm or NULL on failure. 1341 */ 1342 static struct mm_struct *dup_mm(struct task_struct *tsk, 1343 struct mm_struct *oldmm) 1344 { 1345 struct mm_struct *mm; 1346 int err; 1347 1348 mm = allocate_mm(); 1349 if (!mm) 1350 goto fail_nomem; 1351 1352 memcpy(mm, oldmm, sizeof(*mm)); 1353 1354 if (!mm_init(mm, tsk, mm->user_ns)) 1355 goto fail_nomem; 1356 1357 err = dup_mmap(mm, oldmm); 1358 if (err) 1359 goto free_pt; 1360 1361 mm->hiwater_rss = get_mm_rss(mm); 1362 mm->hiwater_vm = mm->total_vm; 1363 1364 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1365 goto free_pt; 1366 1367 return mm; 1368 1369 free_pt: 1370 /* don't put binfmt in mmput, we haven't got module yet */ 1371 mm->binfmt = NULL; 1372 mm_init_owner(mm, NULL); 1373 mmput(mm); 1374 1375 fail_nomem: 1376 return NULL; 1377 } 1378 1379 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1380 { 1381 struct mm_struct *mm, *oldmm; 1382 int retval; 1383 1384 tsk->min_flt = tsk->maj_flt = 0; 1385 tsk->nvcsw = tsk->nivcsw = 0; 1386 #ifdef CONFIG_DETECT_HUNG_TASK 1387 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1388 tsk->last_switch_time = 0; 1389 #endif 1390 1391 tsk->mm = NULL; 1392 tsk->active_mm = NULL; 1393 1394 /* 1395 * Are we cloning a kernel thread? 1396 * 1397 * We need to steal a active VM for that.. 1398 */ 1399 oldmm = current->mm; 1400 if (!oldmm) 1401 return 0; 1402 1403 /* initialize the new vmacache entries */ 1404 vmacache_flush(tsk); 1405 1406 if (clone_flags & CLONE_VM) { 1407 mmget(oldmm); 1408 mm = oldmm; 1409 goto good_mm; 1410 } 1411 1412 retval = -ENOMEM; 1413 mm = dup_mm(tsk, current->mm); 1414 if (!mm) 1415 goto fail_nomem; 1416 1417 good_mm: 1418 tsk->mm = mm; 1419 tsk->active_mm = mm; 1420 return 0; 1421 1422 fail_nomem: 1423 return retval; 1424 } 1425 1426 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1427 { 1428 struct fs_struct *fs = current->fs; 1429 if (clone_flags & CLONE_FS) { 1430 /* tsk->fs is already what we want */ 1431 spin_lock(&fs->lock); 1432 if (fs->in_exec) { 1433 spin_unlock(&fs->lock); 1434 return -EAGAIN; 1435 } 1436 fs->users++; 1437 spin_unlock(&fs->lock); 1438 return 0; 1439 } 1440 tsk->fs = copy_fs_struct(fs); 1441 if (!tsk->fs) 1442 return -ENOMEM; 1443 return 0; 1444 } 1445 1446 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1447 { 1448 struct files_struct *oldf, *newf; 1449 int error = 0; 1450 1451 /* 1452 * A background process may not have any files ... 1453 */ 1454 oldf = current->files; 1455 if (!oldf) 1456 goto out; 1457 1458 if (clone_flags & CLONE_FILES) { 1459 atomic_inc(&oldf->count); 1460 goto out; 1461 } 1462 1463 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1464 if (!newf) 1465 goto out; 1466 1467 tsk->files = newf; 1468 error = 0; 1469 out: 1470 return error; 1471 } 1472 1473 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1474 { 1475 #ifdef CONFIG_BLOCK 1476 struct io_context *ioc = current->io_context; 1477 struct io_context *new_ioc; 1478 1479 if (!ioc) 1480 return 0; 1481 /* 1482 * Share io context with parent, if CLONE_IO is set 1483 */ 1484 if (clone_flags & CLONE_IO) { 1485 ioc_task_link(ioc); 1486 tsk->io_context = ioc; 1487 } else if (ioprio_valid(ioc->ioprio)) { 1488 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1489 if (unlikely(!new_ioc)) 1490 return -ENOMEM; 1491 1492 new_ioc->ioprio = ioc->ioprio; 1493 put_io_context(new_ioc); 1494 } 1495 #endif 1496 return 0; 1497 } 1498 1499 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1500 { 1501 struct sighand_struct *sig; 1502 1503 if (clone_flags & CLONE_SIGHAND) { 1504 refcount_inc(¤t->sighand->count); 1505 return 0; 1506 } 1507 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1508 RCU_INIT_POINTER(tsk->sighand, sig); 1509 if (!sig) 1510 return -ENOMEM; 1511 1512 refcount_set(&sig->count, 1); 1513 spin_lock_irq(¤t->sighand->siglock); 1514 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1515 spin_unlock_irq(¤t->sighand->siglock); 1516 1517 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1518 if (clone_flags & CLONE_CLEAR_SIGHAND) 1519 flush_signal_handlers(tsk, 0); 1520 1521 return 0; 1522 } 1523 1524 void __cleanup_sighand(struct sighand_struct *sighand) 1525 { 1526 if (refcount_dec_and_test(&sighand->count)) { 1527 signalfd_cleanup(sighand); 1528 /* 1529 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1530 * without an RCU grace period, see __lock_task_sighand(). 1531 */ 1532 kmem_cache_free(sighand_cachep, sighand); 1533 } 1534 } 1535 1536 /* 1537 * Initialize POSIX timer handling for a thread group. 1538 */ 1539 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1540 { 1541 struct posix_cputimers *pct = &sig->posix_cputimers; 1542 unsigned long cpu_limit; 1543 1544 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1545 posix_cputimers_group_init(pct, cpu_limit); 1546 } 1547 1548 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1549 { 1550 struct signal_struct *sig; 1551 1552 if (clone_flags & CLONE_THREAD) 1553 return 0; 1554 1555 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1556 tsk->signal = sig; 1557 if (!sig) 1558 return -ENOMEM; 1559 1560 sig->nr_threads = 1; 1561 atomic_set(&sig->live, 1); 1562 refcount_set(&sig->sigcnt, 1); 1563 1564 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1565 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1566 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1567 1568 init_waitqueue_head(&sig->wait_chldexit); 1569 sig->curr_target = tsk; 1570 init_sigpending(&sig->shared_pending); 1571 INIT_HLIST_HEAD(&sig->multiprocess); 1572 seqlock_init(&sig->stats_lock); 1573 prev_cputime_init(&sig->prev_cputime); 1574 1575 #ifdef CONFIG_POSIX_TIMERS 1576 INIT_LIST_HEAD(&sig->posix_timers); 1577 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1578 sig->real_timer.function = it_real_fn; 1579 #endif 1580 1581 task_lock(current->group_leader); 1582 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1583 task_unlock(current->group_leader); 1584 1585 posix_cpu_timers_init_group(sig); 1586 1587 tty_audit_fork(sig); 1588 sched_autogroup_fork(sig); 1589 1590 sig->oom_score_adj = current->signal->oom_score_adj; 1591 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1592 1593 mutex_init(&sig->cred_guard_mutex); 1594 mutex_init(&sig->exec_update_mutex); 1595 1596 return 0; 1597 } 1598 1599 static void copy_seccomp(struct task_struct *p) 1600 { 1601 #ifdef CONFIG_SECCOMP 1602 /* 1603 * Must be called with sighand->lock held, which is common to 1604 * all threads in the group. Holding cred_guard_mutex is not 1605 * needed because this new task is not yet running and cannot 1606 * be racing exec. 1607 */ 1608 assert_spin_locked(¤t->sighand->siglock); 1609 1610 /* Ref-count the new filter user, and assign it. */ 1611 get_seccomp_filter(current); 1612 p->seccomp = current->seccomp; 1613 1614 /* 1615 * Explicitly enable no_new_privs here in case it got set 1616 * between the task_struct being duplicated and holding the 1617 * sighand lock. The seccomp state and nnp must be in sync. 1618 */ 1619 if (task_no_new_privs(current)) 1620 task_set_no_new_privs(p); 1621 1622 /* 1623 * If the parent gained a seccomp mode after copying thread 1624 * flags and between before we held the sighand lock, we have 1625 * to manually enable the seccomp thread flag here. 1626 */ 1627 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1628 set_tsk_thread_flag(p, TIF_SECCOMP); 1629 #endif 1630 } 1631 1632 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1633 { 1634 current->clear_child_tid = tidptr; 1635 1636 return task_pid_vnr(current); 1637 } 1638 1639 static void rt_mutex_init_task(struct task_struct *p) 1640 { 1641 raw_spin_lock_init(&p->pi_lock); 1642 #ifdef CONFIG_RT_MUTEXES 1643 p->pi_waiters = RB_ROOT_CACHED; 1644 p->pi_top_task = NULL; 1645 p->pi_blocked_on = NULL; 1646 #endif 1647 } 1648 1649 static inline void init_task_pid_links(struct task_struct *task) 1650 { 1651 enum pid_type type; 1652 1653 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1654 INIT_HLIST_NODE(&task->pid_links[type]); 1655 } 1656 } 1657 1658 static inline void 1659 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1660 { 1661 if (type == PIDTYPE_PID) 1662 task->thread_pid = pid; 1663 else 1664 task->signal->pids[type] = pid; 1665 } 1666 1667 static inline void rcu_copy_process(struct task_struct *p) 1668 { 1669 #ifdef CONFIG_PREEMPT_RCU 1670 p->rcu_read_lock_nesting = 0; 1671 p->rcu_read_unlock_special.s = 0; 1672 p->rcu_blocked_node = NULL; 1673 INIT_LIST_HEAD(&p->rcu_node_entry); 1674 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1675 #ifdef CONFIG_TASKS_RCU 1676 p->rcu_tasks_holdout = false; 1677 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1678 p->rcu_tasks_idle_cpu = -1; 1679 #endif /* #ifdef CONFIG_TASKS_RCU */ 1680 #ifdef CONFIG_TASKS_TRACE_RCU 1681 p->trc_reader_nesting = 0; 1682 p->trc_reader_special.s = 0; 1683 INIT_LIST_HEAD(&p->trc_holdout_list); 1684 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1685 } 1686 1687 struct pid *pidfd_pid(const struct file *file) 1688 { 1689 if (file->f_op == &pidfd_fops) 1690 return file->private_data; 1691 1692 return ERR_PTR(-EBADF); 1693 } 1694 1695 static int pidfd_release(struct inode *inode, struct file *file) 1696 { 1697 struct pid *pid = file->private_data; 1698 1699 file->private_data = NULL; 1700 put_pid(pid); 1701 return 0; 1702 } 1703 1704 #ifdef CONFIG_PROC_FS 1705 /** 1706 * pidfd_show_fdinfo - print information about a pidfd 1707 * @m: proc fdinfo file 1708 * @f: file referencing a pidfd 1709 * 1710 * Pid: 1711 * This function will print the pid that a given pidfd refers to in the 1712 * pid namespace of the procfs instance. 1713 * If the pid namespace of the process is not a descendant of the pid 1714 * namespace of the procfs instance 0 will be shown as its pid. This is 1715 * similar to calling getppid() on a process whose parent is outside of 1716 * its pid namespace. 1717 * 1718 * NSpid: 1719 * If pid namespaces are supported then this function will also print 1720 * the pid of a given pidfd refers to for all descendant pid namespaces 1721 * starting from the current pid namespace of the instance, i.e. the 1722 * Pid field and the first entry in the NSpid field will be identical. 1723 * If the pid namespace of the process is not a descendant of the pid 1724 * namespace of the procfs instance 0 will be shown as its first NSpid 1725 * entry and no others will be shown. 1726 * Note that this differs from the Pid and NSpid fields in 1727 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1728 * the pid namespace of the procfs instance. The difference becomes 1729 * obvious when sending around a pidfd between pid namespaces from a 1730 * different branch of the tree, i.e. where no ancestoral relation is 1731 * present between the pid namespaces: 1732 * - create two new pid namespaces ns1 and ns2 in the initial pid 1733 * namespace (also take care to create new mount namespaces in the 1734 * new pid namespace and mount procfs) 1735 * - create a process with a pidfd in ns1 1736 * - send pidfd from ns1 to ns2 1737 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1738 * have exactly one entry, which is 0 1739 */ 1740 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1741 { 1742 struct pid *pid = f->private_data; 1743 struct pid_namespace *ns; 1744 pid_t nr = -1; 1745 1746 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1747 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1748 nr = pid_nr_ns(pid, ns); 1749 } 1750 1751 seq_put_decimal_ll(m, "Pid:\t", nr); 1752 1753 #ifdef CONFIG_PID_NS 1754 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1755 if (nr > 0) { 1756 int i; 1757 1758 /* If nr is non-zero it means that 'pid' is valid and that 1759 * ns, i.e. the pid namespace associated with the procfs 1760 * instance, is in the pid namespace hierarchy of pid. 1761 * Start at one below the already printed level. 1762 */ 1763 for (i = ns->level + 1; i <= pid->level; i++) 1764 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1765 } 1766 #endif 1767 seq_putc(m, '\n'); 1768 } 1769 #endif 1770 1771 /* 1772 * Poll support for process exit notification. 1773 */ 1774 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1775 { 1776 struct pid *pid = file->private_data; 1777 __poll_t poll_flags = 0; 1778 1779 poll_wait(file, &pid->wait_pidfd, pts); 1780 1781 /* 1782 * Inform pollers only when the whole thread group exits. 1783 * If the thread group leader exits before all other threads in the 1784 * group, then poll(2) should block, similar to the wait(2) family. 1785 */ 1786 if (thread_group_exited(pid)) 1787 poll_flags = EPOLLIN | EPOLLRDNORM; 1788 1789 return poll_flags; 1790 } 1791 1792 const struct file_operations pidfd_fops = { 1793 .release = pidfd_release, 1794 .poll = pidfd_poll, 1795 #ifdef CONFIG_PROC_FS 1796 .show_fdinfo = pidfd_show_fdinfo, 1797 #endif 1798 }; 1799 1800 static void __delayed_free_task(struct rcu_head *rhp) 1801 { 1802 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1803 1804 free_task(tsk); 1805 } 1806 1807 static __always_inline void delayed_free_task(struct task_struct *tsk) 1808 { 1809 if (IS_ENABLED(CONFIG_MEMCG)) 1810 call_rcu(&tsk->rcu, __delayed_free_task); 1811 else 1812 free_task(tsk); 1813 } 1814 1815 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1816 { 1817 /* Skip if kernel thread */ 1818 if (!tsk->mm) 1819 return; 1820 1821 /* Skip if spawning a thread or using vfork */ 1822 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1823 return; 1824 1825 /* We need to synchronize with __set_oom_adj */ 1826 mutex_lock(&oom_adj_mutex); 1827 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1828 /* Update the values in case they were changed after copy_signal */ 1829 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1830 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1831 mutex_unlock(&oom_adj_mutex); 1832 } 1833 1834 /* 1835 * This creates a new process as a copy of the old one, 1836 * but does not actually start it yet. 1837 * 1838 * It copies the registers, and all the appropriate 1839 * parts of the process environment (as per the clone 1840 * flags). The actual kick-off is left to the caller. 1841 */ 1842 static __latent_entropy struct task_struct *copy_process( 1843 struct pid *pid, 1844 int trace, 1845 int node, 1846 struct kernel_clone_args *args) 1847 { 1848 int pidfd = -1, retval; 1849 struct task_struct *p; 1850 struct multiprocess_signals delayed; 1851 struct file *pidfile = NULL; 1852 u64 clone_flags = args->flags; 1853 struct nsproxy *nsp = current->nsproxy; 1854 1855 /* 1856 * Don't allow sharing the root directory with processes in a different 1857 * namespace 1858 */ 1859 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1860 return ERR_PTR(-EINVAL); 1861 1862 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1863 return ERR_PTR(-EINVAL); 1864 1865 /* 1866 * Thread groups must share signals as well, and detached threads 1867 * can only be started up within the thread group. 1868 */ 1869 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1870 return ERR_PTR(-EINVAL); 1871 1872 /* 1873 * Shared signal handlers imply shared VM. By way of the above, 1874 * thread groups also imply shared VM. Blocking this case allows 1875 * for various simplifications in other code. 1876 */ 1877 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1878 return ERR_PTR(-EINVAL); 1879 1880 /* 1881 * Siblings of global init remain as zombies on exit since they are 1882 * not reaped by their parent (swapper). To solve this and to avoid 1883 * multi-rooted process trees, prevent global and container-inits 1884 * from creating siblings. 1885 */ 1886 if ((clone_flags & CLONE_PARENT) && 1887 current->signal->flags & SIGNAL_UNKILLABLE) 1888 return ERR_PTR(-EINVAL); 1889 1890 /* 1891 * If the new process will be in a different pid or user namespace 1892 * do not allow it to share a thread group with the forking task. 1893 */ 1894 if (clone_flags & CLONE_THREAD) { 1895 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1896 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1897 return ERR_PTR(-EINVAL); 1898 } 1899 1900 /* 1901 * If the new process will be in a different time namespace 1902 * do not allow it to share VM or a thread group with the forking task. 1903 */ 1904 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1905 if (nsp->time_ns != nsp->time_ns_for_children) 1906 return ERR_PTR(-EINVAL); 1907 } 1908 1909 if (clone_flags & CLONE_PIDFD) { 1910 /* 1911 * - CLONE_DETACHED is blocked so that we can potentially 1912 * reuse it later for CLONE_PIDFD. 1913 * - CLONE_THREAD is blocked until someone really needs it. 1914 */ 1915 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1916 return ERR_PTR(-EINVAL); 1917 } 1918 1919 /* 1920 * Force any signals received before this point to be delivered 1921 * before the fork happens. Collect up signals sent to multiple 1922 * processes that happen during the fork and delay them so that 1923 * they appear to happen after the fork. 1924 */ 1925 sigemptyset(&delayed.signal); 1926 INIT_HLIST_NODE(&delayed.node); 1927 1928 spin_lock_irq(¤t->sighand->siglock); 1929 if (!(clone_flags & CLONE_THREAD)) 1930 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1931 recalc_sigpending(); 1932 spin_unlock_irq(¤t->sighand->siglock); 1933 retval = -ERESTARTNOINTR; 1934 if (signal_pending(current)) 1935 goto fork_out; 1936 1937 retval = -ENOMEM; 1938 p = dup_task_struct(current, node); 1939 if (!p) 1940 goto fork_out; 1941 1942 /* 1943 * This _must_ happen before we call free_task(), i.e. before we jump 1944 * to any of the bad_fork_* labels. This is to avoid freeing 1945 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1946 * kernel threads (PF_KTHREAD). 1947 */ 1948 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1949 /* 1950 * Clear TID on mm_release()? 1951 */ 1952 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1953 1954 ftrace_graph_init_task(p); 1955 1956 rt_mutex_init_task(p); 1957 1958 lockdep_assert_irqs_enabled(); 1959 #ifdef CONFIG_PROVE_LOCKING 1960 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1961 #endif 1962 retval = -EAGAIN; 1963 if (atomic_read(&p->real_cred->user->processes) >= 1964 task_rlimit(p, RLIMIT_NPROC)) { 1965 if (p->real_cred->user != INIT_USER && 1966 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1967 goto bad_fork_free; 1968 } 1969 current->flags &= ~PF_NPROC_EXCEEDED; 1970 1971 retval = copy_creds(p, clone_flags); 1972 if (retval < 0) 1973 goto bad_fork_free; 1974 1975 /* 1976 * If multiple threads are within copy_process(), then this check 1977 * triggers too late. This doesn't hurt, the check is only there 1978 * to stop root fork bombs. 1979 */ 1980 retval = -EAGAIN; 1981 if (data_race(nr_threads >= max_threads)) 1982 goto bad_fork_cleanup_count; 1983 1984 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1985 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1986 p->flags |= PF_FORKNOEXEC; 1987 INIT_LIST_HEAD(&p->children); 1988 INIT_LIST_HEAD(&p->sibling); 1989 rcu_copy_process(p); 1990 p->vfork_done = NULL; 1991 spin_lock_init(&p->alloc_lock); 1992 1993 init_sigpending(&p->pending); 1994 1995 p->utime = p->stime = p->gtime = 0; 1996 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1997 p->utimescaled = p->stimescaled = 0; 1998 #endif 1999 prev_cputime_init(&p->prev_cputime); 2000 2001 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2002 seqcount_init(&p->vtime.seqcount); 2003 p->vtime.starttime = 0; 2004 p->vtime.state = VTIME_INACTIVE; 2005 #endif 2006 2007 #ifdef CONFIG_IO_URING 2008 p->io_uring = NULL; 2009 #endif 2010 2011 #if defined(SPLIT_RSS_COUNTING) 2012 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2013 #endif 2014 2015 p->default_timer_slack_ns = current->timer_slack_ns; 2016 2017 #ifdef CONFIG_PSI 2018 p->psi_flags = 0; 2019 #endif 2020 2021 task_io_accounting_init(&p->ioac); 2022 acct_clear_integrals(p); 2023 2024 posix_cputimers_init(&p->posix_cputimers); 2025 2026 p->io_context = NULL; 2027 audit_set_context(p, NULL); 2028 cgroup_fork(p); 2029 #ifdef CONFIG_NUMA 2030 p->mempolicy = mpol_dup(p->mempolicy); 2031 if (IS_ERR(p->mempolicy)) { 2032 retval = PTR_ERR(p->mempolicy); 2033 p->mempolicy = NULL; 2034 goto bad_fork_cleanup_threadgroup_lock; 2035 } 2036 #endif 2037 #ifdef CONFIG_CPUSETS 2038 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2039 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2040 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2041 #endif 2042 #ifdef CONFIG_TRACE_IRQFLAGS 2043 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2044 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2045 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2046 p->softirqs_enabled = 1; 2047 p->softirq_context = 0; 2048 #endif 2049 2050 p->pagefault_disabled = 0; 2051 2052 #ifdef CONFIG_LOCKDEP 2053 lockdep_init_task(p); 2054 #endif 2055 2056 #ifdef CONFIG_DEBUG_MUTEXES 2057 p->blocked_on = NULL; /* not blocked yet */ 2058 #endif 2059 #ifdef CONFIG_BCACHE 2060 p->sequential_io = 0; 2061 p->sequential_io_avg = 0; 2062 #endif 2063 2064 /* Perform scheduler related setup. Assign this task to a CPU. */ 2065 retval = sched_fork(clone_flags, p); 2066 if (retval) 2067 goto bad_fork_cleanup_policy; 2068 2069 retval = perf_event_init_task(p); 2070 if (retval) 2071 goto bad_fork_cleanup_policy; 2072 retval = audit_alloc(p); 2073 if (retval) 2074 goto bad_fork_cleanup_perf; 2075 /* copy all the process information */ 2076 shm_init_task(p); 2077 retval = security_task_alloc(p, clone_flags); 2078 if (retval) 2079 goto bad_fork_cleanup_audit; 2080 retval = copy_semundo(clone_flags, p); 2081 if (retval) 2082 goto bad_fork_cleanup_security; 2083 retval = copy_files(clone_flags, p); 2084 if (retval) 2085 goto bad_fork_cleanup_semundo; 2086 retval = copy_fs(clone_flags, p); 2087 if (retval) 2088 goto bad_fork_cleanup_files; 2089 retval = copy_sighand(clone_flags, p); 2090 if (retval) 2091 goto bad_fork_cleanup_fs; 2092 retval = copy_signal(clone_flags, p); 2093 if (retval) 2094 goto bad_fork_cleanup_sighand; 2095 retval = copy_mm(clone_flags, p); 2096 if (retval) 2097 goto bad_fork_cleanup_signal; 2098 retval = copy_namespaces(clone_flags, p); 2099 if (retval) 2100 goto bad_fork_cleanup_mm; 2101 retval = copy_io(clone_flags, p); 2102 if (retval) 2103 goto bad_fork_cleanup_namespaces; 2104 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2105 if (retval) 2106 goto bad_fork_cleanup_io; 2107 2108 stackleak_task_init(p); 2109 2110 if (pid != &init_struct_pid) { 2111 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2112 args->set_tid_size); 2113 if (IS_ERR(pid)) { 2114 retval = PTR_ERR(pid); 2115 goto bad_fork_cleanup_thread; 2116 } 2117 } 2118 2119 /* 2120 * This has to happen after we've potentially unshared the file 2121 * descriptor table (so that the pidfd doesn't leak into the child 2122 * if the fd table isn't shared). 2123 */ 2124 if (clone_flags & CLONE_PIDFD) { 2125 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2126 if (retval < 0) 2127 goto bad_fork_free_pid; 2128 2129 pidfd = retval; 2130 2131 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2132 O_RDWR | O_CLOEXEC); 2133 if (IS_ERR(pidfile)) { 2134 put_unused_fd(pidfd); 2135 retval = PTR_ERR(pidfile); 2136 goto bad_fork_free_pid; 2137 } 2138 get_pid(pid); /* held by pidfile now */ 2139 2140 retval = put_user(pidfd, args->pidfd); 2141 if (retval) 2142 goto bad_fork_put_pidfd; 2143 } 2144 2145 #ifdef CONFIG_BLOCK 2146 p->plug = NULL; 2147 #endif 2148 futex_init_task(p); 2149 2150 /* 2151 * sigaltstack should be cleared when sharing the same VM 2152 */ 2153 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2154 sas_ss_reset(p); 2155 2156 /* 2157 * Syscall tracing and stepping should be turned off in the 2158 * child regardless of CLONE_PTRACE. 2159 */ 2160 user_disable_single_step(p); 2161 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2162 #ifdef TIF_SYSCALL_EMU 2163 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2164 #endif 2165 clear_tsk_latency_tracing(p); 2166 2167 /* ok, now we should be set up.. */ 2168 p->pid = pid_nr(pid); 2169 if (clone_flags & CLONE_THREAD) { 2170 p->group_leader = current->group_leader; 2171 p->tgid = current->tgid; 2172 } else { 2173 p->group_leader = p; 2174 p->tgid = p->pid; 2175 } 2176 2177 p->nr_dirtied = 0; 2178 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2179 p->dirty_paused_when = 0; 2180 2181 p->pdeath_signal = 0; 2182 INIT_LIST_HEAD(&p->thread_group); 2183 p->task_works = NULL; 2184 2185 /* 2186 * Ensure that the cgroup subsystem policies allow the new process to be 2187 * forked. It should be noted that the new process's css_set can be changed 2188 * between here and cgroup_post_fork() if an organisation operation is in 2189 * progress. 2190 */ 2191 retval = cgroup_can_fork(p, args); 2192 if (retval) 2193 goto bad_fork_put_pidfd; 2194 2195 /* 2196 * From this point on we must avoid any synchronous user-space 2197 * communication until we take the tasklist-lock. In particular, we do 2198 * not want user-space to be able to predict the process start-time by 2199 * stalling fork(2) after we recorded the start_time but before it is 2200 * visible to the system. 2201 */ 2202 2203 p->start_time = ktime_get_ns(); 2204 p->start_boottime = ktime_get_boottime_ns(); 2205 2206 /* 2207 * Make it visible to the rest of the system, but dont wake it up yet. 2208 * Need tasklist lock for parent etc handling! 2209 */ 2210 write_lock_irq(&tasklist_lock); 2211 2212 /* CLONE_PARENT re-uses the old parent */ 2213 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2214 p->real_parent = current->real_parent; 2215 p->parent_exec_id = current->parent_exec_id; 2216 if (clone_flags & CLONE_THREAD) 2217 p->exit_signal = -1; 2218 else 2219 p->exit_signal = current->group_leader->exit_signal; 2220 } else { 2221 p->real_parent = current; 2222 p->parent_exec_id = current->self_exec_id; 2223 p->exit_signal = args->exit_signal; 2224 } 2225 2226 klp_copy_process(p); 2227 2228 spin_lock(¤t->sighand->siglock); 2229 2230 /* 2231 * Copy seccomp details explicitly here, in case they were changed 2232 * before holding sighand lock. 2233 */ 2234 copy_seccomp(p); 2235 2236 rseq_fork(p, clone_flags); 2237 2238 /* Don't start children in a dying pid namespace */ 2239 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2240 retval = -ENOMEM; 2241 goto bad_fork_cancel_cgroup; 2242 } 2243 2244 /* Let kill terminate clone/fork in the middle */ 2245 if (fatal_signal_pending(current)) { 2246 retval = -EINTR; 2247 goto bad_fork_cancel_cgroup; 2248 } 2249 2250 /* past the last point of failure */ 2251 if (pidfile) 2252 fd_install(pidfd, pidfile); 2253 2254 init_task_pid_links(p); 2255 if (likely(p->pid)) { 2256 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2257 2258 init_task_pid(p, PIDTYPE_PID, pid); 2259 if (thread_group_leader(p)) { 2260 init_task_pid(p, PIDTYPE_TGID, pid); 2261 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2262 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2263 2264 if (is_child_reaper(pid)) { 2265 ns_of_pid(pid)->child_reaper = p; 2266 p->signal->flags |= SIGNAL_UNKILLABLE; 2267 } 2268 p->signal->shared_pending.signal = delayed.signal; 2269 p->signal->tty = tty_kref_get(current->signal->tty); 2270 /* 2271 * Inherit has_child_subreaper flag under the same 2272 * tasklist_lock with adding child to the process tree 2273 * for propagate_has_child_subreaper optimization. 2274 */ 2275 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2276 p->real_parent->signal->is_child_subreaper; 2277 list_add_tail(&p->sibling, &p->real_parent->children); 2278 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2279 attach_pid(p, PIDTYPE_TGID); 2280 attach_pid(p, PIDTYPE_PGID); 2281 attach_pid(p, PIDTYPE_SID); 2282 __this_cpu_inc(process_counts); 2283 } else { 2284 current->signal->nr_threads++; 2285 atomic_inc(¤t->signal->live); 2286 refcount_inc(¤t->signal->sigcnt); 2287 task_join_group_stop(p); 2288 list_add_tail_rcu(&p->thread_group, 2289 &p->group_leader->thread_group); 2290 list_add_tail_rcu(&p->thread_node, 2291 &p->signal->thread_head); 2292 } 2293 attach_pid(p, PIDTYPE_PID); 2294 nr_threads++; 2295 } 2296 total_forks++; 2297 hlist_del_init(&delayed.node); 2298 spin_unlock(¤t->sighand->siglock); 2299 syscall_tracepoint_update(p); 2300 write_unlock_irq(&tasklist_lock); 2301 2302 proc_fork_connector(p); 2303 sched_post_fork(p); 2304 cgroup_post_fork(p, args); 2305 perf_event_fork(p); 2306 2307 trace_task_newtask(p, clone_flags); 2308 uprobe_copy_process(p, clone_flags); 2309 2310 copy_oom_score_adj(clone_flags, p); 2311 2312 return p; 2313 2314 bad_fork_cancel_cgroup: 2315 spin_unlock(¤t->sighand->siglock); 2316 write_unlock_irq(&tasklist_lock); 2317 cgroup_cancel_fork(p, args); 2318 bad_fork_put_pidfd: 2319 if (clone_flags & CLONE_PIDFD) { 2320 fput(pidfile); 2321 put_unused_fd(pidfd); 2322 } 2323 bad_fork_free_pid: 2324 if (pid != &init_struct_pid) 2325 free_pid(pid); 2326 bad_fork_cleanup_thread: 2327 exit_thread(p); 2328 bad_fork_cleanup_io: 2329 if (p->io_context) 2330 exit_io_context(p); 2331 bad_fork_cleanup_namespaces: 2332 exit_task_namespaces(p); 2333 bad_fork_cleanup_mm: 2334 if (p->mm) { 2335 mm_clear_owner(p->mm, p); 2336 mmput(p->mm); 2337 } 2338 bad_fork_cleanup_signal: 2339 if (!(clone_flags & CLONE_THREAD)) 2340 free_signal_struct(p->signal); 2341 bad_fork_cleanup_sighand: 2342 __cleanup_sighand(p->sighand); 2343 bad_fork_cleanup_fs: 2344 exit_fs(p); /* blocking */ 2345 bad_fork_cleanup_files: 2346 exit_files(p); /* blocking */ 2347 bad_fork_cleanup_semundo: 2348 exit_sem(p); 2349 bad_fork_cleanup_security: 2350 security_task_free(p); 2351 bad_fork_cleanup_audit: 2352 audit_free(p); 2353 bad_fork_cleanup_perf: 2354 perf_event_free_task(p); 2355 bad_fork_cleanup_policy: 2356 lockdep_free_task(p); 2357 #ifdef CONFIG_NUMA 2358 mpol_put(p->mempolicy); 2359 bad_fork_cleanup_threadgroup_lock: 2360 #endif 2361 delayacct_tsk_free(p); 2362 bad_fork_cleanup_count: 2363 atomic_dec(&p->cred->user->processes); 2364 exit_creds(p); 2365 bad_fork_free: 2366 p->state = TASK_DEAD; 2367 put_task_stack(p); 2368 delayed_free_task(p); 2369 fork_out: 2370 spin_lock_irq(¤t->sighand->siglock); 2371 hlist_del_init(&delayed.node); 2372 spin_unlock_irq(¤t->sighand->siglock); 2373 return ERR_PTR(retval); 2374 } 2375 2376 static inline void init_idle_pids(struct task_struct *idle) 2377 { 2378 enum pid_type type; 2379 2380 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2381 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2382 init_task_pid(idle, type, &init_struct_pid); 2383 } 2384 } 2385 2386 struct task_struct *fork_idle(int cpu) 2387 { 2388 struct task_struct *task; 2389 struct kernel_clone_args args = { 2390 .flags = CLONE_VM, 2391 }; 2392 2393 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2394 if (!IS_ERR(task)) { 2395 init_idle_pids(task); 2396 init_idle(task, cpu); 2397 } 2398 2399 return task; 2400 } 2401 2402 struct mm_struct *copy_init_mm(void) 2403 { 2404 return dup_mm(NULL, &init_mm); 2405 } 2406 2407 /* 2408 * Ok, this is the main fork-routine. 2409 * 2410 * It copies the process, and if successful kick-starts 2411 * it and waits for it to finish using the VM if required. 2412 * 2413 * args->exit_signal is expected to be checked for sanity by the caller. 2414 */ 2415 pid_t kernel_clone(struct kernel_clone_args *args) 2416 { 2417 u64 clone_flags = args->flags; 2418 struct completion vfork; 2419 struct pid *pid; 2420 struct task_struct *p; 2421 int trace = 0; 2422 pid_t nr; 2423 2424 /* 2425 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2426 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2427 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2428 * field in struct clone_args and it still doesn't make sense to have 2429 * them both point at the same memory location. Performing this check 2430 * here has the advantage that we don't need to have a separate helper 2431 * to check for legacy clone(). 2432 */ 2433 if ((args->flags & CLONE_PIDFD) && 2434 (args->flags & CLONE_PARENT_SETTID) && 2435 (args->pidfd == args->parent_tid)) 2436 return -EINVAL; 2437 2438 /* 2439 * Determine whether and which event to report to ptracer. When 2440 * called from kernel_thread or CLONE_UNTRACED is explicitly 2441 * requested, no event is reported; otherwise, report if the event 2442 * for the type of forking is enabled. 2443 */ 2444 if (!(clone_flags & CLONE_UNTRACED)) { 2445 if (clone_flags & CLONE_VFORK) 2446 trace = PTRACE_EVENT_VFORK; 2447 else if (args->exit_signal != SIGCHLD) 2448 trace = PTRACE_EVENT_CLONE; 2449 else 2450 trace = PTRACE_EVENT_FORK; 2451 2452 if (likely(!ptrace_event_enabled(current, trace))) 2453 trace = 0; 2454 } 2455 2456 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2457 add_latent_entropy(); 2458 2459 if (IS_ERR(p)) 2460 return PTR_ERR(p); 2461 2462 /* 2463 * Do this prior waking up the new thread - the thread pointer 2464 * might get invalid after that point, if the thread exits quickly. 2465 */ 2466 trace_sched_process_fork(current, p); 2467 2468 pid = get_task_pid(p, PIDTYPE_PID); 2469 nr = pid_vnr(pid); 2470 2471 if (clone_flags & CLONE_PARENT_SETTID) 2472 put_user(nr, args->parent_tid); 2473 2474 if (clone_flags & CLONE_VFORK) { 2475 p->vfork_done = &vfork; 2476 init_completion(&vfork); 2477 get_task_struct(p); 2478 } 2479 2480 wake_up_new_task(p); 2481 2482 /* forking complete and child started to run, tell ptracer */ 2483 if (unlikely(trace)) 2484 ptrace_event_pid(trace, pid); 2485 2486 if (clone_flags & CLONE_VFORK) { 2487 if (!wait_for_vfork_done(p, &vfork)) 2488 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2489 } 2490 2491 put_pid(pid); 2492 return nr; 2493 } 2494 2495 /* 2496 * Create a kernel thread. 2497 */ 2498 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2499 { 2500 struct kernel_clone_args args = { 2501 .flags = ((lower_32_bits(flags) | CLONE_VM | 2502 CLONE_UNTRACED) & ~CSIGNAL), 2503 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2504 .stack = (unsigned long)fn, 2505 .stack_size = (unsigned long)arg, 2506 }; 2507 2508 return kernel_clone(&args); 2509 } 2510 2511 #ifdef __ARCH_WANT_SYS_FORK 2512 SYSCALL_DEFINE0(fork) 2513 { 2514 #ifdef CONFIG_MMU 2515 struct kernel_clone_args args = { 2516 .exit_signal = SIGCHLD, 2517 }; 2518 2519 return kernel_clone(&args); 2520 #else 2521 /* can not support in nommu mode */ 2522 return -EINVAL; 2523 #endif 2524 } 2525 #endif 2526 2527 #ifdef __ARCH_WANT_SYS_VFORK 2528 SYSCALL_DEFINE0(vfork) 2529 { 2530 struct kernel_clone_args args = { 2531 .flags = CLONE_VFORK | CLONE_VM, 2532 .exit_signal = SIGCHLD, 2533 }; 2534 2535 return kernel_clone(&args); 2536 } 2537 #endif 2538 2539 #ifdef __ARCH_WANT_SYS_CLONE 2540 #ifdef CONFIG_CLONE_BACKWARDS 2541 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2542 int __user *, parent_tidptr, 2543 unsigned long, tls, 2544 int __user *, child_tidptr) 2545 #elif defined(CONFIG_CLONE_BACKWARDS2) 2546 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2547 int __user *, parent_tidptr, 2548 int __user *, child_tidptr, 2549 unsigned long, tls) 2550 #elif defined(CONFIG_CLONE_BACKWARDS3) 2551 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2552 int, stack_size, 2553 int __user *, parent_tidptr, 2554 int __user *, child_tidptr, 2555 unsigned long, tls) 2556 #else 2557 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2558 int __user *, parent_tidptr, 2559 int __user *, child_tidptr, 2560 unsigned long, tls) 2561 #endif 2562 { 2563 struct kernel_clone_args args = { 2564 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2565 .pidfd = parent_tidptr, 2566 .child_tid = child_tidptr, 2567 .parent_tid = parent_tidptr, 2568 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2569 .stack = newsp, 2570 .tls = tls, 2571 }; 2572 2573 return kernel_clone(&args); 2574 } 2575 #endif 2576 2577 #ifdef __ARCH_WANT_SYS_CLONE3 2578 2579 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2580 struct clone_args __user *uargs, 2581 size_t usize) 2582 { 2583 int err; 2584 struct clone_args args; 2585 pid_t *kset_tid = kargs->set_tid; 2586 2587 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2588 CLONE_ARGS_SIZE_VER0); 2589 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2590 CLONE_ARGS_SIZE_VER1); 2591 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2592 CLONE_ARGS_SIZE_VER2); 2593 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2594 2595 if (unlikely(usize > PAGE_SIZE)) 2596 return -E2BIG; 2597 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2598 return -EINVAL; 2599 2600 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2601 if (err) 2602 return err; 2603 2604 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2605 return -EINVAL; 2606 2607 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2608 return -EINVAL; 2609 2610 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2611 return -EINVAL; 2612 2613 /* 2614 * Verify that higher 32bits of exit_signal are unset and that 2615 * it is a valid signal 2616 */ 2617 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2618 !valid_signal(args.exit_signal))) 2619 return -EINVAL; 2620 2621 if ((args.flags & CLONE_INTO_CGROUP) && 2622 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2623 return -EINVAL; 2624 2625 *kargs = (struct kernel_clone_args){ 2626 .flags = args.flags, 2627 .pidfd = u64_to_user_ptr(args.pidfd), 2628 .child_tid = u64_to_user_ptr(args.child_tid), 2629 .parent_tid = u64_to_user_ptr(args.parent_tid), 2630 .exit_signal = args.exit_signal, 2631 .stack = args.stack, 2632 .stack_size = args.stack_size, 2633 .tls = args.tls, 2634 .set_tid_size = args.set_tid_size, 2635 .cgroup = args.cgroup, 2636 }; 2637 2638 if (args.set_tid && 2639 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2640 (kargs->set_tid_size * sizeof(pid_t)))) 2641 return -EFAULT; 2642 2643 kargs->set_tid = kset_tid; 2644 2645 return 0; 2646 } 2647 2648 /** 2649 * clone3_stack_valid - check and prepare stack 2650 * @kargs: kernel clone args 2651 * 2652 * Verify that the stack arguments userspace gave us are sane. 2653 * In addition, set the stack direction for userspace since it's easy for us to 2654 * determine. 2655 */ 2656 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2657 { 2658 if (kargs->stack == 0) { 2659 if (kargs->stack_size > 0) 2660 return false; 2661 } else { 2662 if (kargs->stack_size == 0) 2663 return false; 2664 2665 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2666 return false; 2667 2668 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2669 kargs->stack += kargs->stack_size; 2670 #endif 2671 } 2672 2673 return true; 2674 } 2675 2676 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2677 { 2678 /* Verify that no unknown flags are passed along. */ 2679 if (kargs->flags & 2680 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2681 return false; 2682 2683 /* 2684 * - make the CLONE_DETACHED bit reuseable for clone3 2685 * - make the CSIGNAL bits reuseable for clone3 2686 */ 2687 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2688 return false; 2689 2690 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2691 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2692 return false; 2693 2694 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2695 kargs->exit_signal) 2696 return false; 2697 2698 if (!clone3_stack_valid(kargs)) 2699 return false; 2700 2701 return true; 2702 } 2703 2704 /** 2705 * clone3 - create a new process with specific properties 2706 * @uargs: argument structure 2707 * @size: size of @uargs 2708 * 2709 * clone3() is the extensible successor to clone()/clone2(). 2710 * It takes a struct as argument that is versioned by its size. 2711 * 2712 * Return: On success, a positive PID for the child process. 2713 * On error, a negative errno number. 2714 */ 2715 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2716 { 2717 int err; 2718 2719 struct kernel_clone_args kargs; 2720 pid_t set_tid[MAX_PID_NS_LEVEL]; 2721 2722 kargs.set_tid = set_tid; 2723 2724 err = copy_clone_args_from_user(&kargs, uargs, size); 2725 if (err) 2726 return err; 2727 2728 if (!clone3_args_valid(&kargs)) 2729 return -EINVAL; 2730 2731 return kernel_clone(&kargs); 2732 } 2733 #endif 2734 2735 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2736 { 2737 struct task_struct *leader, *parent, *child; 2738 int res; 2739 2740 read_lock(&tasklist_lock); 2741 leader = top = top->group_leader; 2742 down: 2743 for_each_thread(leader, parent) { 2744 list_for_each_entry(child, &parent->children, sibling) { 2745 res = visitor(child, data); 2746 if (res) { 2747 if (res < 0) 2748 goto out; 2749 leader = child; 2750 goto down; 2751 } 2752 up: 2753 ; 2754 } 2755 } 2756 2757 if (leader != top) { 2758 child = leader; 2759 parent = child->real_parent; 2760 leader = parent->group_leader; 2761 goto up; 2762 } 2763 out: 2764 read_unlock(&tasklist_lock); 2765 } 2766 2767 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2768 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2769 #endif 2770 2771 static void sighand_ctor(void *data) 2772 { 2773 struct sighand_struct *sighand = data; 2774 2775 spin_lock_init(&sighand->siglock); 2776 init_waitqueue_head(&sighand->signalfd_wqh); 2777 } 2778 2779 void __init proc_caches_init(void) 2780 { 2781 unsigned int mm_size; 2782 2783 sighand_cachep = kmem_cache_create("sighand_cache", 2784 sizeof(struct sighand_struct), 0, 2785 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2786 SLAB_ACCOUNT, sighand_ctor); 2787 signal_cachep = kmem_cache_create("signal_cache", 2788 sizeof(struct signal_struct), 0, 2789 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2790 NULL); 2791 files_cachep = kmem_cache_create("files_cache", 2792 sizeof(struct files_struct), 0, 2793 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2794 NULL); 2795 fs_cachep = kmem_cache_create("fs_cache", 2796 sizeof(struct fs_struct), 0, 2797 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2798 NULL); 2799 2800 /* 2801 * The mm_cpumask is located at the end of mm_struct, and is 2802 * dynamically sized based on the maximum CPU number this system 2803 * can have, taking hotplug into account (nr_cpu_ids). 2804 */ 2805 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2806 2807 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2808 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2809 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2810 offsetof(struct mm_struct, saved_auxv), 2811 sizeof_field(struct mm_struct, saved_auxv), 2812 NULL); 2813 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2814 mmap_init(); 2815 nsproxy_cache_init(); 2816 } 2817 2818 /* 2819 * Check constraints on flags passed to the unshare system call. 2820 */ 2821 static int check_unshare_flags(unsigned long unshare_flags) 2822 { 2823 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2824 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2825 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2826 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2827 CLONE_NEWTIME)) 2828 return -EINVAL; 2829 /* 2830 * Not implemented, but pretend it works if there is nothing 2831 * to unshare. Note that unsharing the address space or the 2832 * signal handlers also need to unshare the signal queues (aka 2833 * CLONE_THREAD). 2834 */ 2835 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2836 if (!thread_group_empty(current)) 2837 return -EINVAL; 2838 } 2839 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2840 if (refcount_read(¤t->sighand->count) > 1) 2841 return -EINVAL; 2842 } 2843 if (unshare_flags & CLONE_VM) { 2844 if (!current_is_single_threaded()) 2845 return -EINVAL; 2846 } 2847 2848 return 0; 2849 } 2850 2851 /* 2852 * Unshare the filesystem structure if it is being shared 2853 */ 2854 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2855 { 2856 struct fs_struct *fs = current->fs; 2857 2858 if (!(unshare_flags & CLONE_FS) || !fs) 2859 return 0; 2860 2861 /* don't need lock here; in the worst case we'll do useless copy */ 2862 if (fs->users == 1) 2863 return 0; 2864 2865 *new_fsp = copy_fs_struct(fs); 2866 if (!*new_fsp) 2867 return -ENOMEM; 2868 2869 return 0; 2870 } 2871 2872 /* 2873 * Unshare file descriptor table if it is being shared 2874 */ 2875 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2876 struct files_struct **new_fdp) 2877 { 2878 struct files_struct *fd = current->files; 2879 int error = 0; 2880 2881 if ((unshare_flags & CLONE_FILES) && 2882 (fd && atomic_read(&fd->count) > 1)) { 2883 *new_fdp = dup_fd(fd, max_fds, &error); 2884 if (!*new_fdp) 2885 return error; 2886 } 2887 2888 return 0; 2889 } 2890 2891 /* 2892 * unshare allows a process to 'unshare' part of the process 2893 * context which was originally shared using clone. copy_* 2894 * functions used by kernel_clone() cannot be used here directly 2895 * because they modify an inactive task_struct that is being 2896 * constructed. Here we are modifying the current, active, 2897 * task_struct. 2898 */ 2899 int ksys_unshare(unsigned long unshare_flags) 2900 { 2901 struct fs_struct *fs, *new_fs = NULL; 2902 struct files_struct *fd, *new_fd = NULL; 2903 struct cred *new_cred = NULL; 2904 struct nsproxy *new_nsproxy = NULL; 2905 int do_sysvsem = 0; 2906 int err; 2907 2908 /* 2909 * If unsharing a user namespace must also unshare the thread group 2910 * and unshare the filesystem root and working directories. 2911 */ 2912 if (unshare_flags & CLONE_NEWUSER) 2913 unshare_flags |= CLONE_THREAD | CLONE_FS; 2914 /* 2915 * If unsharing vm, must also unshare signal handlers. 2916 */ 2917 if (unshare_flags & CLONE_VM) 2918 unshare_flags |= CLONE_SIGHAND; 2919 /* 2920 * If unsharing a signal handlers, must also unshare the signal queues. 2921 */ 2922 if (unshare_flags & CLONE_SIGHAND) 2923 unshare_flags |= CLONE_THREAD; 2924 /* 2925 * If unsharing namespace, must also unshare filesystem information. 2926 */ 2927 if (unshare_flags & CLONE_NEWNS) 2928 unshare_flags |= CLONE_FS; 2929 2930 err = check_unshare_flags(unshare_flags); 2931 if (err) 2932 goto bad_unshare_out; 2933 /* 2934 * CLONE_NEWIPC must also detach from the undolist: after switching 2935 * to a new ipc namespace, the semaphore arrays from the old 2936 * namespace are unreachable. 2937 */ 2938 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2939 do_sysvsem = 1; 2940 err = unshare_fs(unshare_flags, &new_fs); 2941 if (err) 2942 goto bad_unshare_out; 2943 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2944 if (err) 2945 goto bad_unshare_cleanup_fs; 2946 err = unshare_userns(unshare_flags, &new_cred); 2947 if (err) 2948 goto bad_unshare_cleanup_fd; 2949 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2950 new_cred, new_fs); 2951 if (err) 2952 goto bad_unshare_cleanup_cred; 2953 2954 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2955 if (do_sysvsem) { 2956 /* 2957 * CLONE_SYSVSEM is equivalent to sys_exit(). 2958 */ 2959 exit_sem(current); 2960 } 2961 if (unshare_flags & CLONE_NEWIPC) { 2962 /* Orphan segments in old ns (see sem above). */ 2963 exit_shm(current); 2964 shm_init_task(current); 2965 } 2966 2967 if (new_nsproxy) 2968 switch_task_namespaces(current, new_nsproxy); 2969 2970 task_lock(current); 2971 2972 if (new_fs) { 2973 fs = current->fs; 2974 spin_lock(&fs->lock); 2975 current->fs = new_fs; 2976 if (--fs->users) 2977 new_fs = NULL; 2978 else 2979 new_fs = fs; 2980 spin_unlock(&fs->lock); 2981 } 2982 2983 if (new_fd) { 2984 fd = current->files; 2985 current->files = new_fd; 2986 new_fd = fd; 2987 } 2988 2989 task_unlock(current); 2990 2991 if (new_cred) { 2992 /* Install the new user namespace */ 2993 commit_creds(new_cred); 2994 new_cred = NULL; 2995 } 2996 } 2997 2998 perf_event_namespaces(current); 2999 3000 bad_unshare_cleanup_cred: 3001 if (new_cred) 3002 put_cred(new_cred); 3003 bad_unshare_cleanup_fd: 3004 if (new_fd) 3005 put_files_struct(new_fd); 3006 3007 bad_unshare_cleanup_fs: 3008 if (new_fs) 3009 free_fs_struct(new_fs); 3010 3011 bad_unshare_out: 3012 return err; 3013 } 3014 3015 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3016 { 3017 return ksys_unshare(unshare_flags); 3018 } 3019 3020 /* 3021 * Helper to unshare the files of the current task. 3022 * We don't want to expose copy_files internals to 3023 * the exec layer of the kernel. 3024 */ 3025 3026 int unshare_files(struct files_struct **displaced) 3027 { 3028 struct task_struct *task = current; 3029 struct files_struct *copy = NULL; 3030 int error; 3031 3032 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3033 if (error || !copy) { 3034 *displaced = NULL; 3035 return error; 3036 } 3037 *displaced = task->files; 3038 task_lock(task); 3039 task->files = copy; 3040 task_unlock(task); 3041 return 0; 3042 } 3043 3044 int sysctl_max_threads(struct ctl_table *table, int write, 3045 void *buffer, size_t *lenp, loff_t *ppos) 3046 { 3047 struct ctl_table t; 3048 int ret; 3049 int threads = max_threads; 3050 int min = 1; 3051 int max = MAX_THREADS; 3052 3053 t = *table; 3054 t.data = &threads; 3055 t.extra1 = &min; 3056 t.extra2 = &max; 3057 3058 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3059 if (ret || !write) 3060 return ret; 3061 3062 max_threads = threads; 3063 3064 return 0; 3065 } 3066